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The Ninth International Conference on Advanced Cognitive Technologies and Applications
(COGNITIVE 2017), held between February 19-23, 2017 in Athens, Greece, continued a series of
events targeting advanced concepts, solutions and applications of artificial intelligence,
knowledge processing, agents, as key-players, and autonomy as manifestation of self-organized
entities and systems. The advances in applying ontology and semantics concepts, web-oriented
agents, ambient intelligence, and coordination between autonomous entities led to different
solutions on knowledge discovery, learning, and social solutions

The conference had the following tracks:

e Brain information processing and informatics
e Emotions in Artificial Cognitive Systems

e Neuroinspired Informatics

e Human Behavior in Digital Education

e Artificial intelligence and cognition

e Cognition and the Web

We take here the opportunity to warmly thank all the members of the COGNITIVE 2017
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to COGNITIVE
2017. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the COGNITIVE 2017
organizing committee for their help in handling the logistics and for their work that made this
professional meeting a success.

We hope that COGNITIVE 2017 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in the area
of cognitive technologies and applications. We also hope that Athens, Greece provided a
pleasant environment during the conference and everyone saved some time to enjoy the
charm of the city.
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The Hippocampus According to the Ouroboros Model,

the ""Expanding Memory Index Hypothesis"

Knud Thomsen PSI
Paul Scherrer Institut
NUM Forschung mit Neutronen und Muonen
CH-5232 Villigen PSI, Switzerland
e-mail: knud.thomsen@psi.ch

Abstract—Understanding information processing in the brain
demands more than one approach or method. Combining well-
established and diverse novel experimental findings from
neuroscience, connectionist approaches, and artificial
intelligence, the perspective of the recently proposed cognitive
architecture of the Ouroboros Model offers an integrative view
on the functional role of the mammalian hippocampus: it is
hypothesized to implement a rapidly laid down index, first
establishing, contributing to binding, and then retrieving
together memory entries, thus iteratively expanding the overall
cognitive system in an autocatalytic process.

schema;
hypercycle;

Keywords - Cognition;
discrepancy monitoring;
learning machine.

iterative processing;
hash table; extreme

l. INTRODUCTION

The hippocampus is a central neural structure on top of
the processing hierarchy in mammalian brains. Homologous
structures have been found in reptiles and birds. Widely and
reciprocally connected to cortical areas, in mammals the
hippocampus is comprised of several distinct main regions:
Dentate Gyrus (DG), CA3, and CAl; see Fig. 1. These
appear to implement successive stages of processing: DG as
the input stage has been implicated in pattern separation
whereas CA3 is best understood as a content-addressable
auto-association memory providing pattern completion, as
explained in some detail below [1]. A hippocampal memory
indexing theory has been proposed 30 years ago, and it has
fared quite well over time [2][3].

The paper is structured as follows. In section Il, the gist
of the Ouroboros Model is presented in just a few words, and
in section Ill, a coarse conceptual sketch of an expanded
dynamic indexing view is outlined. Conclusions and future
work are indicated in Section IV.

Il.  THE OUROBOROS MODEL IN TWO WORDS

The Ouroboros Model offers a cognitive architecture
aiming at an encompassing account [4]. Cognition in general
is explained as resulting from two fundamental building
blocks: a memory structured into cohesive chunks called
schemata, and a cyclic process termed ‘consumption
analysis', which "cultivates" consistency by monitoring for
discrepancies and thereupon directing attention and also
triggering memory storage according to demand.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

A key tenet of the Ouroboros Model, in particular, is that
novel memory entries are laid down as kind of "snapshots"”
linking all prevalent cortical activations at occasions marked
as important by the outcome of consumption analysis [5];
this most efficiently includes distinct index records.

I1l.  THE EXPANDING MEMORY INDEX HYPOTHESIS

Mapping structures of the Ouroboros Model to living
brains, it has been hypothesized in various previous accounts
that the hippocampus embodies an index to features in
distributed representations over widely spread specialized
cerebral cortex areas [2][3][6].

Arguing that there are diverse requirements on different
forms of human memory it has been proposed that these can
best be addressed with two memory systems: a limited fast,
one-shot, component based in the hippocampus, and another
with vast capacity and with some essential features slower
but gradually improving, in the cerebral cortex [7].

Memorizing new episodes in the form of complete
activation-images, demands fast and encompassing storage,
exactly as has been described for the hippocampus [5][7].
(Almost) all activity in the entire brain is effectively bound
together because the hippocampus sits on top of many
diverse processing areas [8].

Subiculum

Hippocampus

ntorhinal Cortex

LrE

Dentate Gyrus

R

Parietal & Inferior Temporal
Cortices

d

Figure 1. Principal stages for the hippocampus, with dark
arrows indicating the links mentioned in the text [8].
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Later, during remembering, when trying to reestablish an
overall activation in the cortex, hippocampus acts as driver
providing effective index-entries and bringing to bear
efficient pointers to the distributed cortical representations.

The hippocampus thus can be understood as a top
""convergence-divergence zone", which receives convergent
projections from the sites whose activity is to be recorded,
and which sends divergent projections to these same areas,
similar to a proposal by Damasio [9]. The here proposed
account is distinct from more standard conceptualizations of
memory stressing clearly separated components, i.e., short-
and long-term stores or more constricted situation-specific
control processes like in the Atkinson—Shiffrin model [10].

Following the ideas of [2] and [7], memories according
to the Ouroboros Model are stored in a partly redundant way:
linked via the hippocampus and also, definitively after some
consolidation over time (and slow wave sleep), permanently
bound cortical representations. No ‘transfer’, in the sense of
completely erasing hippocampal traces, normally takes
place; cortex entries just become more independent with use.

Some type of two-pronged memory implementation
appears indispensable for meta-cognition and meta-memory,
which naturally enable an agent to assess her status of
memory (-retrieval). Prominent examples in this context are
the tip-of-the-tongue phenomenon and déja vu.

The hippocampal complex is hypothesized to work as an
effective hash-table; index values are established from the
activity distributions they code for in a given context, and, in
turn, their activation later allows addressing and combining
the detailed entries spread over widely dispersed cortex
areas. At both storage sites, pattern completion is effective,
enabling full retrieval from only a fraction of the features,
efficiently implementing content-addressable memory.

During encoding, as well as for retrieval, the two
repositories reinforce each other mutually. This constellation
can be described as a minimum-hypercycle comprising only
two main sub-stages [11][12]. These are distributed over the
cerebral cortex and, on the other end, the CA3 section of the
hippocampus. (For very important memories, €.g., ones
containing strong (aversive) emotions, an additional structure
is regularly involved, i.e., the amygdala, which allows for
particularly fast reactions in already encoded contexts.)

Entries in the hippocampus, like in local neocortex areas,
are laid down in patches of orderly maps. Sufficiently
different contexts have been shown to lead to remapping in
the hippocampus [13]. Specificity is taken to be ensured by
well-separated attractor states in CA3 due to its prominent
recurrent connections, while CA1 recoding for the output can
preserve matched correspondence with cortical areas; see
Fig.1. Different schemata as generalizations of place-cell
maps would correspond to specific hippocampal mappings.
Dynamically, these associations are seen as manifest in theta
oscillations, which originate mainly in the hippocampus and
cingulate cortex, and phase-locked high gamma oscillations
in neocortex [14].

Due to the auto-association capabilities of the CA3
region, full activations can be provoked already when only
part of their constituents are available first. In order to avoid
disturbing overlap between distinct memories, a random

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

component in the assignment from the DG, which effects
very powerful input to CA3 storage, has been proposed [1].

An efficient additional way of minimizing collisions, i.e.,
preventing the overloading of a neural associative network,
would be to add new neurons in the distributing stage as new
(index) entries are required. After decades, in which the
dogma “no new neurons in the adult brain” was accepted as
valid, it has been found that the dentate gyrus in the
hippocampal formation is one of two regions in the adult
human brain where new neurons are continually developing
and functionally integrated into working brain circuitry [15].
Contributions to better pattern separation and memory
resolution have been suggested as main function of these
added neurons [16][17]. There is ample evidence for their
enhanced generation and survival when demand for new
representational resources is presumably high, i.e., they are
boosted by physical exercise in enriched environments,
accompanied by significant improvement of previously
impaired hippocampal long-term potentiation and cognitive
performance in a mouse model [18].

It is important to note that index values are most useful if
distinct. "Continuous" versions seem adequate within limits,
but requirements for very fine-scaled representations and
smooth transitions might more efficiently be taken care of by
some general-purpose interpolator as has been argued to be
the function of the cerebellum [19].

For the hippocampus, it is further proposed to investigate
the idea how the observed addition of newborn neurons in
living brains can be understood as a version of an extreme
learning machine (ELM), a recent neural network lay-out
featuring the random addition of hidden neurons, which
yields spectacular improvements in learning rate compared
to standard learning routines [20]. It has been shown that
randomly introducing neurons and then selecting the ones
which work best can further enhance the efficiency of ELMs
compared to versions without pruning [21].

Following the Ouroboros Model, newborn neurons are
inserted in living brains in a manner “better than random”,
i.e., their number and timing being controlled by the demand
for finer differentiation in the already existing network of
schemata [5][18]. This would actually fit nicely with
hopscotch hashing, where additional entries are added
demand-oriented for resolving hash collisions and inserted
locally in the relevant neighborhood ensuring quick retrieval.

New and uncommitted neurons are most useful in the
separation stage (DG) with initial high and rather localized
sensitivity, and their weights constrained by neighbors,
possibly not only for better discriminating and stabilizing but
later also for condensing and compactifying (sparse) activity,
which was before distributed more widely and implementing
some type of population-code, all in tight interaction with the
linked cortex representations and also inducing similar
tuning, and likely also including pruning, there.

IV. CONCLUSION AND FUTURE WORK

It is claimed that the Ouroboros Model sheds some light
on the requirement and implementation of a continually
expanding index to representations distributed over the
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cortex in mammalian brains: new entries are rapidly laid
down as "snapshots" concatenating all concurrent activity
upon a trigger by consumption analysis. The mammalian
hippocampus is thus hypothesized to serve a fundamental
role for relatively quickly establishing and also reliably
retrieving distinct entries in episodic memory as well as for
episodic simulation employing exactly that schema-type,
which is claimed to form the ever-expanding basis for
efficient cognition. Request-oriented storage of index entries
in tight interplay with detailed cortical records thus
efficiently implements autocatalytic learning and growth.
This appears to be a significant step towards explaining how
information is processed in vertebrate brains.

The Expanding Memory Index Hypothesis of the
Hippocampus:

e The hippocampus provides an index to wide-spread
cortical representations.

e Content-addressable at both repositories, memories
can most efficiently be retrieved from partial keys.

e Entries in the hippocampus and in the cerebral
cortex mutually endorse each other and thus form a
hypercycle.

e Memory separation/orthogonalization capability for
the unique indexing of novel episodes is greatly
enhanced by adding adult-born neurons in the DG.

e This is somewhat similar to the addition of hidden
units in Extreme Learning Machines (ELMSs).

e  All of this fits nicely with the Ouroboros Model.

A further piece of the puzzle will be to elucidate the link
of the hippocampus with another central (control) structure,
i.e., anterior cingulate cortex, ACC, which has been shown
recently to possess direct monosynaptic connections to CA3
and CA1 regions [22]. With the hippocampus and the ACC
in the center together, and including general cerebral cortex
as well as subcortical structures, the neuronal basis for
extensive cyclic iterative processing can be outlined.

Work on the Ouroboros Model in general and also on the
role of the hippocampus and its connections is in progress.
Following a fundamental self-reflective and self-consistent
approach, a first schematic sketch will be filled-in with more
fine-grained and quantitative details in subsequent iterations;
collaborations to this end are most welcome.
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Performance of Neural Clique Networks Subject to Synaptic Noise

Eliott Coyac, Vincent Gripon, Charlotte Langlais, and Claude Berrou
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email: name.lastname @telecom-bretagne.eu

Abstract—Artificial neural networks are so-called because they
are supposed to be inspired from the brain and from the ways
the neurons work. While some networks are used purely for
computational purpose and do not endeavor to be a plausible
representation of what happens in the brain, such as deep learning
neural networks, others do. However, the question of the noise in
the brain and its impact on the functioning of those networks has
been little-studied. For example, it is widely known that synapses
misfire with a significant probability. We model this noise and
study its impact on associative memories powered by neural
networks: neural clique networks and Hopfield networks as a
reference point. We show that synaptic noise can in fact slightly
improve the performance of the decoding process of neural clique
networks by avoiding local minima.

Keywords—associative memories; neural clique networks; synap-
tic noise

I. INTRODUCTION

There are multiple sources of noise in the brain. Indeed,
they can be molecular [1], [2] or due to external neurons [2].
Other factors include synaptic noise, the intermittent failure
of synapses, which seem to have a role outside of being just
noise [1], [2]. In this paper, we explore this particular type of
noise in details.

There are a lot of models of neural networks, which
either aim at modeling what happens in the brain or sim-
ply focus on efficiency at their specific purpose. The study
of the impact of noise on such artificial neural networks
focusing on performance is only relevant in the context of
electronical components, but that is obviously not the case
when considering neural networks that strive to be biologically
plausible. Such neural networks should not react adversely to
noise to be considered biologically plausible. In this paper, we
consider artificial neural networks that aim both at providing
efficient solutions to real-world problems but also try to remain
plausible as a possible way the brain works, and study the
impact biological noise has on them. We focus on neural
networks working as associative memories [3]-[6], and study
how noise impacts their inner workings and performance.
Studies have already been conducted on the impact of noise
when implementing such neural networks on unreliable hard-
ware circuits [7], where the noise is caused by unreliable
components.

In this paper, we consider noise internal to the network,
and more specifically synaptic noise. We show how it can be
seen as an higher abstraction level than molecular noise and
that it can be easily modelled. The impact of synaptic noise
has been theoreticized in biological neural networks [8], but
never studied with regard to artificial neural networks that are
used for practical applications in computer science.
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Figure 1. Example of neuronal transmission from one neuron np to another

ng with ngyn = 5. Each synapse has a probability pye; = 0.5 of
stimulating n2 when n is activated.

The outline of the paper is as follows. We first study how
synaptic noise can be represented in Section II. In Section
III, we introduce neural clique networks and discuss their
biological plausibility and applications. Finally, in Section
IV, we study the impact of synaptic noise on neural clique
networks, both theoretically and by running simulations. We
also briefly depict the impact of synaptic noise on Hopfield
networks, a classical form of neural network behaving as an
associative memory, for reference.

II. SYNAPTIC NOISE IN THE BRAIN

In the brain, each neuron has numerous inputs from other
neurons and a single axon, which then branches to reach a
multitude of other target neurons. Even then, there is not a
single point of contact between the neuron and a target neuron,
but several. The axon not only branches to reach multiple
neurons, it also branches off in several synapses reaching the
same target neuron.

Generally, the connection between two neurons is com-
prised of 5 to 25 synapses [9]. One may ask why there
are so many synapses for a simple connection between two
neurons. Having a few is understandable for redundancy, but
there can be several tens of synapses. In fact, synapses are not
reliable [9], [10], and the probability of them working typically
ranges from 0.2 to 0.8 [9]. Such a configuration of synapses
can help functioning when stressed under high frequency of
neuronal activation by spreading the load over the different
synapses [11], [12].
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Figure 2. Probabilities for different stimulation instensities with nsyn = 20.
Values for nsyn and p,; fall within the model and are discussed at the end
of the paper.

In this paper, we consider the way failing synapses affect
the connection between two neurons, and then we show how it
translates to artificial neural networks. To make things simpler,
we consider that each connection between two neurons has
Ngyn Synapses of the same strength, normalized to 1, and
that they each have the same probability p,.; of working,
independently one from another. p,..; is named as such as it
represents the probability of releasing neuro-transmitters when
stimulated by the axon. The connection between two neurons
ny and ng is represented in Fig. 1. With this model, the
stimulation a neuron receives from another follows a binomial
law B(tries, psuccess) With the parameters ngy, and pyo as
shown in Fig. 2,.

III. NEURAL CLIQUE NETWORKS

Neural clique networks are associative memories with
error-correcting properties. They store binary patterns and use
binary connections. They have a high capacity, comparable to
binary storage. They also strive to achieve biological plausi-
bility.

A. Minicolumns and clusters

The smallest unit in a neural clique network is a fanal
and is based on a cortical minicolumn [13], which is a
pattern comprising around 100 neurons. This pattern has been
observed in humans and several other species. These fanals
are organized in clusters, and only one fanal can be active
at the same time in the same cluster, replicating the widely-
used winner-takes-all law and alleviating concerns of energy
efficiency.

A neural clique network is made of x clusters containing
¢ fanals each.

B. Storage

A message is stored as a group of several fanals belonging
to different clusters. A connection is established between two
fanals if they both belong to the same message, following
Hebb’s law [14]. A fanal can belong to a multitude of
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messages. It is the connections between the fanals that define
the messages and contain the information. Thus, each message
is represented by a fully interconnected group of fanals, called
a clique. In full neural clique networks, the number of fanals ¢
making up a clique is equal to X, the number of clusters in the
network. As such, each clique contains one fanal from each
cluster. As an example, a full neural clique network containing
3 messages is shown in Fig. 3.

Figure 3. Storing procedure illustration. The pattern to store (with thick
edges) connects units from 4 clusters of 16 units each (filled circles, filled
rectangles, rectangles and circles).

In sparse neural networks, we have 1 < ¢ < x. Stored
messages do not use all avalaible clusters.

C. Retrieval and performance

There are two forms of message retrieval. The network
can be asked if a message exists already, which is a simple
matter of testing if the fanals representing the message are
fully interconnected. If a message was stored, the network will
always say so, but false positives can be generated if two many
messages sharing fanals in common overlap.

The second form of message retrieval is providing a partial
message to the network with erasures (and possibly errors) and
retrieving the full message. The algorithm for retrieving the full
message simply consists of finding the fanals with the most
connections to the known fanals, at most one per cluster.

As far as performance goes, the network needs a binary
storage capacity of (y - £)2/2 bits to store the connections
between the different fanals, the adjacency matrix of the graph
representing the network. As shown in the examples further in
this paper, a full network of 8 clusters of 256 fanals can retrieve
15000 half-erased messages with an error rate of less than
2%. The binary storage needed for storing all the messages
without any error correcting mechanism would be 120 kB, and
the neural network uses 260 kB of storage for the adjacency
matrix, so the storage efficiency compared to raw binary is
46%, but with large resistance to message erasures.

D. Decoding algorithm

The algorithm that we use is suitable for retrieving partially
erased messages. Other algorithms can be applied first to filter
out irrelevant inputs or with other purposes. However, that is
not our concern here.



COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

1) Full networks: Each fanal gets a score, which is the
number of other activated fanals connected to it. The fanals
with the highest score in each cluster are activated for the
next iteration, all the others are deactivated. Known fanals
from the partially erased message are already provided with a
high score at each iteration so they are always the only fanal
activated in their own cluster. If there are several fanals with
the same highest score in a cluster, they all are activated for
the next iteration. The algorithm stops after several iterations,
which are enough to reach a stable state with the memory effect
introduced below. When the algorithm stops, one activated
fanal is picked from each cluster, at random if there are several
fanals activated.

A memory effect v can be added, which increases per-
formance in the case of noise-free networks. It consists of
adding +y to the score of a fanal if it was activated the previous
iteration. Generally, v = 1 is used, simulating each fanal being
connected to themselves. It is interpreted as an already active
fanal being easier to activate than an inactive fanal of the same
cluster.

2) Sparse networks: Sparse networks follow the same
principle as full networks. The difference is that only a few
clusters are to have a fanal activated for the next iteration
amongst all the clusters. There are two algorithms in order
to choose those activated clusters, the c-global-winners-take-
all and global-winners-take-all. The c-global-winners-take-all
takes the clusters with the highest score (determined by the
score of the fanal with the highest score inside the cluster) until
c clusters are chosen, with ¢ being the size of the message.
Then it takes all the clusters that tie the chosen cluster with
the lowest score. All the chosen clusters are activated for the
next iteration.

The global-winners-take-all just stops at taking c clusters.
If several clusters have the same score, it only takes as many as
it needs to have c clusters, at random. The c-global-winners-
take-all is known to have better performance.

E. Applications

Neural clique networks have been used in various ap-
plication cases. In electronics, Boguslawski et al. [15] use
them to handle power management in multicore processors,
showing significant improvements in energy usage compared
to existing solutions. In [16], the authors propose to use
neural clique networks to accelerate search in databases. They
provide a fully hardware implementation of their solution
using memristors, and obtain reduced energy consumption and
delays compared to classical solutions.

In [17], the authors propose to use neural clique networks
in combination with product quantization in order to accelerate
search in visual descriptors of images. The result is a gain of a
factor of about 100 in comparison to exhaustive search. Similar
work has been proposed in [18].

IV. NEURAL CLIQUE NETWORKS WITH UNRELIABLE
CONNECTIONS

We study the impact of unreliable connections due to
synaptic noise on neural clique networks. Assuming messages
are independently and uniformly distributed, we propose a full
mathematical analysis of the retrieval of a partially erased
pattern after one iteration, which corresponds to the second
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form of message retrieval previously discussed. For multiple
iterations, due to the complexity of the problem and the
multitude of variables we can only provide simulations, which
show us the retrieval rates with or without synaptic noise.

A. One iteration

We consider the probability of finding the correct version
of a partially erased message after one iteration.

1) Full network: Let’s consider a full neural clique network
(each cluster is used for each message). Let M be the number
of messages in the network. When we try to recover a message
in the network, let c¢; the number of known clusters and c,
(ce = ¢ — cp,) the number of erased clusters. The density of
the network, that is the probablity of a connection existing
between any two fanals, is [7]:

M
d:1—(1—€12> (1)

Let’s consider an erased cluster. Let sg be the correct fanal,
ns, its score, s be an incorrect fanal, and n, its score. The
score of a fanal is the number of synapses connected to it
that released neurotransmitters. So a fanal connected to ¢ other
fanals can get a score between 0 and ¢ - n,,. The correct fanal
so is obviously connected to the other c; known correct fanals.
So for z from 0 to ngy, - ¢, we have

P(?’LSO = .I‘) =P (B(nsyn . Ck;prel) = l‘) (2)

= pmf(% Nsyn * Ck,prel) (3)

We noted pm f the probability mass function of the bino-
mial law B. The incorrect fanals of the erased cluster can
have between 0 and c¢; connections to the known correct
fanals. First, we need to determine Pg(i), the probability
that an incorrect fanal has ¢ connections to known correct
fanals. In theory, existence of connections are not independent
events, which may lead to difficult mathematical analysis [19].
In order to simplify the proofs, we make the assumption
they are independent, which has been reported to be a fair
approximation [6]. We find

Pp(i) = (i.’“)di(l — ), )

Indeed, the probability of not being connected to any of
the known fanals is (1 — d)°* and the probability of being
connected to all the known fanals is d°*. The probability of
being connected to only a specific known fanal is (1—d)~1d,
and to be solely connected to any one of the known fanals is
Ck - (1 — d)ck*ld.

And with that, we can deduce the probability of an incor-
rect fanal getting a score x¢ for any 0 < x¢ < ngyy, - Ck:

P ZPE pmf Lo, NMsyn * { p'rel) (5)
xo Ck

P(ne S mO ZZPE me X nsyn 1 prpl) (6)
=0 =0
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Now that we have this, we can write the probability that
the correct fanal is amongst the fanals with the highest scores:

Nsyn Ck

Psucc(s()) = Z P(nsg = SL'())P(TLS < -TO)Z_1~ (7)

I():O

The global probability of success, i.e., the probability that
in all erased nodes the correct node is amongst the winner is
Pauce = Psuce(S0)%. The error rate is 1 — Pyyee.

That approach is too lax, however. In practice, when
looking for a message of size ¢, we want ¢ symbols as the
output of the network, not a set of size s (s > ¢) containing
the ¢ correct symbols. This means that if we have several fanals
with the highest score in the same cluster, we need to pick only
one of them. We then have a chance k%rl of picking the correct
fanal in ambiguous cases, where k is the number of incorrect
fanals sharing the highest score with the correct fanal.
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Figure 4. Analytical and simulated results with

c=38,cp, =4,{ =256,nsyn = 10,py¢; = 0.5.

To take that into account, Ps,..(so) is rewritten. First, we
create the probability of success for the correct fanal if its
score is Tg:

Psucc(SOanso = 1’0) =

= -1
§ — T\ P(n. = 20)kP (t=1-k)
25 ( k > (ns = x0)"P(ns < z0)

(3)
and
MNsyn Ck
Psucc(sO) = Z P(nsU = xO)PSUCC(SOJnS() = :EO) (9)
CEOZO

The results are shown on Fig. 4.
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2) Sparse networks: Sparse networks are harder to tackle,
due to the problem of spurious clusters. While what happens
in each cluster with a correct fanal doesn’t concern the other
clusters, all the correct fanals belonging to the erased clusters
must have a score higher than all the fanals of the erased
clusters and incorrect clusters.

It is possible to formalize this second relationship, a.k.a.
the lowest score of the correct fanals must be higher than the
highest score of the incorrect fanals. If we consider ) the total
number of clusters and c the size of a message, if x >> ¢
then we only need to consider that second relationship. As if
each correct fanal has a score higher than the highest fanals
of the x — c incorrect clusters, then the probability that they
have the highest score in their own cluster is close to 1.

Using the same logic as before, taking into account the
ce correct fanals and the (y — ¢)¢ fanals belonging to in-
correct clusters, we obtain the formula. First, we change
Psucc(507nso = 170) into Psucc(€0a€i|nso = xO)a being the
probability that given that [, correct fanals have a score xy and
the other correct fanals a higher score, all the correct fanals
are chosen. We denote ¢; = (x — ¢)/.

We get

Psucc(£ca£i|nso = xO) =
4

L1 (4 ,_
Z Tl (k>P(ns = ajo)kP(ns < .7;0)[’ k
k=0 ( Le )

(10)

and

Nsyn'Ck Ce
c B .
Psucc = Z ( e) P(nsU = :'EO)JP(W/SO > 33’0)Ce J

J

xo=0 j=1
Psucc(jv Ngy = l'())

an

B. Multiple iterations

In the case of multiple iterations, we are unable to provide
a detailed mathematical analysis. But we can use simulations
to study the impact of synaptic noise.

1) Parameters: The first question we have to answer is how
do we know we have a solution. There’s no perfect stable state
due to the noise, so how do we determine when we stop the
algorithm? We chose to keep a maximum of 100 iterations, in
order to limit the execution time. Then, we stop if the result
is stable after n;; iterations, n;; being a parameter that varies.
Fig. 5 shows such a test on a full network, with n;; ranging
from 2 to 4. From that graph we chose n;; = 3 as the best
iteration number. For very low error rates, n;; = 4 is better,
then n;; = 3 until an error rate of around 20%, then n;; = 2.
The reason n;; = 2 becomes a better solution for higher error
rates is probably because it is harder to keep a stable state then,
making the algorithm reach 100 iterations before reaching a
stable state with n;; = 3 or n;; = 4.

For sparse networks, experimentation has shown that n;, =
2 is a better choice.

There is also the question of the memory effect. The
memory effect is known to be beneficial for networks when
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Figure 5. Error rate for a full neural clique network of parameters ¢ = 8 and
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Figure 6. Error rate for a full neural clique network of parameters ¢ = 8 and
£ = 256, with nsyn = 10, ¢, = 4 and p,¢; ranging from 0.4 to 1.

noise is not involved, but as noise is involved it is more
beneficial to not have any memory effect. As shown on Fig. 4,
the error rate after one iteration in a noisy network is important
even for a low number of messages, and the memory effect
would carry those mistakes onto further iterations. In order
to avoid that, a memory effect of v = 0 is chosen for noisy
networks.

2) Results: As can be seen from Fig. 6 and Fig. 7, the
binomial noise seems to have more beneficial effects on full
networks than on sparse networks. For p,..; = 0.5, there’s even
a better capacity than with no noise for error rates inferior to
10%. For p,.; = 0.8, the capacity seems better for virtually
all error rates.

Concerning sparse networks, a significant degradation of
performance is observed for p,.; < 0.5 compared to when
there is no noise. We observe a reduction of the capacity of the
network of approximately 20% to 30% for error rates ranging
from 2% to 10%, which is still a good result considering the
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unreliability of the network.

Those results can be attributed to avoiding local mimima
while still keeping a low deviation, with a principle loosely
similar to simulated annealing. The reason full networks give
better results than sparse networks would be that even if the
noise can send the decoding algorithm off track, it still keeps
to the same clusters in full networks.

C. Impact on Hopfield Networks

Hopfield networks [3] are artificial recurrent networks
functioning as associative memories. They are made up of
N neurons and can store binary messages of IV bits, but the
connection weights are not binary. The number of messages
they can store is O(N/log(N)) [20]. Each pattern stored is
an attractor, and when inputting data it shifts to the closest
pattern stored.
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Figure 8. Error rate for an Hopfield network of 2048 neurons, with or
without noise, and i of the input erased.

We ran a simulation on Hopfield networks to see how such
a model with precise synaptic weights would react to the large
fluctuations introduced by the unreliable connections.
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Fig. 8 shows the behavior of an Hopfield network in
similar conditions to before, with i of the input erased, 2048
neurons, and 10 synaptic contacts at each connection with each
a probability of release of 0.5. The simulation stops when a
stable state over two iterations is reached.

We can see that there is only a minor increase in the error
rate. We can surmise that this is due to the high number
of nodes active at the same time, averaging the effects of
the binomial noise. Compared to full neural clique networks,
which can take advantage of the noise, Hopfield networks seem
to suffer a little decrease in performance.

V. DISCUSSION

The analysis in this paper was based on the supposition
of having 10 synaptic contacts per connection and a proba-
bility of release of the neurotransmitters of exactly 0.5 for
each synaptic contact at each iteration, independently of the
previous iterations.

The number of synaptic contacts per connection was cho-
sen to be ngy, = 10, but simulations show a much lower error
rate after one iteration for n,, = 20, which is also a realistic
number.

As said in [9], synaptic contacts adapt with the help
of feedback, so it is wise to consider whether the release
probability could exceed 0.5 where strong connections are
concerned. Moreover, it is difficult to imagine that in the case
of repeated stimulation of a synaptic contact, the probability of
release of neurotransmitters each time is independent from the
previous occurences. It makes sense that it is more probable
for a synapse to release neurotransmitters if it did not with
the previous stimulation, as it would be more ready. As such,
the variance of the probalistic law governing the stimuli would
be reduced, making the biological architecture — the brain —
more reliable.

VI. CONCLUSION

The contribution of this paper is twofold. First, we show
the significance of the noise generated by unreliable synapses,
which we refer to as synaptic noise, and model that noise.
We see it introduces randomness with high variance in the
stimulation a neuron receives from another neuron, which
can be represented by a binomial law depending on the
number of synapses m,, the connection is made of and the
neurotransmitter release probability p,.;. We then study the
impact of this noise on associative memories that strive on
biological plausibility, to show if the models we have of neural
networks in the brain survive scrutiny. In particular, we show
the impact of synaptic noise on neural clique networks and
Hopfield networks.

Suprisingly, we see that with the correct parameters such
synaptic noise can in fact increase the retrieval rate of partially
erased messages in neural clique networks. It is due to the
noise allowing the network to overcome the local minima in
its decoding process. Regarding Hopfield networks, on which
a simulation is run as a reference, synaptic noise decreases
performance only very slightly. As such, both associative
memories sustain the test of synaptic noise and neural clique
networks even benefit from it. As a future work, it would
be interesting to see the impact of this kind of noise on
feedforward neural networks, as they emulate the way the
visual cortex works.
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Abstract—In this paper, we present a novel approach to model
and re-implement the noradrenaline influence in a bio-plausible
manner suitable for the modelling of emotions in a computational
system. We have upgraded our previous bio-inspired architecture
NEUCOGAR (Neuromodulating Cognitive Architecture) to cap-
ture a key aspect of cognitive processes: novelty detection and its
evaluation. With our model, we can computationally implement
a bioinspired cognitive architecture that uses neuromodulation
as a mechanism to identify signals, as well as to evaluate them
according to their novelty, taking into account the noradrenaline
concentration dynamics. At the same time, the values thus gen-
erated are stored in the system using the same neurotransmitters
model.

Keywords—spiking neural networks; artificial emotions; affective
computing.

I. INTRODUCTION

After the revolution provided by new neuroscientific tools,
especially fMRI (functional magnetic resonance imaging), the
studies on cognition changed drastically the understanding of
the fundamental role of emotions [1]. When the sensorimotor
and embodied approaches to cognition [2] were identified
(even at robotic level [3]), the key functional role of emotions
was still unexplored. Artificial cognitivists specializing in
machine cognition started to consider the design and imple-
mentation of emotional architectures [4], as well as initiated
the fields of affective computing [5] or social robotics [6]. At
that point, the interest was to capture human affective modes to
implement them into machines, which humans should interact
with. During this process, a very important question emerged:
do machines need to have emotions, if we want to make
them cognitively powerful? This is the question that triggered
our research some years ago [7][8] and that oriented our
research towards biomimetic models [9]. The neurotransmitter
architecture of human brains controls the main cognitive and
emotional processes, indeed, acting as a twofold mechanism
[10]. Therefore, the role of emotions and their effect (only
including inborn basic emotional reactions) in the mammalian
cognition is considered to be significant by several researchers
[11][12][13][14][15]. Even from the evolutionary perspective,
the key role of emotions in social design is of no doubt [16],
and also helps to explain moral behaviour [17].

For all the reasons above, the design of artificial architec-
tures through emotional values attracted interests, aiming at
providing the key to the existence of adaptive, creative, and
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multiheuristic artificial architectures, by mimicking the most
successful characteristics of human cognition. Several attempts
to re-implement emotional aspects in artificial cognitive archi-
tectures have been performed as discussed in Section IV, but
the work of [18] represents the fundamental internal approach
to emotional robotics and Al (Artificial Intelligence). This way,
we started with the assumption that it could be beneficial
to re-implement basic emotional mechanisms in a computa-
tional system gaining the richness of emotional appraisal and
behavioural strategies, as well as pain/pleasure reactions that
could be used in reinforcement learning. Following Lovheim
model of neurotransmitters [19], we propose a bio-inspired
artificial architecture called NEUCOGAR that implements
emotional-like mechanisms into machine data processing. In
Section II, we point out the mismatch between computational
resources available to current robotic systems and what is
required for neuronal simulation, introducing our concept of a
robotic system execution separated into day and night phases,
in order to bridge the gap between robotic systems and
supercomputers performing the simulation. In Section III, we
introduce the notion of bisimulation to answer the questions of
learning and mapping from realistic neural network to rules-
based control system. Section IV provides the information
about the actual topics in the field of affective computing,
notable authors and research projects in this area. We sum up
the ideas presented in the paper and discuss the arose questions
in Section V.

II. THE APPROACH

The key aspect for any living system is the skill to recog-
nize external and internal signals and to evaluate them [20].
On top of this basic feature, more complex operations can be
performed, such as the identification of novel signals [21][22].
The novelty can be considered as the discrepancy between
what is known and what is discovered, by which activity and
exploration of the environment are elicited. Creativity is also
deeply related to this process [23].

Based on this consideration, we propose to implement
emotional mechanisms to manage processes such as attention,
resource allocation, goal setting, into our biomimetic architec-
ture NEUCOGAR. These mechanisms seem to be beneficial
for dealing with informational systems in general (such as
living entities) and for AI and robotic systems in particular.
Indeed, classical approaches tend to be computationally de-
manding, as well as current cognitive-based ones, while the
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Figure 1. A three-dimensional space of three basic neuromodulators
encapsulating basic emotions, mapped to computational system parameters.

proposed solution, NEUCOGAR, is quite promising, since it
adopts a higher level, mammalian neurotransmitter-like model
to implement a cognitive architecture for machine novelty-
detection and evaluation. This way, to implement the phe-
nomena related to emotions, we simulate the neurobiological
processes underlying emotional reactions, basically through
three neurotransmitters, which are active during brain cognitive
processes: noradrenaline (NA), dopamine (DA) and serotonin
(5HT). It is important to remark that several works identify the
noradrenaline as the main driver of neural response to novelty,
while this response is dampened by cholinergic transmission.
Later responses to novelty emanating from the frontal cortex
seem to be under the influence of the cholinergic system [24].

The selection of the neuro-plausible approach is based
on the assumption that the main mechanisms of neuro-
computations are similar to those of cellular level bio-chemical
reactions. We do not limit our approach to neuro-plausible
modelling, we established a link between psychological phe-
nomena, neuro-biological mechanisms and computational pro-
cesses. We started from the “cube of emotions” by Hugo
Lovheim [19], bridging psychological phenomena of “affects”
with neuro-biological phenomena of monoamines neuromod-
ulation, i.e., using NA, DA and 5HT, see Figure 1. We have
thus built a bio-plausible emulation of the dopamine pathways
and managed to emulate the “fear-like” state of the com-
putational system in [25][26]. Further developments include
the emulation of serotonin and noradrenaline. This paper is
focused on emulating the noradrenaline mechanisms through
the neurobiological simulator NEST [27] to reproduce in a
bio-plausible manner the psycho-emotional states identified by
dopamine and noradrenaline.

As the neuropsychological base for our cognitive archi-
tecture, we used a three dimensional monoamines neuro-
modulators model called “Cube of emotions” created by
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Hugo Lovheim [19]. Three-dimensional space of three basic
neuromodulators: noradrenaline (NA), serotonin (SHT) and
dopamine (DA) encapsulates basic emotions or affects inher-
ited from work by Silvian Tomkins [28]. We have extended it
with mapping to computational system parameters: computing
utilization, computing redistribution, memory redistribution,
storage volume and storage, utilization.

III. THE EXPERIMENTS

The proposed noradrenaline concentration dynamics model
is based on Izhikevich model for dopamine [29]. The state of
each synapse is described by two variables: synaptic weight w
and synaptic tag c, also called “eligibility trace”. The eligibility
trace is a parameter used to control the “memory” of the algo-
rithm, associated with a given state, enabling the assignment
of some values to the data under analysis [30][31]. From a
biological perspective, it is either some enzyme activation, or
another relatively slow process that happens in the synapse,
if pre-synaptic and post-synaptic neurons fire by the spike-
timing-dependent plasticity (STDP) rule. The eligibility trace
can modify the synaptic weight, but only in the presence of
extracellular neurotransmitter (noradrenaline), and only during
the timeframe of a few seconds. During that time interval, the
eligibility trace decays to zero. In a nutshell: the eligibility
trace controls the data evaluation in learning processes and is
directly involved in novelty detection, something that manages
temporal difference learning [32][33]. In this process, the
predictive role of dopamine is fundamental [34].

Consequently, we extend the Izhikevich equations for
dopamine [29], referring to interesting approaches such as [35]
or [36], to describe some governing equations and features
in the model of a neural network by noradrenaline. The key
aspect of this approach is that we are not just using some
kind of existing neural network, but the one implementing a
fundamental biomimetic model. Our approach allows to con-
sider classic neural networks adding a biomimetic meaning and
semantics to implement the mechanistic regulation operated
by neurotransmitters, especially dopamine as a modulator of
novelty detection and management [37].

We begin this process considering spiking network of
quadratic leaky integrate-and-fire neurons [38]. The neuron
ratio is distributed as follows: a) 80% excitatory neurons, and
b) 20% inhibitory. The dynamics of each neuron is such that
the membrane potential v of each neuron at each moment (new
current potential ©) depends on abstract membrane recovery
variable u (new current value %) [39]:

U= k(’U - Urest)(U - vthresh) —u+1 (D

U=a*xbx(V— Upest) — U )

if(v>=30[mV]): {v=—-65[mV],u=u+2[mV]} @)

In our model, membrane voltage threshold vsp,csp and resting
potential v,..s; are constant, and the synaptic current input [
(the current flowing in a neuron) has an exponential shape. The
spike occurs when the membrane potential is higher than -50
mV, and then the membrane potential recovers: v decreases to
-65 mV, u increases by 2 mV. We set a to 0.02, b to 0.2, k to
1.
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Following Izhikevich, the STDP model [40] does not
change the synaptic weights directly, but instead it modulates
weights through a temporal eligibility trace (as it will be shown
in 6. The variation of the eligibility trace ¢ (new current
eligibility trace ¢) is described as follows:

(tpre—tpost)

S(t—tyost)—A"e

oo _£+A+e (tpr'eTipost)
Te

“)

where t,,. and t,, are the times of a pre- or post-synaptic

spike, AT and A~ are the amplitudes of the weight change,

74 and 7_ are constant rates, (¢) is the Dirac delta function

that step-increases the variable c. The eligibility trace decays

at the rate of 7.

The concentration of noradrenaline also impacts the mod-
ulation of synaptic weights [41][42], as shown in (6).

The noradrenaline concentration n decreases exponentially
with time (natural fade rate is 7,,), and increases depending on
salient, novel events:

h = _ﬁ + pnovn(é(t - tn)prew + 5(t - tn)ppun) (5)
n

where ppunish 1S a punishment (stressor) event, ppe,, 1s a re-
ward event, p,o, 1S the probability of the event being novel and
unexpected (salient). The noradrenaline concentration cannot
go below zero: it increases with stressors, if p,., is bigger
than zero (a sudden stress), as well as with rewards, if p;eqw
is bigger than zero (a surprise reward).

The excitatory synaptic weight w (new current value )
is not changed directly in the model. Instead, it is modulated
proportionally to relative concentration of noradrenaline n (to
its baseline level b,,), multiplied by eligibility trace c:

w=c(n—by) (6)

The model was tested on MATLAB with the following
parameters:

e Network of 1000 leaky neurons with STDP;

e 100 synapses per neuron;

e  Maximal synaptic strength = 5;

e Initial synaptic strength (w) = 0;

e  Conduction delay = 1 [ms];

e  Membrane ground potential (v) = -65 [mV];

e  Coincidence interval for pre- and post-synaptic neu-
rons = 20 [ms];

e  Current level of NA concentration (n) = 0, as well as
5-HT and DA concentration;

e Initial eligibility trace (c) = 0;

The results thus obtained from simulation, shown in Fig.
2, demonstrate that:

1)  Noradrenaline concentration was not affected whatso-
ever by predictable rewards with the novelty of zero.
Meanwhile, serotonin and dopamine concentration
were increased by reward - each of the three times
in the interval of first 100 ms;

2)  Noradrenaline concentration was almost not affected
by predictable punishment with zero novelty while
serotonin fade rate was vastly increased by it, which
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led to the serotonin concentration drop at the 90th ms
of the simulation run;

3) Noradrenaline concentration was increased by every
unpredictable event, proportionally to the level of the
event’s saliency - it went much higher at the 180th
ms, when the reward’s novelty was 0.75, than at
380th ms, when the reward’s novelty was only 0.6.
Same reaction was demonstrated for the punishments
of different novelty, at the moments of 230 ms and
380 ms. However, dopamine and serotonin reaction to
reward and punishment events did not depend on how
unpredictable the events were: dopamine concentra-
tion was proportional to the frequency of the rewards
(of whatever novelty), serotonin concentration - to
both reward and punishment event frequency.

IV. RELATED WORK

Since the last decade of 20th Century the interest towards
emotions and emotional representations in computational sys-
tems has been exponentially growing [43][44]. At the same
time, the industrial applications that could relate humans and
machines have required increased investments into Human-
Robot Interaction (HRI) studies, covering a big array of topics
[45][46][47], even ethical ones [48][49]. This rise of activity
was based on understanding of the role of emotions in human
intelligence and consciousness that was indicated by several
neuroscientists [50][51].

Starting from the seminal ideas of bioinspired neural net-
works of Stephen Grossberg in the 1970’s [8], in the following
decade a new vision on computational emotional architectures
was investigated by Aaron Sloman [52]. A few years later,
affective computing was born thanks to the book by Rosalind
Picard [5]. Social robotics was the natural evoluton of these
new trends, also at MIT by Cynthia Breazeal [6].

We could identify two main directions in the new research
field of affective computing: emotion recognition and re-
implementation of emotions in a computational system, mostly
for HRI purposes. There are several cognitive architectures
that are capable of the re-implementation of emotional phe-
nomena, starting from ACT-R [53] to modern BICA [54],
among others. The interest in implementation of emotional
mechanisms is based on the fundamental role of emotions
in basic cognitive processes: colouring in appraisal, decision
making mechanisms, and emotional behaviour, as Damasio
showed in [1].

Our approach takes a step further on the road for neu-
robiologically plausible model of emotions [26]: Arbib and
Fellous [55][56] created the neurobiological background for
the direction to neurobiologically inspired cognitive architec-
tures; appraisal aspects were analyzed by Marsella and Gratch
researches [14][15], as well as in Lowe and Ziemke works
[13][57], or temporal and reinforcement learning [58][59].

As it was mentioned earlier in this paper, the processing
of the simulation took 4 hours of supercomputer’s processing
time to calculate 1000 milliseconds [60].

V. CONCLUSION AND FUTURE WORK

In our paper, we have described a new approach for
augmentation of autonomous robotic systems with mechanisms
of emotional revision and feedback. We have modelled novelty
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Figure 2. Transient evolution of eligibility trace ¢ (cyan) and concentration of NA n (red), 5-HT (blue), DA (green), being exposed to reward (arrow) and
punishment (red circle) events with different levels of saliency (grey circles).

recognition and evaluation skills, which are useful for a broad
range of implementations: cognitive architectures, self-learning
models, HRI, among other possibilities. The implementa-
tion of a biomimetic cognitive architecture that captures the
basic neutrotransmitters roles (noradrenaline, dopamine and
serotonin), as well the noradrenaline concentration dynamics
model based on Izhikevich model for dopamine has made it
possible for our NEUCOGAR model to build reliable ways
to deal with cognitive novelty. This feature, novelty, is of the
outmost importance for a cognitive system, because it selects
and manages attention, modifies memory resources and data,
stimulates responses, among other functions [61][62].

Despite of the good preliminary results, this research offers
also some important questions: a) first of all, to define clearly
the input formats for realistic neural network; b) secondly, the
necessity of establishing reliable emotional revision thresholds;
c) finally, the clarification of the way by which we capture and
reproduce emotional equalizing (homeostasis) in a biomimetic
way (for “average human” inspired architectures, as well as
for bioinspired but open ones).

On the one hand, different answers to these questions allow
us to adapt our model to a range of possible architectures
of robots’ control systems. These robotic architectures can
follow several scenario-demanding conditions (responses op-
timized by velocity, approximation, low computing demand,
etc.), which can be managed through the neurotransmitters
biomimetic model. The fundamental aspect of our model is that
it can follow human-like standard neurotransmitting mecha-
nisms; or the mechanisms can be modified, in order to optimize
other cognitive heuristics adapted to the real demands at that
specific time. On the other hand, we consider that the best way
to implement our model would be a software framework with
several pluggable adapters to accommodate the most popular
choices for robots’ “brains”. This can be achieved using
an accepted programming language, at least for academics
(the barriers that create diverse manufactures employing own
languages are well known: ABB (Asea Brown Boveri Ltd.) has
its RAPID language, KUKA (Keller und Knappich Augsburg)
has KRL (Kuka Robot Language), Comau uses PDL2 (Pro-
cess Design Language 2), Yaskawa Electric Corporation uses
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INFORM language, FANUC (Factory Automation NUmerical
Control) uses Karel language, etc.) [63][64]. Our idea is
that the power and simplicity of our model, as well as its
accessibility (offering all our data at free repositories), can help
to unify the field. The benefits of our bioinspired architecture
are evident: it allows to connect and manage modular systems
with a main but not dominant emotional architecture (like
our NEUCOGAR model). It can be seen as a cognitive net
that increases and empowers managing systems without the
necessity of reprogramming the whole architecture: it is a thin
global layer that coordinates sub-layers/modules activations,
allowing even a multi-heuristic system adapt to fast changing
demands.
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Abstract— This paper presents a complex analysis of the stress
and shock phenomena. These specific reactions represent non-
specific, protective, stepwise, multi-systemic, reduced
psychophysiological responses to injury or threat. Finding
psycho-physiological, neurochemical and patho-physiological
mechanisms of stress and shock is an important task
nowadays. It is relevant not only from the theoretical, but also
from practical point of view, as every day thousands of people
die from shock. At the beginning of 1980s, it has been
suggested to look at stress and shock as processes based on
similar mechanisms of hyperactivation of three neuro-
endocrine systems: sympatho-adrenal system, hypothalamic-
pituitary-adrenal axis and endogenous opioid system. The
mechanisms of stress and shock are related to a significant
reduction of regulatory mechanisms. On the basis of these
theoretical concepts, we created an explicit psycho-
physiological model of stress that describes in mathematical
form, how neuro-endocrine input modulates cardiac responses
during the first phase of stress reaction. Here, we give a
comparative analysis of the heart-rate variability dynamics.
This analysis was carried out for drug-addicts with reduction
of endogenous opioid receptor apparatus, and for healthy
volunteers in the context of cognitive loads of different levels. It
is shown that such specific reactions as the reduction of the
hart-rate autonomic regulation mode and the lack of adaptive
variations in the heart-rate structure as response to the
changing external information context, are typical for the
examined drug-addicts.

Keywords — stress; endogenous opioid system; heart rate
variability; cognitive functions

L INTRODUCTION

Stress (or general adaptive syndrome) is a nonspecific
reaction to injury, according to the theory of H. Selye [1][2].
This theory was globally recognized over the past decades.
However, many of its key points become questioned at the
XXI century. E.g., the use of the term “adaptation” has led to
confusion that any impact is stressor. Lack of attention to the
results of researching the functions of the endogenous opioid
system (EOS) has led to stagnation of studies of
neurochemical stress mechanisms. Our methods include
psycho-physiological, — Electro-encephalography (EEG),
Event-Related Telemetry (ERT), Hart-Rate Variabitily
(HRV), respirography, measurement of hemodynamic etc.,
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biochemical, radioimmunoassay, psychophysical
(computer laterometry and campimetry), psychological, and
mathematical approach. A total of 1850 animals (7 species)
and 800 subjects participated in the studies.

Note that stress represents a simplified (reduced) reaction
to an emergency, which provides decreasing individual
deviations of psychological, physiological, biochemical, and
other indicators from the normal value. This is the result of
depleting the regulatory mechanisms: three neuroendocrine
stress-protective systems have exclusive dominance. This
standardization provides nonspecific protection that is
optimal only in emergency situations [7].

It should be emphasized that the stress phenomenon itself
appears to be wide-spread and rather normal for modern life.
However, this actually represents a danger due to the
possibility of stress-to-shock transition. Shock represents a
special case of stress thus, they have similar physiological
mechanisms [2][4]. However, the shock (in contrary to the
stress) always leads to devastating and life-threatening
consequences.

Stress is a basic extreme process. It may be the main
component of the extreme condition, a forming factor, and a
response to the extreme action. It is known that H. Selye had
argued that the shock is an extreme degree of stress. It is
widely believed, that the question about the mechanisms of
extreme functional states has been studied in detail. But it is
far from being true. E.g., for many decades, the basic
physiologic mechanisms of stress (and particularly, shock)
have traditionally been reduced to the emergency activation
of two neuroendocrine complexes: the sympathetic-adrenal-
medullary system (SAS) and hypothalamic-pituitary-adrenal
(HPAS) system. No doubt, these two systems, providing
various nonspecific patterns of psychic, motor, metabolic
and visceral functions, form mainly the first two stages of
stress: anxiety and resistance. At the same time, the
mechanisms of the third stage of stress — the stage of
exhaustion — were studied superficially. This is to a big

extent connected with the “hypnosis” of the classic idea to

treat it as a period of complete disintegration of regulatory
and executive mechanisms. In contrast to this misconception,
it has been proven convincingly that the stage of exhaustion
is also a regulated process similar to the first two stages of
stress [7]. The only difference is that EOS becomes the basic
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neuroendocrine control system providing minimization of
the energy consumption and transfer of the organism to
hypobiotic mode. Besides, EOS does work in all three stress
stages with different extent of dominance. These statements
were supported by the results of numerous experiments on
animals, as well as by calculations within the neuron-like
mathematical model. However, the researches by means of
noninvasive methods of monitoring functional state of an
individual in the condition of daily life (and primarily, under
cognitive loads), are undoubtedly very important.

The paper is organized as follows. In Section II, the
problem of strict formalization of the stress process is
discussed. In Section III, we present the neuron-inspired
model of stress-protective systems. In Section IV, we present
a complex of methods, directed to the study of the dynamic
aspects of EOS activity in the functional system. In Section
V, the psycho-physiological markers of EOS activity during
interactive communication with information images are
determined. Further working perspectives are discussed in
Section VL

II. FORMALIZATION OF THE STRESS PHENOMENON

In spite of various studies of the problem, some very
important points concerning the definition and marker of the
stress process should be clarified.

A.  Definition of Stress

Classic postulates (H.Selye) read: «Stress (general
adaptation syndrome) is a non-specific response of the body
to the physical or psychological effects of violating its
homeostasis»; «Stress is a reaction based on the interaction
of two regulatory stress reactive systems: SAS and HPAS»;
«Stress is adaptive response»; «Stress response has three
stages: alarm, resistance, and exhaustion stages» [1][2].

Our postulates are somewhat different: «Stress is a
nonspecific phase systemic protective reduced psycho-
physiological reaction to injury or threat»; «Stress is a
systemic reaction based on the dynamical interplay of three
regulatory neuroendocrine systems: SAS, HPAS, and, most
important, EOS»; «Stress is not an adaptive, but protective
response»; «Stress is a phasic response. Stages of stress are
associated with considerable dominance of one of the stress-
protection systems: alarm stage — SAS domination,
resistance stage — HPAS domination, exhaustion stage —
EOS domination» [6]-[8].

B.  Markers of Stress

Classic postulate (H.Selye) reads: the endocrine markers
of stress correspond to increased levels of cortisol,
epinephrine, norepinephrine, Adrenocorticotropic Hormone
(ACTH), Corticotropin Releasing Hormone (CRH), etc.

Our postulate reads: the endocrine markers of stress are
increased levels of enkephalins, endorphins, dynorphins, etc.

Neurophysiological marker is simultaneous increase of
the autonomic balance index and fall in the total power
spectrum of HRV [4][6][7].

Below, the results of the measurement of cardiovascular
reactivity and cognitive functions of the opiate-dependent
patients are presented.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

III. THE THREE-COMPONENT MODEL

The algorithm is based on the hypothesis of dynamic
interaction between SAS, HPAS and EOS (Fig. 1) and
realized via the neuron-likely network equations.

miinutes hours days TIME

Figure 1. The qualitative characteristics of dynamics of the stress-
protection systems (extracted from [6][7], short version).

In order to describe the neurochemical processes during
the stress process, we use the model based on the neuron-
likely network equations, which consists of four elements,
representing SAS, HPAS and two components of EOS
(quick and the slow ones), see Fig. 2. Model (1) has been
realized as a discrete algorithm in the MATLAB
environment; here:

M1 — SAS activity;

M2 — HPAS activity;

M3 — EOS slow component activity;

M4 — EOS quick component activity;

i— typical Mi activity period;

aji — the parameter indicating the influence of Mj on Mi;

Ti — the parameter of Mi self-excitation.

The activity of each Mi system is controlled by
interaction with other three systems, and by the self-
excitation. The values outside the interval are truncated to its
ends.

The influence parameters aji and the typical periods i
were chosen according to neurobiological data. In
accordance with the activity attenuation and systems
depletion, the Ti parameters change with time.
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Figure 2. The algorithm of functional system of stress.

17



COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

The dynamics of R-R intervals in the stress process has
been chosen as a test parameter for the model functioning. It
is an integral characteristic of the functional state depending
on the activity of the stress-protective systems. This
parameter is used for indicating the severity of stress in
experiments and clinical practice. The model calculations are
in a good agreement with experimentally measured changes
in R-R intervals during acute stress in healthy adults (Fig. 3).

Figure 3. Examples of comparison of model calculation results (red line)
with the experimental data during electrically induced pain stress.

These results were obtained within the neuron-based
model suggested. It has been tested and proved to give stable
results, which reproduce the interaction dynamics of
neurochemical stress-protective systems, RR changes in
stress and shock, and the elements of pharmacological
correction of this integral body state. We hope that the
suggested model can serve as a useful tool for further
research of the neurobiological mechanisms of stress and
shock at the system and cell level, and for finding the best
methods for the extreme-states treatment.

IV. THE METHODS

Our information technology ERT provides long
continuous  collection,  transmission, storage  and
preprocessing the time-synchronized recordings of heart-rate
data and psycho-physiological test results [9][10] (Fig. 4).
The optimum size and power consumption of the sensors of
physiological signals, microprocessors and devices for radio
signal reception and transmission were chosen. Data are
transmitted to the Smartphone or personal computer via
Bluetooth. Then, the data in processed form are transmitted
via Global System for Mobile Communications (GSM)
channels to a dedicated server system (StressMonitor WEB
application) on the Internet. There, the preprocessing and
spectral analysis of rhythmograms is performed in pseudo-
time, allowing us to determine the initial point of the stress
process with an accuracy of up to a few seconds. The result
has the form of the spectrogram, which provides the
possibility to determine automatically the place, time, and
events associated with stress for a particular person in his
everyday activity. Thus, the HRV spectral  analysis
corresponds to:

Total Power (0,015-0,6 Hz);
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Figure 4. Mobile heart-rate telemetry system: WEB-application Stress
Monitor.ru.

Low Frequency band (0,04-0,15 Hz) (LF);

High Frequency band (0,15-0,6 Hz) (HF); LF/HF ;

Very High Frequency band (0,6-2 Hz) [11]-[14].

For the purpose of the cognitive function study, a WEB-
platform Apway.ru has been developed. It provides the
universal framework for design and testing. Besides, a
similar system has been constructed, with a computer being
the source of the signal and current registrar (Fig. 5). The
distortions and errors introduced by human into the managed
attribute information on the image represent a characteristic
of the cognitive system. The system includes a module for
the stimulus formation in a wide range of amplitude-time
values, a virtual measurement mode control panel, a module
for registration of operator motor responses, a database, and
a module for report generation in the form of tables and
graphs. The efficiency of cognitive functions was estimated
by the absolute and differential thresholds, and the
sensorimotor coordination errors. We used the following
computer tests: the computer laterometry, the computer
campimetry, the Stroop task, the test “Clock face”, the
simple sensorimotor activity.

yellow

Figure 5. Cognitive simulator: WEB-platform Apway.ru: A - Color
discrimination thresholds in shade (computer campimetry); B - Level of
cognitive conflict (Stroop test ); C - Tests for sensorimotor activity.

V. THERESULTS

Two groups of subjects participated in the study: 54
opiate-dependent patients during opiate withdrawal (26 men
and 28 women, with a mean age of 22.5 (+1.2)) and 25
healthy control participants (12 men and 13 women, with a
mean age of 21.5 (*1.3)). An independent samples t-test
revealed significant difference in frequency-domain indices
of HRV (p<.03). The opiate dependent patients exhibited
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reduced LF, HF, TP (LFm=233.95; HFm=203.77;
TPm=765.88) and increased LF/HF ratio (LF/HFm=1.87) in
comparison with healthy control participants (LFm=447.37;
HFm=700.94; TPm=1592.34; LF/HFm=0.98) in rest context.
ANOVA (General Linear Models) revealed significant
difference in frequency-domain indices of HRV between
contexts different cognitive loads for healthy control
participants (F=15.48, p<.05) but no this difference for
opiate- dependent patients (F=1, p>.05) (Fig. 6).

The opiate-dependent patients respond to incentives with
frequency 5 Hz without errors in tests for sensorimotor
coordination. The healthy control participants respond
without errors only to incentives with frequency no more 2.5
Hz.

However, the opiate-dependent patients demonstrated
increased delay of motor component of reactions (p<0.01).
The subjects could make an unlimited number of attempts
during setting a predetermined time in the test “Clock face”.
They turned to the next task, when the error of the set time
seemed satisfactory to them. Most opiate-dependent patients
were satisfied by the error of the set time from O to 2 (74%).
Most healthy control participants were satisfied with the
error of the set time from 2 to 4 (76%).
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Figure 6. Reduction of autonomic regulation of heart rate in drug-addicts.
Dynamics of RR-intervals for the tested drug-addicts (a) and healthy
people (b); the beginning of orthostatic test is shown by a red marker.

The opiate-dependent patients are people with disorders
of EOS. It is quite natural that the results of our study show
cognitive and cardiovascular changes, which are associated
with reduced activity of EOS.

VI. CONCLUSIONS

Summarizing all presented arguments, we can infer that:
e  Stress is an integrative psycho-physiological response to
injury or threat of injury. Its psychological component is
assessment of the threat power and formation of
protective strategies;
e Its physiological component provides the energy supply
for cognitive and motor functions by enhancing the

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

effect of regulatory systems SAS, HPAS, and EOS [3]-
[5];

e  Stress is a nonspecific reaction. It develops regardless of
the type of stress factor and has the typical autonomic
markers (e.g., the simultaneous increase in the
autonomic balance index and decrease in the total power
spectrum of HRV). This differs from a variety of
specific regulation mechanisms for adequate load;

e Stress is not an adaptive response, but a protective
reaction, in analogy with inflammation [6]. It is based
not only on functional, but also on structural changes
(e.g., the "Selye triad");

e  Stress is a systemic response. It is based on the dynamic
interaction of three stress-protection systems: SAS,
HPAS, and (it is especially important) EOS;

e  Stress is a three-step process. The stages of stress are
associated with the dominance of one of the stress-
protection  systems: the alarm corresponds to the
dominance of SAS, the resistance — HPAS, the
exhaustion — EOS;

We believe that the proposed refinements (corrections) of
the stress conception could provide rather clear
understanding of the phenomenon and draw attention to the
systemic aspects of the problem.

The proposed technology ERT has already proven its
efficiency in a variety of natural, clinical and experimental
contexts, — namely, in the study of the EOS role in control
of HRV, in mapping stressful road infrastructure in
metropolitan areas, in the study of spatial dynamics of stress
in bus and private car drivers; in the study of autonomic
regulation of patients with chronic headache; in the
monitoring the stress of translators in course of simultaneous
translating, etc.

We have shown that the disorders of EOS could result in:
e Increased operation speed in the case of simple

sensorimotor reactions;

¢  Increased requirements to control accuracy;

e Decreased efficiency of central cardiac-rhythm-control
system.

We can infer that the lack of adaptability of autonomic
regulation during cognitive tasks is a specific feature of
opiate-dependent patients. Thereby, EOS activity is
represented in VHF component of HRV.

However, there are still the problems for further
researches. In particular, it would be interesting to compare
the results of our model with the stress\shock model
presented by Chernavskaya [14].
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Abstract — This paper presents a hypothesis on two-
component principle of the cognitive system organization. We
propose a biologically inspired architecture, which involves
two subsystems, external and internal. Both subsystems are
capable of compressing data by converting the images into
symbols. They are connected at the symbol level, with
necessary “relay” controlling their interaction. The External
Subsystem reflects and processes the external image
information. The Internal Subsystem reflects the internal
states of the system and contains a “personal sense” of the
external images; thus, it can be considered as a Library of
Emotions. We propose a hypothesis that in living systems the
role of a "relay" (a connector) between the external and
internal libraries may be performed by the hippocampus.
When applied to an artificial cognitive system, our hypothesis
would imply the inclusion of certain modules (blocks),
constructed in analogy with the hippocampus, into the system.
This approach could be useful for designing self-regulatory
systems that would account for both the external and internal
factors. It may also be important for large industrial systems
related to cyber-physical objects, which have hundreds of
thousands of sensors; in this setting, decoupling the internal
and external information may ensure efficient monitoring and
protection. Technically, such two-component system could be
represented as a block (modular) neural network.

Keywords - emotion; symbol;
hippocampus; industrial system

cognitive architecture;

I.  INTRODUCTION

Nowadays, robotic systems are growing more closely
connected to humans. In the future, many of them may
become an integral part of a human being for a certain time.
A car equipped with an autopilot may be considered as an
example of such integration. For such situations, simulation
of "emotion" and "personal meaning" of events in artificial
cognitive systems becomes very important.

Emotions are analyzed and interpreted within the
framework of various scientific disciplines. Psychology is
trying to define the basic mechanisms of emotions and their
relation to personality. Neurophysiology explores the neural
substrates of emotions (e.g., neural networks involved).
Scientific efforts (both in robotics and in other domains)
aimed at the development of General Artificial Intelligence
seem to be especially active in the field of imitating human
emotions. This includes the use of video recordings of
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human facial expressions for generating facial expressions
of robots, mirroring human facial expressions, etc.

Obviously, the mere simulation of emotions is not
enough, if we want an emotional unit to regulate the
behavior of the robotic system. Thus, we need a certain
understanding of the very essence and nature of emotions
and we have to create an architectural solution in order to
bring that understanding into reality.

There is a number of interesting attempts in this area. In
some approaches, emotions are represented as noise [1]. In
others, attention is drawn to the importance of the "mental
states” of the intelligent agent [2], etc.

There are also efforts underway to draw parallels
between the action of neurotransmitters in the living brain
and the computational processes (in computers), such as
computing power, memory distribution, learning and
storage [3].

In this paper, we argue that a simple decoupling of any
cognitive system into two subsystems could be useful for
different disciplines. Such approach could advance our
understanding of emotions as a reflection of internal states
and regulation of behavior, both for robotic and living
systems.

In this paper, we discuss the Symbol-Image model of
cognitive system (Section I1), present the two-component
model (Section I1I), discuss the possible verification and
application of the model (Section 1V), and present
conclusions and future perspectives (Section V).

Il. SYMBOL-IMAGE MODEL OF COGNITIVE SYSTEM

First, we have to select a paradigm for solving the
problem of emotion modeling. Let us examine the symbol-
image model of the cognitive system [4]. The cognitive
space consists of elements that can be described as symbols,
images and attributes. The model describes our
informational fields in terms of hierarchical structures of
symbols and images. Previously, we have introduced the
term "attribute™ to describe the content of an image via the
fields of attributes [5].

One of the important consequences of this simple model
is that the attribute fields (different characteristics of the
images) can overlap. In this model, symbols play a very
important role, because they separate different images (the
corresponding group of attributes). We propose that
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symbols represent the memory of such a cognitive system,
because they prevent mixing of images and provide a
possibility for storing the images as entire units.

Concerning the living brain, this arrangement implies
that the encoding neuron-symbols should be located in the
structures responsible for memory. One of the key memory-
related structures in the living brain is the hippocampus, as
its lesions lead to inability to form memory of recent events.

I1l.  THE Two-COMPONENT MODEL

A. Internal and External Symbol Libraries

We suppose that the system, which is responsible for
acquiring images from the external world, is only a part of
the living cognitive system. Another part of the cognitive
system has to encode its own inner states (see mental states,
[2]). Here, we put forward a hypothesis that there are two
cognitive subsystems — "external" and "internal”. Our idea is
that the basic principles of the organization of these systems
may be similar. We assume that both of them contain
images compressed into symbols.

Obviously, those subsystems have to be interconnected.
Actually, it is this connection that provides appropriate
reactions to external events, forms behavioral patterns and
allows making predictions (forecasts). This interaction
between the subsystems can be indirect — for example,
through the decision-making unit — but it still has to be
present.

In artificial systems, we can also try generating two
subsystems — external and internal — and connecting them.
This would constitute a simple architectural solution.
Furthermore, we assume that, in the artificial cognitive
systems, the internal subsystem may parallel (be analogous
to) the emotional component of the live cognitive system. It
is "emotional”, because it automatically reflects some kind
of "personality meaning" of the external images and because
it forms a basis for generating prognoses and forming
behavioral strategies.

We propose that the two cognitive subsystems are
connected at the level of symbols.

B. Isthe Internal Library an Emotional Library?

In a living organism, formation of such two-component
system is a result of a life experience. It can serve as a basis
for connection between the internal and external
environments, for generating prognoses and forming
behavioral patterns and strategies. Thus, a favorable context
and images of external environment will correspond to
"positive" internal images and symbols, while negative
external events and images will correspond to "negative"
internal images and symbols.

We may consider the "internal” library as an "emotional
library", because it summarizes and reflects the internal
states and the personal meanings of the external events and
images.
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C. Specific Role of the Hippocampus

Let us consider the arguments in favor of the idea that
the hippocampus could play the role of a "relay”, i.e., a
connector between two subsystems, the external and internal
symbols’ libraries.

1) The hippocampus is connected with both, the cortex
(that receives information from the outside world), and
the limbic structures (that receive information from the
internal organs and are responsible for emotions).

2) The hippocampus is involved in the memory
consolidation [6]. We can assume that the hippocampus
is the very place where the symbols are stored. The
activation of the neuron-symbol stored in the
hippocampus activates the image associated with that
symbol in the cerebral cortex.

3) Neurogenesis (production of new neurons) was
observed in the adult hippocampus [7] and was not
detected in most of the other brain structures. We
propose that new neurons may be required for marking
(labeling) new images.

Taken together, these arguments make us suggest the
hypothesis that the hippocampus is an integrator of the two
(internal and external) subsystems in the brain at the
symbol’s level.

D. A Two-Component Hippocampus-Inspired Model

We propose a simple model of the cognitive system,
which consists of two subsystems. One of them is
responsible for processing and compressing the external
information. The second one relates to internal information.
They are connected by means of a “relay”. In the living
systems, the hippocampus could play the role of such a
relay. This implies that everything that we see, hear, feel,
and perceive via our sensory systems, results in formation of
images in the brain cortex. This is similar to the appearance
of images in a kaleidoscope. Later on, the images are to be
converted into symbols.

At the same time, the internal system of receptors
records the actual indices of the organism, its hormonal,
physical, biochemical state, etc.

There are two information flows. One of them reflects
the external stimuli, while another one reflects the internal
changes.

The brain, in order to perform its functions effectively,
has to process these two information flows simultaneously
(subject to certain time intervals). The hippocampus appears
to be a plausible candidate for coordinating these two data
streams, since it is a key element connecting the cortex with
the limbic system. Through the Ilimbic system, the
hippocampus is connected with the thalamic neural block,
which is responsible for controlling the internal states.

Thus, in the artificial cognitive systems that are based on
the emotional management model (e.g., [8]), it is possible to
reproduce this type of data separation and integration. The
internal state of the intelligent agent (1A) is described by
data from the internal state sensors. This information has to
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be combined with the data obtained from the outside world.
Thus, the external data acquire personal meaning in terms of
the internal states of 1A.

IV. POSSIBLE VERIFICATION AND APPLICATIONS

Our hypothesis is that there are links between internal
states of the system and corresponding external images. This
assumption can be verified by explaining some
psychological phenomena.

Let us consider a case of post-traumatic stress disorder,
when a person throws himself into a ditch at a certain sound,
e.g., a sound resembling a shell blast. According to our
model, such behavior could be explained by activation of a
single attribute and (selectively, despite the context) of the
related symbol that means the “mortal danger” in the
Internal Library.

In another example, an external image is ambiguous, i.e.,
it plays positive and negative roles simultaneously. So, it
activates contrasting states (images) in the Internal Library
of Images. In psychology, such situation is called a "double
bind". E.g., if mother's attitude towards a child switches
from overly affectionate to overly strict, it may lead to
nervous and mental disorders up to schizophrenia. The
Double Bind theory was described by Gregory Bateson and
his colleagues in the 1950s [9]. The phenomenon of
divarication (e.g., identical commands lead to different
processes) in the artificial neuro-semantic graph is described
in [10].

In the artificial cognitive system based on the Symbol-
Images Cognitive Architecture (SICA), the absence or
presence of instability (like divarication of images described
above) or hyperstability may serve as a diagnostic factor.
This implies that appearance of such double patterns could
be treated as the indicator of anomaly.

Being applied to the goal of monitoring the state of
industrial system, the model results in conclusion that certain
set (sequence) of processes in the physical part of the system
should correspond to a certain (identical) set of operator’s
commands. The observed divarication may be an indicator of
a hacker’s intrusion into the system.

V. CONCLUSIONS AND FUTURE WORK

Since the robotic systems become more and more
closely connected with humans, the importance of the
intelligent systems that provide "personal sense" of the
information, or the "emotional response” is constantly
growing. However, modern neural networks, as a rule, do
not provide any "personal interpretation” of the data
received.
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We propose a simple two-component hippocampus-
inspired model of a cognitive system, which could fill that
gap. In the artificial cognitive systems, this concept
corresponds to embedding a certain module (block), which
should be constructed to perform the main functions of the
hippocampus.

The model has explanatory power for a range of
psychological phenomena and is to be developed further.
Furthermore, our hypothesis can be applied to industrial
system for enhanced monitoring and protection.
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Abstract— The problem of interpretation and simulation of the
Aesthetic Emotions (not inspired by a pragmatic goal, but by
impression of Artwork, natural phenomena, etc.) is considered
under the Natural-Constructive Approach to modeling the
cognitive process. The designed cognitive architecture is
represented by the complex multilevel combination of various
types of neuroprocessors, with the whole system being
composed of two subsystems, by analogy with the two
hemispheres of the human brain. Only one subsystem involves
mandatory random component (noise), and the noise-
amplitude variation controls the subsystem activity
representing the emotional responses. A peculiar feature of the
architecture is the fuzzy set at the lowest (“image”) hierarchy
level. This neuroprocessor contains images of the objects
recorded by weak (“grey”) connections that reflect personal
(unformulated) experience. It is shown that individual aesthetic
preferences arise at the border of image (fuzzy set) and
symbolic internal information. The concept of Chef-d’oeuvre is
associated with the “paradox of recognition”, which is caused
by  ambiguous impression  (familiar and  unusual
simultaneously) induced by the Artwork. These impressions
could be accompanied by small oscillation (trembling) of the
noise amplitude around a normal value that represents an
analogue to the human “goosebumps”.

Keywords — emotions;
ambiguity; weak connections.

neuroprocessor; noise; paradox;

. INTRODUCTION

This paper represents a sequel to the series of works [1]—
[4] on modeling intrinsic human cognitive features —
intuition, emotions, individuality, etc., — in an artificial
cognitive system. This problem is considered within the
Natural-Constructive Approach (NCA) elaborated just for
human-like cognition modeling on the base of Dynamical
Theory of Information (DTI) [5][6], Neuroscience [7][8]
and Neuropsychology [9] data, and Neurocomputing
[10][12] (though based on the dynamical-formal-neuron
concept, [1]). Among other popular approaches to modeling
the cognitive systems, such as Active Agent models [13],
Brain Re-Engineering [14][15], etc, NCA is somewhat
similar to the Deep Learning paradigm [16][17] though it
involves several important distinctive features.

The Natural-Constructive  Cognitive  Architecture
(NCCA) designed under NCA represents a combination of
two linked subsystems, in analogy with two cerebral
hemispheres, the right (RH) and the left (LH) ones. Each
subsystem represents a complex multi-level hierarchical
structure of the two-type neuroprocessors. One subsystem
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(RH) is responsible for processing of new information and
learning, while the other one (LH) refers to the processing
of well-known information (recognition, forecast, etc.).

Being biologically inspired, NCCA (as well as each
neuromorphic model) inevitably faced the problem of
Explanatory Gap [18]. This implies that despite the huge
amount of experimental information on brain neurons
(“Brain” area) and on psychological reactions and rational
thinking (“Mind” area), the main challenge is to reveal the
mechanism of transition from neural ensemble to the
consciousness and self-appraisal. It concerns rational, as
well as emotional aspects of the cognitive process.

Note that one of the basic elements of NCA is DTI, the
theory of information origin. It seems to be the most
relevant tool to analyze the Explanatory Gap problem, since
information itself represents the dual-nature object: it has
material, as well as virtual nature. According to Quastler’s
definition [19], information is the ‘“memorized random
choice of one option among several similar ones”.
Obijective (material) information is the choice made by
Nature; it does not depend on individuality and refers to the
“Brain” approach. Subjective (conventional) information
represents the choice made by living subjects (people,
animals, neurons) as a result of interaction within their
community, which refers to the “Mind” sphere. Thus, NCA
includes inherently the possibility to bridge the Gap.

The problem of incorporating the “emotio” and “ratio”
in a unified cognitive (artificial) system attracts now great
attention and evokes a lot of studies (see, e.g., [20]-[30]).
However, the variety (great number) of different approaches
itself indicates that the problem is far from being solved.

Under NCA, emotions are considered as a product of
interaction of two different-nature variables. One belongs to
the “Brain” representation and corresponds to the
aggregated composition of neurotransmitters. The other
refers to the “Mind” representation and corresponds to
variation of the random-element (noise) amplitude. The
activity of two subsystems is controlled by the emotional
manifestation expressed via the noise-amplitude derivative.
In this process, negative emotions (nervousness, fear) evoke
RH activation, while positive ones (relaxation, relief,
satisfaction) activate LH.

Note that the problem of integration of emotions and
rational reasoning could be formulated and even solved, as
far as so-called “pragmatic” emotions (those that are
associated with certain goal) are concerned. In this case,
quite obvious reasons should play the main role: achieving
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the goal results in positive emotions, and vice versa [2]. But
what are the reasons for so-called Aesthetic Emations (AE),
i.e., those that are evoked by Nature phenomena (sunrise,
rainbow, fire, water cascade, etc.), Artwork, Music, etc.? In
this case, the very concept of “positive\negative” does not
work, and one could soon speak about formed preferences.
These emotions are strictly individual, with the reasons for
personal sympathy and antipathy being often unclear for the
person himself/herself.

Seemingly, there are no rational motives for personal
sympathies and preferences, and that is why formalization
and simulation of AE (i.e., interpreting in terms of neurons
and their interactions) represents the most difficult problem.
Moreover, this area is traditionally attributed not to natural
sciences, but to the Humanities and Art study. Nevertheless,
this work represents an attempt to reveal possible
mechanisms that could cause AE.

The paper is organized as follows. Section Il is focused
on the formulation of the AE problem. In Section Ill, the
main peculiar features of NCCA are discussed. In Section
IV, the hypothesis on the mechanism of AE is presented.
Summary and discussion of further working perspectives are
presented in Section V.

1. FORMALIZATION OF AE PROBLEM

The problem of revealing the AE nature and
mechanisms should be solved again from the “Brain” and
“Mind” positions together. This implies that one has to take
into account neurophysiology, as well as psychology and
personal experience motives.

A. General considerations

Apparently, it is the cultural context that does play a
very important role here. Indeed, something quite unknown,
like, e.g., Japanese music for European people, could hardly
evoke sincere emotions (may be academic interest only).

The other first-glance reasons for AE (see, e.g., [31])
could be connected with:

o childish vague impressions;

e personal fuzzy associations;

o the influence of cultural mini-media (family,

messmates, etc.).

Actually, all these factors produce subjective
associations, and this is the very mechanism of the Art
perception. Indeed, the lack of clear goal that could provide
“rational” emotions (i.e., those that could be explained by
evident reasons) should be compensated by certain
excitation caused by personal indirect (i.e., fuzzy, vague)
associations. Surely, they are strictly individual, and this
provides the explanation of personal impression.

Note that the Art perception, being quite subjective,
could be measured objectively: really deep impression
produces a “goosebumps” (horripilation), and this feeling is
quite sincere and could not be shammed. Of course, one
could express admiration remaining quite indifferent, but
the “goosebumps ” could not be felt if there are none.

But then, the question arises: what is the “masterpiece”,
or Chef-D’oeuvre (ChD)? Why a certain piece of Art is
perceived as ingenious by almost the whole community?
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Surely, there is a great influence of the mass media
(fashion). Generally speaking, there is a great temptation to
define ChD as a “product of convention in the society
expressed in monetary ($) equivalent”. This factor actually
works, but it cannot explain the phenomenon. There should
be something inherent to the ChD itself, that does
distinguish the ingenious creation from a solid professional
work. In other words, what factors could provide the
difference between Mozart and Salieri? And is it possible to
explain personal Art preferences and the phenomenon of
ChD from the positions of neuromorphic cognitive
modeling? This problem is the subject of the present paper.

B. Physiology & psychology

Any piece of Art is perceived as sensor information,
which is obtained by sensory organs. For example, any
Painting represents (roughly speaking) a color pattern. It is
well known from physiology that human beings differently
perceive the excitations in different parts of the color
spectrum. The visual perception is most sensitive in the
green part of spectrum where the greatest number of various
shades could be distinguished [32]. Vice versa, the red part
of the spectrum awakes nervousness and involuntary fear
(may be associated with the dangerous fire).

As far as the music is considered, its physical effect on
the human organism is obvious. Indeed, the music, — from
ancient times up to nowadays, — produces a rhythmic
impact that does interfere with proper rhythms of the human
brain (see, e.g., [24][33]). It is well known that only a part
of the acoustic spectrum is pleasant for the human ear and
could be perceived as music [33][34]. Some other
frequencies (including the ultrasonic and infrasonic regions)
do produce a strong but destructive effect on human
psychical state, with the most “soft” manifestation being the
uncontrolled nervousness and fear [24].

Perhaps, these peculiarities of human perception
originated from the process of evolutionary adaptation to the
Environment: certain really dangerous phenomena (e.g.,
earthquake) are accompanied by rare and unusual visual and
acoustic effects, and this circumstance is sewn in the genetic
memory of human beings. However, these reasons do not
explain individual preferences concerning normal (pleasant)
spectrum region.

Finally, what about the Literature? It does produce a
significant effect on many people, but is not directly related
with “raw” sensory perception. Thus, only the “Brain”
representation cannot explain the AE enigma.

C. Art Study

The Art study seems to be more relevant to the problem
under consideration. First of all, it does take into account the
role of cultural context and the mentality of a given society.
This partly explains why the recognition of some Artwork’s
ingenuity often does not come immediately but requires
certain time: the society has to be ready to admit the pattern.
In economy, the term “competence” is used to describe the
social readiness to certain innovations. But the very
mechanism of the competence occurrence is not clear and
even considered.

25



COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

However, the Art study is also divided into separated
branches where specific regularities (common features) had
been revealed.

1) Painting, Sculpture and Architecture: From the
Leonardo times, they were studied even mathematically (the
concepts of “Golden Section”, “3D-perspective”, etc.).
However, such painting schools as primitivism (Pirosmani,
Henry Russo) and surrealism (Salvatore Dali) do neglect the
perspective, but some their patterns are nonetheless
admitted as ChD.

2) Music: European and Eastern (Japanese and China)
music representations (harmony) do differ essentially, with
only a small number of people paying tribute to both
musical patterns. European Music School is based on the
concepts of consonance and dissonance, which correspond
to different and definite ratio of the note frequencies within
one chord. It appears that the consonance is pleasant for
perception, and vice versa. However, great (ingenious)
musical compositions from Mozart, Beethoven, Chopin, etc.
do involve as consonances, as well as a quote of
dissonances. Moreover, the patterns of major and minor
music (well defined by the frequency ratios) produce
different and again individual effect. Several studies (see
[23][24]) have shown that the major music, in spite of its
bravura character, often is not admitted, while the minor
music, despite its somewhat tragic shadow (like the
“Funeral March” of Chopin, or “Lacrimosa” of Mozart, or
“Casta Diva” of Bellini), produces strong and rather light
emotions.

3) Literature: This is the most mysterious Art, since it
does not appeal directly to any organs of sense, but does
produce strong impression to the majority of people. This
process requires active cooperation of the author and the
reader, since the effect could be produced only in the case if
the reader would reproduce the situation described in the
literature using the elements of his own personal experience.
Hence, the key words here are imagination and empathy.
However, these processes should be initiated by verbal
information. But what is the mechanism of such effect?

Under NCA, all these problems could be formulated and
even solved in terms of neurons and their connections.

IIl.  NATURAL-CONSTRUCTIVE COGNITIVE
ARCHITECTURE (NCCA)

Let us recall briefly the main features of the architecture
NCCA developed in our previous works [1][2].

A. Schematic representation of NCCA

The schematic representation of NCCA is shown in
Figure 1. The whole system represents complex multilevel
block-hierarchical combination of the Hopfield [10] and
Grossberg [11] type neuroprocessors. According to DTI
principles [6], as well as neuropsychology data [9], the
system is combined of two coupled subsystems, the right
Hemi-system (RH) and the left Hemi-system (LH) by
analogy to the cerebral hemispheres of human brain. One of
them (RH) is responsible for learning the new information,
the other (LH) does process the well-known information.
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Figure 1. Schematic representation of NCCA.

This functional specialization is secured by three factors:

e the random component (noise) present in RH only;

o different training rules in the two subsystems:
Hebbian principle [8] of frequently-used connection
amplification in RH (providing the choice), and
Hopfield’s principle [10] of selecting relevant
connections (“redundant cut-off”) in LH;

e the “connection-blackening” principle of self-
organization: well-trained images in RH are
replicated in LH (see below).

According to these factors, the whole system does
evolve by self-development (in Figure 1 — from the left to
the right). The ground (zero) level is represented by two H-
type processors receiving the external information directly
from the organs of sense. These “raw” images of real
objects presented to the system are recorded in the form of
certain chain of neurons (pure distributed memory).

All other levels ¢ = 1,...N are presented by G-type
processors carrying the symbolic information. It is necessary
to stress that each generated symbol carries out all the
information about its image in a compressed form [12].
Each symbol G¢ is linked by semantic connections ¥
with its “parent” image at the previous level and WV with
its “child” symbol at the next level o+1. Besides, it is linked
with its neighbors by cooperative connections (which create
that “current” image at the o level).

Note that increasing level’s number corresponds to
increasing degree of “abstraction”, that means the weaker
relation with the neurons-progenitors (those directly
connected with the organs of sense). The high-level symbols
correspond to abstract concepts, which are not based on any
raw image of real object, — such as consciousness,
conscience, love, etc. It should be stressed that internal
abstract symbol information can be verbalized, i.e.,
associated with the words by means of common language,
and this stage represents the highest level of the system’s
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evolution [33]. These very levels correspond to developed
human consciousness that refers to the “Mind” sphere.

However, these high-level symbols could be excited
from outside by words and then, decomposed to lower-level
image-of-symbols down to the lowest image level. This
process represents the mechanism of imagination.

B. Mathematics &Phylosophy

The mathematical grounds for the architecture presented
in Figure 1 were discussed in details in the works [1][2][4].
Let us recall the key points and present the math basis in
generalized form:
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Here, variables H and G refer to purely “cognitive”
components, which are associated with neocortex structures.
The functionals 3y, and 3¢ describe internal dynamics of
corresponding neurons; the functionals Y®{G*} and
Y-{G\"} describe interaction of symbols at various levels.

The bottom block of equations (5)—(7) refers to
representation of emotions. The variable p(t) represents
purely “emotional” component produced by sub-cortical
(“Brain”) structures; it represents the effective composition
of neurotransmitters (the difference between stimulants and
inhibitors). The variable Z(t) represents the amplitude of
random (stochastic) component presented in RH only. The
functional X{p,G, "} refers to the process of new symbol
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formation; the discrepancy D(t) describes the difference in
RH and LH records of the same real object.

The variable A(t) refers to the cross-subsystem
connections, which provide the dialog between two
subsystems. Here, A = +A, corresponds to RH—LH
transfer, while A = —A, corresponds to LH—RH. Note that
this is the only variable present in each of the seven
equations, thus sewing all the components together.

This system of equations is complete (in math sense),
since all the variables are determined via their mutual
interactions. The first two equations refer to the lowest
(zero) level of hierarchy, while the next (G° variables)
describe o=1,...N symbolic levels. Note that the dotted line
between two first equations and the other equations
indicates the analogy with the dotted line in Figure 1. This
line symbolizes the virtual border between the “Brain” and
the “Mind”. Indeed, the H-plates (zero-level of the
hierarchy) containing only the “raw images”, serve to
represent the sensory information received from the organs
of sense. This information is (roughly speaking) objective,
and this level belongs to the “Brain”.

The first level (o=1) corresponds to the symbols of
typical images. It already belongs to the “Mind”, since any
symbol represents not objective, but conventional, i.e.,
subjective and individual (for a given system) information.
The same is true for all other hierarchy levels, up to the
highest level associated with the abstract information.
Hence, any symbolic information refers to the “Mind”.

Thus, we can infer that the phenomena appearing at the
transition from the “Brain” to the ‘“Mind” occur at the
virtual border between zero and first levels.

C. Formation of Two Basic Levels of NCCA

Let us consider in more details the small fragment of the
architecture NCCA — the lower (basic) levels
corresponding to o = 0, 1 (see Figure 2). The H-type plates
(o=0) are responsible for recording the raw sensory
information in the form of distributed memory. This implies
that each external real object presented to the system excites

LH

GI
Figure 2. A fragment of two basic levels of NCCA.
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a chain of neurons, which is called the “image”. The choice
of those neurons (i.e., generation of information) proceeds
in RH with required participation of the noise. Then, the
connections in the chain are to be trained according to

Hebb’s principle of amplifying the frequently-used
connection (see Figure 3a).
0 o
Qn o ﬂ’J‘
Hebl's rale t Hopifield's rule
fa) )

Figure 3. Dynamics of neuron’s connection (Xt) training for (a)
Hebb’s rule and (b) Hopfield’s rule.

The plate H° contains maximum information on each
object whenever presented to the system, i.e., all generated
connections, as weak (“grey”), as well as strong (“black™)
ones. Let us clarify this point.

Note that each presentation of the same object results in
activation of slightly different set of neurons. Let us
introduce the notions:

e “Core” neurons — the neurons that are excited at
each presentation of the given object. These neurons
form strong (“black™) connections between them,
thus providing the “typical image” of the object,
representing its typical attributes.

e “Halo” neurons — a part (and by far not a small
one) of neurons that are excited relatively rarely, at
some atypical presenting and/or reflect atypical
(inessential) attributes of the given object. The
connections between them and core neurons are
weaker (“grey”), so that they surround the core
neurons forming a grey “halo” blurring the typical
image (that is why H° was called the fuzzy set).

The “connection-blackening” principle implies that
when the main bulk of connections between the core
neurons become strong enough, i.e., achieve the level of so
called “black” connections €y, the image is treated as
learned (well-known) or “typical” one. Such images are
transferred (by the direct one-to-one cross-subsystem A
connections) to the plate H? in LH for memorization and
storage. Then, all connections in LH are trained according to
the Hopfield’s rule that corresponds to selection of relevant
connections at the “black” level of Qg with diminishing
other (redundant) connections (see Figure 3b).

The next step of the system’s self-organized evolution
consists in conversion of the image into symbol. It was
shown in [1][4] that in NCCA, this procedure corresponds
to generation of the conventional (subjective) information.
After the typical image (the chain of core neurons) is
transferred to the plate G* in RH, the free choice of a single
neuron-symbol occurs as a result of the competitive
interaction (see Figure 2). Then again, according to the
connection-blackening  principle, after the semantic
connections ¥ (one-to-many) between the chosen symbol
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and its image became strong (“black™) enough, the symbol
is replicated in LH. Here, it forms its semantic connections
W with the typical image according to Hopfield’s training
principle of selecting relevant connections.

Let us stress that only the core neurons are involved into
the typical image of the given object. Under NCA, these
core neurons are modified to be excited directly by
corresponding symbol. Moreover, at relatively high
(verbalized) levels of hierarchy, the typical images could be
excited by means of corresponding words.

The halo neurons, in spite of their participation in the
training process, are not connected with any symbol (and
thus, with any word), hence they could not be controlled by
the “Mind”. The information on the halo neurons to%ether
with their gray connections is stored in the fuzzy set H” only
and could be activated just occasionally (by chance); this
very process represents the “insight”.

Finally, it is very important to stress that in the process
of transition from H® to HY, a part of associative
connections between the raw images also could be lost. In
Figure 2, bottom part (RH), all the presented images are
connected associatively. In the upper part (LH), one image
appears to be quite separated from two others (connected
objectively), since its connections with them were mediated
only by the halo-neurons.

Thus, the fuzzy set plays a very important and enigmatic
role in the cognitive process. Actually, it could be treated as
the sub-consciousness filled with personal subjective
associations and motives. Returning to possible reasons of
AE listed above — namely, childish vague impressions,
personal fuzzy (indirect) associations, etc., — we can infer
that the source of AE is hidden just in the fuzzy set H°.

Note that hidden (latent) information appears also at the
higher levels of hierarchy. Generalized images, i.e., images
created by a set of symbols, also involve their core neuron-
symbols, as well as halo-symbols that are presented in RH
only and not transferred to the corresponding level in LH.
Hence, this part of latent information (auxiliary and
individual for a given system) representing its casual
(episodic) experience could be associated with the intuition.
These halo-symbols refer to not so deeply hidden
information and could be activated by certain (again
occasional) words. These triggering words may have no
relation to the current problems, but could switch on the
chain of indirect (personal) association and thus, lead to
unexpected (intuitive) solution also looking like insight.

Thus, we infer that the motives for AE are connected
with the halo-neurons (including halo-symbols).

IV. APPROACHES TO AE NATURE AND PHENOMENON OF
CHEF-D’OEUVRE

Any cognitive process is based on the recognition of an
object\phenomenon\situation and its trend, i.e., the
anticipation (forecast). And the forecast is based on the first
impressions in the process of recognition. In the presence of
a rational goal, this process always is accompanied by
pronounced emotions. Under NCA, emotional manifestation
is directly connected with the noise-amplitude derivative
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dz/dt defined by (6), which controls the subsystem activity
(A). According to (6)—(7), negative emotions (nervousness,
fear) correspond to incorrect recognition (dz/dt>0) and
activation of RH (A<0), consequently. Vice versa, correct
recognition and prognosis results in decreasing noise
amplitude (dZ/dt<0) with switching on LH (A>0), which is
accompanied by relaxation, satisfaction, etc. Let us consider
certain details of these processes.

A. Recognition & Prognosis

The procedures of recognition and prognosis were
considered in details in our works [3][4]. It was shown that
recognition goal can be achieved by means of the low levels
c=0 (“images”) and o=1 (typical-image symbols). The
examinee object is recorded in H® and compared with
known (learned) typical images in H*". Further procedure is
controlled by the value of discrepancy Dy(t) between the
RH and LH zero-level records, which can be defined as:

Do‘:O(t)EZ HHityp_Hio , (®)

where summation proceeds over excited neurons.
There are several typical regimes.

o The examinee object is well-known to the system, i.e., its
image completely coincides with one of typical images,
so that D(0)=0. Then, it is associated with corresponding
symbol in LH, and RH does not participate further in the
process. Emotional manifestations are absent (dZ/dt=0).

e The examinee object is similar to one of the known
typical images (fits its “attracting area”), D(0)z0<D,.
Then, it is treated as an already known object: it has its
tyPicaI image together with the corresponding symbol
G-, Here, however, the recognition accuracy requires
verification. For this purpose, the symbol should be
transferred to RH for decomposition, and the result is
compared with the examinee image. Here, the
discrepancy provokes repeating, and the procedure should
pass over several iterations. This corresponds to dumping
oscillation of the noise amplitude dz/dt (see Figure 4a)
representing the emotional fluctuations.

e The examinee object is unknown to the system (D>Dy,).
This provokes the recognition failure, that is accompanied
(depending on the final goal) by either zero, or negative
emotion manifestations. Then, the full procedure of new
image formation and recording to H®" is to be performed.

2 20| 2

\ ,

t ot
(a) (b) (¢
Figure 4. Typical patterns of the noise amplitude Z(t) behavior in the cases

of (a) recognition procedure; (b) incorrect prognosis with sense of humor
manifestation, and (c) Aesthetic Emotions (“goosebumps”).
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The prognosis represents the recognition of time-
dependent process and proceeds in a similar way. Special
case of incorrect prognosis, which activates the sense of
humor has been discussed in [3][4]. It appears when
examinee process seems familiar up to some moment t*, but
the next bulk of information appears to be once unexpected,
but still well-known. This switches the recognition process
to the other, also familiar pattern. This corresponds to the
specific reaction of the system, — namely, sharp up-down
jump (“spike”) in the noise amplitude, which could be
associated with human laughter (see Figure 4b).

B. Interpretation of AE: “Recognition Paradox”

Perception of any Artwork represents a particular case of
recognition-and-anticipation procedure (see, e.g., [24]).
Contrary to everyday life, when recognition is a part of
behavioral program and connected with obvious and rational
goal, the Artwork does not require any actions, so that the
goal of such anticipation is not pragmatic, but rather latent.
It could be connected with certain dissatisfaction, i.e.,
ambiguous impression produced by the piece of Art, which
does not allow to put it in line with any known symbol (and
consequently, with a certain word). Differently speaking,
AE arise when the impression cannot be formulated and
explained.

According with the above consideration, AE appear if
the examinee object\phenomenon does excite the halo
neurons in RH. Since they are not connected with any
specific symbol and thus, such impressions remain
unconscious, this gives rise to a “vague effect” that could
not be formalized or verbalized; these very impressions
produce tingling sensations called the “goosebumps” (or
“horripilation”). This also implies that the discrepancy D(t)
defined by (8) could never come to zero since information
on halo neurons is absent in LH, but its value is small.
Hence, the “goosebumps” correspond to small vibration
(trembling) of Z(t) around the normal value (Figure 4c).

According to this hypothesis, strong AE, which can be
treated as personal impression produced by the masterpiece
(ChD), could be caused by the “recognition paradox”. This
phenomenon can take place in at least two cases.

1) Recognition paradox #1: It appears if the Art
object is very similar to something well known, despite
some minor and even unconscious (by the first glance)
difference (light inaccuracy), which involves the halo-
neurons only. Then, D(0)=D(t)=0, but this discrepancy
could not be comprehended and explained by words. The
most pronounced example of such painting ChD is the
“Black Square” of Malevich, which appears to be neither
square, nor monotone black. This pattern contains actually
small (and even invisible) deviations in lines and color, and
these differences could be measured objectively. Hence, the
eyes (i.e., the “Brain”, not the “Mind”) do actually notice
this inaccuracy, and this provides some ambiguous
impression of dissatisfaction producing AE. Speaking
picturesquely, this feeling may be expressed by the formula
“to see invisible”.
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Thus, in this case, the paradox consists in the fact that
small and incomprehensible deviations of ChD from the
ordinary pattern emphasize its individuality.

2) Recognition paradox #2: ChD looks like several
familiar patterns simultaneously, so it could not be
recognized as any of them. It could be linked with all of
them by associative “grey” connections in RH (via the
“halo”-neurons), while in LH, all these patterns with
corresponding symbols are separated. Such type of ChD
activates fuzzy subjective associations, which were stored in
RH but lost in LH. In other words, the “Brain” does know it,
but the “Mind” cannot formulate and comprehend.

Perception of such ChD is to a large extent similar to
manifestation of the sense of humor, but in this case, the
incorrect (ambiguous) prognosis cannot be turned to a new
familiar symbol and the corresponding word, i.e., again
cannot be formulated and explained.

Striking examples of such type ChD are the great
musical compositions of Mozart, Beethoven, Chopin,
Wagner, etc., which have something insensibly in common
with each other (classical), as well as with the older
traditional (often folk) music (see, e.g., [33]).

Speaking picturesquely, this impression could be
formulated as “fo unite unconnectable”.

3) General formula of ChD: In both these cases of
recognition paradox, LH could not perform alone the
recognition task, so that RH should be activated. This is the
mechanism of AE appearance. Both these pathways lead to
the feeling of ChD and realize the formula: “to see invisible,
to unite unconnectable”. Accounting for participation of the
halo-neurons, we may rephrase this formula as “the “Brain”
does already know, while the “Mind” still cannot realize”.

Let us point out to the interesting consequence of the
“halo-neuron hypothesis”. It implies that halo-neurons do
accompany the corresponding core neurons. It means that
the system actually has recorded and memorized similar
(but not identical) patterns. In other words, the system has
its own experience with the patterns of a given type and
hence, has sufficiently large repertoire (expertise) in such
area. Nevertheless, relatively inexperienced (“green”)
system could perceive ChD, but only in those parts, which
are familiar to the system itself. This effect corresponds to
the formula “each person has its own vision of ChD”.

Note that the presented hypothesis provides a key to the
explanation of another enigma: why the pleasure of favorite
Art patterns does not lose its luster after multiple acts of
perception? In contrast to a joke, which provides the
impression due to an element of unexpectedness and its
subsequent resolution, the recognition paradox has no
resolution: an ambiguous feeling arises whenever this
Artwork is presented.

V. CONCLUSION AND FURTHER WORK

Thus, it is shown that NCCA contains inherent
possibility to reveal the mechanism of Aesthetic Emotions
(AE) appearance. The whole architecture represents a
combination of two multilevel subsystems, in analogy with
two hemispheres of human brain. One of them (RH)
processes any new, unexpected or ambiguous information.
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The other one is dealing with familiar (well known), i.e.,

clearly formulated information. The role of each subsystem

in solving the current problem should be controlled by
emotions (in particular, AE).

It is shown that the AE reasons are stored at the ground
(“image”) level of the architecture in the RH subsystem,
which is called the fuzzy set H’ This neuroprocessor
contains the whole information whenever recorded. In
particular, it involves insignificant (at the first glance)
information stored in weak (“grey”) connections between
so-called “halo” neurons, which correspond to atypical
(inessential) attributes of real objects. This information is
hidden in RH only and is transferred neither to LH nor to
the high (symbolic) hierarchy levels of RH, hence could be
neither formulated nor comprehended.

According to our main hypothesis, the mechanism of AE
consists in excitation of personal subjective (may be vague)
associations provided by weak connections via halo
neurons. These associations could not be formulated and
verbalized, thus, comprehended. Within NCCA, these
excitations correspond to small oscillation (“trembling”) of
the noise amplitude Z(t) that could be treated as analogy to
human feeling of “goosebumps”.

This hypothesis provides the possibility to explain
several enigmas connected with AE:
¢ This explains the individuality of AE;

e This involves all the intuitively obvious reasons for AE
listed above — childish vague impressions, fuzzy
associations, indirect influence of micro-society, etc.

e Deep AE, i.e., personal feeling of ChD could be caused
by the recognition paradox, which arises when the
Artwork seems familiar and unusual simultaneously, with
this impression being not formulated and explained.

¢ In aphoristic form, the feeling of ChD can be presented as
“to see invisible, to unite unconnectable”.

e Perception of any Artwork requires proper personal
repertoire (competence, erudition, etc.) stored as in
episodic (RH), as well as in semantic (LH) memory.
Otherwise, the system remains quite indifferent to any
piece of Art including ChD. This explains the “enigma of
blind and deaf™.

e The mechanisms providing sense of humor and AE
actually have something in common. However, the sense
of humor is caused by unexpectedness (surprise), which
could be still recognized immediately. But AE arise in the
case of ambiguous (paradoxical) impression that remains
unformulated (hence, unrecognized) even in the long run.
That is why a joke, repeated twice, does not cause a
specific reaction (laughter), while favorite Artwork (ChD)
always causes another specific reaction (“goosebumps”).

Returning to the Explanatory Gap challenge, we can
infer that the study of AE, being seemingly not a scientific
problem (rather Humanities and Art study), actually
provides the possibility to “open a gate” to the gap between
“Brain” and “Mind”. It is shown that AE emerge (as
indicated in Figure 1) at that virtual border. Then, general
formula “to see invisible, to unite unconnectable” could be
expressed in more constructive (still aphoristic) form:
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“Brain does already know, while Mind cannot still realize”.
And this very ambiguity provides the feeling of ChD.

Let us emphasize that all these reasons are inherently
connected with NCA grounds. This is DTI that point out the
role of conventional (subjective) information as a whole,
and the role of a symbol as a representative of this
information in particular. According to NCA viewpoint, the
symbol is the very first object that, being relied on the
“Brain” area, represents a “molecule of the Mind”. And this
is the technique of nonlinear differential equations that
enable us to describe the procedure of symbol formation and
the point where weak (“grey’”) connections appear to be lost.

It should be stressed that all these arguments represent
not an instruction for ChD production, and not the method
to estimate the value of ChD. The study represents only an
attempt to understand the mechanisms of perception of the
Art as a whole and ChD in particular. Nonetheless, this
study can be used in social surveys, highly targeted
advertising, and other social actions.

However, we have not discussed here the phenomenon
of “socially accepted ChD” — why the significant part of
society (not only certain persons) does feel a “goosebumps”
caused by certain (ingenious) piece of Art? The mechanism
could be similar, but this problem requires further work.
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Abstract—This research presents a method to describe Learning
Objects as Semantic Web compatible Ontologies. The proposed
method divides the Ontologies among three layers. The first is
composed of the knowledge domain, the second by the Learning
Objects (LOs) and their relations, and the third is responsible for
knowledge inference and reasoning. As study case, we present the
Ontologies of Learning Object Metadata (LOM) and Brazilian
Metadata for Learning Objects (OBAA) metadata standards
as part of the Layer One. The Layer Two composed by the
description of sample Learning Objects based on the properties
and restrictions defined by the Layer One ontologies. Layer Three
describes the knowledge inference axioms, which we defined
as Application Profiles. Our current results can summarize a
contribution to Ontology Engineering for Semantic Web applied
to Digital Education.

Keywords-Digital Education; Adaptive Learning; Computa-
tional Intelligence; Mobile Computing; Smart Environments.

I. INTRODUCTION

Technology Enhanced Learning has the purpose of easing
the knowledge retention and improve the learning performance
in formal, non-formal or informal environments. Researchers
and companies are always exploring new educational method-
ologies and artificial intelligence algorithms seeking to find
the “secret recipe” to help teachers increase the educational
performance of their students.

Despite current achievements, [1], [2], [3], are skeptic
regarding formal learning in classrooms. According to these
authors, there is no clear evidence that the usage of technology
in classroom environments can increase the learning retention.
We believe that there are two main causes for that: (i)the lack
of standardized technological artifacts (Learning Objects) for
sharing of educational content between students and educators
[4], [5], [6] and (ii) the focus on the role of technology as
support to current pedagogical models, provide class statistical
analysis[7], [8] and enhance ludic experiences. This research
will focus on the item (i).

Nowadays, we have a plethora of alternatives to access
information. Television, the Internet, and mobile devices are
platforms that ease the access to several kinds of educational
contents. Many of them are hard to reuse [9]. The challenge
resides in designing Learning Objects that are standardized,
easy to share and able to leave a trace of performance measures
among its application in different educational domains.

To deal with such complex domain that involves variables
such as usage context, academic profile, cognitive styles,
among many others, we believe that the technologies of the
Semantic Web [10] and the Knowledge Representation and
Reasoning [11] seem to be promising.

The contributions for educational systems can be classified
in three areas [12]: (1) Information Storage and Retrieval; (2)
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Autonomous Agents and Artificial Intelligence Inference and
(3) Communication and Information Persistence over time. In
this research, we are focusing on Information Storage and
Retrieval.

Considering this, we must comply with variables that are
related to the learning progress of a student. It is perceived
from many perspectives (e.g., Pedagogy, Philosophy, Psychol-
ogy, Human Computer Interaction) [13]. It became necessary
to design a flexible and interoperable approach to model
the Learning Object and those variables inside educational
environments [14], [15], [16]. We believe that this is the
first step to achieving large-scale personalization [17], [18] in
educational systems.

Therefore, we propose a method to use the standards and
technologies of Semantic Web associated with ontological rep-
resentations to describe Learning Objects. Also, we present our
findings and experiences developing and deploying Semantic
Web Learning Objects.

The rest of the paper is structured as follows. Section II
presents detailed information regarding the built Knowledge
Representation; Section III discusses the challenges and op-
portunities to explore this work further and, in Section IV, we
provide our concluding remarks and future work.

II. BUILDING THE KNOWLEDGE REPRESENTATION

The users in educational domains can be classified ac-
cording to their roles. They can be teachers, students, tutors,
administrators, between several other classifications; Learning
Objects are digital or non-digital; and the relationships be-
tween the user(s) x Learning Object and user X user, have
several associated properties. For example, Learning Objects
can be associated with content relation; users can be related
to authorship or activity like assessment, sharing or reading.

There are alternatives in the Knowledge representation and
reasoning area to represent this kind of domain. We choose to
use Ontologies due to their popularity and availability of design
tools for Semantic Web. Web Ontology Language (OWL)
ontologies were the most nature choice since it is based on
description logics. This representation allows to cope with
incomplete information and also to manage consistency check
of the students profile during information updates.

The proposed ontologies are divided into three layers. The
Layer One is composed of ontologies that describe metadata
schemas, for instance, the Learning Object Metadata (LOM)
Ontology; Layer Two ontologies describes a User Profile,
Learning Objects or their relationships with properties from
a Layer One Ontology; and Layer Three Ontologies compre-
hend the description of Applications Profiles that will provide
reasoning over the Layer One and Layer Two.
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To describe the method we use several key terms of
OWL ontologies: Class: describe concepts of a domain, a
structure that can encompass a set of Data Properties or
Object Properties and individuals; Properties: is a binary
relation on individuals; Object Properties: relations between
individuals; Data Properties: relationships among individuals
and an eXtensible Markup Language (XML) Schema Datatype
value or a literal; Axiom: a premise or a point to begin the
reasoning process; Range: links a property to either a class
description or a data range; Domain: it is used to link a
property to a class description; Cardinality: it is a restriction,
defines the maximum or minimum number of individuals to
link with a property; Individuals: represent the objects in the
domain that we are interested in.

A. Describing Layer One Ontologies

The first thing to consider is the application domain: A
Standard for User Profile representation; an educational meta-
data standard; a relationship standard; among other possible
top layer descriptions.

The Layer One ontologies are used to describe classes and
properties that are used to represent individuals in the Layer
Two ontologies. This layer stores ontology with the semantics
of a metadata schema, considering: cardinality; data ranges;
association properties; and the necessary axioms to describe
the application domain.

For example, Layer One ontologies can comprehend LOM
Metadata Standard [19]; Brazilian Metadata for Learning Ob-
jects (OBAA) metadata standard [20] or Friend of a Friend
(FOAF) metadata standard. The nature of those ontologies
regards properties to describe a context, a domain or their
members.

To design Layer One ontologies, we propose the following
set of practices: Metadata classes became OWL Class and
OWL Subclass; Metadata Properties became OWL Data Prop-
erties and OWL Object Properties according to their semantic;
We describe the semantics of metadata as restriction axioms.

Building Layer One Ontologies regards the definition of
the properties that are necessary to describe the Layer Two in-
dividuals and the Layer Three ontologies Application Profiles.

We define a few steps to follow to describe this kind of
ontology:

e  Study and understand the whole standard;

e  define the set of Classes and Properties exactly like the
standard incorporating their Ranges and Cardinalities;

e choose a Reasoner to test the ontology;

e provide a Universal Resource Identifier (URI) to pub-
lish the ontology.

To exemplify the design of Layer One Ontology, we will
use as case study the LOM Metadata Standard for three rea-
sons: LOM is considered an international standard to describe
Learning Objects [21]; It is commonly used by researchers in
educational technology, and, there is an opportunity to describe
a standardized LOM OWL ontology.

LOM is a massive educational standard. We will define
some classes and properties. The chosen LOM group (LifeCy-
cle) is sophisticated enough (cardinality restrictions, domain,
and range restriction) to demonstrate our method. The LOM
ontology is available to reuse through the following URI [22].
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We choose to present the study case using the LOM
LifeCycle group because of its characteristics. It is relatively
small but preserves the semantic complexity of the larger
groups, such as General or Educational. Following we present
the Classes and Properties described according to our ontology
engineering approach. The LifeCycle group shows the LOM
metadata Standard group 2.

a) Defining the Classes: Each metadata from LifeCy-
cle group becomes a class and a subclass with cardinality
restrictions according to the chosen standards. For instance,
Contribute is a subclass of Life Cycle and has a cardinality
max 30.

b) Defining the Properties: Properties can be classified
as Data Properties or Object Properties. Data Properties are the
data itself (e.g., has_name String “James”). Object Properties
describe the relationships between classes and individuals (e.g.
has_classes). Object Properties are also associated with the
metadata cardinality (e.g., Max 10 has_classes)

The cardinality restrictions can be used with Object Prop-
erties. They can be used to group individuals with specific
characteristics. As an illustrative example of those relation-
ships, refer to Figure 1.

In Figure 1, at its center, it is illustrated a sample Learning
Objects Individual that is divided into two parts. The number
one (1), shows a generic Learning Objects representation
model; The number two (2) illustrates the usage of the Object
Properties Contribute, in this case, named LOM:hasContribute.
As can it be seen, there are three individuals represented.
The higher Layer Learning Objects Individual and two
other ontological individuals linked by the Object Properties
LOM:hasContribute and each one of them with specific Data
Properties.

This kind of relationship allows, for instance, the reuse
of the individuals LO + LOM:hasContribute + ID1 and/or
LO + LOM:hasContribute + ID1 in different versions of
Learning Objects.

This example was prepared to exemplify the description of
Learning Objects with such ontology engineering method; the
next section will present the characteristics of the Layer Two
Ontologies.

B. Describing Layer Two Ontologies

The Layer Two ontologies have the role in describing User
Profiles, Learning Objects and their relationships during their
life-cycle in an application domain. These ontologies import
the properties of the n Layer One ontologies allowing the
standardized description of individuals.

These ontologies can be stored in some formal repository,
e.g., a Triple-Store, or even just defining a URI for its access.
This alternative gives flexibility to content designers that can
only build and publish their contents on the Web.

As a plus, it is possible to apply reasoning algorithms to
verify the consistency of an individual trough some Layer One
ontology. For instance, if we describe a Learning Object as an
ontological individual of the LOM Layer One ontology, we can
verify if the cardinality, range, and value space were correctly
used. Also, if some description is incorrect we can apply
an explanation algorithm to understand what was described
wrong.
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Figure 1. Sample Learning Objects with Life Cycle information

Layer Two ontologies are appropriate to describe: User Pro-
files; Learning Objects; application contexts; and relationships.
Each one of them can be described in one or several ontologies.
There is a hurdle to consider when dealing with granularity
matters. Higher granularities allow by on side to delimit the
processing unities and reduce computer processing, but, by the
other hand, the human cost to break the information in several
ontologies are elevated. We need to take this into consideration
when describing an application domain with this method

For example, the description of a Learning Object as in-
stance of the LOM ontology is performed within the following
steps: convert or create a Learning Object; create an OWL file
to represent the information of the Learning Objects; import
the LOM OWL ontology; describe the individuals to represent
information of the Learning Objects; create Object Properties
and Data Properties relationships as necessary.

To illustrate this scenario, we present the Ramis Learning
Object. Ramis uses two metadata standards, IEEE-LOM and
OBAA. The underlying purpose for its creation was to simulate
the description of an interoperable Learning Object compatible
with three hardware platforms: Internet, Digital Television, and
Mobile Devices. We started our conversion by analyzing that
meta-information and illustrate its complexity with Figure 2.

Figure 2, has the indication 1 that emphasizes the higher
layer individual; the indication 2 the Object Properties hasRe-
quirement; the indication 3 the Object Properties hasPlatform-
SpecificFeatures; the indication 4 emphasizes the Object Prop-
erties hasSpecificRequirement; The indication 5§ the Object
Properties hasSpecificOrComposite and finally the indication
6 the Object Properties hasOrComposite. Each individual has
its own set of Data Properties.

C. Describing Layer Three Ontologies

Layer Three ontologies are mainly developed to represent
Application Profiles. [23] defines an Application Profile as
compositions of metadata elements from one or more metadata
schemas. They are used to describe an application domain.
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This work adds to the application profiles computations
means to reason knowledge and verify the consistency of Layer
Two individuals. This process can be used to derive, for ex-
ample, the users that have specific pedagogical characteristics,
which Learning Objects can be used in a particular domain.
Those inferences are made exploring the deduction rules of
OWL ontologies.

An Application Profile ontology will be composed, at least,
of a class with an axiom that will infer the individuals that
match the axiom description. For example, we ca