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Abstract— Protection of the rights of plant breeders is essential 

to preserve the value of new varieties. However, table grapes, 

for instance, are easy to propagate vegetatively by grafting or 

cutting, and once they become popular and the cultivation area 

increases, they face a high risk of unauthorized cultivation and 

propagation, leading to overseas outflow. To prevent such 

infringements, effective methods for promptly identifying 

protected varieties have been desired, and deep learning-based 

image recognition can be one of the key techniques. The 

objective of this study is to verify the possibility of identifying 

grape varieties using images of leaves and berries. The images 

of leaves, young berries, and mature berries of Shine Muscat 

and two similar varieties were captured using smartphone 

cameras, and an image dataset was created to train and test 

classification models. Image classification models named 

VGG16, ResNet50, and Vision Transformer (ViT) were 

applied and redesigned to classify three categories. After 

training, these models were tested on 51 images of leaves, 174 

images of young berries, and 171 images of mature berries. 

The models achieved classification accuracies of more than 

96.1% for leaves, over 99.4% for young berries, and 100% for 

mature berries. Although additional testing at different sites or 

in different years will be needed, these results indicate that 

image recognition techniques can help identify plant varieties 

toward infringement detection. 

Keywords-image recognition; variety classification; grape 

leaf; grape berry. 

I.  INTRODUCTION 

Measures to prevent superior crop varieties from being 
grown and propagated without permission are necessary, and 
breeders must receive profits from licensing the varieties. 
Furthermore, the protection of the rights of plant breeders is 
essential for preserving the value of new varieties. However, 
table grapes, for instance, can easily propagate vegetatively 
by grafting or cutting; once they become popular and their 
cultivation area increases, they face a high risk of 
unauthorized cultivation and propagation, leading to 
overseas outflow. 

Several cases of infringements have been observed 
worldwide. A private company with a breeder’s right of a 
blueberry variety filed a lawsuit in the Federal Court of 
Australia, alleging that some farmers were growing and 

selling the variety without any license [1]. Another US 
company that has several patented grape and cherry varieties 
launched administrative complaints against the illegal sale of 
propagation and harvested material of their varieties [2]. An 
Italian Court admitted the infringement of a breeder’s right 
and stopped an alleged grape producer from harvesting and 
selling the infringed variety [3]. In Japan, young, high-
quality grape vines have been cultivated outside the country 
[4]. These infringements were often confirmed using 
DeoxyriboNucleic Acid (DNA) profiling or comparison tests. 
Although DNA analysis and comparison tests are currently 
among the most reliable ways to identify varieties [5][6][7], 
they usually take time to obtain results and are sometimes 
tedious. It might be difficult to develop a method that 
completely replaces conventional methods at present. 
However, a simple and prompt complementary method is 
desired, and Deep Learning (DL)-based image recognition 
[8][9][10][11][12] can be one of the key techniques. This 
study proposes an image-based method to identify crop 
varieties using Deep Neural Networks (DNNs). DNNs are 
often used for numerous tasks, including image classification, 
and DL is the easiest and best way to generate classification 
models.  

The objective of this study is to verify the possibility of 
identifying crop varieties using images. Grapes of the three 
varieties were selected, and images of their leaves and 
berries were captured to create the training dataset. Three 
classification models were trained using this dataset, and 
their classification accuracies were compared. 

The plan of the paper is as follows. In Section II, we 
mainly describe the details of the image dataset and the 
DNN-based classification models. Section III shows the 
classification accuracies obtained by the trained models and 
discusses the results of visualizing the regions focused by the 
model for classification. Section IV addresses the concluding 
remarks.  

II. MATERIALS AND METHODS 

A. Image Dataset 

The grape varieties used in this study were Shine Muscat 
[13] and its similar varieties, Muscat of Alexandria and 
Rosario Bianco. Images of the leaves and berries of these 
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Figure 1.  Image data examples of three varieties. 

TABLE I.  NUMBER OF IMAGE DATA 

 Train Validation Test 

Leaf 
108 27 51 

37 36 35 9 9 9 17 17 17 

Young 

berry 

401 90 174 
135 141 125 30 30 30 58 58 58 

Mature 

berry 

409 93 171 
147 129 133 31 31 31 57 57 57 

The three numbers in the bottom row of each cell are of image data of Shine 

Muscat, Rosario Biance, and Muscat of Alexandria. 

varieties were captured using three smartphone cameras 
(SONY Xperia 10IV, Google Pixel 7, Apple iPhone 13 
Mini). A single leaf was laid face up on a black plate 
immediately after sampling off the trees, and an image was 
captured using one of the cameras. The cameras were held 
by hands facing down at a distance of approximately 35 cm 
from the leaves. All leaves were sampled from trees in the 
experimental field of National Agriculture and Food 
Research Organization (NARO) in Akitsu (34.33°N, 
132.82°E), Hiroshima, Japan, from July 3rd to July 20th in 
2023. Similarly, images of young berries sampled from June 
20th to June 28th and mature berries sampled from 
September 21st to September 28th were captured at a 
distance of approximately 20 cm from the berries.  

The image sizes in pixels were 4000 × 3000 (Xperia), 
4080 × 3072 (Pixel 7), and 4032 × 3023 (iPhone). The 
spatial resolutions of leaf and berry images were 
approximately 0.11 and 0.07 mm, respectively. Image data 
were created by cropping a square region of 2500 × 2500 
pixels with a leaf at the center and 800 × 800 pixels for 
berries. Consequently, 186 image data of leaves, 665 image 
data of young berries, and 673 image data of mature berries 
were obtained. Fig. 1 shows examples of image data for the 
three varieties.  

B. Training and Evaluation of Classification Models 

The image classification models VGG16 [14], ResNet50 
[15], and Vision Transformer (ViT) [16] were applied and 
redesigned to classify the three categories. VGG16 is one of 
the simplest and most classical Convolutional Neural 
Networks (CNNs). It stacks 13 convolutional layers and 
three fully connected layers. ResNet50 is the most 
commonly used classifier. It has residual connections across 
layers in the network, which improve network performance 
in training process. This model is characterized by fast 
convergence of the trainable weight despite the large number 

of layers. ViT is an image classifier based on Transformer 
architecture, which has been the de facto standard for natural 
language processing. It divides an input image into a 
sequence of patches and examines their contextual 
relationships with each other using Self-Attention, which 
contributes to model robustness [17].  

The Python programs of these three models and the 
corresponding pre-trained weights were obtained from 
TorchVision [18], which is part of the DL framework of the 
PyTorch project [19]. The output layer of each model was 
modified to match the classification of the three varieties.  

To train and test the models, the dataset mentioned in the 
previous section was randomly divided into those for 
training, validation and test as summarized in Table Ⅰ. The 
models were trained by fine-tuning the pre-trained weights as 
the initial values. The weights of each model were updated 
repeatedly using the training data such that the loss (cross 
entropy) decreased. The loss on the validation data was also 
calculated for each update. After 100 iterations (epochs), the 
weights with the lowest validation loss were selected as the 
best. During training, accuracy was calculated as the 
percentage ratio of the number of correct predictions to the 
total number of samples in each epoch. 

After the training process, the best models were tested on 
51 images of leaves, 174 images of young berries, and 171 
images of mature berries to obtain the final accuracies.  

C. Visualization of Interest Area 

For the VGG models, Gradient-Weighted Class 
Activation Mapping (Grad-CAM) was applied to show the 
important portions of an input image for making predictions. 
Grad-CAM uses the gradient information flowing into the 
last convolutional layer of a CNN to assign importance 
values to each neuron for a particular decision of interest 
[20]. The magnitude of influence on the prediction results 
can be obtained as a heat map overlaying the input image. 
This helps us understand where the models focus on the leaf 
or berry to predict variety. The Grad-CAM program was 
obtained from the website of [21]. 

III. RESULTS AND DISCUSSION 

A. Loss and Accuracy Variations in Training Proccess 

As an example, Fig. 2 shows the variations in loss and 
accuracy with an increase in the number of epochs for the 
training process of VGG16 for leaves. The curves of the 
training and validation losses gradually converged, and those 
of the training and validation accuracies quickly reached 1.0 
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(a) Training loss                                (b) Training accuracy 

Figure 2.  Variation in loss and accuracy in the training process of 

VGG16 with leaf images. 

 
(a) Accuracy of each model on 51 leaf images. 

 

 
(b) Accuracy of each model on 174 young berry images. 

 

 
(c) Accuracy of each model on 171 mature berry images. 

 

Figure 3.  Confusion matrices of test accuracies of variety classification. The vertical and horizontal axes are true and predicted labels, respectively. 

within the early epochs. This implies that the training process 
was successfully performed, and a model was created to 

classify an image into three varieties. As the variations in 
loss and accuracy for both young and mature berries on the 
other models were similar, their figures were omitted from 
this report.  

B. Accuracies on Test Data 

The test accuracies of the trained models for leaf 
classification were obtained and are summarized as 
confusion matrices, as shown in Fig. 3(a). VGG16 and 
ResNet50 correctly classified all varieties on the 51 test 
images with 100% accuracy. However, ViT had some 
misclassifications and its accuracy across the three varieties 
was 96.1%. One of the 17 images of Muscat of Alexandria 
was misclassified as Shine Muscat, resulting in a recall of 
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(a) Shine Muscat. 

 

 
(b) Rosario Bianco. 

 

 
(c) Muscat of Alexandria. 

Figure 4.  Heat maps of leaf images of each variety using VGG16 and 

Grad-CAM. 

 
(a) Shine Muscat. 

 

 
(b) Rosario Bianco. 

 

 
(c) Muscat of Alexandria. 

Figure 5.  Heat maps of mature berry images of each variety using 

VGG16 and Grad-CAM. 

94.1%, and one of the 17 image of Shine Muscat was 
misclassified as Muscat of Alexandria, whereas the images 
of Rosario Bianco were classified correctly.  

The confusion matrices for the young berries are shown 
in Fig. 3(b). The accuracies of VGG16 and ResNet50 were 
100% similar to the leaf classifications, whereas that of ViT 
was 99.4% on the 174 images. One of the 58 images of 
Muscat of Alexandria was misclassified as Shine Muscat and 
its recall was 98.2%. In the case of mature berries, the 
accuracies were 100% across all varieties for the 171 test 
images, as shown in Fig. 3(c). The accuracy of ViT for 
young berries was 99.4%, whereas that for mature berries 
was 100%. This implies that the growth of berries might 
make the features of the variety on its shape and texture 
more distinct. The accuracies of ViT for leaves and young 
berries were not 100%. A large amount of data is required 
for the ViT to achieve optimal performance. However, ViT 
still achieved good results across leaves and berries. 

VGG16 and ResNet50 provided perfect classification of 
the test data. The method of capturing images contributes to 

obtaining such good results, even with these basic models. 
Using a black background and capturing images immediately 
above the subjects made it easy to capture morphological 
characteristics and might lead to perfect classifications. 
Assuming that the images of leaves and berries on trees had 
been captured at several angles or distances in the outside 
environment and the background was not uniform, as in 
[22][23], it would have been difficult to obtain such good 
accuracies. 

Although additional testing at different sites or in 
different years may be required, these results indicate that 
image recognition techniques can help identify plant 
varieties for infringement detection. 

C. Visualization by Grad-CAM 

Four heat maps generated from leaf images using the 
Grad-CAM program were used as examples, as shown in Fig. 
4. VGG16 is assumed to have classified the images into 
Shine Muscat by focusing on the leaf surface (Fig. 4(a)), 
whereas it seems to observe some leaf tips to classify the 
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images of Rosario Bianco (Fig. 4(b)). For the images of 
Muscat of Alexandria, the outline of a leaf appeared to be the 
focus of attention (Fig. 4(c)). The model for mature berry 
images may observe the surface of the berries in Rosario 
Bianco and Muscat of Alexandria (Fig. 5(b) and (c)). 
However, it possibly focused on the pedicel to recognize the 
Shine Muscat (Fig. 5(a)). 

IV. CONCLUSIONS 

To examine whether image recognition can be used to 
distinguish crop varieties, images of the three grape varieties 
were collected, and classification models were generated. 
The test results demonstrated that all models were highly 
accurate. VGG16 and ResNet50 attained test accuracies of 
100% for the leaf and berry images. The accuracies of ViT 
were 96.1% and 99.8% for leaves and young berries, 
respectively. Grad-CAM clarified that VGG16 focused on 
different parts of an image depending on the variety. Based 
on these results, any other DNN-based classification model 
is most likely to provide high accuracy. In other words, these 
three types of classification issues may be comparatively 
easy to handle in DNN-based image recognition. This study 
showed that the three grape varieties could be classified 
based on images of both leaves and berries. However, a 
model that can classify only three varieties is not sufficiently 
practical for making infringement decisions, and the number 
of varieties to be recognized should increase. Additional 
training data must be collected to update and verify the 
models. 

In general, image recognition models that maintain 100% 
classification accuracy for any unseen image are rare, even 
though they are trained on a large amount of training data. 
The models trained in this study are not expected to maintain 
high accuracy and may produce some misclassifications in 
unseen images, such as those captured at different sites and 
in different years. Therefore, distinguishing variety 
infringements based on images alone is unreliable, and DNA 
analysis or other conventional methods are still required to 
obtain a correct judgement. Image recognition techniques 
should be utilized to screen for suspicious varieties prior to 
DNA analysis, which may provide an effective method for 
infringement detection. 

In conclusion, this study represents a stepping stone for 
future development of infringement prevention technology. 
By increasing the number of cultivars that can be identified 
with image recognition while maintaining the accuracy, this 
image-based approach will become more practical, 
contributing to prompt detection of illegal cultivation and 
overseas outflow of registered varieties. 
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Abstract—In this paper, we are going to present some work in
progress results to study and analyze the price variation among
different citric varieties in Valencia province from Comunitat
Valenciana region (Spain). A data-driven approach is used to
represent each citrus variety and season using 5 features for
comparing its prices trends using a correlation analysis. Those
findings provide the foundation for implementing clustering
algorithms, such as k-Medoids, to classify citrus varieties and
seasons based on profitability and market behavior.

Keywords-Citrus; price trends; feature extraction; correlation
analysis.

I. INTRODUCTION

The agriculture sector plays an important role in achieving
multiple Sustainable Development Goals (SDGs). Its impact
ranges from eradicating hunger (SDG2) and poverty (SDG1),
to protecting the environment (SDG12) and promoting health
(SDG3). Thus, the transformation towards sustainable agri-
culture is essential to achieve these goals [1], [2]. In this
sense, the citrus fruit sector is of great importance both in
the Valencia Region (Comunitat Valenciana) and in Spain.
Indeed, the Comunitat Valenciana is the main citrus fruit
producing region in Spain. In 2022/2023, the production was
around 67% of Spain’s citrus (the main varieties grown being
oranges, mandarins, and lemons) with a production of around
2.8 million tonnes. In this period, 1.8 million tonnes were
exported (out of 4.3 million tonnes in Spain) with an economic
value of around 2 million euros (out of 3.4 million euros in
Spain) [3], [4].

On the other hand, data science and Artificial Intelligence
are tools that, as in other areas, are already being used in
the agriculture sector [5], [6]. In this sense, it is important to
highlight that the interpretability of Artificial Intelligence (AI)
algorithms in general, and of machine learning algorithms in
particular, is crucial when models are to be used for decision-
making. Thus, interpretability not only increases confidence
in the models (and their results) but also their validation.
One of the most common and easy-to-interpret clustering
algorithms is k-Means. In these algorithms, it is common to
use the Euclidean distance because it is easy to understand
the proximity of the vectors for the formation of the clusters.
However, other distances (such as that associated with the
correlation between vectors) and similar algorithms (such as
k-Medoids) can be used.

Citrus prices can experiment changes across seasons and
between seasons, depending on factors such as weather condi-
tions, supply and demand, and production costs, among others,
see for instance [7]. In this work, we study the price trends of
the citrus fruits in the Valencia province over the period 2015-
2022. For this purpose, we identify different varieties of these
citrus fruits by means of a vector consisting of 5 features. A
correlation analysis of these vectors then allows us to study
the trends, which allows us to classify citrus fruits according
to their profitability.

In a future work, this first trend analysis will allow us to
implement clustering algorithms (such as the aforementioned
k-Medoids) based on correlations. This analysis could be a
valuable tool for planning, decision-making, risk mitigation
and revenue optimization in the agricultural sector. It provides
key information that can be used by producers, traders, policy
makers, investors and other market actors to improve the effi-
ciency and economic stability of the sector and, as mentioned
above, a tool to achieve some of the SDGs.

The rest of the paper is structured as follows. Section
II presents the database and the methodology used for this
analysis. Obtained results are presented in Section III, while
the analysis limitations, discussion and conclusions are drawn
in Section IV. Finally, the stages of upcoming research are
presented in Section V.

II. MATERIALS AND METHODS

The starting point (and usually critical point) in all data
science projects is the collection of data. In our case, we use
the “Reports of the Valencian Agricultural Sector" (Informes
del Sector Agrario Valenciano, in Spanish), which contain
temporary information (with annual breakdown) on the agri-
food situation in the Comunitat Valenciana since 2015 (ac-
tually since 1998). These reports are divided into different
chapters containing both meteorological data (Chapter III) and
agricultural (Chapter IV) and livestock (Chapter V) statistics,
as well as agricultural prices (Chapter VI). We would like to
point out here that these reports consist of 20 documents in
Excel format for each of the available years, which means
that they are not easy to use [8]. Fortunately, a file (in csv
format) containing much of the necessary information can be
found in [9]. This file contains weekly prices of agricultural
products (not only citrus fruits) since 2017. Together with the
files downloaded in [8] the data have been completed to have
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information since 2015 (from earlier dates there was missing
data). Hence, we have filtered the data (to have only citrus
fruits), as well as transformed the dates. So, at the end, we
have a database containing 6745 rows corresponding to the
weekly price of 9 citrus products (different kinds of Oranges
such as, for instance, Navel, Blancas, etc., but also Lemons
and Clementines). The 9 products have 43 different varieties.
Unfortunately, there were some varieties that were not priced
for many weeks (even years) so we decided not to use them
and only use the data of 27.

After data curation, several features were extracted in order
to form a vector that will characterize each year, so that annual
trends are analysed to facilitate subsequent decisions taken by
producers.

In this work, we have focused on 5 data features extracted
for each analysed year. Even so, we are currently analysing
and working on some additional ones so that we can obtain
a more custom-made characterization. Since citrus products’
season in Valencia region generally starts in September and
ends in July, we are not focusing on natural years. From now
on, we will refer to the year of the month when the product
season started as year indicator.

As each citrus product has a different season length, and
we have the data information of prices sampled by weeks, the
first feature to be considered is the duration d (in number of
weeks) that each specific product season lasted each year. The
second and the third features were the minimum (m) and the
maximum (M ) prices paid each season per kilo of product.
Another feature to be considered was the variance, calculated
as

σ2 =

N∑
i=1

(xi − µ)
2

N
, (1)

where xi is the price paid for the product on the i-th week of
the season and N is the number of weeks that we have data
information per season. Finally, we consider the coefficient

Q =
M −m

d
, (2)

calculated per season, so that a measure of the distribution of
the data is also considered.

With the purpose of comparing the tendencies and be-
haviours of the product prices during each season, we study
the correlation of the vectors formed by the extracted features.
That is, if X = (x1, x2, . . . , x5) and Y = (y1, y2, . . . , y5)
represent a fixed variety and a season each, we compute

corr(X,Y ) =
cov(X,Y )

σX · σY
=

5∑
i=1

(xi − x̄) · (yi − ȳ)√√√√ 5∑
i=1

(xi − x̄)2
5∑

i=1

(yi − ȳ)2

.

(3)
A correlation value close to 1 indicates a strong linear corre-
lation between observations, while a value close to -1 signifies

a linear correlation, but in opposite directions. A value near 0
suggests that the observations are not linearly correlated. This
measure, related to the so called cosine similarity, allows us
to identify the relation between price tendencies.

III. RESULTS

When computing the previous features, the 1513 prices
observations from [8] and [9] result in a dataframe consisting
of 27 varieties of citrus, with its correspondent features for
each seasons from 2015-2016 to 2020-2021, since the 2021-
2022 data is uncompleted and not used. After removing the
observations for which a variety in a concrete season has
less than 5 prices recorded, only 19 varieties from Valencia
province are considered, each one corresponding to Oranges,
Mandarins, and Clementines varieties in a season, and the 5
features extracted. As an example, the first 10 rows can be
seen in Table I, where the duration is computed as a portion
of a year instead of number of weeks, for convenience.

Figure 1. Autocorrelation of features corresponding to “Clausellina/Okitsu"
across seasons.

Some correlation results can be seen in Figures 1 and 2.
In Figure 1 we show the correlation of “Clausellina/Okitsu"
variety, for which the season 2019/2020 is totally uncorrelated
with the other 5 studied, probably due to the COVID-19
pandemic, which altered the prices at the end of the season.
Also, 2017-2018 season has a tendency of its own, while
the other four seasons are fully correlated with each other.
In Figure 2, the relation between different varieties is shown.
For example, it could be thought that oranges and clementines
would present similar trends among them, but one can see
that clementine “Clementina Clemenules" variety has a more
similar price tendency to oranges than other clementines
varieties, which would be the beforehand expected behaviour.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented some work in progress
results that show how weekly prices can be analyzed in order
to find significant patterns and correlations. This is done across
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different varieties of citrus in Valencia province in seasons
from 2015 to 2021. We have found that each variety can be
identified with a numeric vector of 5 features, which allows for
the comparison of varieties with different numbers of recorded
prices. This vector can be used as a tool to reveal the behavior
of several citrus varieties along different seasons and two
comparisons of its prices trends are shown.

However, it is necessary to recognize some limitations.
Seasonal variations influenced by external factors, such as the
COVID-19 pandemic, have affected the consistency of corre-
lations for certain varieties, as exemplified by the 2019/2020
season of the “Clausellina/Okitsu" variety. While this effect
is shown in the study, those external disruptions may make
it necessary to integrate additional methods, such as time
series forecasting, to adapt the study to irregular market con-
ditions. Moreover, correlation-based similarity, while effective
in capturing relative trends, may lack the intuitive clarity of
Euclidean-based clustering, resulting in a less interpretable
methodology.

To our knowledge, there are no similar studies in the context
of agricultural price analysis, although clustering studies (com-
paring the aforementioned k-Medoids) do exist in the field of
identification of management zones in precision agriculture
[10]

V. FUTURE WORK

The vector identification found will be first step to find an
AI-based model that can help to classify products in terms
of profitability. More specifically, with the feature vector that
identifies each product and the correlation metric (actually
1 minus the correlation to make it a dissimilarity function),
we can apply clustering techniques such as k-Medoids, which
is part of the on-going work. While it is true that this may
produce some loss of interpretability, this technique may be
useful: (1) for being less sensitive to differences in absolute
magnitudes between features and, (2) to obtain a pattern
of relationships between variables, rather than in absolute
distances (as seems to be our case).

In this future work, other metrics added to the correlation
as well as time-series analysis will be considered, including
an extension of the database to include more features and
products, which would be one limitation of the current study.
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TABLE I. FEATURES FROM THE 10 FIRST OBSERVATIONS OF THE DATAFRAME (DETAILS IN SECTION II).

Variety Season Duration m M Q σ2

Clausellina/Okitsu 2015-2016 0.12 0.20 0.27 0.61 0.00089
Clausellina/Okitsu 2016-2017 0.15 0.16 0.26 0.65 0.00123
Clausellina/Okitsu 2017-2018 0.13 0.23 0.26 0.22 0.00019
Clausellina/Okitsu 2018-2019 0.21 0.15 0.25 0.47 0.00138
Clausellina/Okitsu 2019-2020 0.87 0.20 0.29 0.10 0.00093
Clausellina/Okitsu 2020-2021 0.10 0.23 0.27 0.42 0.00023
Clementina Arrufatina 2015-2016 0.12 0.27 0.34 0.61 0.00079
Clementina Arrufatina 2016-2017 0.15 0.22 0.38 1.04 0.00189
Clementina Arrufatina 2017-2018 0.21 0.29 0.36 0.33 0.00045
Clementina Arrufatina 2018-2019 0.12 0.23 0.30 0.61 0.00054

Figure 2. Mean correlation of Orange (“Naranja"), Clementines (“Clementina") and Mandarins (“Mandarina") varieties on the different seasons.
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Abstract—Many irrigation ponds are at high risk of collapse due 

to issues such as aging caused by insufficient management and 

sediment accumulation. The use of autonomous boats to 

measure water depth and estimate water storage capacity in 

these ponds has proven to be effective. However, there were 

some problems, such as discrepancies between the navigational 

map and actual conditions, which resulted in insufficient depth 

data collection near the water's edge or the boats running 

aground. In this study, we developed an autonomous boat 

system by improving the technology to utilize image recognition 

for identifying shoreline positions, allowing the boat to safely 

and adequately approach the water's edge. To achieve this, the 

boat's structure was modified by flattening the hull to reduce 

the risk of grounding. More importantly, three essential 

functions were also implemented: shoreline recognition, 

distance measurement from the boat, and route modification 

based on the collected data. These functions were evaluated in 

an actual irrigation pond, and it was verified that the distance 

estimation was accurate enough for the boat to safely navigate 

near the shoreline. However, several issues were identified, 

including the impact of boat sway and lighting conditions on 

recognition accuracy, as well as the need for improved 

recognition of obstacles along the route that are not part of the 

shoreline. 

Keywords-Irrigation ponds; Semantic segmentation; Distance 

measurement; Autonomous navigation. 

I.  INTRODUCTION 

Irrigation ponds, known as "Tameike" in Japan, are 
artificially constructed reservoirs designed to store water for 
agricultural purposes. However, due to increasing labor 
shortages, the maintenance of many of these ponds has 
become insufficient, leading to their deterioration or, in some 
cases, complete abandonment. As these ponds age, the 
associated risks of disasters, including flooding and sediment 
outflow due to structural failure, have escalated. To mitigate 
these risks caused by aging irrigation ponds and to ensure 

adequate management in the face of labor shortages, large-
scale interventions such as dredging or decommissioning may 
be required. However, informed decision-making on such 
measures necessitates regular monitoring of the ponds' water 
storage capacity, along with the accumulation of sediment and 
its temporal variations. 

To address this need, a method for managing water storage 
by using autonomous boats to comprehensively measure 
water depth in irrigation ponds was proposed. However, 
because the route planning was based on map data, accurate 
depth measurement at the water’s edge could not be achieved, 
resulting in significant estimation errors in the water storage 
capacity [1]. 

In this study, we propose a system that builds upon 
existing technology by modifying the route of the autonomous 
boat to enable accurate shoreline recognition. This 
enhancement allows for the collection of sufficient depth data 
and reducing estimation errors in water storage capacity. To 
achieve this, the boat's structure was modified by flattening 
the hull to reduce the risk of grounding. More importantly, 
three essential functions were also implemented: shoreline 
recognition, distance measurement from the boat, and route 
modification based on the collected data. The shoreline 
recognition function utilizes a semantic segmentation method 
to determine the shoreline position in camera images, and the 
distance measurement function employs a stereo matching 
method to calculate the distance to that position. The route 
modification function adjusts the boat's route based on the 
shoreline recognition results to ensure it can approach the 
shoreline safely and closely. These improvements not only 
address the issue of insufficient data collection near the 
water's edge but also mitigate the risk of grounding, ensuring 
safe and reliable data acquisition. 

In this paper, Section 2 discusses previous research and its 
challenges, Section 3 presents the proposed system, Section 4 
details the experiments and results, and Section 5 provides the 
conclusions. 
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II. PREVIOUS RESEARCH AND ITS CHALLENGES 

To conduct high-accuracy depth measurements of 
irrigation ponds at low cost and within a short period of time, 
Kaizu et al. [1] developed a small autonomous boat equipped 
with navigation control and Global Navigation Satellite 
System (GNSS) sonar. The navigation control system utilizes 
open-source autopilot software originally designed for drones. 
With this navigation control, the boat autonomously follows 
along a route so as not to deviate from the planned navigation 
route based on the Global Positioning System (GPS) position 
information. 

The boat autonomously navigates along a route set using 
the Mission Planner software. During navigation, the depth 
data from the sonar and time data are stored in the flight 
controller’s internal memory. Upon completion of 
autonomous navigation, the depth data are correlated with 
GPS information to determine the depth at specific pond 
locations. Spline interpolation is then applied to all depth 
measurements along the route to generate a map of the pond 
bed, enabling the estimation of the pond’s capacity. 

However, in this study, the navigation route was designed 
using Mission Planner on a map of the pond obtained from 
Google Maps. Due to inaccuracies in the map and variations 
in water levels, significant errors often occurred in the 
shoreline positions. This led to issues, such as insufficient 
collection of depth data near the water’s edge or the boat 
running aground. 

Figure 1 illustrates the distribution of estimation errors. 
The black line indicates the route taken by the autonomous 
boat, while the red, blue, and yellow areas on the water surface 
represent varying degrees of error. As shown in the figure, the 
central region allows for relatively accurate depth estimation, 
whereas the water’s edge exhibits significantly larger errors. 
This discrepancy is due to insufficient depth data collection, 
which causes deviations from the estimated values due to 
irregular depth changes in the lakebed near the shoreline. 

 

 

Figure 1. Distribution of Estimation Errors  

(reproduced from [1]). 

 
To address this issue, it is essential to accurately determine 

the shoreline position during the boat’s navigation and to 
adjust the route based on this data. This approach enables the 
boat to safely approach the shoreline while avoiding the risk 
of grounding. 

III. PROPOSED SYSTEM 

A. Research Objective 

The objective of this study is to address the challenges 
identified in the previous research and propose and evaluate a 
system that utilizes sensor data to recognize the shoreline and 
measure the distance to it. This system dynamically adjusts 
the navigation route to ensure safe and effective autonomous 
operation of the pond depth measurement boat. 

B. Structure of the Prototype Boat 

To conduct this research, we developed a new prototype 
boat. Figure 2 shows an image of the prototype boat. 

 

 

Figure 2. Developed Experimental Boat. 

 
In Figure 2, a bodyboard was used as the hull to facilitate 

navigation in shallow waters and minimize the risk of 
grounding. For shoreline recognition, two types of cameras 
were mounted at the front of the hull. One of these is a dual-
lens 3D stereo synchronized USB camera module (ELP Co., 
Ltd.), which is used for autonomous navigation and shoreline 
detection. The other camera serves as a "visual aid" for manual 
remote control, with its video feed displayed in real-time on 
the controller's screen via telemetry. 

Inside a waterproof case positioned at the center of the hull, 
the flight controller Pixhawk 6C (Holybro) and the Jetson 
Nano 2GB (NVIDIA), a development board equipped with a 
Graphics Processing Unit (GPU) for image processing, are 
installed. Four ducted fans were mounted on top of the 
waterproof case. These fans are controlled by the flight 
controller to manage the boat's movement. Additionally, a 
sonar system is attached to the rear of the hull to measure the 
depth of the pond. 

The prototype boat performs autonomous navigation 
based on a route planned using Mission Planner and 
programmed into the Pixhawk 6C flight controller. 

C. Functional Configuration 

Figure 3 illustrates the functional configuration of the 
proposed system. The existing system configuration has been 
enhanced with three additional functions: shoreline 
recognition, distance measurement, and route modification. 

In Figure 3, the camera mounted at the front of the boat 
periodically captures images. The shoreline recognition 
function uses the image data to estimate the position of the 
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shoreline and outputs the coordinates of the shoreline within 
the image. Based on this shoreline position, the distance 
measurement function uses triangulation to calculate and 
output the distance to the shoreline. Then, the route 
modification function dynamically adjusts the navigation 
route using the measured distance. 

 

 

Figure 3. Functional Configuration of the Proposed System. 

 
This series of functions is executed by the Jetson Nano 

2GB installed on the boat. The Jetson Nano 2GB is connected 
to the dual-lens 3D stereo synchronized USB camera module, 
which manages the timing of the image capture and performs 
the necessary computational processing for each function. The 
route modification function communicates with the flight 
controller Pixhawk 6C via a wired connection, enabling real-
time navigation commands and control. 

IV. EXPERIMENT AND RESULTS 

The performance of each added function was evaluated 
through a series of experiments. The purpose, method, and 
results of these experiments are outlined below.  

A. Shoreline Recognition Function 

(1) Purpose and Method 

This function represents the initial step of the proposed 

system, and it is crucial that it can recognize the shoreline in 

captured images with accuracy comparable to that of a human 

determining the shoreline through a camera.  

To evaluate this accuracy, we tested the inference 

performance of semantic segmentation[2]. In this experiment, 

images of shorelines taken from various distances were input 

into the shoreline recognition function, and performance was 

assessed. Multiple models with different training parameters, 

such as the number of epochs and batch sizes, were developed 

for semantic segmentation, and a comparison was made to 

select the optimal model. 

(2) Results 

The system successfully recognized both the water 

surface and the shoreline with a visually identifiable level of 

accuracy across various distances.  

Figure 4 provides an example of the output from the 

shoreline recognition function. In this figure, the shoreline is 

distinctly identified. The image on the right shows how the 

system classifies the white areas as water (navigable) and the 

black areas as land (non-navigable). 

 

 

Figure 4. Example of Output from the Shoreline Recognition Function. 

 

The shoreline recognition function utilizes semantic 

segmentation. The performance of the trained model was 

evaluated using a confusion matrix, and metrics including the 

accuracy, precision, recall, and F1 score [3]. The evaluation 

results for the trained model are shown in Figure 5. As 

indicated in Figure 5, accuracy exceeded 90%, suggesting 

that the data volume and number of training epochs were 

adequate. Although there were a few cases of misdetection in 

localized areas, such as reflections, the system successfully 

classified the water and land and recognize the shoreline in 

most areas. 

 

  

Figure 5. Evaluation Scores. 

 

Additionally, for performance comparison, several 

models were created with varying combinations of batch size 

(4, 8) and number of epochs (100, 200). Table 1 presents the 

accuracy metrics for these different hyperparameter settings. 

 
TABLE I. ACCURACY BY HYPERPARAMETER. 

epochs batch size accuracy 

100 4 0.956 

8 0.946 

200 4 0.972 

8 0.964 

 

From Table 1, it can be observed that, even with the same 

data volume, models with more epochs achieved higher 

accuracy, while smaller batch sizes resulted in slightly better 

accuracy. 

However, a challenge of the shoreline recognition 

function is the presence of obstacles other than the shoreline. 

Obstacles such as fences, plants, and rocks can hinder the 

boat's movement, and thus must be detected and avoided 

during autonomous navigation. Since the method in this 

study focuses specifically on shoreline recognition, it is 

unable to detect such obstacles. To address this issue, it is 
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necessary to develop a function to detect obstacles separately 

from the shoreline and relay this information to the route 

modification function. 

B. Distance measurement function 

(1) Purpose and Method 

The distance measurement function calculates the 

distance from the boat's current position to the coordinates of 

the shoreline identified by the shoreline recognition function 

using the stereo matching method [4]. For the boat to adjust 

its route effectively while navigating, not only is 

measurement accuracy important, but real-time computation 

is also required. Additionally, since the boat needs time to 

alter its course, it is necessary to measure the distance from a 

point far enough to allow for this adjustment. Therefore, it is 

important to understand how the distance to the shoreline 

affects the accuracy of the distance estimation. 

To evaluate this, the accuracy of the distance 

measurement function is assessed by calculating the 

difference between the measured distance and the actual 

distance as an error, and then dividing this error by the actual 

distance. 

(2) Results 

Figure 6 presents the results of the experiment. The data 

demonstrate that the distance measurement function 

accurately measured distances up to 10 meters with an error 

margin of less than 5% when the boat was stationary. Given 

that the distance to the shoreline when the boat initiates 

deceleration is 5 meters, and the error at this distance was less 

than 0.1 meters (within 1%), the function is confirmed to be 

sufficiently accurate for practical applications. 

 

 

Figure 6. Experiment Results. 
 

However, the camera used in this study had issues when 

the boat was shaking, causing the captured images to blur and 

making it impossible to detect distances in some cases. 

Therefore, for the distance measurement function to operate 

properly, it is necessary to use a camera capable of capturing 

clearer images in cases of significant shaking caused by wind, 

for example. 

 

C. Route Adjustment Function 

(1) Purpose and Method 
The route modification function prioritizes collision 

avoidance and the prevention of grounding to ensure safety 
before making any changes to the navigation route. In this 
experiment, we evaluated the boat’s ability to halt its 
movement upon approaching the shoreline and to successfully 
modify its course afterward.  

To achieve this, we tested whether the boat could safely 
navigate while modifying its course. 
(2) Results 

Figure 7 illustrates the pre-configured route (yellow line) 
set in Mission Planner, as well as the actual route followed by 
the boat (red line). 

 

 

Figure 7.  Pre-configured route and the actual route followed by the boat. 

 
The results are as follows: 

The boat successfully altered its course to navigate safely 
before reaching the shoreline. During the experiment, the boat 
approached the shoreline 25 times along the pre-configured 
route, but in 8 instances, the route modification function did 
not perform adequately. The details are as follows: 

• At points 2 and 5, the boat ran aground and became 
inoperable. 

• At points 3, 7, 11, 15, 19, and 23, the boat collided with 
obstacles, requiring manual operation. 

The causes of these route adjustment failures are as 
follows: 

• Unclear images due to boat shaking: 4 incidents. 

• Unclear images in shaded areas: 3 incidents. 

• Collision with obstacles such as fences: 1 incident, 
where the shoreline recognition function detected these 
as shorelines. 

To address these issues, the following 
improvements to the shoreline recognition and distance 
measurement functions are recommended: 

• Shoreline recognition function: Enhance the ability to 
detect obstacles in addition to the shoreline. 

• Distance measurement function: Use of higher-
resolution cameras to estimate distances with consistent 
accuracy, regardless of lighting conditions or boat 
movement. 
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V. CONCLUSION 

To address the issue of depth measurement errors due to 

insufficient data in the waterfront areas, we developed a new 

prototype boat and incorporated three functions to it: 

shoreline recognition, distance measurement, and route 

modification. Through experiments, we verified the 

effectiveness of these functions. The shoreline recognition 

function achieved over 90% accuracy in its evaluation 

metrics, the distance measurement function maintained an 

error of less than 4.5% at a distance of 10 meters, and the 

route modification function successfully avoided collisions in 

two-thirds of the cases. 

Moving forward, it is crucial to enhance the functionality 

and accuracy of each component to ensure the system's 

practicality and facilitate its application to real-world pond 

depth measurements. 
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Abstract—The adoption of Artificial Intelligence (AI) in agri-
culture and animal husbandry has accelerated in recent years,
driven by the versatility and relatively low costs for development
and deployment of smart systems. However, many farms still
rely on aging equipment and manual labour rendering these
innovations inapplicable. In turn, the inability to harness AI and
modernise operations may pose an existential risk. To address this
challenge, we advocate for retrofitting existing machinery with
AI-based modules as a practical alternative. In this paper, we
demonstrate how a poultry egg grading machine can be enhanced
with smart capabilities through the integration of deep learning
and low-cost commodity edge hardware to enable precise egg
counting. We present the methodology and algorithms behind
this system that enables real-time processing while maintaining
high accuracy. In a limited set of experiments, we demonstrated
that the Raspberry Pi 5 (RPi5) running the EfficientDet-lite0
model performed just as well as a desktop with an NVIDIA
GPU (graphics processing unit), accurately counting all the eggs
it was presented with.

Keywords-egg counting; smart retrofitting; deep learning.

I. INTRODUCTION

Egg production remains to this day as one of the most
important farming enterprises providing a steady supply of
a highly nutritious and affordable food source. Poultry egg
producers are required to follow specific processes for egg
handling, processing, labeling, and marketing to ensure the
safety and quality of eggs reaching consumers. These are
labour-intensive processes that are assisted by purpose-built
equipment, such as egg grading and sorting machines, pack-
aging, storage, etc. However, replacing existing equipment
and processes can be costly, time consuming and may cause
operational disruption. To reduce the cost of modernising
existing poultry egg production facilities with little to no
interruption the idea of retrofitting can bring about significant
gains [1], [2]. Instead of replacing the equipment farmers have
learned to rely on, add-on digital devices can be introduced
that provide new advanced capabilities.

This work explores the feasibility of ”smart retrofitting” for
animal farm equipment. We design, implement, and deploy
a low-cost, AI-based edge computing system that integrates
with a traditional egg grading and sorting machine. The system
automatically counts eggs using computer vision and classifies
them based on the configuration of the egg sorting machine.
This low-cost solution primarily benefits farms seeking to
digitally transform on a limited budget (i.e., the proposed
Raspberry Pi 5 system costs approximately one hundred
euros).

AI-powered computer vision systems have been widely

adopted in animal and food production industries, improving
efficiency, product quality, and distribution speed [3], [4].
AI is expected to continue playing a key role in the agri-
food industry’s transformation [5], [6]. This success is largely
due to the availability of pre-trained computer vision models.
However, these models usually perform poorly for specialized
field applications, such as egg detection, and require to be
retrained or fine tuned. Furthermore, most AI models still
require substantial computational resources to run in real-time,
making them difficult to implement on low-end devices and
deploy them in the field.

The system presented in this work demonstrates that with
very limited computational resources, widely available AI
models can be employed to improve operations in animal
farms. Our system provides extremely accurate egg counts
through a robust object detection algorithm enabling low-end
single-board computers (e.g., the Raspberry Pi) to perform
object detection and tracking in real time. The system’s
hardware is inexpensive (i.e., Raspberry Pi and the Pi Camera)
and it can be trivially deployed in the field without expert
knowledge.

The remainder of this paper is structured as follows: Sec-
tion II provides information regarding the setup of the system
in the environment that it is intended to be used. Section III
provides a brief overview of related research that informed
our approach. In Section IV, we outline our methodology and
present our solution for egg counting at the edge. Section V
details the experiments conducted to evaluate the system and
discusses the results. Finally, Section VI provides a summary
of the paper and highlights key conclusions.

II. ENVIRONMENT

The system developed in this work is based on a Raspberry
Pi 5 single-board computer with a Pi Camera V2 module. It
was deployed to a chicken farm with a Riva-Selegg Grader,
configured to sort eggs into four weight classes (Extra Large,
Large, Medium, and Small) with a single feeding lane, shown
in Figure 1(a). As eggs move along the horizontal feeding
lane, they drop into preconfigured collection areas when their
weight exceeds the machine’s preset value. These areas are
slightly inclined, causing the eggs to roll towards the operator,
following random paths, until collected by hand. The machine
itself is purely mechanical, without digital features for count-
ing or recording data, so egg counting is done manually by
the operators.

The vision-based egg counting edge device was placed
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(a) (b)

Figure 1: (a) A snapshot of the images obtained by our system. Egg weighting
positions are below the eggs running horizontally and located above the
egg grading zones separated with metal rods aligned vertically. (b) Ceiling-
mounted egg counting Raspberry Pi 5 deployed above a Riva Selegg egg
grading machine.

directly above and almost perpendicular to the egg grading
machine at a distance of around 2m, as shown in Figure 1(b),
in order to provide a top view of the feeding lane and the
weighting positions of the eggs.

The system is composed of two subsystems running as
independent services: (a) a back-end developed in Python
and providing for image acquisition, object detection and
tracking, egg counting, and (b) a front-end implemented in
ReactJS providing a web interface for controlling the system
and its parameters (e.g., calibration, start/stop egg detection,
view/edit/confirm egg counts, etc.)

Once deployed, the system requires a simple calibration
procedure (detailed in Section IV-E) and is then ready for use.
Re-calibration is needed if either the egg detector or grading
machine are adjusted.

III. RELATED WORK

In the past decade, the application of computer vision and
AI in agriculture and animal husbandry has seen a significant
increase. In poultry egg production, deep learning has been
used to address egg grading [7], identify egg defects [8], [9]
or assess freshness [10]. Egg counting, alongside detection,
has also been a popular use case for deep learning based
applications in the industry [11]–[14].

Automated egg counting using deep learning entails the
training of a convolutional neural network to detect eggs first
and then the development of a tracking and a counting algo-
rithm to maintain eggs detected through time. Thus, we review
some relevent work in object detection, tracking, alongside
their application in edge computing.

A. Object detection Models

Ulaszewski et al. [12] conducted experiments comparing
MobileNet-SSD (Single Shot Detector) v2, YOLOv3 (You
Only Look Once), and Faster-RCNN (Region-based Convo-
lutional Neural Network) for egg detection and counting on
various hardware platforms. Using inference speed (fps) and
counting accuracy as the primary performance metrics, their

results demonstrated that MobileNet-SSD was the fastest and
most reliable model under the specific conditions of their
experiments.

Yang et al. [8] employed four different versions of RTMDet
(Real-Time Models for object Detection) [15] models to
perform egg detection for automated defect observation and
sorting. While the focus was on a different egg-related task,
all models still conducted pure egg detection. Among these,
RTMDet-x demonstrated the highest accuracy, outperforming
the other versions.

Subedi et al. [13] tested various YOLO (You Only Look
Once) model versions for detecting floor eggs, while Luo et
al. [16] enhanced a YOLOv5 model for detecting leaky eggs
on a production line, achieving superior performance over
YOLOv4 and F-RCNN models. Similarly, Vinod et al. [11]
utilized a YOLO model for implementing an egg counting
system.

B. Tracking

Tracking is a fundamental prerequisite for effective object
counting. Tracking algorithms range from simple geometric
approaches to more advanced deep learning-based methods,
though the latter often come with increased computational
demands.

Ulaszewski et al. [12] and Vinod et al. [11] used simple, yet
effective, center-based tracking to pair with their detections.
Shen et al. [17] also used a similar center location tracking
approach to count people in elevators. Other algorithms like
SORT [18] and DeepSort [19] are also used for object tracking
(e.g Dinh et al. [20] used it for traffic counting). While
algorithms such as SORT and DeepSORT are optimized for
more robust tracking, it is crucial to account for their increased
computational cost, particularly when designing edge applica-
tions where processing resources are limited.

C. Edge Applications

Maximizing efficiency and performance in real-time object
detection and counting remains an open challenge. Chen
et al. [21] reviewed the use of Deep Learning with edge
computing, highlighting key issues such as latency, scalability,
and privacy. They also focused on the challenges of deploying
deep learning models on resource-constrained devices, such as
the Raspberry Pi.

Tsu-Chuan et al. [17] have worked on a similar task of
edge-based people counting in elevators using a MobileNet-
SSD object detector and a line of interest counting strategy.
They deployed their system on NVIDIA Jetson nano boards.
Deployment of counting systems on the edge also has relevant
applications in traffic management and monitoring. Duc-Liem
Dinh et al. [20] have introduced a low-cost edge-based system
utilising object detection for vehicle detecting, tracking and
counting.

IV. METHODOLOGY

Our methodology involves four steps: (a) acquire real-time
time images from a camera observing the egg feeding lane
of the egg grading machine, (b) perform object detection
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inference using a single-shot model, (c) compare detected
objects with those of the previous image to track the objects,
(d) use a set of predefined zones to count eggs of different
grades, that are either defined interactively or automatically
via a calibration step.

A. Image Acquisition

A simple camera module is used to obtain images in real-
time. A standard resolution of 640 x 480 pixels is chosen to
provide sufficient image quality for processing.

B. Object detection

Single-shot detection models [22]–[24] are regarded as
state-of-the-art solutions for real-time object detection. How-
ever, achieving real-time performance on edge devices is
challenging due to processing power limitations, which ren-
der many otherwise effective algorithms impractical for such
environments.

The YOLO architecture, depending on the model size
chosen, contains a number of parameters in the range of 3.2
to 68.2 million and require 8.7 to 257.8 billion floating point
operations (GFLOPs) for a single network forward pass to
detect objects in a single image. For reference, the Raspberry
Pi 5 can reach around 34 GFLOPS [25], while the Raspberry
Pi 4 is rated around 10 GFLOPS. An NVIDIA RTX 3070
Ti discreet GPU can reach 21.75 TFLOPS. It is therefore
reasonable to expect that while object detection models can
be run on all three hardware configurations, the lower-end
Raspberry Pi 4 may have difficulties keeping up with real-time
processing. On the other hand, a modern discrete GPU can
easily handle larger detection models. This allows for verifying
the performance of egg counting algorithms without the risk
of reaching a processing power limit.

Since we are only interested in egg detection and counting,
it is also necessary to consider the ability of these general
purpose detectors to reliably detect eggs. In our tests, we
noticed that these models either do not recognize eggs, or they
need to be specifically trained with egg samples to be able to
perform well.

These limitations highlighted the need for an object de-
tection model with a lighter architecture. Such a model
should deliver satisfactory results when trained with an ap-
propriate dataset, without being as computationally intensive
as the YOLO models. Lightweight object detection models
designed for on-mobile or edge device inference are well-
supported within the open-source community. Examples of
these models include MobileNet-SSD [23], TinyYOLO, and
EfficientDet [22]. Google’s autoML provides a family of
object detection models which include some light, mobile-
sized versions. Probably the smallest model is EfficientDet-
Lite0, which offers a good balance between performance and
computational efficiency.

Although it has the lowest performance among all the
EfficientDet models on the COCO dataset [26], EfficientDet-
Lite0 is likely the best fit for our needs due to its lightweight
and efficient design. Its documented Mean Average Precision

(mAP) 26.41% [27] reflects its ability to generalize across
a dataset with various object classes, many of which are
irrelevant to our goal of recognizing just one class of objects
(i.e., eggs). Therefore, the model was further trained and fine-
tuned using a curated, custom egg dataset, as described in
Section V.

C. Object tracking and counting

Efficient object tracking is essential for accurate counting
across frames, requiring an algorithm with minimal compu-
tational demand and reliable results. Distance-based centroid
trackers meet these needs by matching detected objects be-
tween frames using simple Euclidean distance calculations.
The accuracy of the counting relies on correct tracking, as
each detected object is assigned a unique ID to ensure it is
only counted once.

Distance-based object tracking methods, such as the cen-
troid tracker, have notable limitations, with their performance
heavily influenced by factors like inference frequency (i.e.,
the number of frames processed per second by the detection
model).

Low inference frequency poses a major challenge when run-
ning deep learning models on edge devices in real-time. This
limitation can negatively affect centroid tracking algorithms,
which rely on comparing an object’s position between consec-
utive frames. Processing only a few frames per second while
skipping others can degrade the algorithm’s performance, as
objects may be too far apart in time, leading to unmatched or
mismatched objects.

D. Counting using Region Of Interest (ROI)

Detection and counting is performed at the feeding lane
of the machine. This compartment of the egg grader is
responsible for weighing each incoming egg (using weight
springs placed along a mechanical conveyor belt at predefined
different positions).

First, the feeding lane is divided into four zones, corre-
sponding to extra large (XL), large (L), medium (M) and
small (S). Zones are defined as polygonal areas by four points
on the image plane, as shown in Figure 2. To count eggs in
these zones we adopted a binning approach. We utilise the
centroid tracker’s results (which include the ID and the centre
coordinates of each detected object for each frame) to execute
the counting logic. A detected egg is added or removed from
the count in any of the bins (zones) based on the location of its
center. We use a simple point-in-polygon test to determine if
an egg’s centroid falls within the region of any given zone. As
the eggs move along the feeding lane, eggs are reassigned to
zones. As eggs drop from the feeding lane into the collection
area of the machine they remain assigned to the last bin they
have been detected in.

The pseudocode for the ROI egg counting process is pro-
vided in the algorithm shown in Figure 3.

E. Calibration: Automatic Zone Computation

The ROI-based counting algorithm relies on the definition
of several detection zones. Although this process is a one-off
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Figure 2: Schematic of the bin counting process using zones. Both eggs with
IDs 1 and 2 are assigned to green zone (XL). As they move on the feeding
lane (left to right), the eggs are reassigned from the previous bin to the current
bin. Therefore, the egg with ID=1 is finally assigned to red bin (S), while the
egg with ID=2 is assigned to purple bin (L).

Figure 3: Pseudocode of the ROI-based egg counting algorithm.

procedure once the equipment has been deployed in the field,
it is still necessary to provide the system with at least four
points per zone. In our system the operator can connect to
the edge device with a smartphone or tablet and configure the
zones via a web interface interactively. However, this can be
time consuming and tedious to perform in an animal farm and
therefore we devised an effective automatic identification of
the counting zones.

The calibration procedure shown in Figure 4 is as follows:
• At least 12 small eggs are passed through the egg grading
machine. The choice of “small” eggs allows eggs to travel
across the entire feeding lane.
• For each image, the centroid of each detected egg is ex-
tracted using the trained object detector.
• Locations of all centroids on the image plane are accumu-
lated over the entire duration of the calibration procedure, as
shown in Figure 4(a).
• During calibration, the grading machine sequentially moves
each egg along the top horizontal feeding lane on the weighing
springs. Based on the egg’s weight, the springs may release
it into the appropriate collection area. Eggs spend more time
stationary on the weighing springs than in other positions or
while rolling into the gathering area, leading to the formation

of dense point clusters at these locations. To identify potential
counting zones, we apply DBSCAN [28], [29], a density-based
clustering algorithm, to group these closely packed points (see
Figure 4(b)). The center of each cluster is then calculated by
averaging the positions of the points and stored for further use.
• The computed centers of the clustered points are fitted to
straight lines to identify the actual weighing locations of the
egg sorting machines. First, a grayscale filter (Figure 4(c)) is
applied to the image plotting all raw object centers, followed
by a thresholding operation (Figure 4(d)) that converts the
image to binary. This process removes areas with few or no
detections. Subsequently, the Hough transform is used on the
remaining centroids to extract a set of straight lines.
• These straight lines are then used in conjunction with the
previously extracted cluster centers. The centers are fitted to
each line. Lines with cluster centers matching the number of
weighting positions of the machine are preserved, while the
rest are discarded (see Figure 4(f)).
• For the specific egg grader used in this work, there are two
weight springs for large and medium eggs each, and one spring
for extra large and small eggs. A bounding box for each of the
weight spring locations is computed and then the ones which
are responsible for the same egg size are merged. The result
of this is visualised in Figure 5.
• Masking Optimization: Once the counting zones are com-
puted, a region that encompasses all zones is estimated. That
region is a convex hull computed using the corners of all
counting zones. Any pixel outside that region act as a mask
(i.e., set to 0). This masking is a significant optimization for
the egg detector, because no masked pixels are used when
egg detecting, significantly improving accuracy and reducing
processing.

V. SYSTEM EVALUATION & RESULTS

A. Experimental Setup

Experiments were conducted to assess the performance of
the counting system on three different hardware configura-
tions: (i) a Desktop PC (OS: Windows 10 Pro, CPU: Intel
Core i7-4790K, RAM: 32GB, GPU: NVIDIA GeForce RTX
3070 Ti), (ii) a Raspberry Pi 4 (OS: Raspbian, Model: 4B Rev
1.5, SoC: Broadcom BCM2711, Quad core Cortex-A72 (ARM
v8) @ 1.8GHz, RAM: 8GB), and (iii) a Raspberry Pi 5 (OS:
Raspbian, Model: 5, SoC: Broadcom BCM2712, Quad core
Cortex-A76 @ 2.4GHz, RAM: 8GB).

All devices were tested over two different object detection
model architectures: (i) the EfficientDet-Lite0 [22], and (ii)
the YOLOv8n [24]. Both models were trained with a custom
dataset of 2,226 egg image samples (2065 training and 161
validation images). The dataset contains a variety of egg
images covering different lighting conditions and angles, as
well as different heights between the camera and the eggs. No
augmentation was carried out. While the EfficientDet-Lite0
architecture is lightweight enough to run on all three devices,
the YOLOv8n model was converted to the NCNN [30] high-
performance neural network inference framework optimized
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Detection centroids plotted on the XY plane, (b) post application of DBSCAN to the centroid data, with dense locations plotted in red, (c)
result after applying grayscale to the plot image, (d, e) result after applying thresholding (add params) and thinning (add params) operations to the image, (f)
the final extracted line matching the cluster centers.

Figure 5: (a) Left: After step 7 of the calibration algorithm. The locations
(red points) of the weighting springs along the conveyor belt are acquired.
(b) Middle: During step 8 of the calibration algorithm where each point is
enclosed into a polygon. (c) Right: Towards the end of step 8, where the
polygons of weight springs that are responsible for the same egg size are
merged and the zones are finally formed.

for mobile and embedded platforms.
The methodology was tested over 3 video recordings of the

single-lane egg sorting machine in operation, each capturing a
counting session of a mixture of 30 to 110 eggs of 4 different
egg grades: small (S), medium (M), large (L), and extra large
(XL).

B. Evaluation Results

For each test case, the system was evaluated for its counting
accuracy. Figure 6 presents the results from our experiments.
Each row in the figure corresponds to a different video
feed, while each plot in a column corresponds to the counts
produced by a different device. The blue bar corresponds to
the ground truth (i.e., a count obtained by manually counting
the eggs), while the orange and green bars correspond to
the counts achieved using the EfficientDet-Lite0, and YOLO
algorithms respectively.

The results justify our initial hypotheses: the Desktop

Personal Computer (PC) managed to count flawlessly in all
scenarios. In particular, on the workstation, arguably the most
powerful device in terms of computation capability among
all others, the system manages to produce perfectly accurate
counts for all videos with the EfficientDet-Lite0 model. On
the same device, inference with the YOLO model manages to
achieve similar results, only missing the count of a couple of
extra large (XL) eggs in Video 1.

The Raspberry Pi 4 counting accuracy suffered from its low
compute power, producing the worst results across all devices.
The slow processing and thus long inference times, prevented
RPi 4 to catch up with the speed of the counting machine and
resulted in under-counts in almost all scenarios. In particular,
EfficientDet-Lite0 performed inference in ≈ 0.159 seconds per
frame on RPi 4, while YOLO inference took ≈ 0.515 seconds
per frame. Worth noting is the fact that our methodology seems
to have a positive impact on the egg-counting, since in almost
all scenarios the device appears to under- and not over-count
the eggs.

Last but not least, the Raspberry Pi 5 appears to draw
the processing boundary at least for the performance of
EfficientDet-Lite0. Using the EfficientDet-Lite0 model, we
managed to achieve perfect counting accuracy for all egg
sizes across all three test recordings (see table I) with an
inference time of ≈ 0.046 seconds per frame. On the other
hand, Raspberry Pi 5 with YOLO produces sub-optimal results
by missing the count of a considerable amount of eggs,
especially those in large (L) and medium (M) groups. With
YOLO on Raspberry Pi 5, inference time per frame reached
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Figure 6: Produced results for all three devices and models over three different test videos. Each row represents processing of a different video. The first
column displays the results achieved on the Desktop PC, the second column the counting performance of the Raspberry Pi 4 and the last column that of
Raspberry Pi 5.

≈ 0.256 seconds, 5.6 times greater than the time required by
EfficientDet-Lite0 for the processing of an individual frame. In
light of the preceding observations and analysis, it is apparent
that egg-counting accuracy of our system is influenced by
variations in inference frames per second. Additionally, the
adaptability of the system to diverse egg grading machines
poses a challenge, as modifications to certain components
would be required for compatibility across other machine
layouts. Future work could focus on transforming the system
into a more generalized solution capable of operating on a
wider range of equipment configurations. Moreover, extend-
ing the evaluation to environments with diverse conditions,
such as varied lighting, would provide valuable insights into

the system’s robustness. Expanding testing to a larger, more
comprehensive dataset would also help assess the system’s
accuracy on a broader scale, thus enhancing its reliability in
practical applications.

TABLE I: ACCURACY OF THE RASPBERRY PI 5 BASED SYSTEM
UTILIZING THE EFFICIENTDET-LITE0 MODEL.

Pi5 / EfficientDet-lite0
Counted Eggs Ground truth Accuracy(%)

Video 1 60 60 100
Video 2 117 117 100
Video 3 30 30 100
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VI. CONCLUSION

In this work, we have demonstrated the usage of low-cost,
resource-strapped, edge device capable of detection, tracking
and counting of eggs. In an attempt to apply the idea of smart
retrofitting, we have enhanced existing egg sorting equipment
with a small footprint device, a Raspberry Pi 5. Following our
methodology, we managed to count a set of graded eggs using
visual inspection, in real time, and with very high accuracy.
In fact, in the experiments we conducted, the accuracy of our
counting was identical of that of a GPU equipped Desktop PC,
and matched the ground truth in all cases. This showcases the
advantage of our system compared to the rest in the relevant
literature, which is the full capability of our system to operate
on edge devices without the availability of computing intensive
hardware like GPUs, something that other works in the area
relied on.
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Abstract— The bee is the best pollinator of plants, essential to 

the balance of ecosystems and our food. Beekeeping and honey 

collection in their traditional forms have existed for decades in 

southern Algeria. Currently, beekeeping faces many problems: 

climate change, chemical pesticides, diseases, theft, predators, 

and pollutants. The aim of this work is to propose a system to 

monitor the state of a hive from inside and outside to remedy 

the problems raised. In this article, we propose an automated 

hive system based on the Internet of things (IoT) and Artificial 

Intelligence (AI). This system will collect the internal and 

external climatic parameters of the hive using different 

wireless sensors and transfer these values to the beekeeper's 

smartphone. Actuators placed in the hive will regulate the hive 

climate and perform other actions. The results of the 

experiment indicate that the proposed system is effective for 

monitoring and securing a beehive. An accuracy value of 

0.9022 indicates that the decision tree model used for 

monitoring achieves a high level of accuracy. 

           
Keywords- Beehive; Smart beehive; IoT; sensor network; 

Artificial Intelligence; decision trees. 

I.  INTRODUCTION 

Apiculture involves the keeping of honeybees for the 
purpose of collecting honey and its derivatives. It is an 
important practice that has many benefits: honey is an 
essential nutrient which is used in many industries, bees are 
natural pollinators that heavily influence the biodiversity of 
our planet and greatly enhance agricultural yield, and 
investing in this sector represents an opportunity to reduce 
poverty in rural areas [1][2]. Honey is commonly used as 
food and medicine, making its protection from 
contamination crucial to reducing health issues [3].   

Bees and their keepers are facing great challenges due to 
climate change, the use of chemicals in agriculture, 
pollution, the urbanization of our planet, water scarcity, and 
overexploitation of plants. For these reasons, several 
scientists are concerned about the possibility of bee 
extinction and how it could affect human life in general.   
Among the issues of apiculture is the sudden hive collapse 
syndrome where a beehive dies unexpectedly. Another is 
overheating in the hive due to unprecedented planet-wide 
temperature increase leading the bees to less food collection 
and more focus on temperature regulation    resulting in less 
honey production. In addition, sabotage and theft result in 

incredible loss for beekeepers. Furthermore, natural 
predators like certain types of birds and insects destroy entire 
colonies especially when beekeepers keep their hives in 
distant and rural areas where plant life is more abundant, and 
pollution is less apparent [4].  

To face these problems, beekeepers need to keep constant 
watch on their hives making sure their temperature is stable, 
that they receive additional water and food during drought 
periods, and that they are active and safe from both human 
and animal enemies. As such, we can say that beekeeper 
challenges range from hive and bee health, climate, and 
status monitoring, to controlling their hives for optimal 
environmental metrics for bee survival and increased yield. 
Recently, smart IoT and AI technologies are used 
everywhere in precision agriculture management [5]-[7], 
including the monitoring and control of environmental 
metrics.       

Considering the needs of beekeepers and the available 
IoT technologies, we aim in this work to propose a new 
beehive monitoring system based on both IoT and AI 
technologies. Our proposed system consists of two 
subsystems: the first one for monitoring the microclimate of 
the hive using sensors for temperature, humidity, carbon 
dioxide (CO2), and weight; the second subsystem is 
designed to secure the hive against predators, diseases, etc. 
This security system is based on smart cameras and speakers. 
Both subsystems use AI processing algorithms, Wifi 
communications and an Android application ensuring the 
communication of full system data access by the beekeeper. 

The rest of this work is organized as follows. In Section 
2, we present a literature review as well as the extraction of 
parameters/tools used in this research area. In Section 3, we 
describe the architecture and design of our proposed system. 
Section 4 presents the results of the work and their 
discussion. Finally, we conclude this work with a summary 
and some perspectives in Section 5.  

II. RELATED WORK 

Many approaches have been used throughout the years to 
leverage technology to assist in collecting data that can be 
used to study the health and behavior of individual 
honeybees and their hives.  

In [8], the authors proposed an IoT-based beehive 
monitoring system. This system captures sensor data 
(temperature, humidity, weight, video and audio) recordings 
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at the hives and sends them using the Message Queuing 
Telemetry Transport (MQTT) protocol to a ThingsBoard 
dashboard. In [9], the authors describe the recent advances in 
precision beekeeping as systems and as services. In [10], the 
article proposes a Self-Powered Smart Beehive Monitoring, 
Control System (SBMaCS) using IoT, and interconnecting 
various sensors of temperature, humidity, weight, motion s, 
and flame. In this article, the authors develop a mobile phone 
application that interacts with the SBMaCS hardware to 
monitor and control the various parameters related to the 
beehives. In [11], the authors proposed a smart beehive 
monitoring by microservices and a Web platform using the 
following hardware and software: Raspberry Pi, Android OS 
and Microsoft SQL Server. In [12], smart sensor systems 
were developed for real-time and long-term measurement of 
relevant parameters related to beehive conditions such as the 
hive weight, sounds emitted by the bees, temperature, 
humidity, and CO2 inside the beehive, as well as weather 
conditions outside. In [13], an innovative Edge-based IoT 
solution is presented for the detection of Varroa disease. The 
solution relies on Tensor Processing Unit (TPU) acceleration 
for machine learning-based models pre-trained in the hybrid 
cloud environment for bee identification and Varroa 
destructor infection detection. This proposed system can 
detect the presence of varroosis in beehives in real-time with 
the use of Edge Artificial Intelligence invoked for the 
analysis of video streams. In [14], the authors propose an IoT 
based smart beehive monitoring system integrated with 
advanced sensors, the system monitors temperature, 
humidity, hive weight, and diurnal cycle. The system 
provides real-time data, remote connectivity, and actionable 
insights for beekeepers. The system enables early disease 
detection, proactive interventions, and optimized hive 
management.  

Based on this literature review, we conclude the 
following: Most of the research works in the field of smart 
hive monitoring have been based on various techniques, 
algorithms, Artificial Intelligence (AI) and IoT technologies. 
However, none of these works have addressed the issues of 
hive security or the challenges associated with the arid 
climate of a Saharan region. Our study aims to integrate 
these aspects by taking these specific constraints into 
account, while using Artificial Intelligence for data 
classification and decision making. This opens new 
perspectives for sustainable hive management in harsh 
environments. 

III. PROPOSED SYSTEM 

A. System architecture 

Figure 1 shows the architecture of our system. The first 
component is the beehive climate monitoring component. 
This part is equipped with sensors for temperature, humidity, 
CO2, pressure, weight and an internal camera. The security 
component of the beehive includes an external camera, a 
motion sensor, a proximity sensor, and a GPS. The actuator 
part contains a fan and a speaker. The software component 
includes the cloud, databases, and the Web application.      

 

Figure 1.  Architecture of the proposed system. 

 

B. Description of the used components 

In this section we describe the different components 
included in the proposed system. 

- Raspberry Pi  
Raspberry Pi is a Controller using the operating system 

Raspberry Pi OS (Raspbian). This installation necessitates an 
SD card. To install Raspberry Pi OS on SD card we used 
Raspberry Pi Imager.  

-  BME280  
The BME280 sensor typically uses the I2C (Inter-

Integrated Circuit) protocol for communication with the 
Raspberry Pi.  

-  DHT11  
Installing the Adafruit_DHT library is a reliable means to 

acquire temperature and humidity data from DHT series 
sensors. Connecting the DHT11 sensor to the Raspberry Pi.  

- MQ135  
Since the Raspberry Pi 3 B+ lacks analog pins, we 

utilized an Arduino Uno to read the output of the MQ135 
sensor. We established a serial communication between the  

- HC-SR04  
The RPi.GPIO libraries provide convenient functions to 

access the GPIO pins to interface with HC-SR04 sensor. 
Connect HC-SR04 to the Raspberry Pi. 

-  Raspberry Pi Camera V2  
Installing the Pi camera library in Python allows access 

and control of the Raspberry Pi Camera Module. Connect 
Raspberry Pi Camera Module to the Raspberry Pi. 

- SRD-05VDC-SL-C Relay  
The RPi.GPIO libraries provide convenient functions to 

access the GPIO pins to interface with the SRD-05VDC-SL-
C relay. Connect the relay to the Raspberry Pi. 

 
In Figure 2, the experimental components of our 

monitoring system are identified. Both the pictures of the 
physical components, (Figure 2 a) to c)), and a scheme of 
their communication (Figure 2 d)) are displayed.       
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C. System funcional modules 

Our proposed system performs two primary functions. 
Firstly, it monitors the beehive by collecting and analyzing 
data (temperature, humidity, weight, etc.) at regular intervals 
which is then sent to the cloud for storage and can be 
accessed through our mobile app. Secondly, it secures the 
beehive by conducting environmental scans to detect 
potential hazards (predators, thieves, etc.), with alerts sent to 
the mobile app. Below, Figure 3 shows the two monitoring 
modules of a beehive.  

 
 

Beehive Monitoring 

System 

Beehive Climate 

Monitoring System 
Beehive Security 

System 
 

 

Figure 3. Beehive monitoring modules. 
 
The module of beehive climate monitoring system is 

presented in Figure 4. This system collects temperature, 
pressure, humidity, CO2, weight, and photos from sensors 
and a camera at regular intervals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                               Figure 4. Climate monitoring diagram. 

 
The collected data is then analyzed by the Decision tree 

(an AI Algorithm) to identify any necessary actions and send 
results to the cloud for storage. The data can be easily 
accessed through the mobile app. 

 
 
  (a) Beehive External and Internal components. 

 

 
(b) Weight sensor.            c) Security sensors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d) Components communication. 

 

Figure 2. System description including physical components a) to c)  
and their communication d). 
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      To improve the productivity of the bees as well as their 
safety from the dangers of the surrounding area, the system 
in Figure 5 is designed to conduct environmental scans on a 
regular basis. This involves using a combination of 
proximity sensors, HC SR501 sensors, and a camera to 
detect potential hazards in the beehive's surroundings. The 
proximity sensors can detect any objects that are too close to 
the hive and may pose a threat to bees like predators or 
humans. The HC SR501 sensors can detect any movement 
such as intruders. The camera can capture images of the 
beehive's environment allowing beekeepers to visually 
inspect the area for any potential hazards.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Beehive security system. 

 
These used sensors and cameras can detect potential 

threats to ensure the security of the hive and take appropriate 
measures. For example, if the proximity sensors detect a 
predator (bird, beewolf, thief, etc.), the system can warn the 
beekeeper and send him a notification and a photo. The 
system through a speaker can trigger a hawk sound to deter 
nearby birds which effectively protect the hives. The camera 

can also be used to monitor activity around the hive as well 
as the detection of diseases such as varroa. 

IV. RESULTS AND DISCUSSIONS 

In this section, we will present the implementation of our 
beehive monitoring system. The experiment took place in the 
south-west of Algeria, in Bechar city, which is an arid area 
with a dry Saharan climate. The data from this experiment 
are derived from the beehive shown in Figure 2 a). 

A. Collected data  

The data collected in Table 1 are a series of 
measurements taken at different dates and times, concerning 
various environmental factors of a beehive. Here is a general 
description of the data collected from IoT sensors of our 
proposed system: 

1. Date: The dates range from March 8, 2023, to June 10, 
2023, capturing a period of several months.  

2. Interior Temperature: The temperature recorded inside 
the location varied between 24.5°C and 37.0°C, with the 
highest temperature observed on May 29, 2023.  

3. Exterior Temperature: The recorded exterior 
temperature ranged from 27.2°C to 40.4°C, with the highest 
temperature observed on June 10, 2023.  

4. Rainfalls: The data indicates whether rainfall occurred 
during the measurements.  

5. CO2 Levels: The CO2 levels ranged from 465.62 to 
538.94 parts per million (ppm), with the highest level 
observed on May 29, 2023.   

6. Humidity: Humidity levels ranged from 32% to 80%, 
with the highest humidity recorded on April 26, 2023.  

7. Weight: The weight measurements indicate a range 
from 11.38 to 18, representing units specific to the context of 
the data collection.  

8. Pressure: The pressure values ranged from 925.6 Pa to 
933.7 Pa. 

 

TABLE I.  COLLECTED DATA FORM DIFFERENT SENSORS AND AT DIFFERENT DATES. 

Date/Time 
Interior 
temp. 

(°C) 

Exterior 
temp. 

(°C) 

Rain 

falls 

CO2 

(ppm) 

Humidity 

(%) 

Wight 

(Kg) 

Pressure 

(Pa) 

08/03/2023 

22:38 
24.5 27.2 false 490.06 70 15 930.6 

26/04/2023 
16:53 

25.0 28.0 false 498.21 80 18 925.6 

27/04/2023 

00:55 
30.2 31.0 false 506.35 60 12 927.1 

29/05/2023 

17:07 
37.0 38.1 true 538.94 34 11.5 930.1 

10/06/2023 
15:10 

33.0 40.4 false 506.35 32 11.4 933.7 

 

B. Decision tree model 

In our monitoring system, hive management is done 
based on AI and Machine Learning (ML) models to improve 
the efficiency of beekeeping operations. 

 

The decision tree is a model created and integrated into 
our monitoring system for decision making and beehive 
management. Table 2 illustrates the different classes of hive 
state generated by our decision tree model. 

 

Start 

Collecting Data  
from proximity sensors, 

and movement sensor 

Detect a  

predator (bird, 

beewolf etc.) 

Take photo 

and send it 

to the cloud 

Send Alert 

initiate a 

sound 

Delay 
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TABLE II. GENERATED CLASSES BY THE DECISION TREE MODEL 

Example Attributes Result 

Humidity 

%RH 

Exterior 

Temp. 

Co 

Interior 

Temp. 

Co 

Weight 

Kg 

Co2 

ppm 

Rainfall 

in last 

24h 

Send 

Notification  

Send 

Alert 

Requires 

hive 

visit 

Class 

1 70 -95 9- 47 10- 36 1- 35 440-500 N N N N Normal 

2 70 -95 <8 10- 36 1- 35 440-500 N Y N N Hibemation 

3 >96 9- 47 10- 36 1- 35 440-500 N Y N N Evaporating 
Nectar 

4 0 -70 9- 35 10- 36 1- 35 440-500 N Y N N Low 

humidity hive 

5 60-85 9- 35 10- 36 1- 35 440-500 N N Y Y Colony no 
longer in hive 

6 70 -95 9- 35 10- 36 1-35 400-440 N N Y Y Diminished 

population - 

Reduced C02 
production 

7 70 -95 9- 47 >38 1-35 440-500 N N Y Y Hive is too 

hot 

8 >96 2- 47 10- 36 1-35 440-500 Y N Y Y Hive is too 

damp 

9 0- 100 9- 47 10- 36 >'5 440-500 N Y N N Hive is too 

heavy 
 

Table 3 shows the evaluation of the performance of the 
proposed decision tree model system, including the 
following metrics: F1-Score, recall, and accuracy.  

TABLE III. EVALUATION METRICS VALUES 

Metrics Metric value (%) 

F1 Score 88.5 

Recall 88.3 

Accuracy 90.2 

 
These results highlight its excellent performance in 

classification tasks.  

C. Discussion and Graphs  

Analysis of these graphs provides an insight into the 
environmental conditions surrounding the hive which can be 
valuable to beekeepers in managing and understanding hive 
health and productivity. 

From the observations, it has been found that there is a 
close relationship between the different environmental 
parameters of the hive (temperature, humidity, CO2, weight, 
etc.). The ideal conditions for these parameters can be 
regulated by the bees themselves or with the help of the 
proposed intelligent system actuators. For example, fans can 
be used to improve air circulation if the temperature or CO2 
becomes too high; a misting system can be used to control 
humidity if it is insufficient. Another is heating, which can 
increase the temperature when needed, mainly during cold 
seasons. 

By combining natural bee regulation and advanced 
technologies, it is possible to create an optimal environment 
for colony development which can increase productivity and 
overall hive health. This represents an opportunity for 
modern beekeeping to evolve towards more sustainable and 
efficient practices.  

The gathered data is presented in the next paragraphs. 
First, the results of temperature inside and outside the 
beehive on March 10, 2023, are presented in Figures 6 and 7.  

It is possible to see that inside the hive the temperatures 
are lower than outside during the day. Regarding the rest of 
the monitored parameters inside the hive, we can identify in 
Figure 8 that the humidity is minimum at midday with 
maximum values during the night. Finally, the CO2 
concentration is maximum in the late hours of the day, as 
shown in Figure 9, since this is the moment in which the 
bees are inside the hive.  
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Figure 6. Variation of Temperature Outside the Hive on March 10, 2023. 
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Figure 7. Variation of Temperature Inside the Hive on March 10, 2023. 
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Figure 8. Variation of Relative Humidity Inside the Hive on March 

26/27, 2023. 
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Figure 9. Variation of CO2 Inside the Hive on March 10, 2023. 

 
Moreover, with this gathered data it has been possible to 

compare the parameters of a beehive on two different dates: 
March 9/10, 2023, and June 9/10, 2023. This information is 
presented in the following figures. In Figure 10, we compare 
the temperature inside the hive. It is possible to see that 
despite the high difference on date, the temperature inside 
the hive is very similar. Figure 11 represents the variation on 
the humidity inside the hive. In this case, there are 
differences among the dates with high humidity values in 
March.  
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Figure 10. Variation of Temperature Inside the Hive in March and June. 

 

      In Figure 12, the variation in the beehive weight is 

depicted. The weight is slightly higher in June than in 

March. 
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Figure 11. Variation of Relative Humidity Inside the Hive in March and 
June. 
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    Figure 12. Variation of Weight Inside the Hive in March and June. 
 

V. CONCLUSION AND PERSPECTIVES 

This work highlights the growing importance of IoT and 
AI technologies in monitoring beehives in the Sahara region 
in southwestern Algeria. These technological advances offer 
innovative solutions to monitor the health status of the hive 
and protect the bees from predators such as bee-eating birds, 
diseases like   varroa, and theft, therefore, contributing to the 
preservation of the ecosystem and the sustainability of 
beekeeping. The experimental part of this work shows that 
AI algorithms can analyze data from IoT devices which 
ensures intelligent monitoring of the hive.  

Our future work will provide more details on the results 
of experiments related to hive security, namely the detection 
of predators and diseases affecting bee colonies, besides the 
study of other parameters like bee sounds, and bee behavior 
based on Artificial Intelligence and Internet of Things 
technologies. We also plan to evaluate the system in varied 
environments and integrate more data analysis methods and 
AI models for better, deeper insights.   
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Abstract—Mediterranean countries have been facing severe
droughts in recent years, leading to water restrictions for
consumers and farm owners in the most affected areas. This
situation has resulted in increased interest for investing in smart
systems to monitor crops, aiming to reduce resource usage and
improve crop quality. Existing sensor devices typically measure
only a limited selection of physical parameters, such as soil
moisture, air temperature, and relative humidity, among others.
Furthermore, these devices are usually deployed in various parts
of the fields and require different power sources. In this paper, we
present a system that gathers data not only from physical sensors
but also from cameras to implement computer vision models
that enable the monitoring of aspects such as insect presence
and plant diseases. These tasks are conceived within the AerOS
framework. The system consists of a set of electronic devices
designed and developed by ourselves, a heterogeneous wireless
network for communication among all devices, and a server to
manage the network, store the data, process it, and present it
to users. All these components are housed in an anti-vandalism
case and powered by a single power source, consisting of a solar
panel and a battery. This integrated system expands the features
of conventional agriculture monitoring systems.

Keywords-agriculture; IoT; monitoring; heterogeneous network.

I. INTRODUCTION

The use of sensing devices in agriculture has experienced a
significant growth in recent years. It has been fueled by severe
droughts and other adverse conditions farmers have suffered,
with special dificulties in the Mediterarnean area subject to
irrigation water restrictions mandated by local governments.
These events have led to the development of multiple Internet
of Things (IoT) solutions for agriculture, specifically employing
low-cost components [1]. This choice of components is primarly
motivated by the limited economic resources that farmers may
have. However, this also leads to devices that cannot cope with
the weather conditions to which they are exposed for long,
or sensors that do not provide reliable readings. Thus, it is
necessary to invest in quality materials to ensure the correct
performance of sensing devices. Furthermore, these devices
are often placed in rural areas without access to the power
grid, requiring the provision of alternative sources of power
such as batteries and solar panels [2]. However, when a set of
devices is deployed, the cost of these materials to power each
device increases. Therefore, combining some of these devices

to be powered by the same set of solar panel and battery may
alleviate the higher cost of quality components.

New technological solutions aimed at solving agricultural
challenges are including not only sensor data, but also data
from images that get analized [3]. But deploying cameras on
fields is not done in a straightforward manner [4]. Powering
the camera is one of the limitations that need to be faced.
However, there are suitable solutions on the market that include
solar panel powering. The main challenge cameras face is
communication. Pictures and images require higher bandwidth
than the numerical values (telemetry) obtained from sensors,
resulting in the need for high-bandwidth connectivity. 5G can
provide high connectivity to agricultural systems, but the cost
of endowing every device with 5G connectivity would be
prohibitive, as each will require a SIM card module and a
contract with a service provider for each SIM card. Thus,
new approaches would benefit from adapting to the different
wireless communication needs of each device.

Heterogeneous wireless networks consist of several wireless
technologies that are used within the same wireless network
[5]. A set of gateways enable the information encapsulated in
messages to change their format according to the standards of
the required wireless communication protocols. This allows
cellular technologies such as 4G and 5G, long-range low-
bandwidth technologies, such as LoRa (Long Range), and
medium-range high-bandwidth technologies such as WiFi to
provide wireless connectivity to agricultural smart devices.
These types of solutions adapt to different transmission needs,
facilitating the deployment of telemetry sensor devices with low
bandwidth requirements at far distances from the gateway using
LoRa, and high-bandwidth demanding cameras to transmit
pictures and videos using WiFi or 5G/4G communication. The
flexibility heterogeneous wireless networks provide can be
leveraged by solutions that required seamless connectivity to
manage systems that operate in the edge-cloud continuum.
Meta operating systems such as AerOS [6] are vouching for
developing distributed solutions with cross-domain resource or-
chestration for different type of use cases, including agriculture.
Therefore, considering the aforementioned needs, in this paper,
we present a system for crop and meteorology monitoring in
agricultural fields that include physical sensors and cameras
collecting images intended for computer vision solutions. It
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comprises a weather-resistant anti-vandalism encapsulation and
provides connectivity to heterogeneous wireless devices using
a common power source for all devices.

The remainder of the paper is organized as follows. Section
2 reviews the related work. The methodology is detailed in
Section 3. Section 4 discusses the results. Lastly, the conclusion
and future works are written in Section 5.

II. RELATED WORK

Monitoring soil moisture and other soil parameters has been
the main focus of precision agriculture for many years. As a
result, there have been many works dealing with this topic.
Park et al. presented a system that monitored soil moisture,
atmospheric temperature, and relative humidity using low-cost
sensors and open-source software [7]. The system also included
a water pump to control irrigation. Experiments were conducted
at a soybean cultivation. The results showed that the system was
able to maintain soil moisture at 40%. Chen et al. introduced
a high-density in-situ solution for soil moisture monitoring
using the Narrow-Band Internet of Things (NB-IoT) protocol
[8]. Thus, the devices required a SIM card to communicate.
They used an RS485 soil moisture sensor and tested battery
life. The results from one year of tests showed better spatial-
temporal accuracy of soil moisture, lower cost, and better
energy consumption performance using NB-IoT than other
technologies such as ZigBee [9].

Favorable meteorological conditions are also paramount
for good crop development. However, optimal weather is
rare. Therefore, many works focus on monitoring weather
parameters to adopt solutions to adverse climatic events. Khan
et al. implemented a low-cost solution for weather monitoring
[10]. It was comprised of an Arduino Mega, operating as a
control system, and sensors for wind speed, wind direction,
rain, solar irradiance, and CO2 concentration monitoring. The
gathered data was then transmitted to the cloud. Marwa et
al. proposed a system that monitored temperature, humidity,
and rain in real time using the S-THB-M008 and S-RGB-
M002 sensors [11]. Data were sent to a cloud server that
included a MySQL database. Their climatic monitoring system
was tested in Tunisia for one year. The results revealed the
correct performance of the system. Moreover, Rajapaksha et al.
designed a handheld weather station for monitoring barometric
pressure, air temperature, air humidity, soil moisture, and
carbon monoxide [12]. The device uses an ATMEGA 2560
Microcontroller, a power unit with removable and rechargable
batteries, an LCD display, a sensor panel, local storage, a
micro-USB charging port, and a common port to connect
external sensors. The device also allowed for SMS alerts when
temperature thresholds were exceeded.

As soil and meteorological aspects are both indispensable
in precision agriculture systems, some works have included
sensors intended for these two aspects in their solutions.
Placidi et al. proposed a Wireless Sensor Network (WSN)
for low-cost soil water content monitoring [13]. Their solution
included a photoresistor, a temperature sensor, a low-power
microcontroller, and a solenoid valve. Tests were performed in

Silty Loam and Loamy Sand, with a non-constant sensitivity
for the low-cost volumetric water content sensors. Furthermore,
the parameters of the non-linear fitting equation were optimized
to correlate the analog voltage output to the reference values for
the volumetric water content. Singh et al. designed an irrigation
system for precision agriculture in urban environments [14].
The system was based on soil and weather conditions including
soil moisture, air temperature, relative humidity, wind speed,
and wind direction. The system was tested for two months and
the data was displayed using the Thingspeak platform.

Lastly, a growing number of works have begun proposing the
use of heterogeneous wireless networks in agriculture. Sanjeevi
et al. introduced a scalable WSN using devices comprised of air
temperature, air humidity, air pressure, and pH sensors, as well
as an Arduino board [15]. Tests were performed to determine
the performance of a heterogeneous network with WiMax, WiFi,
and LTE wireless technologies, showing that each technology
can be advantageous depending on the network requirements
of the deployment. Furthermore, Jose Agustín Rodríguez-Mejía
et al. proposed a heterogeneous WSN for precision agriculture
that combined LoRa, Bluetooth Low Energy, Zigbee, and WiFi
using low-cost Heltec Wireless Stick V3 devices [16]. The
selection of the wireless technology is based on the content
to be transmitted and the Received Signal Strength Indicator
(RSSI). The tests concluded that their solution was efficient
and reliable.

The solution presented in this paper includes soil and weather
monitoring as well as a camera and the use of a heterogeneous
communication network to transmit the data from the different
devices to the servers. This way, we combine the key aspects
necessary for up-to-date precision agriculture solutions, and
provide a reliable source of data and images to feed Artificial
Intelligence models.

III. METHODOLOGY

This section describes the implementation of the hardware
of the system and the software development.

The system consists of a base station that houses all the
sensing devices, batteries, and the solar panel (see Figure
1.) It features an anti-vandalism enclosure with weather-proof
materials and the solar panel on top, shielding the inside. Inside,
the Suspended Particulate Matter (SPM) sensor, temperature
sensor, humidity sensor, wind speed sensor, solar irradiance
sensor, soil moisture sensor, and batteries are placed on the
different shelves of the housing. The gateway is installed
vertically hanging on one of the walls of the enclosure. The
camera is placed on the outside of the enclosure to get a full
vision. Furthermore, the camera includes its own solar panel
for power supply that is also placed on the outside of the
enclosure. The additional powering system was engineered to
guarantee the operation of the gateway and sensing devices
during nighttime and cloudy days.

A. Hardware implementation

The sensors included in the base station are distributed
into several sensing devices. Namely, a meteorology and soil
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Figure 1. Architecture of the system.

monitoring device that includes the air temperature, humidity,
wind speed, solar irradiance, and soil moisture sensors. It is
important to highlight that the wind sensor requires a higher
voltage power supply than the other sensors. Another device
with a case that allows air flow through it includes the SPM
sensor. Lastly, the camera is deployed on its own.

Figure 2 shows a detailed view of the inside and outside
of the enclosure with the different sensing devices. The
meteorology and soil monitoring device is composed of the
following elements. The Arduino board itself provides a
standard 5V power output, which is shared to power all
sensors. However, the wind sensor requires a Direct Current
(DC) amplifier to step up the voltage from 5 to 12 volts to
ensure its proper functioning. Another consideration is the
data output of each sensor. Data obtained from these sensors
include parameters such as environmental and soil humidity,
temperature, wind speed, radiation, and the battery charge
level of the device. To access the sampling values of soil
moisture, radiation, and battery voltage, the analog pins on the
Arduino board are used. Other sensors, such as the temperature
and environmental humidity sensor, operate under the Inter-
Integrated Circuit (I2C) communication protocol. Therefore,
the SDA and SCL pins were used to facilitate the connection,
as their output is not directly connected to an analog pin. Lastly,
the wind sensor, poses a particular challenge due to the fact that
the Arduino board has an internal Analog-to-Digital Converter
(ADC) operating in a 0 to 3.3 volts range, while the wind
sensor’s proportional output operates in a wider range of 0 to 5
volts. To address this mismatch, we have employed an external
analog-to-digital converter capable of processing these inputs
and generating a compatible output with the I2C protocol. This
converter is powered by the Arduino board and uses a pin of
the ADC to send data to the board.

The SPM device is made of a suspended particle sensor
with a 0.35 to 40 µm particle range and a data aquisition
frequency ranging from 1 to 30 seconds [17]. The SPM

Figure 2. System deployed in anti-vandalism enclosure.

sensor is connected to the Arduino board through the Serial
Peripheral Interface (SPI) interface. The Arduino board has
LoRa connectivity and uses this wireless technology to transmit
data to the gateway.

The RAK gateway has LoRa, WiFi, and 5G connectivity. The
SPM device and the meteorology and soil monitoring device
transmit their data through LoRa to the gateway. Conversely,
the camera, requiring higher bandwidth, sends images and
video to the gateway through WiFi. The gateway is equipped
with a SIM card and uses 5G/4G to send the data to the cellular
cell of the service provider. If there is no 5G connectivity in
the area, other cellular technologies could be used as long as
video traffic can be transmitted.

Regarding the power supply for the devices, two distinct
sources are used: a solar panel and a battery. The Arduino
boards, the gateway, and the battery are connected through a
charge controller. While the solar panel generates power, it
ensures that the battery is charged and the Arduino boards
and gateway are powered. However, when the solar panel does
not provide enough power, the battery takes over as the power
source for the system until the solar panel starts generating
power again or until the battery is depleted. The battery can last
up to 5 days in adverse weather conditions with no sunlight.
This is the standard for solar panel infrastructures in the area.

B. Server implementation

On the server side, the managmenet and processing of the
information generated by the sensors to obtain a meaningful
and easily interpretable visual representation of the data
is programmed. This step is crucial, as it allows better
understanding the performance and behavior of the device
under different conditions.

The server at the UPCT receives all the data using the
LoRaWAN communication protocol. The network server is
the Chirp-Stack open-source LoRaWAN server [18]. When the
network server receives the messages from the field devices,
the acquired data is stored in a database. Due to the different
characteristics of the data, including numerical values and
images, two types of databases where used. InfluxDB was the
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choice for storing and managing time series data [19]. The
decision to use InfluxDB is made to its ability to handle large
volumes of real-time data and its efficient structure for time
series storage, which is well suited for the numerical data
gathered from the sensors. Conversely, MongoDB was used to
store images, which could not be stored using InfluxDB [20].

Once the databases were configured and running, Grafana
[21] was integrated into our system. Grafana allows interactive
dashboards with graphs, tables, and other visual elements,
making it easier to interpret and analyze the data stored in
InfluxDB. Furthermore, Grafana can also embed images and
videos retrieved form MongoDB. To achieve the final graphical
representation, the necessary queries were made to visualize
the extracted data as effectively as possible. Line graphs
were chosen to represent the evolution of humidity levels,
temperature, wind speed, solar radiation, and soil moisture over
time. These line graphs help in identifying trends, seasonal
patterns, and significant changes in the sensor data. Additionally,
the battery status of the device was presented using pie charts.
These charts provide a quick and clear view of the battery
charge percentage, which is crucial for evaluating the device’s
autonomy and energy efficiency. Nevertheless, while line and
pie charts were used for our current purposes, Grafana offers
a wide range of visualization options. Dashboards can be
customized and adapted according to the user specific needs
and preferences as well as the requirements of each project.

IV. RESULTS

In this section, we present the results from the base station
deployed on the fields. These results show some relevant
observations from different time periods.

Figure 3 shows the overview of the Grafana dashboard for
our system. The user interface was designed so that one can
easily view the current values from the sensors. This includes
different sizes of particulate matter (PM01, PM2.5, and PM10),
wind, solar radiation, humidity, soil moisture, and temperature.
Furthermore, the map with the location of the base station and
the real-time video from the camera is also displayed on the
dashboard.

Figure 3. Grafana dashboard of the system.

The graphs plotting the time-series data for each sensor are
also available in another Grafana dashboard. Figure 4 illustrates
an extract of temperature data for the variation in temperature
experienced at different hours of the day. As it can be seen,

nights and early mornings are always the periods with the
lowest temperatures, whereas it rises in peak sunlight hours.

Figure 4. Temperature readings.

Humidity readings are represented in Figure 5. The graph
indicates that humidity rises at nightime and decresaes through
the day up to mid-afternoon. This can vary depending on the
time of year.

Figure 5. Humidity readings.

Regarding radiation, it can be observed that it is much higher
during sunlight hours. The small variations observed in Figure
6 are due to the clouds creating shadows, as they reduce the
brightness and radiation captured by the sensor. Then, light is
reduced at night. The fields under monitoring are close to a
small town and some light might be appreciated at night.

Figure 6. Solar radiation expressed in Photosynthetic Photon Flux Density
(PPFD).

As for the wind sensor, the readings in Figure 7 show that
wind is strongest in the afternoon on the field. According to
the Beaufort scale, this would correspond to grade 3, which
indicates a gentle breeze. It can also be seen that wind readings
are more abrupt than other parameters.

Figure 8 depicts the readings for the suspended particulate
matter. The particles with a bigger size such as PM10 have
higher concentrations. Conversely, the particles with lower
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Figure 7. Wind speed readings.

sizes, such as PM2.5 and PM1 have smaller concentrations.
Particle concentrations on fields can increase due to several
reasons. Strong winds, dust storms, or agricultural machinery
working can contribute to higher outcomes.

Figure 8. SPM readings.

The readings regarding soil moisture are represented in
Figure 9. It can be observed that soil moisture was decreasing
during the night but it increases again after the drip irrigation
system is turned on in the morning.

Figure 9. Soil moisture readings.

Lastly, Figure 10 shows the device’s battery level and the
incoming voltage. These values help users to monitor potential
battery issues during periods of low sunlight.

Figure 10. Baterry readings.

The images gathered by the camera of our solution are being
used for developing computer vision tools for agriculture. The

images collected from the fields can be used to feed Artificial
Intelligence (AI) engines and detect different aspects from
plants, including plant diseases (see Figure 11) or pests [3].

Figure 11. Output from computer vision plant disease detection feature.

The output from the sensors and computer vision features
presented in this section can help farmers improve their
irrigation schedules and determine if plants are being affected
by a disease, alerting the farmers in case the results are positive.
Nonetheless, there are no anomalies in the results presented in
this paper.

V. CONCLUSION AND FUTURE WORK

The adverse climatic conditions faced by Mediterranean
countries have led to the need to implement solutions for
monitoring meteorology and soil parameters that affect the
crops of these areas. This type of system helps reduce water
consumption for irrigation and simultaneously optimize crop
growth and production. However, existing approaches typically
include only a limited selection of parameters. This paper
presents a system for crop and metheorology monitoring
intended for precision agriculture. It includes a camera to
perform computer vision, increasing the number of features
that can be provided to the users. The devices were placed
in a custom-made anti-vandalism enclosure. Moreover, a het-
erogeneous wireless network was deployed to ensure all types
of data, with their respective bandwidth requirements, could
be transmitted. It included WiFi, LoRa, and 5G connectivity.
Finally, the proposed system is powered by renewable energy,
so it can be placed anywhere in the field, providing positioning
independence.

For future work, this system will be used as part of
an agrivoltaic solution to monitor meteorologic and soil
parameters, as well as serving as a gateway for other devices
deployed to monitor other parts of the fields or greenhouses,
and the energy produced by the solar panels of the agrivoltaic
system. Furthermore, more computer vision models will be
developed to increase the available features and/or detecting
options.
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Abstract— The digitalization of agriculture, known as 

Agriculture 4.0, is revolutionizing the way agricultural 

products are produced, managed, and marketed. This 

transformation is driven by the integration of advanced 

technologies, such as the Internet of Things (IoT), Artificial 

Intelligence (AI), big data, and digital twins. Digital twins, 

virtual replicas of physical systems, enable farmers to simulate 

and optimize agricultural operations in real-time, enhancing 

their decision-making process. AI plays a crucial role in 

analyzing vast amounts of data collected from wireless sensor 

networks, allowing for precision agriculture and addressing 

global challenges, such as food security and climate change. 

The adoption of digital technologies also facilitates traceability 

and transparency in the agricultural supply chain, ensuring 

food safety and quality. Among the emerging technologies, 

holography stands out as a promising tool for intelligent 

agriculture. Digital holography techniques, such as 

computational holography, iterative holography, Fourier-

based holography, Computer-Generated Holography (CGH), 

Deep Holography (DH), and tensor holography, offer 

immersive and realistic experiences for users. The integration 

of holography with AI and other technologies has the potential 

to revolutionize digital agriculture by providing real-time 

monitoring, management, and interaction with crops. 

However, the development and implementation of these 

technologies must be inclusive, sustainable, and focused on 

enhancing the quality of life for all individuals. This study 

presents a communication algorithm flowchart and a system 

proposal to elucidate the interaction between a user and a 

holographic system, demonstrating the potential of holography 

not only in digital agriculture but also in effective human 

learning and communication. 

Keywords-Agriculture 4.0; Internet of Things (IoT); 

Artificial Intelligence (AI); Digital twins; Holography; Large 

Language Models (LLM). 

I.  INTRODUCTION 

The digitalization of agriculture, also known as 
Agriculture 4.0, revolutionizes how agricultural products are 
produced, managed, and marketed. This transformation is 
based on the integration of advanced technologies, such as 

the Internet of Things (IoT), Artificial Intelligence (AI), big 
data, and digital twins to improve the efficiency, 
sustainability, and profitability of the agricultural sector [1]. 

Digital twins, virtual replicas of physical systems, are 
instrumental in agriculture. They enable farmers to simulate 
and optimize agricultural operations in real-time, a feature 
that significantly enhances their decision-making process [2]. 
These digital replicas collect data from Wireless Sensors 
Networks (WSN) distributed in fields and agricultural 
machinery, providing detailed information on soil 
conditions, weather, plant growth, and crop health [3]. By 
analyzing these data, farmers can make informed decisions 
about irrigation, fertilization, and pest control, resulting in 
more efficient resource use and higher productivity [4]. 

AI plays a crucial role in analyzing these vast amounts of 
data. Machine learning algorithms can predict crop yields 
based on historical data, optimize planting schedules, and 
even detect early signs of diseases or pest infestations in 
crops [5]. These AI-driven ideas allow precision agriculture, 
where water, fertilizers, and pesticides are used more 
effectively, reducing costs and minimizing environmental 
impact; this is accomplished thanks to the different 
technologies used, such as sensors, Global Positioning 
System (GPS) or the Internet of Things application (IoT) [6]. 

The adoption of digital technologies in agriculture not 
only improves crop management but also has the potential to 
address global challenges, such as food security and climate 
change [7]. This potential is underscored by a report from the 
United Nations Food and Agriculture Organization (FAO), 
which predicts a 70% increase in global food demand by 
2050 [8]. Integrating technologies like artificial intelligence 
and big data in agriculture can help predict crop yields, 
optimize fertilizer and pesticide use and reduce food waste, 
contributing to a more sustainable future [9]. 

Moreover, digitalization facilitates traceability and 
transparency in the agricultural supply chain, ensuring the 
safety and quality of food that will guarantee consumer 
confidence [10]. Modern consumers demand detailed 
information about the food's origin and quality. Through 
blockchain and other distributed ledger technologies, it is 
possible to track every stage of a product's lifecycle, from 
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farm to table, ensuring the authenticity and quality of the 
final product [11]. 

The use of drones and IoT sensors in agriculture has also 
enabled more precise and real-time monitoring of fields, 
contributing to more effective management and reduced 
operational costs [12]. This technology provides farmers 
with critical data that can be used to improve planning and 
decision-making, thereby increasing productivity and 
reducing environmental impact, as in the case of water, 
where more than half of water consumption is attributed to 
crop irrigation. The improvement of the irrigation system 
will be essential to reduce consumption; this can be achieved 
thanks to different monitoring technologies, in this case, the 
monitoring of evapotranspiration [13]. 

AI, a key player in the digitalization of agriculture, also 
aids in automating repetitive tasks, such as weeding, 
harvesting, and sorting of produce. This practical application 
of AI saves time and ensures high precision and efficiency in 
these tasks, freeing human labor for more complex decision-
making processes [14]. 

The digitalization of agriculture represents a significant 
opportunity to transform the agricultural sector, enhancing 
efficiency, sustainability, and resilience to global challenges. 
Integrating advanced technologies, such as digital twins and 
AI, promises to optimize farming operations and prepare 
them for a more sustainable and technologically advanced 
future [15].  

One of these digital technologies could also be 
holograms. Holography is an application of optical physics, 
specifically the science of interference and diffraction of 
light and waves. It enables the creation of three-dimensional 
(3D) images, which, in contrast to two-dimensional (2D) 
images, provide enhanced detail and information due to the 
depth and relief characteristics of holograms. Furthermore, 
holography is a technology applicable to diverse fields and 
sectors, rendering it a multidisciplinary concept. These 
applications encompass medicine, engineering [16], and 
agriculture [17]. As with other technologies, this 
multidisciplinary concept has evolved into digital 
holography, advancing classical holography to a more 
sophisticated level. Digital holography possesses the 
capability to integrate real and virtual aspects of the world 
through its 3D resolution, positioning this technology within 
mixed reality systems. This technology can significantly 
enhance user engagement due to low latency, as users can 
interact vividly with holograms through immersion without 
the need of special glasses, thereby stimulating multiple 
human senses simultaneously through haptics, smell and 
taste. This type of multi-sensory technology is called 
mulsemedia. Moreover, an additional advantage of 
augmented reality technology, such as holography is its 
capacity for integration with multiple other technologies, a 
concept commonly referred to as multimodal technology or 
interface [18].  

This research is organized as follows: Section I provides 
an introduction of Agriculture 4.0, emphasizing the 
transformation and digitalization of traditional agriculture 
with means of digital technologies, such as IoT, AI and 
specifically holography. In Section II, the related work 

regarding intelligent agriculture and farming, LLM, various 
types of digital holography are discussed. The chatbot-
integrated holographic system applied to digital agriculture is 
being proposed in Section III along with the system's 
architecture and communication algorithm. Section IV 
presents the simulation results and evaluates the performance 
of different language models. Finally, Section V concludes 
the paper with a summary of the findings, implications of AI 
and holography in digital agriculture and suggestions for 
future research directions. 

II. RELATED WORK 

In recent years, the integration of advanced technologies 
into agriculture has gained significant attention. A 
noteworthy contribution is the intelligent agriculture system 
developed by Xu et al. [17]. This innovative system employs 
holograms to provide real-time monitoring and management 
of crops. By projecting holographic data related to crop 
growth, soil conditions, and irrigation needs, farmers are 
empowered to make informed decisions without the 
necessity of being physically present in the field. This 
advancement not only enhances agricultural management 
efficiency but also significantly reduces water resource 
consumption. Looking ahead, future developments in the 
field of intelligent agriculture could include the integration of 
AI for predictive analysis and the use of drones for remote 
monitoring. Such advancements exemplify the potential of 
technology to transform traditional agricultural practices into 
more sustainable and efficient methods, showcasing a 
promising future for the industry. 

The importance of accessibility in digital environments is 
further emphasized in research by Alabi et al. [19], which 
focuses on visually impaired users. Their study highlights the 
critical role of assistive technologies, including screen 
readers and adaptive user interfaces, in facilitating access to 
information. Implementing these technologies shows that 
improving digital accessibility can lead to greater 
participation by all users, particularly those with disabilities. 
His research findings underscore the need for inclusive 
design on digital platforms and the responsibility of 
developers to ensure that the needs of various user groups are 
considered. By prioritizing accessibility, developers can 
create more equitable digital environments. It is intended to 
use this type of technology in libraries to avoid 
discrimination in these environments. 

The development of tools aimed at improving 
communication for individuals with speech disabilities has 
also seen significant advancements. [20] Janai et al. 
introduced a sophisticated text-to-speech and speech-to-text 
conversion tool that leverages advanced natural language 
processing algorithms. This tool provides rapid and accurate 
conversion between text and voice, facilitating smoother user 
interactions. Its implementation across various applications 
has positively impacted the daily lives of those relying on 
such technologies, highlighting the importance of innovation 
in communication aids. By enhancing accessibility, these 
tools empower individuals with speech disabilities, fostering 
more significant inclusion in society. 
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Another significant area of development is in the realm 
of Large Language Models (LLM), as presented by Brown et 
al. [21]. Their work on models like GPT-3 represents a 
groundbreaking shift in how machines comprehend and 
generate human language. With their transformative 
potential, these models utilize vast datasets and sophisticated 
deep learning algorithms to produce coherent and 
contextually relevant text, which has transformed numerous 
applications, from content generation to academic research 
assistance. The capabilities of large language models extend 
far beyond mere Natural Language Processing (NLP); they 
also facilitate human-computer interaction, making 
technology more intuitive and user-friendly. This 
technological leap has opened avenues for new research, 
creativity, and productivity across various fields.  

As previously noted by Xu et al. [17], the utilization of 
digital holography can be a significant asset in agriculture. 
The digitalization of classical holography has given rise to 
various holographic techniques [22]. Computational 
holography employs computers to generate holograms. This 
technique offers the advantage of adapting and manipulating 
holographic projections through computational parameters; 
however, considering the substantial data requirements of 
holographic projections, high bandwidth is necessary, which 
can be addressed through the use of algorithms and Deep 
Neural Networks (DNN) [23]. 

Iterative holography also utilizes specific algorithms, 
such as the Gerchberg-Saxton algorithm. As the name 
suggests, iterative holography continuously refines 
projections to reconstruct a holographic image, phase object, 
eliminate twin images (although beneficial in agriculture 
[24]), and overcome physical barriers and obstacles of the 
real world [25]. While this technique may result in poor 
image quality methods, such as the Constrained Complex 
Total Variation (CCTV) regularizer exist [26] to preserve 
image resolution. 

Another method of creating holograms digitally without 
the use of lenses is Fourier-based holography [27], in which 
a reference wave enables the retrieval of phase information 
about any type of wave, such as light, electron, and X-ray, 
scattered by an obstacle, simply by using Fourier Transform 
to reconstruct images. 

The method shown in [28] is applicable to various 
disciplines and provides the capability to generate Computer-
Generated Holography (CGH), which leads to the next type 
of digital holography. The CGH method can work with 
incoherent light and generating high-quality holograms 
through the use of algorithms. Its flexibility and versatility 
make it suitable for Virtual Reality (VR) and Augmented 
Reality (AR) [29]. 

Next, there is Deep Holography (DH), which also utilizes 
DNN to execute phase aberration corrections. Additionally, 
DH not only gives rise to other types of digital holography, 
such as tensor holography, but it also addresses one of the 
major challenges in holograms, which is the elimination of 
twin images [30]. Considering the importance and relevance 
of twin images in agriculture, holography may be a suitable 
technology in digital agriculture. 

Finally, very similar to CGH is tensor holography, which 
is the most realistic form of digital holography. Tensor 
holography employs DNN and Machine Learning (ML) and 
can also be referred to as a physics-informed DNN 
technique. This technique has the capacity to project real 3D 
volumetric images in air, making it not only the most 
computationally intensive digital holography technique but 
also the most intricate. Scholars argue that tensor holography 
requires 4000 pairs of RGB-depth images for training and 
provides the full potential of holographic video 
communication, thus enabling maximum user engagement 
and satisfaction [30][31]. Tensor holography is the type of 
holography that is desired to achieve revolutionizing digital 
agriculture. As discussed by Huang et al. [32], holography 
provides 6 Degrees of Freedom (DoF), involving an 
immersive and realistic experience in 3D movement and 
rotation, physically allowing users to engage with 
holographic projections. This again supports the relevance of 
holograms in digital agriculture.  

While the advancements across these domains—
intelligent agriculture, digital accessibility, communication 
tools, and language models—demonstrate the profound 
impact of technology on society, it's important to note that 
they also come with potential risks and challenges. For 
instance, large language models can potentially perpetuate 
biases in the training data, leading to unintended 
consequences. As we continue to innovate, it is crucial to 
ensure that these technologies are inclusive, sustainable, and 
enhance the quality of life for all individuals. Embracing a 
collaborative approach in developing solutions can pave the 
way for a more equitable and accessible future. 

III. PROPOSED SYSTEM FRAMEWORK 

Large language models have proven to be a great 

advancement for artificial intelligence, and natural language 

processing. Numerous tools, such as ChatGPT, Gemini and  

Microsoft Copilot are already available for aiding users with 

faster research by interpreting multiple sources of 

information and answering questions. Other tools are 

already being studied to help health professionals to study 

for clinical education, practice, vascular research and 

scientific writing [33]. This study proposes a system to 

make information about different kinds of trees more 

accessible for people, especially biology students. It is 

composed of holograms, each of a different species of tree, 

that are connected to large language models that can answer 

questions about themselves. Tools for text to speech and 

speech to text enable the tree to talk with participants 

without the necessity of text input and output. The general 

knowledge of AI makes it ready to answer not only possible 

unexpected questions, but also follow up ones. 

A more interactive and playful approach to learning 

might lead to better comprehension and knowledge retention 

as other studies suggest [34]. A conversation between a 

human and a tree allows the user to ask for clarification, or 

to adapt the technicality of the conversation based on the 

user's speech. More advanced AI are capable to, in addition 
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to answering questions correctly, interpreting a character, 

with correct usage of wordplay and even puns related to 

trees, which contributes to the immersion of the experience.  

Figure 1 presents a chatbot-integrated holographic 

system capable of generating auditory and visual responses 

through a holographic tree to enhance user interaction. The 

system initiates with a spoken user input received by a 

microphone and transmitted in an audio stream via Wi-Fi to 

the Access Point (AP). The AP subsequently retransmits it 

to the embedded system. The user input is then converted 

into text through a voice-to-text translator module. This text 

serves as the input for the Chatbot. The chatbot's core 

comprises a language model that analyzes and interprets the 

input and generates a response based on NLP algorithms. 

By evaluating the probability distribution of subsequent 

words, the model ensures conversational coherence and 

contextual relevance. 
The text response is transformed into speech using a text-

to-voice module, creating an auditory interaction. 
Concurrently, the system generates a holographic tree image, 
and the audio data is transmitted to the speakers over a Wi-Fi 
network from the embedded system with synchronized 
transmission to facilitate a conversation with the Chatbot-
integrated holographic tree. The holographic tree is animated 
to match the output speech. The system is proposed to be 
viewed in an indoor environment, so when the holographic 
projector is not placed in the same room as in the Wireless 
Access point, other considerations due to wall loss must be 
taken into account [35][36]. Overall, the theoretical 
implications of this system are significant and support 
educational applications.  

 

Figure 1.  Illustration of the interaction between a user and a chatbot-

integrated tensor hologram in a tree form. 

Figure 2 represents a communication algorithms 
flowchart to illustrate the interaction between a user and a 
holographic system (in this case, a holographic tree). During 
the initialization phase, the system initiates the interaction 
and receives and interprets user input. Upon receiving user 
input, the system proceeds to the system processing stage, 
wherein NLP and speech recognition are utilized to process 
the user input, which may be a question or a command. User 
inputs can be as straightforward as: "Hello, can you tell me 
about your life as an orange tree?". The subsequent step, 
"Holographic tree response?", is the point at which the 
system evaluates whether it can generate a response to the 
user's input. If a response can be generated, the system 
proceeds to provide the user with a visual holographic 
response, which may be factual, educational, or procedural, 
based on the information retrieved from its database. If the 
user input is excessively complex or intricate, the system will 
propose that the user reformulate the prompt. Should the user 
decline, the system will proceed directly to the finalization 
stage to conclude the interaction without generating a 
response. If the user opts to proceed with a new prompt or 
input, the system will resume the cycle from the user input 
stage.  

During the holographic tree response stage, the system 
creates an immersive volumetric 3D hologram or tensor 
hologram, as previously explained. The system's response is 
adaptive, dynamic, and interactive, enhancing user 
experience through engagement. Following this stage, the 
user has the option to continue the interaction or terminate it. 
Should the user wish to continue, the system  
loops back to the input stage and maintains the flow of 
interaction, leading to deeper engagement. However, if the 
user opts to end the interaction, the system transitions to the 
finalization stage, concluding the cycle. This design enables 
the system to process various types of queries, including 
factual and complex questions. 

 

Figure 2.  Communication algorithms flowchart framework between a 

user and a holographic tree. 
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It is a versatile system applicable to diverse domains and 
topics. To contribute with immersion, text to speech tools 
have also evolved to better pronounce words, add intonation, 
pauses and stress to the voice. Neural networks are also 
employed to this task, as they are capable of generalizing 
patterns that are not always present on the learning phase 
[37]. Advancements were also made with multilingual 
models, an extremely useful feature in our use case since 
LLM are capable of synthesizing text in multiple languages 
[38]. Those same models can also simulate different voices 
from short audio files, to add variety for different types of 
trees. 

By combining those three consolidated technologies with 
holograms, it is possible to build a prototype of the proposed 
system and test its performance based on some metrics: 
answer correctness, its preciseness and character impression.  

Other metrics, such as response time were considered, 
but all tested models presented near-real time answers, 
sometimes even faster than human interaction timings, thus it 
was not measured. This study conducted evaluations on three 
pertinent and freely accessible large language models: 
OpenAI's ChatGPT, Google's Gemini, and Microsoft's 
Copilot. The same set of prompts were input across all of 
them to avoid inconsistencies. The models were asked to 
"Pretend that you are an apple tree that talks. I'm going to ask 
you questions about your biology and you should answer as 
you were this tree". Afterwards, the three models were asked 
a series of questions on the subject. 

All the models were able to answer the questions 
correctly. However, only ChatGPT and Microsoft Copilot 
played a role of a talking tree. Google Gemini answered in 
the first person, as requested, but did not simulate the ludic 
text of a cartoonish tree.  

As an example, Table 1 presents the answer to the 
prompt mentioned in the last paragraph. Questions about 
apple trees were made, from simple ones, such as “What 
varieties of apple trees exist”, to more technical ones: “What 
amount of organic matter in the soil is necessary for the 
proper development of the apple tree and its fruit?” The AIs 
could answer both types of questions precisely, with no 
contradiction between them.  

On average, the answers from the three systems were two 
paragraphs long. Copilot had more succinct answers and 
GPT the longest ones. None of them had single-line answers, 
even for the most direct questions, i.e., “How much water do 
your need to grow healthily?”. Overall, the answers are the 
length expected from an informative conversation. 

IV. SIMULATION RESULTS 

 Figure 3 represents the recorded time measurements for 
each module during the testing phase. The elements are 
ordered according to their occurrence in the proposed 
interaction. Initially, the Speech-to-Text (STT) delay 
represents the time between the conclusion of human speech 
and the completion of its transcription. Subsequently, the 
GPT Start to Answer delay indicates the interval between 
prompt input and the initial output from GPT. 
 

 

TABLE I.  ANSWERS TO THE INITIAL PROMPT 

 
Third, the total time for a complete answer represents the 

duration required for the conclusion of GPT operation. This 
period is not critical for application, as the Text-to-Speech 
(TTS) module can commence operation as soon as the first 
phrase is available. Lastly, the TTS Start Delay denotes the 
time between text input and the initiation of audio output.  

Lastly, the TTS Start Delay denotes the time between 
text input and the initiation of audio output. It is noteworthy 
that the entire system can exhibit rapid response times to the 
user due to the potential for task parallelization. The STT 
module operates concurrently with user speech, resulting in 
its delay being perceptible only upon the cessation of speech. 
Similarly, the GPT delay is noticeable only until the 
completion of the first phrase, at which point, in conjunction 
with the TTS delay, the system will begin vocalization. The 
GPT completes the entire answer in approximately 14 
seconds, which is significantly faster than the conclusion of 
TTS. 
 

 

Figure 3.  Measured response times for STT, GPT and TTS modules. 

Model Answer 

Chat GPT Ah, welcome beneath my branches! I 

am a humble apple tree, deeply rooted 

in the soil, stretching my limbs toward 

the sky. What curiosities do you bring? 

Ask away, and I shall answer as best as 

a tree can! 

Gemini Okay, I'm ready to be an apple tree! 

Ask me anything you'd like to know 

about my life. 

Copilot Alright, I'm an apple tree! My branches 

are adorned with lush green leaves, and 

I bear delicious apples. Ask away, and 

I'll do my best to share the secrets of 

my tree-ish life with you!        
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Consequently, it can be inferred that the response time 
delays are sufficiently low to maintain the fluidity of human-
like conversation. 

As previously noted by scholars [22], transmission delay 
has a significant impact on user engagement and satisfaction, 
particularly in the context of enhancing agricultural 
management efficiency. This graphical representation leads 
to the conclusion that special attention must be directed 
towards delay time when incorporating AI and holographic 
technology in intelligent agriculture to ensure an efficiency 
in human-AI interactions. 

V. CONCLUSION 

In this article, we propose an interactive hologram system 
to present information about plants to humans. This system 
enables dynamic interaction between humans and machines 
to learn more effectively, in a ludic way. To do so, four core 
technologies must be combined: holograms, large language 
models, text-to-speech and speech-to-text tools.  Holograms 
provide three-dimensional images from the plants studied for 
better visualization and comprehension of the physical 
aspects of the tree, in addition to better immersing the user in 
their learning experience.  

Large language models are an efficient way of garnering 
information, organizing and presenting it to a human in a 
conversation in the most natural way. Their capabilities of 
synthesizing text have been used in several areas and can 
help swiftly accessing information combined from various 
sources. Tests were conducted with them to extract 
information about apple trees. The results show how not only 
do they return precise, correct answers, but also can interpret 
a role of a cartoonish talking tree, enhancing the experience. 

Text-to-speech tools are responsible for receiving the 
output of the LLM and synthesizing voice. It is crucial for 
the user experience to have, in addition to the correct 
pronunciation, intonation, pauses and stress capabilities.  

Neural networks have also been employed in the state-of-
the-art models due to their potential of extracting patterns 
from data and generalizing for unseen information. It is also 
possible for a single network to speak multiple languages, 
featured with the LLMs. 

The experiment is promising, and more research is 
important to better implement it. For future work, more 
advanced features could be considered, such as interaction 
between two plants that have symbiotic relationships. Open 
source LLM models are also considered to better adjust them 
to the task. In addition to it, designing tree models with faces 
that have moving mouths could be an important step towards 
its implementation.  

In the context of holography, a critical consideration for 
future development is the resolution of current technical 
constraints in data transmission and latency to facilitate 
holographic communication and the implementation of 
interactive holographic projections, especially in digital 
agriculture. This has consistently proven to be a significant 
factor during system evaluations when measuring STT, TTS, 
and GPT modules in human-AI interactions. Our future work 
will be focused on improving the GPT response time and 
testing other Conversational AI and AI Chatbots. 
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