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Foreword

The First International Conference on Neuroscience and Cognitive Brain Information
(BRAININFO 2016), held between November 13-17, 2016 - Barcelona, Spain was dedicated to
evaluate current achievements and identify potential ways of making use of the acquired
knowledge, covering, the neuroscience, brain connectivity, brain intelligence paradigms,
cognitive information, and specific applications.

Complexity of the human brain and its cognitive actions stimulated many researches for
decades. Most of the findings were adapted in virtual/artificial systems in the idea of brain-like
modeling them and used in human-centered medical cures, especially for neurotechnologies.
Information representation, retrieval, and internal data connections still constitutes a domain
where solutions are either missing or in a very early stage.

We take here the opportunity to warmly thank all the members of the BRAININFO 2016
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
BRAININFO 2016. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the BRAININFO 2016
organizing committee for their help in handling the logistics and for their work to make this
professional meeting a success.

We hope that BRAININFO 2016 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the area
of neuroscience and cognitive brain information.

We are convinced that the participants found the event useful and communications very
open. We also hope the attendees enjoyed the charm of Barcelona, Spain.

BRAININFO 2016 Chairs:

BRAININFO 2016 Advisory Committee

Marius George Linguraru, Children's National Medical Center | George Washington University
School of Medicine and Health Sciences, Washington D.C., USA
Pengyu Hong, Brandeis University, USA
Erwin Lemche, Institute of Psychiatry, Psychology & Neuroscience | King's College School of
Medicine and Dentistry, UK
Ramesh Krishnamurthy, Health Systems and Innovation Cluster, World Health Organization -
Geneva, Switzerland
Irini Giannopulu, Pierre & Marie Curie University - Paris VI, France
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Classification of Hand Flexion/Extension Using High-density ECoG

Tianxiao Jiang, Tao Jiang, Taylor Wang, Shenshen Mei, Qingzhu Liu, Yunlin Li,
Xiaofei Wang, Sujit Prabhu, Zhiyi Sha, Nuri F. Ince∗

∗Department of Biomedical Engineering,
University of Houston, Houston, Texas, USA 77204–5060

Email: nfince@uh.edu

Abstract—Grasping is one of the most important hand move-
ments performed in daily life and therefore a hand neuro-
prosthetic should be able to achieve this function with high
accuracy. Electrocorticogram (ECoG) recorded from standard
clinical electrodes has been proposed as a potential control
signal in brain-machine interfaces (BMIs) and used to provide
information about executed motor activity such as arm movement
direction and individual finger movements. Here, we investigate
the value of ECoG recorded from human motor cortex with
high density electrodes to distinguish between hand flexion and
extension in single trial level for a hand neuroprosthetic. Two
subjects were asked to execute spontaneous hand extension and
flexion during the recording. Event-related desynchronization
(ERD) and event-related synchronization (ERS) in low-frequency
band (LFB: 8-32 Hz) and high-frequency band (HFB: 60-200 Hz)
were observed in both subjects during these executed movements.
ECoG signal was bandpass filtered in three subbands, alpha (8-13
Hz), beta (13-32 Hz) and gamma (60-200 Hz) for classification.
A common spatial pattern (CSP) algorithm fused with linear
discriminant analysis (LDA) was used to distinguish between
executed movements. In both subjects, the gamma band yielded
classification accuracies close to 100%. Alpha and beta bands
provided poor classification results with higher latency compared
to gamma band. These results suggested that the gamma band
spatial patterns of motor cortex captured with high-density ECoG
can effectively distinguish between hand extension and flexion.
High-density ECoG can be a promising modality to drive a neural
prosthetic which can help paralyzed patients to regain crucial
daily hand functions.

Keywords—High-density ECoG; Time-frequency map; CSP;
LDA.

I. INTRODUCTION

ECoG was initially performed in clinical setting to deter-
mine the extent of resection in epilepsy cases intraoperatively
[1][2]. Nowadays, ECoG is used not only for clinical decision
making but also in BMI studies to establish the communication
and control function. Compared to scalp electroencephalogram
(EEG), the ECoG provides higher signal quality and wider
bandwidth as it is recorded directly from the cortex.

Previous studies have found that sensorimotor activity is
correlated with the power changes in specific subbands of
ECoG [3]. Amplitude modulations in gamma band (40-200 Hz)
were found to be closely related to motor behaviors. In the past
few years, features extracted from the gamma range of ECoG
or local field potentials have been extensively used to decode
hand movements of both human and non-human primates [4]–
[6]. Previous ECoG based BMI studies generally use large
clinical grids with an inter-electrode spacing of 10 mm. With
the advancements in micro electrode technology today, the
spatial resolution of ECoG has dramatically increased. Recent
studies have just started to show the potential of high-density

ECoG in decoding human motor functions including cursor
control [7], differentiation between multiple hand gestures [5]
and to drive a prosthetic limb online [8].

In this study we explored the spatial patterns of ECoG
recorded from two subjects during hand flexion and exten-
sion tasks. In particular, a customized high-density grid with
120 channels (12×10, 1.2 mm contact exposure and 4 mm
spacing) was used to assess cortical activity with superior
resolution compared to clinical electrodes with 10mm contact
spacing. We characterized the time-frequency dynamics and
investigated to what extend the recorded activity can be used
to distinguish between hand extension and flexion to drive a
neuroprosthetic. In detail, we studied the contribution of ECoG
subbands to the classification of the executed tasks. Moreover,
rather than focusing on grasping only, we focused on the
differentiation between hand flexion and extension to improve
the functions of a hand prosthetic and aimed to answer the
question whether these activities are associated with different
patterns in ECoG.

II. MATERIALS AND METHODS

Below we describe the experimental setup and signal
processing techniques used in this study.

A. Experimental setup
A customized 120 (12×10) channel high-density electrode

grid with a contact diameter of 1.2 mm and inter-electrode
distance of 4 mm was used in this study. The electrodes were
placed on the cortex of two subjects who require functional
mapping and monitoring during awake brain surgery. The
ECoG were intraoperatively recorded along with forearm EMG
and bipolar ECG (lead-II) for 15-20 mins period with a 2
kHz sampling frequency and 16 bit A/D resolution. During
the recordings, the subjects were asked to perform hand exten-
sion/flexion according to auditory instructions. Each movement
type was executed for 30 times and followed by 2-3 seconds
resting period. Hand movements and the finger positions were
digitized by a digital glove. The finger position data provided
by the digital glove are further synchronized with the ECoG
via simultaneously recorded trigger signal. The details of the
system setup were described in [9].

B. Time-frequency maps
ECoG data were manually scrutinized to exclude bad

channels. A series of FIR notch filters were applied to suppress
50 Hz power line noise and its harmonics up to 200 Hz. The
movement onsets were annotated according to the changes in
finger positions and EMG data. The ECoG data were aligned
with respect to movement onset and each trial consisted three
seconds of data centered at movement onset (1.5s before and

1Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-526-5
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Figure 1. Electrode locations are shown on a 3D rendering of a template brain surface (left). Contacts with clear power increase (ERS) in the high gamma band
during movements are marked as red. The central sulcus (CS) is highlighted by a purple line. Each time-frequency map is from -1.5 to 1.5 s, with movement
onset at zero second, and covers 0-230 Hz. All maps are displayed in dB scale (S1: -10 to 10, S2: -8 to 8).

1.5s after). After eliminating those segments with artifacts, 25
trials of flexion and 22 trials of extension in total were available
for S1. For S2, the total number of trials were 26 and 20 for
flexion and extension respectively. Using available trials for
each task, an averaged time-frequency map of each channel
was computed using short-time Fourier transform (STFT) with
256-sample long Hanning window. The window was shifted
with 90% overlap at each step. After computing the averaged
time-frequency maps for each channel in hand movement, they
were normalized by the average spectrum of the first 500 ms
(SB):

SN = 10 × log10

SA

SB
(1)

The normalized time-frequency maps were used to inspect the
power changes in peri-movement period in different frequency
bands. Identified bands were used to quantify the amount of
ERD and ERS in each. In this study, ERD was computed in
LFB (8-32 Hz) and ERS was computed in HFB (60-200 Hz)
based on our observation from time-frequency analysis.

C. Classification

In order to distinguish between the executed tasks, a CSP
algorithm was used to extract the spatial patterns of ECoG.
CSP is designed to search for an optimal spatial projection
that maximizes the variance ratio of projected data between
two conditions [10]. Originally implemented in EEG studies
to capture the movement related subband power change (LFB-
ERD), CSP has been successfully extended to ECoG studies as
ERD and ERS were consistently observed in ECoG recordings.

Although both alpha (8-13 Hz) and beta (13-32 Hz) in
LFB were associated with ERD, they were usually separately
studied as different information conveyed within each subband.
In this study, three subbands, alpha (8-13 Hz), beta (13-32 Hz)
and gamma (60-200 Hz), were tested for classification. After
filtering the data in each subband, averaged spatial covariance
matrix was computed for each movement. The optimization
problem of CSP can be transformed to the equivalent general-
ized eigenvalue problem [11]:

Σ0w = λΣ1w (2)

where, w is the generalized eigenvector and λ is the gen-
eralized eigenvalue. Σ0 denotes the averaged covariance of
flexion while Σ1 denotes extension. The variance (energy) ratio
between flexion and extension is equivalent to λ here. After
obtaining the eigenvalue spectrum, usually a few eigenvectors
related to the top and bottom of the spectrum were used for
feature extraction [11]. In order to avoid overfitting, we only
used two projections, one related to the largest eigenvalue
and the other related to the smallest eigenvalue. The two
dimensional feature extracted by these two projections was
used in LDA for classification. Classification error rates were
estimated at each time point using 800 ms of data before that
time point. 5×5 cross-validations were performed to generalize
the classification accuracies. At each cross validation, the
training subset was used to compute the averaged covariance
matrices (Σ0 and Σ1). In more detail, at each trial, the
covariance matrix was computed based on the multi-channel
data of 800 ms at specific time point. For each movement, the
obtained covariance matrices were averaged across all trials

2Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-526-5

BRAININFO 2016 : The First International Conference on Neuroscience and Cognitive Brain Information

                             7 / 15



(a) (b)

(c) (d)

Figure 2. Average ERD (blue) and ERS (red) and average finger positions
(green). LFB: 8-32 Hz. HFB: 60-200 Hz. Shaded regions denote the standard
deviations across trials.

to yield Σ0 and Σ1. After solving Equation 2, the resulting
linear projections were used in conjunction with LDA for
classification on the test set.

III. RESULTS

The signal analysis and classification results of this study
are provided in this section. Specifically, the time frequency
analysis of each channel, ERD/ERS analysis and finally the
classification results are presented in detail.

A. Time-frequency maps of ECoG grid
The electrode grid was registered onto a template brain

surface by comparing the landmarks (central sulcus, midline)
of the individual MRI and intraoperative photographs (Fig-
ure 1). The normalized time-frequency maps of all channels
are displayed on the right side of Figure 1. Although there
existed differences between individuals in terms of the level
of spectral modulations, for both subjects, we observed clear
power decrease in LFB (8-32 Hz) and increase in HFB (60-
200 Hz) from sensorimotor areas. ERS in HFB was observed
to be more spatially localized while ERD in LFB was more
widespread.

B. Event related power changes
ERD in LFB and ERS in HFB from selected channels were

averaged and displayed from 1.5 seconds before movement
onset to 1.5 seconds after it (Figure 2). Averaged finger posi-
tions were also provided in each hand flexion and extension
(Figure 2, green). The shaded regions represent the standard
deviations across all trials. ERD were observed to have smaller
magnitude than ERS in terms of absolute value. Generally,
both ERD and ERS happened slightly before the movement
onset.

C. Classification
The classification results obtained from three subbands

are provided in Figure 3. For both subjects, gamma band

(a) (b)

Figure 3. The classification error rates using three different sub-bands: alpha
(8-13 Hz, green), beta (13-32 Hz, blue) and high gamma (60-200 Hz, red) in
S1 (a) and S2 (b).

consistently yielded better classification results compared to
alpha and beta bands. Specifically, in S1, the classification
error rate of gamma band at movement onset was 38.54%
while alpha and beta band only provided chance level (50%)
decoding accuracy. The minimum error rate (2.31%) in S1
was obtained by gamma band at around 500 ms. Both alpha
and beta band achieved their maximum classification accura-
cies at around 1000 ms. However, beta band yielded better
classification accuracy compared to alpha band. For S2, the
classification error rate at movement onset of gamma band was
27.56% which is clearly better than alpha and beta. Gamma
band achieved zero classification error rate at 500 ms. At 250
ms, gamma band already yielded an error rate of 1.82%. Alpha
and beta bands reached their best decoding at around 1200 ms.
Similar to S1, beta band outperformed alpha band in terms of
minimum classification error rate (9.96% versus 36.44%).

IV. DISCUSSION

Neural prosthetics based on ECoG in future can potentially
improve the quality of life of paralyzed patients by helping
them regain crucial daily hand functions. To our knowledge,
for the first time, this study demonstrated the use of ECoG
data recorded from a high-density grid to distinguish hand
flexion and extension movements of human subjects for a
neuroprosthetics. In particular, a high-density ECoG electrode
grid (12×10) with 1.2 mm contact size and 4mm spacing was
used in this study to investigate cortical activity of hand flexion
and extension at very fine temporal and spatial resolution.
We decoded the ECoG signal by using the CSP algorithm
and LDA to distinguish between executed movements. The
decoding system achieved 98-100% discrimination accuracy
between hand flexion and extension using the gamma band
(60-200 Hz). The classification accuracies in the alpha (8-
13 Hz) and beta (13-32 Hz) band were poor and lagged the
movement onset dramatically. These results indicated that the
gamma band signal from high-density ECoG can be effectively
used to differentiate between hand flexion and extension.

Through visual inspection of the time-frequency maps
of all channels (Figure 1), ERD in LFB presents similar
widespread spatial extent between two tasks while ERS in
gamma band is spatially localized and distinct between hand
flexion and extension. The most activated ERS channels differ
slightly between movements. In addition to the differences in
spatial extent, ERS during flexion is also stronger in terms
of magnitude compared to extension. The spatial differences
together with magnitude differences between movements in
gamma band might be utilized by the CSP algorithm to form
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an optimal spatial projection that can effectively distinguish
between hand flexion and extension.

The best classification accuracies were achieved between
250- 500 ms following the movement onset in both subjects.
Since the CSP features are computed in a 800ms window, this
might suggest that data from both motor planning phase and
execution period contribute to the decoding accuracy. However,
as CSP in this study utilized all channels, sensory feedback
from those channels located on the sensory cortex might also
contribute to the classification results after movement onset. In
future studies, CSP needs to be restricted to motor cortex to
exclude sensory feedback. We also noticed that ERS in gamma
band generally lasts for a few hundred milliseconds (Figure 2)
following the movement onset and was stronger during the
initiation of the movement but not during the maintenance.

Although the study was executed in two subjects only,
we observed that the gamma band consistently yielded almost
perfect classification accuracies. Consistently in both subjects,
the low band was associated with poor classification accuracies
and larger latency. Given the consistent results obtained from
both subjects, in the future, our decoding technique based
on high-density ECoG can be extended to real-time online
decoding applications to establish a hand neural prosthetic.
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Abstract — Automated neuron tracing from microscopic 
images enables high-throughput quantitative analysis of 
neuronal morphology to elucidate functions of neural circuits. 
We have developed a transfer-learning approach that trains a 
deep convolutional neural network to trace neurons in 3D 
image stacks. Our neural network model consists of two major 
components. One is responsible for detecting foreground, the 
other takes the output of the first components and detect the 
central lines of neurites. They are trained sequentially, which is 
more efficient than training a whole deep neural network from 
scratch. The most spectacular aspect of our approach is that 
our training data is generated by synthesizing 2D simple lines 
in noisy backgrounds instead of consisting of manually labeled 
real neuron images which are labor intensive and time 
consuming to collect. Our method first processes each slices of 
3D image, and then integrate them back to produce 3D tracing 
results. Preliminary test results show that the trained neuron 
tracer is capable of accurately tracing various types of neurons 
in noisy images. 

Keywords-Neuron Tracing; Convolutional Neuron Network; 
Neuron Tracing; Deep Learning, Transfer Learning. 

 

I.  INTRODUCTION 
It is widely recognized that there is a strong connection 

between the morphological and functional properties of 
neurons. The analysis of neuron morphology can shed light 
on the functional bases of neural systems that consist of 
various types of neurons connecting with each other. With 
the rapid advances of imaging technologies, experimental 
neuroscientists are now able to quickly generate huge 
volume of 3D neuron images, which demands in-time 
analysis of neuron morphology. However, manual tracing of 
neurons in 3D images is time consuming, labor intensive, 
and often subjective. Hence, it is important to automate 
neuron tracing to generate accurate results. Digital 
reconstruction of neurons from microscopic images consists 
of several major tasks [1] , such as, soma segmentation, 
neurite tracing, spine segmentation, and so on. In this work, 
we focus on tracing neurites. 

Many automated 3D neuron tracing algorithms have 
recently been developed [2]-[17] . They are in general 
capable of accurately tracing neurites. However, each of 
them relies on some pre-designed models to estimate certain 
parameters (e.g., foreground thresholds) from images, bridge 
gaps, or fit certain shape models (e.g., tubes, curves, etc.) to 

images. It is challenging to design a universal model for 
microscopic neuron images captured by different imaging 
instruments under a wide spectrum of setting. Hence, the 
designs of those models are often based on a small validation 
set, and can limit the generalization performance of the 
corresponding neuron tracing methods. 

This work was motivated by the incredible capability of 
an average human being to trace the central lines of general 
curvature structures in various noisy backgrounds even 
though this individual never received any special training to 
perform such a task. We speculated that it might be possible 
to use simple synthetic stimuli to train a computational 
model to detect central lines, which can then be applied to 
trace complex neurite structures. The obvious advantage of 
this methodology is that we can avoid using intensive and 
subjective human labors to annotate training data. In this 
work, we explored the possibility of training the model by 
Deep Learning [18]  and Transfer Learning [19] . We chose 
Convolutional Neural Network (CNN) [18] , which was 
biologically-inspired by the groundbreaking work of Hubel 
and Wiesel on visual cortex [20] , as the base of our Deep-
Transfer-Learning network (DTL-NN) model. Our approach 
first trains a deep neural network to detect foregrounds and 
central lines in synthetic 2D images (ground truth is trivially 
known), and then refines the trained model by adding a 
hidden layer and using a small manually labeled real dataset 
to make it capable of accurately trace neurons imaged under 
the desired conditions. Given the 3D image stack of a 
neuron, we apply a trained DTL-NN to detect central lines of 
neurites in each 2D image slice. The detected 2D central 
lines are then pieced together to form the 3D structure of the 
neuron. Our methodology can not only be used to train 
neuron tracers, but also be used to build an expandable 
feature extractor for other complex computer vision 
problems. 

The rest of the paper is organized as the following. In 
Section 2, we describe the structure of our neural network for 
foreground detection, centerline extraction and transfer 
learning. We also explain how to generate the synthetic 
training dataset, the training procedures, and the post-
processing method. In Section 3, we show the experimental 
results of applying our approach to real datasets. Finally, the 
paper is concluded with discussions. 
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II. METHODS 
This section describes the technical details of our Deep-

Transfer-Learning neural network, the training data, and 
other key steps of our approach. 

A. Overview 
Our automated neuron tracing approach (Fig. 1) traces 

each individual image stack to obtain the intermediate 
tracing results, which are then combined together by a post-
processing procedure to generate the final 3D tracing results. 
The tracing of individual image stacks is performed by our 
DTL-NN that consists of three main cascade components, 
which were trained to detect foreground, extract central lines, 

and adapt to real images, respectively. Below we explain in 
details how we effectively train the DTL-NN tracing model 
using synthetic data and transfer-learning, and how the 
intermediate tracing results are combined together to produce 
the final tracing results.  

B. Synthezie Training Data 
It is well known that a large training data set of high 

quality is essential to obtain a superior machine-learning 
based model.  For example, one of the driven forces behind 
recent striking advances in Computer Vision is high quality 
manually labelled training sets, such as, ImageNet [21] . 

 However, the amount of high-quality manually labeled 
neuron images is highly limited with respect to the almost 
infinite number of possible experimental conditions and 
subjects. To deal with this problem, we generated a large-
scale training dataset by synthesizing a large number of lines 
in all directions with different widths and intensities in 
various noisy backgrounds. The ground truth of this dataset 
is obviously known. Some examples are shown in Fig. 3. 
Currently, we only consider lines as the basic structural 
elements of neurites. In the future, we can include more 
types of basic structural elements.  

C. Train Foreground Detection Module 
Foreground detection is a crucial step and can greatly 

affect downstream analysis. Most neuron tracing methods 
built their own model for detecting foregrounds manually 

Combine 
tracing 

results of 
individual 
2D images 

into final 3D 
tracing result 

Figure 1. The pipeline of our neuron tracing approach. 

3D 
Image 

Stack of 2D Images 

3D Tracing 
Result 

2D Tracing Results 

CNN-based Neurite Tracer 
Post-processing 

module 

Figure 2. Training procedures of our neural network model. 

Training	Data
Generation

•Generate	random	lines	in	noisy	backgrounds	

Foreground	
Detection

•For	each	direction	span
•Train	CNN	to	predict	foreground

Centerline
Extraction

•For	each	direction	span	
•Add	extra	layers
•train	CNN	to	extract	centerline

Transfer
Learning

•Combine	all	direction	spans
•Add	extra	layers
•Train	CNN	to	deal	with	real	data

                     
                 (a)                             (b)                             (c) 
 
Figure 3. A synthetic training sample. (a) Foreground mask, (b) 
centerline mask, (c) synthesized image after adding noise to (a). 
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(e.g., specify a relatively simple parametric form of the 
foreground detection models, and the model parameters are 
either fixed or can be adjusted based on local characteristics 
of images that can be calculated by some fixed rules). We 
would like to automatically learn a foreground detection 
model from data, which can learn to adjust itself to different 
imaging settings in the future.  Initially, we built a large 
CNN (Fig. 4) for detecting foreground, which however 
worked relatively poor (Fig. 5b) especially in the areas 
around bright neurites. We hypothesized that the foreground 
detection results can be improved if the foreground detection 

model is able to take better advantage the local structural 
information, such as, directions. The model in Fig. 3 may be 
able to learn some local structural information, however, 
implicitly. In addition, mixing various structural information 
together makes learning more challenging (i.e., harder to 
converge to a better solution).  

Therefore, we redesigned our CNN-based foreground 
detection model (Fig. 6), and explicitly trained it to take 
advantage of local direction information. We divided all 
directions into six direction spans: [-22.5° 22.5°], [7.5° 
52.5°], [37.5° 82.5°], [67.5° 112.5°], [97.5° 142.5°], and 
[127.5° 172.5°]. This design mimics the anatomy of the 
vision neural systems in carnivores and primates, in which 
neurons with similar direction preferences are clustered into 
radial columns and are organized in a systematic fashion 
across the V1 cortical surface [22] .  

The synthetic training dataset was also divided into six 
subsets, one for each direction span. In addition, we design 
the CNN to consist of six columns, one for each direction 
span. Each column was pre-trained by using the training 
subset of the same direction span so that a trained column 
only responds to the directions within its chosen direction 
span. All neural network columns were then assembled into 
one CNN that was fine-tuned using all training data. This 

Figure 4. A trial CNN architecture for foreground detection. 

Conv5-16 Avg-Pool 
Conv3-32 Avg-Pool 

Fully Connected-64 

Softmax 

     
                           (a)                       (b)                         (c) 
 
Figure 5. (a) Original image. (b) Foreground detected by the CNN 
designed in Fig. 4. (c) Foreground detected by the CNN design in Fig. 
6. 

Figure 6. Improved CNN architecture of the foreground detection module. 

Avg-Pool 
Softmax 

Fully Connected-16 

Conv3-8 
Avg-Pool Conv5-4 

Direction Span [127.5° 172.5°] 

M
ax

 

Direction Span [-22.5° 22.5°] 
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arrangement sped up the training the whole CNN and 
produced significantly better results (Fig. 5c).  The choice of 
the spans is based on the window size of our convolution. 
Since the window size of our first convolution layer is 5 x 5, 
the minimum angular change it can capture is around 27°. 
Thus we separated the direction spans by 30° apart. Each 
direction span covers 45° so that neighboring direction spans 
have 15° overlap. This non-exclusive design allows the 
model to better detect lines close to the boundaries of the 
direction spans. 

D. Train Centerline Extraction Module 
After obtaining a robust foreground detection module, we 

trained a centerline extraction module which takes the output 
of the second-to-the-last layer of the foreground detection 
module and outputs the corresponding centerline. Basically, 
we considered the foreground detection module as the 
feature extractor that learns the intermediate representations 
of line structures for the centerline extraction module. A 
fully connected layer was added between the FC-16 and 
Softmax layers of the foreground detection module (Fig. 7). 
This modified network was trained to output the centerlines 
of line structures.  We found that it was easier to first train a 
foreground detection module and then insert a centerline 
extraction module than to train one big neural network to 
directly extract centerlines. Comparing the neural network 
weights of some neurons in the foreground detection module 
shows that their weights share similar patterns before and 
after being trained to extract centerlines (Fig. 8). This signals 
that the neurons in the foreground deteciton module have 
been appropriately trained during the training step of the 
foreground detection module.  

E. Adaptation to Real Images and Post-Processing 
Previous steps give us a deep neural network that is able 

to extract central lines of synthetic line structures in noisy 
backgrounds. More importantly, the deep neural network has 
learned internal representations for describing various line 
structures and their centerlines, which can also be very 
useful, although not perfect, for representing curvature 
structures in real images. However, real images can have 
distributions quite different from those in our synthetic 
training data. To overcome the differences between synthetic 
images and real images, we apply transfer learning to adapt 
the trained network to real data by using a small amount of 
manually labelled real data that are much easier to obtain. In 
doing this, we use a hidden layer (FC-24) to connect the FC-
8 layers of the Centerline Extraction CNN to a Softmax 
output layer (Fig. 9). This allows us to transfer the 
knowledge learnt from synthetic dataset to trace neurites in 

Figure 7. Centerline extraction neural network module. 

 

 

Direction Span [-22.5° 22.5°] 

Direction Span [127.5° 172.5°] 

Softmax 

FC-16 

Layers 
before FC-16 
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(a) 

       
(b) 

       
(c) 

       

(d) 
Figure 8. (a) & (c) Weights of a few neurons in the foreground 
detection CNN responsible for 30° and 150°, respectively. (b) & (d) 
Weights of the neurons in the centerline extraction CNN 
corresponding to the neurons in (a) & (c).  
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Figure 9. Deep-Transfer-Learning neural network architecture. 
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real images. The new FC-24 and Softmax layers learns how 
to utilize the representations learned from synthetic lines and 
adapt them into new internal representations for processing 
real data.  

Although the model is trained to output 2D centerlines, 
its outputs are more similar to a shrunk foreground because 
the model relies on information in local patches and the 
outputs are softmax results. There is no constraint to force 
the model to output centerlines with width of exact one.  To 
obtain 3D tracing results, we developed a post-processing 
module to combine the 2D tracing results of the individual 
stacks of a 3D image into a 3D tracing result.  The post-
processing module mainly includes two steps: (a) link the 2D 
tracing results across stacks based on minimum spanning 
tree to obtain a 3D map; and (b) apply thinning to the binary 
3D map to obtain the final 3D neurite tracing result.  

III. EXPERIMENTAL RESULTS 
We tested our automated neuron tracing methods on a 

dataset containing 23 Drosophila neurons provided by the 
BigNeuron project [23][24] . Typical tracing results (Fig. 10 
& 11) show that our model is able to accurately tracing 
neurons in real 3D microscopic images although it was 
trained primarily using synthetic data. Our DTL-NN is able 
to transfer knowledge from synthetic data into real images by 
adding only one extra hidden layer. The number of 
parameters added to perform the transfer learning is 
extremely small (only ~1200 parameters).  Hence training of 
the DTL-NN can be done efficiently.  

Table 1 shows the test results computed as the average 
and standard deviation of pairwise distance from the gold 

results to our detection results, and pairwise distance from 
our detection results to the gold results. The errors are 
mainly caused by the following reasons. First, the resolution 
sensitivity is reduced by the average pooling layers within 
the network. Second, some real data contain noise much 
stronger than what was used in training the network, or some 
neurites in real data are extremely faint. This led to false 
positives (i.e., falsely detected neurites) and false negatives 
(i.e., missed neurites), and hence dramatically increased the 
detection error. A large-scale experiment is being carried out 
to thoroughly test this approach.  

TABLE I. PAIRWISE DISTANCE WITH GOLD RESULTS 

Pair 
Pairwise Distance 

Average Standard Deviation 

Gold to Predict  1.363 1.421 

Predict to Gold 1.377 1.539 

 

           
                                   (a)                                    (b) 

                
                                    (c)                                   (d) 
Figure 10. A tracing example. (a) Original image. (b) Centerline 
extraction result. (c) Post-processed result. (d) Manually labeled result. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Another tracing example. (a) Original image. (b) Centerline 
extraction result. (c) Post-processed result. (d) Manually labeled result. 
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IV. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a Deep-Transfer-Learning 

neural network which is able to learn essential features from 
synthetic lines and transfers the learnt knowledge to process 
real neuron images. One major advantage of our approach is 
that it does not requires a large amount of manually labeled 
training data. Currently, our approach trains the model to 
work on 2D images, and use a post-processing step to obtain 
the final 3D tracing results. We plan to design and train a 
DTL-NN to directly processes 3D images rather than process 
each slice, such that we may obtain more accurate 3D 
features from images than this network. We will also try to 
design a network, which can involve global information of 
the image, to further improve our results. More extensive 
validation tests of our approach will be carried out.   
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