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AIHealth 2024

Foreword

The First International Conference on AI-Health (AIHealth 2024), held between March 10 – 14,
2024, covered topics blending Artificial Intelligence and health sciences.

Quality healthcare should be extended to all communities. Independent of how big and complex
the healthcare systems are, physicians are under increasing time and workload pressures and spending
less time with patients. The challenge to deliver high-quality healthcare against administrative burdens
is big and increasing.

Healthcare facilities also produce great amounts of data and record high volumes of patient
records information. This information is valuable and necessary to quality patient care. This information
requires an enormousness effort (time, personnel) to be timely processed for prediction, evaluation and
monitoring patients' health.

Artificial Intelligence (AI) comes to rescue in terms of accuracy, precision, rapidity and
processing a large volume of data. AI-based health systems benefit for recent advances in sophisticated
AI mechanisms for predicting patient health conditions (personalized, at large scale), producing useful
analytics on varii patient health aspects, as well as monitoring and controlling patient under scrutiny.

We take here the opportunity to warmly thank all the members of the AIHealth 2024 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to AIHealth 2024.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the AIHealth 2024 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that AIHealth 2024 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the fields of AI and health
sciences.

We are convinced that the participants found the event useful and communications very open.
We also hope that Athens provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city

AIHealth 2024 Chairs:
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Abstract - This paper introduces an AI-based
assistance system for elderly care, directly aligning with
the conference themes "AI-based Health systems and
applications," "Personalized health devices and mobile
services," and "Assisted-living applications using
affective computing." Addressing elderly loneliness and
staff shortages, it leverages data analysis, pattern
recognition, and big data analytics with AI frameworks
such as TensorFlow and Keras to enhance seniors'
quality of life through interactive communication,
personalized dialogues, cognitive stimulation, and
emergency responses. Our approach, an AI avatar
family on tablets, emphasizes empathy over traditional
solutions like robotics and wearables, and aims to
mitigate loneliness—a key factor in health
deterioration. Unlike asserting superiority, this project
explores empathy's potential to complement existing
technologies, with our exploratory efforts showing
promise in early evaluations. By prioritizing empathetic
connections and evaluating its impact on user
satisfaction and quality of life, our work offers a
hopeful, yet cautious, perspective on improving elderly
care. This paper concludes that a scalable, empathetic
solution is well suited for dealing with the described
challenges, and offers a meaningful alternative to
existing solutions.

Keywords-Artificial Intelligence; Elderly Care;
Avatar; Machine Learning; Empathy

I. INTRODUCTION

The health care provision for seniors faces a
challenge that extends beyond immediate medical
care: loneliness. More than one in five seniors suffers
from the psychosocial and physical consequences of
social isolation, which often leads to a downward
cascade in functional competence. The situation is
further exacerbated by a shortage of skilled workers
in the nursing sector. 770 million people are aged 65
or older. With the total number of individuals
requiring care surpassing a billion, the caregiver to
care recipient ratio is expected to decrease from 7:1
in 2011 to 3:1 by 2050. These staffing gaps
inevitably lead to a deterioration in the quality of
care, which directly affects the health and well-being
of seniors. With aging, cognitive, social, and physical
abilities diminish, leading to increased loneliness and
anxiety in the elderly. Families and institutions face

limitations in providing adequate help. Emergencies
often go unnoticed, with alarm buttons frequently out
of reach when needed. Limited interactions and
challenges accelerate the speed of physical and
mental decline [1].

Artificial Intelligence (AI) and Machine
Learning (ML) have the potential to improve the
quality of care and relieve the staff [2]. These
technologies promise transformative changes in
predictive health care, diagnostics, and personalized
treatment, especially for the older population [3].
This paper addresses the question of how AI and ML
technologies can be applied in elderly care to meet
these challenges. It discusses how AI-supported
decision-support and health monitoring systems can
contribute to improving the quality of care and
relieving the burden on nursing staff, without
replacing the human component [4].

The primary research question targeted with
our solution for elderly care is how the factor of
empathy alleviates loneliness and thereby also plays
a significant role in stopping cognitive decline and
illnesses that are typically accelerated by isolation.
The purpose of this paper is to provide a general
overview of the benefits of AI in elderly care and to
outline the solution as such, with its characteristics,
goals, functionality, challenges, and outlook.

The limitations of our approach are rooted
in the fact that we have just started the
implementation in care facilities. While initial
feedback from patients and staff is good, a thorough
analysis is still pending. This uncertainty underscores
the exploratory nature of our current phase,
emphasizing the potential for future developments
and refinements based on comprehensive
evaluations.

This paper is structured to guide the reader
through our comprehensive approach to integrating
AI in elderly care as follows:

State of the Art Solutions: This section
reviews current elderly care technologies,
highlighting how AI avatars offer a unique solution
to the limitations of existing applications, especially
in addressing loneliness.

Methods, Materials, and Tools: We discuss
the technological underpinnings of our AI solution,
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emphasizing the selection of AI frameworks and
tools that prioritize adaptability, scalability, and
empathetic engagement.

Description of the Solution: The AI
solution's empathetic design is elaborated, showing
how it aims to mitigate elderly loneliness through
personalized and compassionate interactions.

Further Aspects and Implementation:
Challenges in integrating the solution into care
facilities, user acceptance strategies, and privacy
considerations are outlined.

Results and Experiences: Initial feedback
from the deployment of our AI system in care
facilities is shared, highlighting its impact on care
quality and areas for improvement.

Conclusion and Future Work: The paper
ends with a discussion on the future potential of AI in
elderly care, considering scalability and upcoming
advancements, and situates our work within the
broader AI and healthcare narrative.

II. STATE OF THE ART SOLUTIONS

Elderly care technology has seen significant
advancements aimed at improving the quality of life
for seniors. These innovations typically fall into
several categories, each designed to address specific
aspects of elderly care.

A. Robotics

Robotic solutions in elderly care, such as
companion robots and robotic assistants, have been
developed to provide physical assistance, social
interaction, and monitoring. Examples include robots
that help with mobility, perform simple household
tasks, or offer reminders for medication.

B. Smart Applications

Smart applications and devices, ranging
from wearable health monitors to smart home
systems, are widely used to enhance safety and health
monitoring. These applications can track vital signs,
detect falls, and enable remote communication with
caregivers and medical professionals.

C. Virtual and Augmented Reality

Virtual Reality (VR) and Augmented
Reality (AR): VR and AR technologies are emerging
as tools for cognitive stimulation and social
interaction. They offer immersive experiences that
can help seniors engage in virtual travel, memory
exercises, and social activities, potentially reducing
feelings of isolation.

D. Benefits and Limitations of the Existing

While these solutions perform valuable
tasks and address daily challenges for the elderly,
such as improving physical health, ensuring safety,
and providing some level of social interaction, they
often do not fully address the deeper, long-term

problem of isolation and loneliness. This gap is
where our proposal, an AI Avatar family on tablets
focusing on empathy, introduces a novel approach.
Our solution is designed to go beyond the
functionality of current technologies by prioritizing
emotional intelligence and empathetic interaction.
Recognizing that loneliness and social isolation have
profound effects on the mental and physical health of
the elderly, our solution aims to foster a sense of
connection and companionship. Unlike robotics,
smart applications, and even VR/AR experiences that
offer interaction from a functional or entertainment
perspective, AI avatars engage users on a personal
level, simulating empathetic conversations and
adapting to the emotional states and preferences of its
users.

III. MATERIALS, METHODS AND TOOLS

The advanced AI technologies currently
being used in elderly care require a comprehensive
methodological approach for their analysis, selection,
and implementation. These processes rely on proven
methods and tools of computer science and artificial
intelligence, which also form the basis for avatars
that can provide support in care. Data analysis and
pattern recognition are at the forefront of the initial
analysis phase. By utilizing big data analytics,
comprehensive patterns and trends in the health
status and behavior of seniors can be identified.
These insights are crucial for training AI models that
are tailored to the needs of the seniors.

The selection processes focus on AI
frameworks that offer adaptive learning capabilities
to enable personalized experiences. GPT-based
models for natural language processing are preferred
to facilitate natural and fluent communication.
Moreover, decision trees and other predictive
algorithms are significant for providing decision
support in care.

The implementation uses machine learning
libraries and development environments optimized
for working with natural language processing (NLP)
and predictive models. Tools like TensorFlow and
Keras enable the training of deep learning models,
while platforms like OpenAI GPT provide the
foundation for developing language AI. Cloud-based
services are used for scaling and secure data access,
with a strong focus on data protection and
compliance with European standards. The use of
these tools and methods leads to the development of
AI systems that can simulate personal interaction,
enable individual learning, and support the cognitive
stimulation and well-being of seniors [5].

IV. DESCRIPTION OF THE SOLUTION

The concept elaborated below describes an
AI-based assistance system, a family of AI avatars on
a tablet, specifically designed to support seniors in
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their own homes, acting as an empathetic companion,
improving their quality of life [6].

A. Natural Language Processing

The foundation of the system is a speech
recognition feature that allows seniors to
communicate with the AI in a natural way. Utilizing
Natural Language Processing, the system can
respond not just to pre-programmed commands but
also engage in free-flowing dialogues. This promotes
social interaction and takes into account the
individual health status and preferences of the users.

B. Learning Abilities and Stimulation

The system adapts and learns from
interactions over time. It integrates the user's life
story by incorporating biographical information,
personal preferences, and family and friendship
relationships into the communication and interaction.
The assistance system offers a variety of games and
cognitive activities specifically designed to enhance
the mental abilities of seniors. These range from
memory training to problem-solving tasks and are
regularly updated to provide stimulation.

C. Network Capabilities

Another integral part is its networking
capability. Family members and caregivers can stay
in contact with the seniors through the system. This
enables quick and easy exchange of information and
timely organization of support. In critical situations,
the system provides immediate assistance. It is
capable of contacting emergency services and also
gives regular reminders for daily tasks like taking
medication. The architecture is future-oriented and
flexible. It can be easily expanded and adapted to a
growing number of users to meet the ever-increasing
demands.

V. FURTHER ASPECTS AND
IMPLEMENTATION

The implementation occurs in several
phases, each aiming to improve the living conditions
of seniors. A careful analysis of their needs is at the
forefront of the project. Experts from the nursing
field, psychologists, and technologists work together
to ensure seamless integration into the home
environment.

A. User-Friendliness

A central focus is on user-friendliness. The
AI is designed to be intuitive and operable without
prior knowledge. This ensures broad acceptance
among seniors, who are expected to interact with the
technology. Additionally, the hardware is designed to
be robust and low-maintenance, simplifying care by
relatives or nursing staff.

B. Data Protection

Furthermore, the system is equipped with a
comprehensive data protection strategy. The sensitive
data of users are processed and stored with the
highest security standards to ensure their privacy.
Cognitive stimulation is ensured through regular
content updates and the introduction of new
activities. Current scientific findings and user
feedback are incorporated to continuously improve
and adapt the offerings to the needs.

C. Linking Users, Family and Caregivers

For network connectivity, interfaces to
common communication platforms are integrated,
facilitating easy exchange between seniors and their
family members. Caregivers can also access health
data through these channels, simplifying monitoring
and care.

D. Emergency Response and Behavior Analysis

The emergency response of the system is
based on intelligent recognition of deviations in the
seniors' normal daily routines. It learns typical
behavioral patterns, enabling it to recognize and
respond to unusual events that may indicate an
emergency. Scalability is ensured through the use of
cloud technologies. New functions and services can
be centrally implemented and made available to all
users without the need for manual updates on-site.
The introduction is gradual. Initially, pilot projects
with a small user group are conducted to test and
further develop the system in practice. User feedback
plays a crucial role in refining the system and
adapting it to real needs. For long-term support and
development, an interdisciplinary team is envisaged,
ensuring regular updates and keeping the system in
line with the latest technological advancements.

VI. RESULTS AND EXPERIENCES

The focus lies on integrated and
forward-looking care. The implementation of
technologies such as artificial intelligence, machine
learning, and natural language processing enables a
personalized user experience. The goal we pursue
with the use of the system is not only to improve the
quality of life of seniors but also to relieve the burden
on nursing staff through more efficient resource
utilization. In collaboration with health insurance
companies and care facilities, we see the opportunity
to realize the following added values.

A. Collaboration and Feedback

Collaboration with health insurance
companies will be crucial to understand the
framework for the introduction and financing. This
will help to develop the system in line with current
health regulations and ensure that it is accessible to
the broader population. By realizing pilot projects
with care facilities, the solution can be tested and
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improved in a controlled environment. Such studies
are essential to demonstrate the effectiveness of the
system and to make specific adjustments to the needs
of the users. Practical experience from care facilities
will help to further optimize the functionality and
user-friendliness.

B. Scalability

The architecture is designed to be easily
scalable and adaptable to different care
environments. This is particularly advantageous in
collaboration with care facilities, as different
requirements and contexts need to be considered. In
collaboration with health insurance companies and
care facilities, data protection and compliance will
play a central role from the outset. This is crucial to
gain user trust and meet legal requirements.
Collaboration with established actors in the
healthcare sector will enable the system to access the
market more quickly and create a network for future
developments and innovations.

C. Long Term Impact Studies

With health insurance companies, long-term
impact studies can be initiated to document the
benefits of the solution for the health and well-being
of seniors over extended periods. The system is still
in the development phase. Our expectations are high,
but they are based on solid foundations: a deep
understanding of the technology, a clear view of the
needs of the elderly, and close cooperation with
healthcare stakeholders. We expect high user
acceptance thanks to its intuitive operation, economic
efficiency and personalized interaction. We are aware
of the social responsibility that comes with the
development of such a system. It is not just about
creating a technological product but also about
making a contribution that improves the lives of
many people and enhances the nursing profession.

VII. CONCLUSION AND FUTURE WORK

The integration of AI-driven approaches in
elderly care is still in its infancy, yet expectations are
high. Ensuring data security and protecting privacy
are central to our considerations, especially due to the
sensitive nature of health data. We anticipate the need
for ongoing ethical reflection and assessment of the
technology to optimize its benefits and address
potential risks. Our goal is for AI to be seen not
merely as a tool but as a trustworthy partner in health
care, constantly interacting with professionals,
patients, and relatives. We expect that the future
development of AI in healthcare will lead to
increasingly individualized and adaptive systems that
actively participate, not just react. These systems
should have the ability to learn from each interaction
and make precise predictions and recommendations
through the generalization of learning processes.
With the further integration of AI systems into

clinical workflows, we foresee a more intense and
fruitful collaboration between computer scientists,
medical professionals, and caregivers. We are at the
threshold of a new era in healthcare, where AI-based
assistance systems have the potential to optimize
workflows, relieve nursing staff, and improve senior
care. In conclusion, we emphasize that despite the
excitement for technological advancements, the
human aspect remains essential. Technology should
complement and support human work, but the core
aspects of care – empathy, understanding, and
personal attention – must not be neglected.
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Abstract—Breast cancer is one of the leading causes of cancer 
death among women worldwide. It represents a global health 
concern due to the lack of effective therapeutic regimens that 
could be applied to all breast cancer patients. Breast cancer 
treatment decisions rely on clinicopathologic parameters. 
However, this approach is replete with limitations as it fails to 
define prognosis uniquely and is not always sufficient to settle 
unequivocally on the best type of treatment for breast cancer 
patients. The molecular diagnostic efforts have been focused 
mainly on Estrogen Receptor (ER)‐positive (Luminal A) breast 
cancer being the most represented breast cancer subtype (70% 
of patients) with a standard treatment (endocrine therapy for 
five years) and a good prognosis. However, at least 20% of 
patients will suffer a distant recurrence within ten years. 
Although many molecular tests have been developed to identify 
the patients at risk of recurrence, a definite, reliable and 
effective in vitro diagnostic device that stratifies patients at high 
risk and low risk of relapse, directing therapeutic decisions, is 
still a significant clinical need. This study aims to fill this gap by 
investigating and developing a new approach for better 
stratification of breast cancer patients in the risk categories of 
recurrence. It is based on the integration of clinical and digital 
pathology analysis. The combined analysis, indeed, aims to 
further categorize the patients with an intermediate risk of 
recurrence either in the low-risk group with no necessity of 
chemotherapy or in the high-risk group that needs 
chemotherapy. The paper presents the approach, the 
implemented Computer-Aided Diagnosis (CAD) tool and 
finally, the results of evaluating its predictive accuracy. The tool 
achieved 88% accuracy in histological image classification, 95% 
in cancer grade prediction and 71% in 10-year recurrence 
prediction. 

Keywords: breast cancer; Computer-Aided Diagnosis; 
Histopathological Imaging; Artificial Intelligence 

I.  INTRODUCTION  
Breast cancer is the most common type of cancer 

worldwide and the leading cause of death among women [1]. 
It is worth noticing that early detection and timely diagnosis 
of breast cancer are of vital importance in saving lives. 

Cancer screening helps detect cancer or precancerous 
abnormalities in individuals with no symptoms. The primary 
goal of cancer screening is to identify cancer at an early stage 
when it is more treatable, potentially leading to better 
outcomes and increased chances of survival. Currently, 
histopathological tissue analysis by a pathologist represents 
the only definitive method for confirmation of the presence or 
absence of disease and disease grading or the measurement of 
disease progression [2]. 

Histopathology slides provide a comprehensive view of 
disease and its effect on tissues because the preparation 
process preserves the underlying tissue architecture. As such, 
some disease characteristics may be deduced only from a 
histological image. However, the histological image analysis 
process is tedious and subjective, causing inter-observer 
variations even among senior pathologists [3]. With the 
advancement of computer vision and image processing based 
on deep learning algorithms, Computer-Aided Diagnostic 
(CAD) systems can overcome these difficulties. It can extract 
the essential information from the histological images and 
detect patterns not visible to the human eye [4]. 

Another crucial field of research area related to breast 
cancer is the prediction of breast cancer recurrence. About 
80% of patients initially presenting with early-stage disease 
have a recurrence in 5 years, and 30% of patients have a 
recurrence of cancer within 10 years after the completion of 
initial treatment [1]. The risk of recurrence is a significant 
concern for individuals who have undergone treatment for 
cancer. Various factors, i.e., the stage of initial cancer, specific 
biological markers (such as hormone receptor status), the 
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effectiveness of the initial treatment, and individual patient 
characteristics, are considered to influence the risk of 
recurrence [1]. With clinicopathologic characteristics of 
cancer patients, it is possible to predict 5-year cancer 
recurrence [5]. Doctors could use such a prediction to make a 
tailored treatment plan. 

CAD systems leverage deep learning and 
multidisciplinary knowledge and techniques to analyze 
medical imaging and non-imaging data and provide the 
analyzed results to clinicians as second opinion or decision 
support in the various stages of the patient care process [6]. 

 CAD tools, such as Aiforia, PathAI, Adjuvant!, 
PREDICT, and CanAssist-Breast (CAB) are among the 
popular ones. Aiforia [7] and PathAi [8] have similar 
capabilities, including automated image analysis, 
quantification of pathology features, and pattern recognition. 
Adjuvant! [9] and PREDICT [10] online tools are widely used 
in breast cancer recurrence prediction. Adjuvant! does not 
produce accurate results and is no longer available online [11]. 
PREDICT utilizes patient and tumor characteristics to 
generate predictions for individual patients. It helps clinicians 
and patients make informed decisions about treatment by 
estimating the likelihood of recurrence. Population-based 
study [12] conducted on older patients reported the 
effectiveness of PREDICT in 5-year recurrence and a slight 
overestimation in 10-year recurrence prediction. CAB [13] is 
another promising tool for the immunohistochemistry-based 
prognostic test; it utilizes biomarkers and clinical parameters, 
such as tumor size, grade and node status as inputs to generate 
a risk score and categorizes patients as low- or high-risk for 
distant recurrence within 5-years of diagnosis. 

All the tools studied can perform only one histological 
image analysis or recurrence prognostics, not both. However, 
they have excellent 5-year recurrence results, while 10-year 
recurrence remains challenging. 

The primary purpose of this research is to create a 
diagnostic CAD tool that can detect cancerous and non-
cancerous areas in a breast cancer histological image, to 
predict cancer staging and to develop a generalized estimation 
of the risk of breast cancer 10-year recurrence, by combining 
the histological and clinical patient data. The paper describes 
in detail the methodology adopted for its development and the 
validation results. It is organized as follows: Section 2 shows 
background information and related work in machine learning 
and CAD tools; Section 3 describes the methodology adopted; 
Section 4 presents the experiments conducted and best results 
achieved; Section 5 discusses the experiment results and 
findings; and Section 6 concludes the paper by summarizing 
and providing future directions of work. 

II. RELATED WORK 
Machine learning has significantly advanced CAD tools in 

various ways, particularly in medical imaging, including 
breast cancer detection and diagnosis. CAD tools developed 
with conventional machine learning methods mainly use 
hand-engineered features based on the domain knowledge and 
expertise of human developers who translate the perceived 

image characteristics to descriptors that mathematical 
functions or conventional image processing techniques can 
implement. The recent advancement in computing power and 
dataset sizes allowed the application of deep convolutional 
neural networks (DCNN) to image classification problems. 
Contrary to the traditional approach of hand-crafted feature 
extraction methods, DCNNs learn useful features directly 
from the training image patches by optimizing the 
classification loss function.  

Several studies focused on histological images with 
DCNNs. The works range from pioneering studies that 
introduced the concept of using deep learning for breast 
cancer diagnosis to sophisticated architectures tailored for 
specific tasks like segmentation [14] and feature extraction 
[15].  

DCNN-based CAD systems can automatically extract 
meaningful features from histological images. These features 
include texture, color, shape, and intensity patterns. They can 
also perform image segmentation, which involves identifying 
and delineating specific regions of interest within the 
histological images. It is beneficial for isolating cancerous 
lesions or specific cell types. Usually, the cancer diagnosing 
process using a histological image consists of the following 
steps [16]. Firstly, tissue specimens are extracted through 
biopsy, affixed on glass slides, and stained with hematoxylin 
and eosin (H&E). Then, an expert histopathologist examines 
the glass slides under a light microscope to provide the 
diagnosis for each sample. Accurate interpretation of glass 
slides is crucial to avoid misdiagnoses, which require 
extensive time and effort by the pathologist. Each person 
could have up to a dozen biopsy samples that require analysis. 
It displays the necessity of computational digital pathology to 
augment and automate diagnosis processes by scanning 
digitized whole slide images (WSI). WSI contains many cells; 
the image could consist of tens of billions of pixels, which is 
usually hard to analyze. However, resizing the entire image to 
a smaller size, such as 256 X 256, would lead to the loss of 
information at the cellular level, resulting in a marked 
decrease in identification accuracy. Therefore, the entire WSI 
is commonly divided into partial regions of about 256 X 256 
pixels (“patches”), and each patch is analyzed independently.  

Araujo et al. [17] proposed a deep convolutional neural 
network combined with an SVM (support vector machine) to 
classify hematoxylin and eosin (H&E) stained histological 
images and achieved accuracies of 77.8% for four class 
(normal tissue, benign lesion, in situ carcinoma and invasive 
carcinoma) classification and 83.3% for two class (carcinoma, 
non-carcinoma) classification.  

In [18], the popular DCNNs architectures pre-trained on 
ImageNet, such as VGG, ResNet and Inception extract the 
essential features from the images, and then gradient-boosted 
trees classifier is applied to classify the images.  

Ensemble approaches like [15] and [19] also took similar 
approaches, except they employed an ensemble of DCNNs, 
namely VGG19, MobileNetV2 and DenseNet201, to extract 
visual features and then applied the boosting framework to 
achieve superior results in the detection of cancerous and non-
cancerous areas from the histological image. 
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CAD tools, such as Aiforia and PathAI have cancerous 
and non-cancerous area detection features from a given 
histological image. Although breast cancer is detected early 
and the treatment is started soon after diagnosis, the cancer 
cells remain in the body undetected; after a certain period, it 
may recur. Machine learning methods are also applied to 
advance the prediction accuracy in breast cancer recurrence 
prediction. Usually, the datasets contain many features, which 
may mislead the prediction process as some features may lead 
to confusion or inaccurate prediction [20].  

Feature selection is an essential first step in breast cancer 
recurrence prediction. In [20], a hybrid multi-stage learning 
technique based on brain-storming optimization was applied 
to study the most effective features, and it concluded that the 
feature selection is highly dependent on the applied 
classification algorithm and dataset used. [21] studied 
clinicopathologic characteristics of 579 breast cancer patients. 
It used statistical feature selection and particle swarm 
optimization to select and refine important features. It 
compared SVM, Decision Tree (DT) and Neural Network 
classifiers to predict breast cancer 5-year recurrence. It used 
the local invasion of the tumor, the number of tumors, the 
number of metastatic lymph nodes, the histological grade, the 
tumor size, estrogen receptor, and lympho-vascular invasion. 
PREDICT online tool predicts the recurrence based on 
features, such as breast cancer type, patient age, menopause, 
ER status, Ki-67, tumor size and tumor grade. 

Current existing CAD tools perform only one of the 
different stages of the diagnostic process; obtaining a general 
all-in-one diagnostic report requires the involvement of 
different tools, which is not an efficient workflow. The main 
contribution of this work is to develop an all-in-one CAD tool 
that utilizes machine learning algorithms like DCNNs and 
eXtreme Gradient Boosting (XGBoost). The developed CAD 
tool can generate a full breast cancer diagnostic and 
prognostic report by combining histological image analysis 
and clinical and histological data analysis. 

III. METHODOLOGY 
 The development of the novel CAD tool consists of the 
following steps: data collection, dataset creation (stain 
normalization, patch extraction), model training and 
validation steps. 

A. Data collection 
Histological image analysis faces data variability, class 

imbalance, and potential bias challenges in general. Ensuring 
a representative and diverse dataset is crucial for training 
supervised DNN models that generalize well to real-world 
scenarios. It directly affects the performance of the trained 
model on new, unseen images. At the same time, accurate 
labels that indicate the presence or absence of the target 
condition, such as cancerous or non-cancerous tissue, are 
essential. 

The data collection is achieved by digitizing the samples 
collected from anonymous patient biopsy slides provided by 
Verona Borgo Trento Hospital (Italy) with NED DP digital 
microscope. 300 sets of histological images with various 

magnification levels, specifically, 1.25x, 2x, 4x, 10x, 20x, 
and 40x, are collected and manually labelled by the Verona 
Borgo Trento hospital medical practitioners. 

 

Each image has 1640x1175 resolution, and the labels are 
defined as blue and red color-coded lines on top of the tissue 
image, indicating areas without tissue cells and with 
cancerous tissue cells, respectively. As indicated in the 
following sample image, a closed-shape label makes it easy 
to separate and identify the areas in the next phase. Every 
image is also accompanied by clinical information and 
features, they are listed in the following table. 

Figure 1.  Different magnification variations (Starting from top left 
1.25x, 2x, 4x, 10x, 20x, 40x) 

Figure 2.  Labelled histological images 
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TABLE I.  ALL FEATURES FROM CLINICAL DATA 

B. Dataset creation and model training 
The histological images are often stained to enhance the 

visibility of structures and cells. Variations in staining 
procedures can lead to differences in color and intensity, 
challenging comparing images or applying consistent 
analysis.  

Firstly, considering the visual consistency and 
reproducibility of the experiments, stain normalization 
technique proposed in [22] is applied to the histological 
images to normalize the stains. Then, multiple datasets are 
created based on magnification levels with different image 
sizes. The clinical data was recorded by different medical 
specialists, each using a different structure and labelling. A 
preprocessing method standardizes the labels and filters out 
the missing data samples. The histological images without 
complete clinical data are discarded to prevent mismatching 
in the result. Secondly, the specific algorithms applied are 
chosen. The classification of cancerous and non-cancerous 
areas from the image is considered a binary classification, 
and the patch based DCNN approach is the best suited. The 
literature study shows that DCNN architectures like VGG 
and Inception pre-trained on ImageNet resulted in highly 
accurate classification models; therefore, fine-tuning the pre-
trained models is favored.   

A combination of multiple input sizes (patch dimension), 
various learning rates and batch sizes are experimented with, 
and the best accuracy model is selected at the end. Table II 
shows the specific parameters experimented during the 
model training. XGBoost is a popular machine learning 
algorithm known for its efficiency, speed, and performance 
in various predictive modelling tasks. After selecting the 
features with statistical feature selection, XGBoost is used in 
grade prediction. 

TABLE II.  VARIABLES EXPERIMENTED IN TRAINING 

Architectures VGG16 VGG19 Inception 
 

Patch dimensions 64x64 150x150 200x200 
 

Batch size 32 64 128 
 

Learning rate 0.01 0.001 0.003 

Finally, breast cancer recurrence is predicted with linear 
regression with the selected features. The experiment and 
result section describes the testing results regarding the 
parameters and model training.  

IV. EXPERIMENTS 
The experiment consists of preprocessing, image 

classification, grade prediction and recurrence prediction 
steps. In the experiments conducted, the images are pre-
processed, multiple datasets are created by extracting multi-
dimensional patches from them. Then, histological image 
classification, grade prediction and recurrence prediction 
models are trained. Combinations of various parameter are 
experimented, model accuracies and algorithms used are 
reported. The models are integrated to the CAD tool 
developed.  

A. Data preprocessing 

In preprocessing, the color-coded image labels are 
separated with computer image processing techniques. With 
HSV color map spectrum (in Figure 3) and OpenCV, the blue 
and red color masks are created to separate the corresponding 
labels in the histological image. The preprocessing and 
construction of datasets are illustrated in Figure 4. 

Dilatation and erosion [23] techniques are also 
implemented to enhance the label continuity and fully 
surround the area of interest. Areas (in Figure 5) labelled with 
blue labels are excluded to minimize the impact of false 
classification. After successfully separating the color-coded  
labels, areas with negative and positive labels are represented 
with black and white masks. Then, patches are extracted from 
the corresponding areas to construct datasets. 

A combination of 64x64, 150x150 and 200x200 patch 
sizes and magnification of 1.25x, 2x, 4x, 10x, 20x, and 40x 
are used to construct multiple datasets. The patch from the 

All Features  

pT HER2 RECIDIVA 

Numero LN metastici PR tipo di recidiva 

pN N NPI tempo di recidiva (mesi) 

Grado NPI SCORE Follow up mesi 

STADIO NPI GROUP Luminal 

DIAMETRO MM Adiuvante Età alla diagnosi 

ISTOTIPO Overall survival 
(mesi) Menopausa 

Ki67 DOA ER 

 

 

Figure 3.  HSV color spectrum 

Figure 4.  Preprocessing  
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edges contains positive and negative areas. A threshold of 0.7 
is applied to label them. This threshold value is considered 
better suited because it produces relatively balanced datasets 
to work with. For instance, if 70% of the region is from a 
positively labelled region, it is labelled with a positive label.  

AWS Glue DataBrew [24] service is applied to establish a 
homogeneous dataset with corresponding clinical data and to 
facilitate the creation of an automated data pipeline, 
streamlining the data ingestion and preprocessing. Leveraging 
AWS SageMaker [25], essential data cleaning and 
preprocessing steps, such as feature scaling, categorical data 
encoding, and augmenting are conducted. To ensure the 
consistency of all the clinical data rows, “ISTOTIPO” is split 
into a set of derived variables namely, “ISTOTIPO_CDI”, 
“ISTOTIPO_CLI”, “ISTOTIPO_NST”, 
“ISTOTIPO_TUBULARE”, “ISTOTIPO_LOBULARE”, 
“ISTOTIPO_APOCRINO”, 
“ISTOTIPO_MICROPAPILLARE”, 
“ISTOTIPO_MUCINOSO”, “ISTOTIPO_PAPINCAPS” 
using one-hot vector encoding. This method provided a more 
comprehensive representation of the original “ISTOTIPO” 
feature and enriched the dataset, enhancing the model 
capacity for generating more accurate and insightful 
predictions. As a result of the preprocessing, a dataset of 300 
data samples, each with 26 attributes, is constructed. 

B. Histological Image Classification 
The datasets constructed in the previous step are used to 

train DCNN models. Training, validation, and testing splits of 
6:3:1 and 7:2:1 are experimented. Among all the trials 
conducted with different combinations of batch size, learning 
rate, input size (patch size) and DCNN architecture, fine-
tuning pre-trained VGG16 on ImageNet with the following 
parameters (Table III) resulted in the best accuracy model. 

TABLE III.  THE BEST ACCURACY MODEL PARAMETERS 

Architecture VGG16 

Magnification 40 

Patch dimension 200x200 

Batch size 128 

Learning rate 0.001 

Accuracy 87.6% 

F1 0.88 

 

The confusion matrix of the model validation prediction is 
shown in Figure 6. 
 

C. Grade prediction 
The training process for this task revolved around a 

multiclass classification problem, where the goal was to 
categorize data into one of multiple predefined classes or 
categories. In multiclass classification, multiclass categorical 
cross entropy metric quantifies the differences between the 
predicted class probabilities and the true class labels for each 
data point. The features selected to train the model are listed 
in the Table IV below. 

The model trained with XGBoost, achieved a validation 
accuracy of 95%. The multiclass logarithmic loss for the 
corresponding model is 0.21. The confusion matrix (in Figure 
7) provides an in-depth insight into the model prediction, 
revealing its effectiveness in multiclass classification.  

 
 

 

Figure 6.  Label masks and patch extration 

 

Figure 5.  Label masks and patch extration 
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TABLE IV.  ALL FEATURES FROM CLINICAL DATA 

D. Breast cancer recurrence prediction 
The correlations between features are explored and 

reduced to obtain a maximum accuracy model. However, 
because of the ambiguity in the dataset recurrence months, 
many rows are discarded, and the multiple regression model 

is trained with very few data, around 40 records. The final 
accuracy obtained with the multiple linear regression for 10 -
year recurrence prediction is 71%. 

V. DISCUSSION 
The accuracies achieved by image classification and linear 

regression are lower than to state-of-the-art results, especially 
with the linear regression. Fine tuning the pretrained VGG16 
model achieved 87.6% accuracy, a reasonably good result but 
further investigations need to be conducted to improve the 
model robustness and accuracy. A comparison study should 
be conducted using open datasets to compare and validate the 
achieved classification result. The grade prediction with 
XGBoost algorithm achieved 95% accuracy, it demonstrates 
the effectiveness and efficiency of XGBoost algorithm. 
Finally, the linear regression for predicting the breast cancer 
10-year recurrence only achieved 71% accuracy. Applying 
different machine learning algorithms, such as DT or SVM 
could improve the accuracy further. Regarding the data, 
greater magnification levels, such as 100x, 200x with more 
data certainly improve the over-all accuracies obtained in this 
study. Different subsets of features could be investigated in 
XGBoost and multiple linear regression to further improve the 
model accuracies.  Moreover, different approaches, such as 
fusing multiple DCNNs as a feature extractor and combining 
different types of classifiers, such as SVM, DT or XGBoost 
could be the path to achieve a better result. 

VI. CONCLUSION AND FUTURE WORK 
The work presented in this paper aims to create an all-in-

one breast cancer diagnostic tool for (ER)-positive breast 
cancer patients. The histological image classification by fine-
tuning ImageNet pretrained VGG16 model obtained 88% 
accuracy, the cancer grade prediction with XGBoost 
algorithm achieved 95% accuracy, and the cancer recurrence 
prediction with linear regression resulted 71% accuracy. It is 
an essential initial step in our future study direction. 
Histological image analysis and clinical data analysis are 
combined in the proposed CAD tool to predict breast cancer 
recurrence. This type of CAD tool is very useful in assisting 
doctors to reduce their workload and improve the 
reproducibility of breast cancer diagnostics.  

Future studies will improve the accuracies and robustness 
of the models, acquire further labelled data and test with 
different DL approaches. Fusing molecular and genetic data 
and imaging feature might also enable a comprehensive 
understanding of disease characteristics. 
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Abstract—Explainable Artificial Intelligence (XAI) has gar-
nered attention in the AI system development in recent years,
especially in the high-stakes decision scenarios, such as medical
and healthcare domains. In this paper, we present a frame-
work named Human-AI Collaboration Cycle. The framework
emphasizes the collaboration between domain experts and AI
system in the development stage of an AI-enabled system through
an introduction of XAI. We propose that the introduction of
XAI can enhance domain experts’ engagement in the stages
of model evaluation and validation, then further review and
engage in the data preprocessing, which in turn, improves their
comprehensibility and trust toward the system. To validate our
framework, we will conduct a field experiment in a hospital,
in which nurses, as domain experts, and AI engineers will
work together to develop an AI-enabled fall detection system
with model explainability. We will evaluate the role of Local
Interpretable Model-agnostic Explanations (LIME), one of the
noted XAI tools, in the proposed Human-AI Collaboration Cycle.

Keywords-engagement; domain expert; XAI; comprehen-
sibility; trust.

I. INTRODUCTION

Organization for Economic Cooperation and Development
(OECD) has promoted the concept of the responsible AI,
suggesting that AI-related actors need to advocate human-
center value, transparency, explainability, and accountability
[1]. In order to obtain a better output performance, past
research suggests that domain experts are required to engage in
the Machine Learning (ML) pipeline to assist in building an
AI-enabled system [2]. It is also important to have domain
experts kept in the loop to optimize the ML model [3].
However, a system developed by AI technology is not usually
based on a clear statistics and probability theory. It is inevitable
for domain experts to consider it as a black box even though
its inputs and outputs are useful mappings. Therefore, it is
necessary that machine learning and AI systems need to be
explainable and comprehensible in human terms, which is
instrumental for validating the quality of an AI system outputs
[4]. The output of the black box needs a reasonable explanation
for domain experts to trust in the AI-enabled system. In
response to this issue, XAI has been more widely recognized
in recent years.

It is essential that domain experts increase their trust in
the AI-enabled system and further optimize the AI model and

adopt it during Human-AI Collaboration (HAC). During HAC,
a better output performance is expected through the domain
experts’ engagement in the higher quality training data gen-
eration [2]. Therefore, domain experts need to engage in the
data preprocessing, such as data cleaning, data labeling, and
feature selections. In recent years, AI Model Explainability has
been receiving greater attention as well. However, user trust
is not easy to build due to lack of transparency, especially
in high-risk decision contexts, such as medical and healthcare
domains [5]. We will present an XAI tool to unveil the black
box to build user trust in an AI-enabled system.

This research findings will provide AI-enabled system de-
signers with a Human-AI Collaboration Cycle framework as
a guideline for developing a responsible AI system. Also,
this research will highlight the importance of domain experts’
engagement in the ML pipeline in the development stage of
an AI-enabled system and highlight the functionality of XAI
incorporated in the model evaluation/validation process, which
could enhance user trust in an AI-enabled system.

In Section 2, we reviewed current concepts on Human-
AI collaboration, ML pipeline, and XAI. In Section 3, we
proposed a conceptual model named Human-AI Collaboration
Cycle. In Section 4, we proposed a research methodology with
IT Artifact, Hypotheses, and Experiment Design to validate
our framework. In Section 5, we made a preliminary conclu-
sion for this research and proposed our future work.

II. LITERATURE REVIEW

The literature review of this research will be composed
of three parts: Human-AI Collaboration (HAC), Machine
Learning Pipeline and Explainable AI (XAI).

A. Human-AI Collaboration (HAC)

Human experts and AI have different yet complementary
capabilities by which they can work together to have an effec-
tive decision-making [6]. AI is not just a tool; it may become
a teammate to enhance team performance [7]. Humans and
AI can have mutual learning through which AI or algorithms
can learn from humans and humans can acquire insights from
AI or algorithms [8]. ML needs methods that engage domain
experts directly into the ML process and have them in the loop
until the desired results are received [2]. After building an AI
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model, data scientists often need to find a domain expert to
help interpret the test results and validate whether they make
sense or not [9].

Humans and AI can work together as a symbiotic system
through which humans can gain intelligence augmentation and
AI can learn from humans’ feedback through interactions [10].
AI system designers could consider a human-AI team building
based on the core competencies brought in by humans and
the core capabilities of the AI teammates [7]. Therefore, it
is required that domain experts need to collaborate with AI
systems through AI engineers in the development stage of an
AI system in order to obtain a better system performance.

B. Machine Learning Pipeline

The ML pipeline starts with data extraction and analysis
and then obtains a trained model after model evaluation and
validation [11]. The pipeline is shown in Figure 1.

The key tasks for each ML step are described as follows:
• Data extraction and analysis

Select and integrate the relevant data from various data
sources for the ML task. Also, identify the data prepa-
ration and feature engineering that are needed for the
model.

• Data preparation
It involves data cleaning and data splitting into training
data and test data.

• Model training
The data scientist implements different algorithms with
the prepared data to train various ML models.The output
of this step is a trained model.

• Model evaluation and validation
The model is validated on a holdout set to evaluate the
model quality. The output of this step is a set of metrics
to assess the quality of the model.

The domain experts need to join the training data labeling
task, in the case of supervised learning, for obtaining high-
quality training datasets and avoiding garbage in, garbage
out results [12]. Also, they are required to engage in the
model evaluation and validation [2]. Before a trained model
is accepted by the domain experts, usually the system users,
they are required to stay in the ML pipeline, especially in the
stages of data extraction and analysis and model evaluation
back and forth.

C. Explainable AI (XAI)

XAI is a useful tool to unveil the ML black box and
provides an explanation for each AI system output [13]. XAI is
especially instrumental in medicine and healthcare to ensure
that the AI system outputs produced by the AI model are
correct and justifiable [14]. It is necessary to explain the AI
system’s decision to increase the users’ trust in the system. If
AI system users can clearly understand the particular reasons
for each system output, they will tend to trust in the AI system
[15].

As domain experts have more understanding on the AI
algorithm and the explanation for each system output, they

Figure 1. Machine learning pipeline.

tend to provide more feedback on the data preprocessing,
such as data extraction and feature selections, further engaging
in the ML pipeline and, hence, contributing their domain
knowledge into the AI model refinement. Therefore, with XAI
incorporated, domain experts will stay in the loop of ML
pipeline until an acceptable AI model is achieved.

III. CONCEPTUAL MODEL

As domain experts are the key AI-enabled system users, the
HAC requires domain experts’ engagement in the development
stage for building a high-quality training dataset and achieving
a better model for deployment. Moreover, AI system users
will enhance their comprehensibility with the AI model by
incorporating XAI into the model evaluation and validation
process [16]. With this comprehensibility, AI system users will
have greater trust in the AI system and, therefore, adopt the
system.

It is possible that the newly trained model would fail in
the next few tests before deployment. One of the possible
reasons is that the model does not cover some real-world
cases, which may be attributed to the introduction of XAI.
With XAI, it could facilitate domain experts’ engagement in
the model evaluation and validation with new test data. Hence,
the domain experts will need to re-engage in the ML pipeline
for the training dataset review. Therefore, it constructs a cycle
in the HAC. We coin it as Human-AI Collaboration Cycle,
which is shown in Figure 2.

There are four components in the HAC cycle:
• Data Engagement

In this research, Data Engagement refers to domain
experts’ engagement in the data preprocessing including
data extraction, data cleaning, data labeling, and feature
selections. With domain experts’ engagement, the training
data would have higher quality to train a better model.
Therefore, data engagement in ML pipeline implies that
domain experts would have partial responsibility for a
better trained model.

• User Comprehensibility
XAI is a technology tool to unveil the black box, which
could help domain experts comprehend the model and
algorithm logic. LIME, as one of XAI tools, will present
some key features for each instance, i.e., each input [13].
Its output format is shown in Figure 3.

In order to measure the speed of human movement, we
use a human skeleton marked with four key coordinates
[17], as shown in Figure 4. Point 1 to Point 4 represents
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Figure 2. Human-AI collaboration cycle.

Figure 3. LIME output format for an AI-enabled fall detection system.

the central coordinate for shoulders, hips, knees, and
ankles respectively. With the measurement of the Speed
of Human Center Line Coordinate (SHCLC), we could
identify the different kind of falls.

Figure 5 shows one kind of fall with higher speed on
the movement of point 1 (i.e., SHCLC-1 on Figure 3).
Therefore, the LIME outputs may provide us with the
key features and reasons why the AI system judges the
fall event. Also, it will indicate the specific kind of fall,
such as fall over, fall down, and fall off, etc.
With domain experts’ comprehensibility with the model,
their trust in the AI-enabled system could be enhanced.

• User Trust
In this research, domain experts are the key users. It is a
mutual learning process during the interaction between
domain experts and the ML pipeline; domain experts
input their domain knowledge into the data preprocessing
to confirm the training data quality for building a better
model; the AI-enabled system provides insights by its
data-driven analytical capabilities.

In addition to XAI tool incorporated into the ML
pipeline, domain experts provide more valuable feedback
into the model refinement and training data revision
through the interaction with the ML pipeline, which also
help increase the user trust. An important path leading to
better adoption rates identified is trust-building [18].

Figure 4. Human skeleton with four key coordinates on center line.

Figure 5. Different movement speed on different portion of a human while
falling.

• User Adoption
In addition to trust, Technology Acceptance Model
(TAM) [19] provides us with a guideline to follow in
achieving user adoption on the AI-enabled system. With
TAM, the usefulness and ease of use perceived are
important principles for the AI-enabled system design.

The HAC cycle starts with data engagement and then guides
AI system designers and domain experts to go through the
cycle to achieve a better model for deployment.

IV. RESEARCH METHODOLOGY

In this research, we design a field experiment to validate
the framework of the HAC cycle. The IT artifact, hypotheses,
and experiment design are described as follows:

A. IT Artifact

We select the AI-enabled fall detection system as an IT
artifact, which is shown in Figure 6. There are various fall
detection methods, including wearable devices with threshold
setting, non-wearable device like mmWave radar and vision-
based video camera. Each fall detection sensor has its advan-
tages and disadvantages. With non-wearable sensors, people
do not need to attach them on their bodies. However, they can
not be used outdoors and are limited to a small area inside the
detection range. However, in this research, the vision-based
fall detection system is applicable for the indoor use.

B. Hypotheses

The hypotheses on domain experts’ trust level are shown in
Figure 7. We proposed three hypotheses(H1, H2, and H3) as
follows for this research:

H1: AI-enabled system users participating in data prepro-
cessing and model evaluation/validation with XAI incorpo-
rated would have higher trust level than users participating
in data preprocessing and model evaluation/validation but
without XAI incorporated.

H2: AI-enabled system users participating in data pre-
processing and model evaluation/validation but without XAI
incorporated would have higher trust level than users with-
out participating in data preprocessing and model evalua-
tion/validation, also without XAI incorporated.

H3: AI-enabled system users participating in data prepro-
cessing and model evaluation/validation with XAI incorpo-
rated would have higher trust level than users without partici-
pating in data preprocessing and model evaluation/validation,
also without XAI incorporated.
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Figure 6. AI-enabled fall detection system.

Figure 7. Hypotheses on trust level.

C. Experiment Design

More than 90 nurses, as domain experts, from one local
hospital will participate in this experiment. Since user trust is
one of the key components in the HAC cycle, in this research,
firstly we conduct the significance level test on it.

All nurses will be divided into three groups, which are group
A, B, and C. Each group will watch the same video demon-
strating the brief introduction to the AI-enabled fall detection
system. We designed different interaction modes with the AI-
enabled system for each group, which are described as follows:

Group A: Participate in data preprocessing and model
evaluation/validation with XAI incorporated.

Group B: Participate in data preprocessing and model eval-
uation/validation but without XAI incorporated.

Group C: As a control group, without HAC and XAI, to be
informed of the system performance only.

The Likert scale will be used for trust level evaluation.
The items are rated on a bipolar scale going from “I agree
strongly” to “I disagree strongly”, which are modified from
[20]. Questions are as follows:

• I have confidence in the AI system performance.
• The AI system performance could be improved gradually.
• The output of the AI system is very predictable.
• The AI system is very reliable.
• The AI system is easy to use.
• The AI system is very efficient.
• The AI system can act as part of my team.
• I like to use the AI system.
ANOVA tool will be used for the significance analysis on

trust level between groups. The timings of pre-test and post-
test for each group are illustrated in Figure 8.

The nurses in Group A will be expected to have a better
understanding on the key reasons of fall event identified by

Figure 8. The timings of pre-test and post-test for each group.

the AI system. Therefore, they would have higher confidence
in gradual improvement of the AI system in the development
stage.

Pilot test with 9 nurses, 3 in each group, and manipulation
check will be conducted to ensure the effectiveness of XAI
treatment. Our basic assumption is that most nurses are
rational with respect to the interpretation, provided by AI
engineers, on the LIME outputs, i.e., key features.

In addition to the quantitative analysis, we will observe
the differences in their interaction modes with the AI-enabled
system in each group and make a complete record for qual-
itative analysis. For example, we have interest in the nurses’
feedback or response to the XAI output explanation for one
specific instance, which may encourage their engagement with
the training data and test data review to assist in a better model
building.

In the event that the significance level shows that nurses
in Group A have the highest trust level by the introduction
of XAI, the HAC cycle could be constructed with the user
comprehensibility with the AI model and user adoption to
the AI system. Also, a few more new test data, attributed to
more data engagement, provided by the nurses in Group A
would guide them to go into the second cycle for building
a better model, especially in the development stage. The
implementation of the HAC cycle might be considered as an
approach to differentiate the user trust levels among the three
groups.

V. CONCLUSION AND FUTURE WORK

In this research, we proposed HAC Cycle based on the
literature reviews, which includes four components: Data
Engagement, User Comprehensibility, User Trust, and User
Adoption. Also, the ML black box could be unveiled by
LIME, an XAI tool, which provides the AI system users with
an explanation for each instance. Hence, user trust could be
built through user comprehensibility with the AI system output
reasons and user adoption could be achieved under TAM.

The HAC Cycle might be considered as an approach to
differentiate the user trust levels. Also, the AI model could be
optimized by the implementation of this cycle with a few runs
in the development stage of an AI-enabled system.

However, user comprehensibility is not limited to the user’s
understanding with the reasons for one specific AI system
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output, which could be considered a scientific factor. User
comprehensibility could also be enhanced by the model or
algorithm explanation done by AI engineers. In this case, the
emotional factor would be involved in the user comprehensibil-
ity. Therefore, we would propose that user comprehensibility
might need to be split into two sub-components, which are
AI model interpretability done by AI engineers and AI system
output explainability done by XAI. The former is related to an
emotional factor and the latter is related to a scientific factor.
Hence, we may need both Group A1 and Group A2 to explore
the differences in user trust level affected by different factors
mentioned above.
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Abstract— Artificial Intelligence (AI) has revolutionised 
healthcare, offering advanced diagnostics, personalised 
treatments, and enhanced patient outcomes. As AI increasingly 
integrates into healthcare systems, the need for Explainable AI 
(XAI) becomes paramount to ensure transparent and ethical 
decision-making. The lack of transparency and interpretability 
in AI systems poses significant challenges in healthcare, 
potentially undermining trust and hindering adoption. 
Understanding and addressing the complexities of XAI in 
healthcare is crucial for fostering trust among stakeholders, 
improving patient care, and adhering to ethical principles. 
Previous efforts have highlighted the importance of XAI but 
often lacked comprehensive approaches for implementation in 
diverse healthcare settings. This article explores the integration 
of XAI in healthcare, focusing on insights from three European 
Commission-funded projects under Horizon 2020/Horizon 
Europe. These projects prioritize transparency, accountability, 
and accessibility, showcasing the potential of XAI enhanced 
decision-making. In addition, the papers recognize the 
limitations of XAI, such as the absence of standardized 
approaches and the difficulty of balancing AI complexity with 
transparency, emphasizing the need for continuous refinement 
and adaptation to ensure successful XAI integration across 
varied healthcare settings.  

Keywords- Artificial intelligence; healthcare; explainable AI; 
trustworthiness; transparency 

I. INTRODUCTION 
Artificial Intelligence (AI) has emerged as a 

transformative force in healthcare, offering unparalleled 
potential in diagnostics, treatment personalisation, and 
patient outcomes [1]. AI refers to the development of 
software that can use human-defined objectives to generate 
outputs such as content, predictions, or decisions influencing 
the environments they interact with [2]. AI systems 
encompass a broad spectrum of capabilities, with the 
capacity to perform varied tasks including problem-solving, 
learning, speech and pattern recognition, image classification 
and decision-making [2]. 
     Explainable AI (XAI) is a critical component in AI 
design, ensuring transparent and understandable decision-
making processes, in line with the AI Act [2] and 
Trustworthy AI guidelines [3], the foundational pillars of 
ethical AI development. From a computer science 
perspective, XAI involves developing algorithms that can 
provide interpretable insights into AI outcomes. In layman 

terms, XAI aims to provide a layer of understandability to 
algorithmic decision-making.  

Recent controversies surrounding AI have highlighted 
concerns about the ethical implications of opaque decision-
making processes, particularly in the healthcare sector where 
trust and understanding are crucial [4]. The integration of 
XAI is therefore not only desirable, but indispensable – 
imperative for the development of ethical, responsible, 
patient-centric, and trustworthy AI applications. However, 
one critical aspect of this integration is the quality, accuracy, 
and reliability of input data utilised by AI platforms. 
Healthcare data often faces challenges such as 
incompleteness, bias, and inconsistency, which can 
significantly impact performance and reliability. Addressing 
these data quality challenges is essential to ensure the 
effectiveness and trustworthiness of AI-driven decision-
making processes in healthcare, thereby reinforcing the 
significance of XAI in healthcare settings. 

This article explores the integration of XAI in healthcare, 
drawing insights from three European Commission-funded 
projects. Section I introduces the concept of Explainable AI 
and its significance in healthcare. Section II presents three 
case studies, highlighting their approaches to integrating 
XAI. Section III discusses the challenges and opportunities 
in implementing XAI in healthcare settings. Section IV 
concludes by outlining future directions to advance XAI in 
healthcare, with a focus on scalability, adaptability, and 
technical refinement. 

 
II. CASE STUDIES 

The iToBoS project (Grant agreement number 965221, 
April 2021 – March 2025) [6] aims to create an AI 
diagnostic platform for early skin melanoma detection, using 
a novel total body scanner and a computer-aided clinical 
decision support system that integrates patients’ clinical 
information, genetic and imaging data, and family medical 
history. Despite advancements in AI, existing solutions often 
lack comprehensive transparency, leaving users with limited 
insights into decision-making processes. The project aimed 
to bridge this gap by integrating patient data and family 
medical history into a unified platform, ensuring 
comprehensible and transparent AI-driven diagnostics. To 
enhance the explainability of its AI components, the 
consortium prioritized transparency and interpretability 
through ongoing meetings within specific XAI work 
packages, interviews with project partners, end-users and 
patients, and an ongoing impact assessment process. These 
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assessments addressed concerns related to autonomy, 
transparency, and clinical effectiveness, as well as key 
considerations regarding patient understanding, potential 
conflicts between AI and clinician opinions, and the 
importance of clinician training. AI explainability extended 
to providing comprehensive insights into deep regression 
models. This involved adapting local XAI methods like 
Layer-wise Relevance Propagation for regression tasks, and 
using global XAI solutions, such as Concept Relevance 
Propagation to illustrate prediction strategies.  

The COVINFORM project (Grant agreement number 
101016247, November 2020 – October 2023) [7] explored 
the impacts of the COVID-19 pandemic across the EU 
member states and the UK, employing AI components to 
develop a risk assessment dashboard. Existing solutions 
often lack robustness in capturing multifaceted dimensions 
of vulnerability, hindering effective decision-making in 
pandemic response strategies. The project developed a 
comprehensive risk assessment dashboard, integrating 
statistical techniques and domain expertise to provide 
interpretable insights into various dimensions of 
vulnerability across regions and demographics, including 
physical, economic, social and information vulnerability. To 
prioritize explainability, the dashboard featured informative 
pop-ups/info-boxes providing interpretation guidance for 
dashboard outputs, and links to original data sources and 
metadata. End-user engagement was pivotal, employing a 
co-design approach involving workshops, usability testing to 
align technical and user needs, and cognitive walkthroughs 
where practitioners explored the dashboard, assessed 
semantic legibility, and performed tasks aligned with 
credible success story criteria. Recommendations from each 
testing phase informed subsequent usability testing rounds, 
refining the dashboard interface, and enhancing features 
relevant to the functioning and outcomes of the AI models. 
This iterative refinement highlights the project's commitment 
to user-friendly, interpretable AI-driven risk assessment tools 
for effective decision- making. 

PREPARE-Rehab (Grant agreement number 10086219, 
June 2023 – May 2026) [8] aims to advance rehabilitation 
care for patients with chronic non-communicable diseases, 
by developing personalized, data-driven, computational 
prediction and stratification tools to enhance decision-
making in selecting optimal therapy strategies. While 
existing solutions offer advancements in personalized 
medicine, they often lack transparency and user-friendliness, 
posing challenges in adoption and integration into clinical 
workflows. The project plans to address these limitations by 
prioritizing clear language, user-friendly interfaces, and the 
incorporation of graphical representations and visualization 
tools to enhance understanding of AI predictions. 
Comprehensive training for healthcare professionals is also 
prioritized, with emphasis on plain language and visual aids 
to bridge the gap between technical processes and user 
understanding enabling healthcare professionals to 
understand the advantages and limitations of AI tools. The 
project aims to create models with transparent decision-
making processes, contributing to overall model 

interpretability and facilitating seamless integration of AI 
support in healthcare settings.   

 
III. DISCUSSION 

The three case studies presented in this extended abstract 
demonstrate a collective commitment to enhancing AI 
explainability while prioritizing transparency, accountability, 
and accessibility for non-technical users. By employing co-
creation methodologies, these studies seek to enhance overall 
trustworthiness and understandability by integrating diverse 
perspectives throughout the development lifecycle. However, 
limitations exist in scaling such solutions across diverse 
healthcare environments, necessitating ongoing refinement 
and adaptation. Additionally, constraints exist in balancing 
the complexity of AI models with the imperative for 
transparency and comprehensibility, thus requiring ongoing 
discussion. 

One significant challenge highlighted in these case 
studies is the lack of standardised approaches in XAI. The 
absence of universally accepted definitions for terms such as 
'explainable' or 'interpretable' in the AI context has resulted 
in diverse approaches reflecting varying perspectives. This 
diversity complicates communication within the AI 
community and impedes the development of cohesive 
frameworks for evaluating and implementing XAI 
methodologies. To address this challenge, there is a need to 
identify and focus on specific aspects of XAI that can be 
standardised. By breaking down the field into identifiable 
parts, researchers and practitioners can work towards 
establishing internationally agreed standards. For instance, 
standardisation efforts could focus on defining key 
components of explainability, such as model interpretability, 
transparency in algorithmic decision-making, and methods 
for communicating AI outputs to diverse stakeholders. 
Furthermore, ongoing dialogue and knowledge exchange are 
essential for developing consensus-driven understandings of 
key AI concepts. Collaborative efforts, such as those within 
ISO [10] and CENELEC [11] play a crucial role in 
facilitating communication and laying the groundwork for 
international standards in XAI. However, uncertainties 
remain regarding the scalability and adaptability of co-
creation methodologies in diverse cultural, industrial, and 
regulatory contexts. Future research and case studies, beyond 
the scope of EU projects, are needed to explore the broader 
applicability and challenges associated with scaling co-
creation XAI methodologies. 

 
IV. CONCLUSION AND FUTURE WORK 

The future of XAI presents both challenges and 
opportunities. International standards will provide a platform 
for harmonised governance, conformity, and risk assessment. 
By identifying and standardizing key components of XAI, 
researchers and practitioners can facilitate smoother 
communication and foster sustainable innovation aligned 
with ethical and societal values. However, achieving this 
vision requires interdisciplinary collaboration, continuous 
dialogue, and a concerted effort to navigate evolving XAI 
techniques in an era of rapid technological advancement. 
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In our future work, we aim to further explore the 
scalability and adaptability of XAI methodologies, 
particularly across diverse cultural, industrial, and regulatory 
contexts. Furthermore, we plan to explore alternative 
approaches to addressing the varied explainability 
requirements for diverse stakeholders within the healthcare 
domain. In addition, our work will investigate the technical 
intricacies of implementing XAI models, including refining 
existing methodologies and developing novel techniques to 
enhance the transparency and interpretability of AI systems. 
Through these efforts, we aim to contribute to the ongoing 
evolution and refinement of XAI, ultimately enhancing trust, 
accountability, and accessibility in healthcare AI decision-
making. 
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Abstract— In the context of global cancer prevalence and the 

imperative need to improve diagnostic efficiency, scientists 

have turned to machine learning (ML) techniques to expedite 

diagnosis processes. Although previous research has shown 

promising results in developing predictive models for faster 

cancer diagnosis, discrepancies in outcomes have emerged, 

even when employing the same dataset. This study addresses a 

critical question: does the choice of development platform for 

ML models impact their performance in cancer diagnosis? 

Utilizing the publicly available Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset from the University of California, 

Irvine (UCI) to train four ML algorithms on two distinct 

platforms: Python SciKit-Learn and Knime Analytics. The 

algorithms’ performance was rigorously assessed and 

compared, with both platforms operating under their default 

configurations. The findings of this study underscore an 

impact of platform selection on ML model performance, 

emphasizing the need for thoughtful consideration when 

choosing a platform for predictive models’ development. Such 

a decision bears significant implications for model efficacy and, 

ultimately, patient outcomes in the healthcare industry. The 

source code (Python and Knime) and data for this study are 

made fully available through a public GitHub repository.  

Keywords-Cancer; Machine Learning; Python SciKit-Learn; 

Knime Analytics; Wisconsin Diagnostic Breast Cancer (WDBC). 

I. INTRODUCTION  

Cancer is a global health menace responsible for nearly 

10,000,000 deaths in year 2020 alone [1][2][3]. This disease 

is characterized by the uncontrolled growth of body cells 

which forms tumors classified as malignant - the cancerous 

cells that are invasive and capable of spreading to other 

parts of the body - or benign - the non-cancerous cells that 

are not capable of invading nearby tissues and are less 
harmful.    This disease's complexity spans multiple organs 

like the breast, kidneys, brain, lungs, prostate, ovaries, and 

skin, posing substantial challenges for healthcare 

professionals and patients alike. Despite significant progress 

in cancer understanding and treatment development, timely 

diagnosis remains critical as delays exacerbate patients' 

conditions, often leading to irreparable outcomes and 

increased mortality rates. 

        Scientists are channeling substantial resources into 

accelerating the diagnostic process, and artificial 

intelligence, which has proven effective in various 

industries, is offering hope for quicker and more effective 

cancer diagnosis methods. Machine learning, a subset of 

artificial intelligence, has profoundly reshaped medical 

research, enhancing diagnostic precision, prognostic 

accuracy, and treatment strategies. By harnessing advanced 

computational techniques, ML algorithms ranging from 

Logistic Regression (LR) to Decision Trees (DT), Random 

Forests (RF), Gradient Boosting (GB) among several others 

for cancer diagnosis,  extract insights from intricate medical 
data used in revolutionizing clinical decision-making and 

improving patient outcomes from pinpointing diseases 

through image analysis [4] to forecasting patient responses 

to therapies [5].    
These ML algorithms have showcased remarkable 

potential in the field. However, a critical aspect that we 
found to be underexplored is the impact of implementation 
platforms on which the algorithms are trained, and models 
are developed, such as Python Scikit-learn and Knime 
analytics, on the performance of these algorithms. Therefore, 
understanding the nuanced influence of implementation 
platforms on ML algorithms is pivotal. 

Against this backdrop, this study used supervised 
learning, training models on labeled WDBC datasets [6] to 
evaluate the performance metrics of ML algorithms 
including accuracy, precision, recall, and F1-Score focusing 
on the nuanced relationship between implementation 
platforms and the efficacy of these algorithms. It emphasizes 
the potential impact of platform choice on algorithm 
behavior, highlighting the necessity of discerning these 
disparities.  

This study embarks on two pivotal inquiries:  
(1) It seeks to answer whether the choice of the 

implementation platform significantly impacts the 
performance of ML algorithms in cancer data classification, 

(2) Identifies which of the selected algorithms performed 
best in cancer dataset binary classification task. 

By delving into these fundamental questions and 
meticulously avoiding hyperparameter tuning, this research 
provides nuanced insights, offering a comprehensive 
understanding of the intricate interplay between ML 
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algorithms, implementation platforms, and feature 
significance.  

The rest of this paper is organized as follows: Works 
relating to this study were explored in Section II, examining 
relevant literature to the research question. The section starts 
by looking at studies that used ML in cancer research, then at 
the different algorithms implemented, the train-test split, 
performance metrics, dataset sources, and implementation 
platforms used. Section III outlines the Methodology used 
for this study, detailing data collection and pre-processing 
steps, feature selection, and implementation of the selected 
ML models. Section IV presents the Results and Discussion, 
followed by Conclusion and Future Work in Section V. 

II. RELATED WORK 

Researchers have explored and reported the use of various 
supervised ML algorithms in different areas of human health 
and medical fields. Some previous studies reviewed are 
briefly discussed below. 

A. Machine Learning in Cancer Research 

Michael et al. in [7] tested five ML classification 

algorithms on 912 breast ultrasound images found that  

Light Gradient Boosting Machine (LightGBM), the 

algorithm proposed in their work, which has an accuracy of  

99.86%, outperformed other algorithms including the K-

Nearest Neighbour (KNN), and RF in binary classification 

of cancerous cells as either malignant or benign. Similarly, 
Ara et al. in [8] used a ML techniques to develop model for 

classifying cancer cells into two main categories. Kumar et 

al. in [9] on the other hand focused on using ML ensemble 

techniques for breast cancer detection and classification. 

Their Optimized Stacking Ensemble Learning (OSEL) 

model showed a higher accuracy in performing the task than 

other ensemble ML techniques, such as Stochastic Gradient 

Boosting and XGBoost tested in their research. Ebrahim et 

al. in [10] tested eight predictive algorithms on National 

Cancer Institute dataset to identify which algorithm would 

predict cancer cell more accurately. 

B. Selection of Algorithm 

LR, a linear model is a powerful predictive analysis tool 
that is especially useful for binary classification [11].  
Rahman et al. [12] examined six ML algorithms for 
predicting Chronic Liver Disease (CLD) and LR algorithm 
was found to be the most effective in predicting CLD based 
on the selected features. Zhu et al. in [11] experimented with 
improved LR in the classification of binary variable and one 
or more independent variables to predict diabetes.   

Likewise, Tree based algorithms including DT, RF and 
GB are widely researched with the intent of harnessing their 
strengths particularly in performing classification tasks. DT 
serve as foundational structures, offering transparency and 
interpretability by partitioning feature spaces into 
hierarchical branches thereby excelling in capturing non-
linear relationships and feature interactions, enabling 
straightforward visualization of decision-making processes. 
Moving beyond individual trees, RF combines multiple DT 

through ensemble techniques, averting overfitting and 
increasing predictive accuracy [13]. By combining varied 
perspectives from individual trees, RF provides robust 
generalization and robustness to noisy data.  

By extension, GB algorithm, a more advanced method, 
embraces an iterative refinement to enhance predictive 
performance and in particular, Gradient Boosting Trees, such 
as XGBoost. It employs sequential tree fitting to target the 
residuals of prior iterations, systematically improving model 
predictions. These algorithms perform better in modeling 
complex relationships, accommodating non-linearities, and 
excelling in predictive accuracy across domains [14][15]. 
These characteristics formed the basis on which we selected 
the algorithms in our study. 

C. Train-Test Split 

For evaluation, datasets used in various studies are split 
into different proportions using the larger proportion to train 
algorithms while the smaller proportion is used to test at the 
inference stage of model development. In [10], the authors 
assessed the performance of some classical and deep learning 
algorithms used to predict breast cancer, including DT, LR, 
KNN, Support Vector Machine (SVM), Recurrent Neural 
Networks (RNN) and Ensemble Learning. They used 
Train/Test split of 70:30 and 90:10. DT and Ensemble 
methods showed higher accuracy both before and after 
feature selection. Whereas DT did not perform optimally in 
Kidney Cancer Lung Metastasis prediction as reported by 
[16] when trained with 52,222 data from Surveillance, 
Epidemiology, and End Results (SEER) database and 492 
hospital patient data with Train/Test split of 70:30 returning 
accuracy of 82% which is significantly lower than in other 
studies reviewed.  

D. Performance Metrics 

Efficient model development and deployment require 
rigorous assessment, evaluating the accuracy and other key 
metrics like precision, recall, and F1-score derived from the 
confusion matrix. Accuracy gauges correctly predicted 
instances against the total dataset, offering a general 
overview of predictive success. In imbalanced datasets, 
relying solely on accuracy can be deceptive. Therefore, other 
metrics such as precision, recall, and F1-score gain 
importance. Precision specifically gauges correctly predicted 
positive instances, which is crucial in scenarios like medical 
diagnoses where false positives can have adverse 
consequences. Recall assesses true positive predictions, 
essential for capturing all positive instances, especially 
critical in medical scenarios to avoid missing dangerous 
conditions. F1-score strikes a balance between precision and 
recall, offering a nuanced evaluation, particularly valuable 
when dealing with class imbalances in datasets.  

These four metrics were assessed in our study (TABLE 3); 
they collectively provide a comprehensive assessment of a 
model's performance.  

E. Datasets 

Data quality is fundamental in machine learning, shaping 
model development and real-world utility. The WDBC [6] 
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has been pivotal in healthcare, especially for binary tumor 
classification, crucial in timely cancer detection and 
treatment planning. While studies like [17][18][19] 
employed smaller, open-source WDBC datasets (typically 
fewer than 600 records and 30 features), other studies in [10] 
and [15] diverged. For example, [10] used a substantial 
dataset from the National Cancer Institute (NIH) containing 
1.7 million records and 210 features. Despite its size, dataset 
quality, marked by precision and representativeness, 
significantly influences outcomes. Smaller datasets with 
these qualities outperform larger, noisier ones. This 
distinction is evident in accuracy rates, with open-source 
datasets achieving 99.12%, 99.67%, and 100%, compared to 
the model in [10] with a lower accuracy of 98.7%.  

F. Implementation Platform 

KNIME Analytics, a no-code tool recognized for its user-
friendly interface and compatibility with various other tools, 
has been utilized for comprehensive ML research, as 
demonstrated in studies like [20] which looks at cancer 
incidence among individuals with HIV in Zimbabwe. 
Meanwhile, Python, with its extensive ecosystem and 
libraries like SciKit-Learn, has gained prominence in 
machine learning. Studies in [16][21][22] performed their 
cancer research work using Python. Both platforms have 
strong support from scientists, underlining the need for 
further research into their respective impacts on algorithm 
performance.  

The findings of the literature are summarized in TABLE 1. 
The table highlights the latest studies that used ML 
techniques in cancer research, the data source used, train – 
test split ratio adopted in the study, the implementation 
platform used, the algorithm type and the model accuracy (a 
‘–’ has been used in the table in the case where the 
information was missing in the literature).  

     The recent surge in research on ML applications in 

healthcare, specifically in diverse cancer data sets, is 

evident. Nevertheless, a significant research gap persists 

concerning the impact of implementation platforms on 

algorithm performance in cancer classification.  

    While several studies have used different implementation 

platforms in developing ML models for predictive and 

classification tasks, none, to the best of our knowledge, have 

examined the impact of implementation platforms on ML 

algorithm performance. This gap forms the focal point of 

our research contribution, that will be explored in 
subsequent sections, highlighting the novelty and 

importance of our investigation. 
 
 
 
 
 
 
 
 
 
 

TABLE 1. COMPARATIVE REVIEW OF SOME STUDIES THAT 

USED MACHINE LEARNING TECHNIQUES IN CANCER 

RESEARCH. 

 

 
    Addressing the gap identified in the literature, the next 
section presents the methodology carried out.  

III. METHODOLOGY 

This study's methodology comprises systematic steps for 

a comparative analysis of ML algorithms using the WDBC 

dataset and two implementation platforms. The process as 

illustrated in  includes data collection, exploration, feature 

engineering, and selection using filtering and random forest 

techniques. The dataset was split into an 80% training set 

and a 20% test set before model development, ensuring a 

robust evaluation process.  

A. Data Collection and Preprocessing 

We selected a publicly available dataset on UCI Machine 
Learning repository, the WDBC [6] because it was sourced 
from a medical research study and its extensive use in breast 
cancer machine learning research due to its real-world 
applicability, in addition to its popularity within the research 
community for binary classification task. With 569 
occurrences and 30 attributes (benign tumours made up 
62.7% of the total instances while the cancerous tumour, 
malignant class comprise 37.3%) was extracted from 
digitized Breast Mass Fine Needle Aspiration (FNA) 

 
Author, 

Year 

 
Data Source 

No of 
Records 
/Features 

 
Train/Test 

Split 

 
Implementation 

Platform 

 
Algorithm 

Type 

 
Model 

Accuracy 
 

Ebrahim et 

al. 

[10],2023 
 

National 

Cancer 

Institute 

(NIH), USA 

 

 

70,079/107 

 

70:30 
&90:10 

 

 

Python 

DT, LR, 

VM, LD, 

ET, KNN 

 

98.7% 

 

Shafique et 

al.[18],2023 

 

Kaggle       
    569/30 

 

75:25 
-  RF, VM, 

GBM, LR, 

MLP, KNN 
 

 

100% 

 

 

Uddin et al. 
[19], 2023 

 

 

UCI 

 

 

569/30 

 

 

70:30 

 

 

Python 

SVM, RF, 

KNN, NB, 

DT, LR, 
AB, GB, 

MLP, NCC, 

VC 

 

 

98.7% 

Zhang et al 

[23]., 2022 
 

TCGA 
 

     604/ -  
 

- 
 

R & Python 
RF, SVM, 

libD3C 
 

99.67% 
 

Aamir 

et.al.[24], 

2022 

 

UCI 
 

   569/26 
 

80:20 
&70:30 

 

Python & 

Tensor Flow 

RF, GB, 

SVM, ANN, 

MLP 
 

 

99.12% 

 

Yi et al., 

[16],2023 

SEER& 

Southwest 

Hospital, 

China. 

 

 52,714 / - 
 

70:30 
 

         Python 
 

LR, XGB, 

RF, SVM, 

ANN, DT 

 

- 

 

Mahesh et 

al., 

[22],2022 

 

 

Kaggle 

 

 

143/10 

 

 

70:30 

 

 

Python 

 

NB, AltDT, 

RedEPT, RF 

 

 

98.20% 

ATEŞ et al. 

[25] 2021 
 

Kaggle 
 

569/30 
 

70:30 
 

Knime 
NB, DT, 

MLP 
 

96.5% 

Minnoor et 

al.[13] 2023 
 

UCI 
 

569/30 
 

80:20 
 

- 
RF, SVM, 

DT, MLP, 
KNN 

 

100% 

Ara et al. [8] 

, 2021 
 

UCI       
    569/30 

 

75:25 
 

- 
SVM, LR, 

KNN, DT, 

NB, RF 

 

96.5% 

Liu, et al.  
[26]2018 

UCI      569/30 75:25 Python LR 96.5% 
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specimens, including features like "Diagnosis" (categorized 
as Malignant (M) or Benign (B)) and various measurements 
from cell nuclei in biopsy images ("radius_mean," 
"texture_mean," "perimeter_mean," etc.) [6], providing a 
rich foundation for cancer predictive analysis. 

 
TABLE 2. WDBC DATASET VARIABLES DATATYPE. 

 

 
 
In the data preprocessing phase, the dataset was 

structured into a Python dataframe named "breast". The data 
was subsequently queried to ascertain the data types and to 
check for presence of any null values. According to TABLE 2, 
data consists of both integer and floating-point values, and 
no null values were found. Further analysis involved 
identifying outliers through box plots and the Capping 
method was applied to mitigate their impact. This technique, 
as presented by [27] involved setting values below the lower 
whisker to the lower whisker's value and values above the 
upper whisker to the upper whisker's value, ensuring an 
unbiased model. 

Normalization was achieved through Z-Score 
Normalization (Standardization) which rescales each feature 
to normal distribution with a mean of 0 and a standard 
deviation of 1 [28][29]. Standardizing features to the same 
scale are essential to prevent algorithms from giving undue 

importance to larger-magnitude features, thus preserving 
fairness and accuracy across diverse ML algorithms. This 
process ensured that each feature contributed proportionally 
to the learning process, averting dominance by any single 
feature, and promoting balanced model decisions. Equation 1 
below represents the computation formula for z-score 
standardization [29]. 

 

Z=(x-µ)/σ.       (1)  

 

where z is the scaled value of the feature, 

x is the original value of the feature, 

μ is the mean value of the feature, and 

σ is the standard deviation of the feature. 

Correlation analysis was conducted to evaluate the 
relationship between each feature, a crucial step preceding 
feature selection, providing insights into features 
independently related to the target variable. This analysis 
was followed by a detailed examination of individual feature 
relationships, discerning the impact of changes in one feature 
on another and identifying strongly correlated independent 
features. High correlation between features suggests 
redundancy, potentially diminishing their value in the model, 
thus ensuring more effective predictions. 

B.  Feature Selection 

Selection of essential features is a crucial stage [30]. We 

employed both the Filter Method as in [4], and the Tree-

Based Method as in [31]. Initially, the Filter Method was 

utilized to evaluate dataset features based on their 

correlation scores with the target variable. Features with 

coefficients ≤ 0.5 were eliminated as they were considered 

to have low significance based on feature selection 

technique used in [32], while those above this threshold 
were retained, resulting in the identification of 15 out of the 

30 features for further analysis. To confirm these selections, 

the Tree-Based Method was employed, utilizing the RF 

Classifier. This method, known for balancing 

interpretability and computational efficiency while 

capturing both linear and non-linear relationships between 

the features as shown in Figure 2, affirmed the chosen 

features, underscoring their significance in model 

development [30].  

The synergy between the two methods ensured a 

comprehensive and accurate feature selection process, 

crucial for enhancing the model's predictive capabilities. 
 

 

23Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-136-7

AIHealth 2024 : The First International Conference on AI-Health

                            28 / 64



Start

Data Collection

Data 
Pre-processing

Data Cleaning

Cell 
Replacement

Z-Score 
Normalisation

Features Correlation with 
Target Variable 

(Diagnosis)

Coeff.*>0.5 

No

Exclude 
Features Data Partitioning

Yes

Testing

20%

Training

80%

Model Development

Algorithm 
Training

Algorithm 
Prediction

KNIME Python

0

1

B

M

Platform Based 
Comparison

End

 
 

 
 Figure 1. Flowchart illustrating the research methodology applied in this study. 
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Figure 2. Scatter plot showing relationships between some of the features. 
(A view of relationships between some other features can be viewed on the 

GitHub [31]). 
 

Understanding the relationship between the features helped 
to inform the class of ML algorithms that will be best suited 
for the classification task. 

C  Model Selection and Implementation 

  Four Supervised ML classification algorithms were 
chosen, each based on their specific properties and extensive 
use in previous research. This study selected LR because of 
its ability to estimate outcome probabilities, along with its 
interpretability and computational efficiency. These 
attributes make LR a widely favoured option for binary 
classification tasks. DT, RF, and GB, all belonging to the 
Tree-Based algorithms category, were selected for their 
recursive partitioning approach, which efficiently identifies 
optimal features and split points, enhancing the models' 
accuracy. 

This study was carried out utilizing the Knime Analytics 
Platform Version 4.7.6 and Python version 3.11.4 
(Jupyterlab) using the Scikit-Learn library. During this 
process, the algorithms underwent training and testing in 
their default configurations, with a maximum of 100 epochs, 
a learning rate of 0.1, and no parameter tuning—except in 
Knime, where the default split criterion for RF was adjusted 
from "Information Gain Ratio" to "Gini Index," aligning it 
with the default split criterion in Scikit Learn. 

This adjustment was implemented to maintain fairness in 
the comparative evaluation. A train-test split ratio of 80:20 
was applied, with 80% of the dataset allocated for training, 
enabling the algorithms to learn patterns, while the 
remaining 20% was reserved for testing, evaluating the 
models' ability to generalize to unseen data points. This 
methodology ensured a comprehensive evaluation of the 
algorithms' performance and their suitability for the 
classification task at hand. The source code (Python and 
Knime) and data for this study can be found in the public 
GitHub repository [31].  

IV. RESULTS AND DISCUSSION  

This section outlines the experimental results achieved 
following implementation of the four algorithms on both 
platforms comparatively in TABLE 3 and visualized in Figure 3 
after assessing their Accuracy, Recall, Precision, and F1-
Score.  
 

TABLE 3. COMPARATIVE ASSESSMENT OF MODEL 

PERFORMANCE ON THE TWO PLATFORMS. 
 

 
 
Also, we reported the Confusion matrix, showing the True 

Positive, True Negative, False Positive, and False Negative 
values, providing a comprehensive evaluation of this study's 
outcomes in TABLE 4.  
 
 

TABLE 4. PLATFORM BASED CONFUSION MATRIX OF THE 

ALGORITHMS. 
 

.  
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Figure 3. Column Chart Visualization-Comparison of all the algorithms 

performance on both platforms for: 
(a) Accuracy (b) Recall (c) Precision and (d) F1-Score. 

 

In the KNIME Analytics platform, the LR algorithm 

achieved an Accuracy of 0.92105, with Recall, Precision, 

and F1 Score of 0.88372, 0.90476, and 0.89412, 
respectively signifying that the model correctly classified 

approximately 92.11% of the instances. In comparison, the 

DT algorithm demonstrated a slightly lower Accuracy of 

0.88596, yet it exhibited higher Recall (0.90698) and F1 

Score (0.85714), suggesting that it is proficient in capturing 

true positive instances while maintaining a balance between 

precision and recall, although its Precision score was 

0.81250, indicating a relatively lower ability to avoid false 
positives.  

The RF algorithm on the other hand achieved an 

Accuracy of 0.91228, almost on par with LR. It yielded 

Recall, Precision, and F1 Score of 0.88372, 0.88372, and 

0.88372, respectively, presenting consistent performance 

across the metrics. The GB algorithm, like DT, secured an 

Accuracy of 0.90351, while it demonstrated a Recall of 

0.86047, Precision of 0.88095, and F1 Score of 0.87059 

reflecting a balanced trade-off between sensitivity and 

precision, critical in medical diagnosis scenarios. 

However, on Python (Scikit-Learn) platform, the LR 

model exhibited superior performance, with an Accuracy of 
0.95614. This shows an improvement in predictive accuracy 

when compared to its counterpart in KNIME Analytics. The 

Recall 0.92857, Precision 0.95122, and F1 Score 0.93976 

further validate the model's proficiency in correctly 

classifying instances. DT and RF algorithms also displayed 

an improvement in their performance in the Python (Scikit-

Learn) environment, with Accuracy values of 0.92981 and 

0.94737, respectively.  

Moreover, the Recall, Precision, and F1 Score values for 

these models witnessed an increase, thereby strengthening 

their overall predictive capabilities. The GB shows 
remarkable performance, attaining an Accuracy of 0.97368, 

a significant improvement compared to its counterpart in 

KNIME corroborating its impressive performance with 

Recall, Precision, and F1 Score values of 0.97619, 0.95349, 

and 0.96471, respectively, making it a standout in terms of 

all metrics.  

The comparative analysis of these algorithms across the 

two platforms demonstrates the intricate relationship 

between algorithm choice, implementation environment, 

and resultant performance metrics. While KNIME Analytics 

rendered reliable results, Python (Scikit-Learn) emerged as 

the platform offering enhanced predictive accuracy across 
the board. Notably, the GB algorithm stood out in Python 

(Scikit-Learn), exhibiting remarkable performance, which is 

highly relevant in medical contexts where accurate 

classification holds paramount importance. These findings 

underscore the necessity of carefully considering both 

algorithm selection and platform for optimal performance in 

predictive modeling endeavors. 

Additionally, the confusion matrix of the models was 

evaluated on their ability to predict both the 'Positive' and 

'Negative' classes, and the calculated metrics offer valuable 

insights into their proficiency. The matrices revealed that 
while models generally perform well, some algorithms, such 

as DT and GB, consistently exhibit a higher number of True 

Positives emphasizing the accurate prediction of positive 

cases which is crucial in medical contexts to minimize the 

risk of false negatives.  
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Comparing the KNIME and SciKit-Learn platforms, a 

pattern emerges. Generally, the SciKit-Learn platform 

showcases slightly better performance metrics, particularly 

in terms of True Positives and True Negatives. This 

disparity suggests that the SciKit-Learn implementation 
may have certain advantages in terms of predictive accuracy 

and class separation. 

Also in our analysis, we conducted a comparative 

assessment of the LR, GB, and RF models on scikit-learn 

against the Baseline Model Performance (BMP- available 

on UCI website) established using the same dataset from the 

UCI Machine Learning Repository. The LR and GB models 

demonstrated accuracy values of 95.6 and 97.4, 

respectively, falling within the BMP range [92.308-98.601]. 

Similarly, their precision scores (95.1 and 95.3) were 

consistent with the baseline range [91.555-98.576]. In 

contrast, the RF model reported accuracy and precision 
scores (94.7 and 89.1) below the lower limit of the baseline 

performance. On the other hand, for all metrics, the 

performances of the algorithms on Knime Analytics were 

lower than the lower limits of the BMP score. 

V. CONCLUSION AND FUTURE WORK 

This comparative experiment aimed to investigate the 

potential impact of machine learning implementation 

platform on the performance of machine learning models 

using the WDBC dataset and four classification algorithms 

during both training and inference phases in Python SciKit-

Learn and Knime Analytics. The results demonstrated 
variation in the metrics for the algorithms in Python 

compared to Knime. While Knime showed its strength with 

the LR algorithm in terms of accuracy, Python presented 

different performance patterns, with DT excelling in recall 

and RF as well as GB providing high recall values, which 

are crucial in the context of cancer diagnosis as it suggests a 

reduced likelihood of false negatives.  

These findings emphasize the significance of platform 

choice when considering the specific performance metrics 

required for a given application, shedding light on the 

intricate relationship between algorithm selection and the 

implementation environment. It is important to note that this 
study does not intend to render a verdict on the overall 

efficacy of either tool in ML model development but rather 

serves as an investigation into the potential disparities 

introduced by their respective architectures, providing 

insights for informed decision-making in predictive 

modeling endeavors. 

Further research should explore a larger dataset as we 

hope this may contribute to the generalizability of the 

models and as a means of broadening the applicability of 

these findings. Future studies may also evaluate the 

performance of the algorithms on both platforms using other 
datasets. In addition, future work may:  

(i) drill down to identify factors responsible for the observed 

differences by examining the platforms architecture,  

(ii) extend the experiment by including some other 

classifiers algorithms, such as SVM and Multi-Layer 

Perceptron (MLP). 

(iii) implement on different platforms including R and Weka 

or test multiple datasets. 
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Abstract-Proper management of Emergency Rooms is needed
to improve healthcare and patient satisfaction. Predicting ac-
cesses and hospitalisation rates through Machine Learning ap-
proaches appears promising, especially when coupled with air
pollution and weather data. This work applies both Random For-
est and AutoRegressive Integrated Moving Average approaches
on data related to Brescia’s clinical and environmental data from
2018 to 2022 to predict daily accesses or daily hospitalisations
for cardiovascular and respiratory disorders. The predictions
adhere quite well to the actual data for Random Forest, but less
for AutoRegressive Integrated Moving Average. However, even if
the specific value is not always correctly predicted, the overall
trend seems to be rightly forecasted and performance metrics
are mostly satisfying. Although additional work is required to
improve their performances, results are encouraging and this sort
of geographically-localised time-series forecasting seems feasible.
Future developments will take into consideration the whole
province of Brescia.

Keywords-Forecasting; ER accesses; Hospitalisation; Pollution;
Weather.

I. INTRODUCTION

Being able to properly manage the Emergency Department
(ED) and Emergency Room (ER) is crucial to provide func-
tional healthcare and improve patients’ satisfaction [1]. This
leads to a strong need for accurately predicting visitor volume
and patient admissions to facilitate the planning of resources
and staff for the whole hospital.

Multiple researchers have tried to predict access and admis-
sion rates based on historical ED data by creating scores or
using deep learning (DL) or machine learning (ML) models
(like Recurrent Neural Networks, Logistic Regression, Ran-
dom Forest or Extreme Gradient Boosting) to forecast daily
accesses to the ER [2] [3], the possibility of a patient’s hospital
admission after going through the triage [4] or even the risk
of death [5]. Results were so encouraging, that others looked
for associations with the surrounding environment.

In fact, there is proof that weather affects one’s health,
especially for people who have specific illnesses or healthcare
needs. For example, there seems to be a link between the daily

temperature and ED admissions for cardiovascular diseases or
significant exacerbation of asthma in adults that visit ED [6]
[7]. Generally speaking, regarding cardiovascular disorders,
a worsening of the patient’s well-being and cardiac arrests
appear to be influenced by not only temperature but also
stressors like humidity and atmospheric pressure [8] [9].
Moreover, there is also proof of links between air pollution
and specific illnesses. Substances like PM2.5, PM10, NOx,
O3 and SO2 influence cardiac arrests [10], cardiac arrhythmia
[11], cognitive decline in adult population [12], COVID-19
incidence [13], development of chronic kidney disease [14]
or Type 2 diabetes [15]. PM2.5 and PM10 are also linked
to hospital admissions for cardiovascular [16] and respiratory
diseases [17]. PM2.5 levels also seem to be directly associated
with increased daily ED visits for ulcerative colitis [18], while
solar radiation is inversely associated with inflammatory bowel
disease admissions [19]. There also seems to be a correla-
tion between the number of hospitalised asthma patients and
both weather (i.e., temperature and humidity) and pollution
(i.e., PM2.5, PM10 and NOx) [20]. Finally, ML models (i.e.,
AutoRegressive Integrated Moving Average and Multilayer
Perceptron) have also been applied to try to predict accesses
to the ER by patients affected by infecting respiratory diseases
after being exposed to PM2.5 [21].

Some of these researches are based on long-term exposure
to pollution (even 20-years long [12]), while others are based
on a few days or even same day’s exposure [13] [16] and some
even on both [11]. Based on these literature pieces of evidence,
trying to predict either all accesses to the ED or hospitalisation
post-triage for specific illnesses, working on climate, pollution
and historical accesses time-series belonging to the same area,
seems feasible.

Each year, between 77000 and 80000 patients visit the ER
of the biggest Brescia hospital [22] and 24% of them get
admitted. This was the spark that ignited this work: trying
to accurately predict future accesses to one of Brescia’s EDs
based on both historical and local meteorological and pollution
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data.
This paper contains a description of the analysed materials

and applied methods, i.e., the datasets and the ML approaches
applied to them, in Section II, the reached results in Section
III, a comment on them in Section IV and a few final remarks
in Section V.

II. MATERIALS AND METHODS

In this section, the study design, analysed datasets (both
clinical and environmental data) and applied algorithms are
described.

A. Study Design

This study primarily aims to provide a daily prediction of
the amount of patients visiting the ER of a precise hospital
in the city of Brescia, Italy. Also, a forecast of the number
of hospitalised patients for specific disease classes has been
attempted. This retrospective study was performed based on
daily data (clinical and environmental) for a period from
January 1, 2018, to December 31, 2022. A four-year (i.e.,
2018–2021) dataset was used to train the forecasting models,
while the remaining data were used to test its forecasting
capability. The final dataset that is used to feed the predictive
algorithms is a combination of the clinical and the environ-
mental data.

B. Data Collection: Clinical Data

The original clinical dataset was given by a hospital in
Brescia to GPI for research purposes. The dataset contained all
anonymous ER access data for the period 2018-2022. For each
access (i.e., a person on a specific day) there were as many
rows as the exams the person had undergone; pre-processing
was made in order to have only one row for each ED visit
while maintaining the patient’s data (like the date of ER visit,
their age, sex and zip code of their home address, the list of
medical exams they were subjected to and, in case they were
hospitalised, their diagnosis as an ICD9-CM code).

The following is a description of this dataset.

TABLE I. BRIEF DESCRIPTION OF CLINICAL DATA.

Year Total accesses Median age Male percentage
2018 60176 55 49%
2019 60106 56 49%
2020 47205 58 52%
2021 49571 57 50%
2022 56631 56 51%

In 2018, 12% of patients were below 18 years old, 31%
between 19 and 49, 23% between 50 and 69, 34% above 70.
In 2019, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2020, 9% of patients were below 18 years old, 29% between
19 and 49, 27% between 50 and 69, 35% above 70.
In 2021, 10% of patients were below 18 years old, 30%
between 19 and 49, 26% between 50 and 69, 34% above 70.
In 2022, 12% of patients were below 18 years old, 29%

between 19 and 49, 25% between 50 and 69, 34% above 70.
Amongst the most recurrent diagnoses of the hospitalised
patients, through all years, were pneumonia and chronic heart
failure. Note that this dataset contains accesses of people living
not only in Brescia but also in the province of Brescia and
other places in Italy and abroad. However, what we included
in our final dataset is:

• Daily number of accesses to the ER, limited to those
patients coming only from the city of Brescia

• The rolling mean of the number of the same patients,
applying a seven-day window for calculation.

The following is a description of the dataset restricted to
Brescia.

TABLE II. BRIEF DESCRIPTION OF CLINICAL DATA (CITY OF BRESCIA).

Year Total accesses Median age Male percentage
2018 10389 56 46%
2019 10963 58 47%
2020 9835 61 50%
2021 11082 60 49%
2022 12597 60 49%

In 2018, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2019, 10% of patients were below 18 years old, 29%
between 19 and 49, 24% between 50 and 69, 37% above 70.
In 2020, 8% of patients were below 18 years old, 27% between
19 and 49, 27% between 50 and 69, 38% above 70.
In 2021, 9% of patients were below 18 years old, 28% between
19 and 49, 25% between 50 and 69, 38% above 70.
In 2022, 11% of patients were below 18 years old, 27%
between 19 and 49, 23% between 50 and 69, 39% above 70.

A little bit of contextualisation of this clinical dataset: it is
important to note that the area around Brescia suffered in a
substantial way from the outbreak of the COVID-19 pandemic
and the number of cases affected by coronavirus pneumonia
far exceeds the occurrences of any other diagnosis during
2020. It is possible to observe from these data, and this is
something already reported in previous studies [23] [24], that
the number of accesses to ER decreased significantly from
2019 to 2020: this is explainable because Italy was subjected
to a strict lockdown for several months that year. Hence it
was less likely, for example, for car accidents to happen or
for people wearing masks to get the flu.

C. Data Collection: Environmental Data

The environmental data have been supplied by the startup
Hypermeteo [25] under GPI’s specific request to match the
spatio-temporal dimension of the already-at-disposal clinical
dataset. The environmental data are defined per day and zip
code, guaranteeing spatial-temporal precision. These data are
obtained employing a mathematical model with a resolution
of 10kmx10km, corrected through normalisation and down-
scaling, applied to data by Lombardia’s Regional Environmen-
tal Protection Agency (ARPA [26]) weather stations. While the

30Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-136-7

AIHealth 2024 : The First International Conference on AI-Health

                            35 / 64



model was built for the entire Lombardia region, data were
extracted for the province of Brescia only and, for this initial
phase of the study, only data from the city of Brescia itself
have been analysed.

The reported variables are:
• Temperature (min and max values) (Tmin, Tmax [°C])
• Humidity (min and max percentage values) (RHmin,

RHmax [%])
• Precipitations (Prec [mm])
• PM10 and PM2.5 [µg/m3]
• NOx, SO2 and O3 [µg/m3]
• Total solar irradiance (SSWtot) [Wh/m2].
For each variable, safety ranges, provided along with the

dataset, were considered in order to give a label (i.e., zero or
one) to each value, to indicate if a value could be considered
safe or not. Depending on the type of variable, either lower
or upper bounds were considered, as reported in Table I.

TABLE III. SAFETY RANGES FOR ENVIRONMENTAL VARIABLES.

Environmental Lower and Upper Bounds
variable Min value Max value
NOx 25 µg/m3 -
PM2.5 15 µg/m3 -
PM10 45 µg/m3 -
O3 100 µg/m3 -
SO2 40 µg/m3 -
Tmin - -10 °C
Tmax 35 °C
RHmin - 15 %
RHmax 95 % -
Prec - 10 mm
SSWtot - 8500 Wh/m2

Regarding the dataset for the city of Brescia, the number of
occurrences in which the data were out of range was computed.
Occurrences are to be intended as a single day of the five years
considered, per single zip code (Brescia has 15 different zip
codes). In the 71% of occurrences, NOx results out of range,
it is the 60% of cases for PM2.5, 20% for PM10, 17% for the
max humidity, 7.7% for the precipitations, 7.4% for O3, 1.8%
for the max temperature and 0 cases out of range for SO2 and
the min temperature.

The issue of having multiple rows of data for the same date
(i.e., one row for each zip code) has been handled similarly as
in a project [27] found during our bibliographic research: each
environmental variable has been labelled with the zip code it
is referred to, and it is used as a column with daily values,
thus grouping all data belonging to the same date on one row.
Again, a clarification on the context: the area surrounding
Brescia is densely inhabited and industrialised, resulting in
one of the most polluted areas in Europe [28].

D. Predictive Algorithm: Random Forest

In order to predict future ER accesses based on our clinical
and environmental data, a Random Forest (RF) approach
was implemented on Python applying the open-source library
Scikit-learn [29]. This model was chosen based on an article
[30] that applied it to a temperature prediction problem: the

analogy with our dataset highlighted this approach as an inter-
esting candidate for this type of analysis. RFs apply sequential
splits to the data such that the separation is maximised in
regards to a homogeneity criterion resulting in a combination
of tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same
distribution for all trees in the forest [3]. The random forest
algorithm picks N random records from the dataset and builds
a decision tree based on them, repeatedly for the chosen
number of trees (in this case, 1000). The topic has been
tackled as a regression problem as we have considered the
target variable (i.e., daily accesses) as a continuous one.

Through the same library cited before, some metrics were
computed to evaluate the results: the Mean Absolute Error
(MAE), the Mean Absolute Percentage Error (MAPE) and the
Accuracy (Acc). Then, when the prediction of the number of
daily hospital admissions for cardiovascular and respiratory
pathologies was attempted, the Symmetric Mean Absolute
Percentage Error (SMAPE) was computed. This analysis was
applied expecting a more evident correlation between environ-
mental, especially pollution, data. These pathological classes
have been selected through their ICD9-CM codes.

The results that are reported in Subsection III-A, are based
on different combinations of the datasets, as we applied the
same model on the entirety of Brescia’s data, only on the
2 most important features and only on cardiovascular and
respiratory disorders data, respectively. In order to highlight
a possible lag effect based on 1- and 5-day lag assumptions,
which means that the observed data of previous days is used to
predict the volume of patient access on a certain day, climate
and pollution data were processed accordingly in order to
create two analogous additional datasets.
The different analyses that were carried out, trying to improve
the model’s accuracy and potentially spot specific patterns, are
divided into four cases:

• A; the RF algorithm was applied to the initial pre-
processed dataset, then on 1-day and 5-day lagged data
and, finally, only on the 2 most important features, as
computed by the model

• B; analogous to A, but the rolling mean feature was
discarded

• C; 1-day lagged data, no rolling mean, but the clinical
data were reduced to only the part linked to hospitalised
patients affected by cardiovascular pathologies, plus on
the 2 most important features

• D; analogous to C, but the clinical data belonged to
respiratory disorders.

Here, are reported the equations [33] for MAE (1), MAPE
(2), SMAPE (3) and Acc (4):

MAE =

D∑
i=1

|xi − yi| (1)

MAPE =
100

N

N−1∑
i=0

yi − ŷi
yi

(2)
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SMAPE =
100

n

n∑
t=1

|Ft −At|
(|At|+ |Ft|)/2

(3)

Acc =
TP + TN

TP + TN + FP + FN
(4)

E. Predictive Algorithm: ARIMA

Trying to improve the results given by the algorithm de-
scribed in Subsection II-D, a ML model for multivariate time-
series prediction was applied to the same data. Specifically, an
AutoRegressive Integrated Moving Average (ARIMA) model
[31], a popular algorithm used in time series analysis and
forecast, through the application of the auto-ARIMA process
[32] in Python. The basic idea of the ARIMA model is to
use a certain mathematical model to describe the random time
series of the data, then predict the future values based on the
past, and present values, through a so-called autoregression.
An ARIMA (p, d, q) model can be described in the following
equation (5).

(1−
p∑

i=1

φiL
i)(1− L)dXt = (1 +

q∑
i=1

θiL
i)εt (5)

where L represents the lag operator, p represents the number
of autoregressive terms, q represents the number of moving
average terms, d represents the degree of differencing and ϕ,
θ and ϵ are relevant parameters.

The performance metrics applied to the model to evaluate
its performances were MAPE (2), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE) and Akaike Information
Criterion (AIC). Here, are reported the equations for MSE
(6), RMSE (7) and AIC (8).

MSE =

D∑
i=1

(xi − yi)
2 (6)

RMSE =

√
1

n
Σn

i=1

(di − fi
σi

)2

(7)

AIC = 2k − 2 ln(L̂) (8)

III. RESULTS

In this section, the obtained preliminary results are reported.
The algorithms have been fed with different datasets that
always include only data related to patients whose home
address’ zip code is inside the city of Brescia.

A. Results: Random Forest

Following, a series of plots is reported: they represent the
predicted values (plotted in violet) versus the actual values
(plotted in blue) for the year 2022, coming from the different
input datasets as explained in Subsection II-D.
First, the results of case A. Figure 1 displays the actual test
values and the predicted ones for the 1-day lagged data.

Here, the obtained metrics for the 1-day lagged dataset (i.e.,
MAE and Acc) and for the 2 most important features, i.e.,

Figure 1. Random Forest’s prediction and actual values for 1-day lagged
data.

rolling mean and day (referring to the number of the day in a
month), (i.e., MAEmostimp and Acc mostimp) are reported:

• MAE = 5.1
• Acc = 84.42%
• MAEmostimp = 5.57
• Accmostimp = 82.63%
Now, the results of case B. Figure 2 displays the actual

test values and the predicted ones for the 1-day lagged data
missing the rolling mean.

Figure 2. Random Forest’s prediction and actual values without considering
the rolling mean.

Here, the obtained metrics are reported (i.e., MAEmostimp

and Accmostimp refer to features day and month):
• MAE = 6.33
• Acc = 82.44%
• MAEmostimp = 7.49
• Accmostimp = 79.29%
For case C, the actual and obtained predicted data are

displayed in Figure 3.

Figure 3. Random Forest’s prediction and actual values for cardiovascular
diseases’ hospitalisations.

The obtained metrics were (with rolling mean and day as
the most important features):

• MAE = 0.51
• MAEmostimp = 0.49
Case D’s plot of predicted and actual values for respiratory

pathologies is Figure 4.
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Figure 4. Random Forest’s prediction and actual values for respiratory
diseases’ hospitalisations.

The obtained metrics were (with rolling mean and day as
the most important features):

• MAE = 1.09
• SMAPE = 67.9%
• MAEmostimp = 1.23
• SMAPEmostimp = 74.9%

In this case, SMAPE was computed, instead of MAPE and
Acc, due to the presence of 0 values in the test array.

B. Results: ARIMA

Here, the results obtained with the auto-ARIMA algorithm
are shown: they represent the predicted values (plotted in
violet) versus the actual values (plotted in green) for the year
2022. This prediction is obtained by feeding the initial dataset
to the algorithm. The plot of the actual test values and the
predicted ones for the same-day data is reported in Figure 5

Figure 5. ARIMA’s prediction and actual values for same-day data.

The obtained metrics were:
• MAPE = 15%
• MSE = 39.5
• RMSE = 6.3
• AIC = 9272.7

IV. DISCUSSION

Results reported in Subsection III-A only refer to 1-day
lagged data because, when the same process was applied to
the same-day data and the 5-day lagged data, results were
quite similar. Hence, in order to show the model performances,
the former was chosen as it seemed to be the best logical
approach. Results reported in Subsection III-B only refer to
same-day data as it was the outcome of an early analysis of
the ARIMA model application to these datasets, thus only the
initial valuations have been implemented.

Visually comparing both models, predictions coming from
the RF algorithm (Figure 1, 2, 3 and 4) appear to adhere better
to the actual data when compared with the ARIMA one (Figure

5). However, even if the specific value is not always correctly
predicted, the overall trend seems to be rightly predicted. This
also happens while changing the considered features, despite
removing historical data like the rolling mean (Figure 2), thus
relying more on the environmental ones. In fact, the forecast
values are underestimated, but the trend is followed quite well.
Still, generally, the RF model also predicts peak values (Figure
4), i.e., surges in hospitalisations, quite aptly.

Please note that when analysing specific pathologies, the
number of hospitalisations is limited to a few people every
day and, sometimes, even none. This is particularly noticeable
as, in this work, only the city of Brescia’s data are used and
it is more obvious for cardiovascular disorders rather than the
respiratory ones, at least during the considered period.

Beyond the visual inspection, the metrics results reported
in Subsection III-A show that the Acc for the RF model
decreases when discarding the rolling mean as an input feature,
but only of 1.98% and the error on the predicted number of
accesses (i. e., MAE) increases from 5.1 to 6.33. This seems to
suggest that when using the historical data through the rolling
mean, the prediction could still be improved, but also that
when this feature is ignored, the forecast performances do not
dramatically worsen. Similar reasoning can be applied to the
approach that uses the two features computed to be the most
important ones, which behaves even less precisely.

Results for the RF application to cardiovascular and res-
piratory data seem to output better punctual predictions, but
MAE values are smaller because of the lower values of daily
hospitalisations (when compared to daily general accesses) and
SMAPE is quite high. This could be due to the nature of the
dataset itself as it is quite small. Regarding the ARIMA metrics
reported in Subsection III-B, the listed AIC value is the one
belonging to the best model identified by auto-ARIMA and
the MAPE value represents a low, but acceptable accuracy.
As expected by the visual inspection, though, MSE and RMSE
values are not adequate.

Based on the aforementioned decrease in ER accesses
during 2019 and 2020 due to the COVID-19 pandemic, an
attempt at training the models only on 2018 and 2019 data
(and still testing them on 2022 ones) was made, hoping to
improve the preciseness of the predictions, but, surprisingly,
in vain. In fact, the hypothesis was to discard the out-of-the-
ordinary data so that the predictions computed merely on the
historical data could be more precise. The results’ worsening
could be further evidence that the previously obtained results
were not only due to historical data but also to environmental
info which influences the correctness of the forecasting.

V. CONCLUSION AND FUTURE WORK

This work represents a starting point towards the time-
series analysis of historical and environmental data for the
prediction of ER accesses and hospitalisations in a specific
geographical area. The objective was only partially reached
as this is a demanding field of application, but results were
generally promising and, under these premises, a predictive
analysis seems feasible. Considering that there are no other
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truly comparable works in the international literature, these
performances are even more encouraging. This being said, the
obtained results cannot be generalised as they were achieved
by analysing a period greatly made up of COVID-19-ridden
years and a quite limited geographical area, so they can only
be used to comment on this specific frame. The performances
could dramatically differ if the analogous pre-processing and
the same models were to be applied to other contexts or even
just on a longer and more stable period.

Future developments of this work will, of course, include
data belonging to the entire province of Brescia and a continu-
ous search for more precise results, with the hope of moving to
ever-growing datasets. It would also be interesting to test other
ML algorithms or apply different pre-processing steps. Never-
theless, any attempt, whether it be successful or inconclusive,
will still gather valuable insight on this yet to be delved into
the topic and shed light on how our surrounding environment
influences human health. This may be the offset of a new
way of managing ER all over the world, monitoring entire
populations and geographical areas, with the final objective of
enabling a smart real-time predictive analysis able to improve
the quality of healthcare and people’s quality of life.
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Abstract—The paper discusses a novel system for medical
diagnostics that integrates patient data from various sources
to address the fragmentation of healthcare information. By
generating and merging knowledge graphs from raw medical
texts focused on key biomedical entities (Gene, Disease, Chemical,
Species, Mutation, Cell Type), the system facilitates a comprehen-
sive understanding of a patient’s medical history. It accurately
extracts and connects critical entities, creating individual and
combined knowledge graphs that elucidate a patient’s medical
journey. This approach helps bridge diagnostic gaps, offering a
visual tool for practitioners to detect patterns and discrepancies
in patient data. Despite limitations such as language dependency
and validation scope, this system sets the stage for future
enhancements toward a more universally accessible and clinically
useful healthcare system.

Index Terms—medical diagnostics, multi-source diagnosis

I. INTRODUCTION

In modern healthcare systems, a patient often consults with
multiple specialists across different institutions, leading to
multiple diagnostic records. These records, though rich in
information, can often be fragmented and inconsistent [1]. As
a result, for chronic or complex illnesses, a single individual
may have many diagnoses, sometimes different and spanning
different time periods and institutions. While this multitude of
data sources should, in theory, provide a comprehensive view
of a patient’s health, it often results in the opposite: a frag-
mented, and occasionally contradictory puzzle of information
[2]. This overwhelming and fragmented landscape of patient
data can lead to gaps in understanding, potentially causing
misdiagnoses, redundant testing, and even treatment errors
[3]. Knowledge graph (KG) is a systematic way to connect
information and data points to knowledge. These graphs may
effortlessly combine intricate patient data in the context of
medical diagnostics, making them an appropriate solution for
managing discussed challenges [4].

This paper introduces an approach to tackle the prob-
lem of multi-source diagnostic data integration, a process
that involves combining diagnostic information from various
healthcare sources to create a cohesive patient health profile.
The problem is intriguing because resolving it has the potential

to significantly enhance diagnostic accuracy and treatment
efficacy. It’s particularly vital in genetic information and rare
diseases, where integrating scattered and specialized data can
lead to breakthroughs in understanding and treatment. While
previous efforts have made strides in improving data quality
and developing data exchange standards, they often fall short
in addressing the semantic integration of complex medical data
comprehensively. Our work aims to bridge this gap by not only
generating but also merging knowledge graphs from various
diagnostic sources, thereby offering a panoramic and unified
view of a patient’s medical history. This approach stands to
revolutionize how medical professionals access, interpret, and
utilize patient data for more informed decision-making.

In light of these considerations, the primary contributions
of this work are framed around three key research questions:
(RQI) How can individual knowledge graphs be generated
from raw medical texts? (RQII) What mechanism allows for
the merging of these individual graphs while highlighting
unique entities? And (RQIII) How can a visualization tool
assist medical professionals in understanding a patient’s com-
prehensive medical history? Addressing these questions, our
paper outlines the methodology for generating and merging
knowledge graphs, followed by an exploration of a visualiza-
tion tool designed for medical professionals.

The paper is structured as follows: Section II reviews related
works, while Section III presents the motivating scenario
behind our work. The technical details of our approach are
explored in Section IV while Section V and Section VI discuss
the experimental settings and results, respectively. Section VII
provides a discussion on our findings. Finally, we conclude
and discuss future work in the Section VIII.

II. RELATED WORKS

Different approaches and goals have been seen in the field
of building knowledge graphs from medical and biological
texts. In order to provide a more comprehensive representation
of medical situations, some research projects aim to augment
textual data with multiple notations that include genetics, pro-
teomics, symptoms, and more [5] [6]. Others are focused on
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developing knowledge graphs that are specialised to particular
illness types and provide in-depth insights into their complex
dynamics [7]. Moreover, some initiatives, such as [8] and
[9], aim to generate knowledge graphs straight from spoken
dialogues or utterances recorded in-context clinical encounters.
Authors of [8] proposed a method to construct a medical
knowledge graph directly from clinical conversations between
doctors and patients. Unlike this work, our approach aim
at providing a unified visualization that emphasizes patient’s
whole medical journey rather than predictive analysis from
singular clinical conversations. PrimeKG [5] serves as a mul-
timodal knowledge graph for precision medicine, integrating
data from 20 resources to offer insights across ten biological
scales, from protein perturbations to therapeutic drug actions.
[6] introduces the Clinical Knowledge Graph (CKG), an ex-
pansive platform designed to integrate diverse biomedical data,
including proteomics, to facilitate precision medicine. CKG,
encompassing over 16 million nodes and 220 million relation-
ships, aims to represent experimental data, public databases,
and literature while implementing advanced statistical and
machine learning tools to enhance proteomics workflows.
Differently from [5] and [6], our research is tailored towards
unifying diagnostic data from multiple healthcare centres,
providing a comprehensive visual picture of a patient’s medical
trajectory.

III. MOTIVATING SCENARIO

Consider a scenario where distinct diagnostic reports, gen-
erated at different times and by different institutions, capture
varied aspects of a patient’s health. A report from one hos-
pital might highlight specific findings that were either not
observed or not considered pertinent in another [10], [11].
The proposed system ingests diagnostic texts from various
sources and generates individual knowledge graphs. These
graphs, each representing a unique diagnostic perspective, are
then merged into a unified knowledge graph, as illustrated in
Figure 1. This integrated visualization accentuates common
entities and relationships using consistent colours and dis-
tinctly highlights unique entities or pieces of evidence from
each diagnostic source. By offering this consolidated view,
healthcare professionals are equipped with a panoramic under-
standing of an individual’s health trajectory. This enables more
informed decisions, ensures no detail is missed, and potentially
avoids redundant or misguided medical interventions, ensuring
the best possible patient care and improving personalized
medicine [5].

IV. MEDICAL KNOWLEDGE HARMONIZATION

The goal of our system is to transform fragmented di-
agnostic texts into a unified knowledge graph, providing a
holistic understanding of a patient’s medical history. This
transformation is achieved through a series of systematic
steps, as depicted in Figure 1, General Workflow. The figure
delineates our workflow through four pivotal macro-steps: 1)
Named Entity Recognition (NER), where entities are identified
from the raw texts; 2) Relationship Extraction (RE), where re-
lationships between identified entities are extracted; 3) Single

Source Graph Generation, which involves creating individual
knowledge graphs for each diagnostic source of each patient;
and 4) Knowledge Graph Integration, where these individual
graphs are amalgamated into a unified, comprehensive knowl-
edge graph.

A. Input Source Determination and Preprocessing

The system processes multiple diagnostic texts from varied
healthcare environments (Figure 1, Tools), reflecting different
stages of a patient’s medical history. It operates in two modes:
Data Ingestion Mode, which uses a structured dataset to
generate and integrate knowledge graphs, and Manual Mode,
where users manually input diagnostic reports for ad-hoc
analysis. In Manual Mode, reports are uploaded to a specific
folder (diagnostic reports), and the system then extracts and
integrates data into the knowledge graph, similar to the Data
Ingestion Mode. This flexibility allows for both comprehensive
and targeted analyses of patient diagnostics.

B. Entity Recognition and Normalization

Each diagnostic text (T1, T2, ... Tn) undergoes NER to iden-
tify medically relevant entities. This step utilizes NER tech-
niques and tailored for medical and biological texts, ensuring
accurate extraction of entities. For this critical task, our system
employs BERN2 [12], a state-of-the-art tool in the biomedical
domain, which is capable of recognizing and normalizing nine
different entities: Gene, Disease, Chemical, Species, Mutation,
Cell Line, Cell Type, DNA, and RNA. BERN2 adopts distinct
strategies for multi-task NER, ensuring accurate extraction of
entities by navigating through the intricate and domain-specific
language of medical and biological texts. Subsequent to the
entity recognition, BERN2 proceeds with the normalization
of these entities, utilizing dedicated methods that enhance the
precision and reliability of the identified entities within the
diagnostic texts.

C. Relation Extraction

After the entities have been recognized and normalized, the
system advances to the RE stage, which aims to decipher
the relationships between the identified entities within the
diagnostic text. For this endeavor, we use the capabilities
of Bio ClinicalBERT [13]. Bio ClinicalBERT is a model
developed for processing clinical text. It combines BioBERT’s
pretraining on biomedical literature with further training on
MIMIC-III notes, a database of electronic health records from
ICU patients. The model, trained on a variety of notes, is
designed to capture the nuances of clinical language [14].
Despite not being originally designed to discern relationships
between entities, the embeddings from Bio ClinicalBERT,
enriched with substantial biomedical and clinical contextual
information, can be leveraged to infer potential relation-
ships among the identified entities through a heuristic ap-
proach. It’s worth noting that our experiments also leverage
the MIMIC database, aligning our experimental setup with
the intrinsic knowledge and understanding embedded within
Bio ClinicalBERT, thereby ensuring a coherent setting.
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Figure. 1. High-Level Workflow for the system.

D. Knowledge Graph Generation

After extracting entities and their respective relationships,
the system leverages on these to construct individual knowl-
edge graphs for each diagnostic text, utilizing entities as
nodes and their relationships as edges to graphically illustrate
the information embedded within each text. Following the
generation of these individual knowledge graphs, the system
goes to the integration phase, wherein it amalgamates these
multiple graphs into a unified knowledge graph. This consol-
idated graph stands as a coherent synthesis of information,
amalgamating insights from all diagnostic sources and pro-
viding a comprehensive visual depiction of a patient’s entire
medical history. The visually integrated knowledge graph also
highlights common entities and relationships with consistent
colours.

V. EXPERIMENTAL SETTINGS

Here we delve into the specifics of how our research was
conducted, ensuring transparency and reproducibility.

A. Hardware Configuration

The study utilized the Caliban cluster at the University of
L’Aquila, which has multiple nodes with 40 processing units
for parallel execution in the ”mpi” environment. The tests ran
on a CentOS Linux 7.4.1708 system with an Intel Xeon E5-
2698 v4 CPU at 2.20GHz and 141GB RAM.

B. Dataset

Our study uses the MIMIC-IV-Note dataset (version 2.2),
featuring 331,794 discharge summaries and 2,321,355 radiol-
ogy reports, all de-identified for patient confidentiality ( [14]).
We focus on discharge summaries to analyze patients’ medical
histories. For ethics and replication, our dataset and code are

available at PhysioNet [14] and [15], respectively. To replicate
our preprocessed dataset, specific steps are required.

• Filtering for Discharge Notes: We selected discharge
notes from our database for their detailed summaries
of hospital stays, including diagnoses, treatments, and
medical histories.

• Extracting History of Present Illness: We used regex
parsing to extract this section, providing a detailed nar-
rative of the patient’s condition at the time of a specific
hospitalization.

• Adapting for Multiple Hospitalizations: For patients
with several hospital stays, we adjusted the data struc-
ture to isolate each hospitalization, enabling analysis of
medical condition progression across visits.

• Selecting Patients with Multiple Diagnoses: Our dataset
only includes patients with multiple diagnoses to focus
on complex or rare medical histories.

This process resulted in a dataset of 59,051 unique patients,
each with detailed hospitalization records and ’History of
Present Illness’.

C. Software Configuration

For the NER step we used (BERN2 [12]), an advanced
biomedical entity recognition service. The load bern2 model
function processes diagnostic reports to extract and structure
named entities for further use. For the RE step we selected
(Bio ClinicalBERT [13]), a variant of BERT that’s specialized
for clinical and biological texts. This model’s embeddings are
pivotal in our approach to relation extraction. For each pair
of entities in a report, embeddings are generated. Then, the
cosine similarity between entity pairs determines if a relation
exists, creating it if the similarity surpasses a predetermined
threshold fixed to 0,85. For the Knowledge Graph Genera-
tion we considered PyVis v.0.3.1 Accession date: 02/06/2023.
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Figure. 2. Knowledge graph resulting from Medical Report 1 of the
Experiment 1

The entities and relations derived from the aforementioned
steps are organized into individual knowledge graphs using
Networkx v.3.1 Accession date: 02/06/2023.

VI. RESULTS

The experiment we show (detailed in Section VI-A) presents
where the tool analyses the preprocessed dataset of 59,051
patients to produce knowledge graphs for numerous patients.
This hypothetical situation might be similar to situations in
which healthcare systems try to automatically create and
preserve knowledge graphs for a large number of patients to
aid in future consultations and plan creation.

A. Experiment 1: Automated Knowledge Graph Generation in
Data Ingestion Mode

Example Case: Patient #10001876. Number of associated
medical reports: 2.
Medical Report 1: Ms. presented for evaluation of urinary
complaints and after review of records and cystoscopy was
diagnosed with a stage III cystocele and stage I vaginal
prolapse, both of which were symptomatic. She also had severe
vaginal atrophy despite being on Vagifem. Treatment options
were reviewed for prolapse including no treatment, pessary,
and surgery. She elected for surgical repair. All risks and
benefits were reviewed with the patient and consent forms
were signed.
Knowledge Graph for Medical Report 1. In Figure 2,
we report the Individual Knowledge Graph generated by the
system for Medical Report 1. Here only 3 interrelated entities
have been extracted. Such graph is non informative with 7
entities and 13 relations.
Medical Report 2: She is a patient who presents with
rectocele after having a sacral colpopexy and supracervical
hysterectomy in for uterine prolapse and cystocele. At
that time, she had no rectocele at all. She has symptoms
of bulge and pressure in the vagina that has gotten worse
over the past few months. She also complains of feeling of
incomplete emptying. She states that after she goes to the
bathroom, she could go back and urinate some more. She
had some frequency, urgency symptoms, which had resolved
postoperatively. She also has resolved diarrhea after being
started on Zenpep. She is followed by Dr. and her fecal
incontinence has resolved as well as resolved diarrhea.”

Figure. 3. Knowledge graph resulting from Medical Report 2 of Experiment
1

Figure. 4. Knowledge graph representing the merging of Medical Reports 1
and 2 for Experiment 1.

Knowledge Graph for Medical Report 2. In Figure 3
we report the Individual Knowledge Graph generated by the
system for Medical Report 2
Merged Knowledge Graph of Experiment 1. Figure 4
shows the combined knowledge graph from Experiment 1,
highlighting the shared entity cystocele, found in both reports,
as a key connection point. This shared diagnosis suggests an
ongoing or recurrent condition, emphasizing the importance
of continuous monitoring and management. Recognizing such
common conditions is essential for tracking disease progres-
sion or recurrence, aiding healthcare professionals in tailoring
treatment plans to the patient’s long-term medical history and
current condition. Unique entities across reports, represent-
ing different medical conditions and treatments, are equally
critical. For instance, ’vaginal prolapse’ noted in the first
report, and ’rectocele’ and ’fecal incontinence’ in the second,
highlight separate medical issues the patient has faced. These
conditions—cystocele, vaginal prolapse, and fecal inconti-
nence—are interconnected pelvic floor disorders. They involve
the bladder bulging into the vagina, pelvic organ descent, and
loss of bowel control, respectively, often due to weakened
pelvic support ( [16], [17], [18]). This information is vital for
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TABLE I
COMPUTATIONAL TIMES.

Experiment Time Required
Single patient (between 2-6 reports) 20-50 seconds
Entire dataset (59,051 patients) 12-14 days

TABLE II
SPACE USAGE.

Graph Type Memory
average

Memory -
range

Memory (all
patients)

Single Knowledge
Graph

24 KB [6 KB - 42
KB]

6.39 GB

Merged Knowledge
Graph

56 KB [8 KB - 110
KB]

3.9 GB

understanding the comprehensive scope of the patient’s health
challenges and planning appropriate interventions.

B. Computational Time and Space Usage

Creating knowledge graphs for each patient in our large
dataset poses computational challenges. Our methodology
accelerates graph generation, yet processing time escalates
with dataset size, complexity of reports, and the quantity
of entities and relationships. We utilized BERN2 API for
NER, adhering to a 300 request limit per 100 seconds by
incorporating 3-second pauses, prolonging processing for our
dataset of 59,051 patients. The specific processing times are
outlined in Table I. Storage requirements also significantly
impact our experiments, with the space needed for individual
and merged graphs dependent on the complexity and details of
the diagnostic reports. Table II provides space usage statistics,
showing that individual graphs require a total of 6.39 GB,
while merged graphs need 3.9 GB.

VII. DISCUSSION

Addressing the complexity of healthcare information, our
system autonomously creates and combines knowledge graphs
from raw medical texts, navigating this crucial and challenging
domain. Given the enormous variety of medical and biological
entities present in healthcare, it was practical for us to narrow
our primary attention to a small number of biomedical entities.
This emphasis was seen in the studies, which showed the
system’s skill at locating, extracting, and connecting these
chosen elements to create knowledge graphs that depict a
clear and insightful narrative of a patient’s medical journey.
Focusing on a particular group of entities at this point allowed
for deeper and more accurate knowledge as well as opened the
door for methodical extension and inclusion of a wider variety
of entities in the system’s subsequent iterations. The experi-
ments demonstrated the system’s capability to accurately and
coherently navigate medical texts, generating individual and
merged knowledge graphs that highlight key entities and recur-
ring illnesses, essential for understanding a patient’s medical
history and refining therapeutic strategies. The visualization
tool emerged as a vital asset, offering medical professionals
an intelligible visual narrative of a patient’s medical journey,
enhancing understanding and diagnostic ability.

A. Bridging Health Gaps: Societal Benefits of Comprehensive
Medical Views

During brief appointments, some patients may find it diffi-
cult to remember and describe every medical exam, symptom,
or medicine they have ever experienced (older people or
people who are naturally reticent to retell every aspect of their
medical history). Our system addresses these challenges by
integrating multiple diagnostic reports into a unified visual
representation. This ensures that every patient, irrespective of
their background or communicative abilities, benefits from
a comprehensive record that encapsulates their entire health
journey.

B. Cost Efficiency

The proposed approach decreases the risk of unnecessary
medical exams by giving a comprehensive perspective of
a patient’s health, which saves public and private money.
Patients with complex medical histories, such as rare diseases,
benefit most from the system since it makes sure they receive
timely and effective care regardless of how many healthcare
professionals they consult.

C. Global Scalability and Integration into Existing Infrastruc-
ture

The system showed excellent scalability, handling a dataset
of 59,051 patients effectively, essential for managing the
expanding volume of medical data. It’s modular, allowing
updates or replacements of components (e.g., entity extraction,
relation prediction) without affecting the overall workflow.

D. Limitations and Threats to Validity

Input Accuracy: One of the foundational premises of our
system is the reliance on accurate and relevant input. It’s
necessary that users (namely, doctors) provide diagnostic texts
pertaining to the same patient. The system is designed to
compare and integrate these texts, and any discrepancy in the
input, such as including texts from unrelated patients, can lead
to misleading results.

Natural Language Dependency: Our current implemen-
tation is tailored for the English language. This is largely
because we utilize pre-trained tools, which are predominantly
trained on English medical and biomedical terminologies.
While the system demonstrates efficacy with English texts,
its applicability could be limited in regions with different
native languages. Expanding the system’s capability to cater
to diverse languages remains a future target.

Lack of Direct Baselines: It’s challenging to compare our
system directly with existing tools. While many tools extract
entities from biomedical text, there are no tools aiming at
integrating multiple texts into a unified knowledge graph.

E. Future Directions

As our system continues to evolve, one of our primary
goals is to ensure its accessibility and usability worldwide.
To achieve this, we are actively considering the incorporation
of multilingual models, which would enable the system to

39Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-136-7

AIHealth 2024 : The First International Conference on AI-Health

                            44 / 64



process and understand medical reports in various languages,
catering to a global audience. Moreover, a promising frontier
for our system lies in leveraging the intricate patterns within
the knowledge graphs. Our vision is to utilize dedicated pat-
tern recognition techniques that systematically analyze these
graphs, pinpointing recurring sequences or clusters of entities
and relations that could be indicative of specific medical
conditions or trajectories [19]. For instance, by analyzing
a vast number of knowledge graphs and tracing back the
diagnostic journeys of patients with a particular condition,
we might discern that certain entity relationships frequently
precede the diagnosis of that condition [20].

VIII. CONCLUSION

Healthcare, at its core, revolves around accurate and timely
information. In our study, we demonstrate the power of
software engineering to bridge gaps, connect dots, and pro-
vide a comprehensive view of a patient’s medical journey.
By integrating fragmented medical reports into a unified
knowledge graph, we ensure that no detail is missed. This
holistic approach amplifies the quality of care, particularly for
those who might struggle to articulate their medical experi-
ences. This research underscores the synergy between software
engineering and medical informatics, demonstrated through
a system adept at autonomously generating and merging
knowledge graphs from medical texts. The targeted focus on
specific biomedical entities showcased the system’s precision
in narrating a patient’s medical journey. The experiments
reflected not only the accuracy and utility of this system but
also its potential to significantly impact healthcare by aiding in
timely and informed decision-making. The potential healthcare
ramifications are profound. By reducing redundant medical
exams, we envision a path towards more efficient and cost-
effective healthcare. Moreover, we are committed to utilizing
the knowledge graphs to gain valuable insights, which will
help us develop proactive healthcare strategies and enable early
interventions.
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Abstract—In many Natural Language Processing (NLP) tasks,
Bidirectional Encoder Representations from Transformers BERT
and BERT-based techniques have produced state of the art
results. However, this increase in performance comes with a
caveat, limitations in the size of the text input the model can
process. There are few studies that discuss the constraints of
BERTs input length in the context of clinical documents, and
as a result, little is known about how effective BERT is in this
regard. To overcome these constraints, we investigate techniques
for modifying the input text size of pathology report documents.
By utilizing various BERT variants, we evaluate these approaches
and examine the relative significance of domain specificity versus
generic vocabulary training. We demonstrate that BERT models
trained on domain knowledge outperform the vocabulary of stan-
dard models. In the process of classifying a set of variable-length
pathology report texts, BERTs standard truncation approach,
which removes text longer than the maximum, performs as well
as more sophisticated text pre-processing techniques.

Index Terms—BERT; Clinical Text; Natural Language Pro-
cessing; Text classification.

I. INTRODUCTION

An essential task that supports clinical workflows through-
out health services is information extraction from clinical text
documents. Healthcare providers currently invest considerable
time and money for clinical specialists to complete this labor-
intensive manual task. Automating this process with Natural
Language Processing (NLP) has the potential to deliver effi-
ciencies, saving both time and money [1].

Bidirectional Encoder Representations from Transformers
(BERT) and BERT-based techniques have shown to deliver no-
table results across many NLP tasks [2][3]. However, adopting
BERT base methods for use with clinical documents presents
challenges (1) there is a limit to the input text size the model
can process, and (2) they can be computationally demanding,
especially during training. BERTs impressive performance can
be attributed to its attention mechanism [3][4]. However, what
makes BERT so powerful also contributes to its weakness.
BERTs attention mechanism scales quadratically and thus
limits the size of text input that can be processed by even
the most advance computer hardware [5].

Unfortunately, clinical text documents often exceed BERTs
maximum input. The maximum input size a BERT model
can process is 512 tokens. Tokens are word representations
BERT accepts as input, and tokens are not equivalent to

words. During the tokenization process words can be split
into multiple tokens, therefore, the word count of a document
can not be used to determine input size. To address the
differences in word to token ratio the inputs into BERT need
to be pre-processed or the model architecture needs to be
changed to accommodate longer sequences. In this paper,
we look to assess the former. Clinical documents are not
constrained to a structured format and information included
in the texts is at the behest of whomever completes it. Some
clinicians are very concise giving all key information in short
sentences, whereas some will provide a lengthier description,
each approach is clinically valid, but it does present challenges
when pre-processing clinical texts [1]. Pre-processing clinical
documents with varying formats when there is a limitation on
how much of the text can be used is one of those challenges.
Key information is distributed throughout documents at varied
intervals, and when pre-processing the texts into sections it is
difficult to know which sections of the text best contains the
text required for classifications.

In our experiments, we evaluate four different text pre-
processing strategies to investigate these challenges. We use
three variants of BERT models on a multi-label clinical
document classification task, using a set of cancer pathology
reports from the Genomics England research environment [6].
To the best of our knowledge, there is only one study that
investigates the impact of BERTs input size using pathology
reports and our study advances their techniques. Our study is
also the only study in this area that offers insight into how
varying text sequence sizes influences results. The remainder
of this article is structured as follows. Section II describes
related work on BERT models and the input size limitations
for clinical documents. Section III provides an explanation of
the dataset and methods used in this study. In Section IV, we
present the results of our experiments, and we conclude our
findings in Section V.

II. RELATED WORK

Research addressing the input size limitations of BERT has
not received much attention in the clinical domain. The au-
tomation of ICD coding is the common goal of the few studies
in this field and except for one study, all use the MIMIC-III
database [7] discharge summaries for their tasks. However,
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the results produced across these studies are not entirely
consistent. For instance, even after using text pre-processing
techniques to overcome BERTs input size constraints in [8][9]
the authors discover that simpler networks perform better than
BERT. Contrastingly, in [10][11] the authors find that BERT
outperforms the simpler models when modifying for input size.

The text pre-processing methods used in these studies follow
two approaches (1) truncation (from the right) of any text
that exceeds the maximum input size or (2) hierarchical text
pre-processing which involves splitting the text into n length
segments with or without overlapping. The model individually
processes each of the document segments, and to get the
classification results for a document in its entirety, each of
the segment outputs are combined using either a pooling or
attention-based method.

To the best of our knowledge, only one study has investi-
gated how input size restrictions affects other kinds of clinical
texts. In [8] the authors use BlueBERT [12] to classify a set of
cancer pathology reports as well as the MIMIC-III discharge
summaries. They do not use the pathology reports for the ICD
coding task. The pathology reports have a set of six docu-
ment labels, but rather than using a multi-label classification
approach, they train six individual models, one for each of
the labels. Unlike the results produced for the ICD coding
of MIMIC-III discharge summaries, there is no significant
difference between BlueBERT, a CNN, and a HiSAN network
when classifying the pathology reports. However, the authors
in [8] only assess the models trained on the pathology reports
using the hierarchical text pre-processing method and a single
variant of BERT, BlueBERT, in their experiments.

Outside of the clinical domain there is one in-depth study
that explores strategies to adapt BERT for long document
classification. In [13] the authors use the standard BERT
model to classify several non-clinical datasets and they find
that taking the first 128 tokens and last 382 tokens of each
document produces the best overall results. In [8] the authors
argue this approach may not translate well to the clinical
domain but they do not assess this method in any of their
experiments. Therefore, in this paper we aim to fill in the gaps
between these studies, by systematically investigating how to
adapt BERT for the classification of pathology report texts
irrespective of their length, and how different variants of BERT
perform with the adaptations.

III. METHODOLOGY

In this section we present the techniques used in this
study. First, we describe the dataset, secondly the models
hyperparameters and tokenization settings, and lastly the text
pre-processing strategies used for managing longer texts.

A. Dataset

The dataset used in the experiments is a curated dataset
taken from the Genomics England research environment. In
the dataset there are 15,825 plain text pathology reports for
5413 participants registered on the 100k genome project. The
dataset contains reports for participants with three common

types of cancer: breast, colorectal, and lung. Classification
labels are provided by linking associated clinical records with
the date and a tumour id. The dataset is multi-label and multi-
class containing a total of 13 classes. The classes in the dataset
were transformed into a multi-label set of features to make
model training more efficient. Table I displays the dataset
features and the distribution. The data is split into a training
set of 7753, a validation set of 4748, and a test set of 3324.

B. Models and Hyperprameters

We installed three BERT models from the Huggingface
model hub and followed the transfer learning approach. For
sequence classification tasks in a multi-label setting, we use
a sequence classification instance of the BERT models initial-
ized with pre-trained parameters and fine-tune them for our
task. For information on fine-tuning BERT models, we refer
readers to resources available in [3][14]. The models used in
this study are: (1) BERT-base-uncased [3] implemented as a
baseline to compare the performance of the generic BERT
vocabulary to clinical ones. (2) Bio ClinicalBERT [15] which
we opted to use because it has been pre-trained using all of
PubMed and all MIMIC-III texts, rather than BlueBERT that
has been trained with less of the data in both these datasets.
(3) BiomedBERT (abstracts + full text) [16] is a model that is
pretrained on just PubMed. However, the authors claim it is
still superior at biomedical NLP tasks because of its succinct
medical vocabulary for tokenization. To perform the document
classifications

TABLE I
DATASET FEATURE DISTRIBUTION

Column Dataset distribution per label/class label

Label Features Reports Per Class Total Reports

Disease Type

Breast 7767

15825Colorectal 6389

Lung 1668

Histology Code

80703 985

15825

81403 6664

84803 628

85003 6310

84803 1238

Grade

80703 985

15825

81403 6664

84803 628

85003 6310

84803 1238
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the pathology reports are fed into each of the BERT models,
and it is the hidden state h, of the special [CLS] token,
produced by BERT, which provides the classification. Because
the dataset is multi-label the h[CLS] token, the models doc-
ument representation, is passed through a sigmoid activation
function to produce probabilities for each of the class labels.
For further information regarding the [CLS] and other special
tokens we refer readers to [3][17]. All three models are trained
using an AWS Sagemaker ml.p3.2xlarge instance. Throughout
literature training parameters vary for BERT models but for
our experiments we opted for 3 epochs, because when we
increased this value there was minimal to no difference gained
in performance. Likewise for selecting the batch size and
learning rate, we found that a batch size of 16 and a learning
rate of 3-5e, using an Adam optimizer were the most optimal
settings for our task.

C. BERT Tokenization

The BERT tokenizer converts text sequences into word piece
tokens. Word piece tokens are words that have been split
into segments. For example, the words learning and learned
become learn #ing and learn #ed, making each of these words
worth 2 tokens, or 4 tokens in total. The word to token ratio
given throughout literature is approx., 400 words = 512 tokens
and because the word to token limit can only be approximated,
we split documents using the token length.

Fig. 1. Distribution of Report Token Lengths

To achieve this the pathology reports are passed through
the BERT tokenizer to split the words in each report into their
tokenized form. Fig 1 shows the distribution of token lengths
for the pathology reports in the dataset. The reports vary in
length with the shortest being just 10 tokens and the longest
5372. The mean token length for the dataset is 501, and at least
25% of the reports exceed 700 tokens. If a report is under the
maximum it is processed in full. Wherever a report exceeds
the maximum it is the count of the tokens that are used to
split documents in the text pre-processing strategies.

D. Text Pre-Processing Strategies

a) Right and Left Truncation: An approach for handling
sequences longer than 512 tokens is to implement a truncation
strategy. BERT tokenizers take parameters for the sequence
length and the position for truncation. BERT tokenizers offer
either left or right truncation. The default setting is from the
right and any tokens exceeding the specified length will be cut
off from the right-hand side of the sequence. Likewise, with
left truncation anything over the maximum is removed, but in
this instance, it is removed from the left, from the beginning
rather than the end of the sequence. In our experiments we
adopt both approaches to truncation, and we use the maximum
sequence length of 512.

b) Left+Right Truncate the Middle: Key information is
said to be located at the beginning and end of a document. To
investigate this further we follow the approach taken by the
authors in [13] and take token segments from the beginning
and end of the document, and concatenate them. For any
document that exceeds the maximum sequence length of 512
we take the first 128 tokens of the document and the last 382,
taking 510 tokens in total, leaving room for BERT special
tokens. Any text/tokens in the document that fall in between
these values are removed.

c) Hierarchical Text Pre-processing: Hierarchical text
pre-processing is where long documents are broken up into
segments. In this study any pathology report document exceed-
ing the maximum input length is segmented into n=length/510
tokens. Each segment is prefixed with a [CLS] token and
appended with a [SEP] token so they are 512 in length.
Each segment is processed by the model following the fine-
tuning approach. At the output stage each individual segment
has a h[CLS] representation, and we apply mean pooling to
combine the h[CLS] representations of all the segments giving
a single output and the mean of the probabilities for the whole
document.

E. Evaluation Metrics

The most commonly applied metrics in literature for evalu-
ating NLP classification models are Accuracy, F1, and ROC-
AUC scores [18]. For example, a popular set of NLP tasks for
bench-marking models is GLUE [19] where the majority of
tasks use Accuracy and or F1 for evaluation [18]. In the studies
we reviewed F1, and ROC-AUC are the metrics reported.
There is debate amongst the studies we reviewed which F1
metric is the most relevant, some favor macro F1, and other
micro F1 scores for multi-label scenarios. In our experiments,
we report micro F1, macro F1, and ROC-AUC in line with
current literature for comparison.

IV. EXPERIMENTAL RESULTS

The results in Table II and Table III are used to address three
key questions: (1) how well the baseline model with a standard
vocabulary compares to the domain trained models. (2) are
there differences in performance between the two clinically
trained models, and (3) how does text pre-processing to man-
age input sequence length impact classification performance.
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TABLE II
DOCUMENT CLASSIFICATION RESULTS

Model Model Classification Results

Text Strategy MicroF1 MacroF1 ROC-AUC

BERT-base Right Truncation 0.84 0.59 0.89

BERT-base Left Truncation 0.82 0.52 0.88

BERT-base Left+Right 0.84 0.64 0.90

BERT-base H Mean Pooling 0.84 0.61 0.89

Bio CBERT Right Truncation 0.82 0.52 0.88

Bio CBERT Left Truncation 0.84 0.67 0.89

Bio CBERT Left+Right 0.84 0.62 0.89

Bio CBERT H Mean Pooling 0.84 0.63 0.89

BioMBERT Right Truncation 0.88 0.69 0.92

BioMBERT Left Truncation 0.89 0.74 0.93

BioMBERT Left+Right 0.86 0.67 0.90

BioMBERT H Mean Pooling 0.90 0.74 0.93

Model names abbreviated e.g., Bio CBERT = Bio ClinicalBERT

In respect to the first question, the clinical models do
have an increase in performance compared to the BERT-base-
uncased model. Confirming that domain specific models can
offer an increase in performance when performing clinical
NLP tasks. To answer question two there is a difference in per-
formance between Bio ClinicalBERT and BiomedBERT. This
supports the studies claims that the BiomedBERT vocabulary
is superior to other clinical variants even when they have been
trained with more data. The BiomedBERT tokenizer is said to
produce fewer word piece tokens than the other models and
they attribute this to why it performs better, suggesting quality
over quantity of data for the models training.

To address the final question, the BERT-base-uncased model
has a slight increase in performance when using the Left+Right
text pre-processing strategy. This reflects the results found
by the authors in [13], but it is not reproduced in the
results from the clinical models. The clinical models show
minor differences but offer a slight increase in performance
when using the left truncation and hierarchical mean pooling
strategies (referred to as H Mean Pooling in Table II). Some
pathology reports contain a summary of the key points of the
investigation at the end of the report. Both favored text pre-
processing strategies for the clinical models include the end
of the document and could attribute to the increase in perfor-
mance when using those strategies. To further address question
three we investigate how the truncation of text has affected
results by looking at the results over different document length
distributions. Table III shows the results of the classifications

across different subsets of document length. In Table III we
have split the documents into groups using their original token
lengths, prior to truncation, e.g., ≥1000 = documents with
more than 1k tokens, and ≥512 ≤1000 are documents that
have a token length greater than 512 but less than 1000 etc. We
then group them also by the text pre-processing strategy used.
What the results in Table III demonstrate is that there is a drop
in performance with documents exceeding 1000 tokens. This is
as expected, because these documents are subject to the most
data loss, +50% of the data in these documents is removed.
Longer documents contain key information throughout the
length of the text, it is unlikely that it is all contained within
the selected section, resulting in lost information required
by the classifier. The results in Table III also reveal that
there is a drop in performance that occurs for documents
with token counts under the maximum limit. When the token
counts drop below 250, these much shorter documents contain
less information. They are lacking the data required for the
successful classification of all the document labels. Thus, the
shorter documents are also subject to data loss but in this
instance because the clinician has perhaps missed information
by being too concise. Changes in performance for texts with
the highest and lowest token counts are observed across each
of the text pre-processing strategies with BiomedBERT and
truncation from the left providing the highest overall scores.

V. CONCLUSION AND FUTURE WORK

In this study we have investigated how BERTs limitations in
input size influences the classification of plain text pathology
report documents. We find that there are performance increases
when using a domain specific model for the task, and that not
all domain model vocabularies are created equal. Similarly,
to the other studies we reviewed the hierarchical text pre-
processing approach does offer slightly better performance
than the standard truncates from the right method. However,
we also observed that for the pathology reports taking just
the end of the text, truncation from the left performs just
as well, and it is also a much faster method. Whilst our
results are not entirely comparable to the results in [8], our
models achieved higher macro F1 scores when classifying the
pathology reports. Something that this study has highlighted
is that the input length of a document is not just a factor when
it is significantly longer than the maximum, but also when it
is much shorter, and information is thus potentially missing.
Pathology reports and other similar clinical texts are variable
by nature. There are many factors at play that will dictate the
content and length of clinical texts and because there is no
current unified format or structure there is no guarantee that
all information is recorded adequately. To address variations
in the format of pathology reports, adopting a standardised
approach could improve data quality for both clinicians and
subsequent analyses. However, overall, the BERT models in
this study performed well irrespective of the variations.

As previously addressed, currently there are limited studies
for clinical document classification with BERT models. The
ones that do exist use a limited set of documents from the
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TABLE III
MACRO-F1 SCORES FOR CLASSIFICATIONS BY TOKEN LENGTH DISTRIBUTION

Text Pre-processing Strategy Macro F1 Scores for Token Length Evaluation

+ Token Length Distribution BERT-base Bio ClinicalBERT BiomedBERT

Right≥1000 0.57 0.52 0.66

Right ≥512 ≤1000 0.60 0.53 0.72

Right ≤512 ≥250 0.60 0.52 0.70

Right ≤250 0.57 0.51 0.68

Left ≥1000 0.51 0.60 0.72

Left ≥512 ≤1000 0.53 0.67 0.76

Left ≤12 ≥250 0.52 0.69 0.77

Left ≤250 0.51 0.66 0.72

Left+Right≥1000 0.58 0.60 0.62

Left+Right ≥512 ≤1000 0.65 0.63 0.70

Left+Right ≤512 ≥250 0.65 0.62 0.68

Left+Right ≤250 0.62 0.61 0.65

MIMIC-III database, and as discussed by [1] this does not
provide a comparable enough view of this task. There needs
to be more research using a variety of sources and use cases
before the limitations of BERT models for clinical document
classification can fully be established.

Future work will look at multi-task learning with BERT
models and expanding the feature set of the dataset used in
this study. Only a subset of the document features available for
classification in the Genomics England research environment
was used for this study, and there are potential further analyses,
with a wider set of feature labels. BERT models are Deep
Learning model architectures that are somewhat of a black box
[20] and investigating the models output using explainability
methods is also a future direction this research could take.
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Abstract—When applying generative AIs to the healthcare field, 
it is necessary to evaluate their performance. Although there is 
a previous study on English, we know little about Japanese. We 
evaluated ChatGPT’s accuracy on the Japanese Medical 
Licensing Examination without modification of its sentence. 
ChatGPT (-4) achieved an accuracy that was good enough to 
pass the exam, as long as questions did not contain images. 
ChatGPT(-4) also showed its ability to make reasonable clinical 
inferences. While ChatGPT may have potential in healthcare 
use, we need to know more about its capabilities with respect to 
healthcare fields. 

Keywords-generative AI; ChatGPT; Japanese; Medical 
Licesing Examination. 

I.  INTRODUCTION 
Large Language Models (LLMs), which are constructed 

from deep learning techniques on huge Web data sets, have 
made remarkable progress in recent years. In November 2022, 
Open AI Inc. launched ChatGPT. They fine-tuned the LLM 
for dialog-generating AI. To apply generative AI, such as 
ChatGPT, to the healthcare field, it is absolutely important to 
assess whether or not they have sufficient and correct medical 
knowledge. In addition, languages other than English are 
widely used in the healthcare field globally. There is a need to 
evaluate the competency of generative AI in languages other 
than English regarding healthcare affairs. In particular, 
Japanese is one of the hardest languages to master. Therefore, 
if a generative AI can demonstrate sufficient medical 
knowledge even in Japanese, it is reasonable to expect that it 
can do the same in many languages other than English or 
Japanese. These results would be a great motivation to apply 
generative AI to healthcare in many countries. 

ChatGPT has already demonstrated its great ability to 
cover various areas, including the medicine and healthcare 
fields, even though it did not use a language model specific to 
healthcare. A previous study showed that ChatGPT (-3.5) had 
been able to pass the United States Medical Licensing 
Examination (USMLE) in all three categories [1]. According 
to the study, ChatGPT obtained accuracy equal to that of those 
who actually passed the examination. Indeed, a previous study 
showed that ChatGPT can pass the Japanese Medical 
Licensing Examination [2]. However, this report allowed 
translation from Japanese to English or modification of 
question sentences if they were not suited for ChatGPT in 

2023, such as images. Therefore, little is known about 
ChatGPT’s capabilities in the Japanese healthcare field. 

The researcher assumed that ChatGPT could answer 
medical questions correctly even if they were posed only in 
Japanese. The aim of this study was to evaluate the accuracy 
of ChatGPT in the Japanese Medical Licensing Examination. 
In addition, we compared the scores between ChatGPT and 
the average scores of students who actually took the 
examination. 
 

II. METHODS 
In this section, we note about the Japanese Medical 

Licensing Examination and how to pose the question or its 
sentences and evaluate it. 

A.  Japanese Medical Licensing Examination 
In Japan, the national examination for medical doctor 

candidates is held every year, and the actual posed questions 
and their correct answers are released on the website of the 
Ministry of Health, Labor and Welfare (MHLW. Almost all 
questions are written in Japanese. Examinees should select 
and answer from the presented choices; there is no descriptive 
question. The examination consists of three categories: 
general (e.g., Basic medicine such as anatomy, or public 
health), specific (e.g., Gastroenterology or cardiology), and 
content that must be mastered by a medical doctor. In addition, 
there are two main types of questions that could be solved with 
only knowledge (hereinafter referred to as "General 
question") and requiring clinical inference skills (‘Clinical 
question’). The former gives the examinee one point per 
question if the answer is correct and the latter three points, and 
the latter is more similar to what medical doctors actually do. 
Candidates for the examination are required to exceed passing 
standards both in Contents have to be mastered and the others, 
and approximately 90% of all candidates pass the examination 
every year. 

First, we collected all questions posed from 2018 to 2022 
(N = 2000). Second, questions were excluded if they were 
classified as inappropriate by MHLW (N = 11) or contained 
images (e.g., photos of the patient, X-ray imaging, or figures) 
that ChatGPT cannot recognize in 2023 (N = 566). Overall, 
1,423 questions were included in this analysis (Figure 1). For 
multiple-choice questions, a point was awarded only if all 
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choices were correct. In principle, no modification of the 
question sentence was allowed; however, only when the  

Number of ChatGPT choices differed from the answer, 
one prompt was allowed to be re-presented. ChatGPT scores 
were evaluated for both GPT-3.5 and GPT-4. 

B. Average number of medical students 
In this study, we defined “medical student average” as the 

average score of students who actually took the examination. 
Because this group consists of both passed and failed 
students, the scores reflect the performance of students who 
have completed the education process for doctoral studies in 
Japan. The medical student average was calculated from the 
percentages of correct answers written in the books that 
explain the Japanese Medical Licensing Examination every 
year. The percentages were derived from questionnaires that 
more than 90% of all examinees had answered, so the data 
were reliable enough. 

C. Statistical analysis 
Fisher’s exact test was used to evaluate significance. We 

calculated using EZR, a globally recognized software for 
analyzing medical statistics. 
 

III. RESULTS 
In this section, we describe the percentage of correct 

answers and scores of both the ChatGPT and medical student 
averages by question type. 

A. Whole questions 
When analyzing all questions, the accuracy rate of GPT-

3.5 was 58.0% (826/1423) and that of GPT-4 was 84.0% 
(1196/1423). The scoring rate of GPT-3.5 was 59.7% 
(1080/1809), GPT-4 was 85.0% (1537/1809), and the medical 
student average was 85.6% (1548.574/1809), respectively 
(Table I and Figure 2). GPT-3.5 showed a much lower score 
than the medical student average; on the contrary, GPT-4 
showed equal to the medical student average (without any 
significance). 

B. By Questionare type 
When calculated by questionnaire type, GPT-4 showed an 

ability similar to the medical student average (Table II and 
Figure 3). GPT-4 scores improved in almost all areas 
compared with GPT-3.5. Furthermore, although there was no 
significant difference, GPT-4 scored better than the medical 
student average on the Specifics, a category that included 
questions related to diseases, tests, or treatments. 

We also examined scores separating general questions 
from clinical questions (Figure 4). While GPT-4 performed 
slightly inferior to the medical student average in the Clinical 
question, which requires clinical inference skills, GPT-4 was 
superior to the medical student average on the General 
questions, which focus on medical knowledge. There were no 
significant differences in either case. 
 
 
 

TABLE I.   WHOLE QUESTIONS AS ANALYZED 

N/A. Not available, Ref. Reference. 

TABLE II.  BY QUESTIONNAIRE TYPE 

Ref. Reference. 

 

IV. DISCUSSION 
We assessed how much ChatGPT has knowledge about 

healthcare in Japanese sentences. Our research has shown that 
ChatGPT (-4) might have sufficient knowledge equal to that 
of medical doctor candidates. Moreover, ChatGPT (-4) could 
make clinical inferences only in Japanese and was almost as 
accurate as medical students who had graduated from medical 
school. 

Conventionally, ChatGPT is less accurate in its products 
on non-English prompts. Indeed, generative AI is very useful, 
but this situation will prevent its application to the healthcare 
field outside English-speaking countries, such as Japan. We 
assessed the ChatGPT’s medical knowledge and clinical 
inference skills in Japanese sentences. We considered the 

 
respondent 

GPT-3.5 GPT-4 Medical student 
average  

Number of correct 
answers 

826 1196 N/A 

  Percentage of 
  Correct answers 
(%) 

58.0 
(826/1423) 

84.0 
(1196/1423 N/A 

Total score 1080 1537 1548.574 

  Scoring rate (%) 59.7 
(1080/1809) 

85.0 
(1537/1809) 

85.6 
(1548.574/1809) 

    p value <0.001 0.587 Ref. 

    Odds ratio 0.249 0.948 Ref. 

    (95% CI) (0.211-0.293) (0.786-1.145) Ref. 

Average time taken 
to  

8.78 
(1-57) 

3.03 
(1-93) N/A 

Questionare type 
respondent 

GPT-3.5 GPT-4 Medical student 
average 

General 57.3 
(323/564) 

80.5 
(454/564) 

82.2 
(463.641/564) 

  Odds ratio 
  (95% CI) 

0.289 
(0.217-0.385) 

0.889 
(0.651-1.214) Ref. 

Specifics 52.1 
(222/426) 

83.8 
(357/426) 

80.0 
(340.766/426) 

  Odds ratio 
  (95% CI) 

0.272 
(0.200-0.372) 

1.289 
(0.894-1.862) Ref. 

Content must be 
mastered 

65.3 
(535/819) 

88.6 
(726/819) 

90.9 
(744.167/819) 

  Odds ratio 
  (95% CI) 

0.190 
(0.142-0.252) 

0.787 
(0.563-1.098) Ref. 

General question 58.6 
(407/694) 

85.0 
(590/694) 

83.7 
(580.796/694) 

  Odds ratio 
  (95% CI) 

0.276 
(0.212-0.357) 

1.10 
(0.817-1.490) Ref. 

Clinical question 60.4 
(673/1115) 

84.9 
(947/1115) 

86.8 
(967.778/1115) 

  Odds ratio   
  (95% CI) 

0.231 
(0.186-0.287) 

0.856 
(0.669-1.094) Ref. 
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Medical Licensing Examination the most appropriate. First, 
the quality of the questions is guaranteed by a national 
institution. Second, it requires broad knowledge from basic 
medicine to internal medicine or surgery. Third, there was an 
ideal control group, the medical student average. There are 
also many medical specialist examinations in Japan, but most 
of them do not release actual questions or answers. 

This study design was stricter than that of a previous report 
[2]. We had not allowed almost all modifications of the 
sentence, except for the number of choices. This fineness is 
partly used to evaluate the ability of ChatGPT in Japanese and 
to ensure that the questions are solved as closely as possible. 
Although there is skepticism about evaluating the significance 
of the results of generative AI, we believe that this rigorous 
study design allowed us to calculate significance. 

We showed that ChatGPT (-4) can pass the Japanese 
Medical Licensing Examination if it excludes questions with 
images. Given the technical principles of generative AI, we 
could have presumed that it would perform better on questions 
requiring knowledge, but the fact that ChatGPT (-4) 
performed as well as the medical student average on questions 
requiring clinical inference skills was noteworthy. Inference 
skills are important in clinical practice and often take time for 
human medical students to master. 

We have some limitations. First, we excluded more than a 
quarter of all questions, and most of the questions excluded 
contained images. Multimodal questions involving images 
may also be difficult for generative AI as human candidates. 
We consider that we can overcome this situation by collecting 

more than one thousand questions, and we hope that image 
recognition AIs will show us their desired performance. 
Second, this study specializes in medical doctor examinations. 
In addition to medical doctors, many other professions are 
involved in the healthcare field, and their contributions are 
significant. Therefore, you cannot simply judge that a 
generative AI can be applied to the healthcare field with only 
this study. However, it may be a milestone for the medical 
application of generative AI because knowledge of diseases 
and the ability to make clinical inferences are the basis for 
decision making in all healthcare fields. 
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Figure 1.  Questions regarding the inclusion and exclusion criteria of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Total score in all questions. GPT-4 was superior to GPT-3.5 and equal to the medical student average. 

 

 

結果(1) 医師国家試験問題
2000 All questions

2018-2022, Japan
400 question per year

1423 questions being analyzed
maximal score = 1809
564 General
426 Specifics
819 Content must be mastered

ChatGPT(GPT-3.5)

11 questions that were not scored
566 questions containing images

ChatGPT(GPT-4) Average of 
medical student

Fig 1. 試験問題並びに解析
全問題(N = 2000)のうち, 採点除外問題(N = 11), 画像を含みChatGPTが理解できない問題(N = 566)を除いた全問題(N = 1423)を
解析対象とした. 対照群として医師国家試験受験生の平均を用いた.

結果(2) 全問題

0

20

40
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80

100

Scoring rate
(%)

Table 1. 全問題を対象とした場合の正答水準の比較
GPT-3.5, GPT-4, 医学生平均との比較. 並びに医学生平均を対照とした場合
の ChatGPT群それぞれについて Fisher の正確検定により有意差検定を行った
. GPT-3.5 では医学生平均と得点率に有意差を認めたが, GPT-4 と医学生平均
との間に有意差は認められなかった.  回答に要した時間は ChatGPTの解析速
度以外に通信状況にも影響されたものの, 平均値では GPT-4 でより速かった.

CI : confidential interval

GPT-3.5 GPT-4 medical student 
average 

***
n.s.

Fig 2. 全問題を対象とした場合の正答水準の比較
得点率をグラフ化したのもの.
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Figure 3.  Score per category: General, Specific, and Content must be mastered. GPT-4 was generally similar to the medical student average. In particular, 
although there was no significance, ChatGPT (-4) was superior to the medical student average in Specific. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Score per category: General and Clinical questions. GPT-4 was generally similar to the medical student average. In particular, although there was 
no significant difference, ChatGPT (-4) was superior to the medical student average in the general question.
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Abstract—Large Language Models (LLMs) have captured
attention of researchers across different scientific fields. However,
sensitive data access issues, model retraining, long compute time
and lack of real-time results have limited the direct application
of LLMs in fields such as healthcare fitness. Healthcare fitness is
ripe to take advantage of the near-human efficiency and accuracy
of LLMs due to ever increasing gap between human coaches
and population that requires fitness coaching. In this work, we
introduce a lightweight approach, priming LLMs, to develop an
automated health coach that relies upon fundamental theories of
behavior science and taps into the enormous potential of LLMs.
We found that sentence length and conversation length were
higher in primed LLMs compared to naı̈ve context aware LLMs.
Subsequently, we conducted a qualitative reviewer evaluation
and report that the primed architectures were overall more
appropriate and demonstrated higher empathy.

Index Terms—Large Language Models, Personalized health-
care, fitness coaching, prompt engineering

I. INTRODUCTION

Automated and personalized health coach assistants have
the potential to reduce the cost of fitness and need for
trained coaches who are required to cater the ever-increasing
population suffering from non-communicable diseases and
the rampant sedentary lifestyles [1] [2]. Given the rise of
interest in personal health monitoring systems and increasing
disparity with respect to the number of trained coaches versus
the number of people who require fitness coaching, Large
Language Models (LLMs) can be offered as an attractive
solution to function as an automated health assistant. LLMs
offer flexibility in performing a series of generalized tasks
with near-human efficiency and accuracy [3]. LLMs such
as GPT-3, have shown promise for task-oriented dialogue
across a range of domains [3]. Both LaMDA and GPT-3
use the Transformer-based neural language models specialized
for dialog applications [3]. In this work, we introduce a
lightweight approach that constrains generalized LLMs to the
specific task of functioning as a fitness coach and relies on es-
tablished behavioral science models to enable empathetic and
personalized conversations under different coaching scenarios.

While adapting or post-training LLMs using an unlabeled
domain corpus has the potential to improve performance for
end-tasks in a particular domain, the limitations around access
to healthcare and personal data impede the application of
LLMs for developing a personalized automated conversational
assistant for fitness coaching [4] [5]. Thus, the use of LLMs
in exercise coaching conversations remains relatively under-
explored. Yet another reason for the lack of real-world auto-
mated fitness assistants using LLMs is also in part due to the
complexity associated with health behavior change [6]. The
field of behavior science has developed numerous frameworks
for analyzing and influencing user behaviors, which has been
critical in the design of personalized nudging programs in
healthcare and fitness [7]. One such model is the Fogg’s
Behavior Model (FBM) that asserts the target behavior change
of user can be explained across three axes by assessing: (1)
motivation – is the user sufficiently motivated (2) ability –
does the user have the ability to perform the given task, and (3)
propensity – can the user plan or be triggered to perform the
target activity. Several automated health assistant frameworks
using different machine learning models have relied on the
application of FBM to target behavior change, specifically for
fitness coaching [8].

In this work, we explore how behavior science models,
such as the FBM, could be infused into an LLM, and be
used to constrain and/or guide the coaching conversations in
a way that is consistent with established practice of human
coaches. Towards this end, we propose priming LLMs as a
lightweight approach that does not require additional model
retraining and therefore precludes the need for any prior
coach-user conversations. Priming essentially comprises of
prompt engineering and design that can allow the model
to be constrained for a specific task and in return has a
higher probability to generate a more appropriate, favorable,
and contextual conversation [9]. We encapsulate the FBM by
priming the LLMs with example coach responses, mapped to
the motivation, ability, and propensity of a user. Subsequently,
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we qualitatively assess the conversations by independent hu-
man reviewers (n=5) generated by primed and unprimed
LLMs across a commonly used LLM architectures, GPT-
3. We found that sentence length, conversation length was
higher in primed LLMs. Reviewers found that the primed
architectures were overall more appropriate, showed higher
motivation and greater empathy. Together, these experiments
serve as a proof of concept of how LLMs and behavior science
might be integrated, laying the foundation for future work
around knowledge infusion in these conversational agents.

In the remainder sections of this work, Section II describes
the overall approach and in Section III we discuss preliminary
results, conclusion and future work.

II. METHODS

In this section we describe our approach of priming LLMs
with the FBM. Incorporating behavior science in LLMs
by priming. We created a repository consisting of coach
responses to different user scenarios by consulting expert
behavior scientists and trained fitness coaches. The curated
coach responses were tailored to a specific coach action
across the three axes of FBM. For example, in the context
of motivation, appropriate coach responses were created for
encouragement, fun/temptation bundling, congratulating, and
exemplifying core values/perceived benefit. Consequently, for
ascertaining user ability, coach responses were constructed
around providing educational information, barrier conversa-
tions, and recovery. Also, for propensity, appropriate examples
were created for having goal conversations and activity plan-
ning. Using these examples, we primed GPT-3, and we refer to
this approach as Behavior Science-based priming. We set the
following model parameters for the open-source GPT-3 model,
temperature (controls model randomness) to 0.9, maximum
token length of 1024, top P (controls response diversity for
likelihood responses) to 1 and frequency penalty (probability
of verbatim model responses) to 0.9 and presence penalty
(controls likelihood for new topics) to 0.6. We measure the
quality of coach responses of the behavior science (BS) primed
model, by comparing to naı̈ve context-aware LLM model.
For both the models (naı̈ve and BS-primed), we emulated
10 different user scenarios exemplifying the need to elicit
coach actions for sensing and boosting motivation, ability, and
propensity of a user in a real-world scenario. We qualitatively
evaluated the coach responses from both BS-primed and
naı̈ve LLMs by asking independent reviewers (n=5) to rate
the conversations along different conversation dimensions, for
example, coaching experience, empathy and appropriateness.

III. CONCLUSION AND FUTURE WORK

Preliminary Results. Evaluating Behavior science (BS)
primed LLM and naı̈ve context aware LLM to function as
an automated fitness coach. Qualitative analysis of coach-user
conversations for both the BS-primed and naı̈ve context aware,
revealed that coach actions along the three FBM axes of moti-
vation, ability and propensity were well-represented. However,
we found that sentence length and conversation length were

higher in BS-primed LLMs compared to naı̈ve context aware
LLMs. Furthermore, we qualitatively evaluated the quality of
conversations of BS-primed and naı̈ve context aware LLMs
and found that all reviewers (n=5) preferred the BS-primed
LLM responses with respect to coaching experience, empathy
and appropriateness.

Conclusion and Future Work This is a proof of concept
study of how fundamental models and medical knowledge
can be used to encode healthcare information in LLM and
enable them to function as an automated medical assistants
for a more personalized experience without the need for any
additional model retraining. User data such as obtained from
wearable devices and smartphones can be used for automating
the prompts via priming. Based on this framework, we will
develop a zero shot learning approach for priming a LLMs that
can function as an automated medical assistant for different
clinical tasks, such that users will be able to directly chat with
the LLM. Furthermore, we will quantitatively evaluate these
tasks by human raters having domain expertise. We expect
the ratings for the primed LLM to be significantly higher in
terms of domain knowledge and empathy. As part of our future
efforts, we will compare experimental results to real coaching
assistant and automated virtual assistants.
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Abstract—Obesity is a global problem that has had a 

significant impact on society and the economy. The 

consequences are ominous with serious health risks. Millions of 

people are dying every year from complications of obesity and 

comorbidities. Despite efforts by governments and health 

agencies obesity continues to rise. Most of the approaches to 

management and treat obesity have not been successful because 

they did not shape people’s lifestyle and the solutions that were 

provided for lifestyle modification are not multidisciplinary, 

they focus on only specific aspects. Obesity management 

mandates multidisciplinary approach with effective patient 

engagement, enhanced patient-healthcare provider 

communication, better adherence to therapy, minimize 

therapeutic inertia, motivation, more informed treatment 

decision by the healthcare provider,  and addressing 

psychosocial conditions. We designed and developed an AI 

(artificial intelligence) based digital therapeutics platform to the 

multidisciplinary mandate for obesity management and 

treatment. We tested the efficacy of our proposed platform 

(solution) with a 24-week field trial and achieved 13.9% weight 

loss of the initial weight.   

 
Keywords- obesity; weight loss; digital therapeutics; artificial 

intelligence; expert systems. 

I.  INTRODUCTION  

Obesity has matched epidemic proportions, with at least 

2.88 million people dying every year as a result of being 

overweight or obese and a whopping economic and social 

impact of $1.7 trillion dollars [1]. The costs include $1.24 

trillion in lost productivity and $480.7 billion in direct 

healthcare costs [2]. Once associated with high-income 

countries, obesity is now also prevalent in low and middle-

income countries. Government agencies, non-governmental 

organizations, and the private sectors have been publishing 

their expert advice as good practices for a healthy lifestyle, in 

their research and field trials for decades and acknowledge 

that this pandemic is ever-increasing.  

   Despite ubiquitous information about nutrition and 

exercise, more fitness awareness, and more food and activity 

tracking devices, over 42% of the US adult population is 

living with obesity [3]. The world obesity rate grew 

proportionally as well [4]. The statistics show a significant 

increase from a decade ago, as depicted in Figure 1. The 

consequences are ominous; obesity is associated with serious 

health risks including heart, liver, gallbladder, kidneys, 

joints, breathing disorders, sleep apnea, diabetes, and several 

types of cancer [5]. The medical community continues 

struggling to find successful ways to encourage weight loss 

and provide effective interventions.  

Lifestyle intervention faces challenges like compliance 

issues making weight loss difficult. Despite this, it 

continues to be a crucial component of obesity treatment. 

Digital tools augment lifestyle interventions by offering 

personalized support catering to the need for continuous 

interaction and support beyond conventional primary care 

settings. However, there is a need for a more comprehensive 

approach in utilizing digital tools to address the multifaceted 

aspects of obesity treatment effectively. 

     Traditional digital health methods of lifestyle 

modification have limited effectiveness in managing obesity 

as they lack multidisciplinary approach and engagement of 

HealthCare Provider (HCP) . The use of AI health coaching 

and predictive guidance for weight loss [6][7][8][9] is 

comparable with in-person HCP treatment, however it lacks 

patient engagement and treatment adherence. 

      Similarly, studies incorporating remote monitoring [10], 

motivational, moral, and community support [11][12], 

accountability [13], diet and nutrition management [14][15], 

physical activity tracking [16], and instant communication 

with the coaches through text messaging and video 

consultation [17][18] have been tried, however with limited 

success as they were monomodal. 

      Studies combining approaches and technologies showed 

better results. A clinical trial conducted showed that the use 

of a mobile application that used AI algorithms and 

gamification techniques to provide personalized feedback led 

to a significant reduction in body weight, body mass index 

(BMI), and waist circumference [19]. However, there is a 

need for effective, holistic, adaptive, cost effective, user-

friendly, and integrated  digital solution to manage obesity. 

In the 21st century, AI and health technological advancement 

have enabled the development of digital therapeutics. Digital  
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Figure 1: World and US obesity growth in the last six decades. 

 

Therapeutics (DTx) are defined as evidence-based 

therapeutic interventions for patients by means of qualified 

software programs and medical devices to prevent, manage, 

or treat medical conditions.   

    Digital therapeutics can be more flexible than other 

treatment methods to address patients’ individual needs [20]. 

These technologies employ various techniques, such as 

mobile applications, wearable devices, and online platforms, 

to improve the effectiveness of treatment interventions [21]. 

However, the current metabolic conditions such as obesity, 

diabetes, and cardiovascular diseases AI-based DTx would 

be an ideal complement to the pharmaceutical or even 

surgical weight loss offerings. 

      AI along with related technologies offer a promising 

approach for the management of obesity, as they use Machine 

Learning (ML) algorithms and/or expert systems (ES) to 

personalize treatment plans for patients. 

We propose an AI-based DTx integrating all the approaches 

tried before but individually in a unified single platform, 

SureMediks. It includes short-term goals approach, tailored 

AI-based guidance and education on diet, nutrition, physical 

activities, and psychosocial conditions, effective and 

interactive patient-HCP communication, remote monitoring, 

motivation,  accountability and community support. 

       SureMediks (our platform) includes an ES.   Expert 

system is a branch of artificial intelligence (AI) that mimics 

the decision-making processes of human experts in specific 

domains. These systems are designed to provide guidance, 

advice, and recommendations to users based on their input 

and the knowledge (KB) rules programmed into the system 

[22]. These rules in KB can be updated as system learns new 

facts about the patients and their behavior.  The integral 

components of an ES and its operation are depicted in Figure 

3. The Knowledge Acquisition System of the ES extracts the  

expert knowledge and saves (learns) it in Knowledge Base 

(KB) as rules. Inference Engine (IE) activates these rules 

based on current and historical  data and provides the 

guidance and education stored and learned in the KB. IE also 

updates the rules in KB dynamically. Explanatory Systems 

interprets patient’s data and explain to the patients through 

charts and graphs in the mobile app. 

    In the context of patients' guidance and education, expert 

systems can provide personalized and interactive programs 

for managing and treating various health conditions, 

including obesity [23] and diabetes [24][25]. These systems 

can analyze patient data, such as medical history, symptoms, 

and lifestyle factors, and provide tailored recommendations 

and interventions to support patients in making informed 

decisions about their health.  

    AI feedback system was designed to address the primary 

barriers to successful weight loss, such as the complexity of 

dietary information, ineffective motivational strategies, and 

intermittent physical activity. By delivering real-time 

personalized feedback, SureMediks helps individuals remain 

on track, and offer corrective strategies when necessary. 

Additionally, it offers access to human expert guidance, 

which can further help individuals develop healthier 

behaviors that last longer. 

    The weight loss participants who reach their short-term 

goals have better long-term weight loss and ambitious short-

term goals in the future[26] [27].  We used Khokhar WL 

Formula [28] to generate short-term goals, the formula is 

depicted in the equation below: 

𝑊𝑙𝑜𝑠𝑠 =
∆𝑊

1−𝑒
−

𝑟𝜏
10

(𝑒−
𝑟𝑛
10 − 𝑒−

𝑟𝜏
10);  𝑟, 𝜏 ≠ 0;    (Equation 1)          

Here,  𝑊𝑙𝑜𝑠𝑠, ∆𝑊, 𝜏,and 𝑟 are weight to lose at each short-

term goal, total weight loss, time to lose weight in weeks, and 

r is a special parameter respectively, we called, 𝑟, the curve 

tension, 𝑛 is the week number. For example, for 𝑛 =1, 2, 3, it 

will determine the required weight loss for the first, second, 

and third weeks.  

    To assess the efficacy of our proposed AI-based DTx 

platform, SureMediks, we developed a prototype of the 

platform and set it up for a field trial. The implemented 

features and expert system’s knowledge base were derived 

from a large research body and field trials mentioned 

previously in this section.  In this paper we report summary 

of the filed trial and the results. 

 

II. METHOD 

    This section describes our AI-based platform, SureMediks, 

field validation covering participants details, procedures and 

measurements. 

A. Platform 

    Our platform consists of the following key elements: 1) An 

Internet-connected body composition scale to get patient’s 

weight and related body metrics, 2) A mobile application 

through which patients receive tailored guidance, education, 

motivation, communicate with the HCP, interactive with 

accountability circle members for community support and 

visually can see the weight loss progress, 3) An AI agent 

acting as an expert system, and 4) A dashboard for the HCP 

to view patients’ weight loss progress and interact with the 

patients.  

 

55Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-136-7

AIHealth 2024 : The First International Conference on AI-Health

                            60 / 64



B. Participants and weight loss goals 

    A participant sample of 1137 people of age 21 years and 

older from the USA, Canada, UK, and Australia were invited 

through emails and a weblink to participate in this field study. 

They were provided with key screening questions if they 

were determined and committed to losing weight that year, 

ready to be strictly focused on weight loss, ready and 

committed to be on a low-calorie trackable diet with daily 

trackable physical activity.  

   Finally, 391 participants took part in the trial from start to 

end. Of the 391 participants, 59% of the participants were 

female and 41% were male. Their education level, marital 

status, and other socioeconomic factors were not part of our 

selection criterion. However, their current weight, BMI, and 

age were among the primary concerns as we wanted to have 

diversity in age and weight buckets. Their start (baseline) 

mean weight, 𝛍𝐒𝐭𝐚𝐫𝐭, was 124.6 Kg with a standard deviation, 

𝛔𝐒𝐭𝐚𝐫𝐭, of 31.57 Kg, and a wide range of 65-181 Kg weight 

distribution.   Mean age of the participants, 𝛍𝐀𝐠𝐞, was 43.56 

years with a standard deviation, 𝛔𝐀𝐠𝐞, of 12.60 years, and the 

range of 21-71 years. Their BMI mean, 𝛍𝐁𝐌𝐈, was 43.9 Kg/m2 

with SD, 𝛔𝐁𝐌𝐈, of 8.5 Kg/m2 ,  30 > BMI > 25 was considered 

overweight and BMI ≥ 30 was considered obesity as per 

World Health Organization (WHO) generic guidelines. The 

weight loss goal was 10% of the start weight however we set 

a stretch goal of 15% as the majority of the participants 

insisted on raising the bar. 

C. Procedure and measures 

The participants were provided with a WiFi-enabled 

smart body composition weighing scale and a mobile app, 

SureMediks. The study coordinators and coaches 

collaborated with the participants through a dashboard. The 

coaches, who were  nutritionists, dietitians, and exercise 

instructors, had their own dashboards which they could log in 

and manage, communicate, and monitor the participants’ 

progress, food intake, and physical activity. Figure 2 shows 

the high-level architecture of our implementation.  

     We created six groups of 391 participants based on their 

weight in six different weight buckets. Bucket 1 with 

participants of 65-85kg of weight, Bucket 2 for 86-105kg 

weight, Bucket 3 for 106-125kg, Bucket 4 for 126-145kg, 

Bucket 5 for 146-165kg, and Bucket 6 for the participants 

with the weight of 166-181kg. Our weighing scale maximum 

capacity was 181 Kg.  These six weight buckets had 61, 78, 

83, 60, 66, and 43 participants respectively, totaling 391 

participants.  

    The participants in the study downloaded and installed the 

app on their smart devices and register their smart scale by 

scanning its ID or entering it manually. They provide their 

information, including age, height, preferred units, physical 

activity level, desired weight loss, duration, and group 

number. After signup, they were added to their coaches’ 

dashboards. The baseline metrics were  established 

automatically when they stepped on the scale for the first 

time, and weekly goals were sent by the intelligent agent 

based on the Khokhar WL formula [28]. The curve tension, 

𝑟,  adjusts dynamically based on weight loss performance, 

and participants are moved to a more suitable curve if they 

struggle to reach their weight loss goals.  

 

 
Figure 2: High-level implementation of the architecture: the 

participants have the scale and app, whereas the coaches have 

dashboards.  

 

    In this study, participants received feedback from an 

intelligent agent (ES) based on their current and historical 

data, each time they stepped on the scale along with education 

and guidance through the ES. The flow of ES is depicted in 

Figure 3. Two sample feedbacks are shown in Figure 4. 

Coaches also interacted with participants through text 

messages and video calls. The participants followed a low-

calorie diet recommended by AI-based feedback mechanisms 

and the coaches, with food items shown in the app. Physical 

activity was chosen from a menu and tracked by AI and 

coaches. Participants were encouraged to step on the scale at 

least twice a week and could track their progress through 

charts in the app. Coaches focused on metabolic rates and 

weekly weight loss, providing additional guidelines if goals 

were not achieved. Participants formed accountability circles 

for support and motivation, and alerts were set up to notify if 

weight gain occurred. Participants were proactive in making 

corrections to their diet, physical activities, and lifestyle 

based on feedback and guidance from the ES. 

    SureMediks, encouraged participants to engage in 

challenges within their accountability circle, facilitated by the 

app. There were six challenges to lose 3% weight each, and 

the platform tracked the number of challenges participants 

took part in. In addition to community support, participants 

received daily motivational quotes selected by the AI agent  

based on their progress or challenges. After 26 weeks, 

participants' weekly weights were noted and their weight 

loss progress statistics were analyzed using MS Excel data 

analysis tools. 

D. Results 

    The detailed weight loss statistics of each of the six buckets 

is as follows: For Weight Bucket1, 65-85 Kg, the  
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Figure 4: Samples of guidance from the ES, first part is 

motivational and second part is feedback and guidance. 

 

mean weight loss, 𝜇𝑤𝑙1, was 10.1 kg, standard deviation, 𝜎𝑤𝑙1 

= 3.4 kg, mean weight loss percentage of 13.3, with a 95% 

confidence interval (CI) of 12.18% -14.38%, and BMI loss 

(drop) of 4.3 points. For Weight Bucket2, 86-105 Kg, the 

mean weight loss, 𝜇𝑤𝑙2 , was 13.6 Kg, standard deviation, 

𝜎𝑤𝑙2 = 4.4 Kg, mean weight loss percentage of 14.2, with a 

95% confidence interval (CI), 13.20% -15.19 %, and BMI 

loss (drop) of 5.2 points. For Weight Bucket3, 106-125 Kg, 

the mean weight loss, 𝜇𝑤𝑙3, was 15.9 Kg, standard deviation, 

𝜎𝑤𝑙3 = 5.2 Kg, mean weight loss percentage of 14.0, with a 

95% confidence interval (CI), 13.03% - 14.96%, and BMI 

loss (drop) of 5.9 points. For Weight Bucket4, 126-145 Kg, 

the mean weight loss, 𝜇𝑤𝑙4, was 19.1 Kg, standard deviation, 

𝜎𝑤𝑙4 = 5.9 Kg, mean weight loss percentage of 14.5, with a 

95% confidence  interval (CI), 13.41% - 15.58%, and BMI 

loss (drop) of 6.8 points. For Weight Bucket5, 146-165 Kg, 

the mean weight loss, 𝜇𝑤𝑙5, was 19.4 Kg, standard deviation, 

𝜎𝑤𝑙5 = 6.8 K, mean weight loss percentage of 12.53, with a 

95% confidence interval (CI), 11.45% - 13.60%, and BMI 

loss (drop) of 6.7 points. For Weight Bucket6, 166-181 Kg, 

the mean weight loss, 𝜇𝑤𝑙6, was 25.5 Kg, standard deviation, 

𝜎𝑤𝑙6 = 7.3 Kg, mean weight loss percentage of 14.8, with a 

95% confidence interval (CI), 13.54% - 16.07% , and BMI 

loss (drop) of 8.6 points. 

    Overall, for all 391 participants, 65-181kg, the mean 

weight loss, 𝜇𝑤𝑙, 17.27 Kg, with standard deviation, 𝜎𝑤𝑙6 = 

7.0 Kg, mean weight loss percentage of 13.89, with a 95% 

confidence interval (CI), 13.45% – 14.35%, and BMI loss 

(drop) of 8.6 points. The p-value was significant, p < 0.0001, 

for all results, confidence interval (CI), 13.54% - 16.07% ,  

 
Figure 5: Higher BMI drop with larger weight buckets. the weight 

loss percentage is similar across all the buckets. 

 

and BMI loss (drop) of 8.6 points. Figure 5 depicts the key 

results: mean and standard deviation of weight loss, weight 

loss percentage, and BMI loss (drop). 

    Figures 6 shows the weekly plotted mean weight loss 

progress in kilo grams of all the buckets combined (391 

participants). In this plot, the Amber curve depicts the 

weekly weight loss progress for the period of the trial and 

the blue line shows the weekly predicted mean weight of the 

participant per the Khokhar Weight Loss formula (Equation 

1). The predicted weight loss curve  could serve as the trend 

curve as well. 
 

III. DISCUSSION  

This study suggests that digital platforms are efficient for 

weight loss programs.  We found that participants had a mean 

weight loss of 13.9% from baseline using an AI-assisted 

lifestyle intervention only. The study set a stretch weight loss 

goal of 15% based on participants' preferences and 

determination which was found to play a vital role in weight 

loss efforts. Dividing the weight loss goal into smaller weekly 

goals made it less overwhelming and increased participants' 

sense of control and confidence. The study also found that AI 

guidance, extensive communication and guidance from 

coaches, motivation, accountability, and community support 

were driving factors in achieving these outstanding weight 

loss goals. The use of timely guidance and feedback, along 

with extensive communication, led to better outcomes. 

Motivation derived from internal and external factors, along 

with accountability and community support, played 

significant roles in participants' weight loss. Food journaling 

and physical activity tracking also contributed to healthier 

food choices and increased physical activity. Overall, a 

comprehensive approach with the optimal use of technology 

is effective for weight and obesity management. 
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Figure 6: Weekly weight loss progress of all 391 participants. 

Average weekly weight loss was 0.71 Kg. 

 

 

IV. CONCLUSION AND FUTURE WORK  

    Consistent weight loss needs a multidisciplinary approach. 

Determination, motivation, effective communication, diet, 

physical activity, accountability, and tailored guidance and 

education are vital elements. Digital therapeutics for obesity 

have the potential to significantly improve patient adherence 

and treatment outcomes and can deliver a framework where 

these key elements asynchronously and coherently work for 

the best patient-HCP engagement and optimal patient 

outcome. It is a promising way to address the global 

pandemic of obesity and warrants significant investment for 

further development. AI plays a vital role in delivering 

tailored guidance and education to the patient and catalyze 

the effectiveness of DTx.  With a properly designed and 

operated digital therapeutics platform surpassing the 

benchmark of 10% weight loss in 24 weeks is feasible with 

an effective diet and physical plan along with the vital 

elements of a multidisciplinary approach, which a DTx 

platform can deliver effectively using ES. 

    Our future work is focused on studying how SureMediks 

can effectively complement medical weight loss with 

Glucagon-Like Peptide (GLP-1) and similar weight loss 

medication and post metabolic surgery weight loss.   
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                           Figure3: Distributed Architecture and the operation flow of our SureMediks Expert System.  
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