
COMPUTATION TOOLS 2010

The First International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

November 21-26, 2010 - Lisbon, Portugal

ComputationWorld 2010 Editors

Ali Beklen, IBM Turkey, Turkey

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Wolfgang Gentzsch, EU Project DEISA, Board of Directors of OGF, Germany

Teemu Kanstren, VTT, Finland

Arne Koschel, Fachhochschule Hannover, Germany

Yong Woo Lee, University of Seoul, Korea

Li Li, Avaya Labs Research - Basking Ridge, USA

Michal Zemlicka, Charles University - Prague, Czech Republic

                             1 / 38



COMPUTATION TOOLS 2010

Foreword

The First International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking [COMPUTATION TOOLS 2010], held between November 21 and 26 in Lisbon, Portugal,
inaugurated an event under the umbrella of ComputationWorld 2010 dealing with logics, algebras,
advanced computation techniques, specialized programming languages, and tools for distributed
computation. Mainly, the event targeted those aspects supporting context-oriented systems, adaptive
systems, service computing, patterns and content-oriented features, temporal and ubiquitous aspects,
and many facets of computational benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2010 Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
COMPUTATION TOOLS 2010. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COMPUTATION TOOLS 2010
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that COMPUTATION TOOLS 2010 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of progress in the
areas of computational logics, algebras, programming, tools, and benchmarking.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the beautiful surroundings of Lisbon, Portugal.

COMPUTATION TOOLS 2010 Chairs:

Luis Gomes, Universidade Nova de Lisboa, Portugal
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania
Kenneth Scerri, University of Malta, Malta

                             2 / 38



COMPUTATION TOOLS 2010

Committee

COMPUTATION TOOLS Advisory Chairs

Luis Gomes, Universidade Nova de Lisboa, Portugal
Kenneth Scerri, University of Malta, Malta
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania

COMPUTATION TOOLS 2010 Technical Program Committee

Stefan Andrei, Lamar University, USA
Henri Basson, University of Lille North of France (Littoral), France
Ateet Bhalla, Technocrats Institute of Technology - Bhopal, India
Manfred Broy, Technical University of Munich, Germany
Noël Crespi, Institut Telecom, France
Brahma Dathan, Metropolitan State University - St. Paul, USA
Luis Gomes, Universidade Nova de Lisboa, Portugal
Rajiv Gupta, University of California - Riverside, USA
Haidar Harmanani, Lebanese American University, Lebanon
Raimund Kirner, University of Hertfordshire, UK
Bernd J. Krämer, FernUniversität - Hagen, Germany
Giovanni Lagorio, DISI/University of Genova, Italy
Yuan Fang Li, University of Queensland, Australia
Zhiming Liu, UNU-IIST, Macao
Tomoharu Nakashima, Osaka Prefecture University, Japan
Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
Aomar Osmani, Université Paris 13, France
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania
Antoine Rollet, University of Bordeaux, France
Antonino Sabetta, ISTI-CNR - Pisa, Italy
Kenneth Scerri, University of Malta, Malta
Daniel Schall, Vienna University of Technology, Austria
Sharad Sharma, Bowie State University, USA
Giovanni Semeraro, University of Bari "Aldo Moro", Italy
Bernhard Steffen, TU Dortmund, Germany
Toyotaro Suzumura, IBM Research / Tokyo Institute of Technology, Japan
Zhonglei Wang, Technical University of Munich, Germany
Marek Zaremba, University of Quebec, Canada

                             3 / 38



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

                             4 / 38



Table of Contents

Debugging PVS specifications of control logics via event-driven simulation
Cinzia Bernardeschi, Luca Cassano, Andrea Domenici, and Paolo Masci

1

Sharing Ballistics Data Across The European Union
Richard Wilson, Lukasz Jopek, and Christopher Bates

8

Euclides - A JavaScript to PostScript Translator
Martin Strobl, Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner

14

PS-NET - A Predictable Typed Coordination Language for Stream Processing in Resource-Constrained
Environments
Raimund Kirner, Sven-Bodo Scholz, Frank Penczek, and Alex Shafarenko

22

An Application of a Domain-Specific Language Facilitating Abstraction and Secure Access to a Crime and
Ballistic Data Sharing Platform
Lukasz Jopek, Richard Wilson, and Christopher Bates

29

Powered by TCPDF (www.tcpdf.org)

                               1 / 1                             5 / 38



Debugging PVS Specifications of Control Logics
via Event-driven Simulation

Cinzia Bernardeschi∗, Luca Cassano∗, Andrea Domenici∗ and Paolo Masci∗†
∗Department of Information Engineering, University of Pisa, Italy

†Information Science and Technologies Institute, NationalResearch Council, Pisa, Italy
Email: {Cinzia.Bernardeschi,Luca.Cassano,Andrea.Domenici,Paolo.Masci}@ing.unipi.it

Abstract—In this paper, we present a framework aimed at
simulating control logics specified in the higher-order logic of
the Prototype Verification System. The framework offers a library
of predefined modules, a method for the composition of more
complex modules, and an event-driven simulation engine. A
developer simulates the specified system by providing its input
waveforms as functions from time to logic levels. Once the sim-
ulation experiments give sufficient confidence in the correctness
of the specification, the model can serve as a basis for the formal
verification of desired properties of interest. A simple case study
from a nuclear power plant application is shown. This paper is
a contribution to research aimed at improving the development
process of safety-critical systems by integrating simulation and
formal specification methods.

Index Terms—PVS; simulation; formal specification; validation

I. I NTRODUCTION

Control systems are an important field of application for
formal methods and rigorous engineering practices, since
they combine real-time requirements and non-trivial control
tasks whose failure may compromise safety. Subtle design
faults, which are often difficult to avoid and tolerate, and the
possibility of failures caused by the occurrence of non-obvious
combinations of events, make such systems hard to certify with
respect to safety requirements.

In this paper, we present a methodology aimed at simulat-
ing control logics specified in the higher-order logic of the
Prototype Verification System (PVS)[1]. We have developed a
library of (purely logic) specifications for typical control logic
components, a methodology to combine them into more com-
plex systems, and a simulation engine capable of animating
the formal specifications with the PVS ground evaluator.

Section II exposes the motivations for this work. We in-
troduce the PVS system in Section III, then we describe the
theories for the logical specification of control components
(Section IV) and the theory defining the simulator (Section V).
In Section VI we describe a simple case study from the field
of control logics for nuclear power plants (NPPs), and finally
the conclusion and related work are found in Section VII.

II. M OTIVATION

The use of formal methods is increasingly being required by
international standards for the development of safety critical
digital control systems (e.g., [2], [3]), but, in industrial prac-
tice, verification and validation of such systems relies heavily

on simulation and testing. A rigorous development process
would benefit from the combined application of formal verifi-
cation, simulation, and testing. In particular, simulation would
be a means to validate specifications against requirements.
However, verification tools (such as theorem provers and
model checkers) and simulation tools use different languages,
and few designers are versed in the use of both kinds of tools.

This work is a first step in a research activity whose
expected outcome is a toolset that translates specifications
from an application-oriented language into a high-order logic
theory that guides the execution of the simulator described
in this paper. When the simulation results make developers
confident that the specifications are correct, a more detailed
and formal analysis may be done by theorem proving. The
theorem proving approach was chosen as it may be expected to
avoid the problem of state space explosion that model checking
tools face in the analysis of complex real-time systems.

III. PVS AND PVSIO

The PVS [1] specification language builds on classical
typed higher-order logic with the usual base types,bool,
nat, integer, real, among others, and the function type
constructor (e.g., type[A -> B] is the set of functions from
setA to setB). Predicates are functions with range typebool.
The type system of PVS also includes record types, dependent
types, and abstract data types.

PVS specifications are packaged astheories that can be
parametric in types and constants. A collection of built-
in (prelude) theories and loadable libraries provide standard
specifications and proved facts for a large number of theories.
A theory can use the definitions and theorems of another
theory by importing it.

PVS has an automated theorem prover. A less frequently
used component is itsground evaluator[4], used to animate
functional specifications by translating executable PVS con-
structs into efficientLisp code. ThePVSiopackage [5] extends
the ground evaluator with a library of imperative programming
language features such as side effects, unbounded loops,
and input/output operations. Thus, PVS specifications can be
conveniently animated within theread-eval-print loop of the
ground evaluator that reads PVS expressions from the user
interface and returns the result of their evaluation.

1

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                             6 / 38



IV. M ODELING CONTROL LOGICS

In this section we describe the PVS theories developed to
formally model control logics. We start with the PVS theories
that model time, logic levels, signals, and basic operations on
signals. Then, we introduce samples of the library for the basic
digital modules of a system, such as logic gates and timers.
Finally, we show how to build complex components out of
basic elements. The developed theories are executable: defini-
tions always use interpreted types and quantification is always
performed over bounded types. In the following sections, only
thetime_th theory will be shown in a syntactically complete
form; to save space, only fragments of PVS code will be shown
in the rest of the paper for the other theories.

A. Time and Logic Levels

Theorytime_th (shown below) contains the type defini-
tion of time (modeled as ranging over the continuous domain
of real numbers) and time interval.

time_th: THEORY
BEGIN
time: TYPE = real
interval: TYPE = {t: time | t >= 0}
END time_th

Besides thezero andone logical values, modeling hard-
ware circuits requires additional levels forunknownvalues
andhigh impedance. Unknown values are useful to model the
logic level when the digital circuit is powered up, while high
impedance represents open circuits (designed or faulty).

Theorylogic_levels_th provides the definitions of the
logic levels and of the basic logical operators over the four-
valued logic (lAND, lOR, lNOT). In the following fragment
we show the first definitions of the theory.

logic_level: TYPE = below(4)
zero: logic_level = 0;
one: logic_level = 1;
Z: logic_level = 2; %-- high impedance
U: logic_level = 3; %-- unknown value
lAND(v1, v2: logic_level): logic_level =

IF one?(v1) AND one?(v2) THEN one
ELSIF zero?(v1) OR zero?(v2) THEN zero
ELSE U ENDIF

B. Signals

A signal describes the variation of a logic level over time,
and we represent signals as functions from the domain of
time to logic levels. Theorysignals_th contains, besides
the definition of signal, the symbolic constant for time
resolution,tres, which models the minimum time between
two observable variations of a signal, and the definition of a
utility function to build periodic signals (make_periodic).

Basic signals provided in the theory are:constval, a
constant logical level;step, a signal that goes from zero to
one at timeτ ; pulse, a signal that is one only in the time
interval [τ, τ + d), whered is the interval size.

Some useful predicates on signals are defined, such as
rising_edge?, used to detect if a signals has a rising
edge at timetau. Operations that apply logical connectives

q

q’

r

s

(a) (b)

r

s q’

q

SR

y0
x00

x01 G0

y1x10

x11

G1

Fig. 1. An SR flip-flop.

to the values of signals at each given time are defined (sOR,
sAND, sNOT). Sample definitions of this theory follow.

IMPORTING time_th, logic_levels_th
signal: TYPE = [time -> logic_level]
tres: {t: interval | t > 0}
make_periodic(s: signal, T: interval): signal =

% definition not shown
constval(v: logic_level): signal =

LAMBDA (t: time): v
step(tau: time): signal =

LAMBDA (t: time):
IF t >= tau THEN one ELSE zero ENDIF

pulse(tau: time, d: posreal): signal =
% definition not shown

rising_edge?(i: signal, tau: time): bool =
zero?(i(tau - tres)) AND one?(i(tau + tres))

AND one?(i(tau))
sAND(s1, s2: signal): signal =

LAMBDA (t: time): lAND(s1(t), s2(t))

C. Digital Modules

In our framework, a control logic is acomposite digital
module, obtained by connectingbasic digital modules.

Digital modules are characterized by a set ofports, a state,
that is the collection of all signals present at its ports, and
a transition function that specifies how the state changes
according to a module’s functionality. The behavior of each
module in the framework is defined by its transition function.

Ports are abstractions of the terminals of physical devices.
Each port is identified by itscategory(one of input, output,
internal) and its port number within the category. Basic
modules have only input and output ports, whereas composite
modules also have internal ports. In a composite module, the
input and output ports are its externally visible terminals,
and its internal ports are the ports of the (basic) component
modules that are not externally visible.

For example, a NOR gate is modeled as a module with two
input ports, one output port, and no internal ports. Another
example is an SR flip-flop, which can be modeled either as a
basic module (Figure 1(a)) with two input ports, two output
ports and no internal ports, or as a composite module built
from two NOR gates. In the latter case, the resulting system
is shown in Figure 1(b), where portsx00 of gateG0 andx11

of gateG1 are input ports, portsy0 of G0 and y1 of G1 are
output ports, and portsx01 andx10 are internal ports.

Theorydigital_modules_th contains type definitions
for the state of a digital module (state) and for transition
functions (digital_module). Type state the value of

2

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                             7 / 38



the signals present at any time is a record that maintains
the lists of signals applied at any time on its ports. It has
one list of signals for each of the three port categories, and
a port of the system is identified by its position in the list
of the corresponding category. In the rest of this paper the
term signal will sometimes be used instead ofport, so that
“signal x” means “the signal present at portx”. The transition
function typedigital_module is time-dependent and has
the signature[time → [state → state]].

Note that the state of a module is defined as the set of
signals applied to, or generated by, the module at a given
time, and not as the set of their instantaneous values.

The theory includes also a number of auxiliary functions to
build lists of ports (i.e., of signals) and to select a specific port
of a module, such asports(n), ports(s, n), etc. The first
definitions of the theory follow.

IMPORTING signals_th
ports: TYPE = list[signal]
state: TYPE = [# input: ports, output: ports,

internal: ports #]
digital_module: TYPE = [time -> [state -> state]
%-- port constructors
ports(n: nat): RECURSIVE

{p: ports | length(p) = n} =
IF n = 0 THEN null
ELSE cons(constval(U), ports(n - 1)) ENDIF
MEASURE n

ports(s: signal, n: nat): RECURSIVE
{p: ports | length(p) = n} =

% definition not shown
%-- port selectors
port(p: ports, i: below(length(p))): signal =

nth(p,i)

Types state and digital_module are very general,
and they are refined by subtyping in the theories for basic
digital modules and composite digital modules.

D. Basic Digital Modules

Basic digital modules are elements without a visible internal
structure, defined only by their input and output ports and by
their transition function. The state of a basic module has an
empty list of internal signals, and the lists of input and output
signals have a predefined length.

The theory is parametric with respect to a parameter
delay, representing the time needed by the component to
change its outputs when its inputs change.

In addition to the parameterized definitions for the state and
transition function types, the theory contains a state constructor
(new_state). Part of the theory is shown below.

basic_digital_modules_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING digital_modules_th
state(nIN, nOUT: nat): TYPE =

{s: state | length(input(s)) = nIN AND
length(output(s)) = nOUT AND
length(internal(s)) = 0 }

basic_digital_module(nIN, nOUT: nat): TYPE =
[time -> [state(nIN, nOUT) -> state(nIN, nOUT)]]

This theory is imported by other theories that define various
classes of basic blocks, such as logic gates, timers, and flip-
flops, presented in the following.

1) Logic gates: The logic_gates_th theory defines
the transition functions of the basic combinatorial gates.The
theory is parameterized by the propagation delay of the gates.

As the state is defined by thesignalsat the ports (and not
the instantaneous values), the new state will normally be equal
to the previous one, unless the environment applies different
signals to the inputs (e.g., a pulse replaces a constant level).
The definition for the NOR gate is shown below.

logic_gates_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING basic_digital_modules_th
gateNOR: basic_digital_module(2, 1) =

LAMBDA (t: time): LAMBDA (s: state(2, 1)):
s WITH [output := ports(time_shift(

sNOR(port0(input(s)), port1(input(s))),
delay))]

2) Timers: The timers_th theory defines devices that
generate a single pulse when they receive a rising edge on their
input port. The pulse duration is a parameter of the device.
Their response to the input depends on previous values of the
output and possibly of the input(s).

timers_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING basic_digital_modules_th

timerM(d: posreal): basic_digital_module(1, 1) =
LAMBDA (t: time): LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND
zero?(port0(output(s)), t)

THEN s WITH [output := ports(pulse(t+delay, d))]
ELSE s ENDIF

The theory defines also resettable timers (not shown), whose
output drops to zero on receiving a rising edge at the reset port.

3) Flip-flops: The flipflop_th theory defines 1-bit
registers, such as the SR flip-flop (Figure 1(a)). Portss andr
are the set and reset terminals, the stored bit is on the output
markedq, andq′ is its complement. Portsq andq′ hold their
previous value whens andr are both zero. Ifs becomes one
while r is zero, thenq is one, and stays at one even afters

returns zero. Similarly, ifr becomes one whiles is zero, then
q is zero, and stays at zero even afterr returns zero.

flipflop_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING basic_digital_modules_th
flipflopSR: basic_digital_module(2, 2) =
LAMBDA (t: time): LAMBDA (st: state(2, 2)):
LET r = port0(input(st)), s = port1(input(st)),
q = port0(output(st)), q_prime = port1(output(st))

IN IF zero?(s, t) AND zero?(r, t) THEN st
ELSIF one?(s, t) AND zero?(r, t)
THEN IF zero?(q, t) AND one?(q_prime, t)

THEN st WITH [output := ports
(step(t+delay), sNOT(step(t+delay)))]

ELSE st ENDIF
ELSIF zero?(s, t) AND one?(r, t)
THEN IF one?(q, t) AND zero?(q_prime, t)

THEN st WITH [output := ports
(sNOT(step(t+delay)), step(t+delay))]

ELSE st ENDIF
ELSE st WITH [output := ports(2)] ENDIF

E. Composite Digital Modules

Basic digital modules can be connected together to create
composite digital modules. The corresponding theory contains
only the high-level definition for the state and the transition
function, and for a state constructor (not shown).

3

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                             8 / 38



BEGIN IMPORTING digital_modules_th
state(nIN, nOUT, nINT: nat): TYPE =

{s: state | length(input(s)) = nIN AND
length(output(s)) = nOUT AND
length(internal(s)) = nINT}

composite_digital_module(nIN, nOUT, nINT: nat):
TYPE = [time -> [state(nIN, nOUT, nINT)

-> state(nIN, nOUT, nINT)]]

1) Building Composite Digital Modules:A composite mod-
ule is modeled by the composition of the transition functions of
its components, whose form depends on the interconnections
of the components.

In order to build the composite module, one must first
define thesystemstate, i.e., the union of its input, output,
and internal ports. Then the subsets of the composite sys-
tem state relative to the components (component substates)
must be identified. Then the transition function is defined
along the following lines: (i) Each port of the composite
module is assigned a unique name by equating the port to
a variable of typesignal in a LET expression (e.g.,r =
port0(input(st)) gives the namer to the first input
port of statest); (ii) for each basic component, we define its
current substate by selecting its input and output signals from
the current system state; (iii) for each basic component, we
define its next substate as a variable of typestate, and we
equate it to the basic component’s transition function applied
to the current substate defined in the previous step; (iv) the
output signals of the new system state are the union of the
output signals of the new substates of the basic components
connected to the system output; (v) the internal signals of the
next system state are the union of the internal signals of the
new substates of the basic components.

As an example, we show the composite module of the SR
flip-flop built from a pair of cross-coupled NOR logic gates.
With reference to Figure 1(b), in this example portx01 is
renamed asr1, andx10 ass1.

flipflopSR: composite_digital_module(2, 2, 2) =
LAMBDA (t: time): LAMBDA (st: state(2, 2, 2)):
LET r = port0(input(st)), s = port1(input(st)),
q = port0(output(st)), q_prime = port1(output(st)),
r1 = port0(internal(st)), s1 = port1(internal(st)),
nor0 = gateNOR[tres](t)(new_state(2, 1)

WITH [input := ports(r, r1),
output := ports(q)]),

nor1 = gateNOR[tres](t)(new_state(2, 1)
WITH [input := ports(s, s1),

output := ports(q_prime)])
IN st WITH [output := ports(port0(output(nor0)),

port0(output(nor1))),
internal := ports(port0(output(nor1)),

port0(output(nor0)))]

In the system transition functionflipflopSR, we let
signalr be the signal on the first input port (port0) of the
current system statest, and similarly fors, q, q_prime,
s1, andr1. Then, substatenor0 of gateG0 is the result of
transition functiongateNOR. The argument of this function
is a state with input signalsr andr1, and output signalq. A
similar description applies tonor1.

V. THE EVENT-DRIVEN SIMULATOR

This section describes an event-driven simulator of digital
modules. First, we introduceevents, i.e., instants when a signal
may change its value. Second, we enrich the specification of
the system with events. Third, we present the event-driven
simulation engine, which uses the enriched specification to
evaluate the system only at specific instants, instead of at
periodic steps as in time-driven approaches [6].

A. Events

Theory events_th defines the typeevent as a record
with fields t, the instant of a single event or of the first of
a series of periodic events, andT, the period of the series
(single events haveT=0). The theory includes the ordering
relation between events and operations on list of events. Some
definitions are shown below.

BEGIN IMPORTING time_th
event: TYPE = [# t: time, T: interval #];
<(e1, e2: event): bool =

(t(e1) < t(e2)) OR
(t(e1) = t(e2) AND T(e1) < T(e2));

B. Annotated Signals

In theory annotated_signals_th we annotate the
formal specification of signals with the list of events associated
with each signal. We redefine the typesignal as a record
with the fieldsval, the functional specification of the signal,
and evts, the set of instants when the waveform changes
value. For example, the set of events associated with a constant
level generator is empty, while the set of events associatedwith
a pulse generator at timeτ and durationd contains eventsτ
andτ + d, both with periodT = 0.

The basic operators on signals are re-defined to calculate the
events of the resulting signal, whose events are the union of
events of the operator parameters. Some events in the resulting
signal may not affect the signal value. For example, if initially
one of thesOR inputs is a constantone, no set of events on
the other input changes the output. Such redundant events,
however, do not affect the simulation.

The following fragment shows the definition ofsNOR.

BEGIN IMPORTING events_th, logic_levels_th
sNOR(s1a, s2a: signal): signal =
LET s1 = val(s1a), s2 = val(s2a),

f = LAMBDA (t: time):
IF one?(s1(t)) OR one?(s2(t)) THEN zero
ELSIF zero?(s1(t)) AND zero?(s2(t)) THEN one
ELSE U ENDIF,
e = evts(s1a) + evts(s2a)

IN (# val := f, evts := e #)

Annotated signals carry all the information needed by the
simulator to handle events, so the specification of the digital
modules is unchanged.

C. Simulator

The simulator maintains a list of events (worklist), ini-
tialized with the starting time of the simulation. The events
are listed in ascending order without duplicates. At each
simulation step, the simulator extracts the first event (current

4

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                             9 / 38



event) from the worklist, and then it computes the next state
by applying the system transition function at the time specified
by the event. Then, the new events associated with the signals
in the generated state are inserted in the worklist.

1) Worklist: Theory worklist_th defines the type
worklist as a list of events, provides the function
get_first that, given a current time, returns the first
event associated with a set of signals and greater than the
current time, and the functionupdate_wl that updates the
worklist. Functionupdate_wl finds the new events in the
next state and inserts them in the worklist. Note that, sincethe
model of the system may contain ideal modules that update
instantaneously their output ports, functionupdate_wl must
not remove the current event from the worklist as long
as the generated state is not stable. These simple worklist
manipulators are not shown.

2) Simulation Engine:The simulation engine applies the
system transition function and returns the state of the system
after a certain number of steps. It uses a customizabledump
function to output a simulation trace.

simulate_system(n_steps: nat)
(f: [time -> [state -> state]])
(wl: worklist)(outf: OStream, pn: port_names):
RECURSIVE [state -> state] =

LAMBDA (s: state):
IF n_steps > 0 AND length(wl) > 0
THEN LET current_t = t(get_first(wl)),

s_prime = update_state(s)(current_t, f),
wl_prime = update_wl(wl)(current_t, s, s_prime),
dbg = dump(outf, pn, s, s_prime,

wl, wl_prime, current_t)
IN simulate_system(n_steps - 1)(f)(wl_prime)

(outf, pn)(s_prime)
ELSE s ENDIF

The input parameters are the maximum number of steps, the
system transition function, the worklist, the output stream for
the trace, and the names of the signals. The function is called
with an initial worklist containing all events of the initial state
and an event for the initial time.

At each step, the function (i) gets the simulation time from
the first event in the worklist, (ii) generates the next system
state, (iii) updates the worklist, and (iv) outputs the system
state. The simulation terminates when either the new worklist
is empty, or the maximum number of steps is reached.

The following excerpt shows how the digital module
flipflopSR is simulated. In functionsim_flipflopSR,
the initial state is constructed from the signals at the ports, the
worklist is initialized, andsimulate_system is invoked
with the transition function as an argument. Theresetport is
initially fed with a constant zero signal, theset port with a
pulse of4s at time0.3, andq (q′) holds a constant zero (one).

sim_flipflopSR(N_STEPS: nat): bool =
LET r = constval(zero), s = pulse(0.3, 4),

q = constval(zero), q_prime = constval(one),
r1 = q_prime, s1 = q,
initial_st = new_state(2, 2, 2)

WITH [input := ports(r, s),
output := ports(q, q_prime),
internal := ports(r1, s1)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(N_STEPS)(flipflopSR)
(initial_wl)(outf, pn)
(initial_st)

IN TRUE

The simulation trace can be a list of event times, signal
values and worklist contents at each step, or aValue Change
Dump [7] output, readable by a visualization tool (e.g.,GTK-
Wave[8]).

3) Automated Execution of Test-Cases:The universal and
existential quantifiers of PVS can be used to automatically set
up different simulation studies, e.g., to analyze the response
of the system to different input waveforms. This allows, for
instance, instrumenting the framework for the execution of
simulations in order to discover interesting test cases.

In the following example, thetest_flipflopSR func-
tion uses theFORALL quantifier to generate all possible
combinations of logical levels. Each combination defines an
initial state for an SR flip-flop, and each state is used to
compute a next state.

test_flipflop_th: THEORY BEGIN %--imports omitted
% ...
discrete_time: TYPE = below(2)

test_flipflopSR: bool =
FORALL (t_set, t_reset: discrete_time):
FORALL (v1, v2: logic_level): v1 /= v2 =>
(LET initial_st = new_state(2, 2, 2)

WITH [input := ports(pulse(t_reset, 1),
pulse(t_set, 1)),

output := ports(constval(v1),
constval(v2)),

internal := ports(constval(v2),
constval(v1))],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(5)(flipflopSR)

(initial_wl)(outf,pn)(initial_st)
IN TRUE)

%...
END test_flipflop_th

VI. CASE STUDY: A STEPWISESHUTDOWN LOGIC

As an illustration of the practical applicability of the frame-
work presented in this paper, we report on a simple case
study from the field of Instrumentation and Control for NPPs.
A high-level description of a control logic, expressed as a
Function Block Diagram [9], has been manually translated
into a PVS specification using the presented framework, and
the specification has been animated to simulate the control
logic. Simulated test cases have been automatically generated,
allowing a possible malfunction to be detected at this early
stage of development.

A. Description of a Stepwise Shutdown Logic

A stepwise shutdownprocess keeps process variables (such
as, e.g., temperature or neutron flux) within prescribed thresh-
olds by applying corrective actions (e.g., inserting control
rods) not immediately to their full extent, but gradually, in
a series of discrete steps separated by settling periods.

A Stepwise Shutdown Logic (SSL) was analyzed in [10]
with a model checking approach. The framework proposed in
this paper is used to analyze the same system.

5

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            10 / 38



15 s

3 s

R
t2_out

rtimer

T2m

OR ANDp or_out
t1_in

timer

T1
out

Fig. 2. A close-up view of the stepwise shutdown logic.

The requirements of the SSL, as described in [10], can
be informally stated as follows: if analarm signal (e.g.,
overpressure in a pipe) is asserted, the system must assert a
control signal to drive a corrective action for 3 seconds (active
period), then the control signal is reset for twelve seconds
(wait period) and the cycle is repeated until either the alarm
signal is reset or a complete shutdown is reached. An operator,
however, by activating amanual tripsignal, may force the wait
periods to be skipped in order to accelerate the process.

Figure 2 shows the main part of one of the SSL implemen-
tations analyzed in [10], wherem is the manual trip,p is an
alarm signal, andout is the control signal. When all signals
are low, the outputt2_out of timer T2 is low, and the AND
gate is enabled. Whenp is asserted, its rising edge passes
through the AND gate to the input of the T1 timer that sends
a 3s pulse to the output. The output is fed back to the input
of T2, a resettable timer with a pulse duration of15s. The
output pulse of T2 disables the AND gate that in turn resets
the input of T1. Since T1 is not resettable, its output pulse
lasts for three seconds, then returns to low for the remaining
12s of the T2 pulse. After this wait period, the output of T2
goes low, the AND gate is enabled, and T1 starts a new pulse
if an input signal is still asserted.

If p is high, andm is asserted during a wait period, T2 is
reset and its output enables the AND gate, allowing the trip
signal to reach T1 and restart it at the end of the3s pulse.

The SSL is modeled by thesystemC transition function
(see Figure 3), according to the guidelines in Section IV.

B. Simulation of the Stepwise Shutdown Logic

In this section we show some simulated situations.

Simulation 1 Signal p is a step function with the rising
edge att = 0.3s, and signalm is a constant zero (no manual
intervention). The control logic produces a series of pulses
that drive the plant towards a shutdown, as expected (Fig. 4).
In the following, we show the PVS code for this simulation.

sim_system1: bool =
LET initial_st =
new_state(nIN, nOUT, nINT)
WITH [input := ports(constval(zero), step(0.3)),

output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

0 10 sec 20 sec 30 sec 40 secTime
m

p

or_out

t2_out

t1_in

out

Fig. 4. Output of simsystem1, displayed with GTKWave.

0 10 sec 20 sec 30 secTime
m

p

or_out

t2_out

t1_in

out

Fig. 5. Output of simsystem2, displayed with GTKWave.

Simulation 2 Signalp is a step function with the rising edge
at t = 0.3s and signalm is a step function with the rising edge
at t = 5s. This means that the trip switch is pushed during the
first wait period. As expected, that wait period is interrupted,
a new3s output pulse is generated, and the subsequent pulses
are generated with the normal15s cycle, since the trip switch
has not been released and the resettable timer responds only
to a rising edge (Fig. 5).

sim_system2: bool =
LET initial_st =
new_state(nIN, nOUT, nINT)
WITH [input := ports(step(5), step(0.3)),

output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

Simulation 3 In this instance, signalp is a step function with
the rising edge att = 1s and signalm is a pulse of duration
1s starting att = 2s followed by another pulse of duration
3s at t = 10s. In this case, the manual intervention occurs
during the active period of the first output pulse. Contrary
to expectation, after the end of this output pulse, the output
is stuck at zero and no further corrective action takes place,
even if the alarm (high pressure) persists and the manual trip
switch is pressed again. A fundamental safety requirement is
thus violated (Fig. 6).

sim_system3: bool =
LET initial_st =
new_state(nIN, nOUT, nINT)
WITH [input := ports(sOR(pulse(2,1), pulse(10,3)),

step(1)),
output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

Test-Cases Interesting simulation examples, such as
sim_system3, can be discovered by instrumenting the
framework for the execution of test cases.

6

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            11 / 38



systemC: composite_digital_module(nIN, nOUT, nINT) =
LAMBDA (t: time): LAMBDA (st: state(nIN, nOUT, nINT)):
LET m = port0(input(st)), p = port1(input(st)), out = port0(output(st)),

t2_in = port0(internal(st)), t2_out = port1(internal(st)),
%- similar definitions for or_in, and_en, and_out
rtimer = rtimerM[T1](D2)(t)(new_state(2,1) WITH [input:=ports(t2_in,m), output:=ports(t2_out)]),
or2 = gateOR[T0](t)(new_state(2,1) WITH [input:=ports(or_in,p), output:=ports(or_out)]),
inh_and = gateANDH[T0](t)(new_state(2,1) WITH [input:=ports(and_en,and_in), output:=ports(and_out)]),
timer = timerM[T2](D1)(t)(new_state(2,1) WITH [input:=ports(t1_in), output:=ports(out)])

IN st WITH [input := ports(m, p), output := ports(port0(output(timer))),
internal := ports(port0(output(timer)), port0(output(rtimer)), m, port0(output(or2)),
port0(output(rtimer)), port0(output(or2)), port0(output(inh_and)), port0(output(inh_and)))]

Fig. 3. PVS model of the Stepwise Shutdown Logic.

0 10 secTime
m

p

or_out

t2_out

t1_in

out

Fig. 6. Output of simsystem3, displayed with GTKWave.

In the following example, functiontest_system uses
the FORALL quantifier to automatically generate the initial
state for the different test cases. The initial states differ by
the starting time of the pulse applied to the manual trip port.
The ground evaluator implicitly transforms the universally
quantified formula ont0 into a loop that, at each iteration,
generates a new initial state with a pulse starting att0
= 0,1,..,N-1 on the manual trip port, and applies the
simulator forNSTEPS steps.

sim_system_test(N: nat): bool =
FORALL(t0: below(N)):
LET initial_state =

new_state(nIN, nOUT, nINT)
WITH [input := ports(pulse(t0,1), step(1)),

output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

VII. C ONCLUSION AND RELATED WORK

PVS has been used in various works to describe hardware
systems, e.g., in [11], [12], [13]. With our approach, the formal
specifications are executable and they can be simulated with
the ground evaluator of PVS. This way, once the simula-
tion experiments give developers sufficient confidence in the
correctness of the specification, the same PVS models can
serve as the basis for the formal verification of properties in
the theorem prover of PVS. It is known that a large share
of defects in computing systems stem from errors in the
formulation of specifications [14].

In the present work, a library of (purely logic) specifi-
cations for typical control logic components is presented,
and an approach to define an event-driven simulator capable
of executing the logic specifications is shown. The library
includes theories to model logic signals over time, where time
is a variable in the domain of real numbers. The simulator

is based on the paradigm of event-driven-simulation, and its
core component is defined as a function in the higher-order
logic language of the PVS system. proving environment. The
approach has been applied to a simple case study in the field
of NPPs. The same case study had been previously studied by
other researchers with a model checking approach [10].

This work is part of our current research activity aiming at
developing a simulation and analysis framework for control
logics that enables developers to rely both on simulation and
theorem proving to assess the correctness of specificationsand
designs.

REFERENCES

[1] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal Verification
for Fault-Tolerant Architectures: Prolegomena to the Design of PVS,”
IEEE Trans. on Software Engineering, vol. 21, no. 2, pp. 107–125, 1995.

[2] “Railway applications – Software for railway control and protection
systems,” CENELEC, European Committee for Electrotechnical Stan-
dardization, Tech. Rep. EN 50128:2001 E, 2001, european standard.

[3] “Software for Computer Based Systems Important to Safety inNuclear
Power plants,” IAEA, International Atomic Energy Agency, Tech. Rep.
NS-G-1.1, 2000.

[4] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “Eval-
uating, testing, and animating pvs specifications,” ComputerScience
Laboratory, SRI International, Tech. Rep., 2001.

[5] C. Muñoz, “Rapid prototyping in PVS,” National Institute of Aerospace,
Hampton, VA, USA, Tech. Rep. NASA/CR-2003-212418, 2003.

[6] A. M. Law and D. Kelton,Simulation Modeling and Analysis. McGraw-
Hill, 2000.

[7] “IEEE Standard Verilog Hardware Description Language,” IEEE, Tech.
Rep. IEEE Std 1076-2000, 2000.

[8] “GTKWave 3.3 Wave Analyzer User’s Guide,” BSI, Tech. Rep., 2009.
[9] International Electrotechnical Commission,Programmable controllers -

Part 3: Programming languages, Ed 2.0, International Standard IEC
61131-3, IEC, 2003.

[10] K. Björkman, J. Frits, J. Valkonen, J. Lahtinen, K. Heljanko, I. Niemel̈a,
and J. J. Ḧamäläinen, “Verification of Safety Logic Designs by Model
Checking,” in Sixth American Nuclear Society International Topical
Meeting on Nuclear Plant Instrumentation, Control, and Human-
Machine Interface Technologies (NPIC&HMIT 2009), 2009.

[11] S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A tutorial on using
PVS for hardware verification,” inTheorem Provers in Circuit Design
(TPCD ’94), ser. LNCS, R. Kumar and T. Kropf, Eds. Springer-Verlag,
1997, no. 901, pp. 258–279.

[12] M. Srivas, H. Rueß, and D. Cyrluk, “Hardware verification using PVS,”
in Formal Hardware Verification: Methods and Systems in Comparison,
ser. LNCS, T. Kropf, Ed. Springer-Verlag, 1997, no. 1287, pp. 156–205.

[13] C. Berg, C. Jacobi, and D. Kröning, “Formal verification of a basic
circuits library,” in Proc. of the IASTED International Conference on
Applied Informatics, Innsbruck (AI 2001). ACTA Press, 2001.

[14] R. R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” inProceedings of the IEEE International Sympo-
sium on Requirements Engineering, 1993, pp. 126–133.

7

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            12 / 38



Sharing Ballistics Data across the European Union 
 

Richard S Wilson 
C3RI 

Sheffield Hallam University 
Sheffield, United Kingdom 

r.wilson@shu.ac.uk  
 

 
Lukasz Jopek 

C3RI 
Sheffield Hallam University 
Sheffield, United Kingdom 

l.jopek@shu.ac.uk  
 

 
Christopher D Bates 

C3RI 
Sheffield Hallam University 
Sheffield, United Kingdom 

c.d.bates@shu.ac.uk 

 
Abstract - Across Europe police organisations are using 
numerous systems, both computerised and manual, to capture 
information about firearm crimes. The Odyssey platform 
intends to address this issue by providing police organisations 
with the ability to access ballistics data from other European 
law enforcement agencies. The Odyssey platform is a prototype 
system that has been developed to identify standards for the 
development of a European wide ballistics information system. 
In this paper, we outline the investigation tools found within 
the platform and discuss how these were developed. The 
prototype has been demonstrated to law enforcement 
communities across Europe and is in its final stages of 
development. 
 

 Keywords – ballistics; sharing; law enforcement; data 
mining; Europe.  

I.  INTRODUCTION 

Police organisations across Europe deploy many 
different systems, both computerised and manual, to record 
information about crimes which involve the use of firearms. 
Ballistics crime is relatively rare – just 0.2% of all crimes in 
the UK involve firearms, but justifiably this is taken very 
seriously by Law Enforcement Agencies. The disparate 
systems used today are well suited to resolving crimes when 
they are committed locally, but problems arise when 
crossing jurisdictions.  Although individual offences are 
unlikely to cross borders, guns and bullets are moved 
between European Countries [4]. Exchanging information 
so that, for example, guns can be tracked or patterns of 
usage followed has always been difficult. Information is 
often exchanged via the telephone, email or one-to-one 
meetings. Before information can be shared, investigators 
need to have some indication that the ballistic item is linked 
to another offence.  

The Odyssey project addresses this problem by 
providing users with access to a plethora of information 
from investigations across Europe. Incidents are evaluated 
to find ones which are similar to the one under 
investigation. Detectives are then alerted to these similar 
incidents. The Odyssey platform provides police users with 
access to information such as expert and witness statements, 
images and videos, as well as details of bullets, cartridge-
cases and firearms. All of this information is presented 
through directed graphs or a historical timeline view of an 
investigation. Odyssey improves crime resolution times by 
facilitating communication between experts.  

In this paper we will describe the data structures which 
underpin Odyssey. We will provide an overview of some of 
the most recent developments in police information 
management systems followed by a description of the 
Odyssey platform prototype. The paper concludes with a 
discussion about the standards that were identified through 
the development of the prototype.   

II. BEYOND STATE OF THE ART 

Internationally, there are a number of crime database 
systems in use by different law enforcement agencies. Some 
of these systems include: COPLINK, NABIS (National 
Ballistics Intelligence Service), HOLMES (Home Office 
Large Major Enquiry System) 2 and I-24/7.    

COPLINK is an information and knowledge 
management system aimed at capturing, accessing, 
analysing, visualising and sharing information between 
United States (US) law enforcement agencies. COPLINK 
comprises of two components COPLINK Connect (CC) and 
COPLINK Detect (CD).  

CC is designed to integrate disparate heterogonous data 
sources, including legacy systems, to facilitate information 
sharing between police departments. CC provides police 
officers with access to one central data repository, which 
allows them to carry out four types of independent searches 
(person, vehicle, incidents or locations). In addition to this, 
police officers can carry out partial and phonetic based 
searching, access previous searches and upload images and 
documents. 

CD expands the functionality of CC to automatically 
find associations within police databases. It is aimed at 
supporting detectives and crime analysts in finding 
associations between people, vehicles, incidents and 
locations. At present the system is able to find associations 
between individual entities, but is unable to map them onto 
a geographical map. The strength of an association is 
determined through the use of co-occurrence analysis and 
clustering. The system is able to search for meaningful 
terms in both structured (database tables) and unstructured 
(witness statements) data [1].   

UK police forces have access to a number of 
independent database systems. These databases are used to 
record, monitor and manage offences in such areas as sex 
offences, gun crimes and major incident management.  

8

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            13 / 38



NABIS provides ballistic examination services, for 
twenty UK based police forces, through three hubs, which 
are based in London, Birmingham and Manchester [7]. 

The database is fundamental to the service that NABIS 
provides. The NABIS database supports the recovery and 
analysis of ballistic items. Associations between the ballistic 
information, people, objects and events are formed to create 
tactical intelligence. Security is implemented on a per-user 
basis so that users are only able to access information that is 
relevant to their role [6]. 

HOLMES2 is an information management system which 
assists police forces in the investigation of serious crimes, 
such as serial murders, large scale fraud and major disasters. 
HOLMES2 lets police forces share information and identify 
links between independent incidents. HOLMES2 is an 
Oracle based database that resides on a UNIX system [9].   

Across Europe, Interpol has implemented the I-24/7 
global police communications system that allows 188 
member countries to share information about criminals and 
criminal activities. I-24/7 provides member countries with 
24 hour access to a vast array of police information. Such 
information is related to suspected terrorists, wanted 
persons, fingerprints, DNA profiles and stolen vehicles. In 
addition to this, the I-24/7 system provides each member 
country with access to other member’s national databases 
[4]. 

When ballistics crimes are investigated, recovered items 
such as guns, bullets or cartridge-cases can be compared by 
forensic specialists.  Test-fired bullets are examined for a 
range of marks made as they pass down the barrel of the gun 
[2]. By comparing the marks on different bullets a trained 
examiner can determine if two bullets come from the same 
weapon. The process of examining bullets under a 
microscope is time-consuming and difficult.  A number of 
systems such as IBIS, Papillon and EVOFINDER have been 
built to automate the evaluation process; however, these 
systems do not inter-operate [11]. A bullet scan from one 
manufacturer's system cannot be used on anothers. 

The Odyssey project is helping to define standards for 
sharing ballistics data between systems across Europe. 
Figure 1 provides some indication of the different ballistic 
matching systems in place across Europe.  
 

 
Figure 1. Ballistic systems in place across Europe 

This is in contrast to the United States of America 
(USA), where IBIS has first mover advantage and has 
developed a centralised IBIS system. Furthermore, Odyssey 
is different to NABIS and the I-24/7 database currently in 
place in the UK and across Europe, as the NABIS database 
is specifically designed to manage the examination of 
ballistic items. The I-24/7 database has a European-wide 
database which largely retains information related to the 
individual. The I-24/7 system doesn’t integrate data from 
ballistic systems due to the heterogeneous nature of data. 
Odyssey is different to other US and European police 
systems, as Odyssey seamlessly combines relational 
querying and data mining results from multiple different 
domains. 

III.  INTELLIGENT SEARCHING 

Odyssey retains data within two main databases - a local 
database and a central database called CEON. The local 
database is maintained by the individual police organisation, 
whilst CEON holds ballistics data uploaded by police 
organisations across Europe. The data within the local 
database is replicated within CEON through an XML 
transfer structure, which is updated on a daily basis. The 
central database is interrogated, using supervised and 
unsupervised data mining techniques, to find associations 
with other ballistic incidents that have been committed 
across Europe. It is anticipated that the central database will 
handle at least six hundred thousand new ballistic incidents 
per year. This is based on the average number of firearm 
offences committed in the UK between 1999 and 2009, 
multiplied by the number of member states [3]. Each police 
organisation with a related ballistic incident is alerted to the 
fact that an association has been found. An alert is generated 
when a potential match is identified in the central database. 
An automated message is then sent back to the user to 
inform them that a potential match has been found. This 
message is delivered to an e-mail type inbox within the GUI 
(Graphical User Interface). In addition to this, the platform 

9

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            14 / 38



allows individual police organisations to restrict access at 
the individual ballistic incident level to their data.  

Extracting intelligence using the GUI is achieved in two 
stages. First, the user defines the search item then they 
browse the results, which can then lead to further searches. 
Figure 2, below, shows a search that has been carried out 
through the Odyssey GUI. 

 

 
Figure 2. Odyssey GUI 

First, the user selects a basic or ballistic tactical item 
and refines their search in the search properties. The user 
then has the option to add further tactical items and link 
them to the results of the previous search. Searches are 
refined, in the platform, through the search properties which 
converts the query into OSL (Odyssey Semantic Language). 
Querying with OSL allows the user to access information 
directly from the database and combines it with intelligence 
from the data mining backend. Below is an example of a 
simple OSL query generated through the GUI. 

 
QUERY person WHERE weapon HAS VALUE Sig Sauer 

P238 AND country HAS VALUE France 
 
Expanding the query to determine similar ballistic incidents 
by using the data mining backend and within a confidence 
limit is expressed as follows: 
 

QUERY person WHERE weapon HAS VALUE Sig Sauer 
P238 AND country HAS VALUE France WITH 

CONFIDENCE > 0.7 
 

Having identified the high level information, through the 
GUI, the user is able to drill down into it. This data is 
contained within the Odyssey Evidence Repository (OER). 
The OER provides access to some of the physical artefacts 
collected through the investigation process, including: 
images, videos and expert and witness statements. 
 In addition to this, Odyssey also provides historical data 
views of related incidents. These views are presented to the 
user as a timeline. This promotes transparency as the user is 

able to identify any updates that have occurred as the 
investigation has progressed, which includes the 
identification of additional ballistic incidents and changes 
made to the underlying information.   

The intelligent searching services found within 
Odyssey’s arsenal are vital to facilitating the resolution of 
ballistic incidents committed across Europe. 

IV.  ODYSSEY HUB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Architecture of the Odyssey Platform 
The Odyssey platform is pragmatic software that can run on 
any standard off the shelf system. It was developed through 
the integration and repurposing of open source and common 
off the shelf software applications. These included Java, 
NetBeans, PostgreSQL, Antlr and SAS. Whilst the platform 
currently utilities SAS for the integration and mining of data 
the software could quite easily be replaced with open 
sourced software such as Python and WEKA. Figure 3 
above provides an overview of the architecture of the 
Odyssey platform. 

External data, from European police organisations, is 
extracted and transformed using SAS Integration Studio. 
This data is then loaded into the local authority database, 
which is a replication of the central database. These 
databases were developed using PostgreSQL and are based 
on the database structures currently in place at NABIS, 
Europol and CiFEx (Centre for Information on Firearms and 
Explosives) – CiFEx are ballistic experts in the UK. This 
helped to focus the development of the databases towards 
ballistic incidents. This allows the user to manage their own 
data and helps to insure the smooth transfer and integration 
of data between the local and central databases. There are 
over fifty tables in the database that are linked using Object 
Identifiers (OIDs). An OID is automatically generated when 
data is uploaded into the database, which is unique across 

 

OSL Parsers & Query Generators 

SAS 

9.2 

Semantic 

Database 

Historical 

Data 

Views 

Central 

PostgreSQL 

Instance 

CEON Alerting 

Results Collation 

Message Queue 

XML XML 

XML 

Local Authority 

GUI (Querying & 

Alerting) 

SAS Integration 

Studio 

Local PostgreSQL 

Instance 

External Data Sources 

10

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            15 / 38



the entire instance of the database. Referential integrity 
between items is not maintained by the databases. This 
causes scalability problems as associations between data 
items have to be made outside of the database. This issue is 
further compounded by the predicted size of the database, 
given the number of ballistic incidents per year. Indeed, as 
the platform stores images, videos and statements, the 
anticipated size of the database is expected to grow into the 
terabytes. A binary items table was therefore implemented 
within the database which works as a file system that points 
to the stored images, videos and statements. 

 Data is uploaded into the local component through the 
GUI. This is achieved through a number of automatically 
generated SQL insert statements, which is then speeded up 
through the use of OIDs. It is at this point where the user is 
able to specify the initial sharing permissions. This is done 
through the GUI, by selecting the ALLOW or DENY option 
followed by the user specified options. The user specified 
options allow the user to grant or restrict access at five 
levels: country, region, police organisation, department and 
user. These options are then changed into numerical codes 
that are later translated, along with the insert statements, 
into OSL. These codes are then retained within the 
permissions table of the authorisation database. Data is 
loaded into the local database through the GUI, see Figure 
4.  

 
 

 
 
 
 
 
 
 

Figure 4. Odyssey XML Transfer Structure 
The GUI translates the OSL into SQL which is used to pass 
data to the local database as XML. The data is then 
transferred to CEON using the same XML structure, where 
it is interrogated for associations. Through the use of SAS 
integration studio, we have demonstrated that it is possible 
to extract, transform and load data from ballistic and 
incident systems into a relational database structure. 
 When a match is identified an alert is then triggered and 
sent back to the local component. If permission is granted to 
view the data, the related data is also sent back to the local 
users through the XML structure. Following on the data is 
then retained in the cache of the local component where it is 
serialised within the platform. The platform also allows the 
user to modify their data, which is done through the 
translation of SQL update or delete statements into OSL. 
The process of uploading and returning a result (alert and 
data) is completed in twenty four hours. The user is 
restricted from directly changing the data in the central 
database due to batch data mining and user processing. A 
change to the central database would occur within twenty 
four hours of a user modifying the local database. When the 

update has occurred the users receive an alert that asks them 
to re-run their query.   

 The shared data is based on the options specified by the 
user, which is retained in the permissions table within the 
authorisation database. The shared data is sent back to the 
local component through the XML structure where it is 
serialised within the platform. It is presented to the user as a 
related result within the GUI. Figure 5 below shows the 
results of an Odyssey search.  

 
Figure 5. Search Result 

This shows the related crimes committed by Edwards, 
Cooper and Bailey. 

 Querying the database is carried out through using the 
GUI, or by creating OSL with the built in assisted functions. 
Querying with the GUI, the user drags a tactical item from 
the tool bar and specifies the search options in the search 
properties. The user specified options are transformed into 
OSL using the backend semantic engine. OSL is a grammar 
that was developed in Antlr, which translates the search into 
SQL and is specifically designed to hide the underlying 
structure of the database from the user. The semantic 
language was created through understanding how police 
investigators communicate and think during investigations 
and by capturing domain specific knowledge about the 
meaning of police language. Below is an example of OSL 
and its translation into SQL: 
 

QUERY ballistic incident WHERE weapon_manufacturer 
HAS VALUE Sig Sauer AND victim_gender HAS VALUE 

female 
 
SELECT * 
FROM odyssey.ballistic_incident 
LEFT JOIN ballistic_incident_has_recovered_firearm ON 
(ballistic_incident_has_recovered_firearm.recovered_firear
m_oid = ballistic_incident.oid) 
LEFT JOIN ballistic_incident_has_recovered_firearm ON 

GUI 

 

Data 

Local Component 

 

 

Data 

CEON 

 

 

Data 

XML 
 

XML 
 

11

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            16 / 38



(ballistic_incident_has_recovered_firearm.recovered_firear
m_oid = recovered_firearm.oid) 
LEFT JOIN ballistic_incident_has_case ON 
(ballistic_incident_has_case.ballistic_incident_case_oid = 
ballistic_incident.oid) 
LEFT JOIN ballistic_incident_has_case ON 
(ballistic_incident_has_case.ballistic_incident_case_oid = 
case.oid) 
WHERE case.gender_of_victim = “female” AND 
recovered_firearm.manufacturer = “Sig Sauer”;  
 

 If the user specifics a confidence limit then Odyssey 
will return the results ranked in descending order of 
confidence. The confidence is calculated on a daily basis, by 
applying prebuilt algorithms to a merged copy of the central 
database tables the Odyssey data mining mart (DMM). The 
data is merged using SAS Data Integration Studio and is 
scored using prebuilt algorithms that were created in SAS 
Enterprise Miner. The score is returned to the ballistic 
incident table by matching the OID from the DMM with the 
OID in the ballistic incidents table. The ballistic incidents 
table is then sorted in descending order of score. The 
following is an example of an OSL query with an expressed 
confidence limit, which is translated into SQL: 
 

QUERY ballistic incident WHERE weapon_manufacturer 
HAS VALUE Sig Sauer AND victim_gender HAS VALUE 

female WITH CONFIDENCE > 0.7 
 
SELECT * 
FROM odyssey.ballistic_incident 
LEFT JOIN ballistic_incident_has_recovered_firearm ON 
(ballistic_incident_has_recovered_firearm.recovered_firear
m_oid = ballistic_incident.oid) 
LEFT JOIN ballistic_incident_has_recovered_firearm ON 
(ballistic_incident_has_recovered_firearm.recovered_firear
m_oid = recovered_firearm.oid) 
LEFT JOIN ballistic_incident_has_case ON 
(ballistic_incident_has_case.ballistic_incident_case_oid = 
ballistic_incident.oid) 
LEFT JOIN ballistic_incident_has_case ON 
(ballistic_incident_has_case.ballistic_incident_case_oid = 
case.oid) 
WHERE case.gender_of_victim = “female” AND 
recovered_firearm.manufacturer = “Sig Sauer” AND 
ballistic_incident.score > 0.7;  
 

 Documents are stored in a separate PostgreSQL 
database as blobs. Using local compatible software, police 
experts are able to share information across the platform. It 
helps to facilitate communication between experts, as they 
are able to access documents from other law enforcement 
agencies, along with their contact details. Such 
communication is believed to be vital in helping to resolve 
crimes that have been carried out in different locations [8].   

 Historical data are presented to the user as a timeline of 
events, which shows any updates to the incidents and any 
associated incidents that the user has the authority to view. 
An update is defined as the user deleting, updating or 
inserting data into an existing ballistic incident. The timeline 
of historical events is created through using another 
PostgreSQL database, which stores the delta along with the 
author and date/time of the change. The updated item is 
identified in the historical database by the OID of the initial 
item, combined with an SQL timestamp. The approach 
adopted by the platform is quite unique as other historical 
databases that use OIDs with timestamps have retained the 
historical data in the same database. The main argument to 
support this is that consistency and speed of data retrieval is 
maintained when the historical data is stored in the same 
database [10]. Whilst speed of retrieval and consistency of 
data items is important to the platform, the initial aim is to 
return the latest view of the ballistic incident to the user. 
The speed in which historical data is returned to the user is 
however improved, through the use of the OID and 
timestamp, as the requested data is easily ranked through 
sorting these values in ascending order.  

V. TOWARDS COMPLETION 

Further development of the platform will focus on the 
automatic identification of key words in expert and witness 
statements – the Odyssey Statement Miner (OSM). This will 
present the user with a list of key words, ranked in order of 
occurrence, from the associated statements. We expect that 
this will help the police experts to assess the usefulness of 
the documentation.  

 The OSM will be developed using SAS Text Miner in 
conjunction with a bespoke java programme, which 
removes any conjunctive adverbs from the statements. SAS 
Text Miner will be used to identify any words that occur 
more than three times within a statement. From this a 
dictionary of words, along with the frequency of occurrence 
will be created. This will then be presented to the user as a 
list of words in descending order of frequency. It is hoped 
that this will help the user to decide whether or not to view 
the statement.  

It is noticeable and disappointing that no EU-wide 
standards exist for secure police data systems. Odyssey has 
been able to demonstrate that widely available open 
software can be repurposed easily to build such systems. 
The project will be recommending a list of such 
technologies. 

VI. CONCLUSION 

This paper provides an overview of some of the most 
current crime information management systems in place in 
the USA, UK and across Europe. It highlights that there is a 
need for a platform which combines data from the different 
ballistic systems currently in place across Europe. An 
overview of the functions found within the prototype are 
also discussed, which focuses upon accessing, loading, 

12

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            17 / 38



sharing and querying of data. The development of the 
investigation tools within the platform are also explained 
and future work in relation to the completion of the 
prototype is outlined. The paper concludes with a brief 
discussion regarding the standards that will be 
recommended at the end of the project.  

REFERENCES 
[1] Chen, H., Zeng, D., Atabakhsh, H., Wyzga, W.,  and Shroeder, J. 

(2003), COPLINK Managing Law Enforcement Data and Knowledge, 
Communications of the ACM, January 2003. Vol. 46, No.1. pp. 28-
34. 

[2] Bundeskriminalamt. (2004), Firearm Type Determination, Available 
[online]: https://www.forensic-firearms.bund.de/ [17/06/2010]. 

[3] Gun Control Network. (no date), Firearm Offences – England and 
Wales, Available [online]: http://www.gun-control-
network.org/GF05.htm [17/06/2010]. 

[4] Interpol. (no date,) Connecting Police: I-24/7, Interpol, Available 
[online]: http://www.interpol.int/Public/ICPO/FactSheets/GI03.pdf 
[17/06/2010]. 

[5] Leon, F.P. (2005) 'Automated comparison of firearm bullets', 
Forensic Science International, Vol. 156, February, pp. 40-50. 

[6] National Ballistics Intelligence Services. (no date), Database, 
Available [online]: http://www.nabis.police.uk/database.asp 
[16/06/2010]. 

[7] Sims, C. (2010), National Ballistics Intelligence Service Update 
Report, West Midlands Police Authority, Available [online]: 
http://www.west-midlands-
pa.gov.uk/documents/committees/public/2010/12_PerfandOps_22Apr
il2010_National_Ballistics_Report.pdf , [16/06/2010]. 

[8] Travis, J. (1998), ‘Informal Information Sharing Among Police 
Agencies’, National Institute of Justice, December 1998. 

[9] Unisys. (2007), What is Holmes 2?, Unisys, Available [online]: 
http://www.holmes2.com/holmes2/whatish2/ [17/06/2010]. 

[10] Van Oosterom, P. (no date), ‘Maintaining Consistent Topology 
including Historical Data in a Large Spatial Database’, Cadastre 
Netherlands. pp. 327-336. 

[11] Yates, S., Jopek, L. Johnson Mitchell, S., and Wilson, R. (2009), 
‘Semantic Interoperability between Ballistic Systems through the 
Application of Ontology’, IADIS WWW/ Internet Conference. Vol. 2 
pp. 153-157. 

 
 
 
 

13

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            18 / 38



Euclides – A JavaScript to PostScript Translator

Martin Strobl, Christoph Schinko
Institut für ComputerGraphik und WissensVisualisierung

Technische Universität Graz, Austria
{ m.strobl, c.schinko }@cgv.tugraz.at

Torsten Ullrich1, Dieter W. Fellner2
1,2 Fraunhofer Austria, Graz, Austria

2 Fraunhofer IGD & TU Darmstadt, Germany
torsten.ullrich@fraunhofer.at
d.fellner@igd.fraunhofer.de

Abstract—Offering an easy access to programming languages
that are difficult to approach directly dramatically reduces
the inhibition threshold. The Generative Modeling Language
is such a language and can be described as being similar
to Adobe’s PostScript. A major drawback of all PostScript
dialects is their unintuitive reverse Polish notation, which
makes both - reading and writing - a cumbersome task. A
language should offer a structured and intuitive syntax in order
to increase efficiency and avoid frustration during the creation
of code. To overcome this issue, we present a new approach
to translate JavaScript code to GML automatically. While this
translation is basically a simple infix-to-postfix notation rewrite
for mathematical expressions, the correct translation of control
flow structures is a non-trivial task, due to the fact that there
is no concept of “goto” in the PostScript language and its
dialects. The main contribution of this work is the complete
translation of JavaScript into a PostScript dialect including all
control flow statements. To the best of our knowledge, this is
the first complete translator.

Keywords-PostScript; JavaScript; translator; transpiler

I. MOTIVATION

The language PostScript [1] by JOHN WARNOCK and
CHARLES GESCHKE at Adobe Systems is a dynamically
typed concatenative programming language which is known
for its use as a page description language for desktop
publishing. Beginning in the 1980s PostScript (PS) and its
descendants, namely the Portable Document Format (PDF)
[2], are still the standard for electronic distribution of final
documents for publication. Besides desktop publishing, the
programming language PostScript has been used in display
[3] and window systems [4] [5] as well. Nowadays it
has its revival in procedural 3D modeling. The Generative
Modeling Language (GML) [6] is a programming language
based on PostScript. It follows the “Generative Modeling”
paradigm [7], where complex data sets are represented by
algorithms and parameters rather than by lists of objects.
With ever increasing computing power becoming available,
generative approaches [8] [9] become more important since
they trade processing time for data size. At run time the com-
pressed procedural description can be “unfolded” on demand
to very quickly produce amounts of meshes, textures, etc.
that are several orders of magnitude larger than the input
data.

A. PostScript in 3D

GML is very similar to Adobe’s PostScript, but without
any of the 2D layout operators. Instead, it provides a number
of operators for creating 3D models.

PostScript and GML are interpreted, stack-based lan-
guages with strong dynamic typing, scoped memory, and
garbage collection. The language syntax uses reverse Polish
notation, which makes the order of operations unambiguous,
but reading a program requires some practice, because one
has to keep the layout of the stack in mind [10]. Most
operators and functions take their arguments from the stack,
and place their results onto the stack. Literals (numbers,
strings, etc.) have the effect of placing a copy of themselves
on the stack. Sophisticated data structures can be built on
array and dictionary types, but cannot be declared to the type
system. They remain arrays and dictionaries without further
type information.

B. JavaScript

PostScript programs are typically not produced by hu-
mans, but by other programs, e.g., printer drivers and de-
vices. However, it is possible to write computer programs in
PostScript just like in any other programming language.

In order to simplify the GML development and 3D design
process, 3D modeling tools (Autodesk Maya, 3ds Max, etc.)
can be used. Unfortunately, these tools do not preserve the
generative nature. They can only export the generated result.

Encoding shape as program code clearly has the greatest
flexibility, but up to now it requires coding (programming),
which is usually done by humans. To accelerate the GML
creation process and to increase efficiency we propose
a JavaScript (JS) translator to GML. JS is a structured
programming language featuring a rather intuitive syntax,
which is easy to read and to understand. It also incorporates
features like dynamic typing and first-class functions. The
most important feature of JS is that it is already in use
by many non-computer scientists, namely designers and
creative coders [11]. JS and its dialects are widely used
in applications and on the Internet: in Adobe Flash (called
ActionScript), in interactive PDF files, in Microsoft’s Active
Scripting, in VRML97, etc. Consequently, a lot of documen-
tation and tutorials to introduce the language exist [12]. In

14

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            19 / 38



order to be used for procedural modeling, JS is missing some
functionality, which we added via libraries.

C. Overview

Euclides (www.cgv.tugraz.at/euclides) is a transpiling
framework written in Java. Euclides will also translate an
input JS program to Java or documents its structure in
HTML. It features its own integrated development environ-
ment (IDE), from which one can transpile to the supported
target languages. Our translation to GML makes the rich
feature set of the Generative Modeling Language accessible
to a wider range of users, because it hides much of the
complexity involved in writing GML programs.

In the subsequent sections, we explain the JS to GML
translator. Having parsed JS using ANTLR [13], the trans-
lation process begins with a correct (according to EC-
MAScript, ECMA-262, ISO/IEC 16262) Abstract Syntax
Tree (AST). Then we show how data types, functions and
operators are translated and explain the control flow.

II. DATA TYPES

In JS each variable has a particular, dynamic type. It may
be undefined, boolean, number, string, array, object,
or function. GML also has a dynamical type system.
Unfortunately, both type systems are incompatible to each
other. Therefore, translating JS data types to GML poses two
particular problems: On the one hand, the dynamic types
must be inferred at run time. On the other hand, GML’s
native data types lack distinct features needed by JS. GML-
Strings, for example, cannot be accessed character-wise.
We solved these problems by implementing JS-variables
as dictionaries [6] in GML. Dictionaries are objects that
map unique keys to values. These dictionaries hold needed
metadata and type information as well as methods which
emulate JS behavior. As we will show later, we will utilize
GML’s dictionaries for scoping as well.

The system translation library for GML (which every JS-
translated GML program defines prior to actual program
code) contains the function sys_init_data, which defines
an anonymous data value in the sense of JS data.
/sys_init_data {

dict begin
/content dict def
content begin

/type edef
/value edef
/length { value length } def

end
content
end

} def

sys_init_data opens a new variable-scope by defining a
new, anonymous dictionary and opening it. In this new
scope, another newly created dictionary is defined by the
name content. This content-dictionary receives three en-
tries: type, value and the method length. Each entry value
is taken from the top of GML’s stack. The newly created

dictionary is then pushed onto the stack and the current
scope is destroyed by closing the current dictionary, leaving
the anonymous dictionary on the stack. In GML notation, a
JS-variable’s content is defined by pushing the actual value
and a pre-defined constant to identify the type of the variable
(such as Types.number, Types.array, etc.) onto the stack,
and calling sys_init_data. The translator prefixes all JS-
identifiers with usr_ (in order to ensure that all declarations
of identifiers do not collide with predefined GML objects)
and uses the following translations:
Undefined: Variables of type undefined result from op-
erations that yield an undefined result or by declaring a
variable without defining it. var x; leads to x being of type
undefined. It is translated to
/usr_x Nulls.Types.undefined
Types.undefined sys_init_data def

Boolean: In JS, boolean values are denoted by the keywords
true and false. The translation simply maps these values to
equivalent numerical values in GML, which interprets them.
The JS-statement var x = true; becomes
/usr_foo 1 Types.bool sys_init_data def

Number: All JS numbers (including integers) are repre-
sented as 32-bit floating point values. As GML stores
numbers as 32-bit floats internally as well, we simply map
them to GML’s number representation. For the sake of
completeness, var x = 3.14159; is translated to
/usr_x 3.14159 Types.number sys_init_data def

String: Although GML does support strings, they cannot
be accessed character-wise. We cope with this limitation by
defining strings as GML-arrays of numbers. Each number
is the Unicode of the respective character. As GML allows
to retrieve and to set array-elements based on indexes, this
approach meets all conditions of JS-strings. The statement
var x = "Hello World"; becomes
/usr_x [ 72 101 108 108 111 32 87 111 114 108 100 ]

Types.string sys_init_data def

Array: JS arrays allow to hold data with different types, the
array’s contents may be mixed. This behavior is in line with
GML. The JS-example var x = [true, false, "maybe"];

has a straightforward translation:
/usr_x [ 1 Types.bool sys_init_data

0 Types.bool sys_init_data
[109 97 121 98 101] Types.string sys_init_data ]

Types.array sys_init_data def

Object: In JS an object consists of key-value-pairs, e.g., var
x = { x: 1.0, y: 2.0, z: 42}; This structure is mapped
to nested GML-dictionaries. The value of a variable’s con-
tent is a dictionary of its own. This dictionary contains the
entries corresponding to JS-object’s members, which are also
defined as variable contents.

The example above defines a JS-object of name x with
key-value-pairs x to be 1, y to be 2, and z to be 42:

15

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            20 / 38



/usr_x dict begin
/obj dict def obj begin

/usr_x 1.0 Types.number sys_init_data def
/usr_y 2.0 Types.number sys_init_data def
/usr_z 42.0 Types.number sys_init_data def

end obj
Types.object sys_init_data end def

Opening an anonymous dictionary creates a new scope. In
this scope, a dictionary is created and bound to the name
/obj. It is then opened and its members are defined, just like
anonymous variables would be. The object dictionary is then
closed, put on the stack, and used to define an anonymous
variable. The enclosing anonymous scoping dictionary is
then closed and simply discarded.

JS objects may hold functions. Our translator Euclides
handles JS object-functions like ordinary functors (next
subsection) and assigns their internal name to a key-value-
pair.
Function: JS has first-class functions. Therefore, it is possi-
ble to assign functions to variables, which can be passed as
parameters to other functions, for example. In the following
example, a function function do_nothing() {} is declared
and defined. Afterwards, it is assigned to a variable var x =

do_nothing;. If we abstract away from the translation of the
function do_nothing, the statement var x = do_nothing;

becomes:
/usr_do_nothing {

%% ... definition of function omitted ...
} def

/usr_x /usr_do_nothing Types.function sys_init_data def

In JS, x can now be used as a functor, which acts the
same ways as do_nothing. Because such functors can be
reassigned, it is necessary to handle functor calls (x())
differently than ordinary function calls (do_nothing()). In
this situation Euclides creates a temporary array, which
contains the functor parameters and passes this array as well
as the variable referencing the function name to a system
function sys_execute_var. This system function resolves
the functor and determines the referenced function, unwraps
the array and performs the function call.

III. FUNCTIONS

A. Translation of JS Functions

In GML, functions are defined using closures, such as
/my_add { add } def. If this function my_add is executed,
the closure { add } is put onto the stack, its brackets are
removed, and the content is executed.

To execute a GML function, its parameters need to be put
on the stack prior to the function call: 1.0 2.0 my_add The
resulting number 3.0 will remain on the stack. Please note,
that GML functions may produce more than one result (left
on the stack) at each function call. This allows to define
functions with more than one result value. Following JS,
called functions return only one value by convention. The
number and names of function parameters are known at

compile time. Only functors (referenced functions stored in
variables) may change at run time and cannot be checked
ahead of time.

Translated functions and parameters are named just like
their JS-counterparts (except for their usr_ prefix).

B. Scopes

As JS uses a scoping mechanism different to GML, it has
to be emulated. This is a rather difficult task, which has to
take the following properties of JS scopes into account.

• JS functions may call other functions or themselves.
• Called functions may declare the same identifiers as the

calling functions.
• Within functions other functions may be defined.
• Blocks might be nested inside functions, redefining

symbols or declaring symbols of the same name.
The translator uses GML’s dictionary mechanism to emulate
JS-scopes. A dictionary on the dictionary stack can be
opened and it will take all subsequent assignments to GML-
identifier (variables). Since only the opened dictionary is
affected, this behavior is the same as the opening and closing
scopes in different scoped programming languages, such as
C or Java.

Thus an assignment /x 42 def can be put into an isolated
scope by creating a dictionary (dict), opening it (begin),
performing the assignment, and closing the dictionary (end).
The following example shows how such GML scopes can
also be nested:
dict begin

/x 3.141 def %% x is 3.141
dict begin %%

/x 4 def %% x is 4.0
end %% x is 3.141

end %% x is unknown

As noted before, JS supports redefinition of identifiers that
were declared in a scope below the current one. Fortunately,
GML exhibits just the same behavior when reading out the
values of variables/keys from dictionaries of the dictionary
stack. Consequently, the following example works as ex-
pected.
dict begin

/x 42 def
dict begin

/y x 1 add def %% y is now 43
end

end

However, assignments to variables have to be handled
differently in GML. The Generative Modeling Language
does not distinguish between declaration and definition, any
declaration must be a definition and vice versa.

The translator solves this problem. It uses a system
function (which is included into all translated JS sources
automatically) called sys_def. This function applies GML’s
where operator to the dictionary stack in order to find the
uppermost dictionary, where the searched name is defined.

16

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            21 / 38



The operator returns the reference to the dictionary, in which
the name was found.

C. Control Flow for Functions

The Generative Modeling Language and all PostScript
dialects lack a dedicated jump operation in control flow.
Imperative functions often require the execution context to
jump to a different point in the program at any time - and
to return from there as well.

Fortunately, GML provides an exception mechanism. A
GML exception is propagated down GML’s internal execu-
tion stack until a catch instruction is encountered. In this
way it overrides any other control structure it encounters. We
use GML’s exception mechanism to jump outside a function
as illustrated in the following empty function skeleton:
/usr_foo {

dict begin
/return_issued 0 def
{ dict begin

%% ... function body omitted ...
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined

Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

In this empty skeleton, the function opens a new anony-
mous scope. Inside this scope dict begin . . . end the
local identifier /return_issued is set to 0. Afterwards
a GML try-catch-statement { try_block } { catch_block

} catch contains the JS-function implementation. In this
translation, the catch block redefines /return_issued

to 1 to indicate that a JS return statement has
been executed in the function body. JS functions with-
out any return statement, automatically return null

resp. in GML Nulls.Types.undefined Types.undefined

sys_init_data. A corresponding JS-return statement, e.g.,
return 42;, is translated to

42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is put onto the stack. The
actual function body’s scope is closed end, and the throw

operator is applied. The distinction of whether the end of
the function body was reached by normal program flow or
via a return statement determines, if a return value needs to
be constructed (null) and put onto the stack.

Parameters to functions are simply put on the stack. The
function body retrieves the expected number of parameters
and assigns them to dictionary entries of the outer scope
defined in the function translation. A complete example of a
translated JS-function shows the interplay of all mechanisms.
The simple JS-function
function foo(n) { return n; }

is translated to

/usr_foo {
dict begin
/usr_n edef
/return_issued 0 def
{ dict begin
usr_n
end
throw
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

A function call, for example foo(3), yields the translation
3.0 Types.number sys_init_data usr_foo. If we assign
the function foo to a variable foo_functor, the calling
convention in GML would change significantly.
/usr_foo_functor /usr_foo Types.function sys_init_data def

is called via
[ 3.0 Types.number sys_init_data ]
usr_foo_functor sys_execute_var

and represents the JS call foo_functor(3.0);

D. Exceptions

The language JS supports throwing exceptions; e.g., throw
"Error: unable to read file.";. Its syntax is similar to
a return statement. To implement such behavior, we also
use GML’s exception handling mechanism. The Euclides
translator adds a call to the predefined system function
sys_exception_return_handler at the end of each trans-
lated function (see example above).

Throwing an exception in JS translates into a global
GML variable exception_thrown being set to 1, clos-
ing the current dictionary and calling GML’s throw.
The sys_exception_return_handler will check if an ac-
tual exception is being thrown, and if so, calls throw

again. A catch-block inside a JS program would set
exception_thrown to 0.

IV. OPERATORS

The evaluation of expressions demands variables to be
accessed. While GML provides operators that operate on
their own set of types, they obviously cannot be used to
access the translated/emulated JS-variables. For this reason,
the Euclides translator automatically includes a set of pre-
defined GML functions that substitute operators defined in
JS.

A. Value Access

Performing the opposite operation to sys_init_data,
sys_get_value will retrieve the data saved in a JS-variable
resp. its GML-dictionary. For example, to retrieve v.value

the function sys_get_value is applied to v.
/sys_get_value { begin value end } def

17

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            22 / 38



B. Element Access

The system function sys_get implements string, array and
object access. Applied to a string / an array Arr and index
k, it will return the element Arr[k]. If its parameters are
an object Obj and an attribute name, the function sys_get

executes Obj.name. This may result in a value, which is put
on the stack or in a function, which is called. Conforming
to JS, it returns JS undefined for any requested elements
that do not exist.
/sys_get {

dict begin
/idx exch def /var exch def

var.type Types.string eq {
%% ... handling strings ...

} if

var.type Types.array eq {
%% ... handling arrays ...

} if

var.type Types.object eq {
var sys_get_value idx known 0 eq {

%% return null, if element doesn’t exist
Nulls.Types.undefined
Types.undefined sys_init_data

} if
var sys_get_value idx known 0 ne {

%% access element
var sys_get_value idx get

} if
} if
end

} def

Analogous to sys_get, sys_put inserts data into strings and
arrays, or defines members of objects. If sys_put encounters
an index k that is out of an array’s range, the array is resized
and filled with JS undefineds.

C. Functors

The already mentioned routine sys_execute_var inspects
a given variable. If it is a function, it will retrieve the array
supplied to hold all parameters and execute the function.
The dynamic binding of functions to variables requires to
consider two situations at run time: The functor receives
the correct amount of parameters for its function, or the
number of parameters does not correspond to the referenced
function. In the later case, the function is not called and
null is returned instead.

At compile time, a function is defined to expect a concrete
number of parameters. This information is kept to perform
parameter checks at run time. In this way, the correct number
of parameters for all functors can be determined any time.

D. JS built-in Operators

To illustrate the translation of relational, arithmetical or
bit-shift operators defined by JS, we discuss the equal
operator ==. It is (like all such operators) mapped to a
corresponding routine sys_eq. Depending of the operands’
types it delegates the comparison to subroutines such as
bool_eq, string_eq or array_eq that perform the actual

comparison. If the types and the values do match, sys_eq
directly returns the JS-value true. If types do not match, the
variable is converted to the type of the respective operand,
as specified by JS, and then compared.

V. CONTROL FLOW

A. Conditional Statement

The JS if-then-else statement corresponds one-to-one to
the same GML statement. Consequently, the conditional ex-
pression is translated straightforwardly. Using the expression
mapping introduced in the previous section (e.g. sys_eq

implements the equality operator), the JS statement if(a

== b) { c = a; } else { c = b; } is translated info:
%% if (a==b)
usr_a usr_b sys_eq sys_get_value
{ %% then:

dict begin {
dict begin

/usr_c usr_a sys_def
end

} exec end
}
{ %% else:

dict begin {
dict begin

/usr_c usr_b sys_def
end

} exec end
} ifelse

The exec-statements (and their closures) stem from the fact
that both sub-statements, the then-part and the else-part, are
statement blocks { ... }. These blocks are executed within
their own, new scopes.

B. Loops

GML supports different types of looping control struc-
tures, which have similar names to JS-loops (e.g., both
languages have a for-loop). However, the GML counterparts
have different semantics (e.g., GML’s for-loop has a fixed,
finite number of iterations, which is known before execution
of the loop body, whereas JS-loops evaluate the stop condi-
tion during execution, which may result in endless loops).
The Euclides translator uses the GML loop mechanism,
which is an infinite loop that can be quit using the exit

operator.
An important problem is that control structures such as

for, while and do-while are not only controlled by the loop’s
stop condition, but also by JS statements such as continue

and break within the loop body (besides return and throw

as mentioned before). The statement break immediately
stops execution of the loop and leaves it, whereas continue

terminates the execution of the current loop iteration and
continues with the next iteration of the loop. Therefore, we
translate an empty while loop while(false) { ... } to
{ /continue_called 0 def

{ 0 Types.bool sys_init_data
sys_get_value not { exit } if
{ dict begin

%% ... loop body omitted ...
end

18

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            23 / 38



} exec
} loop
continue_called not { exit } if

} loop

GML’s exit keyword terminates the current loop. This
behavior is leveraged by the Euclides translator to implement
break and continue. The translation uses two nested loops
that will run infinitely.

Prior to the begin of the inner loop /continue_called is
set to 0. At the top of the inner loop, the loop condition is
tested. If the condition evaluates to false, the inner loop is
exited using GML’s exit. Otherwise a new scope is created
and the loop-statement executed within that scope.

During loop iterations, there are three scenarios under
which a loop can terminate:

1) If the loop condition is met: When the condition
evaluates to false, the inner loop is exited. Since
continue_called is not set to true, the outer loop
will terminate as well.

2) If the loop body encounters JS break (resp. GML
exit): Again, the inner loop is left. continue_called
will not be set to true, hence the outer loop will also
terminate.

3) If the function returns: GML’s exception throwing
mechanism will unwind the stack until the catch-
handler at the end of the function is encountered.

If the loop body encounters a JS-continue statement,
continue_called will be set to true and the GML exit

command will immediately stop the inner loop. Since
continue_called is set, execution does not leave the outer
loop, however. As a consequence, continue_called be-
comes 0 again, and execution re-enters the inner infinite
loop.

The do-while-statement is translated very similar to the
while-statement. The only semantic differences in JS are
that execution will enter the loop regardless of the loop-
condition and that the loop-condition is tested after loop
body execution. Euclides translates an empty do-while-
statement do { ... } while (false) as follows:
{ /continue_called 0 def

{ { dict begin
%% ... loop body omitted ...
end

} exec
0 Types.bool sys_init_data
sys_get_value not { exit } if

} loop
continue_called not { exit } if
0 Types.bool sys_init_data
pop

} loop

Due to a semantic difference of JS continue in do-while-
loops, this statement needs to be handled differently. If
continue is encountered, the loop condition must still exe-
cute before the loop body is re-entered, because side effects
inside the loop condition may occur (such as incrementing
a counter). Euclides handles this problem by executing the

condition expression a second time in the outer loop. Since
expressions always return values, any value resulting from
the loop-expression has to be popped off the stack.

Although GML has a for operator, it is semantically in-
compatible with JS’s one. Its increment is a constant number,
and so is the limit. In JS, both increment and limit must
be evaluated at each loop body execution. Therefore, we
translate for just like the previous constructs by two nested
loops with the increment condition repeated in outer loop
(due to continue semantics). Finally, Euclides translates the
JS statement for (var i=0; i < 1; i++) { } to GML via
dict begin
%% initialization (i=0)
/usr_i 0.0 Types.number sys_init_data def
{ /continue_called 0 def

{ %% condition (i<1)
usr_i 1.0 Types.number sys_init_data sys_lt
sys_get_value not { exit } if
{ dict begin

%% ... loop body ...
end

} exec
%% increment (i++)
usr_i

usr_i 1 Types.number sys_init_data sys_add
/usr_i sys_edef
pop

} loop
continue_called not { exit } if
%% increment again (i++)
usr_i

usr_i 1 Types.number sys_init_data sys_add
/usr_i sys_edef
pop

} loop
end

The JS for-in statement for(var x in array) statement;

is semantically equivalent to:
for (var i = 0; i < array.length; i++) {

var x=array[i]; statement;
}

This construction loops over the elements of an array
provides the loop body with a variable holding the current
element.

C. Selection Control Statement

The translation of the JS switch statement poses several
difficulties:

• If a case condition is met, execution can “fall through”
till the next break is encountered.

• If a break is encountered, the currently executed
switch statement must be terminated.

• Of course, switch statements may be nested.
To develop a semantically consistent solution, we did

not want to alter the translation of JS-break inside switch
statements (compared to loops). We solve the problem of
breaking outside the switch statement by implementing it
as a loop that is run exactly once. In GML it reads like 1 {
loop_instructions } repeat. This way our translation of
break shows semantically correct behavior, it terminates the
loop. Consider the following JS-program:

19

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            24 / 38



var x = 0, y = 0;

function bar() { return 3; }

function foo(i) {
switch(i) {

case 0:
case 1:
case 2: x = 1;
case 4: x = 3;
case bar(): x = 2; break;
default: y = 5;

} }

The function foo will be translated to:

/usr_foo
{ dict begin

/usr_i edef
/return_issued 0 def
{ dict begin

/switch_cnd_met1 0 def
1 { usr_i 0.0 Types.number sys_init_data sys_eq

sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_i 1.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
} if

usr_i 2.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 1;
/usr_x 1.0 Types.number
sys_init_data sys_def

} if

usr_i 4.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 3;
/usr_x 3.0 Types.number
sys_init_data sys_def

} if

usr_i usr_bar sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 2;
/usr_x 2.0 Types.number
sys_init_data sys_def
exit

} if
%% y = 5;
/usr_y 5.0 Types.number
sys_init_data sys_def

} repeat
currentdict /switch_cnd_met1 undef end
}
{ /return_issued 1 def } catch

return_issued not {
Nulls.Types.undefined
Types.undefined sys_init_data

} if
end
sys_exception_return_handler

} def

This example shows that we introduce an internal vari-
able /switch_cnd_metX for traversing the case state-
ments. As soon as a case statement condition is met,
/switch_cnd_metX is set to true, leading execution into
every encountered case statement.

The Euclides translator takes into account that switch
statements may be nested. As it traverses the AST,
it keeps book of all internal variable to ensure a
unique name (switch_cnd_met1, switch_cnd_met2, . . . ,
switch_cnd_metN).

The example translation shows that for foo(3) the cases
0, 1, 2, 4 and 3 (= bar()) will only execute case 3, where
the 1 { } repeat statement will be broken out of with the
GML exit operator. The default block will be executed in
any case if execution is still inside the repeat statement, no
further state is checked for default.

VI. EXAMPLE

To demonstrate the interplay of all translational building
blocks, this section shows a non-recursive, subtraction-based
version of the Euclidean algorithm to calculate the greatest
common denominator and its translation to GML. It can be
shown by induction that two successive Fibonacci numbers
are the computational worst-case of the Euclidean algorithm.
We use them as input data.
function fibonacci(index) {

switch (index) {
case 0:
case 1: return 1;
default: return fibonacci(index-2)

+ fibonacci(index-1);
}

}

function gcd(a,b) {
if (a == 0) return b;
while (b != 0)

if (a > b) a = a - b;
else b = b - a;

return a;
}

var x = gcd(fibonacci(5), fibonacci(6));

The corresponding GML code is:
/usr_fibonacci {

dict begin
/usr_index edef
/return_issued 0 def
{ dict begin

/switch_cnd_met1 0 def
1 {usr_index 0.0 Types.number sys_init_data

sys_eq sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_index 1.0 Types.number sys_init_data
sys_eq sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
1.0 Types.number sys_init_data
end throw

} if

usr_index 2.0 Types.number sys_init_data
sys_sub usr_fibonacci
usr_index 1.0 Types.number sys_init_data
sys_sub usr_fibonacci
sys_add
end throw

} repeat
currentdict /switch_cnd_met1 undef end

}
{ /return_issued 1 def } catch
return_issued not {

20

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            25 / 38



Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

/usr_gcd {
dict begin
/usr_a edef
/usr_b edef
/return_issued 0 def
{ dict begin

usr_a 0.0 Types.number sys_init_data
sys_eq sys_getvalue
{ usr_b end throw }
{}
ifelse

{ /continue_called 0 def
{ usr_b 0.0 Types.number sys_init_data

sys_ne sys_getvalue not { exit } if

usr_a usr_b sys_gt sys_getvalue
{ /usr_a usr_a usr_b sys_sub sys_def }
{ /usr_b usr_b usr_a sys_sub sys_def }
ifelse exec

} loop
continue_called not { exit } if

} loop
usr_a end throw
end
}
{ /return_issued 1 def } catch
return_issued not {

Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

/usr_x
6.0 Types.number sys_init_data usr_fibonacci
5.0 Types.number sys_init_data usr_fibonacci
usr_gcd

def

VII. CONCLUSION

In this article, we presented a JS to PostScript translator.
While this translation is a simple infix-to-postfix notation
rewrite for mathematical expressions (1+2 becomes basically
1 2 add), the correct translation of control flow structures
is a non-trivial task, due to the fact that there is no concept
of goto in the PostScript language and its dialects.

The main contribution of this work is the complete trans-
lation of JS into a PostScript dialect including all control
flow statements. To the best of our knowledge, this is the first
complete translator. Other projects (PdB by ARTHUR VAN
HOFF, pas2ps by DULITH HERATH and DIRK JAGDMANN)
do not support, e.g., return statements.

As Euclides offers a new access to GML, all GML users
will benefit from its results. The possibility to use GML via
a JS-to-GML translator reduces the inhibition threshold sig-
nificantly. Everyone, who knows any imperative, procedural
language (Pascal, Fortran, C, C++, Java, etc.) is familiar with
the language concepts in JS and can use Euclides. Advanced
GML users, who already know how to program in PostScript
style, can use Euclides to translate algorithms, which are
often presented in a imperative, procedural (pseudo-code)
style [14].

ACKNOWLEDGMENT

We would like to thank Richard Bubel for his valuable
support on ANTLR and the JS grammar. In addition, the
authors gratefully acknowledge the generous support from
the European Commission for the integrated project 3D-
COFORM (www.3Dcoform.eu) under grant number FP7
ICT 231809, from the Austrian Research Promotion Agency
(FFG) for the research project METADESIGNER, grant
number 820925/18236, as well as from the German Research
Foundation (DFG) for the research project PROBADO under
grant INST 9055/1-1 (www.probado.de).

REFERENCES

[1] Adobe Systems, Inc., PostScript Language Reference Manual
(first ed.). Addison-Wesley, 1985.

[2] “Document management – Portable Document Format,” 2008.

[3] Adobe Systems, Inc., Display PostScript System. Adobe
Systems Incorporated, 1993.

[4] J. Gosling, “SunDew – A Distributed and Extensible Win-
dow System,” Methodology of Window Management (Euro-
graphics Seminars); Proceedings of an Alvey Workshop at
Cosener’s House, Abingdon, UK, vol. 5, pp. 1–12, 1986.

[5] C. Geschke, S. McGregor, J. Gosling, L. Hourvitz, and
M. Callow, “Screen postscript,” International Conference on
Computer Graphics and Interactive Techniques archive; ACM
SIGGRAPH 88 panel proceedings, vol. 22, pp. 1–43, 1988.

[6] S. Havemann, “Generative Mesh Modeling,” PhD-Thesis,
Technische Universität Braunschweig, Germany, vol. 1, pp.
1–303, 2005.

[7] J. M. Snyder and J. T. Kajiya, “Generative modeling: a
symbolic system for geometric modeling,” Proceedings of
1992 ACM Siggraph, vol. 1, pp. 369–378, 1992.

[8] P. Müller, P. Wonka, S. Haegler, U. Andreas, and L. Van Gool,
“Procedural Modeling of Buildings,” Proceedings of 2006
ACM Siggraph, vol. 25, no. 3, pp. 614–623, 2006.

[9] S. Havemann and D. W. Fellner, “Generative Parametric
Design of Gothic Window Tracery,” Proceedings of the 5th
International Symposium on Virtual Reality, Archeology, and
Cultural Heritage, vol. 1, pp. 193–201, 2004.

[10] G. C. Reid, Thinking in Postscript. Addison-Wesley, 1990.

[11] C. Reas, B. Fry, and J. Maeda, Processing: A Programming
Handbook for Visual Designers and Artists. The MIT Press,
2007.

[12] E. A. Vander Veer, JavaScript for Dummies. For Dummies,
2004.

[13] T. Parr, The Definite ANTLR Reference – Building Domain-
Specific Languages. The Pragmatic Bookshelf, Raleigh,
2007.

[14] T. H. Cormen, C. Stein, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. B&T, 2001.

21

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            26 / 38



PS-NET - A Predictable Typed Coordination
Language for Stream Processing in
Resource-Constrained Environments

Raimund Kirner, Sven-Bodo Scholz, Frank Penczek, Alex Shafarenko
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

{r.kirner, s.scholz, f.penczek, a.shafarenko}@herts.ac.uk

Abstract— Stream processing is a well-suited application
pattern for embedded computing. This holds true even more
so when it comes to multi-core systems where concurrency
plays an important role. With the latest trend towards more
dynamic and heterogeneous systems there seems to be a shift
from purely synchronous systems towards more asynchronous
ones. The downside of this shift is an increase in programming
complexity due to the more subtile concurrency issues. Several
special purpose streaming languages have been proposed to help
the programmer in coping with these concurrency issues. In this
paper, we take a different approach. Rather than proposing a
full-blown programming language, we propose a coordination
language named PS-Net. Its purpose is to coordinate exist-
ing resource-bound building blocks by means of asynchronous
streaming. Within this paper we introduce code annotations
and synchronisation patterns that result in a flexible but still
resource-boundable coordination language At the example of a
raytracing application we demonstrate the applicability of PS-Net
for expressing the coordination of rather dynamic computations
in a resource-bound way.

Keywords-stream processing; embedded systems; multi-core;
resource-constrained;

I. INTRODUCTION

Stream processing is an apt metaphor of embedded com-
puting. Indeed, owing to the generally static nature of streams
connecting processing nodes, a higher degree of predictability
may be achieved in representing embedded systems as stream-
processing networks than with the dynamism of imperative
and object-orientated milieux, where control and data can be
passed from any point in the program to a given program unit
provided that it is visible in that point’s name space. Tradi-
tionally, stream processing is understood through the prism of
the single-instruction multiple-data (SIMD) perspective. The
paradigm itself is seen as a version of the latter with a different
connectivity principle (streams instead of shared memory).
This understanding is upheld by a number of projects, notably
Stanford-based Merrimac [1] and Brook [2]. As an extreme
form of this approach, one should mention strictly time-
controlled synchronous solutions such as Giotto [3], [4], [5]
and Scade [6], [7]. Here, the trade-off between predictability
and efficiency is tilted towards predictability.

Generally, stream processing need not to be SIMD or even
synchronous. In the most abstract sense, it is a representation
of a program in terms of a static network of entities, each
completely encapsulated and interacting with the rest only via
its input and output streams. When streaming is to be used as
a construction principle for larger systems, an asynchronous

approach would usually be favoured, i.e., apriori unknown
production rates and message arrival times. An example of
this can be found in the language StreamIt [8], which has
asynchronous messages and bounded nondeterminism. The
most recent offering of an asynchronous streaming language
comes from the project WaveScript [9] whose aim is essen-
tially to integrate the network view and the local, synchronous
view within one language with streams as first-class entities.
Since this is a general-purpose streaming language, here, too,
application programming concerns (i.e., algorithm correctness,
ease of software evolution and accommodation of a continually
changing specification) are intertwined with a whole spectrum
of distributed computing concerns, such as work division,
synchronisation, and load balancing, within a single level of
program representation.

In our view, a more productive approach to applying the
stream processing paradigm to embedded computing is to keep
the concerns separated, with predominantly computational
parts of the application represented as black boxes being
written in a conventional programming language and with
stream communication, data synchronisation and concurrency
concerns being taken care of by a coordination language. We
specifically focus on S-Net [10], [11], where we believe the
above programme has been realised to the fullest possible
extent.

The ground level of S-Net comprises stream-processing
nodes represented as C-functions (or functions written in an
array processing language, such as SAC [12]). These com-
putational entities are called “boxes” and they communicate
with the S-Net world via a single input and a single output
stream. Data elements on these streams are represented as non-
recursive record structures.

In a way, the set of boxes for a given application represents
the nodes of a specialised virtual machine. The coordination
program can abstract from the box functionality, the more so
that the records streamed between boxes are being completely
encapsulated as well: all the coordination level can see is field
labels and some auxiliary integer-valued tags. This opens up
an avenue towards sensible software engineering of embedded
systems, where subject experts could be engaged in writing
box code and describing the computational process informally
in terms of record structures and box connections, and where
concurrency engineers could be in a position to write, debug
and optimise the coordination code with the experts’ minimum
assistance. That is the most attractive feature of the coordina-

22

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            27 / 38



tion approach compared with the competing strategies cited
earlier.

However, this is not without some new problems either.
The fundamental assumption of S-Net is that the application is
not resource bounded. While not unreasonable in a large-scale
distributed computing domain, this assumption is completely
unrealistic in most embedded systems, where, if coordination
has a chance, it must be essentially resource driven. This
means that the placement of boxes on the system must be
governed by the availability of cores and a predictive estimate
of their load, which in turn means that the coordination layer
must be in possession of accurate information about how much
processing and communication is required for the completion
of each task. By contrast, S-Net achieves its separation of
concerns by relying on asynchronous dynamic adaptation:
nondeterministic stream mergers, for instance, are assumed to
merge in the order of record arrival, thus economising buffer-
ing space and reducing latency. Worse still, more dynamic
features of S-Net namely its serial and parallel replication
facilities, are not even a priori bounded since the boxes are
not assumed to have the knowledge of, or the ability to
communicate, the overall application design.

We set ourselves the challenge of finding a way to reconcile
the need for dynamic behaviour and with the necessity to
project tight enough bounds on the platform as far as the
resource requirements. The S-Net facilities must therefore be
curtailed to allow for static specification of various com-
putational bounds, such as the maximum unfolding of the
replicators, the maximum production rate of the boxes, the
maximum correlation between the output rates dependent on
a single input stream, etc.

In this paper we examine the relevant coordination facilities
of S-Net in Section II and work out in Section III what needs
to be modified and how so that S-Net may become usable with
embedded applications. The result is a new language, called
PS-Net, which is described in Section IV. Section V shows
an example of how to write resource-bounded programs in
PS-Net. Section VI concludes the paper.

II. STREAM-PROCESSING WITH S-NET

In order to present a specialised variant of S-Net that is
resource-boundable, we first give a very brief overview of the
language. A detailed description of S-Net can be found in the
literature [10], [11].

The central philosophy of S-Net is to separate the coor-
dination of concurrent data streams from the computational
part. Computations on data are not expressible in S-Net as
such, but are written in a conventional programming language.
These pieces of “foreign” code are embedded into boxes
and are given an extremely simple API to communicate
with the surrounding S-Net. The API allows them to receive
data from a single input stream via the normal parameter-
passing mechanism, and which provides a small number of
library functions for outputting data down the single output
stream, both streams being anonymous. Boxes may not have
a persistent internal state and consequently can only process
input data individually. Nor can they access each other’s
state in any way during the processing: there are no global
variables or inter-box references. Instead, the output records
are streamed by the coordination layer of S-Net according to a
coordination program that defines the streaming topology, how

the streams are split and merged, and how individual records
are split, merged and routed to their intended destinations.

In order to guarantee interoperability of computational
entities and all different parts of a streaming network, the
coordination of data flow in S-Net is analysed by means of
a type system and inference mechanism. The type system of
S-Net is based on non-recursive variant records with record
subtyping. Each record variant is a possibly empty set of
named record entries, where a record entry is either a field or a
tag. The values of fields are only accessible by the box imple-
mentations, while the tags are integer variables whose values
can also be accessed and manipulated by both, the S-Net
program and the box implementations. To separate tags from
fields, the tag names are surrounded by angular brackets, e.g.,
<a>. Tags allow to use some logic operations to control the
flow of data. The following is a variant record type that encom-
passes both rectangles and circles enhanced with a tag <id>:
{x,y,dx,dy,<id>} | {x,y,radius,<id>}. Each S-
Net network or subnetwork has a type signature, which is a
non-empty set of variant record type mappings each relating
an input type to an output type. For example, a network that
maps a record {a,b} to either a record {c} or a record
{d} or maps a record {a} to a record {b} has the following
type signature: {a,b}->{c}|{d}, {a}->{b}. S-Net also
supports subtyping. For example, {a,b} is a subtype of {a}.

As with conventional subtyping, in S-Net a network or box
also accepts input data being a subtype of the network’s or
box’s input type. Those record entries of the subtype that do
not match a record of the box’s input type simply bypass the
network or the box and are joined with the produced output.
Thus, an S-Net box with the type signature {a}->{b},
for example, also accepts input data of the type {a,c},
like a type signature {a,c}->{b,c} but where the record
field c simply bypasses the box. This feature is called flow
inheritance.

A. Stream-manipulation with Filter Boxes
In S-Net, so-called filter boxes are used to perform

manipulations of the data stream, like elimination or
copying of fields and tags, adding tags, splitting records,
and simple operations on the tag values. Filter boxes
are expressed in square brackets and consist of a
semicolon-separated list of filter actions on the right side
of the transformation arrow. For example, the filter box
[{a,b,c} -> {a};{b,<t=1>};{b=c,<t=2>}] takes
records of type {a,b,c} and splits them into three output
records: one with the field a, one with the field b extended
by a tag <t> with the value 1, and one with the field c
renamed to b and extended by a tag <t> with the value 2.
Though the last two output messages contain the same field
name b, they can still be processed differently at S-Net level
due to their different value of tag <t>.

B. Network Combinators in S-Net
S-Net consists of the following four combinators to combine

networks or boxes. For the description of them we assume that
we have two networks net1 and net2 that we want to combine.

1) Serial Composition (net1 .. net2): This allows
to combine two S-Net networks or boxes in a se-
quential fashion. Though sequential in its dataflow, in
the context of stream-processing this provides parallel

23

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            28 / 38



processing in the form of pipelined execution. The code
net1 .. net2 essentially forms a pipeline with the
stages net1 and net2.

2) Parallel Composition (net1 | net2): This allows
to combine two S-Net networks or boxes in a parallel
fashion, providing concurrent execution. The code net1
| net2 describes a split of data flow between the routes
of networks net1 and net2. If net1 and net2 have
different type signatures then the type system of S-
Net will route the data to the best-matching input type,
otherwise the choice is non-deterministically.

3) Serial Replication (net1 * {out}): The serial
replication (subsequently also called star operator) cre-
ates a pipeline dynamically by replicating the given
network along a series composition till the output is
a (sub)type of the exit pattern, where in this case the
output is forwarded as the output of the replication op-
erator. net1 * {out} means that the data flow through
a series composion of replicas of the network net1 till
the type of the output is a (sub)type of {out}.

4) Parallel Replication (net1 ! {<id>}): The par-
allel replication is the dynamic variant of parallel exe-
cution, where a given network is replicated dynamically
controlled by the value of a tag in the data records.
net1 ! {<id>} means that for each different value
of the tag <id> of the incoming data records an
exclusive path through a replica of the network net1
is dynamically created.

Note that the combinators |, *, ! have an out-of-order
semantics on data routing, while ||, **, !! are their order-
preserving variants.

C. Synchronisation with Synchro-cells

Above S-Net operations are all asynchronous and stateless
operations, allowing for an efficient concurrent processing of
data streams. To synchronise the arrival of different message
types, the so-called synchro-cell is used, which is the only
stateful box in S-Net. The synchro-cell is the only means in S-
Net to combine two records into a single record. The synchro-
cell consists of an at least two-element comma-separated list of
type patterns enclosed in [| and |] brackets. For example, the
synchro-cell [| {a}, {b,c} |] composes two records
{a} and {b,c} into a single output record {a,b,c}. As
its state, a synchro-cell has storage for exactly one record
of each pattern. When an arriving record finds its place free
in the synchro-cell, it is stored in the synchro-cell, otherwise
it is simply passed through. The synchro-cell is a one-shot
operation, i.e., once all record patterns are filled, the composed
output record is emitted and the synchro-cell from now on
behaves like a simple connector passing all further messages
through. To use synchro-cells in a continuous way on the
input stream, it has to be nested within replication operators
as described above.

III. DISCUSSION OF PREDICTABILITY

In the following, we discuss what features of S-Net are hard
to bound for their resource consumption and we discuss how
we address this problem in PS-Net to ensure boundability of
resources. The following mechanisms of S-Net are hard to
bound without doing an exhaustive whole-program analysis:

• The computational part of S-Net programs is imple-
mented in boxes. Regarding the boundability of the dy-
namic resource allocations, it is, of course, necessary, that
the box implementations are simple enough to bound their
resource requirements. However, the box implementation
is outside the scope of our design of the resource-
boundable coordination language PS-Net.

• In S-Net a network or box may write an arbitrary number
of output messages as the type signature does not restrict
them. Thus it is not know how much system load can be
created within the network. This makes it hard to bound
extra-functional properties such as execution time. Our
solution for PS-Net is to extend the type signature with
the multiplicity of the different output messages.

• The parallel composition in S-Net (|,||) features a non-
deterministic choice, whose behaviour cannot be analysed
precisely at language level, which makes it challenging to
bound extra-functional properties such as execution time.

• The number of parallel replications in S-Net (!,!!) de-
pends on the possible values of the replication-controlling
tag value, which is hard to bound in general. In order to
bound the number of dynamically created replicas for the
parallel replication operator, we have to know the possible
value range of the index tag. For PS-Net we extend the
parallel replication combinator with an annotation about
the maximum range of the index tag.

• The number of serial replications in S-Net (*,**) de-
pends on the dynamic creation of the exit type, which is
hard to bound in general. In order to bound the number
of dynamically created replicas for the serial replication
operator, we have to know when latest the exit pattern
is produced. For PS-Net we extend the serial replication
operator with an annotation of the maximal number of
created replications.

A. Synchronisation Mechanisms
The synchronisation issues deserve a special discussion.

On the one side the synchro-cell of S-Net has a single-
shot semantics which is no problem at all to account for
its maximum resource usage. However, as already said, the
synchro-cell is typically embedded into a serial replication
with infinite replications. This infinite replication is not a
problem in S-Net, since every replica with a synchro-cell that
has already shot is automatically discarded and automatically
replaced by a direct stream connection.

However, our general solution of making the serial repli-
cation boundable by adding an annotation about the maximal
number of created replications, is unfortunately not compatible
with the use of the S-Net synchro-cell, as this would rely on
an infinite replication count.

Our solution for PS-Net is to avoid the combination of
synchro-cell and serial replication and instead use special
synchronisation constructs for use patterns of synchro-cells.
We have actually identified two major use patterns for synchro-
cells. They stem from the need to either synchronise a stati-
cally fixed number of records or to synchronise a dynamically
varying number of records, respectively.

In the former case, the records that are to be combined
can be encoded by different types. This facilitates an imple-
mentation of the synchronisation as a cascade of synchro-cells
embedded in serial replications.

24

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            29 / 38



Figure 1 shows an example for such a synchronisation.

{a}	

{b}	

{a}	

{b}	


{} → {}	


{a}	

{b}	


*{a,b} 
{a}	

{b}	

{a}	

{b}	


{a,b}	

{c}	


*{a,b,c} 

([|{a},{b}|]*{a,b} | []) .. [|{a,b},{c}|]*{a,b,c}

Fig. 1. Synchronising records of type {a}, {b}, {c}.

There, three records are being synchronised each, one record
of type {a}, one of type {b}, one of type {c}. The first
synchro-cell within a star combines records {a} and {b}. Any
records that are neither {a} nor {b} are bypassed by means
of the identity filter which is parallel to the synchroniser for
{a} and {b}. Subsequently, the bypassed records of type c
are synchronised with the combined records of type {a, b}.
Again, this second synchro-cell is directly embedded into a
star to enable repeated synchronisation.

In the second case, i.e., when we deal with a statically
not determined number of records to be synchronised, a
type encoding of the individual components of the record
to be combined is no longer possible. Instead, a stepwise
synchronisation needs to be applied to a substream of records
of the same type. The emerging result record needs to be
propagated from one synchronisation to the next similar to
an accumulator within a folding operation. When to terminate
such a folding process needs to be determined either by the
folding operation itself or by the use of ”separation records“
of different type in the stream. Figure 2 shows an example
for such a multi-synchronisation. Here, the folding box itself

{a, acc} → {acc}	

                 | {out}	
{a}	


{b}	

{a}	

{b}	

{a}	


{acc}	


*{out} 

{} → {}	


net multi_sync {
box fold( (a, acc) -> (acc) | (out) );

} connect ( [|{a},{acc}|] .. ( fold | [] ))*{out};

Fig. 2. Synchronising multiple records of type {a}.

determines when to emit a value by producing a record with a
field out rather than acc. This network furthermore assumes
that the initial value for each synchronisation comes in as
a record containing acc. Note, that the empty filter that is
parallel to the fold box serves as a by-pass for subsequent
records of type {a} or type {b} so that they can be fed into
subsequent unfoldings of the star combinator.

Within a range of S-Net applications [13], [14], [15], we
could observe various different formes of synchro-cell uses
within serial replication. However, it turns out that all of them
adhere to one of the two use cases above and can be expressed
by nestings of these two pattern. Therefore we capture those
two pattern as two new building blocks in PS-Net, named
syncq and fold, respectively.

IV. RESOURCE-BOUNDED PS-NET

In this section we introduce new language constructs
that are boundable. Further we introduce annotations for
existing S-Net language constructs to make them boundable.
These annotations might be written by the programmer
or being automatically derived by program analysis. All
the annotations have the form <| AnnotExpr |>
where AnnotExpr can be of the following forms:

Num . . . specifies a constant value
Num : . . . specifies a lower bound
: Num . . . specifies an upper bound

Num : Num . . . specifies an interval

A. Multiplicity of Box Messages

For PS-Net we extend the type signature with an
annotation about the multiplicity of messages. For
example, the following box signature declaration
box foo ((a,b) -> (c)<|2|> | (d)<|1:3|>);

specifies that for each processing of on input record {a,b}
the box creates exactly two output records of type {c} and
between one and three output records of type {d}. Note that
the records of box signatures are written in round brackets to
distinguish them from network type signatures, since for the
box signature the order of record entries matters.

B. Bounded Parallel Replication

The range of the index tag determines the number of
different dynamically created parallel replicas. Assuming
that an index range will always start from zero, we
extend the parallel replication with an annotation of the
upper bound of replications k, resulting in an index range
from 0 . . . k−1. replication index range. For example,
to specify that a network can be at most replicated
four times (i.e., index range 0 to 3), we can write:

network ! <tag><|4|>;
Note that the total number of replications can be higher if the
network is nested within another network that is replicated as
well.

C. Bounded Serial Replication

We extend the serial replication operator with an anno-
tation of the maximal number of created replications. For
example, to specify that a network can be at most replicated
three times (i.e., a pipeline of length three), we can write:

network * {out}<|:3|>;

D. Synchronisation with the syncq operator

The first use case of synchronisation (Figure 1) can be
abstracted by means of a synchro-queue, which repeatedly
synchronises records of two flavors defined by means of two
type pattern.

Provided that the synchronic distance [16] between the two
flavors is bounded, such an operator can be implemented as
a finite queue whose length does not exceed that bound. We
introduce synchro-queues as a new operator

syncq[| p1, p2 |]<| sd |>
where p1 and p2 denote type pattern to be synchronised,

and sd denotes an upper bound for the synchronic distance
between the pattern p1 and p2 on the input of this operator.
For example, if we want to synchronise records of type {a}

25

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            30 / 38



and {b} knowing that the synchronic distance between them
is at maximum 4, then we can write:

syncq[| {a}, {b} |]<|4|>
Formally, the semantics of the syncq operator is defined

by the following equivalence:
syncq[| p1, p2 |]<| sd |> ≡

[| p1, p2 |]*{p1, p2}
Note here, that the star version on the right hand side

of the equivalence potentially requires unbounded resources.
Only the annotated synchronic distance sd ensures bounded-
ness of the operator. Interestingly, a finite synchronic distance
also implies that all the synchronised patterns have the same
average arrival rate.

E. Synchronisation with the fold operator

The second use case of synchronisation (Figure 2) can be
abstracted into a generic folding operation. Here, we introduce
a network combinator, which transforms a folding network
with a signature (a, acc) -> (acc) into a network that
subsequently synchronises a record of type {acc} with an arbi-
trary number of records of type {a}, until a new record of type
{acc} arrives which triggers a new series of synchronisations.

Syntactically, we denote the fold combinator by
fold[| a, acc, N, Fold|]

where a and acc denote the two different kinds of type
pattern, N denotes a network with a type signature ⊥ ->
(acc)<|1|> that provides the initial value for acc and Fold
is a network of type (a, acc) -> (acc)<|1|> which
implements the folding operation itself. For example, if we
want to collect partial results of type {d} of a concurrent
computation into result messages of type {res}, with Init
being the network to create the initial {res} message and
Collect being the network name of the fold operation that
merges a partial result of type {d} with the current result
message of type {res}, then we can write:

fold[| {d}, {res}, Init, Collect |]
The semantics of a network fold[| a, acc, N,

Fold|] then is defined by the S-Net shown in Figure 3.
The main complexity of this network stems from the ne-

cessity to “restart” the folding process upon arrival of a new
record of type {acc}. To achieve this, all incoming data is
tagged with <val> upon arrival. In the core of the network,
this data, i.e., either records of type {a, <val>} or of type
{acc, <val>} are synchronised with the current state of
the folding operator which is kept in an internal accumulator
field iacc. Depending on the type of the synchronised record,
either the Fold network is applied and the internal accumula-
tor is updated accordingly, or the current result is emitted via
a record of type {out} and the internal accumulator is reset
to the new value from the input field acc. Note here, that the
overall fold combinator needs to be initialised with a record
of type {acc} provided by the network N. Its value serves as
initial state for the internal accumulator.

A key observation of this network is that for each incoming
record the synchro-cell of the first incarnation of the star op-
erator synchronises which transforms the entire inner network
effectively into an identity function for the subsequent records.
In combination with a multiplicity of 1 for the Fold network,
this guarantees that the fold operator can be implemented in
constant space.

{<val>}	

{iacc}	


{a, iacc, <val>} 	

→ 	


{a, acc=iacc}	


{acc, iacc, <val>}	

 → 	


{iacc = acc}; 	

{out = iacc}	


{out} 	

→ 	


{acc = out}	

{} 	

→ 	


{<val>}	


{} 	

→ 	

{}	


{a, acc} 	

→ 	


{acc}	


{acc} 	

→ 	


{iacc = acc}	


⊥	

→ 	


{acc}	


{acc}	

→ 	


{iacc = acc}	


*{out} 

Fold 

N 

( ( N .. [ {acc} -> {iacc = acc} ])
|| [{} -> {<val>}]

)
.. ( [| {<val>} , {iacc} |]

.. ( ( [ {a, iacc, <val>} -> {a, acc=iacc} ]
.. Fold .. [ {acc} -> {iacc=acc} ]

)
| [ {acc, iacc, <val>} -> {iacc = acc};

{out = iacc} ]
| []

)
) * {out}

.. [ {out} -> {acc = out} ]

Fig. 3. Network implementing the fold operator

V. EXAMPLE

We evaluate the presented approach by applying it to the
well-known fork-join pattern that many image processing
applications expose. An image is broken down into smaller
chunks and an application specific processing algorithm is
run on each chunk independently in an SIMD-like fashion.
A merging stage collects all processed chunks, i.e. the sub-
results, and reassembles a global result image.

Where previous experiments using S-Net in its standard
form have shown that this class of applications lends itself
nicely to the advocated programming model we are now in a
position to reformulate existing code to guarantee resource-
bounded execution in PS-Net. As a representative problem
of this class we implemented a ray-tracing image processing
application for which we have developed an implementation
in standard S-Net with performance results that compete with
hand-tuned C code [13].

The implementation of the original application is intended
to run on general-purpose hardware and is specified as follows:
net raytracing {
box splitter( (scene, <rr_upper>, <tasks>)

-> (scene, chunk, <rr>, <tasks>, <fst>)
| (scene, chunk, <rr>, <tasks> ));

box solver ( (scene, chunk) -> (sub_res));
net merger ( (sub_res, <fst>) -> (pic),

(sub_res) -> (pic));
box genImg ( (pic) -> ());

} connect splitter .. solver!<rr> .. merger
.. genImg;

The splitter divides the scene into smaller sub-scenes
(chunks) and tags all chunks with the number of overall

26

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            31 / 38



produced sub-scenes. Each data element also carries an <rr>
tag. This implements a round-robin scheduling using the
! combinator on the solver by tagging data elements with
increasing integer values from 0, ...,<rr_upper>−1 for
<rr>. The first output is tagged with <fst> to initiate the
merging process after the sub-scenes have been computed
by the solver. The merging process is implemented as a
sub-network of the following form:
net merger {

box init ( (sub_res, <fst>) -> (pic));
box merge ( (sub_res, pic) -> (pic));

} connect ( ( init .. [ {} -> {<cnt=1>} ] ) | [])
.. ( [| {pic}, {sub_res} |]

.. ( ( merge
.. [ {<cnt>} -> {<cnt+=1>}])

| []))*{<tasks> == <cnt>};

The init box is followed by a filter which adds a flag <cnt>
initialised by the value 1. This flag is used to count the number
of sub-scenes that have been incorporated into the result image
already. Since only the first sub-scene needs to be processed
by the init box, we also provide a bypass to the initialisation
path for all the other records containing further sub-scenes.

After the initialisation, a star implements the merging with
the remaining sub-scenes. In each unfolding (iteration) of
the star the synchro-cell synchronises the accumulator held
in {pic} with yet another sub-scene. The resulting joint
record, containing the accumulated picture and a sub-scene
to be inserted, is presented to the merge box which outputs
the combined picture. The insertion of a new sub-scene is
reflected in an increment of the flag <cnt> as defined by
the subsequent filter. Once the counter equals the overall
number of tasks, which is kept in another, flow-inherited flag
<tasks>, the accumulated picture is output from the merger
network.

In order to guarantee resource-boundedness of this imple-
mentation, we replace the parts of the application that make
use of the general * and ! combinators by legal PS-Net
constructs.

The splitting stage of the application is almost straight-
forwardly transformed. As we are not targeting general-
purpose hardware, we use the ! <rr><|n|> combinator and
annotate the maximum number n of computing resources the
combinator is allowed to bind for solver instances. Because of
the way we are implementing the merging process, which is
detailed below, the splitter is not required to output the number
of produces sub-scenes. Additionally, it also does not tag the
first element. Instead, the splitter outputs the accumulator as
first record for each decomposed scene.

With the PS-Net fold combinator we are able to re-
implement the merging stage of the original application.
The combinator’s behaviour resembles the functionality of
the merging stage when supplied with the merger box of
the original application as fold-net argument. An initialiser
network is not required, as we chose to have the splitter output
all pic accumulators including the first one.

Putting it all together, the resource-bound version of the
application is defined as follows (we chose 7 as an arbitrary
resource limit for the ! combinator for illustration purposes):
net raytracing {
box splitter( (scene, <rr_upper)) ->

(scene, chunk, <rr>) | (pic));
box solver( (scene, chunk) -> (sub_res));

box merger( (sub_res, pic) -> (pic));
box genImg( (pic) -> ());

} connect splitter
.. (solver!<rr><|7|> | [(pic) -> (pic)])
.. fold[|{sub_res},{pic},_,merger|]
.. genImg;

This network behaviour resembles that of the original im-
plementation. The splitter outputs a variable number of sub-
scenes and the solver is applied to these in parallel. The
merging stage is wholly implemented by the fold combinator.
But this implementation is guaranteed to be resource bound:
The parallel replication is limited by an annotated upper
bound. As the fold combinator is statically resource bound,
we do not require multiplicity annotations on the splitter box.

This example has shown how the proposed coordination lan-
guages for stream processing can be used to model resource-
constrained embedded applications. The stream-processing
model itself has the benefit that it naturally combines the
flexibility of asynchronous computation with a separation of
concern between coordination and algorithmic programming.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown the development of the
resource-boundable coordination language PS-Net for stream
processing, starting from the S-Net language, which has been
designed for the high-performance computing domain. On
the one side we had to add annotations to certain language
constructs, to make them resource-boundable. Such annota-
tions might be written directly by the developer or may be
derived automatically by program analysis. Further, we have
introduced the synchro-queue and the folding combinator as
resource-boundable synchronisation constructs. The resulting
language allows to program dynamic stream-processing ap-
plications in a resource-bound way. As a future work we
will implement PS-Net within the S-Net compiler, which is
quite suitable for this implementation, since the new resource-
boundable constructs introduced for PS-Net can be imple-
mented with S-Net constructs. These S-Net constructs would
be non-resource-boundable in the general case, but become
resource-boundable for the specific patterns derived from PS-
Net constructs. Further, evaluations of resource consumption
are planned to demonstrate the suitability of the PS-Net
programming paradigm for embedded computing.

Acknowledgments
The research leading to these results has received funding

from the IST FP-7 research project ”Asynchronous and Dy-
namic Virtualization through performance ANalysis to support
Concurrency Engineering (ADVANCE)”.

REFERENCES

[1] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labont, J.-H. Ahn,
N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck, “Merri-
mac: Supercomputing with streams,” in Proc. ACM/IEEE Conference
on High Performance Networking and Computing (SC’03), Phoenix,
Arizona, USA, Nov. 2003.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on graphics
hardware,” in Proc. ACM SIGGRAPH International Conference on
Computer Graphics and Interactive Techniques, Los Angeles, USA,
2004, pp. 777–786.

[3] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 84–99, Jan. 2003.

27

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            32 / 38



[4] T. A. Henzinger, C. M. Kirsch, and S. Matic, “Composable code
generation for distributed Giotto,” in Proc. ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM Press, 2005.

[5] A. Ghosal, D. Iercan, C. M. Kirsch, T. A. Henzinger, and A. L.
Sangiovanni-Vincentelli, “Separate compilation of hierarchical real-time
programs into linear-bounded embedded machine code,” in Online Proc.
Workshop on Automatic Program Generation for Embedded Systems
(APGES), 2007.

[6] F.-X. Dormoy, “Scade 6: A model based solution for safety critical soft-
ware development,” in Proc. 4th International Conference on Embedded
Real Time Software (ERTS), Toulouse, France, 2008.

[7] E. Technologies, “SCADE suite,” web page (http://www.
esterel-technologies.com/products/scade-suite/), accessed in Jul.
2010.

[8] B. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in Proc. 11th International Conference on
Compiler Construction (CC’02). London, UK: Springer Verlag, 2002,
pp. 179–196.

[9] R. Newton, L. Girod, M. C. abd Sam Madden, and G. Morrisett,
“WaveScript: A case-study in applying a distributed stream-processing
language,” Massachusetts Institute of Technology Computer Science and
Artificial Intelligence Laboratory, Cambridge, USA, Technical Report
MIT-CSAIL-TR-2008-005, Jan. 2008.

[10] C. Grelck, S.-B. Scholz, and A. Shafarenko, “A Gentle Introduction
to S-Net: Typed Stream Processing and Declarative Coordination of
Asynchronous Components,” Parallel Processing Letters, vol. 18, no. 2,
pp. 221–237, 2008.

[11] A. Shafarenko, S.-B. Scholz, and C. Grelck, “Streaming networks
for coordinating data-parallel programs,” in Perspectives of System
Informatics, 6th International Andrei Ershov Memorial Conference
(PSI’06), Novosibirsk, Russia, ser. Lecture Notes in Computer Science,
I. Virbitskaite and A. Voronkov, Eds., vol. 4378. Springer Verlag, 2007,
pp. 441–445.

[12] C. Grelck and S.-B. Scholz, “SAC: A functional array language for
efficient multithreaded execution,” International Journal of Parallel
Programming, vol. 34, no. 4, pp. 383–427, 2006.

[13] F. Penczek, S. Herhut, S. Scholz, A. Shafarenko, J. Yang, C. Chen,
N. Bagherzadeh, and C. Grelck, “Message driven programming with s-
net: Methodology and performance,” in 3rd International Workshop on
Programming Models and Systems Software for High-End Computing
(P2S2’10), San Diego, USA, 2010, to appear.

[14] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. Shafarenko,
R. Barrere, and E. Lenormand, “Parallel signal processing with s-net,”
Procedia Computer Science, vol. 1, no. 1, pp. 2079 – 2088, 2010,
iCCS 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/B9865-506HM1Y-88/2/87fcf1cee7899f0eeaadc90bd0d56cd3

[15] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net,” in Imple-
mentation and Application of Functional Languages, 21st International
Symposium, IFL’09, South Orange, NJ, USA, M. Morazan, Ed. Seton
Hall University, 2009.

[16] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.

28

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            33 / 38



An Application of a Domain-Specific Language Facilitating Abstraction 
and Secure Access to a Crime and Ballistic Data Sharing Platform

Lukasz Jopek 
Cultural and Computing 
Research Centre (C3RI) 

Sheffield Hallam University 
Sheffield, United Kingdom 

l.jopek@shu.ac.uk 

Richard S. Wilson 
Cultural and Computing 
Research Centre (C3RI) 

Sheffield Hallam University 
Sheffield, United Kingdom 

r.wilson@shu.ac.uk 
 
 

Christopher D. Bates 
Cultural and Computing 
Research Centre (C3RI) 

Sheffield Hallam University 
Sheffield, United Kingdom 

c.d.bates@shu.ac.uk 
 

Abstract—Crime investigation requires controlled sharing, 
secure access and formalised reporting on heterogeneous 
datasets. This paper will focus on encapsulating data 
structures and services, whilst exposing abstraction, relevant 
only to the End-User through the application of a domain-
specific language. The language is used for all interactions 
with the platform, enabling non-technical users to build 
complex queries. The language also increases the platform’s 
security, by hiding the internal architecture of services and 
data structures. This solution has been demonstrated to law 
enforcement communities across Europe as a prototype 
crime and ballistic data sharing platform. 

Keywords-standardisation;data structures, domain-specific 
language; law enforcement; public services 

I. INTRODUCTION 

Odyssey is a research project looking at the difficulties 
in sharing information about gun-crime between Police 
forces across Europe [1][2]. The project is building a 
technology demonstrator to prove the benefits of 
integrating and sharing ballistic information from states 
across the European Union.  Such sharing will support gun 
crime investigations and prevention activities where cross-
border trafficking of weapons or ammunition is involved. 
The prototype will enable interoperability between existing 
systems and ensure compatibility with emerging European 
standards. The Odyssey Consortium consists of law 
enforcement agencies such as Europol and NABIS, the 
National Ballistic Intelligence Service (United Kingdom) 
which brings standards, broad knowledge and hands-on 
experience to the project. The Consortium is committed to 
informing the law enforcement community with the 
outcomes of its research, standardising data formats, 
integrating processes and finally prototyping a crime and 
ballistic data sharing platform. 

Currently, law enforcement agencies across Europe 
rely heavily on in-house systems, which often cannot 
interoperate on either national, regional or departmental 
levels [3]. Integration, secure sharing and the use of data is 
highly limited due to technological boundaries; hence the 
process is frequently manual and costly [3][5]. The 
Odyssey project is seen not only as an opportunity to 
facilitate communication between different agencies, but to 
also build a common European understanding over current 
and future needs. The number and diversity of existing 
technologies, the lack of European ballistic standards and 
the high reliance on ballistic experts puts Odyssey into a 
very interesting perspective, whereby new standards, 
technologies and processes are expected to support current 

best practices. Technologically, the Odyssey project aims 
at prototyping a scalable platform, which is interoperable 
with legacy systems, processes and expertise. 

In this paper, we will focus on the process of building a 
common interface for the system, encapsulating data 
structures and exposing only those abstractions that are 
relevant to each user. We will further explore an 
innovative application of a domain-specific language 
(DSL) in an area in which one has not been used before. 
The DSL is used to express every interaction within the 
system from getting data and defining sharing permissions, 
to integrating security by hiding internal structures of the 
platform. 

II. DESIGNING A DOMAIN-SPECIFIC 

LANGUAGE 

Domain-specific languages (DSL) express complexity 
at a particular abstraction tailored to both current and 
future needs [6]. A DSL lets non-technical people 
understand the overall design of a platform and interact 
with it, using an understandable notation that reflects their 
particular perspective [7].  

A well-designed DSL complies with certain objective 
qualities. A language perceived as simple, easy, and 
effective is more likely to be widely accepted, even though 
these qualities can be subjective. However, these merits are 
not enough for a good, stable language. The definition and 
measurement of these qualities will vary in time and from 
one person to another. Everyone in a team developing a 
language can agree on where the language meets their 
expectations, but only when exposed to a wider 
community for a longer period can the quality of a 
language be measured. In the world of engineering, users 
have varied skills, preferences and needs, while usually the 
primary goal of designing a system is to identify base 
requirements and build a platform that works.  

In the Odyssey project, a DSL was introduced to 
express the user requirements and solutions in a particular 
domain. A DSL promotes decoupling between 
components, modules and software stack layers, making 
the platform easily extendable and its components highly 
reusable. In the Odyssey project, a DSL language is used 
not only to convey the complexity of the domain, but also 
to facilitate and unify the entire communication across the 
platforms’ components and users (Figure 1). 
 

29

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            34 / 38



  
Figure 1. Role of DSL in platform’s architecture 

A DSL is used to express queries further translated into 
for example SQL. In the Figure 1, a DSL query is 
presented to query data from distributed databases by 
executing the exact statement on separate repositories. The 
Odysseys DSL enforces unification of queries, which 
enables standardisation of the results formats and therefore 
further reasoning. The DSL engine has the capability of 
retrieving and merging information from diverse data 
sources by transforming the query into SQL-like 
languages, but also integrating with for example data-
mining result sets or applying reasoning using a built-in 
ontology. 

The particular application of a DSL enhances security 
by providing information relevant only to the end user 
encapsulating data structures, abstracting services, and 
facilitating data manipulation. The Odyssey system 
enables sharing information without exposure of its 
structures, providing the requested up-to-date, accurate, 
relevant and easy to understand information. 

Additionally, users are supported with tools to build 
and visualise DSL statements and their executions, which 
are also represented in the DSL. 

III.  THE RESEARCH CONTEXT 

The Odyssey project delivers both a user interface and 
a domain specific language to users who have diverse, but 
highly specialised expertise. Their high-level cognitive 
abilities often relate to discovering facts in crime 
investigations, whilst dealing with uncertainty and 
different types of abstraction. A mixture of experience 
from former investigations, combined with an 
understanding of human nature and circumstances, enable 
investigators to reason, make decisions and act on them. 
Dealing with this type of situation requires an entirely 
different set of skills and builds an impression that the 
situational information with knowledge and experience is 
enough to solve any problem. The Odyssey project is 
committed to fulfilling the end user’s functional 
requirements and expectations, whilst proposing new 
functionalities, which are not available in current systems 
due to a lack of data sharing and information exchange 
abilities.   

Odyssey’s DSL compromises between the 
expressiveness of both a formal and flexible semantically-
enhanced language. Complexity of syntax was greatly 
reduced by identification and categorisation of use case 
scenarios, grouping of functionalities and abstraction of 
data sources. Moreover, in contrast to, for example SQL, 
the user does not need to be aware of underlying data 
structures, nor the platform’s architecture, to enable a 

complex search to be undertaken. The user is asked to 
define the information of interest and the constraints by 
which the data will be filtered and sorted. In general, the 
user queries the system by defining the outcomes and 
under what conditions. One of the key requirements for the 
language is to facilitate access to factual information, but 
without taking the risk of misleading an investigator by 
presenting non-related data. The system reveals 
opportunities to the end user by facilitating discovery of 
new facts and collaboration on possible scenarios. 
Ultimately, we have identified three main qualities 
integrated to our solution. They are shown in Figure 2. 
 

 
Figure 2. Principles of a scalable DSL design 

Comprehensibility: Communication is pivotal to 
design domain-specific languages. In the domain of law 
enforcement agencies, a comprehensive, self-explanatory 
language acts as a bridge between a platform and a non-
technical end user. A consistent and well-established 
syntax builds trust and guarantees time invested in 
mastering functionality will be applicable across other 
aspect of the platform in the present and future releases. 
Furthermore, we identified discoverability as the next most 
important characteristic of a well – designed language, 
which in this case means the ease of discovering features 
based on what we already know and the tools provided.  

Consistency: The language and its controlled syntax 
encapsulate functionality, architecture and may even 
determine the entire system’s performance, by for 
example, optimising queries and merging results. These 
algorithms are developed for abstracted use case models 
and a user is not allowed to make any modifications or 
optimise queries per case. The great advantage at this stage 
was the active involvement of the user community 
(especially West Midlands Police, United Kingdom), who 
carefully gathered both user requirements and developed 
an iterative process of language evaluation. Each partner in 
the Odyssey project has a different perception of the 
problems we are addressing and has contributed to the 
design of the platform in different ways. Sheffield Hallam 
University representatives visited Northern Ireland Police 
and West Yorkshire Police in England identifying needs 
and getting a hands-on experience of the current state of 
the art crime and ballistic ICT systems.  

Discoverability: In addition, these visits provided an 
insight into daily activities and processes, the Odyssey 
project is dedicated to improve. Satisfied at this stage, the 
Odyssey Consortium proposed a language that would 
enable the modelling of crime investigations and play a 

30

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            35 / 38



key role in creating data access rules and the enhancement 
of security to the entire platform. The user requirements 
stated explicitly that we should develop a language which 
provides a simplified method to retrieve data and to 
operate on datasets, but to also facilitate access to services, 
enable management of users’ roles and maintain data 
sharing rules. We require a language that would facilitate 
every interaction, with the entire system, in a controlled, 
structured and concise way. 

IV.  ODYSSEY SEMANTIC LANGUAGE 

We propose the development of a syntax and a 
semantic language which supports modelling of active 
crime investigations by operational detectives that will link 
general crime to ballistic data. Its innovative features are 
associating data retrieval techniques with data-mining 
results and encapsulating multiple services. Moreover, the 
language facilitates modelling of investigation processes 
and is an integral part in the platform’s security. 
Furthermore, it was developed in an open-source grammar 
development environment, ANTLR. A structural 
Piggyback [8] design pattern was introduced to facilitate 
transparency between languages and services being a 
hosting base to which the DSL is translated. The DSL was 
designed on the top of a SQL bearing in mind abstraction, 
data mining and process modelling capabilities. 

The ANTLR output is further integrated with the 
NetBeans Rich Client Platform (RCP) and the combination 
produces a fully-featured editor that seamlessly integrates 
with the graphical representation of search and results. The 
features correspond syntax colouring, error highlighting, 
code completion, etc. 
The example below (Figure 3) presents a query expressed 
in Odyssey Semantic Language (OSL) that retrieves 
firearms with a twenty-two calibre (0.22 inch): 
 
QUERY firearm WHERE  calibre HAS VALUE  0.22 

Figure 3. Selecting a firearm of a specific calibre 

With a very similar query structure we can apply sharing 
rules on a set of data (See Figure 4 below). 
 
ALLOW  firearm WHERE  calibre HAS VALUE  0.22 

Figure 4. Applying sharing rules on a dataset 

In the diagram below, we introduce a few entities from 
the Odyssey database structure that will be used in the next 
example to present how OSL abstracts and simplifies 
access to relational datasets. The database itself contains 
over 50 tables to model crime and ballistic evidence or 
retains user accounts and their roles. The diagram shows 
how a location, a central concept of the database structure, 
can be linked to a firearm. A location is only one of an 
incident’s characteristics; other descriptors include 
documents or other related incidents. An incident 
effectively links locations with ballistic items that are a 
generalisation of firearms, cartridge cases, bullets, 
ammunition, projectiles, and other categories of ballistic 
and crime evidence. 

 

recovered_firearm

oid

name

model

manufacturer

country_of_manufacturer

weapon_type

sub_type

firearm_centre

import_marking

calibre

altered_calibre

measured_calibre

converted

barrel_type

firing_type

barrel_length

gun_length

silencer_fitted

silencer_fitting

found_with_ammo

functional

mag_or_cyl_capacity

rifling_twist

additional_remarks

...

location

oid

location_type

address_line1

address_line2

address_line3

country

postcode

longitude

latitude

...

incident

oid

division

faction

incident_date

incident_type

gender_of_victim

victim_count

police_case_number

...

ballistic_item

oid

unique_weapon_code

stolen_list_code

...

incident_has_location

PK,FK1 incident_oid

PK,FK2 location_oid

ballistic_item_has_incident

PK,FK1 ballistic_item_oid

PK,FK2 incident_oid

ballistic_item_has_recovered_firearm

PK,FK1 ballistic_item_oid

PK,FK2 recovered_firearm_oid

 
Figure 5. A partial E-R diagram presenting how a firearm and a 

location can be linked together 

In Figure 6, we show how easy and straightforward it is 
to build a complex SQL-like JOIN across multiple tables 
from the above using the OSL. In fact, the task is almost 
effortless and does not require any understanding of the 
structure. The user does not need to be aware of a number 
or even classes of the tables that require joining. 

 
QUERY firearm location WHERE   
calibre HAS VALUE  0.22 AND  
country HAS VALUE  United Kingdom 

Figure 6. Selecting a firearm linked to a location 

What the user is asked to specify are concepts 
representing types of data and the constraints wants to 
apply onto the dataset. Hence, joining tables and merging 
resources is performed without the user’s attention. In 
addition, what the OSL implementation enables is the 
integration of results from various data sources and 
services. This means a user can perform even more 
complex tasks with very similar effort; for example 
overlaying data with data-mining results. This level of 
abstraction creates a very powerful environment for non-
technical users interacting with the system. 
In contrast to Figure 6, the example below is of the similar 
expressiveness, but represented in a pure PL-SQL. 
According to the E-R diagram from Figure 5 the query 
would look like this: 
 
SELECT rfa.oid, rfa.*, loc.oid, loc.* 
FROM recovered_firearm rfa 
LEFT JOIN  ballistic_item_has_recovered_firearms bit_rfa ON 
(bit_rfa.recovered_firearms_oid = rfa.oid) 
LEFT JOIN  ballistic_item ba ON  
(ba.oid = bit_rfa.ballistic_items_oid) 
LEFT JOIN  ballistic_item_has_incidents bit_inc ON 
(bit_inc.incident_oid = ba.oid) 
LEFT JOIN  incident inc ON  
(inc.oid = bit_inc.incident_oid) 
LEFT JOIN  incident_has_locations inc_loc ON 
(inc_loc.incident_oid = inc.oid) 
LEFT JOIN  location loc ON  
(loc.oid = inc_loc.location_oid) 

31

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            36 / 38



WHERE  rfa.calibre = 0.22 AND loc.country = "United 
Kingdom"; 

Figure 7. SQL representation of the example 

In the project, we prototyped a standalone client based 
on NetBeans RCP, enriched with visual features of the 
embedded Visual Library. This implementation fully 
supports the OSL and provides a graph-based visualisation 
facilitating search, browsing and what is more, reuse of 
search results in further investigations. We provide a user 
with a set of functionalities to visually manage multiple 
searches and results on a single screen at the same time. 
Besides, there is a text view available to the user, which is 
a document-based representation of graph content that 
seamlessly integrates with the visualisation. 

Figure 8 below illustrates a search, whereby a user is 
looking for incidents linked to at least one of a previously 
identified person, under conditions such as location, 
timeframe, or an incident type. 

 

 
Figure 8. Visual representation of search and results with dependencies 

set between previous results and search 

There are two types of widgets, with the first one used 
to build an OSL search query (labelled “Incident” in the 
example above) by setting properties of the class of data 
and dependencies from previous results (in this example, 
representing persons). The second type of widget 
represents results, which are data entries in the system, for 
example persons and incidents in the diagram above. 

This graphical information retrieval and visualisation 
tool was introduced to guide and assist the end user in 
building, editing and executing OSL queries. The client 
provides a windows-based user interface that the end user 
is familiar with. Moreover, it offers a visualisation which 
is used to search, browse, but also receive alerts on new 
entries or updates in the database. 

V. FUTURE WORK 

Formalisation and standardisation of the OSL 
specification is one of the key areas which will be 
addressed after the language is presented to the user 

community and approved by the Odyssey Standardisation 
Committee. 

Additionally, we will be exploring further possibilities 
of data mining techniques in order to extract and index 
information for further processing and analysis. Existing 
technologies recognise a vast potential in text-mining of 
personal statements and other plain-text documents 
gathered during an investigation. This would lead to 
further modification and new extensions to the language, 
which could not be addressed in this paper. For example, 
text-mining could result in entities such as person, location 
and vehicles extraction and mapping of the results on a 
timeline for further investigation and incident sequential 
analysis. 

The OSL is currently under development and at this 
stage does not entirely cover all of the user needs and 
requirements; ideally, the user would be able to model 
processes and sequences of events that lead to or follow a 
crime. This is not a usual use of a domain-specific 
language and it might even seem to contradict with 
common practices. In general, DSLs model per-case 
solutions and do not explore the benefits of sequencing 
actions, events or outcomes. Therefore, usual DSL 
implementations are limited to a linear communication 
with a system rather than enabling the user to reason on 
data and automate the interaction with a system. Currently, 
the platform does not model nor visualises sequential data, 
but the need was widely discussed with the end user 
community. Furthermore, a solution based on mapping of 
crime and ballistic incidents on a timeline was proposed. 

In summary, the future work will focus on 
formalisation and standardisation of solutions and practices 
described above, such as the DSL and processes the 
language is compatible with. Moreover, we will also 
investigate the potential of text-mining in the domain of 
crime investigations, which could potentially lead to 
changes in the OSL. Finally, we will research on how 
sequential data can be used of benefit and expressed in the 
OSL, in order to enable modelling of crime investigation 
processes and modelling of crime cases as such. 

VI.  CONCLUSIONS 

The Odyssey project key result areas are the 
standardisation of data collection, storage and sharing, the 
facilitation of interoperability between existing systems 
and the provision of an infrastructure to both securely 
collaborate on cross national investigations and also 
extracting information through various data-mining and 
knowledge extraction techniques. These objectives of the 
Odyssey project lead to cost saving and increased 
efficiency, but also promote collaboration between law 
enforcement agencies across Europe through the use of 
information and communication technologies (ICTs). 

In this paper, we presented how a domain-specific 
language can facilitate access to a platform by 
encapsulating data structures, enhancing security, but most 
importantly, enabling a non-technical user to interact with 
the platform through the use of a language suitable for the 
field of expertise. 

We have designed a language according to the user 
requirements and prototyped a platform that makes the full 
use of its features. The OSL is used to access and 
manipulate data from multiple sources, collected by 

32

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

                            37 / 38



various techniques and of different investigation value. 
Additionally, the OSL manages access to the user 
permissions and the sharing of data. The presented solution 
enables the end user to interact with the platform 
seamlessly switching between the OSL text- and the 
graph-based editor. 

 
[1] Chau, M., Atabakhsh, H., Zeng, D., and Chen, H. (2001), ‘Building 

an Infrastructure for Law Enforcement Information Sharing and 
Collaboration: Design Issues and Challenges’, University of 
Arizona 

[2] Su, S., Fortes, J., and Kasad, T.R. (2005), ‘Transnational 
Information Sharing, Event Notification, Rule Enforcement and 
Process Coordination’, International Journal of Electronic 
Government Research (IJEGR), pp. 52-62, 2005 

[3] Travis, J. (1998), ‘Informal Information Sharing Among Police 
Agencies’, National Institute of Justice, December 1998 

[4] Redmond, M. and Baveja, A. (2001), ‘A data-driven software tool 
for enabling cooperative information sharing among police 
departments’, European Journal of Operational Research, pp. 660-
678, June 2001 

[5] Chen, H., Schroeder, J., and Hauck, R. (2002), ‘COPLINK 
Connect: information and knowledge management for law 
enforcement’, University of Arizona, Decision Support Systems, 
pp. 271-285, 2003 

[6] Yu, L. (2008), ‘Prototyping, Domain Specific Language, and 
Testing’, Engineering Letters, February 2008 

[7] Mernik, M., Heering, J., and Sloane, A. (2005), ‘When and how to 
develop domain-specific languages’, ACM Computing Surveys, 
pp. 316-344, December 2005 

[8] Spinellis, D. (1999), ‘Notable design patterns for domain-speci®c 
languages’, Department of Information and Communication 
Systems, University of the Aegean, pp. 91-99, December 1999 

 

33

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-112-0

Powered by TCPDF (www.tcpdf.org)

                            38 / 38

http://www.tcpdf.org

