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Running Hydraulics Simulations at Scale Using Inductiva Python API

Luís Sarmento, Hugo Penedones, Sérgio Santos, and Paulo Barbosa
Inductiva.AI - Porto, Portugal

e-mail: {sarmento|hpenedones|ssantos,|pbarbosa}@inductiva.ai

Abstract—This demo will introduce participants to the Induc-
tiva cloud-based High Performance Computing (HPC) platform,
designed for large-scale simulations. Inductiva provides pre-
installed ready-to-use simulation models for marine, coastal,
and hydraulic projects. Researchers and engineers can run
these simulations immediately using Python scripts. In addition
to scripting, users can also interact through an intuitive web
interface that simplifies data management, resource allocation,
and cost control, giving them full oversight of their simulations.

Keywords-Cloud-based Computing, Numerical Simulation,
Python API.

I. INTRODUCTION

Despite advancements in simulation technologies, engi-
neers and scientists still face challenges in running numerical
models, from configuring simulators and setting up suitable
hardware to managing large data volumes.

To help engineers and scientists run large-scale simulations,
companies like Rescale [1] and Sabalcore [2] introduced
cloud-based solutions that enable simulation jobs on powerful
cloud machines. However, these platforms often lack model-
specific support, particularly in fields like hydraulics, coastal
engineering, and marine sciences, and are primarily optimized
for single simulation runs, making them less suitable for
workflows requiring hundreds or thousands of simulation
variations. Such scalability is essential for exploring design
spaces, conducting sensitivity analyses, or generating training
data for Physics-Artificial Intelligence (AI) models.

Inductiva offers a cloud-based HPC infrastructure controlled
via simple Python scripts and a user-friendly web interface,
streamlining complex simulation tasks so experts can focus
on their models without concern for underlying infrastructure.

This demo introduces Inductiva’s Application Programming
Interface (API)-driven infrastructure through several use cases,
and demonstrates why Inductiva is an ideal solution for
automating complex simulation workflows. In Sections II and
III, we will cover how to submit simulations on Inductiva’s
platform using Python, with practical examples of hydraulics
models like Reef3D [3] and SWASH [4], both of which come
pre-installed. We will also explore how the platform allows
users to generalize simulation parameters and run simulations
in parallel to explore different scenarios. Sections IV and V
cover Inductiva’s task and cost-management features, while
Section VI presents supported hydraulics simulators. Section
VII concludes the work.

II. THE INFINITE LAPTOP EXPERIENCE

The workflow with Inductiva is simple: users start running
their simulation on their local machine and when more compu-
tational power is needed—such as for running a longer version

of the simulation—users can redirect their workloads to cloud
machines equipped with hundreds of central processing units
(CPUs), using Inductiva’s Python API. Consider the example
in Figure 1, where a user switches from running a Reef3D
simulation on their local machine to a cloud machine with
112 virtual CPUs (vCPUs) provided by Inductiva, using a few
lines of Python code:

i m p o r t i n d u c t i v a

my_machine = i n d u c t i v a . r e s o u r c e s . MachineGroup (
mach ine_ type =" c2d − highcpu −112" ,
d a t a _ d i s k _ g b =20)

my_machine . s t a r t ( )

r e e f 3 d = i n d u c t i v a . s i m u l a t o r s . REEF3D ( )

s i m u l a t i o n _ t a s k = r e e f 3 d . run (
i n p u t _ d i r = " . / 3 D_Dam_Break_with_Obstacle " ,
on=my_machine ,
n_vcpus =112 ,
s t o r a g e _ d i r ="3 D _ d a m _ b r e a k _ w i t h _ o b s t a c l e " )

s i m u l a t i o n _ t a s k . w a i t ( )
s i m u l a t i o n _ t a s k . d o w n l o a d _ o u t p u t s ( )

my_machine . t e r m i n a t e ( )

Figure 1. Starting a Reef3D simulation on the cloud from a local machine.

In addition to running simulations on a single large machine,
as shown above, users can also set up groups of machines
to operate as a Message Passing Interface (MPI) cluster. This
allows them to scale their computations even further without
worrying about the resource allocation or formalities required
by traditional HPC facilities.

III. A TOOL FOR OPTIMAL DESIGN AND
PHYSICS-MACHINE LEARNING (ML)

Inductiva’s API-driven computational infrastructure pro-
vides a fresh approach for thinking about marine and coastal
engineering projects. By orchestrating multiple simulation jobs
in parallel with simple Python scripts, users can systematically
explore different parameter configurations or scenarios for a
single base simulation. With Inductiva’s templating mecha-
nism, users can transform specific parameters in the simulation
configuration files into variables that they can easily adjust
programmatically through Python.

As an example, the code below (see Figure 2) illustrates
how to run five SWASH simulations on five different ma-
chines, each testing a different value for the base water level.
The API’s TemplateManager class is used to automatically
adjust the water level in the SWASH simulation configuration

1Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-325-5
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files. All simulations are executed in parallel, running in the
background to allow for simultaneous processing.

Using a simple “FOR loop", users can launch thousands of
variations of a base simulation case. This capability allows
users to: i) explore different parameters in optimal design
projects, ii) perform sensitivity analysis on models, or iii) gen-
erate large-scale synthetic data for training Physics-Machine
Learning (ML) models (see one of our tutorials [5] where we
explain how to use the API to generate the data required to
replicate the work by [6]).

i m p o r t i n d u c t i v a

# S t a r t 5 p r e e m p t i b l e machines
machines = i n d u c t i v a . r e s o u r c e s . MachineGroup (

mach ine_ type =" c2 − s t a n d a r d −30" ,
num_machines =5 ,
s p o t =True )

machines . s t a r t ( )

swash = i n d u c t i v a . s i m u l a t o r s .SWASH( )

w a t e r _ l e v e l s = [ 3 . 5 , 3 . 7 5 , 4 . 0 , 4 . 5 , 5 . 0 ]

# Launch one s i m u l a t i o n s f o r each w a t e r l e v e l .
f o r i , w a t e r _ l e v e l i n enumera t e ( w a t e r _ l e v e l s ) :

t a r g e t _ d i r = f " . / my_outpu t s / swash −sim −{ i }"
i n d u c t i v a . TemplateManager . r e n d e r _ d i r (

s o u r c e _ d i r = t e m p l a t e _ d i r ,
t a r g e t _ d i r = t a r g e t _ d i r ,
w a t e r _ l e v e l = w a t e r _ l e v e l )

s i m u l a t i o n _ t a s k = swash . run (
i n p u t _ d i r = t a r g e t _ d i r ,
s i m _ c o n f i g _ f i l e n a m e =" i n p u t . sws " ,
on= machines )

Figure 2. Running five variations of a SWASH simulation in parallel.

Unlike many providers of cloud resources for simulation
that focus on providing resources to run a single simulation,
Inductiva distinguishes itself by offering an efficient and con-
venient solution for users who need to run multiple variations
of a base simulation case. This capability empowers users
to explore different scenarios—something that is typically
overlooked by other platforms.

IV. TASK AND DATA MANAGEMENT

One of the key challenges when running simulations at
scale is managing all the simulation tasks, especially when it
comes to tracking inputs, outputs, and statuses across different
projects. To address this, Inductiva provides the Inductiva
Console [7], a web-based User Interface (UI) that enables
users to monitor the status of all tasks, organize them by
project, download outputs, and track resource usage, including
costs. Users can also get an overview of all their activity over
time and drill down into specific dates to review the simulation
tasks executed on those days.

V. PERFORMANCE METRICS AND COST CONTROL

Numerical simulation is costly. The performance-to-cost ra-
tio of the computational infrastructure, along with the project’s

budget, determines how many and how large simulations can
be run. To address this, Inductiva maintains full transparency
on all costs, including computation, storage, and auxiliary
tasks (e.g., compressing and moving output data).

The platform also helps users save by optimizing resource
selection and configuration. A key strategy is using “spot
instances”—cloud machines that can be preempted by the
provider but are up to 91% cheaper than standard instances
[8].

VI. AVAILABLE HYDRAULICS SIMULATORS

Table 1 lists the simulation models currently supported by
Inductiva for marine, coastal, and hydraulic sciences. New
simulators are regularly added. To suggest a specific simulator
to be integrated, please e-mail support@inductiva.ai.

TABLE I. READY TO USE SIMULATORS AVAILABLE VIA INDUCTIVA API

Simulator / Model Versions
DualSPHysics 5.2.1
Reef3D 24.02
SCHISM 5.11
SPlisHSPlasH 2.13.0
SWAN 41.45
SWASH 9.01A, 10.01
XBeach 1.23, 1.24

VII. CONCLUSION

Inductiva offers an efficient and scalable solution for engi-
neers and researchers to run simulations. It integrates cloud
resources into a Python API and an intuitive web interface.
This enables users to focus on analysis and innovation in
their respective fields engineering. Future work will focus on
enhancing platform stability to support increasingly complex
simulations, lowering the barrier of entry by making the plat-
form more user-friendly, and integrating additional simulators.

Free experimental access to Inductiva can be obtained by
registering on Inductiva’s website or directly via [7].

VIII. CONCLUSION

REFERENCES

[1] Rescale, Why rescale: Cloud-based high-performance comput-
ing, Accessed: 2024-11-11, 2024.

[2] Sabalcore, Sabalcore cloud computing solutions, Accessed:
2024-11-11, 2024.

[3] Reef3D, Reef3d: Open-source computational fluid dynamics,
Accessed: 2024-11-11, 2024.

[4] SWASH, Swash: Simulating waves nearshore, Accessed: 2024-
11-11, 2024.

[5] Generating synthetic data for training physics-ml models, https:
//tutorials.inductiva.ai/generating-synthetic-data/synthetic-data-
generation-1.html, Accessed: 2024-19-23.

[6] A. Sanchez-Gonzalez et al., “Learning to simulate complex
physics with graph networks,” in International Conference on
Machine Learning, 2020.

[7] Inductiva web console, https://console.inductiva.ai/, Accessed:
2024-19-23.

[8] Spot vms: Affordable compute instances suitable for batch jobs
and fault-tolerant workloads, https://cloud.google.com/spot-
vms, Accessed: 2024-19-23.

2Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-325-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COCE 2024 : The First International Conference on Technologies for Marine and Coastal Ecosystems

                             8 / 31



A Multiple-Location Modeling Scheme for Physics-Regularized Networks:
Recurrent Forecasting of Fixed-Location Buoy Observations

Elias Sandner
CoDiS-Lab ISDS

Graz University of Technology
Graz, Austria

email: sandner@student.tugraz.at

Austin Schmidt
GulfSCEI

University of New Orleans
New Orleans, United States

email: sbaustin@uno.edu

Pujan Pokhrel
GulfSCEI

University of New Orleans
New Orleans, United States
email: ppokhre1@uno.edu

Elias Ioup
Center for Geospatial Sciences

Naval Research Laboratory
Mississippi, United States

email: elias.ioup@nrlssc.navy.mil

David Dobson
Center for Geospatial Sciences

Naval Research Laboratory
Mississippi, United States

email: david.dobson@nrlssc.navy.mil

Christian Guetl
CoDiS-Lab ISDS

Graz University of Technology
Graz, Austria

email: c.guetl@tugraz.at

Mahdi Abdelguerfi
GulfSCEI

University of New Orleans
New Orleans, United States

email: gulfsceidirector@uno.edu

Abstract—Reliable oceanic and climate analysis depend on
high-quality sensor readings, yet these systems commonly en-
counter significant sensor limitations, leading to missing data.
Addressing this issue is critical for ensuring accurate forecasts
and analyses. In this work, the data gap problem is studied
by developing physics-regularized machine learning models with
multiple-location modeling to forecast missing sensor data. Uti-
lized are recurrent statistical surrogate models that generate
hourly 24-hour forecasts. To train these models, we use a selection
of five sensor features collected over three years. Introduced is
a multi-location modeling scheme that uniquely combines sensor
data from nearby buoys as a novel methodology. This approach
allows for more stable and accurate predictions compared to
forecasting with single buoy data alone. Our experiments reveal
that grouping six buoys yields the best forecasting performance.
Furthermore, we improve model accuracy by integrating buoy
data with numerical ocean models and applying a physics-
regularized loss function. This technique mitigates the impact
of missing or erratic data, leading to more dependable 24-
hour forecasts. Our findings demonstrate that the combination
of multiple-location modeling and physics-based regularization
enhances the stability and accuracy of oceanic data forecasting.

Keywords-Buoy Forecast; Multiple Location Forecast; Physics-
Regularized; Numerical Models; Surrogate Models.

I. INTRODUCTION

Accurate forecasting of ocean and climate parameters is
useful in industry and research. Climate analysis, ocean pollu-
tion management, extreme weather event tracking, and marine
life monitoring, as examples, benefit from ocean modeling
techniques [1][2]. Numerical models use initial data collected
by observation sensors through buoys, ships, or satellites
as inputs to their underlying physical equations. The result
is a full coverage analysis of the physical features used
to describe ocean and climate states. The European Centre
for Medium-Range Weather Forecasts (ECMWF) research
institute provides such forecast models for use in decision-
making and analysis problems. These models rely on accurate
observations of physical phenomena in two major ways. The
first is the initialization values used as initial conditions for

the physical equations. Then, after producing an analysis
based on those initial conditions, a historical re-analysis of
the model is generated by integrating the results with real-
world sensor data through Data Assimilation (DA) techniques
[3]. ECMWF’s fifth reanalysis experiment (ERA5) dataset is a
popular example of this and often used in statistical surrogate
modeling tasks [4]. One source of observations is the fleet of
free-floating ocean buoys anchored to fixed locations which
are maintained by the National Data Buoy Center (NDBC).
The processes of initialization and DA both require reliable,
consistent, and high-quality observed sensor measurements
to maintain accurate representations. Technical limitations or
poorly calibrated sensors can yield noisy interpretations, and
physical damage or scheduled maintenance can completely
halt data collection in that location. Ocean and climate analysis
or reanalysis, which rely on the steady stream of ocean
sensor data provided by the NDBC, might benefit from short
to midterm regional and sparse forecasts in this situation.
This gives justification to investigate deep learning surrogate
models to conduct sparse observation forecasting for data
assimilation and other uses.

The sensor data is geographically sparse in the sense that
there are collections of buoys within the same region which are
separated by up to hundreds of kilometers. A surrogate model
might be trained for individual analysis using single buoy data
or multiple buoy data [5][6]. In both cases, only a single
buoy is modeled at a time, ignoring any spatial complexities
between surrounding buoys. Therefore, it is reasonable to
investigate methodologies for modeling buoys at multiple lo-
cations within a shared context. One method for implementing
spatial and temporal frequencies in a deep learning model is
by introducing a graph neural network that leverages graph
convolutions based on a buoy’s spatial relations [7]. However,
this approach relies on additional training and space overhead
that is undesirable in a lightweight framework. Instead, we
focus on less specialized deep learning frameworks. To apply
a higher degree of spatial awareness in the model, all buoys in
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a region of interest are included simultaneously. By expanding
the radius to include more buoys, it can be demonstrated
whether the machine learning surrogate benefits from the
collective information. In addition, the impact on a specific
buoy is investigated to determine if contextual clues from
surrounding buoys aid in forecasting current conditions at the
chosen location.

Surrogate modeling of ocean observations is useful in sce-
narios where fast and relatively accurate forecasts are needed.
One problem with these models is that forecasts are accurate
on short leads but lose accuracy as the time horizon increases
[8]. For this reason, research into ways to combine the
surrogate model with data assimilation, physical equations, or
other numerical models have been investigated. The main goal
is to reduce surrogate model error by incorporating physics
understanding through alternative data sources. For example,
machine learning models have been successfully incorporated
with DA techniques for improved results [9][10]. Similarly,
the concept of the Physics-Informed Neural Network (PINN)
uses physical Partial Differential Equations (PDEs) solved
in the loss function at training time to improve physical
understanding [11]. This is similar to our methodology because
both simulations and observations are used in the loss function.
In contrast, our work seeks to find the best combinations of
the contributions of precalculated models and observations.
PINNs notably try to optimize the loss from observations to
fit a particular model. The paradigm explored in this work is
the combination of full-coverage numerical data and sparsely
collected sensor data to produce a more stable model. To this
end, NDBC data and ERA5 reanalysis data are combined to
train surrogate models to forecast buoy-derived geographically
sparse ocean observations.

Noisy data derived from sensors has a significant impact
on training forecast models. Missing data is a compounding
concern when analyzing individually collected sensor obser-
vations. To combat this problem, a methodology to combine
sensor derived data with numerically modeled data at near-
point locations was proposed in [12]. The surrogate model
training procedure uses both numerical data and sensor derived
outputs when calculating the loss score. These values are
combined using a ratio of the two error scores and then
back propagated through the architecture. The previous work
is extended by using a modified forecasting methodology
and data representation to see if similar increases in model
accuracy are achieved. Also, numerically modeled features are
removed from the model input to reduce numerical reliance
post-training. In this way, the underlying physical calculations
of the numerical models regularize the statistical surrogate
models at training time alone.

The main considerations of this research are in improving
techniques of machine learning with ocean data for the predic-
tive modeling of observed phenomena. Specifically, the goal
is to investigate whether a geographically sparse set of data
can be structured in such a way that the predictive ability
of the model is stabilized over 24-hour forecast cycles. The
viability of combining sensor data with numerically derived

data at training time is consequently explored to verify if
further improvements to the surrogate models can be made.
Combining data in this way is a new technique which has only
been evaluated in two experimental situations [12][13]. This
raises the question of whether the combined approaches are
better used in unison or separately. So, our main contributions
are listed as follows:

• We describe a novel training scheme that uses multiple
buoys and their observed parameters as input into the
model;

• Using the physics-regularized loss function, we use a grid
search to find the best ratio of data for each combined
feature;

• By identifying methodologies to improve surrogate model
performance, we give further justification to the use of
statistical models in an oceanographic context.

The paper begins with a summary of existing related work
in Section II. Section III introduces the specific methodology
used. The data sources, chosen data representation, physics-
regularized loss function, and the selected architectures for
the neural networks are detailed. The section concludes with
the setup of the executed experiments. In Section IV, the
experimental results are presented. The paper concludes with
a summary and suggestions for future work in Section V.

II. RELATED WORK

Research into forecasting ocean parameters using machine
learning methodologies is abundant in literature. Review-
ing recent innovations in modeling the physical parameters
yield methodologies for wind modeling [14], ocean wave
height/direction [6][15][16], air temperature [17], and sea
surface water temperature [18][19]. Popular models for surro-
gate ocean forecasting include the Long-Short Term Memory
(LSTM) model and the attention head transformer model
[20][21]. Their use is highlighted in recent ocean parameter
forecasting, so the use of these layers are adopted in this
research [6][12][22]–[26].

The availability and quantity of ERA5 data make it a suit-
able choice for machine learning-based surrogate models. In
recent years, surrogate models trained or otherwise supported
specifically by ERA5 data are studied for use for regional
wave modeling [15], weather forecasting [27][28], earth sur-
face temperature modeling [29], and sea surface temperature
forecasting [30][18]. The data is also used when enhancing
sensor predictions, for example, in the case of satellite sensor
models [31][32]. Notably, the focus is usually on one oceanic
feature or phenomenon.

To better analyze real-world conditions at a specific lo-
cation, ocean buoys are modeled. Traditionally, this can be
done by training a statistical model on the data collected from
a single location for prediction [5][16]. Otherwise, multiple
observation locations are combined into a single time series
to train and predict an individual location. This incorporates
a sense of spatial awareness into the model [14]. With the
advent of deep learning, dozens of locations are used to train
a single model for a more generalized approach. The model is
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trained and used to forecast multiple single-location buoys, for
example [6][12]. Specialized architectures, like graph neural
networks, are also used to increase spatial awareness [30].

Combining both physically collected and numerically mod-
eled data together in an ML context is a wide-reaching
methodology. PINNs combine PDE solutions with collected
data at training time [11]. This approach is usually used to
solve numerical equations directly [33]. Forecasting physical
parameters such as sea surface temperature [34] or physical
phenomena such as storm surges [35] are also explored. DA
for machine learning models is also becoming a popular topic
to improve surrogate results [10][28]. Most similar to our
research is the use of both modeled and observed data in
the training and/or inference of ocean parameters, as seen
in [12]. That work differentiates itself from typical DA by
combining the data during the training scheme itself, instead
of as a reanalysis step. It is different from typical PINN
models through the lack of modeling of differential equations
in the training scheme, instead using pre-calculated numerical
outputs.

The methodologies proposed in this research are novel with
respect to surrogate ocean parameter forecasting because the
highlighted works typically combine fewer ocean features
for forecasting, while we use all buoy sensors available and
combine with ERA5 data. This work is novel in the context of
buoy forecasting because a Multiple-Location Model (MLM),
as defined in this work, either has not been investigated or is
difficult to find in literature. Lastly, this extends the previous
work of [12] by examining the proposed loss function in a
different context, modeling multiple buoys with a different
feature set, instead of single buoys. A significant difference is
the use of numerically modeled features only in the training
dataset and not as an input into the surrogate at inference
time. This better aligns the methodology as a class of DA that
combines data observations and models at training time to
improve model performance when initial conditions are poor
at inference time.

III. METHODOLOGY

Introduced are methodologies to verify the following re-
search goals. One aim is to see if it is possible to improve
the forecasting result for the collection of selected buoy
observations. The MLM technique is expected to improve
accuracy when increasing the number of modeled buoys. If
so, this will give insights on whether the model weights can
internalize connection in spatially sparse regions of interest.
The physics-regularized loss function is improved by using
modeled features in the training scheme while removing them
from the inference input. Thus, it must be investigated if the
method still improves model accuracy and whether it can be
combined with the new sparse modeling scheme.

A. Sources of Data

The National Data Buoy Center (NDBC) is a United States-
based organization and a division of the National Oceanic and
Atmospheric Administration (NOAA). NDBC is responsible

for collecting real-world observations of a wide range of ocean
and climate feature measurements. In total, 1311 stations are
deployed with 243 owned and maintained directly by NDBC
[36], and they have been collecting the observation data since
1970. Within the framework of this project’s experiments, the
utilization of standard meteorological historical data (STD-
MET) is employed. As the data is of real-world origin, not
every station provides feature data for every year. Furthermore,
the available data may contain missing values [37]. Sensors in
real-world settings may experience malfunctions or localized
noise that are not helpful in a model training context.

TABLE 1. CONSIDERED NDBC FEATURES AND ERA5 EQUIVALENTS

Measurement NDBC
Feature ERA5 Equivalent

Air Temperature (◦F) ATMP 2m temperature

Air Pressure (hPa) PRES Mean sea level
pressure

Dewpoint Temperature (◦F) DEWP 2m dewpoint tem-
perature

Water Temperature (◦F) WTMP Sea surface temper-
ature

Wind Speed (kts) WSPD 10m v-component
of wind,
10m u-component
of wind

The ERA5 dataset, generated by the ECMWF, represents
the latest advancement in a series of global atmospheric
reanalysis datasets. Reanalysis entails the assimilation of ob-
servational data and model simulations to generate a coherent
and extensive dataset. Data assimilation leverages observations
from ships, buoys, and satellites with physical laws to ensure
historical data is modeled as accurately as possible. Within this
project, the ERA5 dataset, specifically identified as “ERA5
hourly data on single levels from 1940 to present”, is utilized
[4]. Hourly estimates are offered for a diverse set of atmo-
spheric and ocean circulation variables. This dataset consists
of a regridded subset extracted from the full ERA5 dataset
while preserving its native resolution.

NDBC standard meteorological dataset provides 14 mea-
surements [37] while ERA5 provides 262 variables [4]. Five
selected NDBC measurements are also modeled within the
ERA5 dataset, and therefore, are collected for further analysis
and use within the physics-regularized deep learning task.
Combining the five NDBC measurements with the correspond-
ing five ERA5 values yields the collection of data required
for the upcoming physics-regularized loss function. These five
selected features are the focus of the surrogate forecasting
task. The selection collected from NDBC and the ERA5
counterparts are depicted in Table 1. We use approximately
three full years of hourly data, from 2020 to 2022.

B. Multi-Location Modeling

Oceans are complex and elaborate systems with intercon-
nected dynamics. Therefore, it is hypothesized that enriching
training data with measurements from several locations will
empower the neural network to recognize spatial dependencies
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between nearby buoys. The spatial-temporal data from each
location is integrated in a unified dataset following a novel
design in which each instance encapsulates measurements of
multiple stations at a particular timestamp. That is, at N
buoy locations, the features in Table 1 are extracted and
combined into a single vector of one-hour increments to create
an MLM dataset. Corresponding locations for the buoys in the
ERA5 data are combined in the same way. The ERA5 data
is reserved separately for use in the specialized loss function
described in Subsection C. The example in Figure 1 shows the
partitioning process. Any number of buoys may be selected in
this generalized approach.

Figure 1. Example of the construction and final representation of the
Multi-Location Modeling scheme.

In the figure, buoys A, B and C represent unique locations
with a fixed buoy. Features [f1-f4] represent time series vectors
of length T . Features are combined in alphabetical order into
buoy N, such that sub-sampling a single element t gives the
current condition of each buoy. The vector size of buoy N(t)
is the number of features multiplied by number of buoys.
The geographical locations influence one another implicitly
through the neural network’s hidden layers. Model weights
take advantage of correlations learned at training time. This is
contrasted against grid-based numerical models where forward
regression is explicitly calculated with respect to adjacent grid
cells.

Once the dataset has been generated, preprocessing is com-
pleted to make the problem more suitable for the deep learning
architecture. First, we take the difference of each feature from
t to t+1. This simplifies the forecast problem by reducing it to
a gradient prediction problem. For each feature, the model only
needs to produce an inference representing the rate of change.
An inverse integration stage sums the recurrent predictions
with the initial condition to get the real-world result. The data
is normalized based on the mean and standard deviation seen
in the training data alone, and the inverse is completed when
investigating the results. Therefore, feature forecasts analyzed
in the results section are in their respective scales.

C. Physics-Regularized Loss Function

The loss function of our deep learning models compares
the training inference of the MLM vector with an individual
observed value and numerically modeled value. By comparing
the model inference to the NDBC and ERA5 data, two error
scores are generated from the same prediction. Depending on
interpolation or noise in the underlying data, one source will

better represent the true conditions. So, a ratio of the two error
scores is taken, and this error is used for back propagation in
the model. The method is first proposed in [12]. The result is
that, based on the ratio, the model is trained to approximate
either source more strongly.

The disagreement between the datasets is proposed to im-
prove the training procedure in two significant ways. The first
is that the disagreement prevents overfitting to either individual
source of training data. The second is that interpolated or
distorted values are less likely to be frequent in both sources
simultaneously. It is assumed that at least one source of data
reasonably represents the underlying conditions for a given
time step. Ultimately, the multi-location vector of buoy feature
predictions is given along with the numerically derived values.
Given the NDBC predictions and ERA5 values to be combined
in the training procedure, the loss function is defined as follows
in (1)-(6).

∆1 = |ŷNDBC − yNDBC | (1)

∆2 = |ŷNDBC − yERA5 | (2)

Ωcoupled loss = (α ∗∆1) + ((1− α) ∗∆2). (3)

In (1) and (2), ŷ represents the output vector of the surrogate
model, while y represents the training ground truth vector. The
source of modeling truth is determined by the subscript as yobs
or ymodel. The error for each feature is weighted by coupling
term α and represents a mixture of error calculated against
two sources, ERA5 and NDBC. Importantly, α is constrained
such that 0.0 ≤ α ≤ 1.0. When α = 0.0, the NDBC term
is completely shut off, and the model is only trained by
comparing the ERA5 estimations. Otherwise, when α = 1.0,
only the NDBC data is used in training the model. Additional
non-coupled features may be included in the surrogate and are
defined as,

Ωmodel loss = |ŷERA5 − yERA5 | (4)

Ωobservation loss = |ŷNDBC − yNDBC |. (5)

The remaining uncoupled features, as seen in (4) and (5),
are used to collect error by comparing the predicted value
with the relevant ground truth value. Each piecewise value is
summed into the final loss function (6),

Ωtotal loss = Ωcoupled loss +Ωmodel loss +Ωobservation loss. (6)

In this work, only the coupled loss is used. There are
no uncoupled model or observation features, so Ωtotal loss =
Ωcoupled loss.

D. Deep Learning Architecture

Two deep learning architectures are considered for the
forecasting task, given the prior defined multi-location dataset
and the physics-coupled loss function. A LSTM unit model
and an attention head transformer model are used. The two
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models are chosen for their complexity and ability to gen-
eralize complex and recurrent time series data [38]. LSTM
and attention head layers add more parameters to the hid-
den layers of the relatively shallow networks. The memory
unit in the LSTM model particularly excels at storing prior
knowledge for improved forecasts. The attention mechanism in
the Transformer model is known for statistically weighing the
importance of the previous input. The Transformer architecture
typically implements more weights in the hidden layers of
the model, so comparing this with the smaller LSTM model
is often insightful. Both model architectures are implemented
using the Python programming language and the TensorFlow
machine learning platform [39].

TABLE 2. LSTM MODEL ARCHITECTURE BY LAYER FOR STAGE 2. THE
TOTAL NUMBER OF TRAINABLE PARAMETERS IS 146,878.

Layer Type Shape Parameters
Input Variable 0

LSTM (N, 1, 128) 81,408
Dropout N, 1, 128 0
LSTM (N, 1, 64) 49,408

Dropout N, 1, 64 0
LSTM (N, 1, 32) 12,416

Dropout N, 1, 32 0
LSTM (N, 16) 3,136
Dense (N, Variable) 510

TABLE 3. TRANSFORMER MODEL ARCHITECTURE BY LAYER FOR STAGE
2. THE TOTAL NUMBER OF TRAINABLE PARAMETERS IS 602,526.

Layer Type Shape Parameters
Input Variable 3,968

Transformer Block (N, 1, 128) 297,344
Transformer Block (N, 1, 64) 297,344

Flatten (N, 128) 0
Dense (N, Variable) 3,870

Both models include dropout layers to prevent model over-
fitting during the training process. The dropout parameter is set
to 0.1. The exact implementation of the LSTM model is found
in Table 2 and the transformer model is in Table 3. In each
table, N represents the variable batch size when training the
model. The Variable input and output is equal to the product
of the number of features and the number of buoys in each
experiment. Therefore, each model’s input and output shape
is dependent on the number of ocean features and the number
of buoys, as described in Figure 1. The Transformer blocks
consist of multi head attention layers with four attention heads
and feed forward dense layers of size 128 and dropout layers.
Each model is trained for 100 epochs using a batch size of
64. The training procedure is set such that the model is given
conditions at t and produces a forecast at t+1. By setting the
input and output shape to the same length, the resulting model
can be used to generate recurrent forecasts for any number of
consecutive one-hour periods.

E. Experimental Test Case

Experiments using differing numbers of model locations
and α ratio values are examined to verify the proposed
methodology. The forecast results are centered on a particular
buoy with the identification value of 42002. Buoy 42002 is
located in the in the Gulf of Mexico. This buoy was chosen
because of its central location relative to other buoys and
because it has comparatively fewer missing values. Regardless
of the number of buoys modeled, focusing on only one buoy
assesses the hypothesis that the surrogate is improved when
given spatial context. Considering the forecast results of all
buoys is impactful, but outside the scope of this investigation.

When increasing the number of modeled buoys, results
that are similar or better to the single-buoy model validate
the proposed methodology for producing regional inferences.
Increasingly better results indicate that the MLM approach
either provides spatial context or model regularization through
additional data. Tuning the α ratio is proposed to improve
model forecast by combining observed and numerical data. So,
an α value which produces better results than when α = 1.0
(no regularization) is searched for.

For validation, the forecast ability of the surrogate models
is examined for 24-hour intervals over the test data. The
test data is comprised of the final three months of 2022.
A recursive forecast scheme that uses the output of the
proceeding inference as the input for the next inference is
employed. The temporal resolution of the data is in one-hour
increments, so 24 hourly forecasts are made for each interval.
The model only uses the real conditions when making the first
prediction in a cycle and when the test results are analyzed.

The Root Mean Square Error (RMSE) score (7) is used to
determine the accuracy of the 24 hour forecast compared to
the actual conditions at the buoy. The RMSE can be examined
on a per-time step basis or as an average of all predictions.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

The MLM methodology is tested by increasing the number
of buoys to forecast features in Table 1. Buoy 42002 is used
to analyze ATMP, PRES, and WSPD, while buoy 42020 is
analyzed for DEWP and WTMP. Two separate single-buoy ex-
periments are conducted because no examined buoy contained
all five features without extensive missing values. Using the
coordinates of the central station, buoy 42002, and the Great
Circle Distance [40] method, the distance to the remaining
stations in the area was calculated. To evaluate the hypothesis,
three datasets were created: one that exclusively covers a
central station (Stage 0), one that covers stations within 600
km (Stage 1), and one that covers stations within 900 km
(Stage 2). The exact specifications of the three experiments
is found in Table 4. The geographical location of each buoy
is displayed in Figure 2. To get baseline results, α = 1.0 is
selected, which means the entire training signal comes from
the NDBC buoy dataset and the ERA5 data has no influence
on the NDBC predictions.
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TABLE 4. INCLUSION OF BUOYS PER EXPERIMENT. GENERAL LOCATIONS
OF EACH BUOY ARE FOUND IN FIGURE 2. STAGE 0 USES TWO SEPARATE

INDIVIDUAL BUOYS TO CAPTURE FEATURES MISSING IN EITHER
EXPERIMENT.

Stage Distance (m) # of Buoys Buoy List

Stage 0 - 1 42002;
42020

Stage 1 600 4

42002,
42019,
42020,
42035

Stage 2 900 6

42002,
42003,
42019,
42020,
42035,
42040

42002

42020

42019

42035

42003

42040

Selection of Ocean Buoys Per Stage

Figure 2. The geographical location of each buoy used in experiments. Stage
0 is labeled yellow, Stage 1 is labeled orange, and Stage 2 is labeled red.

Once the best number of buoys has been identified, the
models re-examined with the physics-regularized loss. Finding
the value for hyperparameter α that minimizes the error score
is the main goal. A grid search of α ∈ [0.0, 1.0] with a step size
of 0.05 is conducted. The surrogate model is retrained using
the same random seed and for each α value. The minimal
RMSE score on the test dataset denotes the best performing
experimental setup.

For this experiment, the data collection and processing
pipeline is divided into four stages, as outlined in Figure 3.
First, the time series data is downloaded for each buoy from
NOAA. Similarly, the ERA5 data is retrieved after selecting
the appropriate geographical region and corresponding time
periods. Second, the buoy’s latitude, longitude, and time values
are used to match the buoy data with the ERA5 data. Since
these values may not align perfectly, we select the closest
possible location and time points. Third, the MLM scheme is
applied to format the forecast features as described in Figure
1. The same process is followed for the ERA5 data, which is
stored in a separate vector for use in the coupled loss function
(3). Finally, time series data processing is completed for all
features. Missing data is interpolated, differencing is applied
from t to t + 1, and each feature is normalized based on the
training data.

Figure 3. The data collection and processing pipeline.

IV. RESULTS

The results for the MLM data technique are found for the
LTSM model in Table 5 and the transformer model in Table
6. Each table displays the model, the examined buoy, and the
calculated RMSE rounded to three decimal places for each
stage. The average performance of all features is taken to
find the overall best performing stage. From the initial stage
experiments, a slight improvement is demonstrated for all
features when comparing Stage 0 to Stage 1 and/or Stage 2.
This implies that the additional data used in the MLM data
scheme has an impact on model stability.

One outlier in the experiments is found in water temperature
(WTMP), which yields almost the same result in each experi-
ment. We propose the behavior is due to two main factors. The
first is that most buoys are missing WTMP data, a differenced
forecast of near zero is preferred by the model. The second
is that the ERA5 WTMP data, used when α < 1.0, is only
updated every 24-hours. Therefore, the regularizing data is also
biased in the same way. This important lesson shows that poor
data, when collected for both sources, produces an uninformed
model. Neither the MLM scheme nor the physics-regularized
loss function can improve results in this case.

Model improvements when adding additional buoy data is
shown in Figure 4. In the figure, consecutive 24H forecasts
are generated for the air temperature (ATMP) feature for all
three stages. In Stage 0, the prediction is unstable for long
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Figure 4. Improvements in Transformer model stability when adding additional buoy data to the prediction vector. Increasing buoy count results in more
conservative predictive behavior.

TABLE 5. RESULTS OF CONSECUTIVE 24H FORECASTS USING THE LSTM
MODEL FOR EACH STAGE. ATMP, PRES, AND WSPD ARE TESTED USING

BUOY 42002 WHILE DEWP AND WTMP ARE COLLECTED FROM BUOY
42020.

LSTM Buoy Stage 0 Stage 1 Stage 2

ATMP 42002 1.909 1.736 1.733

PRES 42002 12.683 12.483 12.132

WSPD 42002 2.698 2.513 2.516

DEWP 42020 3.218 3.447 3.164

WTMP 42020 0.625 0.625 0.625

Average 4.227 4.161 4.034

forecast horizons. Applying more data via the MLM scheme
regularizes the behavior to a more stable outcome. Stage 1
shows results that are very stable with nearly no change. This
performs very well in low-change periods. In Stage 2, the
addition of more data to forecast yields a less stabilized result
overall. The stability is better than Stage 0, and the forecast
might be more useful in drastically changing systems.

TABLE 6. RESULTS OF CONSECUTIVE 24H FORECASTS USING THE
TRANSFORMER MODEL FOR EACH STAGE. ATMP, PRES, AND WSPD ARE
TESTED USING BUOY 42002 WHILE DEWP AND WTMP ARE COLLECTED

FROM BUOY 42020.

Transformer Buoy Stage 0 Stage 1 Stage 2

ATMP 42002 2.851 1.733 1.940

PRES 42002 12.677 12.460 12.302

WSPD 42002 2.560 2.595 2.514

DEWP 42020 6.262 3.158 3.160

WTMP 42020 0.625 0.625 0.625

Average 4.995 4.114 4.108

Following the stage experiments, various α values are
iterated over to validate whether the physics-regularized loss
function improves the MLM data scheme. The experiment is
conducted for both model architectures and all stages. Results
when α = 1.0 are equivalent to the MLM stage experiments.
The average results of these tests can be found in Table 7.
In the table, all but one model and stage combination yield
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TABLE 7. AVERAGE α RESULTS FOR ALL MODELS AND STAGES. THE MOST PERFORMANT EXPERIMENTS ARE SET IN BOLD.

Model: Stage 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

LSTM: 0 5.072 5.037 6.055 4.800 4.647 4.899 5.419 5.063 5.152 3.956 4.320
LSTM: 1 5.174 4.921 4.708 4.575 4.652 5.304 8.051 6.33 5.526 4.415 4.028
LSTM: 2 4.647 4.412 3.999 4.74 5.079 4.66 4.962 6.126 4.473 4.432 5.218

Transformer: 0 5.328 5.187 5.361 5.631 5.761 5.252 5.0140 5.088 4.9780 5.168 4.731
Transformer: 1 5.696 5.604 5.433 5.911 5.273 6.129 5.061 4.964 5.338 5.165 4.938
Transformer: 2 5.066 5.119 5.160 5.251 4.929 4.960 4.773 4.673 4.838 4.597 4.853

Model: Stage 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

LSTM: 0 5.242 6.050 4.670 4.420 4.378 4.576 5.138 4.634 4.818 4.227
LSTM: 1 5.381 6.475 4.688 4.186 4.492 4.971 4.905 4.986 5.257 4.161
LSTM: 2 4.420 4.455 5.522 4.084 4.596 4.878 4.692 4.603 4.244 4.034

Transformer: 0 4.844 4.511 4.543 4.558 4.604 4.317 4.597 4.088 4.371 4.995
Transformer: 1 5.210 4.824 4.723 5.008 4.928 4.884 4.605 4.48 4.205 4.114
Transformer: 2 4.370 4.106 4.495 4.505 4.374 4.364 4.604 4.178 4.416 4.108

TABLE 8. RESULTS OF ITERATIVE α RATIO TESTING USING THE LSTM MODEL AT STAGE 0. WHEN α = 0.0, THE MODEL IS TRAINED USING
EXCLUSIVELY ERA5 DERIVED DATA. WHEN α = 1.0, THE MODEL IS TRAINED USING EXCLUSIVELY NDBC BUOY DATA. FOR 0.0 < α < 1.0, A MIXED

FORMULATION OF (3) IS USED.

Feature 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ATMP 1.772 1.741 1.979 1.779 1.75 1.81 1.745 1.746 1.863 1.732 1.957
PRES 16.883 15.982 9.825 14.376 13.87 14.713 14.463 14.406 13.879 11.021 12.461
WSPD 2.541 3.311 14.571 3.466 3.453 2.689 2.543 3.061 5.158 2.784 3.355
DEWP 3.539 3.525 3.277 3.755 3.535 4.659 7.720 5.479 4.234 3.617 3.200
WTMP 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

Feature 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

ATMP 1.731 1.757 2.027 2.319 1.752 1.789 1.807 2.441 2.127 1.909
PRES 13.09 13.33 13.670 12.738 12.212 11.694 12.877 12.738 13.072 12.683
WSPD 6.168 6.31 3.203 3.007 2.977 3.204 5.803 2.571 2.483 2.698
DEWP 4.597 8.223 3.820 3.413 4.325 5.568 4.577 4.794 5.782 3.823
WTMP 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

results that are superior to the α = 1.0 (all NBDC data) model.
However, typically the most significant reduction is found for
Stage 0. This implies that the stability gained from the MLM
modeling is significant enough that the additional regulariza-
tion gained from the coupled loss function is minimal. In other
words, when there is less available geographical context in the
data representation, numerical model regularization is more
impactful. The results from the LSTM Stage 0 experiment
are highlighted in Table 8. We highlight that the combination
of data may not be viable for all features at once. That
is, the feature yields minimal results at various α values.
This suggests that multiple α ratios may be used, one for
each feature. This idea is explored further in similar ongoing
research [13] but is outside the scope of this work.

To better understand how the error is reduced among the α
experiments, the absolute error generated from α = 1.0 and
α = 0.9 for the Transformer Stage 0 experiment is compared
in Figure 5. The bottom figure shows the difference between
the two errors. When the value is greater than zero, this
represents places where α = 0.9 is more performant than
the original α = 1.0 model. In general, the coupled loss
function regularizes the model in the same way as the MLM

data scheme. Less exaggerated forecasts keep the model stable
over longer horizons. In cases not highlighted in figures, it
was observed that α < 1.0 produced models that were better
aligned to general ocean conditions by proactively forecast-
ing changes in the environment. The final RMSE of these
forecasts were worse on average but showed the influence
of the ERA5 dataset on the models. Considering the results
of both experiments, we have improved the forecast error
and achieved roughly the best performance possible using the
model architecture and data set. The improvements to model
performance are capped because of the size of the models and
the amount of training data used. Three years of buoy data at
only six locations is not enough data to support a statistical
model with millions of parameters, hence the smaller model
architectures used in this experiment. Increasing the number of
model parameters and amount of training data should result in
a surrogate model that is more robust to real-world conditions,
allowing the RMSE to be reduced further. These changes
would provide diminishing returns once the model is large
enough. Additional feature engineering for more informative
features can also improve baseline results.

When comparing these baseline results to those generally
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Figure 5. Difference in absolute error of the Transformer Stage 0 forecasts when comparing α = 0.9 and α = 1.0 (no regularization) for ATMP. The use of
model data when training the observation model helps to prevent large swinging changes in the recursive forecast.

achieved in the most similar research to this [12], they are
generally worse. This is explained by the smaller model size
and dataset. However, the increased number of forecast steps
is also a significant factor. The surrogate models in this
experiment forecast three times as many periods, 24 instead of
the previous eight, which means that general model stability
is more important. Also, the previous work considers the
combined result of over 100 buoys. Using a more similar
experimental setup would likely continue to improve the
results seen here. However, increasing the number of modeled
buoys would continue to increase the inference vector size to
a potentially cumbersome level. Since the input and output
vectors of our models is the product of the number of buoys
and number of features the required number of trainable
parameters would increase considerably. A future investigation
might select buckets of nearby buoys to model using the MLM
scheme. This would increase the data pool without modeling
hundreds of buoys in a single inference.

The MLM scheme improved model accuracy as the number
of buoys increased. The distance between the buoys in Stage 1
and Stage 2 is large enough that local conditions are unlikely
to affect one another. Therefore, it does not seem like a direct
geographical influence is the determining factor of inferences.
Instead, it seems most likely that utilizing more data in the
input vector improves stability when training the weights of the
neural network. To verify this hypothesis, further studies which
use the MLM scheme in a variety of ways can be examined.
First, using the MLM scheme on very distinct and far away
locations should reveal if model behaviors are stabilized from
the increased modeling space alone. Then, nearby observation

points, which are geographically relevant to one another, can
be added one-by-one until diminishing returns are found.
This would support that the neural network is internalizing
nearby behaviors. Although a more stable output is produced
in the context of this research, other mechanisms for adding
geospatial context should also be explored.

The physics-regularized loss function displayed the ex-
pected results of decreasing RMSE when the best α value
is found. This compares to the results in [12], where a similar
reduction in error through more stabilized results was seen.
Contrary to those results, the error reduction seen is lesser in
magnitude, most likely because the testing dataset is signifi-
cantly larger in that work. Similarly to the previous work, some
α values yielded results which were significantly worse than
when no regularization is provided. This is typically the case
when α = 0.0 and most often because of the poor performing
PRES feature. When α = 0.0 this is equivalent to only using
numerical model data to predict observation data. So, this
behavior is most likely explained by misalignment between the
observation ground truth and the numerically modeled PRES
values from ERA5.

Importantly, the ERA5 data was removed from the inference
input, and this is novel when comparing to the previous work.
This shows the methodology can be used without the use of
numerical models as an input parameter after the surrogate
has been trained. This was an important contribution because it
allows the methodology to be used more flexibly in real-world
examples. Numerically modeled data is likely to be available
when training a surrogate model, because this is almost always
done using historical data. However, numerical models can
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take hours to run for high-quality analysis. In situations where
observation forecasts are needed immediately, this bottleneck
would be extremely detrimental.

Finally, both techniques were separately found to regularize
the results below the baseline. When combining both MLM
and the physics-regularized loss, only a limited performance
increase was found. This supports the conjecture that the
model has reached a theoretical limit via the data selection and
model architecture. Therefore, the use of both methodologies
together should be reserved for those cases where more model
regularization is required or when the problem is well-suited
for both techniques. The MLM technique is recommended for
those tasks where a static number of observation points need to
be modeled. The physics-regularized loss can be implemented
in any problem where multiple sources of data representing
the same phenomenon are readily available.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel combination of a MLM scheme and
a physics-regularized loss function was investigated for deep
learning models. Fixed-location ocean buoy observations were
used to validate this methodology in a real-world context. The
buoy inference model was used to recurrently forecast 24-
hour intervals over one month to validate results. Combining
multiple buoy locations and the relevant features into a shared
inference vector using the proposed MLM scheme improved
model performance by stabilizing the inferences over longer
time horizons. Multiple locations equaling four and six loca-
tions both yielded superior results over the single-buoy model.
Improving the physics-regularized loss approach by removing
numerical models from the surrogate input was also a success.
The grid search for the best α value increased the performance
the most in Stage 0 experiments. The combination of both
MLM and coupled loss produces more accurate forecasts,
but the magnitude of the improvement is lesser than when
using either technique alone. This implied we reached the best
results for this configuration of model architecture and data
set. Although the experimentation was focused on a single
buoy, the trends observed are expected to hold for the other
forecasted buoys.

All together, it is proposed that the findings demonstrate
enhanced stability and accuracy of oceanic data forecasting
when using MLM and the physics-regularized loss. This is a
practical surrogate for systems where multiple fixed-location
observations (e.g., buoys) need to be forecasted simultaneously
and in quick succession. Situations where a fleet of buoys
have some missing values, due to buoy damage or scheduled
maintenance, can benefit from this type of modeling. If only
some data is missing, known values can be injected as a model
input to support forecasts in regions where data is missing.
These approximate observations can be used in place of sensor
data while buoy maintenance is conducted. Finally, in this
work the ERA5 numerical model data was used when training
the model, but no features were used as part of the input
during inference time. Practically, this technique allows for

more flexibility in real world scenarios while still giving the
model some physics-based regularization.

In future work, the same methodology should be compared
against other data to verify if the combination of MLM and
coupled loss would see more significant increases in model
accuracy. Examinations considering all buoys in the forecast
model should be conducted. Further comparisons to other
geospatial context models, like graph neural networks, and
their integration with the coupled loss function would also be
extremely relevant. Explorations of the MLM structure and
physics-regularized loss should also be adapted for use with
other methods of combining physical knowledge or observa-
tions. Moreover, more complicated integration schemes like
Runge-Kutta can be implemented to further improve perfor-
mance/stability. Therefore, the use of the proposed method-
ology with PINNs or data assimilative machine learning is a
promising potentiality in the right circumstances.
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Abstract—One challenge in oceanographic analysis is the need
for accurate initial conditions collected from physical buoys.
Temporary sensor outages or noisy conditions can hinder the
data collection process. Machine learning surrogate models
offer short-term coverage during outages. This study presents
a methodology for regularizing machine learning models that
predict buoy observations by utilizing multiple data sources. A
previous work introduced a ratio-coupling hyperparameter to
combine numerically modeled data and ocean observations when
calculating training loss. However, applying one ratio across all
features failed to capture the unique characteristics of different
data sources. To overcome this limitation, this work investigates a
multiple-hyperparameter loss function to independently manage
the contribution of each data source per feature. A bounded
random grid search explores the hyperparameter space to find
ratios which produce superior results compared to the single-
ratio approach. Surrogate models are validated at the same 88
fixed locations as the previous paper for a direct comparison. The
experimental results suggest that this multi-ratio methodology
can offer more reliable forecasts over a 24-hour period by
applying the correct weight for each pairing of observed feature
and numerical model source.

Keywords-Surrogate; HYCOM; ERA5; Deep Learning; Buoy
Forecasting.

I. INTRODUCTION

Modeling ocean and climate conditions is very important
in industry settings and oceanographic research. Tasks like
climate modeling, marine life population surveys, and tsunami
monitoring, all rely on accurate understandings of ocean
conditions [1][2][3]. Whether directly or indirectly, each of
these tasks depends on the accurate initial conditions gathered
from physical sensors. For that reason, this work focuses on
machine learning modeling of sensor-derived data to produce
short-term forecasts during temporary outages. The resulting
forecasts can be used in place of observations for direct
analysis, initial conditions for numerical models, or as data
assimilation when performing a reanalysis. The types of con-
ditions directly considered in this work include Sea Surface
Temperature (SST), air pressure, and gust strength. Anomalies

in SST can significantly affect accurate weather prediction [4].
Air pressure predictions are helpful for forecasting energy gain
in photovoltaic systems [5] and intelligent weather forecasting
systems [6]. Strong gusts cause severe damage in thunder-
storms and are a forecasting target in machine learning tasks
such as [7]. So, accurate predictions of these interconnected
phenomena are highly relevant.

Whether considering sensor-derived observations or a care-
fully derived numerical solutions, there are often multiple
ways to represent ground truth in a physical system. The
numerical features used to describe our oceans and atmo-
sphere are simply approximations of the underlying condi-
tions. Systematic errors in data collection, physical errors in
sensors, and spatiotemporal gaps in availability make obser-
vations unreliable by themselves [8][9]. Likewise, numerically
modeled data have spatial and temporal discretization errors
or miscalculations from strongly nonlinear interactions [10].
Imperfect approximations always exist, so combining various
data sources becomes a worthwhile endeavor to reduce the
inherent biases of each individual source. Traditionally, the use
of data assimilation systems to improve models has seen great
success. Reanalysis of numerical models with 4D variational
data assimilation and Kalman filters improve historical model
data to high accuracy [11][12]. This process yields high-
quality training data for statistical surrogate models. However,
data assimilation methods can only be used retroactively or
when observation data is readily available. They also do not
typically address errors in the underlying numerical model.
From a machine learning context, multiple data sources can
be combined as part of the training process instead. Due to
multiple representations of truth, there is potentially more
than one source of relevant training data. For example, SST
can be represented by either a numerical model or by sensor
observations. Therefore, improving forecasts by selecting the
best source of truth for the training signal is a valuable goal.

To experiment with machine learning solutions for ocean

14Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-325-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COCE 2024 : The First International Conference on Technologies for Marine and Coastal Ecosystems

                            20 / 31



modeling problems, statistical surrogate models trained on
a mixture of observed data and numerically modeled data
are employed. A surrogate model is any model which is an
approximation of a system without being numerically derived.
This includes pure data driven approaches and also hybrid-
physics approaches, like Physics-Informed Neural Networks
(PINNs) [13]. Regardless of the method, surrogate model are
trained to approximate generalized behaviors of the underly-
ing system. To improve surrogate model performance, data
is combined from fixed observation sensors and numerical
models for a richer feature set. The combination can be
formulated as a mixture of data assimilation and machine
learning [14]. Conversely, the entire physical phenomenon can
be modeled together by directly training a surrogate model
with numerical outputs and sensor data [15][16]. This work
follows the latter paradigm where the physical phenomenon is
directly modeled. Specifically, the experimental design follows
the problem domain presented in [16].

In [16], a specialized loss function was introduced which
coupled noisy observation data and imperfect numerically
modeled data. The buoys for observation of the ocean in fixed
locations collect sensor data from around the coast of the
United States, and surrogate models were used to forecast their
observed features. To improve the regional surrogate model
stability, historical ocean modeling data from the same regions
are added to the training set. The Hybrid Circulation Ocean
Model (HYCOM) [17] and the fifth reanalysis experiment of
the European Center for Medium-Range Weather Forecasts
(ERA5) [18] were chosen for their selection of global climate
and weather features. Features that are available in both
observed and modeled sources were coupled together in the
loss function of the training procedure. A performant ratio
of the loss signals was identified by balancing error between
the surrogate inference and the two sources of training data
per coupled feature. That is, each coupled feature has both
an observed value and a corresponding numerically modeled
value from either HYCOM or ERA5. A limitation in this
methodology was the use of a single hyperparameter to control
the ratio of all coupled features. To improve the identified
limitation, the single hyperparameter is redefined as a vector
of N hyperparameters. Consider that the ocean features are
combined with multiple numerical sources. One numerical
model may be well tuned to the underlying conditions of one
feature and necessitate a stronger contribution to the training
signal. If the other numerical solution does not align as well
with the ground truth, an independent hyperparameter allows
the training signal of that source to be reduced, while the
other remains a major contributor in the loss calculation.
Consequently, the main contributions of this paper are as
follows:

• A surrogate training scheme is defined and validated that
uses a physics-regularized loss function to independently
combine two sources of data for the characteristics of the
ocean K.

• Showing improvements in surrogate performance justifies

the use of statistical models in oceanographic analysis.
• Finding improvements in combining two data sources for

ocean features promotes continued exploration of data
combination techniques during model training time.

The remainder of the paper is organized into the following
sections. In Section II, the related work identifies similar
research and contrasts them to this one. The main research
goal is identified in relation to the previously identified work.
In Section III the methodology is specified. The experimental
dataset details are outlined, the improvements for the physics-
regularized loss are detailed, and the deep learning architecture
used is described. The experimental setup used for validation
is provided for reproduction. Subsequently, Section IV is the
Results section where the experimental findings and their im-
pacts on the methodology are described. Finally, in Section V,
the major contributions are reiterated and future considerations
are identified.

II. RELATED WORK

Buoy forecasting is investigated in some statistical learning
contexts similar to this work. Models are trained using one
buoy [19][20] or multiple buoys [21] for a region of interest.
Most often, buoy observation forecasting focuses on the anal-
ysis of a single buoy, instead of many buoys in a variety of
conditions. In one work, a collection of buoys are integrated
into the input and output vector [22], but the rigid design
of the architecture requires less flexible batch forecasting.
Comparatively, there do exist works where a deep learning
model is used for generalized buoy forecasting [15][16]. This
research follows the scheme of generalized deep learning
models to forecast a wide range of buoys, given their initial
conditions.

The numerical models HYCOM and ERA5 are used in
machine learning-based projects as training data for surrogate
modeling tasks. In the case of HYCOM, the modeled data is
used in machine learning forecasting tasks for ocean condi-
tions [16] and sea surface salinity [23]. HYCOM data is also
used to combine observations with modeled data in a machine
learning context to parameterize typhoon-ocean interactions
[24]. The ERA5 data is used more commonly, most likely due
to its ease of access and high number of modeled parameters.
It is used as training data for regional wave modeling [25],
weather forecasting [26][27], earth surface temperature mod-
eling [28], and sea surface temperature forecasting [29][30].
Numerically modeled data is also used when enhancing sensor
predictions, for example, in the case of satellite sensor models
[31][32]. Usually only one oceanic feature is forecasted, in
contrast to this work. Also, when enhancing sensor forecasts
with numerically modeled data, it is less common to combine
more than one numerical model.

Recurrent Neural Networks (RNN) and attention models are
classically used in time series-based modeling problems, mak-
ing them a natural choice for oceanic forecasting. The Gated
Recurrent Unit (GRU) is one type of RNN unit that employs an
update and reset gate as part of the architecture for improved
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temporal learning [33]. Oceanographic modeling that uses
a GRU-based architecture has been used for ocean current
prediction [34] and chlorophyll concentration forecasting [35].
One work similarly focuses on buoy sensor SST forecasting
using GRU architectures [36]. However, the methodology
differs from this work in significant ways including the model
architecture, number of features forecasted, and the use of
numerical models.

The physics-regularized loss function for training surro-
gate models has been examined in two experimental papers
[16][22] and one theoretical analysis [37]. The methodology
proposed in this work bridges the gap between two of those
papers. In the original paper, it was proposed in the concluding
section that separating the ratio-controlling hyperparameter
would continue to improve results [16]. The research in this
paper directly extends this previous work by testing that
hypothesis using the same experimental setup. Although [37]
uses a similar multiple-parameter scheme we propose here,
the work does not highlight this fact. There is an assump-
tion separating the hyperparameters is an improvement on
the methodology, but no formal study was ever undertaken.
Therefore, this is the first study using the physics-regularized
loss function that investigates whether the use of multiple
hyperparameters improves the physics-regularized model by
directly comparing against the original implementation.

III. METHODOLOGY

The presence of multiple, potentially biased representations
of truth within a domain presents a challenge for optimizing
machine learning models. A loss function that effectively
leverages these diverse sources of truth can minimize test
error. One approach is to use a loss function that balances
the contributions of different data sources using a coupling
hyperparameter, λ ∈ [0, 1], which determines the ratio of each
source’s influence [16]. The following subsections describe the
methodologies used to extend the previous paper and answer
the main research question. That is, whether splitting the single
coupled hyperparameter into a vector of independent coupled
hyperparameters improves the result. Specifically, this study
investigates whether this proposed modification results in con-
tinued improvement under the same experimental conditions.

A. Dataset Details

Buoy observations are collected from the United States
funded National Oceanic and Atmospheric Administration
(NOAA) public data center. Although there exist many types
of sensor payloads, we limit the scope to buoys with the
Self Contained Ocean Observing Payload (SCOOP) [38].
Observations recorded on SCOOP buoys are transmitted via
satellite to NOAA data servers for immediate access. Exactly
88 buoys are chosen for data extraction from a wide area
of fixed locations that encompasses coastlines around the
United States. Buoy sensors may be damaged, taken down for
maintenance, or experience noisy local conditions. Each buoy
measures multiple features per location, but uses individual

sensors for each, leading to situations where only one feature
may be missing. Missing values from the observations are
interpolated, adding noise to the potential training data.

The numerically modeled ocean and climate models used
are the HYCOM and ERA5 models, respectively [17][18].
The HYCOM and ERA5 data used are selected by finding the
closest geographic and temporal resolutions. Both numerical
models are grid-aligned, unlike the fixed locations of buoys,
so the spatiotemporal alignment is not perfect. HYCOM is a
higher resolution than the ERA5 data and typically fits the spa-
tial position more closely as a result. Imperfect spatiotemporal
alignment also introduces noise into the training pipeline. All
data is combined to create a set of coupled and non-coupled
training features. The complete set of features can be found
in Table 1, for reference.

TABLE 1. SELECTED OCEAN FEATURES FOR TRAINING SURROGATE
MODELS. IN BOLD ARE THE NUMERICAL MODEL FEATURES COUPLED

WITH OBSERVATIONS.

Feature Name Feature Units Feature Source
SST ◦C Buoy

Gust Strength m/s Buoy
Air Pressure hPa Buoy

SST ◦C HYCOM
Salinity psu HYCOM

Surf Elevation m HYCOM
Water Eastern Flow (U) m/s HYCOM

Water Northern Flow (V) m/s HYCOM

Wind Eastern Flow (U) m/s ERA5
Wind Northern Flow (V) m/s ERA5

Evaporation m of w.e. ERA5
Gust Strength m/s ERA5

Mean evaporation Rate kg/(m−2s−1) ERA5
Mean Runoff Rate kg/(m−2s−1) ERA5
Sea-Ice Cover (%) [0-1] ERA5

Air Pressure hPa ERA5
Cloud Cover [0-1] ERA5
Precipitation m ERA5

The data collected are from January 1, 2011, to December
31, 2011, and are taken in three-hour increments. The data is
arranged into training, validation, and testing datasets by date.
Training data are chosen from January 1 to September 13, the
validation data is from September 13 to October 20, and the
testing data includes the remainder of the year. Although one
year of data is temporally small selection, this is exactly the
same as what was used in the compared work [16]. The data
is normalized based on the mean and standard deviation seen
in the training data alone. The inverse is transformation upon
model inference to investigate the results. Feature forecasts
analyzed in the results section are in their respective scales.

B. Multiple-λ Physics-Regularized Loss

The physics-regularized loss function measures the surro-
gate inference error generated when comparing an observation
value and the corresponding numerically modeled value. By
evaluating the model inference against both sources of data,
two error scores are produced for each observation and model
pair. A ratio of the two error scores is taken, and this
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error score is used for back propagation. The method is first
proposed in [16]. The result is that, based on the ratio, the
model is trained to approximate either source more strongly.
The combination is determined by the hyperparameter λ,
which selects a ratio of the errors to use. For example, in a
forecasting task with features derived from sensor observations
and numerical models, each feature’s error is weighted by the
singular λ value before being summed. This is proposed to
improve the model by reducing the impact of interpolated or
distorted values in either source.

Using a single λ value for all features is not optimal, as
certain data sources could be more informative for specific
features. To address this limitation, a more flexible loss
function is explored in this work. Each feature is assigned
its own independent λ value represented by a vector. This
extension allows the model to assign different weights to
each feature depending on the specific data sources being
considered. The weighted errors accumulated from all features
are then combined to calculate the total loss. Thus, features
which display wildly different best-λ values are no longer
required to use the same value. The subsequent piece-wise
cost function can be calculated as follows in (1)-(6).

∆k,1 = |ŷ(k)obs − y
(k)
obs| (1)

∆k,2 = |ŷ(k)obs − y
(k)
model| (2)

Ωcoupled loss =

K∑
k=1

[(λk ∗∆k,1) + ((1− λk) ∗∆k,2)]. (3)

In (1) and (2), ŷ represents the output of the surrogate
model, while y represents the training ground truth and k rep-
resents an individual coupled feature. The source of modeling
truth is determined by the subscript as yobs or ymodel. The
error for each feature is weighted by λk before summing for
the total coupled loss value. In this implementation, K = 3,
which implies three coupled feature are included. Additional
non-coupled features may be included in the surrogate and are
defined as,

Ωmodel loss = |ŷmodel − ymodel| (4)

Ωobservation loss = |ŷobs − yobs|. (5)

The remaining uncoupled features, as seen in (4) and (5),
are used to collect error by comparing the predicted value with
the relevant ground truth value. Additional numerical model
features were added in this formulation, but no non-coupled
observation features are included in the selection. Therefore,
Ωobservation loss = 0 in this implementation. Each piecewise
value is summed into the final loss function (6),

Ωtotal loss = Ωcoupled loss +Ωmodel loss +Ωobservation loss. (6)

This formulation of the loss function is similarly explored
in an ongoing work [37]. However, the multiple-λ aspect
is not explicitly explored, and the full impact is not seen.
Also, the problem domain is significantly different, and does
not compare to the original work. This paper expands on

both papers by directly highlighting the multiple-λ physics-
regularized loss approach and by comparing these results
directly to the most related work.

C. Deep Learning Architecture

The prior work, [16], examines three neural network formu-
lations, but the scope is limited in this paper to just one. Out
of the three proposed architectures, the GRU model is chosen
for further examination. Like the LSTM unit, a GRU-based
model has weights which learn to store important context
from the prior timestep. However, a GRU has one less internal
gating signal and fewer weights as a result [33]. This yields
a smaller model that is faster to train, which is important in
this experimental setup, because many combinations of the
λ vector must be iterated upon. Also, the GRU architecture
was the one which benefited the most after using the coupled
loss function in the previous paper, opening the possibility of
continued improvement.

TABLE 2. GRU MODEL ARCHITECTURE. THERE ARE 24 TOTAL LAYERS
WITH 1,827,306 TRAINABLE PARAMETERS. N REPRESENTS A VARIABLE

BATCH SIZE.

Layer Type Output Shape Param # Activation
Input Layer (N, 18, 1) 0 None

Reshape (N, 1, 18) 0 None
Dense (N, 1, 256) 4,864 Tanh

Batch Normalization (N, 1, 256) 1,024 None
Dropout (N, 1, 256) 0 None

GRU (N, 1, 256) 394,752 Tanh
Dropout (N, 1, 256) 0 None

GRU (N, 1, 256) 394,752 Tanh
Dense (N, 1, 256) 65,792 Tanh

Batch Normalization (N, 1, 256) 1,024 None
Dropout (N, 1, 256) 0 None

GRU (N, 1, 256) 394,752 Tanh
Dropout (N, 1, 256) 0 None

GRU (N, 256) 394,752 Tanh
Dropout (N, 256) 0 None
Dense (N, 200) 51,400 Tanh

Dropout (N, 200) 0 None
Dense (N, 200) 40,200 Tanh

Dropout (N, 200) 0 None
Dense (N, 200) 40,200 Tanh

Dropout (N, 200) 0 None
Dense (N, 200) 40,200 Tanh

Dropout (N, 200) 0 None
Dense (N, 18) 3,618 Tanh

The exact architecture of the surrogate model is found in
Table 2. Dropout and batch normalization layers are added to
prevent exploding or vanishing gradients during the training
procedure. The Hyperbolic Tangent (Tanh) activation function
is used for each layer. The model is trained for 100 epochs
with a batch size of 256. The input and output vectors are the
same shape to allow for a recurrent forecast style, where the
forecast for time t + 1 uses the prior forecast from time t.
So, only the first forecast is based on initial conditions. The
model inference vector corresponds directly to the Table 1.
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However, the only features considered in the ultimate analysis
are those which are collected through buoy sensors, i.e., SST,
gust strength, and air pressure. The GRU model conducts
eight consecutive forecasts of three-hour steps to produce a
daily 24-hour forecast for analysis. The model is trained using
many buoy locations and is meant to be used as a generalized
forecasting model for any buoy, although it only forecasts them
individually.

D. Experimental Setup

To compare the proposed methodology with the existing
approach, the same GRU network architecture, training proce-
dure, and testing methodology as described in the literature
is used [16]. The findings of the experimental setup are
compared directly to the prior results. The best λ value was
previously found through an extensive grid search to find the
best singular hyperparameter value. This was described as a
time-consuming process, and the time complexity is worsened
by introducing three λ values instead. So, a linear grid search
over the entire search space is impractical for this work. As
a method to quickly validate the research question, a basic
random search scheme is implemented.

The random search scheme is implemented by randomly
generating λ combinations to control the coupling ratios in
the physics-regularized loss function. This was completed in
two phases. In the first phase, completely random values
were used, and features were randomly chosen between 0.0
and 1.0 with a step size of 0.001. To this end 24 random
permutations are evaluated. Secondly, the search space is
narrowed for each feature such that SST is bounded between
[0.500,0.990] and both gust strength and air pressure are
bounded between [0.800, 0.999]. These values correspond to
the regions where the previous paper saw performant results.
A further 85 trials are run in this way. Each of the 109 trials
are executed with the same random seed. Since the trials
are randomly chosen, this is not guaranteed to explore a full
range of possible λ combinations. However, the random ranges
identified are sufficient for exploring whether a multiple-λ
setup can produce more performant results, especially in the
case of the secondary bounded search. To compare directly
against the original results, the multiple-λ results are compared
against the single-valued results between [0.0,1.0] with a step
size of 0.1. The best single-λ values recorded for each feature
are also compared. Comparing the multiple-λ and single-λ
experimental results yields a total of 122 total comparative
test cases.

It is notable that this technique does not scale well to
problems without prior knowledge of the system, such as the
one studied in this case. In the future, an efficient mechanism
for discovering the best λ should be explored and ongoing
research has for this task has already started [37]. However,
justification that the proposed loss function is an improvement
should still be given. Therefore, the aim is to show that some
set of λ values exists which performs better than the previously
found single λ value.

17.38°N

23.38°N

29.38°N

35.38°N

41.38°N

47.38°N

128.05°W 118.05°W 108.05°W 98.05°W 88.05°W 78.05°W 68.05°W 58.05°W

Approximate Buoy Locations

Figure 1. Approximate locations of the 88 buoys used in the testing dataset.

For evaluation of the proposed methodology, a testing
dataset is composed of 48,039 instances taken from 88 in-
dependent buoys with an 8-step rolling horizon window. This
window represents 24-hour forecasts. Each of these forecast
windows is then evaluated and aggregated together. Evaluating
the models on many buoys means the best surrogate is the
one which is most accurate for a wide range of conditions.
The approximate locations of each buoy is given in Figure 1,
showing the diverse testing conditions. Given the forecasts, the
Root Mean Square Error (RMSE) is taken for each coupled
feature separately. The RMSE is defined in (7) as,

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2. (7)

The parameter N is the number of test samples, y is the
ground truth, and ŷ is the prediction vector. Once the RMSE
has been calculated for each feature, scores are summed
together to determine which combination of λ values produces
the smallest value.

IV. RESULTS

An analysis of the most impactful results is illustrated
in Figure 2 and further detailed in Table 3. Error scores
are accumulated through eight forecast steps over a 24-hour
horizon. Instead of displaying all experiments, only the top
25 results of the 122 λ combinations are highlighted. Among
the top 25, only two are from single-λ experiments. The
top two of those are ranked sixth and 23rd, respectively.
Some single-λ experiments display minimal RMSE values
for a single feature to the detriment of others, yielding a
high summed RMSE. For example, the 45th ranked result
is the best ever recorded RMSE for gust strength, while
the SST RMSE is comparatively very poor. This shows that
some selections of λ can minimize the test error of a single
feature at the detriment of others. Although multiple λ values
can still exhibit this behavior, increasing the hyperparameter
search space allows more flexibility to choose λ values which
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TABLE 3. TOP 10 PERFORMING COMBINATION OF λ VALUES ALONGSIDE
EVERY SINGLE-λ BENCHMARK (BOLDED). THE RESULTS ARE SORTED BY
THE SUM OF THE RMSE AND THEIR TOTAL RANK OUT OF THE 122 TEST

CASES IS DISPLAYED.

Rank SST
λ

Gust
λ

Air
Pressure

λ

SST
RMSE

Gust
RMSE

Air
Pressure
RMSE

Sum of
RMSE

1 0.569 0.992 0.995 1.844 3.944 5.088 10.877
2 0.573 0.997 0.990 1.604 4.236 5.103 10.943
3 0.894 0.820 0.957 1.826 4.165 4.985 10.976
4 0.837 0.966 0.942 1.925 3.963 5.109 10.997
5 0.518 0.971 0.960 1.698 4.107 5.200 11.005
6 0.900 0.900 0.900 1.607 4.081 5.349 11.037
7 0.870 0.959 0.948 1.635 4.140 5.306 11.080
8 0.670 0.944 0.940 1.847 4.074 5.167 11.087
9 0.848 0.909 0.995 1.704 4.145 5.249 11.098

10 0.900 0.863 0.922 1.748 4.203 5.156 11.108
23 0.960 0.960 0.960 2.126 4.017 5.154 11.296
45 0.840 0.840 0.840 2.262 3.894 5.388 11.544
57 0.800 0.800 0.800 1.801 4.388 5.420 11.609
81 0.700 0.700 0.700 2.238 3.947 5.754 11.938
92 1.000 1.000 1.000 1.970 4.055 6.051 12.076
102 0.600 0.600 0.600 1.785 4.182 6.401 12.368
107 0.500 0.500 0.500 1.757 4.387 7.402 13.545
118 0.100 0.100 0.100 1.907 4.501 8.175 14.583
119 0.300 0.300 0.300 2.029 4.176 8.419 14.624
120 0.000 0.000 0.000 2.138 4.738 8.202 15.079
121 0.400 0.400 0.400 2.045 4.348 8.713 15.106
122 0.200 0.200 0.200 1.850 4.560 9.081 15.492

reduce error on average. This is shown in the fifth ranked
result where individual feature do not perform better than
in a corresponding single-λ setup, but overall improvements
are seen. This is the main benefit of using multiple λ values
instead of the previous methodology.

The top five results are all found from using a multiple-λ
setup. This surpasses all previous outcomes found in the orig-
inal findings. This suggests that using multiple λ values can
enhance the hyperparameter space for improved test outcomes.
The magnitude of improvement between the best single- and
multi-λ setups is minimal overall, as displayed in Figure 2.
The difference in error is more significant when compared
to less optimal single-λ results. Most importantly, a set of
independently selected λ values that yields better performance
was found, satisfying the main goal. The consistency in the
best performing λ configurations indicates that prior domain
knowledge of the best-performing λ values is advantageous
when conducting a random search. For example, although SST
gives minimal RMSE results for a wide range of λ values, SST
and Gust Strength both prefer a smaller range. Differences
in numerical models influence the best selection of λ, for
example, the spatial resolution is different in the HYCOM
and ERA5 models. Specifically, ERA5 is a lower resolution
than HYCOM, so individual grid points may be further away
from the actual buoy locations.

In Table 3, the top ten results are compared with all single-λ
results. Each row displays the rank out of all tests, the selection
of λ for each feature, and the RMSE scores of each feature.
One notable observation is that most single-λ setups are ranked
worse than the top 25 results. The values for λ tend to be
somewhat similar in the best performing results, depending
on the feature. This behavior is in part due to constraining the

random selections within previously found performant regions
of λ for each feature. The λ choice for air pressure and gust
strength benefit the most from prior knowledge of the optimal
λ region. Specifically, for air pressure, the RMSE tends to be
higher when λ < 0.9. Interestingly, the SST forecast achieves
high performing results for a wider range of values. This lends
credibility to the use of a random search setup when there is
prior understanding of what λ values might be most effective.
Also, this implies that the coupled numerical model highly
influences the selection of best-λ value.

Although the sum of the RMSE is reduced when analyzing
a multiple-λ experiment, individual feature results should still
be considered. The top three single-λ results, are those which
previously produced minimal error scores for one feature.
Certain multiple-λ combinations yield lower feature-specific
RMSE than those prior best results. For example, the third
ranked λ configuration yields the lowest RMSE score for air
pressure ever recorded using the demonstrated methodology.
The second ranked result showed the best performance for
SST ever recorded. However, a lower individual gust strength
RMSE was never found, compared to the best performing
single-λ result. The lowest sum of RMSE did not yield any
best-result individual forecasts but had consistently low RMSE
across all features. It is notable that a set of λ values which
finds most performant forecasts for all features simultaneously
was not found. This means that no single feature was op-
timized to the detriment of the other features. This suggests
that using multiple λ values that are specific to each numerical
model can overcome bias. This is because a single λ value is
not allowing a biased numerical model to be more influential in
the training process. Specifically, ERA5 has a lower resolution
than the HYCOM data, which tends to mean that the HYCOM
data is well fitted to the observations across all values. This
describes why a broad selection of λ values work well for
HYCOM, but not the ERA5 data. By using separate λ values
for each feature neither numerical model source is forced to
provide a suboptimal combination of data.

In Figure 3, absolute forecast error is highlighted. The error
ranges over consecutive 24-hour cycles and is calculated based
on the Mean Absolute Error (MAE) between the buoy derived
observation and the predicted value. The numerical model
(HYCOM/ERA5) is given as a baseline to compare against.
Error is calculated from forecasts of a single buoy with the
identification code 41009. The segment of forecasts analyzed
are taken from period 40 to 120, demonstrating the error found
in 11 forecast cycles. Compared are the best multiple-λ model
and the best single-λ model, outlined in Table 3. Compared
against both is the numeric error generated when comparing
the buoy error to the numerical models HYCOM and ERA5.
It is observed that the best performing model does not out-
perform the single-λ setup in all cases. In some situations,
the stability of either model might be superior. The multiple-
λ model is more stable on average and tends to experience
less extreme fluctuations in the forecast. Occasionally, either
surrogate model can outperform the numerical model, but
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Figure 2. Top 25 performing λ combinations and their summed feature RMSE test scores. The green dotted line shows the separation of values between the
most performant result and all others. Multiple-λ combinations are in blue, while any single-λ results are in red.
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Figure 3. Shown are the forecast errors of the most performant combination of λ values compared against the most performant single-λ for a single buoy.

on average HYCOM and ERA5 show reduced error. This is
expected, because statistical models are well-known to be less

accurate than numerical models.
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The trade-off in favor of the numerical models is the speed
of the forecasts generated. Overall, the findings suggest that
an independent selection of λ does improve the methodology
by consistently reducing error across all features. Applying
the correct weight for each ratio was shown to provide more a
stable forecast on average. Finding continued improvements
compared to the original research gives justification to the
proposed methodology. The best λ values are highly dependent
on the secondary data source (i.e., the numerical model) and,
to a lesser degree, the selection of domain feature. Although
a set of λ values which minimized the RMSE for all features
was not found, that does not mean that a configuration does
not exist. Exploration of the parameter space is the main
limitation of these experimental results. More specialized
search techniques should be implemented to efficiently find
the best selection of hyperparameters. One further limitation
of the methodology is the need for two sets of good-quality
data. The benefits of the physics-regularized loss are directly
dependent on the ability of the second source of data to be
informative when the primary data, i.e., the observations, faces
physical constraints.

V. CONCLUSION AND FUTURE WORK

A previous methodology improved the forecasting of fixed-
location ocean buoy observations by combining observation
data with numerically modeled data. In the work, it was found
that the selection of the ratio-determining hyperparameter, λ,
varied depending on the numerical source and ocean feature. It
was hypothesized that the results could be further improved if
each feature was independently combined with numerical data.
To address the proposed research question, the methodology
was modified to include multiple independently selected λ
values. The physics-regularized loss function was updated to
combine features with numerical models in a less constrained
way, which increased the potential hyperparameter search
space. Then, a bounded random search was employed to
generate random λ selections which produced superior results.

The updated technique was directly validated against the
publicly available prior experiments. The outcome was a
surrogate model that generated more accurate forecasts overall
compared to the single-λ approach. The use of multiple λ val-
ues is particularly beneficial when multiple numerical models
contribute to the feature set. For example, in this work both
global HYCOM and ERA5 reanalysis models were used to
improve overall results. A selection of λ values which reduced
each individual feature’s error below the best recorded value
simultaneously was not found using the random search, but
average error was improved for five combinations of λ. Such
a combination of values may exist, even if the random search
did not yield these results. It is acknowledged that the use of
random or grid search to find the best parameter combination
is time-consuming without prior domain knowledge and does
not guarantee optimal results. However, the results justify the
further use of multiple λ values, instead of a single value for
all features.

Future work should validate the methodology using a
wider range of real-world and theoretical datasets. Testing
the combining technique with different combinations of input
and output data would be very insightful. Different model
architectures should be explored to assess the effectiveness of
coupling data with more generalizable models. The physics-
regularized loss is not reliant on the model architecture and
should be attempted with more specialized architectures to see
if similar improvements are found. Grid search and random
search are not efficient enough, so developing methods for
approximating or selecting λ values is a primary focus of
future research.
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Abstract— The Cubic Kilometer Neutrino Telescope 

(KM3NeT), located deep in the Mediterranean Sea, is designed 

for detecting neutrinos through optical Cherenkov radiation. 

However, the installation of an acoustic detection system can 

provide complementary capabilities, extending the detection to 

ultra-high energies. This paper proposes the development of an 

acoustic antenna composed of an array of four hydrophones, 

separated by approximately one meter. This antenna will be 

used as a trigger for detecting relevant acoustic events, which 

could include signals from neutrino interactions or other 

underwater acoustic phenomena. The system is intended to 

work in conjunction with the existing KM3NeT hydrophone 

network, enhancing both the detection of neutrinos through 

acoustic channels and contributing to sea acoustic monitoring. 

Keywords-acoustic detection; deep-sea neutrino telescope; 

sea acoustic monitoring; hydrophone array. 

I.  INTRODUCTION 

The Cubic Kilometer Neutrino Telescope (KM3NeT) is a 
neutrino observatory located at depths of up to 3500 meters 
in the Mediterranean Sea, primarily designed to detect high-
energy neutrinos by observing Cherenkov light produced 
when neutrinos interact with water [1]. In addition to optical 
detection, there is growing interest in utilizing acoustic 
techniques to identify neutrino interactions, which may 
produce characteristic pressure waves in the water and 
allowing the extension of neutrino detection to ultra-high 
energies [2]. Such an approach also enables environmental 
monitoring, offering insight into marine biodiversity (e.g. 
mammals), seismic activity, and anthropogenic noise 
pollution.  

The integration of an acoustic antenna system that can 
detect these neutrino-induced acoustic signals or other 
significant acoustic phenomena is a natural extension of 
KM3NeT’s capabilities. This paper proposes a design for a 
4-hydrophone acoustic antenna array that can trigger event 
detection based on specific acoustic patterns, which 
complements the current array of hydrophones used in 
KM3NeT. With this antenna, the feasibility of the acoustic 
detection of neutrinos will be assessed. In parallel, long-term 
acoustic studies on marine mammals and on anthropogenic 
noise are planned.   

Notice as well that this kind of infrastructure is very 
unique, allowing an ideal place for deep-sea science studies 
and providing the infrastructure the required energy for the 
equipment to be operated and a broadband connection that 
allows continuous real-time monitoring with high-frequency 
sampling.  

The paper is structured as follows: in Section II, the 
conceptual design is discussed. In Section III, the integration 
of the antenna in KM3NeT is treated. The applications of the 
antenna beyond acoustic neutrino detection are presented in 
Section IV. Finally, the main conclusions are highlighted in 
Section V. 

II. CONCEPTUAL DESIGN OF THE ACOUSTIC ANTENNA 

The proposed acoustic antenna consists of four 
hydrophones arranged in a 3D array with a separation of 
approximately one meter between each hydrophone. It will 
follow a similar scheme of the acoustic floors in the 
AMADEUS/ANTARES, or ONDE detection systems [3][4]. 
The goal is to leverage the spatial configuration and array 
processing techniques to locate the origin of incoming 
acoustic signals and assess their characteristics, 
distinguishing neutrino events from background noise. Fig. 1 
shows a schematic view of the conceptual design of the array 
mounted in a recoverable autonomous structure. There are 
the four hydrophones of the array fixed with vertical bars at 
different heights. They are on a structure that contains the 
electronics of the system and the connector to link it to the 
KM3NeT infrastructure, thus allowing the control and data 
capturing communication as well as the needed electrical 
power. The structure, with sufficient buoyancy, may be 
automatically recovered using an acoustic release.   

Some considerations that have to be taken into account in 
the design:   

• Hydrophone Spacing: The separation of one meter 
is chosen to balance the ability to capture acoustic 
signals across a range of frequencies, while 
maintaining a compact structure suitable for 
deployment in deep-sea conditions. At this 
separation, it complements the larger distances 
between acoustic sensors existing in KM3NeT and 
the array is sensitive to wavelengths in the range of 
typical acoustic signals generated by high-energy 
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particle interactions or the acoustic phenomena to be 
studied. 
 

• Frequency Range: The hydrophone array will be 
sensitive to the expected acoustic signature of 
neutrino interactions, which is in the range of 1–50 
kHz. This frequency range also allows for the 
detection of other underwater acoustic phenomena, 
including marine mammal vocalizations, 
oceanographic noise, and seismic signals. 
 

• Signal Processing and Triggering: The array will 
employ beamforming and signal correlation 
techniques to identify the direction of arrival of 
acoustic signals and trigger data recording when 
certain criteria are met [5][6]. This triggering 
mechanism will be designed to identify sharp, 
broadband acoustic pulses, such as those expected 
from neutrino interactions. Advanced algorithms for 
pattern recognition will be developed to differentiate 
between neutrino-induced acoustic signals and noise 
from marine life, ships, or environmental factors. 

 

Figure 1.  Schematic view of the acoustic antenna. 

III. INTEGRATION WITH KM3NET 

The KM3NeT neutrino telescope is already equipped with 

a large array of hydrophones and acoustic sensors primarily 

used for positioning and calibration of the optical modules 

[7]. The proposed 4-hydrophone array will be deployed 

alongside this system, but with a focus on event detection 

and triggering relevant events. By complementing the 

existing infrastructure, this acoustic antenna can enhance 

KM3NeT’s ability to monitor and record transient acoustic 

events, as well as various other natural and anthropogenic 

sources of underwater sound. 

 

• Data Synchronization: The new hydrophone array 
will be synchronized with the KM3NeT timing 
system, ensuring that acoustic data can be correlated 
with the other acoustic data from the observatory, as 
well as from the optical detections or other neutrino 
candidate events. 
 

• Deployment Strategy: The compact size of the 
array allows for flexible deployment within the 
KM3NeT grid. It can either be mounted on the base 
of the detector strings, in the calibration base or 
instrumentation line, or deployed as a standalone 
unit with dedicated infrastructure.  

 

IV. APPLICATIONS BEYOND NEUTRINO DETECTION 

In addition to enhancing the detection of neutrino 
interactions, the proposed hydrophone array will contribute 
to acoustic studies in the deep sea. The Mediterranean Sea is 
a rich environment for studying natural and anthropogenic 
sounds. The proposed system could provide valuable data 
for: 

• Marine Biology: Detection of vocalizations from 
marine mammals and fish populations [8], 
contributing to biodiversity assessments and 
behavioral studies. 
 

• Seismic Monitoring: Monitoring underwater 
earthquakes or sub-sea volcanic activity by detecting 
associated acoustic waves. It could also be part of a 
warning system for marine hazard, e.g., tsunamis. 

 

• Anthropogenic Noise Studies: Long-term 
monitoring of human-generated noise pollution, such 
as from shipping or underwater construction, and its 
impact on marine ecosystems.  

V. CONCLUSIONS 

The proposed 4-hydrophone acoustic antenna represents a 
novel addition to the KM3NeT neutrino telescope, offering 
enhanced capabilities for detecting acoustic signals from 
neutrino interactions and providing valuable data for 
oceanographic and environmental monitoring. The small 
array size, signal processing capabilities, and compatibility 
with the existing KM3NeT infrastructure make it an ideal 
tool for complementing physics and environmental research 
objectives in the deep sea. As future work, the design, 
construction and installation of the acoustic antenna will be 
finalized. It will be tested initially in the laboratory and at sea 
at shallow depths. Once verified that it is working properly, 
it will be integrated into the KM3NeT deep sea neutrino 
telescope. 
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