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AIHealth 2025

Foreword

The Second International Conference on AI-Health (AIHealth 2025), held between March 9 - 13,
2025, covered topics blending Artificial Intelligence and health sciences.

Quality healthcare should be extended to all communities. Independent of how big and complex
the healthcare systems are, physicians are under increasing time and workload pressures and spending
less time with patients. The challenge to deliver high-quality healthcare against administrative burdens
is big and increasing.

Healthcare facilities also produce great amounts of data and record high volumes of patient
records information. This information is valuable and necessary to quality patient care. This information
requires an enormousness effort (time, personnel) to be timely processed for prediction, evaluation and
monitoring patients' health.

Artificial Intelligence (AI) comes to rescue in terms of accuracy, precision, rapidity and
processing a large volume of data. AI-based health systems benefit for recent advances in sophisticated
AI mechanisms for predicting patient health conditions (personalized, at large scale), producing useful
analytics on varii patient health aspects, as well as monitoring and controlling patient under scrutiny.

We take here the opportunity to warmly thank all the members of the AIHealth 2025 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to AIHealth 2025.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the AIHealth 2025 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that AIHealth 2025 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the fields of AI and health
sciences.

We are convinced that the participants found the event useful and communications very open.
We also hope that Nice provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city
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Abstract—Accurate grading of Prostate Cancer (PCa) is vital 

for effective treatment planning and prognosis. This study 

introduces an advanced framework for Gleason Grade (GG) 

classification, addressing challenges in accuracy, 

computational efficiency, and interpretability. Utilizing the 

SICAPv2 dataset, which contains annotated prostate biopsy 

Whole Slide Images (WSIs) graded from GG0 to GG5, the 

framework integrates cutting-edge machine learning and deep 

learning techniques. Feature extraction is performed using a 

custom-designed Variational Autoencoder (VAE) with a 

VGG16 backbone, chosen for its computational efficiency, 

while dimensionality reduction with Principal Component 

Analysis (PCA) optimally selects 50 features for classification. 

The classification pipeline combines machine learning models, 

including Support Vector Machines (SVM), logistic regression, 

and random forests, with custom Deep Neural Networks 

(DNNs). SVM with an Radial Basis Function (RBF) kernel 

achieved an accuracy of 84% following hyperparameter 

tuning, while a custom five-layer dense neural network 

incorporating dropout and batch normalization demonstrated 

superior performance with an accuracy of 94.6%. Explainable 

AI (XAI) techniques, such as SHapley Additive exPlanations 

(SHAP), gradient-weighted class activation mapping (Grad-

CAM), and Local Interpretable Model-Agnostic Explanations 

(LIME), enhance model interpretability by providing insights 

into feature importance and aligning predictions with clinical 

expertise. This framework delivers a robust, scalable, and 

interpretable solution for automated GG classification, 

bridging the gap between advanced AI techniques and clinical 

application. 

Keywords- Cancer diagnosis; Dimensionality reduction; 

Explainable AI; Feature extraction; Gleason grade 

classification. 

I.  INTRODUCTION  

Prostate cancer remains a significant global health issue, 

ranking among the leading causes of cancer-related 

mortality in men. The prostate gland [6], located below the 

bladder and comparable in size to a walnut, plays a crucial 

role in male reproductive health by producing seminal fluid. 

Clinical manifestations often include Lower Urinary Tract 

Symptoms (LUTS), haematuria, erectile dysfunction, and 

urinary retention. 

Traditional diagnostic methods, such as Digital Rectal 

Examination (DRE), prostate-specific antigen (PSA) 

screening, and 12-core Transrectal Ultrasound (TRUS)-

guided biopsy, exhibit notable limitations. Over-diagnosis 

rates can reach up to 45%, while clinically significant 

cancers may be missed in 30% of cases. These challenges 

underscore the necessity for advanced diagnostic techniques 

to effectively distinguish aggressive from non-aggressive 

cancer types [1-4]. 

The integration of WSI with Artificial Intelligence (AI) 

presents transformative potential in prostate cancer 

diagnostics, particularly for GG. High-resolution digital 

images of prostate biopsy samples are acquired through 

WSI scanners and undergo preprocessing steps, such as 

normalization and artifact removal, to enhance image 

quality [8]. AI-driven models segment tissue regions and 

extract significant histopathological features using deep 

learning techniques, including Convolutional Neural 

Networks (CNNs) and VAE [5]. 

Following feature extraction, AI models classify tissue 

patterns into respective GG, facilitating precise cancer 

grading. Post-classification validation ensures model 

robustness, while explainability tools such as SHAP, LIME, 

Grad-CAM, and Saliency Maps enhance transparency and 

interpretability. Figure 1 illustrates the developed AI 

pipeline, addressing critical diagnostic challenges by 

improving accuracy, efficiency, and consistency in GG 

assessment. 

This framework integrates VAEs, XAI techniques, and 

preprocessing methods to enhance GG classification 

precision, support personalized clinical decisions, and 

improve PCa outcomes.  In this paper, Section II covers the 

related work, Section III delves into the methods and 

materials, Section IV presents the results and discussions, 

and Section V provides the conclusion.

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-247-0
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Figure 1.  The block diagram shows a hybrid system for GG Group using WSIs, ensuring transparent and accurate PCa diagnosis and treatment with XAI 

techniques

II. RELATED WORK  

The integration of AI into the GG of PCa using WSI has 

brought about significant advancements in accuracy, 

consistency, and efficiency [9], [22].  Firjani et al. [10] laid 

the groundwork by achieving 100% accuracy in classifying 

prostate tissues into benign and malignant using a k-Nearest 

Neighbors (KNN) classifier on Diffusion-Weighted Imaging 

(DWI). Singhal et al. [11] improved segmentation and 

grading of PCa in WSIs of core needle biopsies with a DL 

model combining U-Net and Atrous Spatial Pyramid 

Pooling (ASPP) modules, achieving an accuracy of 89.4% 

and a quadratic-weighted kappa of 0.92. Azizi et al. [12] 

leveraged recurrent neural networks (RNN) on temporal 

enhanced ultrasound (TeUS) data, with Long Short-Term 

Memory (LSTM) networks achieving an accuracy of 0.93, 

an AUC of 0.96, a sensitivity of 0.76, and a specificity of 

0.98. Bulten et al. [13] developed an automatic DL model 

for GG, attaining a quadratic Cohen’s kappa score of 0.918 

using biopsies. Tsuneki et al. [15] employed transfer 

learning to classify WSIs into adenocarcinoma and benign 

lesions, achieving a high ROC-AUC of up to 0.9873. Pati et 

al. [16] introduced WholeSIGHT, a weakly-supervised 

method for joint segmentation and classification, 

demonstrating a Dice coefficient of 0.76 on three public 

PCa WSI datasets. Müller et al. [17] presented 

DeepGleason, an open-source DNN  system for automated 

GG, achieving a macro-averaged F1-score of 0.806, an 

AUC of 0.991, and an accuracy of 0.974. Hammouda et al. 

[18] proposed a multi-stage classification-based DL system 

for GG, achieving a precision of 0.92, recall of 0.89, and 

accuracy of 0.93 on 3,080 WSIs. Duenweg et al. [19] 

highlighted the impact of different WSI scanners on image 

quality, which significantly affects computational analysis 

performance, underscoring the need for standardized WSI 

scanner protocols. Mittmann et al. [20] developed an AI 

system for interpretable GG that mimics pathologist 

explanations, achieving a Dice score of 0.713 ± 0.003 using 

a dataset of 1,015 tissue microarray core images annotated 

by 54 pathologists. Belinga [11] proposed an AI-assisted 

system that improved GG accuracy and consistency, with a 

quadratically weighted Cohen’s kappa of 0.872 compared to 

0.799 without AI assistance, evaluated on 160 biopsies 

graded by 14 observers. Collectively, these studies 

underscore the transformative potential of AI and digital 

pathology in enhancing the diagnostic accuracy and 

consistency of GG in PCa. 

III. METHODS AND MATERIALS 

Hybrid PCa GG uses a custom VAE with a pre-trained 

VGG-16 encoder for feature extraction and a two-layer 

Dense decoder for reconstruction. Trained on SICAPv2 

datasets [5], [7], it ensures accurate GG classification and 

clinical relevance, as shown in Figure 2. To further optimize 

performance, we apply advanced feature reduction 

techniques, including PCA, Singular Value Decomposition 

(SVD), linear discriminant analysis (LDA), and t-distributed 

Stochastic Neighbor Embedding (t-SNE), ensuring 

dimensionality reduction while retaining critical data 

characteristics. The pipeline employs several state-of-the-art 

classifiers—Decision Tree, Random Forest, XGBoost, and 

SVM—which are fine-tuned via hyperparameter 

optimization to improve predictive accuracy. These 

classifiers are evaluated using performance metrics like 

accuracy, precision, recall, and F1-Score to ensure robust 

and reliable results. Furthermore, to enhance model 

transparency and interpretability, we incorporate XAI 

techniques. LIME offers local insights into individual 

predictions, SHAP quantifies global feature contributions, 

Grad-CAM visualizes critical regions in the images, 

saliency Maps highlight influential pixels, and feature Maps 

provide insights into the learning process at various layers. 

This comprehensive approach not only enhances the 
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precision of GG but also supports transparency, ensuring the 

AI model is trustworthy for clinical use, and paves the way 

for more personalized PCa diagnosis and treatment 

strategies. The SICAPv2 dataset [22] (GG0–GG5) provided 

a robust benchmark for validating AI-driven PCa models.

Figure 2.  Implemenation algorithm VAE-Based Hybrid Algorithm for Gleason Grade Classification 

IV. RESULTS AND DISCUSSION 

This section presents the VAE-based hybrid pipeline's 

performance in GG classification, emphasizing key results, 

feature reduction, and XAI techniques.  

A. Feature Extraction by VAE and Feature reduction  

As shown in Table I, VGG-16 is the optimal feature 

extractor for GG classification, balancing quality, 

efficiency, and interpretability by extracting 512 compact 

and effective features. It avoids the redundancy seen in 

ResNet-50 and DenseNet-121, which produce 2048 and 

1024 features, respectively. Despite DenseNet-121 being 

faster, VGG-16's moderate extraction time ensures 

reliability, minimizing overfitting and making it ideal for 

medical imaging. 

TABLE I.  FEATURE EXTRACTION 

VAE 

with 

CNN as 

Encoder 

VAE Performance as Feature Extractor 

No. of 

features 

extracte

d from 

Model 

Feature 

Dimension

s Before 

Flattening 

Time 

taken by 

Model 

for FE 

Time 

taken for 

feature 

Decoding 

Time 

taken for 

PCA 

Transfor

mation 

VGG-16 512 (None, 7, 

7, 512) 

63.06 

sec 

0.55 

sec 

0.05 

sec 

VGG-19 512 (None, 7, 

7, 512) 

65.50 

sec 

0.32 

sec 

0.01  

sec 

ResNet-

50 
2048 

(None, 7, 

7, 2048) 

30.55 

sec 

0.28 

sec 

0.04 

sec 

DenseNet 1024 (None, 7, 33.84 0.32 0.07 

VAE 

with 

CNN as 

Encoder 

VAE Performance as Feature Extractor 

No. of 

features 

extracte

d from 

Model 

Feature 

Dimension

s Before 

Flattening 

Time 

taken by 

Model 

for FE 

Time 

taken for 

feature 

Decoding 

Time 

taken for 

PCA 

Transfor

mation 

-121 7, 1024) sec sec sec 

Feature reduction performance in Table II indicates that 

various CNN models used as VAE encoders achieve similar 

dimensionality reduction to 50 features using PCA, SVD, 

and t-SNE. VGG-16, VGG-19, and ResNet-50 demonstrate 

comparable performance in feature reduction, with ResNet-

50 extracting the highest number of features at 2048. 

DenseNet-121, extracting 1024 features, achieves the 

highest reduction with SVD, reducing features to 137. 

VGG-16 and VGG-19, with 512 features, consistently and 

efficiently reduce dimensionality while maintaining feature 

quality. 

TABLE II.  FEATURE REDUCTION 

CNN Model 

As VAE 

Encoder 

Feature Reduction after VAE 

No. of 

features 

extracted 

from Model 

PCA SVD LDA t-SNE 

VGG-16 512 50 100 1 2 

VGG-19 512 50 93 1 2 

ResNet-50 2048 50 103 1 2 

DenseNet-121 1024 50 137 1 2 
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B. Feature Explainability 

In Table IV, SHAP was the fastest, completing its task in 

0.92 seconds while using only 1.47 MB of memory. LIME, 

although computationally intensive, required the highest 

memory at 9.97 MB. Grad-CAM stood out for its superior 

visual explanations, achieving a good balance with a 

runtime of 1.87 seconds and memory usage of 5.16 MB. 

Saliency maps provided a well-rounded performance, 

combining reasonable speed at 1.15 seconds with moderate 

memory usage of 6.74 MB. Figure 3 illustrates 

explainability techniques: (a) Significant contributions of 50 

features to classification using XAI SHAP, (b) Grad-CAM 

heatmap for GG2 showing lower activation in cooler colors, 

indicating a lower likelihood of malignancy, and (c) Grad-

CAM heatmap for GG4 displaying higher activation in 

warmer colors, highlighting regions significant for 

predicting malignancy. 

TABLE III.  EXPLAINABILITY OF FEATURE  

XAI Technique Time (seconds) Peak Memory Usage (MB) 

SHAP 0.9193 1.4740 

LIME 1.4421  9.9731  

Grad-CAM 1.8705 5.1574 

Saliency Map 1.1513 6.7392 

C. Machine Learnning classification 

In Table IV, the performance metrics for various machine 

learning classification models are as follows: Decision Tree 

achieved accuracy, precision, recall, and F1-score of 0.47. 

Linear Regression showed consistent scores of 0.70 across 

all metrics. Random Forest performed better with scores of 

0.78 across all metrics. XGBoost had moderate performance 

with scores of 0.72. SVM demonstrated the highest 

performance with accuracy and recall at 0.81, and precision 

and F1-score at 0.80. 

TABLE IV.  PERFORMANCE METRICS FOR VARIOUS ML 

CLASSIFICATION  

Metric ML Model 

Decision 
Tree 

Linear 
Regression 

Random 
Forest 

XGBoost SVM 

Accuracy 0.47 0.70 0.78 0.72 0.81 
Precision 0.48 0.71 0.78 0.72 0.80 

Recall 0.47 0.70 0.78 0.72 0.81 
F1-Score 0.47 0.70 0.78 0.72 0.81 

D. Machine Learnning classification with hyperparmeter 

tuning 

In Table V, hyperparameter tuning significantly improved 
model performance. SVM showed the highest gains, with 
accuracy rising from 0.81 to 0.84, precision from 0.80 to 
0.85, recall from 0.81 to 0.84, and F1-score from 0.81 to 
0.84—improvements of 3.7% in accuracy and recall, and 
3.8% in precision and F1-score. Random Forest improved 
from 0.78 to 0.81 in accuracy and recall, while XGBoost's 

accuracy rose from 0.72 to 0.76 and recall from 0.72 to 
0.75. Decision Tree saw the largest improvement, with an 
8.5% boost across all metrics (0.47 to 0.51). Linear 
Regression maintained consistent performance at 0.72. 
Overall, hyperparameter tuning enhanced all models, with 
SVM outperforming others in all metrics. 

TABLE V.  PERFORMANCE METRICS FOR VARIOUS ML 

CLASSIFICATION  WITH HYPERPARMETER TUNING 

Metric 

ML Model hyperparameter 

Decision 
Tree 

Linear 
Regression 

Random 
Forest 

XGBoost SVM 

Accuracy 0.51 0.72 0.81 0.76 0.84 

Precision 0.53 0.72 0.80 0.74 0.85 

Recall 0.51 0.72 0.81 0.75 0.84 

F1-Score 0.51 0.72 0.81 0.75 0.84 

E. Deep learning – Deep neural network 

In Table VI, we evaluated the performance of DNN models 

with different architectures. The DNN model with 3 Dense 

Layers achieved an accuracy of 0.79, precision of 0.81, 

recall of 0.79, and F1-score of 0.80. The performance 

improved with the DNN model featuring 5 Dense Layers, 

which achieved an accuracy of 0.89, precision of 0.90, recall 

of 0.89, and F1-score of 0.89. The model with 5 Dense 

Layers combined with Dropout and Batch Normalization 

demonstrated the best results, with an accuracy of 0.94, 

precision of 0.96, recall of 0.94, and F1-score of 0.95. The 

addition of Dropout and Batch Normalization led to a 

significant improvement, increasing accuracy by 5.6%, 

precision by 6.7%, recall by 5.6%, and F1-score by 6.7% 

compared to the model without these techniques. This 

indicates that Dropout and Batch Normalization played a 

crucial role in boosting the model's overall performance. 

TABLE VI.  DEEP LEARNIG – DNN MODEL 

Metric DL – 
DNN 

with 3 
Dense 
Layers 

DL – 
DNN 

with 5 
Dense 
Layers 

DL – DNN with 5 
Dense Layers + 

Dropout & Batch 
Normalization 

Accuracy 0.79 0.89 94.6 

Precision 0.81 0.90 96 

Recall 0.79 0.89 94 

F1-Score 0.80 0.89 0.95 

F. Comparative Analysis of ML and DL Techniques for 

Prostate Cancer Diagnostics 

The performance comparison shows ML models like SVM 

achieving ~0.84 accuracy, while DL models excelled, with a 

5-layer DNN using dropout and batch normalization 

achieving ~0.94; Figure 4 highlights that DL, combined 

with advanced regularization methods, offers superior 

accuracy and robustness in PCa GG classification.  
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V. CONCLUSION 

In this study, a comprehensive framework for GG 

classification using WSI of PCa was developed by 

integrating DNN and ML models. VGG-16 was identified 

as the optimal feature extractor, offering a balance of feature 

quality and computational efficiency by extracting 512 

features in 63.06 seconds. It outperformed DenseNet-121 

and ResNet-50 in reducing redundancy and ensuring 

efficient dimensionality reduction through PCA, SVD, and 

t-SNE. Hyperparameter tuning enhanced ML performance, 

with SVM achieving the highest accuracy of 84%, while DL 

models incorporating dropout and batch normalization 

demonstrated significant improvements. A five-layer DNN 

achieved 94.6% accuracy, highlighting the effectiveness of 

regularization in preventing overfitting. A novel aspect of 

this research lies in the integration of XAI techniques to 

improve model interpretability. SHAP provided rapid, 

memory-efficient insights, while Grad-CAM delivered 

detailed visualizations, ensuring transparency in decision-

making. LIME and Saliency Maps further contributed to 

understanding model outputs, underscoring the need for 

transparent AI in clinical settings. Future work will expand 

this framework to larger datasets and explore advanced 

neural architectures and XAI methods, aiming to develop 

scalable, interpretable, and clinically reliable AI models for 

PCa diagnostics. The implementation, tested on an open-

access dataset, could benefit from additional testing on more 

benchmark and clinical datasets to enhance its clinical 

utility.

  

 

 

 

 

 

 

 

Figure 3.  Comparison of Explainability Techniques for Prostate Cancer Gleason Grade Classification (a) Significant contributions of 50 features to 
classification using XAI SHAP (b) Grad-CAM heatmap for GG2 and (c) Grad-CAM heat map for GG4 
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Figure 4.  Evaluating ML and DL Models for Prostate Cancer Diagnostics: A Performance Insight      
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Abstract— Essential heavy metals, such as zinc, copper, iron, 

and manganese, play important roles in many biological 

processes. Other heavy metals, like lead, arsenic, cadmium, 

and mercury, can displace essential heavy metals and disrupt 

vital biological processes. Heavy metal exposure can be 

particularly detrimental to pregnant women and their 

developing fetuses; however, little is known about the 

combinatory impact that simultaneous exposure to multiple 

heavy metals may have on fetal development. Procuring a 

better understanding of how these metals influence fetal 

development is a critical first step to addressing this 

concerning lack of knowledge. There are numerous databases 

and datasets in existence storing data on heavy metal levels in 

maternal and fetal blood, and novel studies are being done to 

expand this collection of data. Data mining techniques present 

a tool that could be used to close this gap of knowledge by 

revealing patterns in data not previously discovered. Research 

at Thomas Jefferson University aims to aid in closing this gap 

of knowledge. In the study, data such as heavy metal blood 

concentrations, pregnancy complications, health outcomes, and 

demographic information will be collected from mothers and 

newborns. Data mining strategies will then be used to develop 

models capable of discovering data patterns. If this modeling is 

successful, such an approach can be utilized by healthcare 

providers in the future to assess patient risk and provide early 

intervention for at-risk pregnant patients.  

 

Keywords- data mining; data modeling; databases; heavy metals; 

neonatal health; maternal health. 

I. INTRODUCTION 

First, this paper will describe the critical roles that 

essential heavy metals play in human health, as well as how 

toxic metals can disrupt these processes. Also, the effects 

that toxic heavy metal exposure can have during pregnancy 

and on fetal development will be emphasized.  

A. Heavy Metals and Health 

Certain heavy metals are considered essential, as they act 

as co-factors in important enzymes necessary for 

maintaining biological homeostasis. Essential heavy metals 

include zinc, iron, copper, and manganese [1]. Zinc finger 

motifs, which require zinc, are common protein structures in 

Deoxyribonucleic Acid (DNA) binding proteins like 

transcription factors [2]. Iron is found in hemoglobin, which 

is involved in oxygen transport in red blood cells [3]. 

Copper and manganese are often found in enzymes involved 

in oxidation reduction (redox) reactions and both can be 

found in superoxide dismutases. Superoxide dismutases 

neutralize superoxide radicals formed in the mitochondria 

and act as antioxidants [3]. Considering the breadth of roles 

that heavy metals play in maintaining human health, 

disrupting the levels of these beneficial heavy metals in 

humans can have detrimental effects.  

There are also other heavy metals known to cause 

adverse health effects. Lead, mercury, cadmium, aluminum, 

arsenic, and cobalt are some of the most well studied heavy 

metals associated with causing heavy metal toxicity [1]. 

Many of these toxic heavy metals displace essential heavy 

metals in important enzymes and thus prevent these 

enzymes from functioning properly. For example, cadmium 

and mercury can displace zinc in zinc finger motifs and can 

prevent transcription factors from binding to DNA [2]. Also, 

if the heavy metals in superoxide dismutases are displaced, 

there is an accumulation of reactive oxygen species leading 

to oxidative stress, which if severe enough, triggers 

apoptosis [3]. Toxic heavy metals also react with thiol 

groups, which are found on the amino acid cysteine, so any 

exposed cysteine on a protein has the potential to be altered 

by a toxic heavy metal [4]. Considering that zinc-finger 

motifs and thiol groups are found in many proteins, there is 

the potential for many biological functions to be disrupted 

when toxic heavy metals enter human cells, highlighting the 

importance of studying heavy metal exposure [4]. 

Although heavy metal exposure can occur at work, like in 

the case of miners and welders, the majority of the 

population is exposed to heavy metals from pollution [1] 

[4]. Heavy metals in water runoff from industrial pollution 

can enter crops, cattle, fish, and drinking water [4]. If 

contaminated food or water is consumed, heavy metals can 

enter the bloodstream, and in the case of pregnant women, 

can also be transferred to developing offspring [5]. The 

effects of heavy metals on developing fetuses can be 

especially damaging. There is substantial cell proliferation 

and differentiation during development which requires a 

great amount of energy and resources. Increased oxidative 

stress due to dysfunctional superoxide dismutases or 

decreased gene expression due to disrupted zinc finger 

motifs in DNA binding proteins can thus greatly damage the 

growth and development of fetuses [2][3][5].  

Acute or chronic exposure to heavy metals during 

pregnancy can result in severe morbidities in mothers as 
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well as in offspring. Exposure to heavy metals during 

pregnancy can lead to impaired growth and development in 

children. Heavy metals exposure during pregnancy is also 

associated with asthma, obesity, and hypertension [6]-[9]. 

Exposure to multiple heavy metals can also lead to 

deficiency of nutritionally essential metals with long-term 

consequences [6][10][11]. Maternal heavy metal exposure is 

also associated with decreased maternal thyroid hormones 

[12]. Elevated levels of lead in umbilical cord blood have 

been correlated with increased risk of preterm delivery, low 

birth weight, small head circumference, and low birth length 

[5]. Mercury is known to cross the placenta and can have 

negative effects on the developing nervous system of the 

fetus leading to cognitive delays, reduced attention span, 

memory issues, and motor skill impairments [13]. Cadmium 

can impair placental function, reducing the transfer of 

oxygen and nutrients to the fetus [14]. Arsenic also 

interferes with brain development and can also increase the 

risk of miscarriage and of developing chronic diseases such 

as diabetes or heart disease later in life [15]. These are just a 

few of the heavy metals that can have a negative impact on 

fetal development but more exist.  

Simultaneous exposure to multiple heavy metals may 

produce a toxic effect that is either additive, antagonistic, or 

synergistic. However, the literature is scarce regarding the 

combined toxicity of heavy metals. Understanding how 

toxic metals may interact is necessary for our ability to 

predict the health outcome of a developing fetus and 

hopefully provide early intervention. There are many 

available datasets that exist reporting on the levels of heavy 

metals in maternal and fetal blood, but to our knowledge, 

data mining techniques that could be utilized to reveal 

patterns and create predictions based on the current data that 

exists have not yet been applied to this problem.  

In this paper, we first aim to summarize data mining 

techniques that can be applied to biomedical research 

questions, including the gap of knowledge about the 

combinatory impact that simultaneous metal exposure has 

on fetal and maternal health. We also introduce research to 

be conducted at Thomas Jefferson University to address the 

heavy metals in neonatal health problem utilizing statistics 

and datamining techniques.  

B. Data Mining Techniques 

Many research-affiliated hospitals in the United States 

have established biobanks storing patient samples such as 

cord blood and maternal blood with associated databases. 

The Mayo Clinic Umbilical Cord Blood BioBank, Baylor 

College of Medicine’s PeriBank, and the Magee Obstetric 

Maternal and Infant (MOMI) Database and Biobank are a 

few examples of large biobanks with databases [16][17]. As 

the data stored in these databases is sensitive, these 

databases are generally private and require permission to 

access. There are also several papers that have already been 

published with datasets which were used for analyzing 

heavy metal levels in maternal and fetal blood samples [18]-

[23].  

Considering that there are large datasets which already 

exist containing heavy metal levels from maternal and fetal 

blood, data mining could be utilized to reveal patterns not 

previously described about pre-existing data or could be 

used to predict future outcomes. There are a wide array of 

data mining methods available, which when used in 

conjunction, can be used to create an accurate modeling 

system. Many of these methods involve machine learning, 

which can be unsupervised or supervised [24].  
Supervised machine learning involves randomly 

dividing the data into three subsets. One set is used to train 

the machine to establish the parameters. Then, a validation 

set is used to refine the model, and the test set is used to 

ensure the model performs as expected [24]. A Bayesian 

Network is a supervised machine learning model that could 

be used in the context of the heavy metal problem to 

profound effect. Bayesian Networks are probabilistic 

graphical models that represent a set of variables as a 

Directed Acyclic Graph (DAG) [25]. Nodes in the model 

represent random variables while connections between 

nodes represent conditional probabilities. This model can be 

used to calculate the probability of a certain outcome given 

several different interacting variables [25]. An approach like 

this could help to elucidate the potential synergistic, additive 

and antagonist properties of multiple heavy metals, and 

predict outcomes based on the level of exposure of 

individual metals. Supervised machine learning requires that 

data is labeled and is an approach used to train a model [24]. 

This means there is a known output expected when 

analyzing the data. If the goal is to reveal patterns in the 

data, in which the output is unknown and undefined, 

unsupervised machine learning is the appropriate approach 

[24].  

Unsupervised machine learning models, also known as 

descriptive models, are often used to find patterns that 

describe data and can be interpreted by humans [24]. These 

models achieve this by clustering data into categories based 

on the similarity between objects in the dataset. 

Unsupervised data mining is exploratory in nature and can 

lead to the discovery of unknown patterns or relationships in 

data [26]. An example of this mining technique would be an 

association rule-based analysis, also known as market based 

analysis. Association rules can discover correlations 

between items in substantial amounts of data, and this 

technology is often used in health care settings to determine 

associations between joint effects of disease risk factors and 

combinations of other risk factors [26]. This is done in a 2-

step process: 1) all high frequency items in the data set are 

listed and 2) frequent association rules are generated based 

on these high frequency items [26]. Such an approach would 

lend itself to the heavy metal problem quite nicely. 

Determining association rules between the various heavy 

metals and their effect on human health or fetal 

development could clarify how their known effects interact 
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with each other and even aid in the discovery of new 

combinatorial effects that were previously uncharacterized.  

Section 2 of this paper will describe a proposed study to 

be performed at Thomas Jefferson University in regard to 

this topic. Specifically, section 2A will describe the data 

collection process, while section 2B will go over the 

proposed analysis strategy. Section 3 and the 

acknowledgement section will conclude the paper.  

 

II. PROPOSED RESEARCH 

The following section will describe the data collection 

process. 

A. Data Collection 

In an Institutional Review Board (IRB) approved study 

at Thomas Jefferson University, 107 pregnant women will 

be enrolled. Consent will occur both in the outpatient setting 

prior to delivery and on admission to Labor and Delivery (L 

& D). L&D is a specialized unit that provides care to 

pregnant women during labor, childbirth, and the immediate 

postpartum period. Maternal blood samples will be collected 

on admission to L & D and the cord blood at delivery. 

Blood samples will be centrifuged, serum collected, and 

frozen at -80oC. Serum samples will be analyzed by mass 

spectrometry for 25 metals (Na, K, Mg, Ca, Zn, Se, Cu, Li, 

Co, NI, Tl, Al, Cr, Sr, Cd, Ba, Be, V, Fe, As, Mo, Pb, Ag, 

Mn, and U). The following clinical data will be collected: 

maternal age, race/ethnicity, insurance, zip code, Body Mass 

Index (BMI), medical morbidities (asthma, hypertension, 

diabetes), pregnancy complications (preeclampsia, preterm 

birth, fetal growth restriction), maternal anemia, prior full 

term or preterm delivery, delivery outcomes (delivery mode, 

gestational age, birthweight, neonatal sex) and neonatal 

outcomes (duration of hospital stay, admission to the 

Neonatal Intensive Care Unit (NICU). The World Health 

Organization guidelines will be adhered to for postnatal 

care, including routine postpartum evaluation of all women 

and infant pairs at 3 days, 1-2 weeks, 6 weeks, and 12 weeks 

postpartum. The next section will detail the methodology 

that will be used for data analysis. 

B. Data Analysis 

Data will be analyzed through International Machines 

Corporation (IBM) Analytics software based on the project 

outline that is divided into distinct, but interlocked research 

goals. First, we aim to develop a database of blood samples 

from umbilical cords and mothers that reflect the maternal 

toxic elements and their potential transfer, as well as mother 

and newborn nutritional status. Secondly, we aim to develop 

a data analytics model to discover and prioritize data 

patterns. IBM Analytics software will be utilized to 

calculate power analysis for all statistical analysis to be 

undertaken in the newborn and mothers’ blood samples 

study. We estimate that, for testing whether the mother’s 

blood at the delivery will predict the toxicity level 

transferred to a newborn as well as whether the relation is 

being affected through the metals’ mixture composition for 

the toxic materials, in order to achieve the value of power 

0.95 as well as the medium size effect in regression 

analysis, the sample size required to be selected is around 

107. Thus, it can be inferred that Power Analysis for the 

method of regression will help in stating the exact size of 

the sample on the basis of the research questions to 

demonstrate statistical significance. IBM Analytics software 

allows for multiple analysis of mean group differences and 

variance. The Variance Components procedure, for mixed-

effects models, estimates the contribution of each random 

effect to the variance of the dependent variable. By 

calculating variance components, we will determine where 

to focus attention to reduce the variance in the 

computational models. We intend to explore four different 

methods for estimating the variance components: minimum 

norm quadratic unbiased estimator (MINQUE), analysis of 

variance (ANOVA), Maximum Likelihood (ML), and 

Restricted Maximum Likelihood (REML). If the ML 

method or the REML method is used, an asymptotic 

covariance matrix table is also displayed. Other available 

output includes an ANOVA table and expected mean 

squares for the ANOVA method and an iteration history for 

the ML and REML methods. WLS Weight will allow us to 

specify a variable used to give observations different 

weights for a weighted analysis to compensate for variation 

differences. ANOVA and MINQUE do not require 

normality assumptions. ML and REML require the model 

parameter and the residual term to be normally distributed. 

In terms of Data Management and Quality Control 

Mechanisms, three standard Jefferson security procedures 

based on Jefferson Information Systems and technology 

(IS&T) / Information Security questionnaires will be 

utilized to review data hosting to assure compliance with 

applicable security controls. The details of these internal 

procedures cannot be disclosed publicly as to protect 

proprietary information belonging to Thomas Jefferson 

University. Thomas Jefferson University recognizes 

interoperability as crucial to the sharing of research data and 

resources to promote efficiency in research, and utilizes 

standards articulated by the Jefferson Research Integrity, 

Conduct and Compliance Office. Software applications are 

hosted on servers with networked storage located at a data 

center, providing data security and disaster recovery 

services. Jefferson employs best practices with regard to 

data privacy and security, complying with the Common 

Rule, HIPAA, as well as state regulations. 

In terms of Data Analytics, we aim at developing 

models to discover and prioritize data patterns to provide 

information and actionable knowledge to both medical 

practitioners as well as public health policy decision makers. 

Data Analytics will be used: 1. To explore data to find new 

patterns and relationships (data mining); 2. To evaluate and 

test previous decisions (randomized controlled experiments, 

multivariate testing); 3. To explain why a certain outcome 

9Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-247-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIHealth 2025 : The Second International Conference on AI-Health

                            16 / 78



   

 

   

 

happened (statistical analysis, descriptive analysis); and 4. 

To venture into the future (forecast) results (predictive 

modeling, predictive analytics). All four research avenues 

capture very well the significance and impact of Data 

Analytics. It could be summarized as a leading theme for the 

whole research proposal: “In God we trust, all others bring 

data, especially in maternity health care, and its impact on 

future healthy cities.” 

The data from the proposed research will help in 

identifying pregnant women at risk for developing heavy 

metals toxicity and the deficiency of essential nutrients. 

Identifying deficiency of nutritionally essential metals in 

pregnant women and their newborn and supplementation 

may improve pregnancy outcomes, as well as improve 

growth and development in children and prevent long-term 

morbidities. The significance of the proposed research is 

accentuated by environmental impact on maternal/child 

health through measuring maternal heavy metal exposure 

and fetal transfer. Although the acute and chronic effects are 

known for some metals, little is known about the health 

impact of mixtures of toxic elements. 

III. CONCLUSION 

Heavy metals play a complex role in human health.  

Harmful metals are known to interact with essential metals 

in a competitive way, but their combinatorial effects have 

not been sufficiently studied.  An understanding of these 

combinatorial effects is important as individuals are often 

exposed to many of these harmful metals at once, due to the 

impact of industrial pollution. Fortunately, there is a 

growing collection of data concerning the impact of these 

metals on pregnant mothers and newborns. Data mining 

technologies present an efficient and productive method to 

utilize these databases.  Proper use of datamining techniques 

used in conjunction with the collected data on these metals 

could elucidate the additive, synergistic, and antagonistic 

effects of these metals, thereby filling a gap of knowledge. 

As such, exploration of this topic would be of immense 

importance. At Thomas Jefferson University, we aim to 

collect data on maternal and neonatal heavy metal blood 

levels and health outcomes to add to the data already in 

existence. Then, data mining techniques will be used to 

develop data modeling systems capable of revealing patterns 

in this data not previously reported. Understanding the 

connection between health outcomes and heavy metal blood 

levels in both mothers and developing fetuses could allow 

clinicians to better predict pregnancy and delivery 

complications and thus could provide early intervention, if 

needed, to prevent complications. These healthcare goals 

can only be achieved once the data available on heavy metal 

levels during pregnancy/delivery are analyzed and modeled. 
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Abstract—The paper addresses the critical need for a faster
and more efficient approach to Patient-Specific Quality Assurance
(PSQA) in radiation therapy. The accuracy of PSQA is crucial
for the safety of radiation therapy, particularly with complex
procedures like Intensity-Modulated Radiation Therapy (IMRT)
and Volumetric-Arc Radiation Therapy (VMAT). Traditional
phantom-based methods, while effective, are time-consuming
and fail to account for patient-specific variability and real-time
treatment adjustment. To address these limitations, alternative
strategies leveraging trajectory log files—automatically recorded
during treatment—have emerged as promising tools for PSQA. In
recent years, the application of machine learning and deep learning
algorithms to trajectory log files has been increasingly studied
in literature. These algorithms have shown notable progress in
predicting PSQA outcomes and detecting errors, though further
development is required before they can be fully integrated into
clinical practice. By surveying key studies, the paper highlights
the potential of algorithms such as support vector machines, tree-
based methods, and convolutional neural networks to enhance
the efficiency and accuracy of log file-based PSQA. The findings
underscore the promise of these techniques in replacing traditional
methods while addressing current challenges to pave the way for
clinical integration.

Keywords-deep learning; machine learning; quality assurance;
volumetric-arc radiation therapy; intensity-modulated radiation
therapy.

The American Cancer Society has estimated over 2 million
new cases of cancer in 2024 [1]. About 50% of all cancer
patients are expected to receive radiotherapy at some point
during treatment [2]. The proportion of radiotherapy patients
receiving Intensity-Modulated Radiotherapy (IMRT) and Volu-
metric Modulated Arc Therapy (VMAT) has steadily increased
over time from 22% in 2004 to 57.8% in 2017 [3]. IMRT and
VMAT are routine but complex cancer treatment modalities

that require time-consuming Quality Assurance (QA) measures.
Log file-based Patient-Specific Quality Assurance (PSQA) has
been proposed as an alternative method that can be performed
in real-time on a fraction-by-fraction basis [4][5][6]. Studies
comparing log file-based PSQA have identified differences
between log file recordings and actual behavior of machines
during treatment, however, several mitigation strategies have
been proposed [4][7][8]. These studies have given new insights
into the potential for more efficient PSQA, however, they have
been limited by small cohort size.

Machine learning, and by extension deep learning, have
rapidly gained traction as essential tools for advancing health-
care [9][10][11]. Machine learning can process and analyze
large, complex datasets to identify patterns and make predic-
tions that can be implemented to improve patient outcomes,
increase treatment efficiency, and aid in clinical decision-
making. Machine learning algorithms can automate time-
consuming tasks. This can reduce the workload on medical
professionals, reduce waiting times, and mitigate the risks
of human error. Unlike traditional strategies for automation
that are static after their implementation, these algorithms
can evolve over time with additional data. Updates are made
constantly to maintain or improve accuracy [12]. This is
specifically advantageous in fields, such as radiation therapy,
where advancements are rapid, and techniques are constantly
changing [13][14][15][16].

The following paper thus endeavors to give a brief but
comprehensive overview of the current status of machine
learning for log-file based PSQA measures. This paper is
structured as follows: Section 2 provides the theoretical context
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for log-file based PSQA. Section 3 explores the various
applications of machine learning and deep learning models
for PSQA. Section 4 discusses future directions and concludes
with final remarks.

I. BACKGROUND

We will provide an overview of the theories behind the use
of log files for PSQA and the theory for the most successful
machine learning algorithms to date.

A. Log File-Based PSQA

IMRT is of particular value when treating tumors with
complex or concave shapes, especially those located near
radiosensitive normal tissues. It uses a computer-controlled
linear accelerator (linac) that can rotate around the patient
on a gantry. This process excites electrons via microwave
technology, which then collide with a heavy metal target to
produce high-energy x-rays. These beams are shaped by the
Multileaf Collimator (MLC) as they exit the machine. The
intensity of each beam segment, MLC shaping, and gantry
rotation are all determined using 3D imaging prior to treatment.
The precision in dose delivery provided by IMRT allows for the
irradiation of the tumor while sparing nearby healthy tissues,
making it especially useful for tumors located near critical
organs [17].

Due to the complexity of IMRT and VMAT treatment plans,
each patient’s treatment plan requires inversely optimized
planning. Before treatment begins, these plans are often
measured on the linac using detector arrays. The added
complexity necessitates additional QA measures to ensure
patient safety in clinical settings [18][19]. Confirmations of
machine performance and patient treatment plan accuracy
are essential. These verifications include assessing patient
positioning, machine mechanical accuracy, dose distribution,
and beam geometry. Given the complex and highly variable
nature of each treatment plan, PSQA is required [20].

Currently, IMRT and VMAT treatment plans undergo phys-
ical measurements of the plan parameters before treatment
begins to ensure the machine delivers the intended dose.
However, these measurements are often done in advance and
may not account for real-time deviations that may occur before
the treatment begins. As such, the potential for mechani-
cal changes resulting in dose discrepancies between PSQA
and actual treatment remains a concern. The most common
procedure involves recalculating the dose distribution of a
patient’s treatment plan onto a suitable phantom. The dose
distribution is then measured using various devices, such
as film, ion chambers, diode arrays, or Electronic Portal
Imaging Devices (EPIDs). Differences between the measured
and planned dose distributions are quantified using gamma
analysis, as outlined in American Association of Physicists in
Medicine Task Groups (AAPM TGs) 119 and 218. These
guidelines recommend that over 90% of measured points
should fall within a 3% dose difference and a 2mm distance-
to-agreement (DTA) [21][22]. However, this process is time
and labor-intensive, often requiring after-hours work to avoid

interrupting treatment schedules. Additionally, there is ongoing
debate over the efficacy of these methods, particularly regarding
their robustness and ability to detect potential failure modes
[6][23][24].

Log file-based PSQA offers an alternative to traditional
methods by utilizing automatically generated log files from
radiation treatment machines to verify the accuracy of treatment
plans. These log files capture data such as radiation output,
MLC positions, gantry and couch positions, beam angles,
and timing information. This data can then be compared
to the treatment plan to identify potential errors [25]. Log
files, TPS files, and Mean Complexity Scores (MCS) have
been used to develop prediction models for Gamma Passing
Rate (GPR), a key metric in PSQA [26]. Recent studies have
indicated discrepancies between the recorded data and the actual
performance of the machine, particularly in terms of MLC
positioning [26][27][28]. However, since log files are generated
by the linac, they do not detect mechanical miscalibrations, such
as incorrect leaf positioning. Moreover, they cannot account
for low plan quality or errors originating from the treatment
planning system (TPS). To mitigate these limitations, enhanced
QA procedures specifically for the linac, combined with more
sensitive machine QA tools, are recommended to ensure MLC
accuracy [26].

B. Machine Learning and IMRT/VMAT

Treatment log files record various parameters of radiation
delivery, such as MLC position, dose rates, beam angles, and
gantry positions in real-time during the course with recordings
taken every few milliseconds [29]. As highly structured,
real-time, and extensive data capture, these files would be
particularly difficult to analyze manually. Log files are thus
particularly well-suited to machine learning algorithms for
pattern recognition and error prediction. Models range from
simple classification techniques to complex deep learning
algorithms. The most successful models in the literature include
Support Vector Machines (SVMs), tree-based algorithms , and
Artificial Neural Networks (ANNs).

SVMs are effective for classification tasks for log file-based
PSQA. They can distinguish between compliant and non-
compliant treatment sessions by setting predefined acceptable
ranges for discrepancies between planned and delivered values
for parameters within the log file, such as dose rate, MLC
positions, and beam angles. This allows for quick identification
of errors as they occur so that a clinician can be alerted.
However, SVM is limited to cases where there are clear
distinctions between compliant and non-compliant values. SVM
is also sensitive to noise and outliers and is not well suited for
multi-class tasks [30].

Tree-based algorithms are non-parametric and based on
hierarchical, tree-like structures. Each tree is made up of
nodes that represent decisions based on feature values. The
branches represent possible outcomes or decisions. They are
well-suited for non-linear relationships between features and
can partition the feature space in more complex ways than
linear models. Tree-based machine learning models include
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Random Forest (RF), Gradient Boosting, and Extreme Gradient
Boosting (XGBoost) algorithms [31][32][33].

RF models can leverage many decision trees to map the
involvement of multiple interacting features to identify more
subtle discrepancies between expected and delivered values. It
can detect complex relationships within the treatment data that
would not be as apparent with simpler methods such as SVM.
Due to the ensemble nature of the algorithm, RFs are difficult
to interpret and feature importance scores are only rough
approximations. They can show bias toward categorical features
with many levels. RFs also require a lot of optimizations for
hyperparameter tuning [31].

Gradient Boosting uses decision trees as its base and adjusts
instance weights with each iteration by fitting new predictors
to errors in the preceding iteration. Individual decision trees
are differentiated by a different subset of features to select
the best split. Each new tree accounts for the errors of the
preceding ones. This approach can be slow to train and is
prone to overfitting [32]. XGBoost builds upon the gradient
boosting algorithm by including L1 (Lasso) and L2 (Ridge)
regularization to prevent overfitting [34][35]. It also grows trees
with a depth-first approach and can train trees in parallel, which
increases the speed of training. Although these two models
are less prone to overfitting than RF, they do still pose some
risk of overfitting. They also exhibit hyperparameter sensitivity
and require careful tuning, especially for large datasets. Like
other tree-based models, they both struggle with extrapolation
beyond the training dataset [33].

ANNs are based on the McCulloch-Pitts artificial neuron
model. The model represents a neuron as a binary threshold
unit andinputs are assigned weights before being summed,
and compared against a specific threshold to determine the
neuron’s output. This effectively enables the representation
of logical functions [36]. With the advent of backpropagation
and activation functions -such as the Rectified Linear Unit
(ReLU)- Deep Neural Networks (DNNs) further built upon
the ANN model by increasing the number of hidden layers
which enabled more complex patterns and representations to be
modeled [37][38]. Deep learning models such as convolutional
neural networks (CNNs), have more recently been applied
to log file-based PSQA. CNNs are well-suited to image
classification, making them ideal for use with fluence maps
that can be generated by log file data. CNNs apply filters to
detect desired features, reduce spatial dimensions to retain the
most important features, and then perform final classification
or predictions. They circumvent the need for manual feature
selection. They are highly scalable for large datasets and have
improved computational efficiency [39]. CNN’s capabilities
for detecting highly complex and time-dependent errors make
them ideal for log file-based PSQA applications. They can
identify small misalignments in MLC positions, irregular dose
rate fluctuations, as well as other more subtle anomalies that
may be missed by more traditional machine learning models.
To prevent overfitting, large, labeled datasets are required and
can be vulnerable to being misled by small input changes.
CNN’s decision making can be extremely difficult to interpret

[40].

II. EXAMPLES OF RECENT APPLICATIONS

This section will summarize the current machine learning
applications for IMRT/VMAT PSQA within literature, including
both drawbacks and advantages.

A. Recent Models for IMRT/VMAT PSQA

Most current applications for these models in IMRT and
VMAT PSQA can be classified as either parameter prediction
studies or error detection studies (see Table 1). Most parameter
prediction studies are structured to predict GPR, with error
detection studies predominantly performed on induced error
data input. Either approach appears to struggle with similar
limitations.

B. Drawbacks and Limitations

Tomori et al.[41], Lam et al.[43], Ono et al.[44], Huang et
al.[45], Wang et al.[46], and Song et al.[47] used the parameter
prediction approach. Using a prediction approach, all studies
indicated that machine learning models could be effectively
trained using log files to predict machine parameters at the time
of treatment delivery for new treatment plans. These studies
vary in the models explored, including SVM, RF, CNNs, and
others. All models have relatively promising accuracy as seen
in Table 1. However, Tomori et al.’s scope was limited to
prostate IMRT plans, Huang et al. was limited to chest IMRT
plans, and Song et al. was similarly limited to nasopharyngeal
carcinoma and only used static gantry IMRT plans. Lam et
al. included plans for multiple anatomical sites but were still
specific to IMRT. Ono et al. and Wang et al. were specific
to VMAT plans. Ono et al. and Lam et al. both performed
their studies on multiple linear accelerators, but only Lam et
al. used data from more than one institution. All six studies
acknowledge that by using trajectory files, which are dependent
on the linear accelerator itself, there is some vulnerability to
machine-based error. As such, most log file-based PSQA is
considered an enhancement to other QA measures that ensure
the machine is calibrated appropriately, either with separate
protocols or by incorporating additional sources of data into
future models.

Error detection studies such as those by Kimura et al.[48],
Sakai et al.[49], and Nyflot et al.[50] were similarly limited
to one treatment plan type from a single institution. The only
study that incorporated both VMAT and IMRT plans into a
single study was an error detection study by Chuang et al.
However, the study was only focused on MLC errors.

C. Positive Developments

These preliminary studies have gleaned significant insights
into creating a holistic model for automating PSQA using log
file data with a clear improvement upon methods over time.
Lam et al. trained their model for predicting dosimetric effects
in lieu of GPR to overcome any discrepancies between gamma
index and errors that are clinically relevant [43]. Kimura et al.
directly compared gamma map-based CNN models with dose
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difference map-based CNN models and found dose difference
maps were more accurate [48]. Sakai et al. included radiomic
data which resulted in higher sensitivity and specificity for
MLC position and MLC modeling errors [49]. Hirashima et
al. utilized a combination of 3D dosiomic features and plan
complexity in a tree-based model [52]. Tomori et al.’s GPR
prediction-based CNN model struggled with overestimating
low GPR values and underestimating GPR in the test set
[41][42]. Song et al. developed a novel model that weighed
the MSE loss function to mitigate this class imbalance with
promising results [47]. However, as all these studies have been
limited to relatively small, single, or double institution datasets,
their results are difficult to directly compare to one another.
Additionally, most of the literature has been performed using
Varian machines [21]. Although Varian machines are widely
used in the US, Elekta machines are also used.

III. DISCUSSION

Literature has broadly indicated that CNNs and other Deep
Learning models appear to be the most successful at creating
a model that is robust against certain biases seen in SVM
and tree-based algorithms [53]. Although some studies have
utilized data augmentation, most studies have agreed that to
bring these findings to a clinically relevant standpoint, sufficient
data must be collected from multiple institutions, techniques,
treatment machines, and anatomical sites [54][55]. Additionally,
encompassing both Varian and Elekta machines is essential to
ensure this PSQA strategy is accurate on both platforms [56].

Furthermore, past work has predominantly focused on
deterministic methods, which are ideal for providing direct,
quantitative evaluations of dose delivery accuracy. While these
are incredibly important in the overall application of the model,
there are many aspects of treatment that carry uncertainty. Error
tolerance, dose assessments, and multi-criteria evaluations are
all subject to imprecision. Cilla et al. approached these aspects
by using a "traffic light" protocol [57]. The protocol leveraged
plan complexity to designate plans as acceptable (green light),
requires further verifcation (orange light), or unacceptable
(red light). Fuzzy logic follows similar reasoning and has
been successfully applied to radiation control systems and
treatment plan optimization [58][59]. Fuzzy logic uses fuzzy
sets and linguistic variables to model uncertain or imprecise
information. Desired variables can be assigned degrees of
truth rather than a yes/no value. When applied to complex
systems, this mathematical system eliminates the restriction of
binary values to create more human-like decision making. The
Fuzzy-CID3 (F-CID3) algorithm is a tree-based, hybrid method
that combines neural networks and fuzzy sets, generating its
own topology. Using a neural fuzzy number tree with a class
separation method, the F-CID3 algorithm simplifies architecture
compared to precesssors, achieving better performance with
fewer connections [60].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Recent work has proposed log file-based PSQA as a
promising solution to the limitations of traditional phantom-

based QA methods by leveraging Machine Learning algorithms
to predict IMRT/VMAT QA outcomes and detect errors [6].
These algorithms, including SVMs, tree-based models, and
CNNs, have demonstrated substantial progress in using log
files for treatment plan verification.

While studies show the potential of log file-based PSQA,
they also highlight key limitations. These include the inability
to detect mechanical miscalibration or treatment planning errors,
and the restricted scope of available data [45][47][61]. Mechan-
ical errors can be mitigated through enhanced QA protocols for
linacs and the incorporation of more sensitive machine tools.
Moreover, issues such as insufficient training data for cancer
site stratification and the lack of multi-institutional studies with
diverse machine types remain significant barriers to widespread
implementation [47][57][61][62][63].

Given the time-consuming nature of current PSQA protocols,
log file-based PSQA, combined with AI model predictions,
offers an efficient alternative. Future studies should focus
on creating larger, multi-institutional datasets and exploring
features within machine learning models that identify key
factors in treatment failure. As machine learning and deep
learning models evolve, their integration into clinical practice
could lead to more efficient, accurate, and real-time quality
assurance for radiation therapy.
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TABLE I. SUMMARY OF RECENT STUDIES USING MACHINE LEARNING MODELS FOR IMRT/VMAT PSQA. (AUC= AREA UNDER THE CURVE, MAE=
MEAN ABSOLUTE ERROR, RMSE= ROOT MEAN SQUARE ERROR, SR= SPEARMAN’S RANK CORRELATION COEFFICIENT)

Author/Year Plan Type Dataset Size Anatomic Sites Algorithm QA Outcome Feature
Count

Key Results

Carlson et al. 2016 [64] VMAT 74 plans (3,161,280 data points) Multiple RF Error detection 6 RMSE= 0.193mm (linear regression)
Tomori et al. 2018 [41] IMRT 60 plans Prostate CNN Parameter prediction N/A Errors within 1.10% at 3%/3mm criteria
Interian et al. 2018 [54] IMRT 498 plans Multiple CNN Parameter prediction N/A MAE= 0.70% at 3%/3mm criteria
Lam et al. 2019 [43] IMRT 1497 beams Multiple Tree-based Parameter prediction 31 Errors within 3% for 98% of predictions

at 2%/2mm criteria
Ono et al. 2019 [44] VMAT 600 plans Multiple Regression

Tree, ANN,
Other

Parameter prediction 28 Mean prediction error= -0.2% at
3%/3mm criteria (ANN)

Granville et al. 2019
[65]

VMAT 1,620 beams Multiple SVM Error detection 60 AUC=0.88 (macro-averaged)

Nyflot et al. 2019 [50] IMRT 186 beams (558 images) Multiple SVM,
Decision
Tree, Other

Error detection 145 Accuracy= 64.3% for SVM

Ma et al. 2020 [66] IMRT 180 beams (1,620 images) Multiple SVM, RF,
Other

Error detection 276 AUC=0.86 for linear SVM

Osman et al. 2020 [18] IMRT 10 plans (360,800 datapoints) Multiple ANN Error detection 14 RMSE=0.0096mm
Wall and Fontenot 2020
[67]

VMAT 500 plans Multiple SVM, Tree-
Based, ANN

Parameter prediction 241 MAE=3.75% at 3%/3mm criteria
(SVM)

Hirashima et al. 2020
[52]

VMAT 1,255 plans Multiple Tree-based Parameter prediction 875 MAE=4.2% and AUC=0.83 at 2%/2mm
criteria

Wang et al. 2020 [46] VMAT 276 Plans Multiple ANN Parameter prediction N/A Absolute prediction error=1.76% at
3%/3mm criteria

Kimura et al. 2020 [48] VMAT 161 Beams Prostate CNN Error detection 54 Accuracy=0.94
Tomori et al. 2020 [42] VMAT 147 plans Multiple CNN Parameter prediction N/A MAE=0.63% at 3%/3mm criteria
Sakai et al. 2021 [49] IMRT 38 beams (152 error plans) Multiple SVM, Tree-

based, Other
Error detection 837 AUC=1.00 for leaf transmission factor

error, 1.0 for dosimetric leaf gap error,
0.80 for leaf positional error vs. error
free (SVM)

Chuang et al. 2021 [51] IMRT/VMAT 267 IMRT and VMAT plans
(10,584,120 data points)

Multiple Tree-based,
Other

Error detection 7 RMSE=0.0085 mm (Boosted Tree
Model)

Huang et al. 2022 [45] IMRT 112 plans Chest CNN Parameter prediction 4 MAE and RMSE decreased with stricter
gamma criteria, while SR and R2 in-
creased as gamma criteria were made
stricter (3%/3mm, 3%/2mm, 2%/3mm,
and 2%/2mm)

Cilla et al. 2022 [57] VMAT 651 plans/1,302 arcs Multiple SVM, Other Parameter prediction 3 Precision of 93.1 for gamma % and
92.7% for gamma mean for the testing
dataset at 2%/2mm (SVM)

Lew et al. 2022 [68] VMAT 578 log files Multiple RF, SVM,
Other

Parameter prediction 13 Average error of less than 2% with
1%/1mm criteria.

Song et al. 2024 [47] IMRT 204 plans/2,348 fields Nasopharyngeal
Carcinoma

CNN Parameter prediction 1-8 AUC= 0.92 with 0.77 sensitivity and
0.89 specificity
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Abstract—Online health communities are an untapped domain
of unlimited data on patient sentiment towards drugs and
medical devices that can provide academia and industry an inside
scope of in demand research according to patient responses.
These communities are often found on social media platforms,
such as Facebook and Reddit, where patients who have similar
medical histories connect to share their experiences, advice, and
support for each other. This review explores how data mining
methods, specifically machine learning and Natural Language
Processing (NLP), can be applied to analyze large data sets
derived from user-generated responses on social media and
health databases. Methods discussed include sentiment analysis,
clustering algorithms, and text classification models as effective
tools to generate new knowledge on patterns within online health
discussions. The paper also highlights potential applications
of data mining to improve pharmaceutical research, enhance
drug monitoring, and identify adverse events in terms of post-
market surveillance for regulatory bodies like the U.S Food and
Drug Administration (FDA). Lastly, challenges related to data
transformation, cleaning, and privacy concerns are addressed
along with proposed augmentations to improve data quality.

Keywords-data mining; online health communities; Patient Sen-
timent; Sentiment Analysis; Healthcare Data Transformation.

I. INTRODUCTION

In the age of social media, online communities have become
a haven where patients facing health challenges can exchange
insights and share common experiences. Online health com-
munities are formed on social media platforms including
Facebook groups and subreddits on Reddit, where patients and
caregivers come together to share their experiences, advice,
and support for others within their communities. Patient-
driven platforms including Patientslikeme, Health Union, and
Healthboards are networks specifically formulated for user ca-
maraderie in the healthcare setting, unlike those support groups
naturally formed on other social medias. These platforms
and online health communities empower patients to act as
healthcare consultants, in the form of reviewing drugs, devices,
surgeries, and specific healthcare providers [1]. Consequently,
these communities generate an abundance of self-reported data
on patient sentiment, which provides valuable insight into
patient satisfaction connected to health services.

Data mining combines machine learning, algorithms, statis-
tical analysis, artificial intelligence, and database management
systems [2]. Once a database of interest is defined, the data
is transformed to complement the model that is created. The
model is then tested, evaluated, and interpreted to generate
new knowledge through the generation of a custom report.
Data mining enables the user to analyze data across different

dimensions that recapitulate useful information that can inspire
new ideas.

Data mining techniques can serve as potential tools to
extract previously hidden information and patterns from on-
line communities. A machine learning approach that most
effectively scans, processes, and summarizes social media
data would be NLP, which includes text classification (e.g.,
Support Vector Machines (SVM) and naïve Bayes classifier),
sentiment analysis, clustering algorithms (e.g., Self-Organizing
Map (SOM)), and supervised learning algorithm (e.g., decision
tree).

The results generated by mining of large patient-derived
datasets could inform the pharmaceutical industry about in
demand medical interventions according to patient needs.
Consequently, research outputs could positively impact current
pre-clinical and clinical trials to streamline desired research
according to patient sentiment and break the barrier between
the bedside and benchtop.

This review article highlights various data mining tech-
niques that could be utilized to collect and transform data from
online health communities. Section I introduces the concepts
of online health communities and data mining. Section II
proposes different data mining methods that could help reduce
the complexity of data obtained from these communities,
including sentiment analysis, SOM, SVM, and the naïve Bayes
classifier. Section III explores how data collected from such
studies could be applied by the U.S. Food and Drug Adminis-
tration (FDA) to identify adverse drug reactions and improve
efficiency in drug production, such as vaccine development.
Section IV addresses challenges related to data transformation
and cleaning, proposing augmentations like web scraping and
the Levenshtein distance method to address issues associated
with data collection from online forums. Finally, Section
V concludes the article, emphasizing the underutilization of
data generated by online health communities and its potential
to positively influence academic and institutional medical
research.

II. PROPOSED METHODS AND TECHNIQUES

As patients increasingly turn to online communities and
health platforms for reviews, advice, and solidarity, the devel-
opment of mining techniques to analyze this user-generated
data has become more essential. Alnashwan et al. described
three data-driven approaches to elucidate patient sentiment
within these online forums: sentiment analysis, content anal-
ysis, and topic analysis. Sentiment analysis is a broad field of
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study with the goal of identifying and characterizing the emo-
tional tone of a body of text [3]. Sentiment analysis is widely
used in the context of understanding patient values, attitudes,
and preferences towards medical providers, prescriptions and
treatments, and adverse effects. It serves as a classification
model within supervised machine learning, where predictions
are made and validated through associated characteristics.
Classic sentiment analysis groups mined posts based on three
categories: positive, negative, and neutral. Some studies in
current literature also calculated the degree of emotion using a
numerical scale, e.g., -5 to +5, based on keywords within the
text. Alnashwan et al. hypothesized that classifying medical
posts on a binary (positive/negative) or polarity (degree of
sentiment) based scale would not be sufficient to encompass
the broad and complex nature of online health-related text
[3]. As such, the authors suggest a bottom-up categorization
approach, in which posts are manually mined for specific
sentiment-based keywords and subsequently grouped into seed
categories. The multitude of seed categories is then further
filtered into six core categories based on the predominating
sentiment, examples including treatment inquiry, symptom
confusion, and seeking general information. Once categorized,
different techniques of data mining under the umbrella of sen-
timent analysis can be employed. Such techniques include the
use of machine learning and lexicon-based text classification
systems.

One of many examples of machine learning techniques
includes the use of Microsoft’s Azure Machine Learning
software, which serves as a resource for data scientists and
machine learning engineers to generate programs such as NLP
using artificial intelligence. These tools are developed through
machine learning in which the user builds algorithms that
allow the computer to continually learn based on predictive
models [4]. Such models including NLP where the computer
becomes able to interpret and categorize informal text are
crucial for data mining of patient sentiment in online health
communities.

This broad concept of NLP and sentiment analysis includes
the use of lexicon-based text classification systems: content
analysis and topic analysis. Content analysis is a research
method used to extract meaningful content within a large body
or dataset of text by analyzing and grouping relationships of
high frequency words, phrases, or themes [4]. In conjunction
with content analysis, this NLP technique can also employ
topic analysis, which aims to identify overarching topics
within a body of text based on a probabilistic model [4].

Simultaneously, Jawad et al. proposed two techniques for
text classification that can be used together to identify patterns
in patient sentiment from social media in an article for the
Proceedings of the 2017 Future Technologies Conference [5].
A SOM categorizes input vectors based on a wordlist into
a neural network, hence creating clusters based off words
defined as positive and negative. This model would utilize
the Term-Frequency-Inverse Document Frequency (TF-IDF)
to vectorize text files by assigning text with a numerical
statistic that would interpret the frequency of a word in a

document relative to the whole document. TF reflects the
frequency of a given word and IDF reflects the rarity of
a word. The implementation of this model would output
results that categorize responses in terms of a positive or
negative sentiment, which would be useful to pharmaceutical
companies to gain knowledge on patient assessment of their
products.

Alternatively, techniques used in data mining from mobile
health apps would be translational to mining for online health
communities. Fallah et al. compiled a systemic review on the
common data mining methods correlated with health apps.
They found that the top three successful methods with the
highest level of accuracy were cloud-based SVM, decision
tree, and naïve Bayesian [2]. After data has been vectorized,
the SVM classifies the data on a binary scale and generates a
separating hyperplane line that separates the two groups. This
method would best be used for a yes/no research question
(e.g., is the response to a product positive or negative?).
The decision tree mimics a tree, with population classified
in branches that construct a tree with roots, internal nodes,
and leaf nodes. Nodes reflect choices made in a decision that
splits into a branch that represents the outcome of the decision.
Data is split into parent nodes and child nodes, to decide the
category of the text file. It is commonly used for creating
classifications based on a prediction algorithm. Meanwhile,
the naïve Bayes classifier vectorizes the text files into multi-
dimensional numerical probability values that are used as input
for the SOM, SVM, or decision tree for the final classification
step. Probability values are based on the probability of a text
that contains pre-defined words is equal to the probability of
finding these pre-defined words in a category [6].

Through data mining methods, the complexity and breadth
of public online data are reduced to expose undiscovered
patterns in common patient sentiment and reveal previously
unreported ailments. Researchers must design their model
according to how their question would categorize their data.
For example, SVM is most appropriate for binary classifica-
tion, while SOM is best for multiple categories and would
complement a study to discover the adverse effects of a
product from patient reviews.

III. APPLICATIONS

The applications of data mining in the healthcare setting
are robust, allowing for the harnessing of vast amounts of
relevant online medical data. One application of data mining in
healthcare includes the identification of adverse drug reactions.
Some relevant adverse reactions are not apparent until after
clinical trial testing and approval by the FDA, as factors which
may cause these adverse reactions are often difficult to account
for in the clinical trial period. After approval by the FDA,
important factors that may cause adverse reactions include
long-term use, co-exposures to other drugs, environmental
and dietary variances, as well as genetic differences that
may not have been probable to account for during clinical
trials [7].As such, databases such as the FDA Adverse Event
Reporting System (FAERS) give critical insights into relevant
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drug reactions. As outlined in the most recent FDA White
Paper on Data Mining from 2018, several techniques are
applied to FAERS safety reports to explicate possible adverse
events [8]. Disproportionality methods are used to identify
statistically significant associations between medications and
events. One such method includes the use of the Proportional
Reporting Ratio (PRR) in which the degree of reporting of an
adverse event for a particular drug is compared to the same
event occurrence amongst all reports of all drugs within the
FAERS database [8]. Thus, this robust data serves as a baseline
for the occurrence of any event, allowing for associations to be
made based on disproportionate reporting. Statistical methods
beyond this data mining technique are then employed to
further validate causative rather than correlative relationships
[8].

Another clinically relevant database used by researchers
and data miners alike to extrapolate patient-derived data in-
cludes the FDA’s Vaccine Adverse Event Reporting System
(VAERS). Data mining for patient sentiment in the context of
vaccine efficacy and reactogenicity has become increasingly
relevant following the COVID-19 pandemic. As described by
Dror et al., vaccination compliance relies on a personal risk-
benefit perception which can be skewed by misinformation
and perceived side effects that may not align with scientific
evidence [9]. Data mining and subsequent analysis of such
reports proves as an effective tool for minimizing misinfor-
mation regarding vaccine reactogenicity, potentially enhancing
vaccine uptake [10]. Data mining of VAERS reports provides
a powerful dataset for understanding public sentiment related
to vaccines, with direct relevancy to vaccine uptake.

IV. CHALLENGES AND PROPOSED AUGMENTATIONS

Generating knowledge from a larger data set is generally
a challenging and time-consuming task. This is especially so
when the data in social media communities contains about
two decades of responses, including spelling errors and ab-
breviations that would make creating a word list an ambitious
effort. Transforming and cleaning this unorganized data would
take an extended amount of time as these proposed models are
best suited for survey responses. To minimize this task, web
scraping can be used to extract data from unstructured web
browsers into structured data that can be used for analysis.
Web scraping is the process of data transformation through
computer software, that mimics human behaviors of web
exploration to compile data more efficiently than by hand
[11]. Meanwhile, there is still the struggle to correct spelling
errors and abbreviations, which may be resolved by utilizing
Levenshtein distance to identify errors by comparison against
a dictionary.

Patient sentiment may vary according to several demo-
graphic and clinical characteristics, particularly the social
determinants of health—non-medical factors like race, eth-
nicity, religion, and socioeconomic status—that significantly
influence a person’s health [12]. As previously mentioned, data
mining can be used to extract previously unknown information
hidden within a data set. Thus, data mining has the power to

segment data according to the social determinants of health
and could uncover the diversity in patient sentiment according
to factors defined by the social determinants of health. How-
ever, extracting such personal data would be challenging and
might require social media profile information. To address this,
researchers could create tools to categorize responses accord-
ing to these factors before applying data mining techniques.
Web scraping software could also aid in this task.

Studies that result from this work would have to address
ethical concerns of informed consent, since consent cannot be
obtained from all social media platform users. Even though
studies will be compiled of public data from online forums,
the collection of data must be aligned with data privacy
laws, which protects users from the collection of their names
to comply with confidentiality and anonymity. Before the
conduction of a study on data mining from online health
communities, researchers must ensure compliance with federal
and institutional laws and policies along with the privacy
policies of the social media platform of interest.

V. CONCLUSION AND FUTURE WORK

The goal of this review article is to summarize how data
mining can be a useful tool to collect information from online
health communities. With the power of data mining, valuable
results can be obtained to steer the current pharmaceutical
field in the direction of patient-centered research to drive
drug and device development toward medical interventions
desired by the patient. These methods are currently involved in
mining databases, like FAERS and VAERS, for information on
adverse drug related events and vaccine uptake. Therefore, the
suggested tools are relevant and applicable to be translated to
online health communities. Potential techniques were proposed
along with the challenges that will be faced and suggested
augmentations that will require future work. Further research
would include the implementation of these methods and tech-
niques to generate a report from health data obtained from
online communities. As a result of these endeavors, upcoming
biomedical research would be fueled by patient-centered data.
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Abstract—Suicide remains a critical global health issue, with 
over 700,000 lives lost annually. Existing research has explored 
factors influencing suicidal thoughts, but traditional studies 
often rely on small-scale data sources that may overlook 
contextual influences. This study aims to address that gap by 
analyzing a large dataset of posts from Reddit communities 
r/SuicideWatch and r/Teenagers to detect suicidal ideation and 
identify associated themes. Using Natural Language Processing 
and statistical methodologies, including Llama 3-8b and 
Mistral-7b, we fine-tuned models with manually labeled data 
to improve classification accuracy of posts for suicidal ideation. 
Using data re-labeled by the large language models, BERTopic 
identified key themes linked to suicidal ideation: relationship 
struggles, academic stress, and family trauma. While non-
suicidal posts also included social and academic concerns, the 
topics were centered around more immediate stressors rather 
than the long-term emotional distress issues seen in the suicidal 
group. These findings highlight the potential of NLP 
methodologies in analyzing large-scale social media data, 
offering valuable insights for informing new prevention 
strategies. Additionally, social media, in combination with 
NLP, serves as a valuable outlet for capturing genuine 
emotional struggles, enabling more timely and personalized 
mental health support compared to traditional approaches like 
counseling. 

Keywords-Suicide; The Llama 3-8b; Mistral-7b; GPT-4o; 
Reddit; BERTopic Modeling; contributing factors. 

I. INTRODUCTION 

Each year, 726,000 people around the world lose their 
lives to suicide, with many more attempting it daily [1]. 
Youth are particularly vulnerable, with suicide being the 
second leading cause of death for those in aged 10–14 and 
25–34 years and the third leading cause for individuals aged 
15–24 years in the U.S. in 2022 [2][3]. However, beyond 
impacting the conflicted individuals, suicide also leaves 
lasting effects on these individuals’ families and 
communities. A survey conducted by Cerel et al on 1,736 
adults in Kentucky found that suicide-exposed individuals, 
those personally affected by suicide, were twice as likely as 
unexposed individuals to meet screening criteria, which 
assess mental health symptoms, for depression and nearly 
twice as likely for anxiety [4]. Additionally, suicide is driven 
by various social, cultural, biological, psychological, and 
environmental factors that span a lifetime. By examining 

child suicide cases from the National Violent Death 
Reporting System, Ruch et al identified four key themes: 
mental health and suicide concerns (31.4%), traumatic 
experiences (27.1%), family challenges (39.8%), and school 
or peer difficulties (35.6%) [5]. Building on this, Turecki et 
al emphasized the interplay of genetics, personality traits, 
psychiatric illnesses, and environmental influences in suicide 
risk [6].  

Although these studies offer important insights, 
conventional tools such as questionnaires and surveys 
present challenges in thoroughly uncover and examine the 
complexities of suicidal factors. Due to limitations like 
structured response formats, inherent biases, and the absence 
of dynamic, real-time data, these methods frequently fall 
short in capturing the nuanced feelings and experiences of 
individuals with suicidal ideation [7]. Furthermore, research 
based on suicide reporting databases often focus on deaths 
by suicide, excluding data on non-fatal suicide attempts or 
suicidal ideation, which are critical for understanding the full 
spectrum of suicidal behavior. However, studies have 
demonstrated that non-fatal suicide attempts are significant 
predictors of future suicide risk, with research by Turecki et 
al indicating that past suicide attempts increase the likelihood 
of subsequent suicidal behavior [6]. In other words, these 
data sources often lack the depth and scope needed to fully 
understand the range of suicidal behaviors, including 
nuanced emotions and non-fatal attempts, which are critical 
for assessing future suicide risks. 

On the other hand, as social media, especially Reddit, 
play a growing role in mental health discussions, they have 
emerged as promising data sources due to its role in fostering 
open discussions. Reddit, with over 97 million daily active 
users [8], features mental health subreddits like 
r/SuicideWatch (512K+ members), where users can share 
feelings and seek help [9]. Its anonymity and diverse 
subcommunities encourage users to discuss sensitive topics 
more openly, making it a unique platform for gathering 
authentic mental health data, as highlighted by Yeskuatov et 
al [10]. This was exemplified during the COVID-19 
pandemic, when Reddit saw spikes in posts about health 
anxiety, economic stress, social isolation, and substance use 
[11][12][13], providing valuable insights into mental health 
trends. These studies underscore the platform's potential in 
providing crisis support and fostering connection during 
challenging times.  
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Building on the potential of innovative data sources like 
Reddit, recent research has also highlighted the importance 
of advanced analytical approaches to better understand and 
predict suicidal behaviors. For instance, Franklin et al.'s 
meta-analysis called for the use of complex Machine 
Learning (ML) models to enhance predictive accuracy in 
identifying suicidal thoughts and behaviors [14]. 
Advancements in ML and Natural Language Processing 
(NLP) offer promising tools for analyzing mental health data 
and identifying patterns related to suicidal behaviors [15], 
facilitating deeper exploration of mental health discussions 
on platforms like Reddit. For instance, Bauer et al utilized 
large language models (LLMs) to analyze Reddit posts, 
revealing patterns of disconnection, hopelessness, and 
trauma in users experiencing suicidality [16]. Expanding on 
these approaches, BERTopic, developed by Grootendorst, 
offers several advantages over traditional clustering 
regression techniques [17]. BERTopic has been used to 
detect signs of depression on Reddit, analyze public 
sentiment towards artificial intelligence (AI) in mental 
health, and track mental health trends during the COVID-19 
pandemic [18][19][20], demonstrating its potential for 
advancing mental health research. 

Traditional research on suicide risk has largely depended 
on standardized survey methods or government datasets, 
which often fall short in representing the emotional 
complexity of individuals struggling with suicidal thoughts. 
These methods tend to focus narrowly on isolated factors, 
overlooking the intricate and interconnected nature of 
suicidal behaviors. In contrast, our study leverages a 
substantial dataset of Reddit posts from r/SuicideWatch and 
r/Teenagers, enabling access to vast, real-time, and unfiltered 
expressions of emotional states. By utilizing advanced 
LLMs, such as Llama 3-8b and Mistral-7b, coupled with 
sophisticated topic modeling techniques, we were able to 
identify nuanced factors associated with suicidal thoughts, 
classify posts as suicidal or non-suicidal with precision, and 
uncover detailed themes within these categories. This 
approach overcomes the limitations of traditional datasets, 
providing a deeper, more comprehensive understanding of 
suicide-related behavior. The use of large language models 
allows us to capture intricate patterns, emotional nuances, 
and contextual insights that are otherwise inaccessible 
through conventional methods. By expanding the scope of 
analysis and enhancing its depth, our findings provide 
actionable, evidence-based strategies to inform suicide 
prevention efforts and foster meaningful advancements in the 
field.  

The main contributions of this paper can be summarized 
as follows:   

1. Demonstrated value of using Natural Language 
Processing methodologies, including fine-tuning 
Llama 3-8b and Mistral-7b, for analyzing social 
media data regarding suicidal ideation, a topic full 
of complex nuances. 

2. The Llama 3-8b model achieved a test accuracy of 
0.9371 for classifying Reddit posts for suicidal 
ideation, demonstrating its ability to capture 
detailed emotional patterns. 

3. Using BERTopic, we revealed key topics in the 
discussions within the classified suicidal and non-
suicidal Reddit posts. 

The rest of this paper is organized as follows. Section II 
provides a thorough description of the data preprocessing 
and analysis methods, detailing the cleaning process, 
classification models, evaluation metrics, and topic modeling 
approaches. Section III presents and discusses the main 
findings. Section IV finishes the paper with the conclusions. 

II. METHODS 

This next section will detail the specific steps taken 
within the study to reach the analysis results obtained. 

A. Data Collection and Preprocessing 

This study utilized a Kaggle dataset compiling posts from 
December 16, 2008, to January 2, 2021, sourced from the 
subreddits r/SuicideWatch and r/Teenagers. The dataset 
uploader, Komati, anonymized the usernames for 
pseudonymity [21]. The data was then preprocessed to 
improve analysis accuracy. We employed the Pandas library 
to streamline analysis by arranging the unprocessed data into 
structured data frames [22]. Regular Expressions (RegEx) 
was applied to remove repetitive filler text, unnecessary 
whitespace (newlines, spaces, tabs), and URLs, while also 
converting all text to lowercase to maintain consistency 
within the data [23]. Similarly, we utilized the Unidecode 
library to remove accented characters [24]. In addition, 
contractions were converted to their complete forms using 
the Contractions library [25] while lemmatization, the 
process of transforming words to their base forms, was 
applied using the NLTK library [26].  

In the original dataset, posts were categorized as 
“suicide” or “non-suicide” based on the subreddit they 
originated from [21]. However, there were inaccuracies with 
this labeling, so we re-classified the posts to improve the 
accuracy of the labels using large LLMs. We first manually 
labeled approximately 900 posts as “suicidal” or “non-
suicidal” according to the definition of “suicidal ideation” 
from the Diagnostic and Statistical Manual of Mental 
Disorders [27]. Afterwards, the hand-labeled data was 
divided into three partitions: 80% of the data for training, 
10% of validation, and 10% for testing. Two LLMs, Llama 
3-8b and Mistral 7-b, were trained on this data, and the more 
accurate model was selected to re-label the full dataset. 

B. Detection and Classification Models 

Llama 3-8B is an advanced LLM developed by Meta and 
was released in April of 2024. Consisting of 8 billion 
parameters, it can interpret and classify textual data 
effectively. It was pretrained on 15 trillion tokens of publicly 
available data, with the data having gone through Llama 2 
models and advanced data-filtering pipelines to ensure their 
high quality [28]. Additionally, with methods such as 
supervised fine-tuning (SFT) and reinforcement learning 
with human feedback (RLHF), Meta was able to ensure the 
model provides accurate responses while prioritizing safety 
[29]. Because of the extensive pretraining, Llama 3-8B is 
well-suited for identifying complex patterns and nuanced 
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meanings in textual data, making it an ideal tool for 
classifying Reddit posts. 

Released in October of 2023, Mistral 7B is an advanced 
LLM that was developed by Mistral AI [30]. The model 
contains 7.3 billion parameters and is designed for both 
speed and precision for Natural Language Processing (NLP) 
tasks. The model incorporates innovative mechanisms such 
as Grouped-Query Attention (GQA) and Sliding Window 
Attention (SWA). GQA is an optimization technique that 
reduces computational complexity and enhances the 
efficiency of predictions [31]. Meanwhile, SWA enables the 
model to process longer text inputs at a manageable 
computational cost. Demonstrated in Figure 1, it achieves 
this by employing a sliding window that restricts the model’s 
focus to a small segment of the input at a time. By 
processing many of these windows individually and sliding 
them across the input sequence, the model can utilize its 
multiple transformer blocks to identify indirect relationships 
between tokens across these segments. This approach 
ensures it can effectively comprehend the contexts of long 
inputs while maintaining computational efficiency [30]. With 
these methods, Mistral 7B is well-suited for classifying the 
Reddit posts as features such as the SWA make it ideal for 
capturing nuanced patterns often present in lengthy posts. 

 

Figure 1.  Sample Demonstration of SWA [30]. 

The Llama 3-8b and Mistral-7b models were each trained 
on manually labeled posts for three epochs with a learning 
rate of 0.0002.  To assess the effectiveness of the final 
model, we employed standard evaluation metrics, including 
accuracy, precision, recall, and F-1 scores. These metrics are 
defined using four key terms that are defined below. 

 True Positive (TP): Model correctly identifies a 
suicidal post as suicidal.  

 True Negative (TN): Model correctly identifies a 
non-suicidal post as non-suicidal. 

 False Positive (FP): Model incorrectly identifies a 
non-suicidal post as suicidal (Type 1 Error). 

 False Negative (FN): Model incorrectly identifies 
a suicidal post as non-suicidal (Type 2 Error). 

Accuracy measures the overall proportion of correct 
predictions with a ratio of all correctly classified posts to the 
total number of posts [32]:  

Accuracy =                 
Precision measures the proportion of predicted positive 

cases that are correct [32] with a ratio of correctly classified 
suicidal posts to all posts predicted as suicidal (including 
both correctly and incorrectly identified suicidal posts): 

        Precision =                                  (2) 

Recall assesses the portion of actual positive cases that 
are identified correctly [32] with a ratio of correctly 
classified suicidal posts to all posts from r/SuicideWatch 
(including both correctly identified suicidal posts and 
incorrectly identified non-suicidal posts): 

Recall =                                   (3) 

In situations where there is a high cost associated with 
false-negative prediction; recall proves to be very useful for 
identifying the best model [33]. Between false positives and 
false negatives, it is most likely less consequential to 
incorrectly predict someone as suicidal than to incorrectly 
predict a suicidal person as non-suicidal. 

F1-Score is the harmonic mean of precision and recall 
[32]. In other words, the F1-Score is an average of the two 
metrics:  

                 F1 = 2 ×                         (4) 

To evaluate the status of the models during the fine-
tuning process, we utilized training loss and validation loss 
scores. After completing the fine-tuning, we selected the 
versions of the Llama 3-8B and Mistral 7B models with the 
lowest losses to test against the test dataset to ensure optimal 
performance. The model with the higher test accuracy was 
then used to classify the rest of data for suicidal ideation. 
Finally, the processed and re-labeled dataset was separated 
into two categories based on the suicide/non-suicide label. 
This step enables targeted analysis focused on addressing the 
research objectives of understanding factors associated with 
suicide, as this allows us to analyze and compare results 
between the two groups. 

C. BERTopic 

To analyze the re-classified data, BERTopic was 
employed for topic modeling to uncover key themes within 
the posts. The model incorporates BERT embeddings, 
improving its capacity to detect subtle patterns and capture 
nuanced sentiments within the dataset [17]. Additionally, by 
utilizing contextual term frequency-inverse document 
frequency (c-TF-IDF), BERTopic ensures precise clustering 
of topics with meaningful and coherent groupings. The 
analysis was applied to each group of classified posts, 
“suicidal” and “non-suicidal”, facilitating a thorough 
comparison of their characteristics and providing deeper 
insights into the themes specific to each group. In addition, 
we included the KeyBERTInspired model [34] to filter out 
stopwords, improving the topics’ precision of the clusters. 
We also incorporated OpenAI’s GPT-4o [35] to generate 
specific and detailed topic labels, enhancing the clarity and 
interpretability of the identified themes. The following 
prompt was used to guide the labeling process: 

I have a topic that contains the following documents: 
[DOCUMENTS]  

The topic is described by the following keywords: 
[KEYWORDS].  

On the basis of the information above, extract a short but 
highly descriptive topic label. Make sure it is in the following 
format: topic: <topic label>. 
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III. RESULTS 

Table I showcases examples of posts before and after 
processing, highlighting the impact of the cleaning process. 
In the cleaned versions, the texts exhibit a more uniform and 
consistent structure while retaining the original sentiments of 
the posts. 

TABLE I.  SAMPLE OF DATA PREPROCESSING 

Class 
Text before and after pre-processing 

Original Post Cleaned Text 

non-
suicide 

Finally 2020 is almost over... So I 
can never hear "2020 has been a 
bad year" ever again. I swear to 
fucking God it's so annoying 

finally 2020 is almost 
over.. so i can never hear 
"2020 has been a bad 
year" ever again. i swear 
to fucking god it is so 
annoying 

non-
suicide 

i need help just help me im crying 
so hard 

i need help just help me i 
am crying so hard 

suicide It ends tonight.I can’t do it 
anymore. \nI quit. 

it end tonight.i can not 
do it anymore. i quit. 

suicide Been arrested - feeling suicidal Edit been arrested - feeling 
suicidal edit 

A. Model Performance 

Model performance for Llama 3-8B and Mistral-7B 
model can be seen in Table II below. With slightly a slightly 
higher accuracy, recall, and F1 score, the Llama 3-8B model 
outperformed the Mistral-7B against the test dataset, so the 
Llama 3-8B model was selected to re-label the remaining 
data. Afterwards, the model re-labeled 96,086 posts as 
“suicidal” and 135,988 posts as “non-suicidal”. 

TABLE II.  MODEL PERFORMANCE COMPARISON   

Model 
Test Performance 

Accuracy Recall Precision F1 Score 

Llama 3-8b   0.9371 0.9371 1.000 0.9676 

Mistral-7b 0.9314 0.9314 1.000 0.9645 

B.   Key Topics Identified by BERTopic 

To address the goal of uncovering themes linked to 
suicidal thoughts, this study employed BERTopic to analyze 
both suicidal and non-suicidal posts. For analysis, we 
concentrated on specific topics of concerns to align with the 
study’s aim of investigating the underlying factors associated 
with suicidal thoughts.  

By focusing on these themes, the analysis maintains a 
strong commitment to the research objectives. Table III 
highlights the top 10 topics of concern identified for the 
suicidal group while Table IV displays the top 10 topics of 
concern for the non-suicidal group. 

Expanding on the top 10 topics identified by BERTopic 
in Table III, three critical themes emerged related to sources 
of mental instability across various life stages: relationship 
struggles affecting adults’ emotional health, academic stress 
impacting students’ self-esteem, and family trauma 
influencing childhood development. The most common 
theme in the suicidal group was centered around struggles 
and emotional turmoil from relationships (3,285 posts), 
suggesting that difficulties in maintaining or coping with 

personal relationships may contribute to feelings of 
hopelessness often associated with suicidal ideation. The 
emotional attachment and dependence involved in romantic 
relationships can lead to profound loneliness or a loss of self-
identity when disrupted, prompting some to contemplate 
suicide. Afterwards, academic pressures emerged as the 
second most common topic (1,791 posts), illustrating how 
the fear of failure can contribute to feelings of anxiety and 
hopelessness, especially among students. This finding may 
reflect the increased academic demands and societal 
expectations placed on students, which can result in feelings 
of inadequacy. Another prominent theme, the childhood and 
family trauma topic (1,421 posts) underlines the lasting 
impacts of early life experiences on mental health. Such 
traumas can contribute to complex emotional issues and 
unresolved feelings that may intensify over time, particularly 
as individuals face adulthood. When compounded by 
present-day struggles, these lingering effects can potentially 
trigger suicidal thoughts.  

TABLE III.  TOP 10 TOPICS IN SUICIDAL POSTS 

Rank 
Topics 

Suicide Topic (n=39742) Count 

1 
Experiencing emotional struggles and breakups 
in relationships 

3285 

2 
Struggles with academic failure and mental 
health 

1791 

3 Childhood and family trauma 1421 

4 Emotional dilemmas with suicide 1273 

5 Suicidal intent with overdosing on pills 878 

6 Struggles with loneliness and low self-esteem 856 

7 Suicidal farewell messages 787 

8 Self-harm and suicidal ideation 538 

9 Depressed birthdays and suicidal thoughts 392 

10 Suicidal intents with firearms 347 

Moreover, themes such as “Emotional Dilemmas with 
Suicide” (1,273 posts) and “Suicidal Intent with Overdosing 
on Pills” (878 posts) reveal that some users are not only 
coping with underlying struggles but are also directly 
confronting the act of suicide itself. These users express deep 
internal conflicts about their thoughts or contemplate specific 
methods, reflecting the internal turmoil between the desire to 
escape emotional pain and the emotional, moral, or religious 
beliefs that deter them from acting on suicidal impulses. 

Additionally, the topics of loneliness and low self-esteem 
(856 posts) and self-harm (538 posts) suggest that personal 
insecurities, such as feelings of isolation and worthlessness, 
may exacerbate mental health struggles and contribute to 
suicidal ideation. These themes may point to specific 
psychological patterns that may serve as focal points for 
early intervention and tailored support strategies, as feelings 
of worthlessness can contribute to fragile mental states, 
while self-harm behaviors can escalate into the risk of 
suicidal thoughts. Moreover, the “Suicidal Farewell 
Messages” topic (787 posts) and the “Suicidal Intents with 
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Firearms” topic (347 posts) highlight further expressions of 
extreme distress experienced by some individuals. Given the 
lethality of firearms and the commitment reflected in 
discussions of suicide notes, these topics may suggest 
progression from ideation to preparation, revealing the 
importance of identifying these specific signals to prevent 
further progression through timely intervention. 

TABLE IV.  TOP 10 TOPICS IN NON-SUICIDAL POSTS 

Rank 
Topics 

Non-suicide Topic (n=63885) Count 

1 
Exploring and managing dynamics in romantic 
relationships 

6711 

2 Concerns with boredom and loneliness 3286 

3 Academic struggles for college students 1813 

4 Struggles with parents and family dynamics 1121 

5 Sexual frustrations 611 

6 Challenges in socializing for introverts 536 

7 
Challenges with sleeping and persistent 
insomnia 

440 

8 
Issues related to racism and discriminatory 
language 

431 

9 Concerns with alcohol consumption 407 

10 Struggles of transgender identity 393 

 
By comparison, while non-suicidal posts in Table IV 

reflect significant challenges, they do not indicate immediate 
crises but reflect more general concerns of teenagers and 
young adults. Comparing these two sets of topics reveals 
some thematic overlaps, including topics regarding romantic 
relationship struggles, academic pressures, and family 
dynamics, which are experienced and expressed in distinct 
ways by each group. In the suicidal posts, these themes are 
often associated with feelings of hopelessness, personal 
failure, or a desire to escape, whereas, in non-suicidal posts, 
the same issues appear to provoke irritation, uncertainty, or a 
desire for improvement. For instance, the topic regarding 
relationship struggles for suicidal posts is more centered 
toward long-term emotional distress, whereas the 
corresponding topic for non-suicidal posts reflects a focus on 
exploring emotional dynamics and personal growth within 
relationships. Similarly, the academic topic in the non-
suicidal group is geared more towards daily struggles, 
whereas the topic for the suicidal group reveals deeper 
feelings of perceived failure accompanied by intense self-
criticism. 

Broader social and personal concerns such as discussions 
about racism and transgender identities highlight personal 
challenges in managing mental and emotional well-being, 
while topics such as boredom and loneliness demonstrate 
feelings of disconnection and a lack of purpose. While these 
topics do not explicitly indicate suicidal ideation, they may 
represent underlying problems that could escalate into more 
severe issues more, such as low self-esteem, which are more 
commonly observed in suicidal posts. In contrast, themes 
regarding farewell messages and detailed suicide planning 

point to a deeper level of emotional distress, reflecting a 
serious stage of suicidal intent.  

This comparison indicates the importance of 
understanding context and intensity within mental health 
discussions. Interventions for suicidal individuals should 
prioritize crisis management and emotional support tailored 
to severe psychological distress. For non-suicidal 
individuals, interventions might instead focus on counseling, 
life skills training, and support networks that help them 
manage common stressors before they become more severe. 

IV. CONCLUSIONS 

This study demonstrates the effectiveness of advanced 
NLP and statistical techniques in identifying and analyzing 
suicidal ideation based on large-scale social media data from 
Reddit. By fine-tuning Llama 3-8B, Mistral 7B, and 
BERTopic, we revealed key sources of mental instability 
associated with suicidal thoughts, including relationship 
struggles, academic stress, and family trauma. The findings 
also highlighted distinct thematic differences between posts 
indicating suicidal ideation and general adolescent concerns, 
revealing deeper insights into specific triggers and 
expressions of suicidal thoughts among young individuals. 
Our results underscore the potential of NLP in real-time 
mental health monitoring and intervention on social media. 
Fine-tuned models, such as Llama 3-8B, which achieved a 
test accuracy of 0.9371, demonstrate strong predictive 
performance, offering scalable tools for distress detection. 
By addressing warning signs before they escalate into crises, 
these systems can provide early interventions in teenage 
communities, leveraging the thematic overlaps between 
suicidal and non-suicidal groups to design broader mental 
health support initiatives. To enhance model accuracy, future 
research could incorporate data from a wider range of social 
media platforms to improve generalizability while also 
exploring the influence of digital interactions on users’ 
mental health. Expanding this work will offer deeper insights 
into the evolving role of social media in mental health and 
help develop targeted intervention strategies tailored to 
specific online behaviors and mental health challenges. 
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Abstract—Alzheimer’s is a brain disorder that disproportion-
ately affects older adults with its primary symptom being severe
dementia. Worldwide, over 55 million people have Alzheimer’s,
with 6.7 million affected individuals living in the USA. Current
methods to mitigate the effects of Alzheimer’s are insufficient
with most drugs (e.g., Memantine, Donepezil, Rivastigmine, etc.)
being inconsistent while also causing heavy side effects. In
order to address these issues, more drugs need to be tested
for viability. To speed up the process, this research proposes
AI-based models that can potentially detect which drugs will be
able to effectively inhibit the crux of the Alzheimer’s pathway,
an enzyme named Beta Secretase 1. This study documented the
investigation of four AI models—K-Nearest Neighbors (KNN),
Random Forest, ChemBERTa, and PubChem10M—and their
ability to predict drug efficacy for inhibiting BACE1, a vital
target in the Alzheimer’s Disease (AD) pathway. These models
were trained on the ChEMBL4822 database. The KNN and
RandomForest models were traditional descriptor-based models
whereas the ChemBERTa and PubChem10M models were fine-
tuned transformers. The KNN model showed a strong training
performance of (R² = 0.6092); this score stayed consistent in
the testing phase (R² = 0.6210). While having a lower score, the
RandomForest model displayed similar consistency in the training
(R² = 0.5651) and testing phase (R² = 0.5605). The ChemBERTa
model showed significant improvement from the training phase
(R² = 0.2641) to the testing one (R² = 0.6433), indicating high
generalization potential. Similarly, the PubChem10M model
exhibited large growth from the training (R² = 0.2641) to the
testing phase (R² = 0.6194). These results highlight the unique
strengths of each model and underscore the promising role of
AI in AD drug discovery. Future work on the refinement and
integration of these models could lead to more effective therapeutic
agents for AD.

Keywords-alzheimer’s; beta-secretase 1; machine learning; trans-
former model; drug discovery

I. INTRODUCTION

Alzheimer’s Disease (AD) is a neurodegenerative brain
disorder, a type of brain disorder where cells in the central
nervous system either fail to work or exist at all [1]. AD has
debilitating symptoms (see Figure 1). In the USA alone, nearly
7 million individuals suffer from Alzheimer’s; this number is
projected to rise to 13 million by 2050. Worldwide, Alzheimer’s
and similar dementia are presumed to affect over 55 million
individuals and this number does not seem to be going away
anytime soon [2].

Currently, most drugs in the market are unable to inhibit the
progression of AD, rather they aim to cope with the effects that
come with AD (donepezil [3], rivastigmine [4], memantine [5],
etc.). The drugs that are able to inhibit the pathway are often

controversial, expensive, and come with heavy side effects like
brain swelling and microhemorrhages (memantine, lecanemab
[6], etc.). With an unfortunate assortment of drugs that aren’t
able to completely eradicate the disease nor its effects, it is
pivotal to find a drug that can effectively inhibit the spread of
AD.

It is known that an overexposure/overproduction of Amyloid
Plaques in the brain is synonymous with AD [7]; symptoms
such as memory loss, poor judgment, lack of spontaneity,
reduced cognitive ability, etc. occur when a plaque buildup is
formed. Amyloid plaques are abnormal deposits of amino acid
chains known as beta-amyloid peptides (Aβ). These are caused
by the incorrect cleavage of the Amyloid Precursor Protein (a
type 1 transmembrane protein), powered by Beta-Secretase 1
(BACE1) [8]—see Figure 2.

It is predicted that machine learning models trained on
molecular descriptors and protein structural features will
effectively predict IC50 scores for candidate drugs, aiding
in identifying compounds with high efficacy in inhibiting
Beta-Secretase 1 (BACE1). This predictive capability directly
influences the progression of Alzheimer’s disease by enabling
the discovery of potent inhibitors targeting the formation of
Beta-Amyloid Peptides.

Amyloid plaques do not paint the complete story, however.
Tau, an abundant protein in nerve cells, gives neurodegenerative
properties to AD [9]. In a healthy organism (without AD), Tau
proteins are primarily responsible for stabilizing microtubules.
Tau binds to microtubules, ensuring their stability. It assists
in nutrient transport within neurons and plays a role in cell
division. Aβ and tau interact early in AD pathogenesis, even
before the formation of plaques and tangles. Aβ modulates
protein kinases and phosphatases, so an overproduction leads
to tau misfolding and hyperphosphorylation. Neurofibrillary
tangles form within neurons. These tangles consist of aggre-
gated and hyperphosphorylated tau proteins. The accumulation
of neurofibrillary tangles disrupts normal neuronal function.
Tau tangles b lock communication between neurons, altering
memory, cognition, and other brain functions. Tau-induced
damage occurs at the synaptic level, where synapses (connec-
tions between neurons) are lost. This contributes to cognitive
decline in AD. Acetylcholine, a neurotransmitter that plays
a vital role in memory, learning, etc [1], is often unable to
reach the brain in the presence of a toxic Tau protein therefore
causing an acetylcholine deficiency in the brain and propagates
the effects of Alzheimer’s. Toxic tau enhances Aβ toxicity via
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Figure 1. Alzheimer’s Disease Symptoms

a feedback loop, therefore enhancing the symptoms of AD.
This leads to a self-propagation of Tau and Aβ (see Figure 2)
[10].

Inhibition of BACE1 would cause the suppression of AD due
to the absence of Aβ and therefore prevent the formation of a
toxic Tau protein. BACE1 is a critical target for the AD pathway
as it has an early role in Beta-Amyloid protein production, and
produces mild phenotype reactions when deleted, suggesting
that inhibiting this enzyme might not have severe side effects
and has a well-documented history due to aspartic protease
identity. In recent years, there has been a surge in the use
of Artificial Intelligence (AI) technology in the medical field.
[11]. Various models and architectures have been utilized in
biomedical research to enhance its scope and effectiveness.
One prominent model that has garnered a lot of attention in
recent years is the transformer model. The idea is based on
an attention mechanism: a mechanism that allows computers
to weigh and understand the context behind different words
[12]. This type of model is extremely diverse; it can be used
in classification tasks, generative tasks, and even regression
tasks [13]. This research does not only focus on the use of
transformers; It is important to evaluate multiple models as
different models work best for different use cases.

This research is no exception to the use of AI: the goal is
to create deep learning models to predict whether drugs can
inhibit BACE1 and subsequently find drugs that can disrupt
Alzheimer’s. For this reason, this project will likely result in an
AI model that can accurately identify drugs to inhibit BACE1,
as well as find drugs that show large promise to suppress
Alzheimer’s [14]. This study explores AI models, including
transformers, to predict drugs capable of inhibiting BACE1
and, by extension, tackling Alzheimer’s while recognizing that
IC50 values are part of a more comprehensive evaluation of
drug efficacy. The aim is to develop AI models to identify
potential drugs that can effectively inhibit BACE1 and explore
promising candidates to mitigate AD progression.

In the related work and methods section, we discuss the
related work and methodologies that underpin this study. The
methodology section details the datasets and preprocessing
techniques employed to prepare our data for analysis. In results,

Figure 2. Alzheimer’s Pathway with Tau and BACE1 Inhibition

Figure 3. Research Methodology Flowchart

we present the results of our model evaluations, highlighting
the performance of each approach. The implications of these
results are discussed in the discussion and evaluation portions
of this paper, where we also evaluate their significance in
the context of Alzheimer’s drug discovery. The conclusion
concludes the paper, offering insights into future work and
potential improvements to the models.

II. RELATED WORK | METHODS

The fundamental idea this research draws upon is that BACE1
is an effective inhibition target for Alzheimer’s reduction.
This idea was drawn upon by a previous paper. Gosh et al.
proved BACE1 as a potential inhibition target by expressing its
numerous advantages: BACE1 is a key target for Alzheimer’s
disease (AD) treatment due to its early role in amyloid-β (Aβ)
production; the gene deletion of BACE1 produces only mild
phenotypes, suggesting that inhibiting this enzyme might not
have severe side effects; BACE1 is an aspartic protease, so the
mechanism and inhibition of BACE1 are well-documented and
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researched, etc [14].
This research also fine-tunes and evaluates transformers

that are trained upon molecular properties. Chithrananda et al.
built such a model, ChemBERTa [15]. This model takes the
well-known RoBERTa transformer [16] and fine-tunes it such
that it can predict certain molecular properties. This research
takes this model one step further and fine-tunes ChemBERTa
to predict whether drugs can effectively inhibit BACE1. The
RoBERTa transformer is indeed based on another transformer,
BERT [17], which is based on the transformer architecture.

Similar research has been conducted; for example, Baressi et
al., conducted research attempting to create models to predict
the efficacy of medication on COVID-19 [18]. This research
takes that idea further through the evaluation of drugs’ efficacy
on Alzheimer’s while simultaneously comparing traditional
models with newer transformer-based models. This therefore
allowed for the evaluation of the difference in efficacy of the
two types of models, opening the window for generalizations
in this sphere of research.

A. Dataset

To conduct this research, data was collected from the
CHEMBL4822 database (Figure 3—input data) that contained
different drugs’ Simplified Molecular Input Line Entry System
(SMILES) notations - simple text-based representations of the
drugs molecular structure [19] - paired with their half maximal
inhibitory concentration (IC50) scores - a value indicating the
dosage needed for a drug to effectively inhibit a certain protein,
in this case BACE1. The dataset contains 10619 different drugs
(including duplicates) and 46 additional descriptors with the
focus being their IC50 scores.

B. Prepossessing

In the preprocessing stage, we first acquired data from
the CHEML dataset and filtered it to retain entries where
IC50 was specified as the standard type. Null values were
addressed with mean imputation, replacing any null values
with the dataset’s average values, as cited in [20]. We also
eliminated duplicate entries, resulting in a refined dataset
comprising 7,353 distinct drugs. The data was then narrowed
down to the ’canonical_smiles’ and ’standard_value’ columns.
Here, ’canonical_smiles’ represents the SMILES notation, and
’standard_value’ corresponds to the IC50 value for each drug.
To facilitate easier calculations and comparisons, IC50 scores
were transformed into pIC50 [18], by taking the negative
logarithm of IC50 in molar form. At this stage, our dataset
contained two columns: SMILES and pIC50.

Subsequently, we extracted 210 Lipinski features for each
SMILES notation entry, thereby expanding the dataset to
include 211 columns while maintaining the 7,353 rows. This
dataset was then divided into training and test subsets using an
8:2 ratio. For traditional machine learning models, we utilized
the dataset with Lipinski features, whereas for transformer-
based models, we retained only the SMILES and pIC50 values.
This resulted in four distinct data files comprising training and
test sets with Lipinski descriptors as well as training and test

sets with SMILES notation. The training sets were employed to
develop models using a 5-fold cross-validation approach, while
the test sets were reserved to evaluate the models’ predictive
performance. This careful splitting was important to evaluate
how good each model is thoroughly at making predictions.

C. Why Feature Extraction?
This research used two methods to analyze molecular

structures: traditional models (KNN and RandomForest) and
transformer models (ChemBERTa and PubChem10M). Tradi-
tional models cannot directly process SMILES notation, which
represents molecules, transformer models were also used as
they can handle SMILES values directly and may provide
better results. For the traditional method, numerical values that
describe the drug’s properties were needed. 210 descriptors
were extracted (such as HeavyAtomMolWt, ExactMolWt,
NumValenceElectrons, NumRadicalElectrons, MolWt, etc.),
referred to as Lipinski Descriptors [21], from the SMILES
strings using the RDKit tool (see Figure 3 to see the data
was processed) [22]. This allowed the traditional models to
effectively analyze the molecules using these numerical values.

D. Training
After the dataset was both preprocessed and split, AI models

were developed to predict drug effectiveness using PIC50
values: two descriptor-based models, KNN [23] and Random
Forest [24], and two transformer models, ChemBERTa and
PubChem10M [25]).

We selected K-Nearest Neighbors (KNN), Random Forest,
ChemBERTa, and PubChem10M models to leverage diverse
analytical strengths. KNN and Random Forest are reliable,
traditional models ideal for structured data and feature inter-
pretability, providing a solid baseline with molecular descrip-
tors. ChemBERTa and PubChem10M, as transformer-based
models, excel in processing sequence data like SMILES strings,
capturing complex molecular interactions more holistically.
This combination of models allows us to comprehensively
evaluate drug efficacy in inhibiting Beta-Secretase 1 (BACE1),
balancing robustness with innovative pattern recognition capa-
bilities.

By exploring various hyperparameter settings, each model
was trained to find the most optimal configurations. The Mean
Squared Error (MSE) [26] and R-squared (R²) [27] metrics
were used to evaluate their performance. The model with the
best results, determined by these metrics, was further tested on
unseen data to ascertain its R² value. This process aimed to find
the most suitable model for identifying drugs that might combat
Alzheimer’s disease, contributing to the discovery of potential
treatments and benchmarking different modeling methods. The
R² metric is a statistical measure often used to assess the
accuracy of a regression task. Baressi et al. uses this metric
when evaluating the accuracy of AI models to predict pIC50
values of COVID-19 medication [18].

III. RESULTS

When evaluated, the four machine learning models—K-
Nearest Neighbors (KNN), Random Forest, ChemBERTa,
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Figure 4. KNN Training Graph - Number of Neighbors vs. R² Score

Figure 5. RandomForest Training Graph - Number of Trees and Depth vs. R²
Score

and PubChem10M—demonstrated notable differences in their
ability to predict certain drugs’ inhibition of BACE1. On
training data, the KNN model (K=5) was the most effective,
boasting the highest R² score of 0.6092 (see Figure 4). It was
closely followed by the Random Forest model, with an R² of
0.5651 (maximum depth of 7 and 60 trees) (see Figure 5).
In third place was the PubChem10M model (trained for 50
epochs with a learning rate of 0.001), achieving an R² score of
0.4672 (see Figure 6). Finally, in last place for training data,
was the ChemBERTa model, with an R² score of 0.2641 (see
Figure 7 and Table 1). However, on testing data, the models’
results demonstrated a significant shift. The ChemBERTa model
led the pack with an R² score of 0.6433, indicating strong
generalization to unseen data. This was closely followed by
the KNN model with an R² score of 0.621—a continuation of
its robust performance in training. The PubChem10M model
also showed substantial improvement, achieving an R² score
of 0.6194. Lastly, the Random Forest model displayed great
consistency, scoring an R² of 0.5605 (see Table 1).

The observed trends underscore the architectural advantages
of transformers, such as ChemBERTa and PubChem10M. These
models excel due to the attention mechanism, which enables
them to capture and generalize complex data patterns inherent

Figure 6. PubChem10M Training Graph - Learning Rate and Epochs vs. R²
Score

Figure 7. ChemBERTa Training Graph - Learning Rate and Epochs vs. R²
Score

Figure 8. Optimal Model vs. RMSE and R² Scores on Testing Data
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TABLE I
RESULT SUMMARY

Model Training R² Testing R²
KNN 0.609 0.621

Random Forest 0.565 0.560
ChemBERTa 0.264 0.643

PubChem10M 0.467 0.619

in molecular SMILES notation—even when initial training
R² scores are low. We conducted a series of experiments to
better understand these findings, analyzing cross-validation R²
scores and performance metrics across multiple data subsets.
Consistently, the results demonstrated that transformer models
achieve higher test R² scores, confirming their superior ability
to generalize under varied conditions compared to traditional
machine learning models.

The ChemBERTa model was able to perform well on testing
data among metrics boasting the lowest RMSE score of about
0.851 (see Figure 8).

IV. DISCUSSION | EVALUATION

This study contained the evaluation of the KNN, Random-
Forest, ChemBERTa and PubChem10M models in predicting
drugs’ ability to inhibit the Alzheimer’s pathway using the R²
score as a metric for the accuracy and effectiveness of each
model.

The KNN model performed the best on training data with an
R² score of 0.6092 with a parameter setting of K=5 neighbors.
This indicates the model was proficient in fitting the training
data when using K=5 neighbors. In the testing phase, this R²
score stayed relatively consistent at 0.621.

The Random Forest model had a moderate R² score of
0.5651 during training with a maximum depth of 7 and 60
estimators. Like the KNN model, it had a relatively consistent
score during testing of 0.5605. This indicates that both the KNN
and RandomForest models were relatively consistent models.
For the RandomForest model, this consistency might be due
to the ensemble nature of Random Forest, which averages
multiple decision trees to achieve a robust prediction, making
it less likely to be affected by variance in the data [28].

ChemBERTa, using 50 epochs and a learning rate of 0.001,
achieved a relatively low R² score of 0.2641 during training.
That said, the model significantly improved when evaluated on
testing data, achieving the highest R² score of 0.6433 among
all the models. The massive increase in R² score suggests
that ChemBERTa is particularly good at learning patterns
during training and by extension effectively generalizes new
data. It shows a large potential for the model to capture the
underlying data distribution regardless of initially low training
performance.

The PubChem10M model, also trained for 50 epochs with
a learning rate of 0.001, had a moderate R² score of 0.4672
during training. Like ChemBERTa, the PubChem10M model
showed a significant improvement in the testing phase with
an R² score of 0.6194. This improvement indicates that the
PubChem10M model, although not as strong as ChemBERTa,

has robust generalization properties. It has comparable testing
performance to that of KNN, despite a low initial training
score.

Each model showcased unique characteristics across the
datasets. The KNN model excelled during training but dis-
played inconsistencies in testing. The Random Forest model
maintained consistent performance across both datasets, but
it did not achieve the high levels of accuracy seen in other
models. ChemBERTa showed the most notable improvement
across the phases. The incorporation of both traditional and
newer transformer-based models allows for this research to
effectively create generalizations that are lacking in preexisting
research.

The ChemBERTa and PubChem10M models, on the other
hand, may have built robust patterns during the training phase
that were solid and applicable to the testing data. This could
be extremely powerful if refined even further.

These results offer valuable insights into the strengths
and weaknesses of each model, guiding future research and
practical applications where different models may be more
suited depending on the context and the nature of the data.

Since ensemble models are hypothesized to have provided
consistency and transformers for greater generalization, one
could experiment with combining the ensemble nature of the
RandomForest model with a transformer to obtain greater re-
sults. One could also expand the number of epochs and learning
rate values tested to see if there are model configurations that
generate better results.

It is important to note that these models do not account for
bioavailability, pharmacokinetics, or potential interactions with
other drugs, which are critical factors for clinical outcomes.
These aspects are essential for understanding how a drug
behaves in the body and how effective it will be in real-world
scenarios. Consequently, while the models offer insights into
drug potential, a more comprehensive approach that includes
these factors is necessary for enhancing clinical relevance.

V. CONCLUSION AND FUTURE WORK

This study documented the evaluation of four distinct AI-
based models—K-Nearest Neighbors (KNN), Random Forest,
ChemBERTa, and PubChem10M—in their ability to success-
fully estimate how effectively a certain drug could disrupt
the Alzhimer’s pathway. In this evaluation, results within the
testing and training phase were quite varied when evaluating
ChemBERTa and PubChem10M models: both models showed
low, unfavorable R² scores, yet, when these models got to
the testing phase, their scores increased by a large margin
boasting R² scores of 0.6433 (the highest testing score among
all the models) and 0.6194 respectively. This indicated unique
generalization prowess among the transformer-based models.
The descriptor-based models—KNN and RandomForest—on
the other hand, were pretty stable; the KNN model had an
R² score of 0.6092 during training and an R² score of 0.621
within testing—indicating powerful consistency. This same
trend applied to the RandomForrest model which had a lower R²
score of 0.5651 but it stayed pretty consistent reaching 0.5605
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during testing. These results imply that the transformer-based
models had powerful generalization capabilities whereas the
descriptor-based models boasted consistency. This highlights
the age-old accuracy vs. precision problem which is present
in our study today. The main limitation of this study is that
it only looks at IC50 values to assess drug potency. While
IC50 is important, it does not fully reflect how a drug will
work in real life because factors like how the drug is absorbed,
distributed, metabolized, and excreted (ADME), and its toxicity
also play a role. Our models do not take into account how
drugs interact with the body, which might lead to differences
between predicted results and actual effects. This study should
be seen as a starting point, and future work should include these
other factors to make the models more useful for real-world
drug development.

REFERENCES

[1] K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer’s
disease”, The Lancet, vol. 368, no. 9533, pp. 387–403, 2006.

[2] W. Thies and L. Bleiler, “Alzheimer’s disease facts and figures
alzheimer’s association”, Alzheimers Dement, vol. 8, no. 2,
pp. 131–168, 2012.

[3] J. S. Birks and R. J. Harvey, “Donepezil for dementia due to
alzheimer’s disease”, Cochrane Database of systematic reviews,
no. 6, 2018.

[4] J. S. Birks and J. G. Evans, “Rivastigmine for alzheimer’s
disease”, Cochrane Database of systematic reviews, no. 4,
2015.

[5] B. Jarvis and D. P. Figgitt, “Memantine”, Drugs & aging,
vol. 20, pp. 465–476, 2003.

[6] G. E. Vitek, B. Decourt, and M. N. Sabbagh, “Lecanemab
(ban2401): An anti–beta-amyloid monoclonal antibody for the
treatment of alzheimer disease”, Expert opinion on investiga-
tional drugs, vol. 32, no. 2, pp. 89–94, 2023.

[7] R. H. Takahashi, T. Nagao, and G. K. Gouras, “Plaque
formation and the intraneuronal accumulation of β-amyloid in
alzheimer’s disease”, Pathology international, vol. 67, no. 4,
pp. 185–193, 2017.

[8] R. J. O’brien and P. C. Wong, “Amyloid precursor protein
processing and alzheimer’s disease”, Annual review of neuro-
science, vol. 34, no. 1, pp. 185–204, 2011.

[9] E.-M. Mandelkow and E. Mandelkow, “Tau in alzheimer’s
disease”, Trends in cell biology, vol. 8, no. 11, pp. 425–427,
1998.

[10] G. S. Bloom, “Amyloid-β and tau: The trigger and bullet in
alzheimer disease pathogenesis”, JAMA neurology, vol. 71,
no. 4, pp. 505–508, 2014.

[15] S. Chithrananda, G. Grand, and B. Ramsundar, “Chemberta:
Large-scale self-supervised pretraining for molecular property
prediction”, arXiv preprint arXiv:2010.09885, 2020.

[16] Y. Liu et al., “Roberta: A robustly optimized bert pretraining
approach”, arXiv preprint arXiv:1907.11692, 2019.

[11] K. Basu, R. Sinha, A. Ong, and T. Basu, “Artificial intelligence:
How is it changing medical sciences and its future?”, Indian
journal of dermatology, vol. 65, no. 5, pp. 365–370, 2020.

[12] A. Vaswani, “Attention is all you need”, arXiv preprint
arXiv:1706.03762, 2017.

[13] J. Born and M. Manica, “Regression transformer enables
concurrent sequence regression and generation for molecular
language modelling”, Nature Machine Intelligence, vol. 5, no. 4,
pp. 432–444, 2023.

[14] A. K. Ghosh, S. Gemma, and J. Tang, “β-secretase as a
therapeutic target for alzheimer’s disease”, Neurotherapeutics,
vol. 5, pp. 399–408, 2008.

[17] J. Devlin, “Bert: Pre-training of deep bidirectional transformers
for language understanding”, arXiv preprint arXiv:1810.04805,
2018.

[18] S. Baressi Šegota, I. Lorencin, Z. Kovač, and Z. Car, “On
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Abstract— This study investigates the effectiveness of a hybrid 

machine learning model for skin cancer diagnosis, integrating 

Convolutional Neural Networks, Support Vector Machines, and 

Gradient Boosting algorithms. By combining the strengths of 

each technique, the model seeks to improve diagnostic accuracy 

and reliability in clinical settings, addressing the challenges 

posed by traditional diagnostic methods. Utilizing the "Skin 

Cancer: Malignant vs. Benign" dataset, the hybrid model 

achieved an accuracy of 84%, with precision, recall, F1 score, 

and specificity recorded at 85%, 84%, 84%, and 83%, 

respectively. These results underscore the model’s potential to 

surpass single-algorithm approaches in detecting skin cancer, 

making it a promising tool for early diagnosis and better-

informed clinical decision-making. The findings highlight the 

broader impact of advanced machine learning techniques in 

healthcare, particularly in oncology, by demonstrating how the 

integration of multiple algorithms can provide more accurate, 

scalable, and reliable diagnostic solutions. This research opens 

avenues for further exploration of hybrid models as a means to 

advance AI-driven diagnostic technologies in medical fields, 

with potential applications across various types of cancer 

detection. The source code for this study is available through a 

public GitHub repository, fostering transparency and further 

innovation in the field. 

 

Keywords- Hybrid Machine Learning; Skin Cancer; 

Convolutional Neural Networks; Support Vector Machines; and 

Gradient Boosting. 

I. INTRODUCTION 

Cancer continues to be a pressing global health concern, 
accounting for a significant share of mortality rates around 
the world [1][2]. Early detection and accurate diagnosis are 
vital components in enhancing patient outcomes [3][4], 
particularly in the case of skin cancer, where timely 
interventions can lead to markedly better survival chances 
[5]. While established diagnostic methods, such as visual 
inspection, biopsy, and histopathology have their merits, they 
are often susceptible to human error and subjectivity in 
interpretation [6]. These limitations highlight the urgent need  

 
for more reliable and automated diagnostic tools that can 
support healthcare professionals in making consistent and 
accurate diagnoses. 

In the realm of healthcare, Machine Learning (ML) has 
emerged as a transformative force, providing innovative 
ways to enhance diagnostic accuracy by efficiently analyzing 
large and complex datasets. Various ML models, including 
Convolutional Neural Networks (CNNs) and Support Vector 
Machines (SVMs), have been successfully applied in cancer 
diagnosis [7][8]. However, each model comes with its own 
set of challenges. For instance, while CNNs excel at 
extracting meaningful features from image data, their 
effectiveness can diminish when training datasets are 
insufficient. On the other hand, SVMs are proficient at 
managing high-dimensional data but may struggle with 
scalability when confronted with larger datasets [9]. These 
nuances highlight the necessity of refining diagnostic 
methodologies to fully harness the potential of machine 
learning. 

Hybrid machine learning models have gained prominence 
as a solution to the inherent limitations of individual 
techniques, leveraging the complementary strengths of 
multiple algorithms to enhance performance across a range of 
applications [10]. While hybridization itself is well-
established, the contribution of this research lies in the 
sophisticated fusion of CNNs, SVMs, and Gradient Boosting 
(GB), each selected for their distinct advantages in the context 
of skin cancer diagnosis. CNNs are employed for their 
unparalleled ability to autonomously extract hierarchical 
features from complex image data, effectively capturing 
spatial patterns that are crucial for medical image analysis. 
SVMs, known for their robustness in high-dimensional 
spaces, are used to classify these features accurately, 
especially in cases with intricate decision boundaries. GB, 
recognized for its ensemble learning capability, is integrated 
to refine predictive accuracy, enhance model generalization, 
and mitigate the risks of overfitting. 

The innovation in this approach extends beyond the 
selection of individual algorithms; it lies in their seamless 
integration through advanced fusion strategies, such as 
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weighted averaging and voting. These techniques harmonize 
the outputs of the models, optimizing the decision-making 
process and enhancing the overall reliability of predictions. 
This methodological synergy not only strengthens the model’s 
resilience to variations in the data but also ensures a robust 
and scalable solution for skin cancer diagnosis. 

The effectiveness of the hybrid framework is 
demonstrated through its superior performance across key 
metrics, including accuracy, precision, recall, F1 score, and 
specificity, compared to models based on a single algorithm. 
This research provides a detailed exploration of the 
methodology, experimental design, and results, underscoring 
the potential of hybrid models to significantly advance 
diagnostic capabilities. By strategically combining CNNs, 
SVMs, and GB, this approach offers a novel solution that not 
only leverages the strengths of each algorithm but also 
mitigates their individual weaknesses, establishing a 
compelling contribution to the field of medical diagnostic 
systems. 

The structure of the rest of this paper is organized as 
follows: Section II explores related works, emphasizing the 
various machine learning approaches employed in cancer 
diagnosis, hybrid algorithms used in cancer research, and the 
data types and sources referenced in prior studies. Section III 
outlines our research approach in detail, including 
descriptions of data collection and preprocessing, model 
development, and methodological flowcharts that illustrate 
the study’s workflow. Section IV presents our findings, 
supported by a detailed analysis and contextual discussion to 
interpret their significance. Finally, Section V summarizes 
the key insights of the study, highlights its limitations, and 
offers directions for future research. 

II. LITERATURE REVIEW 

Prompt and accurate identification is crucial for effective 
treatment and improved patient results. Conventional methods 
for diagnosing cancer, including imaging, histology, and 
genetic testing, are restricted in their ability to accurately 
detect, identify, and understand the progression of the disease. 
Studies have shown that advancements in machine learning 
have significantly impacted various sectors, including 
healthcare and these developments have facilitated the design 
and implementation of automated diagnostic tools, which 
have demonstrated improved accuracy in specific 
applications, as evidenced by numerous studies and clinical 
trials [11].  

A. Machine Learning in Cancer Diagnosis 

There are four main types of machine learning: supervised, 
unsupervised, semi-supervised, and reinforcement learning. 
Supervised learning involves training models on labeled data 
for tasks like classification and regression, while unsupervised 
learning identifies patterns and structures within unlabeled 
data, often through clustering techniques. Semi-supervised 
learning combines a small amount of labeled data with a larger 
pool of unlabeled data to improve model performance, and 
reinforcement learning teaches agents to make sequential 
decisions by rewarding desired behaviours and penalizing 
undesired ones. 

To support these types of learning, preprocessing 
techniques like feature selection and normalization are 
essential, as they improve model effectiveness by selecting the 
most relevant features and ensuring that data is appropriately 
scaled. These steps contribute to higher model accuracy and 
efficiency, particularly when dealing with diverse datasets 
across machine-learning approaches. In the field of cancer 
diagnosis, where data is often complex and high-dimensional, 
such preprocessing methods play a crucial role in optimizing 
model performance. Hybrid models, in particular, benefit 
from combining classification and clustering techniques to 
handle different aspects of the data [12]. For instance, cancer 
diagnosis hybrid models incorporate both classification and 
clustering methods and often integrate feature selection and 
dimensionality reduction techniques to further enhance 
diagnostic accuracy and efficiency. 

Cluster-based classification involves using clustering 
algorithms to organize data before training a classifier, which 
helps to reduce variation within clusters and enhance overall 
performance. Combining predictions from various models 
like SVM, Random Forest, and Neural Networks in ensemble 
approaches enhances both accuracy and robustness. In 
addition, deep learning with feature engineering involves 
utilising deep learning models to extract features directly from 
raw data like images or genetic sequences and inputting them 
into standard classifiers for improved prediction [13]. 

As Artificial Intelligence (AI) and ML quickly grow in 
importance, they’re becoming essential tools in healthcare, 
especially for diagnosing and treating diseases. Cancer 
diagnosis is a prime example where these technologies can 
make a real difference [14]. Growing evidence shows that 
detecting cancer at an early stage leads to better treatment 
options and significantly improved patient outcomes. 
Consequently, researchers have leveraged hybrid machine 
learning models, combining multiple algorithms to capitalize 
on their individual strengths and compensate for their 
limitations, thus enhancing diagnostic accuracy and 
robustness in cancer detection [15][16]. In cancer detection, 
for instance, ensemble techniques like bagging, boosting, or 
stacking are commonly used to blend predictions from 
multiple models, thereby enhancing accuracy and reliability. 
Deep learning models, such as CNNs, are often paired with 
traditional algorithms like SVMs, creating a robust approach 
especially valuable for complex data, such as medical imaging 
[17].  

An additional strength of these hybrid models lies in their 
ability to integrate diverse data types which may include 
genomics, imaging, and clinical records into a unified 
diagnostic tool. By drawing on multiple sources, hybrid 
models can better capture the complex biological patterns 
associated with cancer. For example, logistic regression and 
elastic net techniques are sometimes applied to classify 
genetic variations with higher risks, while specialized tools 
like LungCLiP use ensemble classifiers to detect lung cancer 
in plasma samples [18]. Altogether, these integrative machine 
learning approaches are advancing diagnostic accuracy, 
supporting earlier detection, and enabling more personalized 
treatment strategies in cancer care [19].  
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B. Hybrid Algorithms in Cancer Studies 

 Hybrid algorithms in cancer research employ various 
techniques to enhance the precision and effectiveness of 
cancer diagnosis, treatment planning, and prognosis 
prediction. Selecting the right hybrid approach depends on 
multiple factors, including the type of cancer, the nature of 
available data, specific diagnostic objectives, and desired 
outcomes [20][21].  CNNs with SVMs for example takes 
advantage of both approaches' strengths: CNNs' excellent 
feature extraction capabilities and SVMs' ability to classify 
small numbers of data [22].  Saleh et al. [22] used a hybrid 
CNN-SVM method for classifying lung CT images into four 
categories: adenocarcinoma, large cell carcinoma, normal, 
and squamous cell carcinoma. The method was tested on the 
Chest CT-Scan images dataset, achieving a high classification 
accuracy rate of 97.91%, which outperformed other recent 
deep learning-based works.  

The method used by Saleh et al. [22] also demonstrated 
promising performance in terms of sensitivity, specificity, 
precision, and AUC. The results suggest that the hybrid CNN-
SVM method has the potential to assist in the early detection 
of lung cancer, and future work can focus on testing the 
method with different datasets and image types [22]. 
Combining CNN and Recurrent Neural Networks (RNNSs) 
for cancer diagnosis as demonstrated in [23] takes advantage 
of the capabilities of each architecture and in [8] where CNNs 
extract spatial features, whereas RNNs recognize temporal or 
sequential patterns. This hybrid technique is particularly 
useful for evaluating complicated medical data, such as time-
series medical pictures or sequential patient records.  

These studies highlight some of the advancements in 
cancer diagnosis through hybrid machine learning models. By 
combining the strengths of different algorithms, such as CNNs 
with SVMs or RNNs, hybrid approaches have demonstrated 
improved performance in various cancer detection tasks, 
achieving higher accuracy and reliability compared to 
traditional single-algorithm methods. Table I shows reviews 
of related works that use Hybrid Machine Learning for Cancer 
Diagnosis. 

TABLE I. REVIEW OF OTHER RELATED STUDIES 

 
Article 

Ref. 
Data Source Records 

Train/Test 

Split 

Algorithm 

Type 

Model 

Accuracy 

 [22] 
Chest CT-Scan 

Images 
5103 80:20 

CNN, 

SVM 
97.91% 

 [29] Herlev public 917 80:20 
CNN, 

SVM 
99.30% 

 [31] 

Breast Cancer 

Network 

Wisconsin 

- 70-30 
K-means, 

SVM 
97.34% 

 [30] 

Mammographic 

Image Analysis 

Society 

- 70-30% 
CNN, 

GRU 
95.50% 

[32] PCAM Kaggle 277524 80:20 
CNN, 

GRU 
86.21% 

[23] 

-Lung Image 

Database 

Consortium and 

Image Database 

Resource 

Initiative 

(LIDC-IDRI) 

888 80:20 
CNN, 

RNN 
95.00% 

C. Datasets and Data Sources 

Datasets are the foundation of machine learning, essential 
for training, validating, and testing models to ensure 
robustness, generalizability, and the ability to tackle real-
world challenges effectively. A well-curated, diverse, and 
high-quality dataset is crucial to the success of any machine 
learning effort, as it enables models to perform accurately 
while minimizing biases. For example, Yogendra Singh 
Solanki et al. [24] developed an ML-based classifier system 
for breast cancer prognosis using a dataset from the 
University of California, Irvine (UCI) repository to 
distinguish between malignant and benign breast cancer cells.  

In building such models, data imbalance often poses a 

significant challenge, as it can skew predictions toward the 

more prevalent class. Yogendra Singh Solanki et al. 

addressed this by using techniques like re-sampling and the 

Synthetic Minority Over-sampling Technique (SMOTE), a 

method for handling class imbalance by generating new 

realistic samples for the minority class, which helps models 

learn more evenly and reduces bias toward the majority class. 
In their study, Wang et al. [25] obtained cancer data from 

three distinct data sources to analyze cancer incidences, which 
include, The Cancer Genome Atlas (TCGA), Surveillance, 
Epidemiology, and End Results (SEER) 18, and North 
American Association of Central Cancer Registries. The 
TCGA shared information on individuals with 33 different 
forms of cancer, using specific TCGA case IDs to prevent any 
repeat cases among the different types of cancer. SEER data 
includes individuals who were diagnosed with primary cancer 
between 2010 and 2013, characterized by the third edition of 
the International Classification of Diseases for Oncology 
(ICD-O-3) using primary site and histology/behavior criteria. 
The NAACCR database included cancer records from every 
state in the US as well as the District of Columbia, 
encompassing nearly the entire population of the country from 
2009 to 2013. 

In order to analyze the distribution of races, only cancer 
cases in the US with race information were used, taking into 
account the SEER program's overrepresentation of minority 
populations in the US. These expansive data collections cover 
33 different types of cancer and can be identified by distinct 
case IDs and ICD-O-3 categorization, offering extensive 
population representation and valuable insights into cancer 
case characteristics in the US [25].  

III. METHODOLOGY 

This paper focuses on developing a robust hybrid machine 
learning model for cancer diagnosis, encompassing several 
key phases: data collection and preprocessing, exploratory 
data analysis, feature engineering, model selection, and 
implementation following our methodology framework as in 
Figure 1. Utilizing the "Skin Cancer: Malignant vs. Benign" 
image dataset, exploratory data analysis provided insights into 
the dataset composition, guiding feature engineering, which 
tailored the data for use in CNNs, SVMs, and GB models. 
Model selection and implementation involved carefully 
combining these techniques using Python and Scikit-Learn, 
optimizing the model's performance through hyperparameter 
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tuning and an 80/20 train-test split. The results demonstrated 
the model's effectiveness, offering promising advancements in 
accurate cancer diagnosis. 

 

 
 

Figure 1. Research methodology flowchart. 

A. Data Collection and Preprocessing 

The "Skin Cancer: Malignant vs Benign" dataset [26], 
used in this study, consists of 3,600 images of skin moles, 
evenly divided between benign (1,800) and malignant (1,800) 
cases. Each image, sourced from the ISIC Archive, a well-
regarded repository for dermatological images is provided at 
a consistent resolution of 224x244 pixels, ensuring uniform 
quality for analysis. This balanced dataset with samples 
shown in Figure 2 below serves as an essential resource for 
developing and validating machine learning models to 
improve the accuracy and reliability of skin cancer diagnosis. 

 

 
Figure 2. Skin cancer Images- (a) Benign cancer, (b) Malignant cancer 

 
With a training set of 2,637 images (1,440 benign and 

1,197 malignant) and a test set of 963 images (360 benign and 
300 malignant), split into an 80/20 ratio for training and 
testing, this dataset provides a robust foundation for training 
and evaluating hybrid machine learning models for cancer 
diagnosis.   

The boxplot in Figure 3 and Figure 4 visualizes the 
distribution of the "mean intensity" feature for benign and 
malignant tumor images based on the training and test data 
respectively, highlighting the differences in typical values 
(median, quartiles) and variability (spread) between the two 

classes. Outliers, represented as individual circles outside the 
whiskers, indicate data points that fall significantly outside 
the general distribution. This suggests that mean intensity 
could be a valuable feature for classifying tumors, as benign 
tumors generally show lower mean intensity compared to 
malignant ones. Additionally, this feature could be used 
directly in machine learning models or serve as a basis for 
creating more complex features. Handling outliers may be 
necessary to avoid skewing model training, and 
understanding the distribution of mean intensity can inform 
decisions on data preprocessing and feature engineering 
strategies. 

The images were resized to 224x224 pixels to ensure 
uniformity and compatibility with CNN. The pixel values are 
normalized to a range between 0 and 1 to improve model 
convergence during training. The dataset is also shuffled to 
prevent overfitting, ensuring that the model learns from a 
balanced and randomized distribution of benign and 
malignant cases. 

CNNs are employed for automatic feature extraction from 
the image data. In parallel, the Gabor filters and Gray-Level 
Co-occurrence Matrix (GLCM) are applied for texture-based 
feature extraction. The extracted features from both methods 
are then combined through feature fusion to enhance 
classification capabilities. Principal Component Analysis 
(PCA) was then used to reduce the dimensionality of the 
combined feature set. This step was to ensure that the most 
important features are retained while reducing computational 
complexity, leading to a more efficient and scalable model. 

 

 
Figure 3. Boxplot of mean intensity by label (Training Data) 

 

 
Figure 4. Boxplot of mean intensity by label (Test Data) 

B. Model Development 

This study develops a robust hybrid machine learning 
model for skin cancer diagnosis, combining the strengths of 
CNNs, SVMs, and GB. The model’s core design is based on 
leveraging the complementary capabilities of these 
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algorithms: CNNs for automatic feature extraction from skin 
cancer images, SVMs for efficient classification in high-
dimensional feature spaces, and GB for ensemble learning that 
refines predictive performance by aggregating weak learners 
into a more robust model. Specifically, CNNs excel at 
identifying intricate spatial patterns within the images, while 
SVMs handle complex decision boundaries in the high-
dimensional feature space, and GB enhances generalization 
by reducing overfitting. 

The integration of these algorithms is facilitated by 
advanced fusion strategies, such as weighted averaging and 
voting, which harmonize the individual outputs to optimize 
decision-making. This methodological synergy ensures that 
the model’s predictive reliability is enhanced, particularly in 
clinical settings where diagnostic accuracy is paramount. The 
integration process is sequential, with CNNs first extracting 
relevant features, followed by SVM classification and GB 
aggregation, to ensure a comprehensive approach to skin 
cancer diagnosis. 

The model was implemented using Python 3.12.7 and the 
following libraries: Scikit-learn 1.4.2 for SVM and GB, 
Keras/TensorFlow for building and training the CNN, and 
Pandas, NumPy, Matplotlib, and Seaborn for data 
manipulation, feature engineering, and visualization. The 
"Skin Cancer: Malignant vs. Benign" dataset, sourced from 
the ISIC Archive, comprises 3,600 images, evenly distributed 
between benign and malignant cases. Images are resized to 
224x224 pixels and normalized to improve model 
convergence during training. Data preprocessing includes 
shuffling to prevent overfitting and feature engineering 
through Gabor filters and Gray-Level Co-occurrence Matrix 
(GLCM), with dimensionality reduction applied using PCA to 
maintain computational efficiency while retaining essential 
features. 

Hyperparameter tuning was performed on each model 
component: CNN layers, SVM parameters, and GB 
hyperparameters, using grid search and cross-validation to 
optimize performance. Evaluation metrics, including 
accuracy, precision, recall, F1 score, and specificity, were 
calculated and compared to single-algorithm models to 
demonstrate the efficacy of the hybrid approach. The 
confusion matrix was also generated to visualize the model’s 
classification performance in terms of true positives, false 
positives, true negatives, and false negatives. 

The dataset was partitioned into an 80% training set and a 
20% testing set, ensuring that the model underwent thorough 
training while maintaining an unbiased and reliable evaluation 
process. This division facilitates both robust model learning 
and accurate performance assessment. The hybrid model's 
design effectively addresses several critical challenges 
commonly encountered in medical diagnostics, such as data 
sparsity, class imbalance, and computational scalability. By 
leveraging the strengths of multiple algorithms, the model not 
only mitigates the limitations of individual approaches but 
also achieves superior diagnostic performance, outperforming 
single-algorithm models in terms of accuracy and 
generalization. The source code for the implementation is 
publicly accessible via a GitHub repository [27], fostering 
transparency and providing an avenue for further research and 

development within the domain of skin cancer detection. This 
open-access model serves as a valuable resource for 
advancing the field and promoting collaborative exploration 
of hybrid machine learning techniques for medical image 
analysis. 

IV. RESULTS AND DISCUSSION 

In this study, a thorough assessment and comparison of 
various machine learning models for cancer detection were 
carried out using SciKit-Learn. Table II shows the 
performance metrics Accuracy, Precision, Recall, F1-score, 
and Specificity for different models including the proposed 
hybrid model, CNN, SVM, and GB. 

TABLE II. ML MODELS PERFORMANCES DATA 

 

Metric Hybrid Model CNN SVM GB 

Accuracy 84 82 74 83 
Precision 85 84 74 82 

Recall 84 82 74 85 

F1 84 82 74 83 
Specificity 83 73 78 80 

 
Table III below shows confusion matrices for the Hybrid, 

CNN, GB, and SVM models illustrating the breakdown of 
True Positives (TP), False Positives (FP), True Negatives 
(TN), and False Negatives (FN) values essential for 
evaluating a model's classification performance by breaking 
down its accurate and inaccurate predictions, offering a 
comprehensive view of its classification abilities [28] while 
Figure 5 offers a comparison of these performance measures 
among the various models. 

The findings of this study underscore the significance of 
the hybrid machine learning model in the field of skin cancer 
diagnostics. The model demonstrated high accuracy and 
robust performance metrics, suggesting its potential utility as 
a reliable tool for the early detection of skin cancer. 

TABLE III. CONFUSION MATRIX OF PROPOSED HYBRID MODEL, 

CNN, GB, AND SVM MODELS. 

 

  

  
 

By properly evaluating skin cancer photos and utilizing the 

characteristics of many algorithms, the model has proved its 

capacity to reliably discern between benign and malignant 

skin moles. This is a step forward in the development of more 

precise diagnostic tools, perhaps leading to earlier 

identification and improved treatment outcomes for patients. 

39Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-247-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIHealth 2025 : The Second International Conference on AI-Health

                            46 / 78



 
Figure 5. Visualization of the model’s performances 

 
The findings of this study underscore the significance of 

the hybrid machine learning model in the field of skin cancer 
diagnostics. The model demonstrated high accuracy and 
robust performance metrics, suggesting its potential utility as 
a reliable tool for the early detection of skin cancer. By 
properly evaluating skin cancer photos and utilizing the 
characteristics of many algorithms, the model has proved its 
capacity to reliably discern between benign and malignant 
skin moles. This is a step forward in the development of more 
precise diagnostic tools, perhaps leading to earlier 
identification and improved treatment outcomes for patients.  

The model's strong performance in skin cancer diagnosis 
shows that it might be useful in clinical settings, allowing 

Medical practitioners make better informed decisions and 

eliminate diagnostic mistakes. Overall, the model's 

contribution to improving skin cancer detection is important 

for successful treatment and increasing patient survival rates. 

V. CONCLUSION 

This research focused on evaluating the effectiveness of a 
hybrid machine learning model for skin cancer diagnosis 
compared to traditional models like CNN, SVM, and GB. The 
hybrid model demonstrated superior performance with an 
accuracy of 84%, precision of 85%, recall of 84%, F1 score of 
84%, and specificity of 83%. These metrics indicate that the 
hybrid model not only performed better than the SVM model, 
which had the lowest accuracy at 74%, but also outperformed 
the CNN and Gradient Boosting models in most aspects, 
particularly in specificity. The CNN model, while achieving 
high precision (84%) and accuracy (82%), lagged in 
specificity (73%), indicating a higher rate of false positives. In 
contrast, the Gradient Boosting model, with metrics closely 
matching the hybrid model, also showed strong performance 
but was slightly less effective overall. 

 This summary highlights the hybrid model's potential as 
a more reliable and accurate tool for skin cancer diagnosis. 
This paper is primarily focused on comparing single-
algorithm models to hybrid Machine Learning models, 
however for future research directions, the proposed hybrid 
models can be compared with other potential hybrid models. 
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Abstract—This paper presents a comparative case study of 
a live implementation of a Generative AI solution in 5 medical 
practices. Our findings shed new light on the impact of 
Generative AI on various aspects, such as social structures, 
roles, organizational processes, and technical systems of 
medical practices. It is well known now that the increasing 
documentation burden on physicians has led to medical 
errors, patient safety concerns, and physician burnout. This 
study investigates the adoption and implementation of a 
Generative AI-based clinical documentation technology in 
medical practices over 5 months. Our data included 
interviews, participant observations, process documentation 
and mapping, tracking social interactions, and analyzing 
textual user feedback data. The results enabled us to develop 
an implementation process framework that can be 
generalized across medical practices, categorizing changes 
into social, technical, organizational, and goals & outcomes. 
The implementation of Generative AI has led to both tangible 
and intangible benefits, including the creation of a new role of 
Scribe to provide human oversight of AI-generated clinical 
documentation. Resistance and apprehensions from practice 
staff have impacted implementation speed and decision-
making. The study emphasizes the importance of considering 
social and organizational process changes in adopting new 
technologies and identifies role re-reforming and triadic co-
creation as key concepts. Our process framework also 
includes an entrepreneur’s and emerging technology product 
implementation team’s co-creation experiences with the 
medical practices. Overall, this research provides a processual 
framework to capture the nuances of adopting and co-
evolving an emergent and uncertain technology. 

Keywords-Physician Burnout; Documentation Overburden; 
Generative AI; Medical Practices; Clinical Documentation. 

 
I. INTRODUCTION 

Physicians are a crucial part of the healthcare delivery 
system, and their primary responsibility is to provide 
clinical treatment, medical advice, clinical documentation, 
and the best possible care to the patients. Although a 
physician’s role can vary based on the peculiarities of the 
healthcare setting, in general, physicians provide services 
including preventive care measures, diagnosis of the 
ailment, referring other specialists, ordering medical tests, 
reviewing results, defining care plans, and explaining to the 
patients. There is an increased interest in making patients 
part of the decision-making process in a clinical setting, 
which is Shared Decision Making (SDM). SDM is a 

process where healthcare professionals and patients 
collaboratively make decisions based on reliable information, 
available options, and personal circumstances [3]. SDM 
requires physicians to spend very focused quality time 
assessing and discussing the clinical options and care plans. 
Physicians must also extensively document the clinical 
encounter details and the agreed-upon care plan with the 
patient. 

Physicians are to document the patient encounter with 
detailed notes for dual purposes, record keeping of patient 
clinical notes, and for billing/insurance claim processing 
perspective. Clinical notes are crucial for government-
regulated insurance plans such as Medicare and Medicaid. 
They can be audited by government agencies at any time, up 
to 7 years from the service date. For private commercial 
insurance plans, the payer can ask for detailed patient chart 
notes either as part of the claim adjudication process or to 
conduct periodic audits. Therefore, clinical documentation 
must be maintained in a timely and robust manner by the 
physicians to ensure effective delivery of patient care by 
other physicians coordinating the care and to avoid any 
auditing failures and regulatory penalties. The burden of 
clinical documentation responsibilities, however, limits the 
physicians’ time to spend with the patients and provide high-
quality clinical care. According to a survey conducted by 
Christino et al. [2] - A Nationwide Survey of Residents’ 
Perceptions of Clinical Documentation Requirements and 
Patient Care, most physicians (92%) feel the documentation 
and regulatory obligations are excessive with 40% of the 
time for the documentation, and 12% with the patient at the 
bed side for clinical care. 

The demand for extensive clinical documentation is 
increasing as regulations and insurance companies put a 
greater onus on physicians to document all aspects of patient 
care, treatment plans, procedural justifications, and any 
potential risks for clinical outcomes. The continual shift from 
clinical service and administrative tasks, such as clinical 
documentation, adds pressure to the physicians and 
contributes to their burnout. Extended office hours, 
continuous medical appointments, clinical tasks, 
administrative tasks, coordination between staff members, 
patient encounters, and other tasks lead to growing 
discontentment and dissatisfaction with current clinical 
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documentation methods. This documentation overburden 
has contributed to medical errors, patient safety threats, 
lower quality of documentation and learning, and, 
ultimately, physician burnout [5]. Generative AI-based 
clinical documentation solutions can aid in ameliorating the 
current situation, thereby improving the productivity and 
performance of medical practices. That said, Generative-
AI-based clinical documentation is still incipient, thereby 
requiring a deeper exploration of factors that impact the 
implementation of a novel yet proven technology. 

The remainder of the paper is organized as follows: 
Section II provides the research methods we have used for 
this research study of cross-site comparison of medical 
practices adopting the emerging technology – Generative 
AI technology. In Section III, we explain the research 
study's results and describe the output from our analysis of 
the data we collected. Section IV further discusses the 
findings and the overarching process model we built and 
compares the change dimensions across the sites. In 
Section V, we provide the conclusion and opportunities for 
future research. 

II. METHODS 
Our study utilizes a qualitative research design with a 

hybrid approach that combines a sociotechnical systems 
approach with a comparative case study across five medical 
practices. We investigated the adoption and implementation 
of a Generative AI-based clinical documentation 
technology solution in 5 medical practices. We gained 
insights into how these practices differ when adopting 
uncertain and emergent technology. We used the cross-case 
comparative analysis method, first developed by Miles & 
Huberman [4]. It provides a structured approach to trace 
implementation processes within one practice site and then 
compare it with other sites (See Table 1). By employing 
this approach, we were able to develop a comprehensive 
understanding of the implementation processes, considering 
both the specific contextual realities of medical practices 
and the broader sociotechnical aspects at play. 

A healthcare technology startup, Orci Care Inc., has been 
implementing its AI-based clinical documentation solution, 
built on Open AI’s GPT 4.0 Large Language Model (LLM) 
version 2024-05-13 with human oversight service, at five 
medical practice sites. Four of the five medical practices 
are in upstate New York, and the fifth medical practice is in 
Atlanta, GA. These medical practices are physician-owned 
private practices, including Primary Care and Pediatrician 
specialties. We conducted 30 interviews with physicians, 
staff members, and members of the implementation teams 
from Orci Care Inc. across five medical practices where the 
product teams implemented the Generative AI technology 
solution. Through the implementation, we have collected 
the data over 5 months. In addition to the interviews, we 
also analyzed the data collected from field observations, 

pre-and post-implementation process documentation, and 
textual data collected through a product feedback form that 
the physicians in the medical practices filled out to track their 
views on using the Generative AI solution. 

Implementing emerging technology such as Generative AI 
involves many unknown factors that might directly or 
indirectly influence the outcome of the implementation. 
Examples include whether to continue using the technology 
once the practice has made a commitment to it or when and 
how to decide that it is having an unfavorable impact on the 
practice and terminating its use. We explored various factors 
in adopting emerging technology in various medical 
practices to compare multiple dimensions. We also 
investigated the changes that occur during and post-
implementation from the perspectives of the technology 
itself, the process of introducing it, social factors, the goals 
of the practice and the outcomes of the technology’s use. 

In addition to the interviews, we also analyzed the data 
collected from the notes on the field study, documentation 
about the pre-and post-implementation process, social 
interactions, and responses to a feedback survey. The diverse 
data sources will make the qualitative analysis more solid 
and incorporate various viewpoints. Grounded theory 
methods provide guidelines for collecting and analyzing the 
data systematically and making sense of the data while 
building the  

TABLE I.  DIMENSIONS OF CHANGE WITH GENERATIVE AI ADOPTION 
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theoretical frameworks [1]. Grounded theory allows the 
researcher to identify the patterns in the data and build the 
theoretical concepts from the data rather than beginning 
with a set of hypotheses to prove [1]. While my research is 
not entirely based on grounded theory, we leveraged the 
concepts of data collection and the grouping of the data to 
construct my framework. 

III. RESULTS 
The analysis of data collected over 5 months on 

Generative AI implementation across five medical practices 
led to the discernment of a process framework (see Figure 
1). The goal was to conceptualize the findings across a 
broader range of Generative AI-based technologies for 
adoption in medical practices. We created initial codes of 
the information from the 30 interviews using the online 
program Delve. Next, following the grounded theory, we 
created focused codes that identified the overarching 
concepts from the initial codes and first-order categories. 
The focused codes represent the generic concepts that can 
be applied beyond the specific scope of this study to the 
adoption of any emerging technology in medical practices. 
We used the techniques of Miles and Huberman [4] to 
visualize various process elements and concepts and 
document the resulting displays. These visuals helped 
develop a processual map of implementing the emerging 
technology. It should be useful for further research and 
helpful for those seeking to introduce future emerging 
technology into medical practices. We have developed the 
overarching process model for Site-1 and enhanced it to 
incorporate the process model from the other four sites, 
resulting in a generalized process model that cuts across all 
five medical practice sites. Our analysis revealed that 
implementing the Generative AI technology created 
different adoption experiences across the practices. The 
changes observed across the sites are categorized as social 
changes, technical changes, organizational changes, and 
goals & outcomes. This approach is apt and suitable for this 
research study as the emerging technology adoption across 
multiple sites. 

The comparative case study across the five medical 
practice sites provided insights into the adoption 
experiences of the physicians and the elements of their 
ability to adopt the change, co-creative savviness, and 
patience levels to sustain initial disruptions. Adoption 
priming is preparing and supporting the end users through 
the initial adoption stages, sustaining the disruption with 
minimal impact, and assisting in achieving long-term 
benefits of the emerging technology implementation. The 
sites have experienced different levels of adoption priming 
based on physicians’ technical savviness, staff reluctance 
levels to support the change, and job security concerns. Etc.  

In a typical matured and stable technology implementation 
and adoption process, the main factors of the adoption 
include the technical systems, implementation complexity, 
and end-user readiness. However, in emerging technology 
implementations, additional consideration is given to the 
ambiguity of the end user in trusting the technology and 
acceptance levels of the disruptions during the 
implementation and stabilization phases. As Generative AI 
technology can potentially challenge and substitute 
traditional human roles in creating such content, the 
technology is inciting job security fears. We found that job 
security concerns with the emerging technology were present 
in some sites significantly more than the others. We also 
found that some practices created a new job role for Scribe as 
a human oversight of the AI-based emerging technology. 

The overarching process model, as shown in Figure 1, 
describes the end-to-end view of emerging technology 
adoption at medical practices from a sociotechnical systems 
perspective. The horizontal view shows the progression of 
emerging technology adoption phases. The pre-AI phase 
describes process elements experienced at the sites before the 
AI adoption. It shows the existence of interactional 
dissonance between physicians and patients as physicians 
experience administrative overburden and are distracted from 
taking notes while treating the patients. The pre-AI Product 
Discovery Phase includes the processual elements of 
exploring and evaluating solution options by the medical 
practices to solve the administrative burden, engaging the 
Generative AI-based product team, and learning more about 
the product. In this phase, it is observed in a few sites that 
substitutive apprehensions from the practice staff with the 
fear of job security exist. The AI Implementation phase 
includes the process elements involving how the product 
team and medical practice collaborate with the technology 
implementation and initial adoption disruptions. The 
collaboration between the product team, the physician, and 
the medical practice staff generates co-creation, adoption 
priming, competence scaffolding, and continual technology 
tinkering. The product team continues to enhance the product 
with the physician and medical practice staff's feedback, 
calibrating the onboarding process and co-maturing the 
product implementation.  Physicians enforcing the human 
oversight of the AI output for clinical documentation resulted 
in role re-forming and generating new roles at the medical 
practice as “Scribe”. Oversight enforcement and process 
simplification with the technology adoption promoted user 
trust accretion on the product & the emerging technology as 
physicians continue to verify the technology and realize the 
tangible and intangible benefits of the AI technology and the 
adoption outcome of the perpetuating AI use. It is observed 
across the sites that adopting AI technology for clinical 
documentation resulted in patient interactional enrichment.  
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Figure 1.  Overarching Process Model (Across All Sites)

 
IV. DISCUSSION 

Our study finds that implementing a Generative-AI-
based technological solution for clinical documentation has 
led to several potential intangible and tangible benefits for 
physicians and medical practices. For instance, the 
implementation has seen the emergence of a new role in 
medical practices, that of a Scribe as human oversight. The 
scribe’s role is to maintain critical oversight and conduct 
careful quality control of the clinical documentation 
generated by AI by verifying and curating it for the 
physician’s consumption. We also find evidence of role-
reforming in the medical practice in coordinating the 
clinical documentation activities between physicians, 
scribes, clinicians, and other practice staff. Some sites 
encountered varying levels of resistance from the practice 
staff with substitutive threats and apprehensions that 
significantly impacted implementation speed and 
subsequent AI use decisions. Furthermore, we found that 
professionals in charge of implementing emerging 
technologies need to consider the physicians' adoption 
ambivalence and substitutive apprehensions of the practice 
staff and can handle it effectively through implementative 
co-maturing. 

Technology startup teams of emerging technology such 
as Generative AI have a very tricky situation to handle, as 
the product team needs to continue to monitor and adopt 
the underlying unmatured technology such as Artificial 
Intelligence (AI) while evolving the product and services 
to implement and provide tangible benefits to the 
customers. Notably, our study shows the critical 
importance of triadic co-creation as an element of the 
implementation process. This research is significantly 
different from the implementation of traditional 
technologies in the sense that in the context of Generative-
AI, the co-creation process involves mutual adaptation 
between the technology implementation team, the user 
(personnel in the medical practices), and the AI-based 
technology that can autonomously learn and modify itself.  

We found that triadic co-creation occurs when product 
teams work closely with early customers who are equally 
motivated to achieve tangible and intangible benefits with 
the emerging technology. 

V. CONCLUSION AND FUTURE WORK 
This research offers a novel multi-dimensional 

perspective on adopting Generative AI in medical practices, 
focusing on a sociotechnical system approach. The research 
included the comparative qualitative study of Generative AI 
adoption at 5 medical practices. It emphasizes the role and 
the importance of considering social, organizational process 
changes, and technical systems when adopting new 
technologies. The study provided an implementation process 
of emerging technical adoption at medical practices from the 
perspectives of social, organizational, and technical, and 
goals & outcomes categories. The research found that 
Generative AI adoption at medical practices resulted in 
tangible and intangible benefits to the practice and in most 
of the cases a new role of Scribe has evolved. It also found 
that resistance and apprehensions from the practice staff has 
resulted in adoption speed and the overall outcome. The 
study identifies role re-reforming and triadic co-creation as 
the key elements in implementing an emerging technology 
at medical practices. 

REFERENCES 
[1] Charmaz, K. 2006. Constructing Grounded Theory: A 

Practical Guide Through Qualitative Analysis. London: 
Sage Publications. 

[2] Christino, M. A., Matson, A. P., Fischer, S. A., Reinert, S. 
E., Digiovanni, C. W., & Fadale, P. D. (2013). Paperwork 
Versus Patient Care: A Nationwide Survey of Residents’ 
Perceptions of Clinical Documentation Requirements and 
Patient Care. Journal of Graduate Medical Education, 5(4), 
600–604. https://doi.org/10.4300/JGME-D-12-00377.1 

[3] Driever, E. M., Stiggelbout, A. M., & Brand, P. L. P. 
(2020). Shared decision making: Physicians’ preferred role, 
usual role and their perception of its key components. 
Patient Education and Counseling, 103(1), 77–82. 
https://doi.org/10.1016/j.pec.2019.08.004 

45Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-247-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIHealth 2025 : The Second International Conference on AI-Health

                            52 / 78



[4] Miles, M., & Huberman, A. M. (1994). Qualitative data 
analysis: An expanded sourcebook (2nd ed.). Thousand 
Oaks, CA: Sage. 

[5] Moy, A. J., Schwartz, J. M., Elias, J., Cato, K. D., Small, 
D. S., & Rossetti, S. C. (2021). Measurement of clinical 
documentation burden among physicians and nurses using 
electronic health records: A scoping review. Journal of 
the American Medical Informatics Association, 28(5), 
998–1008. https://doi.org/10.1093/jamia/ocaa325 

46Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-247-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIHealth 2025 : The Second International Conference on AI-Health

                            53 / 78



Personalized Automated Blood Glucose Forecasting for Type-1 Diabetes Using Machine
Learning Algorithms

Avijay Sen,
Franklin High School

Elk Grove, California, United States
avijay.sen12@gmail.com

Dr. Sindhu Ghanta
AIClub Research Institute
Mountain View, CA, USA

sindhu@aiclub.world

Pallavi Bajpai
AIClub Research Institute
Mountain View, CA, USA
pallavi.bajpai@aiclub.world

Abstract—Type-1 Diabetes Mellitus (T1DM) is a chronic
condition characterized by the pancreas’s inability to produce
insulin, requiring continuous monitoring and management of
blood glucose levels. Accurate prediction of blood glucose levels
can significantly improve patient outcomes by reducing hypo-
and hyperglycemic events. This study develops a personalized
automated blood glucose forecasting system leveraging the past
blood glucose levels and insulin pump data. Utilizing the publicly
available Diatrend dataset, encompassing thirty-one days of
data for five subjects, we evaluated three machine learning
algorithms: K-Nearest Neighbors (KNN), Random Forest (RF),
and Multilayer Perceptron (MLP). After hyper-parameter tuning,
the performance of each algorithm was assessed using Root Mean
Squared Error (RMSE), Mean Squared Error (MSE), and the
coefficient of determination (R2), with a particular emphasis
on RMSE. The Random Forest model demonstrated superior
performance, achieving a test RMSE range of 14.98−23.62 across
all subjects. This research highlights the efficacy of supervised
machine learning algorithms in predicting blood glucose levels
over one-hour intervals for T1DM patients, underscoring the
potential of personalized machine learning models to improve
diabetes management.

Keywords- blood glucose prediction; Type-1 Diabetes Mellitus;
insulin delivery system

I. INTRODUCTION

Type 1 Diabetes (T1DM) is a chronic condition where the
pancreas fails to produce insulin, the hormone needed to control
blood sugar levels. People with T1DM face challenges in
managing blood sugar, which can be too low (hypoglycemia)
or too high (hyperglycemia). Low sugar levels, below 70 mg/dL,
can cause symptoms like sweating, hunger, and even serious
issues like seizures or coma [1], [2]. High sugar levels, over
140 mg/dL, may lead to problems in the eyes, heart, and nerves
[3], [4]. Managing these fluctuations requires careful insulin
use, which can be challenging and risky [5].

The eight leading cause of death globally is diabetes [6].
The number of deaths has been increasing since the start of
the 21st century [7]. The increasing trend approximates that
there will be 13.5-17.4 million people suffering from T1DM
by 2040 [8]. Majority of the deaths occur before 70 and are
due to high glucose levels [9].

A development of a sophisticated insulin delivery method
that combines Continuous Glucose Monitoring (CGM), which
utilizes the subcutaneous interstitial fluid to measure glucose
levels and insulin pumps which use glycemic data from the
monitors to provide temporary insulin formulas like basal or

bolus to maintain glucose levels. The device asks the patient
for information on physical activity, insulin bolus dosage, meal
sizes and carbohydrate content, among other things, in order
to obtain more accurate assessments [10].

To further enhance the capabilities of CGMs, Machine Learn-
ing (ML) offers a promising avenue. ML can perform human-
like tasks through learning from data and being able to adapt to
unseen data. There are various types of ML algorithms, such as
Supervised, Unsupervised, Semi-supervised, and Reinforcement
learning [11]. Supervised learning is typically the task of ML
to learn a function that maps an input to an output based on
sample input-output pairs [12]. It uses labeled training data and
a collection of training examples to infer a function. Supervised
learning is carried out when certain goals are identified to be
accomplished from a certain set of inputs [13]. There are two
different types of common supervised tasks which include
“classification” that separates the data or “regression” that fits
the data [12]. For the purpose of this study, regression was
used consisting of different algorithms [14].

The integration of technology in diabetes management has
led to significant advances in the prediction and control of blood
glucose levels [15]. CGMs combined with insulin pumps, forms
the backbone of artificial pancreas systems, which automate
insulin delivery to maintain optimal glucose levels [16]. These
closed-loop systems have shown promise in reducing the burden
of daily diabetes management and improving overall quality
of life for patients [17]. Studies have demonstrated that such
systems can significantly improve glycemic control, reduce
HbA1c levels, and mitigate the risks associated with long-
term diabetes complications [18]. The continuous evolution of
these technologies and their integration with machine learning
algorithms hold the potential to transform diabetes care, making
it more precise, personalized, and effective [19].

Our paper focuses on evaluating closed-loop insulin deliv-
ery systems, known as artificial pancreas systems, for their
effectiveness and safety in managing T1DM. By analyzing
CGM data, we developed a method to fine-tune insulin rates
using various ML models. Our personalized approach using
the Diatrend dataset demonstrates the strength and flexibility
of these models for individual patient needs.

The paper is structured as follows: The Introduction discusses
the challenges of T1DM and the role of ML in improving
insulin systems. The Related Work section reviews existing
models and their limitations. Materials and Methods explain
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our dataset, data preparation, and methodology. Results provide
an analysis of model performance. Discussion interprets the
findings, comparing them with existing methods. Future Work
& Limitations suggest improvements and study constraints.
The Conclusion summarizes our contributions and highlights
the importance of personalized systems in diabetes care.

II. RELATED WORK

Predicting blood glucose levels in patients with T1DM has
been the focus of numerous studies employing a variety of
machine learning algorithms and models. Machine learning
plays a crucial role in predicting blood glucose levels by
analyzing vast amounts of data to identify patterns and
trends that are not easily discernible by traditional methods.
This allows for more accurate and personalized predictions,
ultimately improving diabetes management and reducing the
incidence of hypo- and hyperglycemic events. Prior research
has demonstrated the potential of different methods, yet each
approach has limitations that impact the predictability and
efficiency of the models.

The emergence of CGMs has introduced different method-
ologies aimed at forecasting glucose levels. There have
been advancements in creating physical models and/or data-
driven observational models that attempt to predict glucose
levels of patients [20]. A few models that have been used
are Proportional-Integral-Derivative (PID) Controllers [21],
Artificial Neural Networks (ANNs) [22], Recurrent Neural
Networks (RNNs) [23], Long Short-Term Memory (LSTM)
Networks [24], Support Vector Machines (SVM) [25], [26],
Fuzzy Logic Systems [27], and RFs [28]. Recently, neural
network based models are gaining popularity: the use of dilated
recurrent neural networks (DRNNs), which have shown promise
in improving prediction accuracy by handling sequential data
more effectively and overcoming issues like gradient vanishing
[29]. Additionally, transfer learning approaches, where models
are initially trained on a generalized dataset and then fine-
tuned with individual patient data, have demonstrated enhanced
prediction accuracy for specific subjects [30].

One notable study, titled “A Machine Learning Approach to
Predicting Blood Glucose Levels for Diabetes Management”
implemented the Support Vector Regression (SVR) algorithm
alongside a physiological model characterized by three com-
partments: meal absorption dynamics, insulin dynamics, and
glucose dynamics. The researchers utilized a small sample size
of five T1DM patients to pull different parameters including
carbohydrate intake, rapid-acting insulin, bolus and basal rate,
body mass, and insulin sensitivity (IS) [31].

Similarly, another research paper compared the efficacy of
LSTM networks and Temporal Convolutional Networks (TCNs)
for blood glucose level prediction [32]. This study also explored
various classification algorithms, including SVM, Naive Bayes,
and Decision Tree for comparison. The results indicated that
there was little benefit to employing TCN or LSTM over
conventional models, pointing to a potential application gap
for these cutting-edge neural networks. This emphasizes the

necessity of more research to determine the circumstances in
which these models could provide meaningful advantages.

Further research evaluating the accuracy of SVM, Naive
Bayes, and Decision Tree algorithms in diabetes classification
were conducted using the Pima Indian Diabetes Database [33].
One weakness of the dataset was its homogeneity—all of
the patients were of the same race. This limited the results’
applicability to more diverse populations with a range of genetic
and lifestyle backgrounds.

In order to overcome issues like missing data, research
has also been done using RNN algorithms to predict blood
glucose levels [34]. The study focused on improving prediction
accuracy by utilizing the temporal dependencies in CGM data.
The existence of missing data, however, presented a serious
problem and might have an effect on the model’s predictability
and accuracy. Developing efficient methods to deal with missing
data is essential to enhancing RNN models’ resilience in
practical applications.

Interestingly, researchers have proposed a hybrid approach
combining SVM and Neural Networks (NN) to improve
blood glucose level predictions. This method demonstrates
enhanced accuracy in glucose forecasting, particularly in
reducing prediction errors compared to traditional models
[35]. However, the study relies on a relatively small dataset,
which may affect the generalizability of the model to broader
populations.

Building on these efforts, we adopt a different approach by
utilizing the same dataset as prior studies but with distinct
model choices and methodology. While deep learning models
like LSTM and Encoder-Decoder are commonly used for time-
series predictions, as highlighted in "Deep Learning-Based
Glucose Prediction Models: A Guide for Practitioners" [36], we
opt for simpler machine learning techniques such as KNN, RF,
and MLP in order to easily integrate into healthcare systems.
Additionally, we focus on hyperparameter optimization for
individual subjects rather than complex training strategies like
personalized or fine-tuning methods. This allows us to prioritize
model simplicity and interpretability while still leveraging the
same data.

In contrast to other approaches, our methodology involves
the use of three distinct algorithms: KNN, RF, and MLP, to
provide personalized solutions for each patient. The dataset
we used includes a diverse group of subjects with varied
characteristics, such as differences in sex and race, enhancing
the representativeness and predictability of our results. By
conducting hyperparameter tuning and training multiple models,
we selected the best-performing model to ensure the robustness
and accuracy of our findings, setting our research apart from
previous studies.

This body of related work highlights the ongoing efforts
and challenges in predicting blood glucose levels in T1DM
patients. Each study contributes uniquely to the field, offering
insights and advancements while highlighting areas for further
investigation and improvement.
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Figure 1. Flowchart of the process.

III. MATERIALS AND METHODS

This section outlines the materials and methods employed
in this study, providing a detailed framework for the research
process.

A. Dataset

We utilized the Diatrend dataset [37], which offers extensive
continuous data from wearable medical devices. This includes
8,220 days of insulin pump data and 27,561 days of CGM
data from 54 diabetic patients. For our analysis, we selected
five subjects out of 17 subjects from this dataset who had
comprehensive CGM and basal insulin readings available to
ensure data completeness.

B. Data Pre-processing

The dataset was initially filtered to identify patients with
both CGM and basal insulin readings. To prepare the data for
analytical and statistical models, several pre-processing steps
were undertaken to ensure data quality and completeness.

Basal insulin data entries, which include fields for "date,"
"rate" (units per hour), and "duration" (milliseconds), were

adjusted to ensure that no single duration exceeded 5 minutes
(300,000 milliseconds). Any entries with duration longer than
5 minutes were split into multiple 5-minute segments, and
the corresponding timestamps were updated accordingly. This
adjustment facilitated accurate alignment with CGM data,
ensuring consistent time intervals.

The modified basal insulin data was integrated with the CGM
data to create a unified dataset. For each CGM timestamp, the
corresponding basal insulin data was merged. If multiple basal
insulin entries existed within the interval between two CGM
readings, the basal entry that either matched or immediately
followed the CGM timestamp that was selected.

Missing values in the CGM data for columns like "mg/dl"
(glucose concentration) column were addressed using forward-
fill imputation. This method replaces missing values with
the last observed value, which is appropriate for maintaining
the continuity of time-series data. Both CGM and basal
insulin datasets were sorted by date to preserve their temporal
sequencing.

To capture both glucose trends and insulin delivery patterns
over time, the following features were calculated using a rolling
window of 12 data points (equivalent to 1 hour if readings are
taken every 5 minutes): Glucose Mean (glucose_mean): The
mean glucose level over the window. Glucose Standard Devia-
tion (glucose_std): The standard deviation of glucose levels over
the window. Weighted Basal Infusion (basal_infusion): This
feature was calculated as the sum of the product of "duration"
and "rate" divided by the sum of "duration" over the window,
representing the average basal insulin delivery rate weighted
by duration.

These features provided a comprehensive view of glucose
dynamics and insulin administration, which are critical for
predictive modeling in diabetes management. After feature
extraction, the dataset for each data point included the following
features:
• date: Timestamp of the CGM reading.
• glucose_mean: Mean glucose level over the past hour.
• glucose_std: Standard deviation of glucose levels over the

past hour.
• basal_infusion: Weighted average basal insulin infusion rate

over the past hour.
• mg/dl: Current glucose reading.
After this, we divided the dataset in the order of time to preserve
the temporal order and prevent any mixing of future and past
data, hence randomization was not an option. By doing this,
we made sure that the model learned from earlier data and was
tested on later data, similar to real-world prediction situations,
maintaining the quality of our time-based analysis.
• Training Set (70%): The earliest 70% of the data points,

used to train the model.
• Validation Set (15%): The subsequent 15% of data points,

used for hyper-parameter tuning.
• Test Set (15%): The latest 15% of data points, used to

evaluate the model’s performance on unseen data.
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C. Methodology

For our analysis, we chose KNN, RF, and MLP regression
models because of their proven effectiveness in both time-series
prediction and glucose level forecasting:
• KNN: Valued for its straightforward approach and ability to

capture local data patterns, KNN has successfully been used
in glucose prediction, yielding satisfactory outcomes [38].

• RF: This ensemble learning technique improves predictive
accuracy and mitigates over fitting. RF models are known
for their robust performance in analyzing medical data and
offer feature importance metrics, enhancing interpretability
[39].

• MLP: As a type of neural network, MLP excels at modeling
complex, non-linear relationships, making it highly appro-
priate for glucose prediction where such intricate patterns
are present [40].

In particular, the feature importance scores provided by RF
models significantly boost interpretability, which is essential
in personalized medicine. Our choices emphasize a balance
between achieving high predictive performance and maintaining
model interpretability.

The dataset consists of five subjects. The dataset comprises
data from five distinct subjects. For each subject, we developed
a unique model using data specific to that individual since
subject’s timestamps were different for all subject’s readings.
Each of the three algorithms was applied separately to the data
from each subject, allowing us to conduct thorough experiments
tailored to each subject’s dataset.

We conducted hyper-parameter tuning for each model to
enhance performance. For KNN, we tested using between 1 and
16 neighbors to find the right balance for understanding both
small and large patterns in the data. With RF, we experimented
with using between 10 and 100 decision trees and adjusted
their depth from 1 to 7 to avoid making the model too complex
or too simple. For the MLP, we varied the starting learning
rates between 0.00001 and 0.05 and adjusted the number of
iterations from 10 to 100 to see how these factors affected the
model’s learning and improvement speed. Each configuration’s
performance was assessed using RMSE and R² on the validation
set. This tuning process was crucial for ensuring generalization
and avoiding over fitting. The optimal hyper-parameters differed
across subjects, reflecting the unique glucose dynamics of each
individual [41]. Furthermore, the best-performing model was
employed to evaluate its performance by applying it to the test
data of all subjects.

Following an extensive hyper-parameter tuning phase, the
models that exhibited the best performance based on validation
metrics were selected. These models were then rigorously tested
on each of the five subjects’ test data to evaluate their reliability.
This evaluation involved calculating three key performance
metrics: MSE, RMSE, and the R². These steps ensured an
assessment of the model’s predictive capabilities, providing
insights into their performance on data that was not used during
training and hyper-parameter tuning. Refer to Figure 1 for a
visual representation of the Materials and Methods processes.

IV. RESULTS

In this section, we present the performance of three machine
learning models— KNN, RF, and MLP— across five different
subjects, using the RMSE and R² (coefficient of determination)
score as the key metric.

Graphs illustrating model performance metrics for each
algorithm and subject using validation data are shown in Figure
2. Specifically, we plotted RMSE against the K values for KNN
models, RMSE against the number of estimators (n_estimators)
for various max_depth configurations in RF models, and RMSE
against the number of iterations for different learning rates in
MLP regression models.

The graph displays an RMSE range of 14.98 to 23.62
mg/dL. While this is relatively high, it falls within acceptable
limits for glucose prediction models. Given that glucose levels
can vary significantly and rapid fluctuations are common in
Type 1 Diabetes patients, clinical guidelines typically consider
deviations within ±30 mg/dL to be acceptable. Therefore, our
model’s errors are within a clinically relevant range [42].

(a) Subject 52 (RF) (b) Subject 29 (MLP)

(c) Subject 46 (MLP) (d) Subject 38 (MLP)

(e) Subject 54 (RF)

Figure 2. Subject’s graph of their best performing model
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Results of the best model obtained from hyper-parameter
tuning on the validation and test datasets is shown in Tables I
and II.

TABLE I. TRAINING RESULTS FOR DIFFERENT SUB-
JECTS AND MODELS

ID KNN RF MLP
52 MSE: 252.947 MSE: 227.535 MSE: 317.137

RMSE: 15.904 RMSE: 15.084 RMSE: 17.808
R2 Score: 0.912 R2 Score: 0.921 R2 Score: 0.890

29 MSE: 438.806 MSE: 425.273 MSE: 420.411
RMSE: 20.947 RMSE: 20.622 RMSE: 20.503

R2 Score: 0.857 R2 Score: 0.861 R2 Score: 0.863
46 MSE: 814.730 MSE: 717.231 MSE: 820.608

RMSE: 28.543 RMSE: 26.781 RMSE: 28.646
R2 Score: 0.880 R2 Score: 0.895 R2 Score: 0.879

38 MSE: 317.209 MSE: 310.727 MSE: 301.532
RMSE: 17.810 RMSE: 17.627 RMSE: 17.364

R2 Score: 0.866 R2 Score: 0.869 R2 Score: 0.873
54 MSE: 342.127 MSE: 299.137 MSE: 375.030

RMSE: 18.496 RMSE: 17.295 RMSE: 19.365
R2 Score: 0.772 R2 Score: 0.800 R2 Score: 0.750

TABLE II. TESTING RESULTS FOR DIFFERENT SUB-
JECTS AND MODELS

ID KNN RF MLP
52 MSE: 314.087 MSE: 305.725 MSE: 378.007

RMSE: 17.722 RMSE: 17.484 RMSE: 19.442
R2 Score: 0.926 R2 Score: 0.928 R2 Score: 0.911

29 MSE: 414.655 MSE: 391.740 MSE: 385.436
RMSE: 20.363 RMSE: 19.792 RMSE: 19.632

R2 Score: 0.880 R2 Score: 0.886 R2 Score: 0.888
46 MSE: 615.205 MSE: 558.373 MSE: 546.354

RMSE: 24.803 RMSE: 23.629 RMSE: 23.374
R2 Score: 0.922 R2 Score: 0.929 R2 Score: 0.931

38 MSE: 352.870 MSE: 340.414 MSE: 330.102
RMSE: 18.784 RMSE: 18.450 RMSE: 18.168

R2 Score: 0.800 R2 Score: 0.807 R2 Score: 0.813
54 MSE: 235.849 MSE: 224.320 MSE: 293.482

RMSE: 15.357 RMSE: 14.977 RMSE: 17.131
R2 Score: 0.789 R2 Score: 0.800 R2 Score: 0.738

For the training data, the Random Forest model achieved the
highest R² score of 0.921 for Subject 52, demonstrating better
predictive ability compared to the KNN model with an R² score
of 0.912 and the MLP model with an R² score of 0.890. For
Subject 29, the MLP model emerged as the best performer with
an R² score of 0.863, slightly outperforming the RF and KNN
models, which had R² scores of 0.861 and 0.857, respectively.
In the case of Subject 46, the RF model again showed the
highest predictive ability with an R² score of 0.895, while KNN
and MLP had similar performances, with R² scores of 0.880
and 0.879, respectively. Additionally, for Subject 38 the MLP
model achieved the highest R² score of 0.873, indicating better
performance than both the RF and KNN models, which had
R² scores of 0.869 and 0.866, respectively. Finally, for Subject
54, the RF model outperformed the other models with an R²
score of 0.800, followed by the KNN model with an R² score
of 0.772, and the MLP model with the lowest performance at
an R² score of 0.750.

Overall, the RF model consistently executed the highest
R² scores across the majority of subjects, indicating strong

predictive performance. Specifically, the RF model had the
highest R² scores for Subject 52 (0.921), Subject 46 (0.895),
and Subject 54 (0.800). The MLP model performed the best
for Subject 29 (0.863) and Subject 38 (0.873). While the KNN
model showed strong performance, it did not outperform the
RF or MLP models in any subject. These findings imply that
the MLP and KNN models are closely followed by the RF
model, which is the most reliable option for precise predictions
across this dataset.

When evaluating the models on the test data, the RF model
obtained the highest R² score of 0.928 for Subject 52, closely
followed by the KNN model with an R² score of 0.926. The
MLP model had a slightly lower R² score of 0.911. This
indicates that both RF and KNN models performed similarly
well, slightly outperforming the MLP model for this subject.
In the case of Subject 29, the MLP model emerged as the
best performer with an R² score of 0.888. The RF model also
performed well, achieving an R² score of 0.886, while the KNN
model had a slightly lower R² score of 0.880. The differences
in performance were minimal, suggesting that all three models
were effective for this subject, with the MLP model having
a slight edge. For Subject 46, the MLP model demonstrated
the highest predictive performance with an R² score of 0.931,
followed by the Random Forest model with an R² score of
0.929. The KNN model also performed strongly with an R²
score of 0.922, but was slightly surpassed by the other two
models. For Subject 38, the MLP model again accomplished
the highest R² score of 0.813, indicating fitter performance than
both the RF model (R² score of 0.807) and the KNN model (R²
score of 0.800). All three models performed well, but the MLP
model was the best among them for this subject. Finally, for
Subject 54, the RF model exceeded the other models with an
R² score of 0.800. The KNN model followed with an R² score
of 0.789, while the MLP model had the lowest performance
with an R² score of 0.738.

In summary, the performance of each model varied across
different subjects, but overall, the RF and MLP models
frequently demonstrated superior predictive capabilities. Specif-
ically, the Random Forest model achieved the highest R² scores
for Subject 52 (0.928) and Subject 54 (0.800), while the
MLP model led for Subject 29 (0.888), Subject 46 (0.931),
and Subject 38 (0.813). The KNN model showed strong
performance but was generally outperformed by the RF and
MLP models. These results underscore the value of using
multiple models to identify the most effective predictive
approach for different datasets.

We subsequently selected the best-performing model, identi-
fied by its lowest RMSE score of 14.977, as the most effective
approach. To assess the robustness and generalizability of this
model, we applied it to the test data of all subjects, evaluating
its performance across the entire dataset. This approach allowed
us to determine whether the optimized model could maintain
its accuracy and reliability when exposed to diverse subject-
specific data. Table III presents the model’s applicability and
performance metrics for each subject.
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TABLE III. TESTING RESULTS FOR SUBJECTS ON BEST
MODEL

ID RMSE
52 RMSE: 31.300
29 RMSE: 22.552
46 RMSE: 43.736
38 RMSE: 18.716
54 RMSE: 14.977

V. DISCUSSION

In this study, we developed models to predict blood glucose
levels of patients using machine learning algorithms. We tested
three different algorithms: KNN, RF, and MLP on five different
subject’s datasets from the Diatrend dataset. The process for
each subject’s dataset consisted of training, validation, and
testing of the models. The performance of these models was
evaluated based on three metrics namely, R², MSE, and RMSE.
However, for the scope of this study, we narrowed down our
analysis for determining best performance to rely more heavily
on R² and RMSE.

The model hyper-parameters chosen for each patient dataset
impacted the RMSE and R2 values differently for each subject.
KNN algorithm did not yield a high performance in any of
the subjects.

In case of random forest, for subjects 52 and 54, moderate
values of hyper-parameters yielded the highest performance. For
Subject 52, the results indicate that increasing the maximum
depth and number of estimators generally improves model
performance up to a certain point. The lowest MSE and
RMSE values are observed at a maximum depth of 5 and
90 estimators, with an MSE of 15.124 and RMSE of 15.085.
However, further increases in these hyper-parameters do not
lead to substantial improvements and, in some cases, result in
slightly worse performance. The results for Subject 54 show a
slightly different set of trends. Here, the learning rate and the
number of epochs play a crucial role in model performance.
It is clear that excessively high or low learning rates lead to
poor performance, as evidenced by the extremely high MSE
values for learning rates of 0.01 and 0.00001. The most optimal
performance is observed at a learning rate of 0.05 with 90
epochs, yielding an MSE of 17.055. While moderate values of
hyper-parameters tend to yield better performance generally,
the specific sensitivity varies between subjects.

Similarly, in case of subjects 29, 46 and 38, where MLP
demonstrated highest validation performance, model values of
learning rate and epochs resulted in a better model. For Subject
29, the results indicate that the MSE and RMSE tend to stabilize
at lower values when the learning rate is set to 0.001, 0.005, or
0.0005, and the number of epochs ranges from 30 to 60. The
best performance is seen with a learning rate of 0.0005 and 30
epochs, achieving the lowest MSE of 20.440. For Subject 46, a
learning rate of 0.01 with 100 epochs yielded the lowest MSE
of 26.489, suggesting that a higher learning rate combined with
a longer training period can enhance performance. Conversely,
extremely low learning rates (e.g., 0.0001 and 0.00005) resulted
in significantly higher MSE values, highlighting the model

could not converge even with a large number of epochs. For
Subject 38, the optimal performance is observed with a learning
rate of 0.05 and 70 epochs, achieving the lowest MSE of 17.264.
Interestingly, very low learning rates such as 0.00001 lead to
significantly higher MSE values, indicating poor performance
and potentially inadequate learning. This suggests that for this
subject, higher learning rates within a moderate range are more
effective.

While general trends of moderate hyper-parameter values
yielding better results are consistent, specific optimal configu-
rations vary, underscoring the importance of subject-specific
tuning for achieving the best predictive accuracy.

Test results evaluated using the best validation models
provided a few other insights. For Subject 52, the RF model
gave the best result with an R² score of 0.928 and RMSE of
17.484. The MLP model worked best for Subject 29 with an
R² score of 0.888 and RMSE of 19.632 showing the highest
performance. Similarly for Subject 46, the MLP model again
performed best with the highest R² score of 0.931 and RMSE
of 23.374. However, Subject 38 also had the MLP model giving
the most accurate results with R² reaching up to 0.813 and a
relatively low RMSE of 18.168. Lastly, for Subject 54, the RF
model gave the best performance with an R² score of 0.800
and RMSE of 14.977.

Subject-specific performance analysis revealed variability
in model performance across individuals. For Subject 29,
the MLP model performed best, likely due to its ability
to capture the non-linear glucose-insulin relationship. For
Subject 46, the Random Forest model excelled, indicating that
ensemble methods handled data variability effectively. Subject
54 showed lower R² scores across models, suggesting higher
data variability or noise, which warrants further investigation.

Additionally, it became evident when the test data for
all subjects was run through the best-performing model that
creating a uniform, one-size-fits-all model would not be feasible.
The results showed significant variability in RMSE scores
among different subjects, emphasizing the inherent challenges
in developing a single algorithm capable of delivering consistent
performance across a diverse population. This variability
suggests that subject-specific factors, such as unique glucose
dynamics, lifestyle habits, and physiological differences, play a
critical role in determining model accuracy. As a result, relying
solely on a uniform model could lead to suboptimal outcomes
for many individuals, further emphasizing the need to address
these differences through tailored approaches.

These findings underscore the importance of adopting person-
alized modeling techniques rather than a universal solution. By
designing models that account for individual characteristics and
unique data patterns, it becomes possible to enhance prediction
accuracy and optimize clinical outcomes for each subject. The
high variability in RMSE scores also suggests that no single
algorithm is universally superior for all patients, reaffirming the
necessity for a more nuanced approach in algorithm selection
and model development.
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VI. LIMITATIONS & FUTURE WORK

The Diatrend dataset provides useful real-world insights, but
its size and duration limit the applicability of the findings to a
broader group of people. Since the data comes from just 31
days and five subjects, it might not fully capture the range of
blood glucose patterns in a larger, more diverse population. This
small group of subjects means the models might fit too closely
to these individuals, making them less useful for generalization.

Our study focuses on using only past blood glucose levels
and insulin pump data, as these two data sources provide direct
and continuous indicators of glucose trends relevant to Type-
1 Diabetes management. This targeted approach is common
in many studies aiming to develop predictive models. While
additional variables such as diet and exercise play a vital role
in maintaining glucose levels in the human body, including
them in our research would increase model complexity and
data variability, potentially affecting model accuracy without
adequate validation. Therefore, future studies could expand by
integrating these broader data types to capture a more holistic
picture.

We used simple models for their interpretability and computa-
tional efficiency in personalized predictions that analyze data in
one-hour chunks. In the future, incorporating advanced models
like LSTMs or TCNs could help examine longer temporal
patterns, as seen in other studies. Additionally, integrating
interpretability methods, such as Shapley Additive exPlanations
(SHAP) values for assessing feature importance, could further
enhance the clinical applicability of the models.

Future work should involve a larger number of subjects and
longer data collection periods to assess model performance
across diverse populations. Additionally, incorporating the rest
of subjects’ data from Diatrend into the modeling process
could enhance the algorithms’ adaptability and reliability by
leveraging existing datasets to refine predictions and optimize
performance. It is also important to test these models in actual
healthcare settings to evaluate their reliability and usefulness.
Integrating them with continuous glucose monitors and insulin
pumps could pave the way for clinical trials.

Although the study’s small sample size limits its broader
applicability, we have optimized the models for the best
performance with the given data. Expanding the dataset to
include a larger and more diverse population should be a
priority for future research.

To summarize, our study provides a strong foundation for
further research in the field of blood-glucose level prediction.
Future research could focus on additional model fine-tuning and
testing other machine learning approaches. Other facets that can
be considered include the impact of data quality and volume
or understanding and leveraging intra-individual variability to
improve accuracy. The ultimate goal lies in the development of
an optimal prediction system, one that can adapt and learn from
the inputs dynamically while being highly precise and reliable,
offering a personalized solution for patients by integrating
the prediction system into a closed-loop "artificial pancreas"
system.

VII. CONCLUSION

Our research has established a foundation for an optimal
blood glucose prediction system using supervised machine
learning, employing three distinct algorithms: KNN, RF,
and MLP. The results illustrated the promising potential of
this research when further developed. Our models achieved
significant predictive performance as indicated by RMSE and
R² metrics, demonstrated their effectiveness in personalized
glucose level prediction. While accuracy in classification tasks
was not directly applicable here, the high R² values reflected the
models’ ability to explain a substantial proportion of variance
in glucose levels.
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Abstract—Access to healthcare resources continues to be a 
critical issue for underserved populations, often exacerbated 
by barriers in languages and inefficient navigation systems. 
While Short Message System (SMS) text-based platforms have 
proven particularly valuable during the COVID-19 pandemic 
in enhancing communication and access, optimization of these 
systems through machine learning predictive models is an 
emerging area of investigation. To this end, we developed 
NextStep, an artificial intelligence-driven (AI-driven) 
multilingual healthcare assistant that streamlines resource 
access through real-time, personalized suggestions based on 
user need and location. Equipped with deep learning 
algorithms in natural language processing and machine 
learning, NextStep greatly enhances user interaction and better 
matches users with resources. This has resulted in significant 
enhancements to improve efficiency and increase patient 
satisfaction. Having been field-tested at hospitals and clinics, 
including Texas Children's Hospital and San Jose Clinic, 
NextStep showcases an extraordinary instance of AI in 
bridging gaps in health disparities. Future versions will add 
expanded language support and detailed predictive analytics to 
provide more tailored recommendations and anticipate patient 
needs. 

Keywords-Artificial Intelligence; Social Determinants of 
Health; Medical Resources; Smart Assistant 

I.  INTRODUCTION  
A large body of research indicates that Social 

Determinants Of Health (SDOH) - factors including income, 
education, and race - play a significant role in determining an 
individual’s health outcomes. Poor SDOH can manifest in 
increased mortality rates, especially among those already 
afflicted with conditions, such as chronic kidney disease, 
diabetes, and cardiovascular disease [1] – [3]. Approaches to 
lessen the impact of SDOH on health outcomes of 
underprivileged patients should be developed.  

As a potential intervention, telehealth demonstrates 
promise in improving health outcomes of underprivileged 
patients. Recently, telehealth usage has spiked during the 
COVID-19 pandemic and has aided healthcare providers in 
handling the surge of sick patients [7], specifically with 
screening patients for COVID-19 symptoms and supporting 
low-risk patients while minimizing exposure to the virus. 
Furthermore, a study on telehealth and patient satisfaction 
shows that there is a positive experience regarding 
effectiveness and efficiency of telehealth. The factors listed 
most often were improved outcomes (20%), preferred 

modality (10%), ease of use (9%), low cost (8%), improved 
communication (8%), and decreased travel time (7%), which 
in total accounted for 61% of positive experience 
occurrences [4]. 

Moreover, a subset of telehealth technologies, Short 
Message System (SMS)-based platforms, can easily reach 
individuals who lack smartphones or other necessary 
hardware to download apps, making it ideal for interactions 
with low-income communities. SMS-based platforms have 
already been successfully utilized for various aims, such as 
improving medication adherence, promoting engagement in 
physical activity, and meeting the needs of patients with 
chronic medical conditions [4] – [6]. Additionally, according 
to the Pew Research Center, 97% of Americans have cell 
phones [8], making SMS-based platforms practical for 
interacting with patients. 

The majority of SMS-based telehealth applications 
currently in use focus on connecting physicians and patients 
in a medical context, such as helping with medication 
adherence. This is undoubtedly a valuable function, but few 
applications focus on addressing the social determinants of 
health. The SMS platform in the present study, NextStep, is 
unique in that it was distributed in primary care settings, with 
a focus on directing patients to Houston-specific social 
resources. Patients were given access to resources in the 
domains of Coronavirus disease (COVID-19) testing/vaccine 
resources, the Harris Health Financial Assistance Program, 
food resources, utilities/financial assistance resources, and 
housing resources. They subsequently received information 
about local food banks, homeless shelters, and local financial 
assistance programs to assist in paying for medical expenses.  

Since this was a pilot study, several feasibility 
requirements were taken into account. First, usage rates, such 
as the number of surveys completed and the average number 
of messages per person, were measured in order to give 
insight into the willingness of patients to engage with the 
platform. The platform was also tested at two safety net 
clinics to assess whether usage changed based on individual 
characteristics of the clinic where field testing took place as 
well as the methods used to employ the test. Furthermore, 
the platform used in this pilot study was designed with the 
purpose of minimizing both operational costs and costs for 
users. The projected operational costs for 1,000 users per 
month for 10 months were approximately $0.25 per patient 
reached. SMS platforms represent a low-cost, convenient 
option for patients as well [9]. The minimization of costs, 
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both operationally and for patients, was prioritized in order 
to ensure that the platform is sustainable.  

Looking at an overview of the manuscript, Section II 
describes the materials and methods used to develop 
NextStep, detailing the technologies involved, including 
NVIDIA components, and the underlying system 
architecture that supports the assistant. This section also 
explains the different development phases, from platform 
design and system development to clinical testing. Section 
III presents the results obtained from field testing at various 
clinical sites, examining user engagement, multilingual 
support, and resource request patterns. Section IV discusses 
the implications of these findings, highlighting the platform's 
effectiveness, key performance metrics, and areas for 
improvement. Finally, Section V outlines the conclusions 
and future directions, emphasizing planned enhancements 
such as expanded language support, improved NLP 
capabilities, and predictive analytics for more tailored 
resource recommendations. 

II. MATERIALS AND METHODS 
The process of developing the assistant was divided into 

three main phases: platform design, system development, 
and clinical testing. The platform design phase focused on 
selecting the most effective resources and features for 
diverse patient populations through comprehensive 
background research and analytics from nearby hospitals. 
The system development phase involved integrating 
technologies such as Twilio and selecting appropriate 
algorithms to build the assistant's infrastructure. Finally, the 
clinical testing phase entailed deploying the assistant in 
medical centers, including Texas Children’s Hospital and the 
San Jose Clinic at the Texas Medical Center, to evaluate its 
effectiveness in real-world settings. 

A. Platform Design 
The platform used in this pilot study, NextStep, began its 

development with initial research and design. This consisted 
of conducting formative research to understand the 
immediate needs of the target population. According to 
Harris Health County Data, 54.1% of patients seen at Ben 
Taub Hospital are uninsured, and 22.9% are on Medicaid. 
Demographically, 53.6% of the patient population is 
Hispanic, and 25.3% is Black. A large component of the 
research was also informed by the platform designers’ 
engagement with this target population through the Baylor 
College of Medicine-Patient Discharge Initiative (BCM-
PDI). The program recruits Rice University undergraduates 
to tackle disparities in healthcare access at Ben Taub County 
Hospital, the largest safety-net hospital in Houston that 
primarily serves uninsured and Spanish-speaking patients. 
Students within the organization address these disparities by 
creating potential solutions in the form of novel social and 
medical resources (i.e., health insurance information packets) 
with the assistance of the academic faculty within Ben Taub 
Hospital. BCM-PDI connects underserved patient 
populations at Ben Taub County Hospital with medical and 
social community resources in Harris County to improve 
their healthcare access and outcomes.  

Prior to this study, a retrospective cross-sectional study 
was conducted on the program that established that patients 
who were seen by our volunteers had a significantly lower 
probability of returning to the emergency department after 90 
days, and the provision of our social and medical resources 
was associated with significantly higher odds that patients 
attended their follow-up appointments. The retrospective 
cross-sectional study was conducted by utilizing patient 
discharge papers (PDP) in which volunteers delineated 
which resources were given out and when they had follow-
up appointments with the Emergency Department. Using 
these documents as well as adherence to follow-up 
appointments were investigated to see whether a correlation 
was established between delivery of social resources and 
follow-up appointment adherence.  

Limitations are largely centered around the learning 
curve when using the application for the first time as well as 
support for integral features. The application currently does 
not utilize a tutorial system to get acquainted with functions, 
such as geolocation as well as the data validation required for 
requests to go through. Similarly, a key feature currently 
missing is multilingual support for languages other than 
Spanish and English, as many clinics and hospitals have a 
large population of multilingual patients and healthcare 
workers. 

B. System Development 
System development was further divided into four 

subphases: patient-resource connectivity, patient profile 
addition, data collection and optimization, and bot 
interaction enhancement. The development of these phases is 
explained in depth below and in Figure 1:  

 

 
Figure 1. System Architecture of the Smart Assistant 

 
1) Phase 1. Memoryless Bot to Connect Patients to 

Resources: This first phase established the basic services on 
Heroku, setting up MongoDB credentials and developing 
primitive versions of the  ResourceUpdateService as well as 
the ResourceOutputService. The focus was on designing a 
bot that can hook patients up with resources without storing 
user-specific data between interactions. This enabled 
immediate deployment and the testing of basic 
functionalities. 

2) Phase 2. Adding Patient Profiles: The system was 
further upgraded to document message interactions with 
individual patients by creating user profiles. This change 
allowed the bot to customize interactions, track follow-ups 
with patients at assigned dates, and use the information 
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recorded to enable more contextualized messaging. The 
integration of the Twilio Email API also allowed the system 
to send PDF resources to patients if a need arose, increasing 
the avenues of communication and resource-sharing. 

3) Phase 3. Data Collection and Optimization: Decision 
tree optimization was then performed via A/B testing to 
improve system efficiency and accuracy. User metadata was 
gathered for analytics without breaching privacy by 
focusing on success tracking metrics. Logic was built in 
order to serve the success tracking survey questions and 
gather responses passively. The backend logic of serving 
and responding to the surveys allowed the refinement of the 
platform in light of actual user interactions. 

4) Phase 4. Enchancing Bot Interactions: NLP 
capabilities were introduced to overcome complex and 
ambiguous content challenges identified at previous phases. 
The RedCapOutputService was developed for synchronizing 
data across different clinics and hospitals. Multilingual 
support was added, including Spanish, to successfully serve 
a diverse user population. In the DataInterpretService, 
enhancements were made to better understand user intent. 
Explorations into connecting the bot to electronic health 
record systems like EPIC were conducted. This also 
included enhancements on the backend of the 
DataAnalyticsService and construction of a simple frontend 
for analytics visualization if necessary.  

The core architecture of NextStep integrates multiple 
services to create an intelligent, responsive system. The 
architecture is designed to be modular and scalable, allowing 
for future enhancements and easy maintenance. At its core, 
the system utilizes Natural Language Processing (NLP) 
through Bidirectional Encoder Representations from 
Transformers- based models optimized with TensorRT for 
efficient understanding of complex, multilingual user queries 
in real-time. As a patient interacts with the chatbot interface 
through text messages, the DataContextService first 
identifies the user by their phone number; afterwards, it 
retrieves or generates relevant context data with GraphQL 
and Mongoose to ensure personalized interaction.  

To provide precise and accurate resource 
recommendations, ResourceOutputService then generates 
specific GraphQL queries to fetch relevant resources from 
the MongoDB database. Utilizing NVIDIA RAPIDS for 
real-time geospatial data processing, it prioritizes resources 
by location and relevance to make sure users receive 
accurate and personalized information. The 
RedCapOutputService will then take this data and 
synchronize both the patient and the resource data amongst 
the clinics and hospitals via the REDCap integration to allow 
for smooth coordination between the mobile and hospital 
systems. 

For the creation of the NextStep, careful consideration 
was given to the selection of system components to ensure 
optimal performance and user satisfaction. The following 
criteria were instrumental in guiding the selection process. 

• Modularity and Scalability: The system architecture 
was designed to be both modular and scalable. This 
design philosophy ensures that the platform can be 
easily maintained and upgraded with future 
enhancements as healthcare technology evolves and 
user needs change.  

• Efficiency in Real-Time Processing: Central to the 
system’s performance is its ability to handle 
complex, multilingual queries efficiently. To this 
end, BERT-based models optimized with TensorRT 
were incorporated. These models are known for their 
rapid processing capabilities, crucial for maintaining 
real-time interaction with users.                                                                                                                                                                                         

• Advanced Geospatial Data Processing: Recognizing 
the importance of location in accessing healthcare 
resources, NVIDIA RAPIDS technology was 
utilized for its cutting-edge real-time geospatial data 
processing. This technology ensures that resources 
are prioritized not only by relevance but also by 
proximity to the user, thereby enhancing the 
personalization and accuracy of resource 
recommendations. 

• Multilingual Support: To effectively serve a diverse 
user base, the system includes robust multilingual 
support, initially focusing on English and Spanish. 
This feature is critical in reducing language barriers, 
thereby improving the accessibility and usability of 
the healthcare platform for non-English speakers.  

• Data Synchronization and Integration: The 
integration of the RedCapOutputService ensures 
seamless data synchronization across different 
healthcare settings, including clinics and hospitals. 
This integration facilitates effective coordination 
between mobile and stationary healthcare systems, 
enhancing the continuity of care and resource 
allocation. 

C. Clinical Testing and Data Collection 
The NextStep SMS platform was introduced to patients 

in San Jose Clinic and the Texas Children’s Hospital’s 
Mobile Clinic over a two-year period. Recruitment at the 
aforementioned institutions started in March 2022 and was 
handled by clinic staff and hospital-approved volunteers. 
Patients selected for the study were required to have access 
to a cell phone with text messaging capabilities and be 
proficient in either English or Spanish. Additionally, patients 
with physical, mental, and/or visual limitations were 
excluded to ensure that informed consent was obtained and 
for the accuracy of self-reported survey questions.  

The study investigators provided the clinic partners with 
copies of the study recruitment materials, which included 
recruitment flyers and consent documents in English and 
Spanish. The recruitment flyer included a description of the 
NextStep program and the phone number to text for 
enrollment. The consent document detailed the study 
objectives, types of data collected, level of risk to 
participants, privacy and confidentiality measures, and the 
procedures for withdrawing from the study. At the clinics, 
the front-desk staff were responsible for participant 
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recruitment during patient checkout. The front-desk staff 
briefly introduced NextStep to eligible participants, 
instructed them to read a printed copy of the consent 
document, and then handed them a recruitment flyer in their 
preferred language. The participant was then instructed to 
send a text message of "Hello" to the specified phone 
number if they would like to participate in this study and 
receive social resources. Enrollment in this program was not 
required to receive any of the services the clinics offered.  

Messages sent to and from participants were stored on a 
password-protected Twilio account and downloaded as a 
password-protected CSV file by the researchers prior to 
analysis. Twilio utilizes industry-standard encryption for 
data in transit and at rest. Data extraction was performed by a 
single, IRB-approved user, and all information was securely 
stored. To de-identify the data, each user was assigned a 
unique identification number, and personal identifiers, such 
as phone numbers, were removed.  

Integration with REDCap databases ensured seamless 
data synchronization across mobile clinics, emergency 
departments, and hospitals. Data collected included 
timestamps of interactions, language preference, resource 
requests, and user feedback. The system's analytics module 
utilized this data to measure key performance metrics, such 
as resource matching time, patient satisfaction, accuracy of 
resource recommendations, and follow-up success rates.  

III.  RESULTS 
Over the two-year study period, more than 100 patients 

engaged with the NextStep platform across the participating 
clinics. At San Jose Clinic, a total of 70 users engaged with 
the platform—28 requested resources in English and 42 in 
Spanish, indicating a 60% preference for Spanish. At Texas 
Children’s Hospital’s Mobile Clinic, 12 users engaged, 7 in 
English and 5 in Spanish. At Ben Taub Emergency Room, an 
additional 25 users engaged with the platform, with a similar 
distribution in language preference.  

The multilingual utilization was significant, with 38% of 
interactions occurring in Spanish, demonstrating the 
platform's effectiveness in serving non-English-speaking 
patients. Resource request per clinic was also investigated to 
understand the range of resources that generated the most 
need or interest. The percentage of specific resources across 
clinics can be seen in the table below. 

TABLE I.  RESOURCE REQUESTS 

Resource Category Request 
Percentage (%) 

Financial Assistance 
Programs 40 

Housing Resources 18 
Utilities 15 

Food Resources 12 
COVID-19 Testing & 
Vaccine Information 15 

Total 100 
 
 

Operational costs were calculated based on the total 
number of users and messages exchanged. At Texas 
Children’s Hospital’s Mobile Clinic, the cost was $4.00, or 
roughly $0.33 for each user reached. The difference in cost 
per user between clinics was a result of the number of text 
messages it took for users to access resources, but the actual 
costs were similar to the projected cost of $0.25 per user that 
was initially calculated. Performance metrics within several 
experimental conditions of the NextStep app can also be seen 
in Figure 2 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. Cross-performance metrics for NextStep 
 
Next, the learning progression of the assistant was 

explored by quantifying the accuracy and error rates between 
multilingual queries to understand whether learning truly 
occurred as queries increased, as shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. Learning progression across multilingual patient queries 
 

The model's validity is demonstrated by a steady 
decrease in training loss and an increase in validation 
accuracy with each epoch, proving that it learns effectively 
and generalizes well for different data distributions across 
ER, community resources, and clinic data. These results are 
shown in Figure 4. 
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Next, the learning progression of the assistant was 

explored by quantifying the accuracy and error rates between 
multilingual queries to understand whether learning truly 
occurred as queries increased, as shown in Figure. 3. 

 
 
 
 
 

 

Figure 4. Training loss and validation accuracy over epochs for NextStep’s 
clinical implementation 

 
As shown in Figure 4, the model demonstrates effective 

learning, with a steady decrease in training loss and an 
increase in validation accuracy with every epoch. These 
findings indicate that the model generalizes well across 
different data distributions between ER, community 
resources, and clinic data.  

IV. DISCUSSION  
The results from this study provide key insights into the 

demographics of users, their resource preferences, and user 
experiences interacting with the platform. The high 
engagement rates and positive field metrics are indicative of 
NextStep successfully meeting the barriers to language, 
technology access, and navigation of resources. 

The training and validation plots reflect the robust 
performance of the models; after 10 epochs, the validation 
accuracy is close to 90%, while the training loss decreases 
steadily. That means the system will perform well on diverse 
datasets from ERs, community resources, and clinics 
regarding real-time resource recommendations in a reliable 
and accurate fashion.  

The platform performed substantially better than manual 
processes and prior app versions by all key metrics. Resource 
matching accuracy reached 91%, indicating high precision in 
the alignment of resources with patient needs; the response 
times averaged 2.4 seconds, meeting real-time interaction 
standards critical for emergency settings. Patient satisfaction 
improved by 35%, with 87% of the users rating the platform 
as "Helpful" or "Very Helpful," showcasing the impact of 
multilingual support and optimized interaction flows. 
Moreover, recommended resources were accessed by 72% of 
users within three days, which further validated the 
effectiveness of automated follow-up notifications. It 
reduced operational costs by 25% and staff workload by 
30%, showing that the system is scalable and financially 
sustainable.  

Multilingual capabilities show significant training 
progress, varying from 95% for English and 92% for 
Spanish, using the BERT-based NLP model optimized with 
TensorRT. The learning curve of the system showed 
increasing accuracy and a decreasing error rate for queries 
processed, thus underlining its adaptability and continuous 
improvement.  

The feasibility of the platform is further enhanced by its 
accessibility and low operational cost, making it practical for 
underserved populations. Operating on SMS-capable devices 
avoids costly hardware or high-speed internet, thus 
increasing its accessibility to low-income demographics. 
Resource allocation is efficiently met, and through feedback-
driven adaptation, both patient and provider needs are 
anticipated, thereby making NextStep sustainable and 
scalable to bridge healthcare gaps. 

V.  CONCLUSIONS AND FUTURE DIRECTIONS  
 The NextStep platform demonstrates the capabilities of 

artificial intelligence in addressing disparities in healthcare 
by utilizing natural language processing (NLP) for user 
queries, predictive analytics for personalized 
recommendations, and geospatial data analysis for real-time 
resource mapping to deliver tailored, location-specific 
resource suggestions to marginalized communities. 
Moreover, by utilizing AI and machine learning 
technologies, NextStep augments patient care through 
enhanced accessibility, equity, and efficiency in the 
distribution of resources.  

Furthermore, NextStep enables immediate access to 
essential social and healthcare services, providing instant 
resource alignment that considers user location and 
individual preferences. Automated follow-up systems 
facilitate user access to suggested resources, alleviating the 
workload on healthcare personnel while delivering quicker 
and more precise assistance to marginalized populations. The 
platform's adaptable infrastructure is capable of managing 
elevated traffic during emergency situations, and its 
multilingual features, which encompass support for both 
English and Spanish, effectively overcome language 
obstacles to enhance user experience and accessibility. 

In order to rectify current limitations, future iterations 
will feature clearer user directives, potentially integrating a 
concise tutorial at the onset of interactions. Augmenting 
natural language processing abilities to more effectively 
manage free-text responses will reduce the likelihood of 
misinterpretations. Enhanced data validation for location 
entries will guarantee a higher degree of accuracy in resource 
alignment. The incorporation of user feedback systems will 
facilitate ongoing enhancements to the system.  

Future enhancements will focus on expanding language 
access beyond Spanish, further reducing barriers for non-
English-speaking populations. Adding predictive analytics 
will also allow the platform to anticipate user needs based on 
past behavior and current environmental factors. Moreover, 
exploring possible expansion of voice interaction 
capabilities, such as sophisticated sentiment analysis using 
NVIDIA Riva AI, may improve patient engagement and 
accessibility for all users who struggle with literacy. 
Furthermore, the expansion of deployment locations among 
mobile clinics and hospitals will facilitate additional field 
evaluations and confirmation of the platform's efficacy in 
various environments. 
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Abstract—Breast cancer remains a global health concern, with a
13.1% lifetime diagnosis rate among women. Early and accurate
diagnosis plays a critical role in improving patient outcomes.
Traditional diagnostic methods, such as MRIs, ultrasounds, CT
scans, and mammograms, are widely used for detecting and
characterizing breast lesions. In recent years, Artificial Intelligence
has shown great promise in enhancing diagnostic accuracy, with
models such as K-Nearest Neighbors (KNN), Random Forest
Classifier (RFC), and Convolutional Neural Networks (CNN)
being applied to breast cancer diagnosis. In this study, we explore
the application of deep learning models, specifically MobileNetV2
and ResNet50, for breast cancer detection using ultrasound images
from The Cancer Image Archive. A dataset comprising 522 breast
lesion images was used, split into training, validation, and test sets.
We implemented both image classification and segmentation tasks,
optimizing hyperparameters such as learning rate and number of
epochs. Our comparative analysis aims to evaluate the efficiency
and diagnostic performance of the two models. We highlight key
insights into their effectiveness in breast cancer detection and
provide recommendations based on their application to ultrasound
imaging. The findings of this study contribute to the ongoing
efforts to improve AI-based diagnostic tools for breast cancer.

Keywords-breast lesions; deep learning; image classification

I. INTRODUCTION

Breast cancer remains one of the most prevalent and
deadly cancers among women worldwide, accounting for
approximately 13.1% of women during their lifetime. Breast
cancer is the most frequently diagnosed cancer, constituting
30% of all new cancer diagnoses in women and posing a
significant threat to women’s health.

It remains a significant health concern in the United States,
with an estimated 310,720 new cases of invasive and 56,500
new cases of non-invasive breast cancer anticipated in 2024.
Despite over 4 million breast cancer survivors, the disease
is expected to cause 42,250 deaths this year. About 1 in 8
women will develop breast cancer in their lifetime, making it
the most common cancer among American women, accounting
for 30% of all new female cancer diagnoses. The risk factors
include but are not limited to family history and younger age
at diagnosis, with variations in incidence and outcomes across
different racial and ethnic groups.

The segmentation of breast ultrasound images into various
tissue types is valuable for tumor localization, measuring breast
density, and evaluating treatment responses, which are critical
for the clinical diagnosis of breast cancer. Manual segmentation
is labor-intensive and relies heavily on the skill and experience

of radiologists, making it prone to subjective interpretations and
time-consuming due to the need to review numerous images
[1].

Outwardly, the presence of breast lesions or lumps, discol-
oration, and irregularities in breast shape often characterize
breast cancer cases. Common clinical signs include irritation,
flaking, dimpling, discharge, and swelling of the breast. Early
detection and treatment are crucial to minimizing potential
complications and improving patient outcomes. Various diag-
nostic methods are employed to detect and assess breast cancer,
including physical examinations, Magnetic Resonance Imaging
(MRI), ultrasounds, CT scans, lab tests, and mammograms.
Physical examinations aim to determine the location and
severity of tumors.

MRI is commonly used to diagnose or measure the size
of breast cancer tumors [2]. Ultrasounds can confirm a
breast cancer diagnosis, while mammograms are essential for
detecting cancers not visible through physical examination.
The field of medical diagnostics has increasingly adopted
Artificial Intelligence to enhance accuracy and efficiency. AI
techniques, such as machine learning and deep learning, have
been applied to analyze different types of diagnostic data.
Various machine learning algorithms, including KNN, RFC,
YOLO, CNN, Support Vector Machines (SVM), and Decision
Trees, have been studied, each yielding diverse results.

Despite these advancements, challenges remain in breast
lesion classification and segmentation. High variability in
lesion appearance, dense breast tissues, and the need for
large annotated datasets present significant barriers. To address
these challenges, we utilized a new dataset from The Cancer
Image Archive in this study. This dataset consists of 522
images from 256 subjects, featuring 266 segmented benign
and malignant lesions [3]. We have worked to address these
challenges by utilizing a dataset of breast lesion ultrasounds to
perform both classification and segmentation tasks. Accurate
classification allows clinicians to distinguish between benign
and malignant lesions, while precise segmentation aids in
the localization and quantification of tumor regions, which
are essential for treatment planning and monitoring. For the
classification task, we employed MobileNetV2 and ResNet50
models, chosen for their efficiency and accuracy in image
analysis. For segmentation, we used the EfficientNetB2 model
due to its ability to capture intricate details in medical imaging
[3]. Our dual approach for the identification of breast lesions
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is optimal, helping to improve accuracy and save time.
By comparing the performance of these models, we aim to

identify the most applicable and accurate approaches for each
task, thereby contributing to improved diagnostic methods for
breast cancer.

Section II discusses related work and methods. Section III
lays out the dataset selection. Section IV provides methodology.
Section V discusses experiment results. Section VI covers
discussion and evaluation. In Section VII, conclusions and
future work are drawn.

II. RELATED WORK

Current research has focused significantly on improving
breast cancer diagnosis using mammograms. The process
usually involves three steps: initial screening, segmenting the
images, and diagnosing the case.

One study used the Breast Cancer Dataset from the Univer-
sity of California, Irvine (UCI), which included 669 clinical
cases. This dataset had 11 attributes, but they used nine
key features including clump thickness, cell size, and shape
to determine whether a tumor was benign or malignant.
They tested two machine learning algorithms, Naïve Bayesian
Classifier (NBC) and KNN, using K-fold cross-validation to
check their results [4]. The KNN algorithm performed the best,
achieving an accuracy of 97.51%. This process typically occurs
through screening, segmentation, and diagnosis of a case.

Another study focused on detecting breast cancer using
mammogram images. They used segmentation techniques
alongside Max-Mean and Least-Variance methods to improve
the models’ performance. This shows that using advanced
image processing techniques can help achieve more accurate
results, although specific accuracy numbers were not provided
[5].

A separate study used a database of CT Scan images from 2
hospitals in Norway, with each containing 100 patients. Images
were of left sided breast cancer patients. The study used scores
for clinical usability and dosage levels used for treatment for
some of their data. For model scoring, they used Dice similarity
coefficient and Hausdorff difference [6].

Researchers also focused on using CNN to automatically
segment breast ultrasound images into four main tissue types:
skin, glandular tissue, tumors, and fatty tissue. They worked
with three-dimensional ultrasound images to accomplish this.
The performance of their segmentation method was evaluated
using various quantitative metrics, such as Accuracy, Precision,
and Recall, all of which exceeded 80%. Additionally, they
used the Jaccard Similarity Index (JSI) to measure the overlap
between the predicted and actual segments, achieving an 85.1%
score. This represented an improvement over their previous
method, which employed the watershed algorithm and resulted
in a JSI score of 74.54%. The findings suggest that their
CNN-based approach could effectively support clinical breast
cancer diagnosis by providing reliable tissue segmentations
from ultrasound images [7].

Recent advancements in breast ultrasound image segmen-
tation have focused on improving region of interest (ROI)

extraction to differentiate between malignant and benign
abnormalities effectively. One notable approach involves a
model built on local pixel information combined with a neural
network, comprising two stages: training and testing. During
the training stage, the model is trained with batches from both
ROI and background regions. In the testing stage, a fixed-
size window scans the image to detect the ROI, followed
by a distance transform to refine the ROI by eliminating
non-ROI areas. This method was tested on a dataset of 250
ultrasound images, achieving a high success rate of 95.4%
for breast contour extraction. Such innovations help reduce
false positives and enhance the accuracy of breast ultrasound
diagnostics, demonstrating a significant improvement over
traditional segmentation techniques [1].

In another study, authors propose a Dual CNN for mam-
mogram image processing. Two paths were utilized, with a
Locality Preserving Learning (LPL) and a Conditional Graph
Learner (CGL). The model (DualCoreNet) achieved a 92.27
DI coefficient [8].

A different technique, Saliency-Guided Morphology-Aware
U-Net (SMU-Net) was used for breast cancer detection in
ultrasound images. It contains a main network, auxiliary
network, and a middle stream [9].

Separately, a study developed a Deep-Learning based method
for diagnosis of breast cancer using ultrasound imaging. The
automation of image segmentation is important for breast
ultrasound images. A database of 221 images was used. This
model achieved a dice coefficient of 0.825 [10].

Another study used volumetric heart segmentation for
detecting breast cancer from CT scans. It was trained on
manual heart segmentations, from a dataset of 5677 breast
cancer patients who had undergone radiation therapy at the
Dana-Farber/Brigham and Women’s Cancer Center from 2008
- 2018 [11].

III. METHODS

This study aims to enhance breast cancer diagnosis by
leveraging advanced deep-learning methodologies.

We conducted dual experiments on this dataset: one using
image classification with MobileNetV2 and ResNet50, and
another using image segmentation with U-Net (EfficientNetB2).
The object detection models are image-based, designed both to
classify and segment images. MobileNetV2 was chosen for its
efficiency and lightweight architecture, suitable for deployment
on devices with limited computational power. In contrast,
ResNet50 was selected for its depth and ability to capture
intricate features through residual learning, making it apt for
complex classification tasks. For segmentation, U-Net with
EfficientNetB2 was employed due to its superior performance
in achieving high accuracy in medical image segmentation by
effectively capturing both spatial and contextual information.
The second experiment was evaluated using Intersection over
Union (IoU) scores, which are based upon the overlap of
ground truth and predicted values [12].

While the use of a Vision Transformer (ViT) model was
considered, it was ultimately decided against. ViTs are compu-
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Figure 1. Dataset Distribution

tationally expensive and require powerful GPUs to train. They
process images differently than CNNs, using self-attention,
which makes them slower and more resource-intensive. This
may not be practical for many real-world medical applications,
and thus the decision was made to utilize MobileNetV2 and
ResNet50. In comparison to previous studies, our study made
use of segmentation techniques on ultrasound imaging, with the
application of segmentation in tandem with experimentation
on ResNet50 and MobileNetV2.

IV. DATASET

The dataset utilized in this study was sourced from The
Cancer Image Archive [3]. It consisted of a total of 522
ultrasound images, with 256 total subjects, and 266 benign
and malignant segmented lesions. Accuracy of the labels in
the study was verified through follow up care. The entirety of
the dataset was anonymized to protect patients identities.

Features included Image_filename, Mask_tumor_filename,
Mask_other_filename, Pixel_size, Age, Tissue_composition,
Signs, Symptoms, Shape, Margin, Echogenicity, Poste-
rior_features, Halo, Calcifications, Skin_thickening, Interpre-
tation, BIRADS, Verification, Diagnosis, and Classification.
Tumors were labeled by freehand annotation with the associated
BIRADS features. The distribution of benign to malignant data
is displayed in Figure 1.

The dataset for this study was chosen carefully to ensure it
is suitable for both classification and segmentation of breast
tumors. We selected a dataset that includes a good mix of
benign and malignant cases, making the model more reliable
for real-world use. High-quality labels were an important factor,
as they helped train the model accurately. Since deep learning
models work best with clear and detailed images, we made sure
the dataset had high resolution and the right type of medical
images. Additionally, we considered the balance between
benign and malignant cases to avoid bias and ensure fair and
accurate results. The dataset includes a diverse set of benign and
malignant cases, ensuring variability in tumor characteristics.
However, future studies may incorporate additional datasets.

A. Data Processing
Data processing for image classification began by reading

the clinical data excel file, and removal of null data in the

Figure 2. Classification Model Flowchart

Figure 3. Segmentation Model Flowchart

Mask_tumor_filename feature. Within these, data was put into
subfolders for malignant and benign cases. Once complete,
data was split using the Split-folders library, into a training set
(80%), validation set (10%), and test set (10%).

In turn, data processing for image segmentation began
similarly with the reading of the clinical data excel file, and
removal of null data in the Mask_tumor_filename feature.
Images were then copied into their respective mask and images
folders. Then, data was split using the Split-folders library, into
a training set (80%), validation set (10%), and test set (10%).

B. Classification Task

Two different deep learning models, MobileNetV2 and
ResNet50 were tested. MobileNetV2 is a lightweight CNN
model with prioritized speed and balanced accuracy. Meanwhile,
ResNet50 is a 50-deep-layer residual neural network, with
slower but higher performance.

For the first experiment, with binary image classification,
validation accuracy was utilized to rate model performance. In
the second experiment, with image segmentation, IoU value
was used to rate model performance. Figure 2 is the flowchart
for the binary image classification experiment.

In the first experiment, image classification was utilized.
Models were trained on the training image set. Various hyper-
parameters were inputted, including: learning rate (lr), epochs,
and optimizer (Adam). Hyperparameter tuning was performed,
comparing learning rate and epoch values alongside their
impacts on accuracy. Learning rates tested included 0.000001,
0.00001, 0.0001, 0.001, 0.005, 0.01, and 0.05. Epochs tested
were 10, 20, 30, 40, and 50. These experiments consisted of
35 total tests, comparing the effects of these hyperparameters
on accuracy. Initial tests showed similar scoring between the
two deep learning models as seen in Table I and Table IV,
with MobileNetV2 selected for continuation.
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C. Segmentation Task

In the second experiment, we performed image segmentation
to compare accuracy levels. We utilized U-Net Architecture
with EfficientNetV2 as a backbone combining U-Net’s strong
spatial localization ability with EfficientNetB2’s advanced
feature extraction. For this model, hyperparameter tuning was
also performed. The results from these tests suggested that the
optimal hyperparameters were 20 epochs, and a 0.005 learning
rate. Figure 3 displays the segmentation process flowchart.

Our study integrates both classification and segmentation,
where classification serves as an initial diagnostic step, and
segmentation further refines tumor localization. This dual-stage
approach strengthens interpretability, assisting clinical decision-
making.

V. RESULTS

The results of this study demonstrate the effectiveness
of using deep learning models for both classification and
segmentation tasks in the context of breast cancer diagnosis.

In this study, two experiments were conducted using the Mo-
bileNetV2 and ResNet50 models with 35 hyperparameter tuning
tests performed obtaining varying results. The performance
of each model was evaluated based on accuracy, precision,
and F1-score across two classes (label 0 and label 1). Table I
displays the results of our study.

TABLE I
SUMMARY OF DEEP CNN MODEL EVALUATION ON TEST DATA

Algorithm Best Accuracy F1 Score Precision
MobileNetV2 63% 60% 0.61

ResNet50 66% 63% 0.65

A. Classification task results - MobileNetV2

Hyperparameter tuning was conducted to identify the
optimal combination of epochs and learning rate for the
MobileNetV2 model. The tuning grid included various learning
rates (0.000001, 0.00001, 0.0001, 0.001, 0.005, 0.01, and 0.05)
and epochs (10, 20, 30, 40, and 50). The objective was to
maximize the validation accuracy. The optimal combination
identified was 50 epochs with a learning rate of 0.0001,
yielding the highest validation accuracy of 0.8333. This model
configuration was subsequently saved for further evaluation.
The performance of the MobileNetV2 model, configured with
the optimal hyperparameters (50 epochs and learning rate of
0.0001), was evaluated on the test dataset. The classification
metrics, including precision, recall, F1-score, and support, are
presented in Table II.

TABLE II
CLASSIFICATION REPORT FOR THE MOBILENETV2 MODEL

Precision Recall F1-score Support
61% 60% 60% 27

The multiline plot for MobileNetV2 can be seen in Figure 4.
The plot shows that accuracy improves with lower learning rates

Figure 4. Multiline Plot for MobileNetV2 Model.

Figure 5. Test Confusion Matrix for the MobileNetV2 Model.

(<0.001) and more epochs, peaking at a learning rate of 0.001
with 30 epochs. Beyond this rate, accuracy declines, especially
for larger learning rates (>0.005), indicating training instability.
This highlights the need to fine-tune learning rates and epochs,
with 0.001 and 30 epochs providing the best balance.

The overall accuracy achieved was 62.96%. For benign cases
(Label 0), the model achieved a precision of 66.67%, recall of
75%, and an F1-score of 70.59%. For malignant cases (Label 1),
the precision was 55.56%, recall was 45.45%, and F1-score was
50%. The macro average of these metrics indicates balanced
performance across classes, while the weighted average reflects
performance adjusted by the number of samples in each class.
The confusion matrix for MobileNetV2 is shown in Figure 5.

B. Classification task results - ResNet50

Hyperparameter tuning was conducted to identify the
optimal combination of epochs and learning rate for the
ResNet50 model. The tuning grid included various learning
rates (0.000001, 0.00001, 0.0001, 0.001, 0.005, 0.01, and 0.05)
and epochs (10, 20, 30, 40, and 50). The objective was to
maximize the validation accuracy.

The optimal combination identified was 30 epochs with a
learning rate of 0.001, yielding the highest validation accuracy
of 0.8333. This model configuration was subsequently saved
for further evaluation.

The performance of the ResNet50 model, configured with
the optimal hyperparameters (30 epochs and learning rate of
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Figure 6. Test Confusion Matrix for the ResNet50 Model.

0.001), was evaluated on the test dataset. The classification
metrics included precision, recall, F1-score, and support.

The overall accuracy achieved was 66.67%. For benign cases
(Label 0), the model achieved a precision of 68.42%, recall of
81.25%, and an F1-score of 74.29%. For malignant cases (Label
1), the precision was 62.50%, recall was 45.45%, and F1-score
was 52.63%. The macro average of these metrics indicates
balanced performance across classes, while the weighted
average reflects performance adjusted by the number of samples
in each class. The confusion matrix for ResNet50 is shown in
the Figure 6. As seen, the highest accuracy scores were 0.83,
achieved repeatedly throughout testing.

The ResNet50 model outperformed the MobileNetV2 model
in overall accuracy, achieving 66.67% compared to Mo-
bileNetV2’s 62.96%. ResNet50 also demonstrated higher
precision and F1-score for both labels, indicating its superior
performance in this experiment.

For the ResNet50 model, the classification metrics, including
precision, recall, F1-score, and support, are presented in Table
III.

Additionally, Figure 7 represents multiline plot for ResNet50.
The plot shows the relationship between learning rate, training
epochs, and model accuracy. Accuracy generally improved at
lower learning rates (<0.001) as epochs increase, peaking near
a learning rate of 0.001 for 30 epochs. However, accuracy
declined sharply for higher learning rates (>0.005) across all
epoch values, indicating instability during training. We can
optimize both learning rate and epoch count, with 0.001 and 30
epochs offering a balance between performance and stability.

TABLE III
CLASSIFICATION REPORT FOR THE RESNET50 MODEL

Precision Recall F1-score Support
65% 63% 63% 27

C. Segmentation task results

In the second experiment, the segmentation model was tested
with 20 epochs and a learning rate of 0.005, resulting in a
validation IoU score of 0.697 and test IoU score of 0.629. Table
IV shows the summary of the segmentation model’s results.
Figure 8 shows IoU scores for different learning rates and

Figure 7. Multiline Plot for the ResNet50 Model.

Figure 8. Multiline Plot for the U-Net Model (segmentation).

epochs. This plot demonstrates the IoU score’s variation with
learning rate and the number of epochs. The IoU score generally
increases with learning rates up to 0.001, particularly for 20
and 30 epochs, where the scores peak around 0.7. For higher
learning rates (>0.005), the IoU score drops significantly across
all epoch values, indicating unstable segmentation performance.
The results emphasize that a learning rate of 0.001 and 30
epochs provide the most consistent and optimal segmentation
accuracy.

Results from segmentation experiments are shown in Figure
9. The optimal IoU score was achieved at a learning rate of
0.005.

TABLE IV
SUMMARY OF THE SEGMENTATION MODEL RESULTS

Model Validation IoU Test IoU
U-Net 70% 63%

VI. DISCUSSION | EVALUATION

The hyperparameter tuning for MobileNetV2 and ResNet50
revealed that the optimal settings for both models resulted in a
validation accuracy of 0.8333, but with different configurations
(50 epochs and a learning rate of 0.0001 for MobileNetV2;
30 epochs and a learning rate of 0.001 for ResNet50). These
settings were selected based on their performance metrics.

In the classification task, the ResNet50 model outper-
formed the MobileNetV2 model. ResNet50 achieved an overall
accuracy of 66.67%, compared to MobileNetV2’s 62.96%.
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Figure 9. Segmented Mask Images

ResNet50 also showed better precision, recall, and F1-scores
for benign cases, reflecting a more balanced and effective
classification capability. However, both models exhibited lower
recall for malignant cases, which indicates a need for further
improvement in detecting malignant lesions.

The results indicate that the MobileNetV2 model is more
effective at correctly identifying benign images compared to
malignant ones. However, there is a notable trade-off between
the precision and recall, especially for malignant cases, which
suggests areas for future improvement.

Our results also indicate that the ResNet50 model demon-
strates improved overall accuracy compared to the Mo-
bileNetV2 model, particularly in identifying benign images.
However, the recall for malignant cases still shows room for
improvement, indicating that some malignant images are not
being correctly identified by the model.

In the application of these models, the differences in false
predictions cannot be overlooked. While a prediction of
malignant in a case of benign cancer is certainly undesirable,
it is especially concerning if a prediction of benign is made
in the case of a malignant tumor. Such errors could lead to a
lack of testing and treatment for a patient.

For the segmentation task, the U-Net model with Efficient-
NetB2 as the backbone achieved a test IoU score of 0.629.
This result indicates the model’s strong ability to accurately
segment breast lesions, providing valuable information for
tumor localization and quantification. The segmentation results
are promising, given the complexity of the task and the
variability in lesion appearance.

VII. CONCLUSION AND FUTURE WORK

The findings from this study underscore the potential of
deep learning models in enhancing the accuracy and efficiency
of breast cancer diagnosis. The ResNet50 model’s superior
performance in classification tasks suggests its suitability
for diagnostic applications where accurate classification of
lesions is critical. On the other hand, the U-Net model with
EfficientNetB2 demonstrated robust segmentation capabilities,

which are essential for precise tumor localization and treatment
planning.

These results align with existing literature that highlights
the efficacy of deep learning models in medical imaging tasks.
The use of EfficientNetB2 as a backbone for the U-Net model
has shown to be particularly effective in capturing intricate
details in ultrasound images, which is crucial for accurate
segmentation. The precise segmentation provided by the models
means that treatment can be better tailored to each patient’s
specific condition, enhancing the effectiveness of treatment
plans and potentially improving survival rates.

The deployment of these deep learning models in clinical
settings can automate and enhance the breast cancer screening
process, enabling early detection of cancerous growths with
higher accuracy. This early detection is key to improving
patient outcomes. By accurately classifying and segmenting
breast cancer images, these models can significantly reduce
the diagnostic workload of radiologists and pathologists.

Our future research could focus on further refining and
optimizing the U-Net deep learning models to enhance their
accuracy and efficiency for segmentation tasks, possibly through
the integration of more advanced architectures or ensemble
techniques. Improvement of IoU score would also be central
to development as it provides detailed and precise insights
into medical imaging data. Additionally, conducting studies
with larger and more diverse datasets would help validate the
general applicability of the models, ensuring their applicability
across different populations and imaging conditions.
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Abstract—Explainable Artificial Intelligence (XAI) has pro-
vided a noticeable foundation for user trust building in recent
years, especially in the high-risk decision scenarios, such as
medical and healthcare domains. Building trust in an AI-enabled
system is one of the important issues for users, which would
start from the development stage. User trust could be enhanced
by understanding the so-called black-box model. However, trust
could be built by an emotional factor like user satisfaction in
addition to scientific factors, such as XAI. In this paper, we
present a framework named Three-Pillar User Trust to identify
the underlying determinants of user trust in an AI-enabled
system. We propose that the introduction of XAI can enhance
user trust in the stages of model evaluation and validation by
improving their comprehensibility with the AI system outputs
and algorithms. Moreover, we propose that user satisfaction,
as an emotional factor, would be an important component
to influence user trust. To validate our framework, we will
recruit some students from one university to participate in our
experiment. This research will aim to build a three-pillar user
trust framework with model interpretability, user satisfaction,
and instance explainability.

Keywords-XAI; interpretability; explainability; satisfaction;
trust.

I. INTRODUCTION

In this research, the AI-enabled system users are the domain
experts in healthcare domain, such as nurses or long-term care
personnel, in the nursing homes. Recent studies have indicated
that AI with explanations allows users to have more confidence
in an AI-enabled system and have faith and trust in the algo-
rithm results [1]. In order to obtain a better AI system output
performance, domain experts are required to engage in the
Machine Learning (ML) pipeline to assist in building an AI-
enabled system [2]. It is also important to have domain experts
kept in the loop to optimize the ML model [3]. However,
ML is a complicated process, especially for deep learning.
It is inevitable for domain experts to consider it as a black
box even though its inputs and outputs are useful mappings.
Therefore, it is essential that an AI-enabled system output is
able to be explainable and comprehensible for domain experts
to understand, which is instrumental to validate the quality
of an AI system output [4]. During the interaction between
AI engineers and domain experts in the ML pipeline, domain
experts’ satisfaction with the AI algorithm interpretation and

its output explanation would also influence domain experts’
trust in the AI system.

In Section 2, we review related concepts on XAI, Trust-
worthy AI, and User Satisfaction. In Section 3, we propose a
conceptual model named Three-Pillar User Trust. In addition,
we propose a research methodology with Hypotheses, AI
Artifact, and Experiment Design to validate our framework. In
Section 4, we make a preliminary conclusion for this research
and propose our future work.

II. LITERATURE REVIEW

The literature review of this research will consist of three
parts: Explainable AI, Trustworthy AI, and User Satisfaction.

A. Explainable AI (XAI)

Clinicians might feel uncomfortable with black-box AI,
leading to recommendations that AI should be explainable in
a way that clinical users can understand [5]. In the machine
learning pipeline, users or domain experts are required to
participate in model evaluation and system output validation to
obtain high-quality training datasets [6]. XAI is a useful tool
to unveil the black box and provides an explanation for each
AI system output [7], which aims to explain the information
behind the black-box model of deep learning that reveals how
decisions are made [8]. It is necessary to explain the decision
of the AI system to increase the user trust in the system. There-
fore, a general model interpretability might not be sufficient
for users to build their trust in an AI system. A collection of
features to contribute to the output of one specific AI system
would be a helpful add-on explanation to enhance user trust
[9], which could be defined as instance explainability. Local
Interpretable Model-Agnostic Explanations (LIME) [10], one
of the XAI tools, will be used in this research.

B. Trustworthy AI

The Defense Advanced Research Project Agency (DARPA)
launched a program known as Explainable Artificial Intelli-
gence, whose motivation was to make AI systems explainable
and trustworthy [11]. User trust needs to be addressed directly
in all the contexts in which AI-enabled systems are being
used or discussed [12]. Explainability serves as a fundamental
factor that determines the user trust in AI technology [13].
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Explainability could be defined as a collection of features of
the interpretable domain that have contributed, for a given
example, to the production of a decision [14]. To build a
trustworthy AI system, a specific instance explainability would
be essential for users, especially in the case that the user
decision based on the AI system outputs would have a huge
impact on its outcomes. (e.g., in the medical and financial
domains).

C. User Satisfaction

User satisfaction with the explanation of AI algorithms,
which is performed by AI engineers or data scientists could be
defined as the degree to which users feel that they sufficiently
understand the AI system or the process explained to them
[14]. In addition to understanding algorithms in terms of
rationality, user satisfaction, as an aspect of emotion, could
be an important factor to enhance user trust in the AI system.
Recent studies indicated that user interaction with AI-enabled
systems would influence user satisfaction with the user-AI
system interaction [15]. Therefore, the user would perceive
satisfaction with the AI system during the model evaluation
and validation while collaborating with AI engineers.

III. RESEARCH METHODOLOGY

AI system users would enhance their comprehensibility with
the AI model by incorporating XAI into the model evaluation
and validation process. Furthermore, the user comprehensi-
bility would be composed of two components, which are
model interpretability and instance explainability, serving as
two pillars to support the user trust building. In addition, user
satisfaction would be a significant factor in influencing user
trust in the AI system. Therefore, we propose a conceptual
model as our framework named Three-Pillar XAI for user trust
building, as shown in Figure 1.

Based on this framework, we develop our hypotheses and
experiment design as follows:

A. Hypotheses

It is essential that the AI system provides users with
a reasonable explanation for one instance, especially in a
high-risk scenario, such as healthcare domain. Therefore, we
develop hypothesis H1 as follows:

H1: Users with understanding about instance explainability
would lead to a higher level of trust than users with under-
standing about model interpretability.

Figure 1. Three-Pillar User Trust.

It is required that domain experts need to be involved in
the model evaluation and validation for high-quality training
datasets and have a fundamental understanding about the AI
algorithm. Then, further build their trust in the AI system.
Therefore, we develop hypothesis H2 as follows:

H2: Users with understanding about model interpretability
would lead to a higher level of trust than users without any
understanding about both instance explainability and model
interpretability.

Since user satisfaction with the explanation about the AI
system or algorithm would influence his trust in the AI system,
we develop hypothesis H3 and H4 as follows:

H3: Higher user satisfaction with the model interpretability
would lead to a higher level of trust.

H4: Higher user satisfaction with the instance explainability
would lead to a higher level of trust.

We expect that the user trust level with the understanding
about instance explainability would be higher than that with
the understanding about the general AI model interpretability,
especially in the high-risk decision settings. The reason is that
users would need to know the reason for one specific system
output to ensure that their decision-making is based on logic.
Also, we expect that the user trust level with understanding
about AI model interpretability is higher than that without any
understanding about AI model interpretability and instance
explainability. The reason is that users would need to have
fundamental understanding about the operational mechanism
of the black-box model to build their trust in the AI system.
Likewise, we expect that the user satisfaction with model
interpretability or instance explainability would be higher than
that without any understanding about XAI.

B. AI Artifact

We select the AI-enabled fall detection system as an AI
artifact, which is shown in Figure 2. In this research, a
mmWave radar is used to detect the moving human body in
consideration of privacy, which is a camera-free device. Then,
we will use a local explanation tool named LIME to show
us the feature importance, such as the speed of movement
at different portions of the human body, which indicates the
major reason for the fall event and the possible type of fall.

We will show participants the point cloud change in shape,
generated from the mmWave radar, while the human body is
moving around. Also, we will simulate a fall event to have the
LIME generate an output with feature importance.

Figure 2. AI-enabled fall detection system with point clouds.
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C. Experiment Design

More than 90 students from one university will participate
in this experiment and will play the role of long-term care
personnel. All students will be randomly divided into three
groups, which are group A, group B, and group C. We will
design three different courses for different groups, which are
described as follows:

Group A: Participate in the model evaluation/validation with
instance explainability.

The course outline includes:
• Introduction to fall detection system architecture and

functions
• Introduction to model learning process (i.e., ML pipeline)
• Introduction to instance explainability (i.e., system output

explanation)
Group B: Participate in the model evaluation/validation with

model interpretability.
The course outline includes:
• Introduction to fall detection system architecture and

functions
• Introduction to model learning process
• Introduction to model interpretability (i.e., AI algorithm)
Group C: As a control group, without any XAI. Just receive

a brief introduction to this AI system, including the system
architecture and functions.

IBM SPSS tool will be used for the significance analysis on
trust level. In addition, we will check whether the collinearity
between these three pillars is not strong, which is required to
construct three-dimensional pillars to support this framework.

We design four parts of questions in the questionnaire with
5-point Likert scale, which are partially described as below:

• Model Interpretability
I understand that the fall detection system uses an AI
model, such as the KNN or SVM algorithm.
I can understand that the change in point cloud shape
indicates a certain kind of movement.

• Instance Explainability
I realize that the AI system will output a reason to show
the feature importance for each instance, such as the
different moving speed at different portion of the human
body.
I can tell the difference in the human body movement by
reading the different feature importance.

• User Satisfaction
I am satisfied with the model interpretability or instance
explainability.
I think the explanation of the system output is reasonable.
(For group A)
I think the model interpretation is comprehensive. (For
group B)

• User Trust
I realize that this AI system can capture the detecting
logic and produce a reasonable output.
I can rely on the detection result of the fall detection
system.

I can trust this AI system and would like to use it as an
auxiliary tool to perform my care work.

Model interpretability could be considered as the first step
for domain experts to build their trust in the AI system,
providing a general understanding about the AI algorithm.
Instance explainability would provide the domain experts with
the AI system output reasons. We would anticipate its potential
application to expand to a loan application. For example, a
bank financial specialist, as a domain expert, may need to
know the reasons why an individual loan application will be
approved or disapproved, which are generated from the AI
system with the capability of instance explainability. More-
over, satisfaction with the model interpretability and instance
explainability could be a sense that domain experts perceive
the usefulness of the AI system, which is also an important
factor for the enhancement of user trust.

IV. CONCLUSION AND FUTURE WORK

In this work-in-progress research, we proposed a Three-
Pillar User Trust framework based on reviews in the literature,
which shows three pillars to support the trust level: Model
Interpretability, Instance Explainability, and User Satisfaction.
User trust could be built through the user satisfaction with
the AI model interpretability or the instance explainability
and the user comprehensibility with the AI system output
reasons in addition to the user understanding with the AI
model interpretability.

User satisfaction is a sense of feeling sufficient and un-
derstandable in the AI algorithm and / or system output
reason, which is carried out by AI engineers. Therefore, AI
engineers would face a challenge in their ability to explain an
AI algorithm and the reason behind the output of the system
in a way that domain experts can understand.

The introduction of XAI into the ML pipeline would trigger
the interaction between domain experts and AI engineers in the
collaboration of training dataset generation, model evaluation,
and model validation. Moreover, it is a mutual learning process
for both domain experts and AI engineers in terms of domain
knowledge and ML workflows. Since the result of the model
training and the output of the AI system are informed through
AI engineers, we might consider it is also an interaction
between domain experts and the AI system, which is a human-
AI collaboration.

It is possible that this framework could be applied to another
high-risk application context, such as the decision on loan
application approval. Financial specialists would be highly
concerned with recommendations based on the outputs of the
AI system because of the huge impact on the consequences
of decision making.

Our future work would include more discussions on user
satisfaction influenced by the interaction of users and the AI
system. Furthermore, we are also interested in constructing an
evaluation model for the measurement of user satisfaction.
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