
COMPUTATION TOOLS 2013

The Fourth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-277-6

May 27- June 1, 2013

Valencia, Spain

COMPUTATION TOOLS 2013 Editors

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria

Sandra Sendra, Polytechnic University of Valencia, Spain

 1 / 60

COMPUTATION TOOLS 2013

Foreword

The Fourth International Conference on Computational Logics, Algebras, Programming,
Tools, and Benchmarking (COMPUTATION TOOLS 2013), held between May 27 and June 1,
2013 in Valencia, Spain, continued an event under the umbrella of ComputationWorld 2013
dealing with logics, algebras, advanced computation techniques, specialized programming
languages, and tools for distributed computation. Mainly, the event targeted those aspects
supporting context-oriented systems, adaptive systems, service computing, patterns and
content-oriented features, temporal and ubiquitous aspects, and many facets of computational
benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION
TOOLS 2013 Technical Program Committee, as well as all the reviewers. We also kindly thank
the authors who dedicated much of their time and efforts to contribute to COMPUTATION
TOOLS 2013. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COMPUTATION TOOLS
2013 organizing committee for their help in handling the logistics and for their work to make
this professional meeting a success.

We hope that COMPUTATION TOOLS 2013 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of
progress in the areas of computational logics, algebras, programming, tools, and benchmarking.

We are convinced that the participants found the event useful and communications very
open. We hope that Valencia, Spain provided a pleasant environment during the conference
and everyone saved some time to explore this historic city.

COMPUTATION TOOLS 2013 Chairs:

COMPUTATION TOOLS General Chair

Vicente Casares-Giner, Polytechnic University of Valencia, Spain

 2 / 60

COMPUTATION TOOLS Advisory Chairs

Kenneth Scerri, University of Malta, Malta
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania

COMPUTATIONAL TOOLS Industry/Research Chairs

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

COMPUTATION TOOLS Publicity Chair

Sandra Sendra, Polytechnic University of Valencia, Spain

 3 / 60

COMPUTATION TOOLS 2013

Committee

COMPUTATION TOOLS General Chair

Vicente Casares-Giner, Polytechnic University of Valencia, Spain

COMPUTATION TOOLS Advisory Chairs

Kenneth Scerri, University of Malta, Malta
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania

COMPUTATIONAL TOOLS Industry/Research Chairs

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

COMPUTATION TOOLS Publicity Chair

Sandra Sendra, Polytechnic University of Valencia, Spain

COMPUTATION TOOLS 2013 Technical Program Committee

François Anton, Technical University of Denmark, Denmark
Henri Basson, University of Lille North of France (Littoral), France
Steffen Bernhard, TU-Dortmund, Germany
Ateet Bhalla, NRI Institute of Information Science and Technology, Bhopal, India
Paul-Antoine Bisgambiglia, Université de Corse, France
Narhimene Boustia, Saad Dahlab University - Blida, Algeria
Manfred Broy, Technical University of Munich, Germany
Luca Cassano, University of Pisa, Italy
Emanuele Covino, Università di Bari, Italy
Hepu Deng, RMIT University - Melbourne, Australia
Eugene Feinberg, Stony Brook University, USA
Tommaso Flaminio, Artificial Intelligence Research Institute (IIIA-CSIC) Spain
Janos Fodor, Obuda University, Hungary
Giuseppe Longo, Ecole Normale Supérieure Paris, France
Cynthia Vera Glodeanu, Institute of Algebra / Technische Universität Dresden, Germany
Luis Gomes, Universidade Nova de Lisboa, Portugal
Rajiv Gupta, University of California - Riverside, USA
Fikret Gurgen, Bogazici University - Istanbul, Turkey
Hani Hamdan, École Supérieure d’Électricité (SUPÉLEC), France
Cornel Klein, Siemens AG - Munich, Germany

 4 / 60

Stano Krajci, Safarik University - Kosice, Slovakia
Giovanni Lagorio, DISI/University of Genova, Italy
Tsung-Chih Lin, Feng-Chia University, Taichung, Taiwan
Glenn R. Luecke, Iowa State University, USA
Elisa Marengo, Università degli Studi di Torino, Italy
Gianina Alina Negoita, Iowa State University, USA
Cecilia E. Nugraheni, Parahyangan Catholic University - Bandung, Indonesia
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Mikhail Peretyat'kin, Institute of mathematics and mathematical modeling, Kazakhstan
Alexandre Pinto, ISG - Royal Holloway University of London, UK / Instituto Superior da Maia, Portugal
Enrico Pontelli, New Mexico State University, USA
Corrado Priami, CoSBi & University of Trento, Italy
Evgenia Smirni, College of William and Mary - Williamsburg, USA
James Tan, SIM University, Singapore
Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria
Miroslav Velev, Aries Design Automation, USA
Zhonglei Wang, Karlsruhe Institute of Technology, Germany
Marek Zaremba, Universite du Quebec en Outaouais - Gatineau, Canada
Naijun Zhan, Institute of Software/Chinese Academy of Sciences - Beijing, China

 5 / 60

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 60

Table of Contents

Recognition of Java Source Code by Graph Matching Algorithm
Tomas Bublik and Miroslav Virius

1

On an Inference System for a Hybrid Process Calculus
Zining Cao

7

Static and Dynamic Analysis for Robustness under Slowdown
Ingram Bondin and Gordon Pace

14

Prediction System of Larynx Cancer
Benjamin Moreno-Montiel and Carlos Hiram Moreno-Montiel

23

Introduction in First-Order Combinatorics Providing a Conceptual Framework for Computation in Predicate Logic
Mikhail Peretyatkin

31

Using an Expression Interpreter to Reason With Partial Terms
Lev Naiman

37

Reducing Higher Order pi-Calculus to Spatial Logics
Zining Cao

44

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 60

Recognition of Java Source Code by Graph Matching Algorithm

Tomáš Bublík

Faculty of Nuclear Sciences and Physical Engineering

Czech Technical University in Prague

Prague, Czech Republic

e-mail: tomas.bublik@gmail.com

Miroslav Virius
Faculty of Nuclear Sciences and Physical Engineering

Czech Technical University in Prague

Prague, Czech Republic

e-mail: miroslav.virius@fjfi.cvut.cz

Abstract— This paper describes an option how to detect a

desired Java code snippet in a large number of Java source

files. The scripting language Scripthon is used to describe the

desired section. Next, from this piece, an abstract tree is

created, and it is compared to the other trees which are created

from the Java source codes. The Java Compiler API is used to

obtain the trees from the Java source codes. The final result of

tree matching process is presented to a user.

Keywords-abstract syntax tree; Java; Scripthon; trees

matching; compiler API

I. INTRODUCTION

 Searching source code is an easy task. Nevertheless, this
applies only in the case of a simple text or simple structure
names. This feature is supported in most of the current Java
development environments. Some integrated development
environments (hereinafter IDE) [11] [12] support an
advanced searching with the regular expressions. But, what if
a user wants to know, whether a program contains the
singleton? Or, whether the specific method (with three
concrete parameters) is somewhere in a program? It is very
difficult to find such information; however, using the
mathematical and programming knowledge, it is possible.

When using the Scripthon language [1], these special
structures can be described very precisely. On the other
hand, by using the Java Compiler application programming
interface (hereinafter API), the abstract syntax trees
(hereinafter AST) can be obtained and compared with
Scripthon output. This paper is about using these trees for
searching the desired code snippet. This task is similar to the
graph matching and isomorphic sub-graphs finding in a large
set of trees. An additional problem arises in the applications
where an input graph needs to be matched not only to
another graph, but to an entire database of graphs under a
given matching paradigm. Therefore, some complexity
reducing algorithms are proposed in this paper.

There are several reasons to consider graphs to be very
advantageous tool for the representation of source code of
some language. One reason is that there is no unnecessary
material like spaces, comments, etc. Another reason is that
there are many well described mathematical algorithms to
work with graphs. Some of the algorithms are known for
decades. Representing the code as a graph has also the
disadvantage: it has large demands on a computer power and
memory; especially for larger programs.

The first section compares existing similar solutions with
this one. Several tools with the similar function are
mentioned there. The next section introduces necessary

graph theory concepts. The definitions of a graph, a sub-
graph and a graph isomorphism are given. The Scripthon
language is introduced briefly in fourth chapter. Because the
language has been described already in another paper [1],
only the important properties are mentioned here. The next
two sections are about graphs generation, optimizations, and
the comparison of graphs generated by the Compiler API.
An algorithm for trees matching can be found in Section 6.
Finally, several results are presented in the conclusion.

II. COMPARATION WITH SIMILAR SOLUTIONS

There are many approaches to the code search area.

These approaches can be classified as textual, lexical, tree-

based, metrics-based and graph-based. This distribution

depends on how the source code is expressed. More on this

topic can be found in [6]. Scripthon belongs to the tree-

based solutions.

A number of similar solutions for all the mentioned tasks

have been proposed in [6]; however, Scripthon is quite

different tool. This tool is not supposed to detect the clones

automatically. However, it is possible with the assistance of

the user,. Our previous work dealt with automatic detection

and removal of clones in Java source code [2]. Finally, with

respect to other solutions and a complexity of this topic, we

decided to try another way. In addition, we considered that

the detection and removal of the so-called “non-ideal”

clones is very difficult without some additional information

from a user. (The “non-ideal” clones are repeated pieces of

source code that are not exactly the same, but execute

similar operations.) The Scripthon is primarily designed to

search known patterns in source code. It means that the user

must approximately know how the clone looks like. Then,

he or she creates a script based on his or her ideas which

finds the desired patterns.

A similar solution is described in [7]. Refactoring NG is

an interesting tool which allows defining a refactoring

operation programmatically; however, it cannot be used for

defining the searching patterns.

In addition, Scripthon is not aimed to detect design

patters. With Scripthon, it is possible to find a simple design

pattern within one class (for example, the above mentioned

Singleton), but it is not its main purpose. It is not possible to

find a design pattern composed of multiple classes.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 60

Unlike regular expressions, Scripthon offers an

interesting alternative to search a shape or properties of a

given Java source code.

Figure 1. Complete process

Figure 1 shows the whole process of searching Java

source snippets using Scripthon. The tool runs in two

threads. The first one is a Scripthon compiler. Its output is a

modified AST. The second thread is aimed to create a Java

AST. Both trees are compared with the matching algorithm.

A result of the process is the references to a given Java

source code. Typically, it is the name of a Java class and the

line number where the match occurred.

III. BASIC GRAPH THEORY CONCEPTS

A graph is a four-tuple , where
denotes a finite set of nodes, is a finite set of
edges, is a node labeling function, and
 is an edge labeling function. and are
finite of infinite sets of node and edge labels, respectively.

All the graphs in this work are considered to be directed.
A subgraph of a graph g is a subset of
its nodes and edges, such that

Two graphs and are isomorphic to each other if there
exists a bijective mapping u from the nodes of to the nodes
of , such that the structure of the edges as well as all node
and edge labels are preserved under . Similarly, an

isomorphism between a graph and a subgraph of a

graph is called subgraph-isomorphism form to .
A tree is a connected and undirected graph with no

simple circuits. Since a tree cannot have a circuit, a tree
cannot contain multiple edges or loops. Therefore, any tree
must be a simple graph. An undirected graph is a tree if and
only if there is a unique simple path between any two of its
vertices.

The graph matching problem is actually the same as the
problem of finding the isomorphism between the graphs.
Moreover, matching the parts of a graph with a pattern is the
same challenge as the finding the isomorphic subgraph.

IV. SCRIPHON DESCRIPTION

The Scripthon language is widely described in [1]. The
following text will present only the summary of important
properties of this language. Scripthon is a simple-to-learn
language which is able to describe a Java source code
structure. Because of its simple syntax, it is very easy to
learn. The syntax of the Scripthon language is similar to the

syntax of Java, and it is very intuitive. Basically, the
keywords represent the structures in Java language. Thus, a
Scripthon program is built only with these words and its
properties. Each keyword has a special set of its own
properties. There are three sets defining the usable keyword,
its properties and the properties values. For example, this is
the set of structural keywords (Str):

For a Class() keyword, the set of parameters (SAtr) looks

like:

For these parameters, the set of available values (AVal)

is:

For example, a class is represented by a Class() keyword.

The parameters of this keyword can be in the parentheses,
however, if the brackets include no parameters, each class is
a candidate for searching and each class of a given program
corresponds to this structure. For example, the following
command:

means that the wanted structure is a public class with the
name Main. The options of the parameters are specified in
the Scripthon documentation. The structure nesting it is
denoted only by the line separators.

This example means that the searched structure is a

private method with two parameters. Inside the method is a
block with two statements. The first statement is a variable
named sum of type int. The second statement is a return
statement with a parameter of the previously specified
variable.

The big advance of the Scripthon language is the ability
to describe the elements with a variable depth of details.
This means that the searched structures can be described in
a detail or very loosely. For example, this is a very detailed
description:

The same script without details follows:

Class(Name = "TestDecompile"; Rest = public)
 Meth(Name = "main"; Ret = void; Rest = public)
 Init(Name = "toPrintValue"; Type = String)
 MethCall(Name = "System.out.println")

Meth(Rest = private; ParamsNum = 2)
 Block()
 Init(Type = int; Value = ""; Name = "sum")

Class(Name = "Main"; Rest = public)

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 60

Therefore, a searched subject can be found on the base

of a very inaccurate description. The results can be obtained
with the iterative refinement of the input conditions. In the
end, the user can get better results.

Furthermore, Scriphon contains a special keyword
Any(). It is not a structural keyword, but it is information
for the matching algorithm to act as anything. When used, it
means that a searching structure could be anything (even
with the sub-trees) or nothing. With respect to the previous
example, the desired structure can be described even with
this script:

However, because of the generality of this script, the

number of results found will be very high. (Actually, any
class corresponds to this script)

The level of detail which can be described by the current
version of Scripthon is up to – but not including – the
expression. In addition, Scripthon can describe a lot of Java
structures, but it cannot describe the individual elements of
an expression statement. For example, while describing the
if statement, it is possible to address the inner block, or the
else block with inner statements; however, the if-expression
in the parentheses cannot be described. Moreover, Scripthon
is not able to describe the mathematical operations. If a
variable i is declared such as:

The most accurate Scripthon statement to find is:

In the current version of Scripthon, nothing more can be

described. On the other hand, this language is designed to be
extensible. The main program consists of several modules
appropriate to corresponding stages of searching process.

Current version of the language cannot describe all the
Java language structures. For example, annotations,
generics, diamond operators, and many others are omitted,
but they can be easily added in future versions. It would be
necessary to introduce new structural word, define its
properties, and define the rules to the searching algorithm.
There is no need to change syntax, or even the compiler.

V. GRAPH GENERATION WITH JAVA COMPILER API

The Java Compiler API is used to get a graph for the
searching algorithm. This API is free, and it is included in

Figure 2. Tree with optimizations

the Java distribution. Basically, the Java Compiler API
serves to the advanced control of a compilation process.
This API uses the AST and the visitor design pattern.
Unfortunately, this design pattern is not suitable for
searching purposes. This is because the Scripthon language
cannot to describe such a quantity of structures, and also
because the searching algorithm is not suitable for the
implementation with the visitor design pattern. Therefore,
the more advanced graph is created from a Java AST. This
graph is based on the AST, but it has a several benefits.

The first benefit is the replacement of the visitor pattern
with the classic approach. The second one is that some
additional information is included, which significantly
facilitates the searching.

While browsing the Java source code, the tree with the
nodes enhanced by four numbers is created. These numbers
are the natural numbers named left, right, level and level
under. The first and the second number (left, right) denote
the order index of a node in the tree preorder traversal.
Therefore, an ancestor’s left index is always smaller than its
children left index, while the right index is always bigger
than any children’s right index. The level number denotes
the level in a tree hierarchy of vertices, and the level under
number denotes a number of levels under the current node
(compare with the method described in [4]).

Suppose that and are two nodes from a tree; the

following rules are valid for these values.

 The node is an ancestor of and is a descendant

of if

 The node is a parent of and is a child of if

1) and 2)

 The node has sub-nodes.

Init(Name = "i"; Type = int)

int i = a + b;

Class()
 Meth()

Class()
 Meth()
 Init()
 MethCall()

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 60

All these data are acquired during a single pass through
the tree. Obtaining this information is not a time consuming
operation, because it is made during the tree production
process. On the other hand, the number of comparisons can
be significantly reduced with these numbers. Moreover,
while comparing the trees, it is very easy to detect:

 How many elements have a given structure

 Whether a node is a leaf

 How many sub-statements are included in a given
structure

The comparison of two trees is much more time

consuming without this information. In summary, this
information is used in cases where the shape of the given
structures and its coupling is considered more than its
properties.

A line reference to source code is important information
which is also added to the tree as a metadata. Therefore, it is
easy to link the results with the original source position and
show it to the user. There are some more elements in a node
metadata. For example, some of the other metadata
information is a filename of the source file.

Because the number of the comparisons is a key
indicator for the algorithm speed, it is necessary to keep the
number of nodes as small as possible. Therefore, only the
supported structures and their properties are considered
while creating a tree from source code. Thus, the same
Scripthon definition set is used during the tree creation
process. Other elements are omitted.

VI. GRAPH MATCHING

The simple and many times described backtracking
algorithm is used for the graph matching. Basically, it is the
problem of finding an isomorphic tree to the given tree from
a large database of trees. Comparing to the common tree
matching, there are two differences. The first one is that the
node properties need to be considered during the process.
The second difference is that not every Scripthon node
corresponds exactly to one Java structure node. For
example, the already mentioned keyword Any() could
correspond to more nodes.

The source trees are created from the corresponding
classes. The classes and the trees are mapped one-by-one.
Each tree corresponds to exactly one class. In the first step,
the algorithm checks whether the shape of the structure
match, and then the properties are compared. This is
because the properties matching is much more time
consuming operation than shape detection. Many structures
are eliminated very quickly from the process in the case that
the shape does not fit.

If the shape of the structure corresponds to the required
shape, the structure parameters are compared. All the
parameters of a given node must be met. The node

properties are provided by the Java compiler.

Figure 3. Simplified tree matching algorithm.

Figure 3 shows the simplified matching algorithm. It is
written in Java pseudo-code. The algorithm skeleton is
similar to the algorithm described in [8]. The main
difference is that in our solutions are compared not two Java
trees, but a Java tree and a Scriphon tree. The whole
program iterates over all given Java classes (line 1in the
figure 3). Instead of finding a corresponding sub-tree, the
algorithm tries to exclude quickly a mismatching part. It can
be seen from line 2.

At the beginning, it is assumed that the given source
matches. The rest of the algorithm iterates over Scripthon
statements (line 3) and tries to find a match between a
statement and a node of a Java AST (line 4). A matching
method (line 10) is called recursively as the sub-nodes are
traversed. If a result of this method is false, the loop over
Scripthon statements is interrupted (line 6), because even
the first statement does not correspond to anything of a Java
class. The result of the “compare” method is true (line 21)
or false (line 20). A statement and a node are equal if all
their corresponding properties are equal (line 12) and all the
children are equal (line 13). Therefore, all children are
iterated and compared recursively (line 14). If a match is
found, this method returns true (line 18). Otherwise it
returns false (line 16). If true, the result is added to the result
list.

Many aspects are considered during properties matching
process. Not only keywords and Java nodes properties are
considered. According to the previous section, it is possible
to exclude quickly the mismatched parts, because some
additional data are known about a shape of the sub-tree.

The typical size of a class graph depends on the source
size and on the number of supported structures. About 80
nodes of the graph are created from a Java class with length
about 200 lines nodes in the current version of Scripthon. In
future versions, when more structures will be supported,
may the number of the nodes significantly increase.

1.for (Class c) //iterate over all classes from given sources

2. match = true
3. for (Statement s)

4. match = compare(s, c.parentNode)

5. if (match == false)
6. break

7. if (match)

8. add it to the list of founded structures
9.

10.boolean compare(Statement s, Node n)

11. match = true
12. if (s.properties match n.properties)

13. for (s.children, n.children)
14. compare(s.child, n.child)

15. if (match == false)

16. return false
17. else

18. return true

19. else
20. return false

21. return true

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 60

Unfortunately, because all the Java classes with all their
nodes must be compared with all the Scripthon statements,
the number of complexity rapidly grows. According to [3],
the sub-graph isomorphism problem has complexity
in worst case. Since the number of occurrences can be more
than one, each class must be browsed more than once. Each
class needs to be traversed until the number of results is 0.
According to [9, 10] the graph isomorphism problem is
polynomial. Therefore, even in this case, the complexity of
our algorithm remains polynomial. On the other hand, with
the above outlined optimizations, the number of node
comparisons is significantly decreased. More on the similar
graph matching techniques can be found in [5].

VII. MEASUREMENTS RESULTS

The used algorithm modifications substantially reduced
the time needed to find the requested Java structures.
Moreover, also the time of the tree generation procedure has
been shortened. According to the measurements, the meta-
information counting does not significantly affect the time
of a graph creation.

The searching with optimization is much faster. The
following tables show the measured time results. The small
program means a program consisting of approximately 20 to
30 classes, while the larger program is a program with
approximately 100 to 150 classes. There are also the results
before and after the described optimizations.

TABLE I. Graph creation times

Program type Time

Small program (no optimizations) 412 ms

Larger program (no optimizations) 4 423 ms

Small program (optimized) 132 ms

Larger program (optimized) 337 ms

TABLE II. Searching times

Program type Time

Small program (no optimizations) 2 345 ms

Larger program (no optimizations) 11 236 ms

Small program (optimized) 753 ms

Larger program (optimized) 1 986 ms

TABLE III. Total times

Program type Time

Small program (no optimizations) 2 757 ms

Larger program (no optimizations) 15 659 ms

Small program (optimized) 886 ms

Larger program (optimized) 2 323 ms

The measurements were performed on the quite common

computer. The computer configuration was: 4GB of
memory, the Intel Core I5 processor with a frequency of 2.4
GHz and Windows 7 as an operating system. The individual
results represent the averages of several consecutive

measurements. The first column indicates the time needed to
the AST generation, while the second one represents the
time required to find a piece of the sample code described
by the Scripthon language. The last column is the sum of
both times. The lines represent the sizes of programs on
which the measurements were performed.

As it is shown in the tables, in case of the small
program, the graph assembling is not significantly different.
On contrary, better results can be obtained in the case of
larger programs. Probably, this is because some time is
needed for the overhead services related to the starting and
initializing the own search.

VIII. CONCLUSION

With the described solution, we proved that the proposed

concept of searching is possible. Moreover, it is also very

effective. With used optimizations, the algorithm

significantly improved performance of a whole process.

Next, the Scripthon project is designed as a modular system.

Therefore, as will the functionality requirements grow, it is

not difficult to add more supported Java structures. Even the

language itself could be enhanced by new syntax elements

very easily. There are many possibilities of how Scripthon

could be used. One of the planned usage areas is a student’s

work controlling task. With Scripthon, it is easy to detect

whether a student’s work contains prescribed programming

structures.

The Scripthon language improved. The Scripthon

compiler is available as a command line tool now. We

suppose to develop the Scripthon plug-in for some popular

integrated development environments in the future.

ACKNOWLEDGMENT

This work is supported by the SGS 11/167 grant of the

Ministry of Education, Youth and Sports of the Czech

Republic.

REFERENCES

[1] T. Bublík and M. Virius.: “New language for searching Java

code snippets,” in: ITAT 2012. Proc. of the 12th national
conference ITAT. diar, Sep 17 – 21 2012. Pavol Jozef Safrik
University in Kosice, pp. 35 – 40.

[2] T. Bublík and M. Virius: “Automatic detecting and removing
clones in Java source code,” in: Software Development 2011.
Proc. of the 37th national conference Software Development.
Ostrava, May 25 – 27 2011. Ostrava: Technical University of
Ostrava 2011. ISBN 978-80-248-2425-3, pp. 10 – 18.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier.
1998. “Clone Detection Using Abstract Syntax Trees,” in
Proceedings of the International Conference on Software
Maintenance (ICSM '98). IEEE Computer Society,
Washington, DC, USA, pp. 368-377.

[4] J. T. Yao and M. Zhang. 2004. “A Fast Tree Pattern Matching
Algorithm for XML Query,” in Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web
Intelligence (WI ’04). IEEE Computer Society, Washington,
DC, USA, pp. 235-241.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 60

[5] H. Bunke, Ch. Irniger, and M. Neuhaus. 2005. “Graph
matching – challenges and potential solutions,” in
Proceedings of the 13th international conference on Image
Analysis and Processing (ICIAP'05), Fabio Roli and Sergio
Vitulano (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 1-
10.

[6] Ch. K. Roy, J. R. Cordy, and R. Koschke. 2009. “Comparison
and evaluation of code clone detection techniques and tools:
A qualitative approach,” Sci. Comput. Program. 74, 7 (May
2009), pp. 470-495.

[7] Z. Troníček. 2012. “RefactoringNG: a flexible Java
refactoring tool,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC '12). ACM, New
York, NY, USA, pp. 1165-1170.

[8] W. Yang. 1991. “Identifying syntactic differences between
two programs,” Softw. Pract. Exper. 21, 7 (June 1991), pp.
739-755.

[9] J. Köbler and J. Torán. 2002. “The Complexity of Graph
Isomorphism for Colored Graphs with Color Classes of Size 2
and 3,” In Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Science (STACS '02),
Helmut Alt and Afonso Ferreira (Eds.). Springer-Verlag,
London, UK, UK, pp. 121-132.

[10] I. S. Filotti and J. N. Mayer. 1980. “A polynomial-time
algorithm for determining the isomorphism of graphs of fixed
genus,” In Proceedings of the twelfth annual ACM
symposium on Theory of computing (STOC '80). ACM, New
York, NY, USA, pp. 236-243.

[11] T. Boudreau, J. Glick, and V. Spurlin, “NetBeans: The
Definitive Guide,” Sebastopol, CA, USA: O'Reilly &
Associates, Inc., 2002.

[12] S. Holzner, “Eclipse,” O'Reilly Media, April 2004.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 60

On an Inference System for a Hybrid Process
Calculus

Zining Cao1,2

1State Key Laboratory for Civil Aircraft Flight Simulation
Shanghai Aircraft Design and Research Institute

Shanghai 201210, China
2Department of Computer Science and Technology
Nanjing University of Aeronautics & Astronautics

Nanjing 210016, China

Abstract—In this paper, we propose a hybrid process calculus.
This hybrid process calculus can be used to describe hybrid
properties and nondeterministic properties of software. The
concrete bisimulation and symbolic bisimulation of this hybrid
process calculus are proposed. We then prove the equivalence
between these two bisimulation. An inference system for the
symbolic bisimulation of this hybrid process calculus is given. At
last, we prove the soundness and completeness of the inference
system.

Keywords—hybrid process calculus; symbolic bisimulation; in-
ference system

I. INTRODUCTION

Hybrid system is a kind of mixed discrete-continuous sys-
tem. A paradigmatic example of a mixed discrete-continuous
system is a digital controller of an analog plant. The discrete
state of the controller is modelled by the vertices of a graph
(control modes), and the discrete dynamics of the controller
is modelled by the edges of the graph (control switches).
The continuous state of the plant is modelled by points in
Rn, and the continuous dynamics of the plant is modelled by
flow conditions such as differential equations. The behavior of
the plant depends on the state of the controller: each control
mode determines a flow condition, and each control switch
may cause a discrete change in the state of the plant, as
determined by a jump condition. Dually, the behavior of the
controller depends on the state of the plant: each control mode
continuously observes an invariant condition of the plant state,
and by violating the invariant condition, a continuous change
in the plant state will cause a control switch.

There are several works on models of hybrid systems such
as [2], [3], [4], [7], and [12]. But there are seldom works
on sound and complete inference systems for bisimulation of
hybrid systems. For examples, some sound inference systems
for bisimulation were given in [2] and [4], whereas these
inference system were not proved complete. In this paper,
we aim to propose a sound and complete inference system
for bisimulation of hybrid systems. To this end, we firstly
present a hybrid process calculus including its syntax, op-
erational semantics and concrete bisimulation in this paper.
Then the symbolic labelled transition system and symbolic
bisimulation are also presented. We prove the equivalence of
concrete bisimulation and symbolic bisimulation. Furthermore,

we present an inference system for symbolic bisimulation.
Finally, the soundness and completeness of this inference
system are studied.

This paper is organized as follows: Section 2 gives a hybrid
process calculus including its syntax, operational semantics
and concrete bisimulation. In Section 3, we propose a symbolic
theory for this hybrid process calculus including symbolic
labelled transition system and symbolic bisimulation for hy-
brid process calculus. Furthermore, we prove the equivalence
between concrete bisimulation and symbolic bisimulation. In
Section 4, we give a complete inference system for this hybrid
process. The soundness and completeness of the inference
system are also proved. The paper is concluded in Section
5.

II. HYBRID PROCESS CALCULUS

There are many works about process algebras for hybrid
systems, for example, [2], [3], [4], [7], and [12]. A comparative
study of these process algebras is referred to [9]. The main aim
of this paper is to propose a sound and complete inference
for bisimulation of hybrid systems. To this end, we present
a simple hybrid process calculus which has a relatively small
number of operators and a simpler semantics. Therefore it is
easier to give a complete inference system than other pro-
cess algebras. The syntax, operational semantics and concrete
bisimulation of this process calculus are given in this section.

A. Syntax of Hybrid Process Calculus

To give the syntax of hybrid process calculus, we first
present the syntax and semantics of predication logical for-
mulas.

Predication logical formulas are defined by the following
grammar:

Φ, Ψ ::= x ◃▹ u(x1, ..., xn) | ¬Φ | Φ ∧ Ψ | ∀x.Φ, where
◃▹∈ {=, ̸=,≥, >,<,≤}, x is a variable, u(x1, ..., xn) is a
real function with parameters x1, ..., xn, i.e., u(r1, ..., rn) = r
where r1, ..., rn, r ∈ R and R is the set of real numbers.
We denote the set of variable {t, v1, v2, ..., vn, ...} as V ar0,
denote the set of variable {t′, v′1, v′2, ..., v′n, ...} as V ar′, and
denote V ar0 ∪ V ar′ = V ar. Informally, variables v′1, ..., v

′
n

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 60

represent the new values taken by the variables v1, ..., vn after
a transition. Variable t represents the time variable.

The satisfiability relation |= is defined between assignment
θ and formula Φ as follows, where θ is a function such that
the domain of θ is a subset of V ar and the range of θ is R,
and free variables in Φ is in the domain of θ.

(1) θ |= x ◃▹ u(x1, ..., xn) if θ(x) ◃▹ u(θ(x1), ..., θ(xn));

(2) θ |= ¬Φ if θ ̸|= Φ;

(3) θ |= Φ ∧Ψ if θ |= Φ and θ |= Ψ;

(4) θ |= ∀x.Φ if θ |= Φ{a/x} for any a, where {s/t}
means replacing t by s.

We write Φ |= Ψ to mean that θ |= Φ implies θ |= Ψ for
any θ, and write |= Ψ to mean that θ |= Ψ for any θ.

The formal definition of process is given as follows:

P ::= 0 | X | P + P | ε(Φ1,Φ2).P | a(Ψ1,Ψ2).P |
fixX.P, where Φ1 is a predication logical formulas with free
variables in V ar0; Φ2 is a predication logical formulas with
free variables in V ar; ε is an internal action which is invisible
for observer; Ψ1 is a predication logical formulas with free
variables in V ar0; Ψ2 is a predication logical formulas with
free variables in V ar; a is an external action which is visible
for observer; all process variables in fixX.P are guarded by
action prefix. The class of processes is denoted as Pr.

Informally, 0 denotes inaction. P1 + P2 expresses nonde-
terministic choice of processes P1 and P2. ε(Φ1,Φ2).P can
perform an internal action ε under condition Φ1, then continues
as P, and the change of variables satisfies Φ2. a(Ψ1,Ψ2).P
can perform an external action a under condition Ψ1, then
continues as P, and the change of variables satisfies Ψ2.
fixX.P is a recursive definition of process.

B. Labelled Transition System of Hybrid Process Calculus

The operational semantics of hybrid process calculus is
given in Table 1. We have omitted the symmetric rule of the
nondeterministic operator.

The labelled transition system consists of a collection of
relations of the form ⟨P, ρ⟩ ε(Φ1,Φ2),T−→ ⟨Q, σ⟩ or ⟨P, ρ⟩ a(Ψ1,Ψ2)−→
⟨Q, σ⟩, where P,Q are processes, and ρ, σ are configurations.
A configuration is a function ρ such that ρ(x) ∈ R for any
x ∈ V ar0. A configuration represents an possible assignment
of variables. The class of configurations is denoted as C. The
transition ⟨P, ρ⟩ ε(Φ1,Φ2),T−→ ⟨Q, σ⟩ means that the process P at
configuration ρ can realize the action ε(Φ1,Φ2), and becomes
Q at configuration σ after T units of time. The transition
⟨P, ρ⟩ a(Ψ1,Ψ2)−→ ⟨Q, σ⟩ means that the process P at configu-
ration ρ can realize the action a(Ψ1,Ψ2), and becomes Q at
configuration σ. We denote by ρ[x← U] a new configuration
that is the same as ρ except that ρ[x← U](x) = U, and denote
by ρ[x ⇐ x′] a function such that f(x′) = ρ(x) for any x in
the domain of ρ. In the following, for function ρ : X → R
and function σ : Y → R with condition X ∩ Y = ∅, we use
ρ∪σ to denote function f such that f(x) = ρ(x) when x ∈ X
and f(x) = σ(x) when x ∈ Y.

TAU : ⟨ε(Φ1,Φ2).P, ρ⟩
ε(Φ1,Φ2),T−→ ⟨P, ρ′⟩, where T ∈ R,

∀δ ∈ [0, T].ρ[t← ρ(t) + δ] |= Φ1, ρ
′(t) = ρ(t) + T,

ρ ∪ (ρ′[x⇐ x′]) |= Φ2.

ACT : ⟨a(Ψ1,Ψ2).P, ρ⟩
a(Ψ1,Ψ2)−→ ⟨P, ρ′⟩, where ρ |= Ψ1,

ρ ∪ (ρ′[x⇐ x′]) |= Ψ2.

SUM :
⟨P1, ρ⟩

α−→ ⟨P ′
1, ρ

′⟩
⟨P1 + P2, ρ⟩

α−→ ⟨P ′
1, ρ

′⟩

REC :
⟨P{fixX.P/X}, ρ⟩ α−→ ⟨P ′, ρ′⟩
⟨fixX.P, ρ⟩ α−→ ⟨P ′, ρ′⟩

Table 1: Operational semantics of hybrid process calculus

An example: Let process P = ε(Φ1,Φ2).a(Ψ1,Ψ2).0 =
ε(x1 + x2 + t ≤ 2y + 1, x′

1 = tx1 ∧ x′
2 = 2x2 ∧ y′ ≤

2x′
2 − x1).a(x1 + x2 ≥ y, x′

1 = 2x1 ∧ x′
2 = x2).0. Then

at configuration ρ such that ρ(t) = 0, ρ(x1) = 1, ρ(x2) =

2, ρ(y) = 3,we have ⟨P, ρ⟩ ε(Φ1,Φ2),2−→ ⟨P ′, ρ′⟩, where P ′ =
a(Ψ1,Ψ2).0 = a(x1 + x2 ≥ y, x′

1 = 2x1 ∧ x′
2 = x2).0, ρ

′ is
a configuration such that ρ′(t) = 2, ρ′(x1) = 2, ρ′(x2) = 4,

ρ′(y) ≤ 6. Furthermore, ⟨P ′, ρ′⟩ a(Ψ1,Ψ2)−→ ⟨0, ρ′′⟩, where ρ′′ is
a configuration such that ρ′′(t) = 2, ρ′′(x1) = 4, ρ′′(x2) = 4,
ρ′′(y) ∈ R.

C. Concrete Bisimulation

Now we propose a concrete bisimulation for hybrid pro-
cess calculus. Intuitively, P and Q are concrete bisimilar if
whenever P can perform an action under the configuration ρ,
Q can also perform the same action under the configuration ρ.

Definition 2. A symmetric relation R ∈ (Pr×C)× (Pr×
C) is called a concrete bisimulation if whenever ⟨P, ρ⟩ R
⟨Q, ρ⟩,

(1) ⟨P, ρ⟩ ε(ΦP
1 ,ΦP

2),T−→ ⟨P ′, ρ′⟩ implies that there exists Q′

such that ⟨Q, ρ⟩
ε(ΦQ

1 ,ΦQ
2),T

−→ ⟨Q′, ρ′⟩ and ⟨P ′, ρ′⟩ R ⟨Q′, ρ′⟩;

(2) ⟨P, ρ⟩ a(ΨP
1 ,ΨP

2)−→ ⟨P ′, ρ′⟩ with a ̸= ε implies that there

exists Q′ such that ⟨Q, ρ⟩
a(ΨQ

1 ,ΨQ
2)

−→ ⟨Q′, ρ′⟩ and ⟨P ′, ρ′⟩ R
⟨Q′, ρ′⟩.

We write ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩ if there is a concrete bisimulation
R such that ⟨P, ρ⟩ R ⟨Q, ρ⟩.

We write P ∼C Q if ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩ for any ρ.

Remark: In the above definition, we do not require that
ΦP

1 and ΦQ
1 (ΦP

2 and ΦQ
2 , or ΨP

1 and ΨQ
1 , or ΨP

2 and ΨQ
2)

are logical equivalent since by the operational semantics of

hybrid process calculus, ⟨P, ρ⟩ ε(Φ
P
1 ,ΦP

2),T−→ ⟨P ′, ρ′⟩ is permitted

if ∀δ ∈ [0, T].ρ[t ← ρ(t) + δ] |= ΦP
1 , and ⟨Q, ρ⟩

ε(ΦQ
1 ,ΦQ

2),T
−→

⟨Q′, ρ′⟩ is permitted if ∀δ ∈ [0, T].ρ[t ← ρ(t) + δ] |= ΦQ
1 ,

which means ∀δ ∈ [0, T].ρ[t ← ρ(t) + δ] |= ΦP
1 ↔ ΦQ

1 .
Therefore the logical equivalent relation between ΦP

1 and ΦQ
1

is implied by the side condition of operational semantics of
hybrid process calculus. The cases of ΦP

2 and ΦQ
2 , Ψ

P
1 and

ΨQ
1 , Ψ

P
2 and ΨQ

2 are similar.

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 60

III. A SYMBOLIC THEORY FOR HYBRID PROCESS
CALCULUS

In this section, a symbolic labelled transition system and a
symbolic bisimulation equivalence are presented. The full ab-
straction property, i.e., the equivalence between this symbolic
bisimulation and the concrete bisimulation, is shown. The sym-
bolic semantics is necessary for an efficient implementation of
the calculus in automated tools exploring state spaces, and the
full abstraction property means processes are bisimilar in the
symbolic setting if they are bisimilar in the original semantics.

A. Symbolic Labelled Transition System

The symbolic operational semantics of hybrid process
calculus is given in Table 2. We have omitted the symmetric
of the nondeterministic. The labelled transition system consists

of a collection of relations of the form P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ Q or

P
Γ,a(Ψ1,Ψ2),Γ

′

−→ Q. The transition P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ Q means
that the process P can realize the action ε(Φ1,Φ2) if condition
Γ is true, and becomes Q where Γ′ is true after T units of

time. The transition P
Γ,a(Ψ1,Ψ2),Γ

′

−→ Q means that the process
P can realize the action a(Ψ1,Ψ2) if condition Γ is true, and
becomes Q where Γ′ is true.

In the following, we use (∃
⇀

X .Φ){
⇀

X /
⇀

X ′} to abbreviate
(∃x1...∃xm.Φ){x1, ..., xm/x′

1, ..., x
′
m}, where the set of free

variables in Φ is {x1, ..., xm, x′
1, ..., x

′
m}.

TAU : ε(Φ1,Φ2).P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P, where T ∈ R,
|= ∀δ ∈ [0, T].Γ{t+ δ/t} → Φ1{t+ δ/t},

|= (∃
⇀

X .(Γ ∧ Φ2 ∧ t′ = t+ T)){
⇀

X /
⇀

X ′} → Γ′.

ACT : a(Ψ1,Ψ2).P
Γ,a(Ψ1,Ψ2),Γ

′

−→ P, where |= Γ→ Ψ1,

|= (∃
⇀

X .(Γ ∧Ψ2)){
⇀

X /
⇀

X ′} → Γ′.

SUM :
P1

Γ,α,Γ′

−→ P ′
1

P1 + P2
Γ,α,Γ′
−→ P ′

1

REC :
P{fixX.P/X} Γ,α,Γ′

−→ P ′

fixX.P
Γ,α,Γ′
−→ P ′

Table 2: Symbolic operational semantics of hybrid process
calculus

An example: Let process P = ε(Φ1,Φ2).Q = ε(x1+x2 ≤
2y + 1, y′ ≤ 2x′

2 − x1).Q, formula Γ = (t = 0 ∧ x1 ≥
0∧x1+x2 ≤ 3∧ y = 3). Then we have P

Γ,(ε(Φ1,Φ2),2),Γ
′

−→ Q,
where Γ′ = (t ≥ 2 ∧ y ≤ 2x2).

B. Symbolic Bisimulation

In this section we define a symbolic version of concrete
bisimulation for hybrid process calculus. Symbolic bisim-
ulation is defined as a family of binary relations indexed
by a predication logical formula which expresses variable
constraints.

Definition 3. A collection of formulas Σ is a partition of
Φ if for any θ it holds that θ |= Φ implies θ |= Ψ for some

Ψ ∈ Σ. A finite partition of Φ is a finite collection of formulas
which is a partition of Φ.

Definition 4. A symmetric relation R ∈ Pr × Pr with
respect to the formula Γ is called a symbolic bisimulation if
whenever P RΓ Q,

(1) P
Γ,(ε(ΦP

1 ,ΦP
2),T),Γ′

P−→ P ′ implies that there exists a finite
partition Σ = {ϕi | i ∈ I}, |= Γ ∧ ΦP

1 ↔ ∨i∈Iϕi, for any
ϕi there exists a finite partition Π = {χj | j ∈ J} such that
|= ϕi ∧ ΦP

2 ↔ ∨j∈Jχj , for any χj there exists Q′ such that

Q
Γ,(ε(ΦQ

1 ,ΦQ
2),T),Γ′

Q−→ Q′ and ϕi |= Γ ∧ ΦQ
1 , χj |= Γ ∧ ΦQ

2 and

P ′ R(∃
⇀
X.χj∧t′=t+T){

⇀
X/

⇀

X′} Q′;

(2) P
Γ,a(ΨP

1 ,ΨP
2),Γ′

P−→ P ′ with a ̸= ε implies that there exists
a finite partition Σ = {ϕi | i ∈ I}, |= Γ ∧ΨP

1 ↔ ∨i∈Iϕi, for
any ϕi there exists a finite partition Π = {χj | j ∈ J} such
that |= ϕi ∧ ΨP

2 ↔ ∨j∈Jχj , for any χj there exists Q′ such

that Q
Γ,.a(ΨQ

1 ,ΨQ
2),Γ′

Q−→ Q′ and ϕi |= Γ ∧ ΨQ
1 , χj |= Γ ∧ ΨQ

2

and P ′ R(∃
⇀
X.χj){

⇀
X/

⇀

X′} Q′.

We write P ∼Γ
S Q if there is a symbolic bisimulation R

such that P RΓ Q.

C. Equivalence Between Concrete Bisimulation and Symbolic
Bisimulation

In this section, we will prove the equivalence between
concrete bisimulation and symbolic bisimulation. Thus to give
a complete inference system for concrete bisimulation, it is
enough to give a complete inference system for symbolic
bisimulation.

To prove Proposition 1 which states the equivalence be-
tween concrete bisimulation and symbolic bisimulation, we
need some lemmas.

Lemma 1. There exists ρ such that ρ ∪ ρ′ |= Γ ⇔ ρ′ |=
(∃x1...∃xm.Γ), where the domain of ρ is {x1, ..., xm}, the
domain of ρ′ is {y1, ..., yn}, {x1, ..., xm} ∩ {y1, ..., yn} = ∅.

P roof. See Appendix A.

The following lemma gives the corresponding relation
between symbolic transition and concrete transition.

Lemma 2. (1) Given Γ and Γ′, if for any ρ |= Γ, there
is ρ′, such that ρ′ |= Γ′, ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Φ2, and

⟨P, ρ⟩ ε(Φ1,Φ2),T−→ ⟨P ′, ρ′⟩, then P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P ′, where
|= ∀δ ∈ [0, T].Γ{t+ δ/t} → Φ1{t+ δ/t}, |= (∃

⇀

X .(Γ∧Φ2 ∧
t′ = t+ T)){

⇀

X /
⇀

X ′} → Γ′;

(2) Given Γ and Γ′, if for any ρ |= Γ, there is ρ′, such

that ρ′ |= Γ′, ρ ∪ (ρ′[x⇐ x′]) |= Γ ∧Ψ2, and ⟨P, ρ⟩ a(Ψ1,Ψ2)−→
⟨P ′, ρ′⟩, then P

Γ,a(Ψ1,Ψ2),Γ
′

−→ P ′, where |= Γ→ Ψ1, |= (∃
⇀

X

.(Γ ∧Ψ2)){
⇀

X /
⇀

X ′} → Γ′;

(3) P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P ′ implies for any ρ |= Γ, there
is ρ′, such that ρ′ |= Γ′ and ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Φ2,

⟨P, ρ⟩ ε(Φ1,Φ2),T−→ ⟨P ′, ρ′⟩, where |= ∀δ ∈ [0, T].Γ{t+ δ/t} →
Φ1{t+ δ/t}, |= (∃

⇀

X .(Γ∧Φ2∧ t′ = t+T)){
⇀

X /
⇀

X ′} → Γ′;

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 60

(4) P
Γ,a(Ψ1,Ψ2),Γ

′

−→ P ′ implies for any ρ |= Γ, there is
ρ′, such that ρ′ |= Γ′ and ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Ψ2,

⟨P, ρ⟩ a(Ψ1,Ψ2)−→ ⟨P ′, ρ′⟩, where |= Γ → Ψ1, |= (∃
⇀

X

.(Γ ∧Ψ2)){
⇀

X /
⇀

X ′} → Γ′.

P roof. See Appendix B.

The following lemma shows the image-finite property of
symbolic transition.

Lemma 3. (1) For any P and Γ, there are finitely many

ε(ΦP
1 ,Φ

P
2), such that P

Γ,(ε(ΦP
1 ,ΦP

2),T),Γ′
P−→ P ′;

(2) For any P and Γ, there are finitely many a(ΨP
1 ,Ψ

P
2),

such that P
Γ,a(ΨP

1 ,ΨP
2),Γ′

P−→ P ′.

P roof. By induction on the inference length of

P
Γ,(ε(ΦP

1 ,ΦP
2),T),Γ′

P−→ P ′ or P
Γ,a(ΨP

1 ,ΨP
2),Γ′

P−→ P ′.

In the following, we show that any process is symbolic
bisimilar to a “normal process”.

Lemma 4. For any P and Γ, there exists a process in the
form of Σl∈Lε(Φl1,Φl2).Pl+Σm∈Mam(Ψm1,Ψm2).Pm such
that P ∼Γ

S Σl∈Lε(Φl1,Φl2).Pl +Σm∈Mam(Ψm1,Ψm2).Pm.

Proof. By Lemma 3 and by induction on the structure of
P.

The equivalence between concrete bisimulation and sym-
bolic bisimulation is given in the following proposition.

Proposition 1. For any ρ |= Γ, ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩ ⇔ P ∼Γ
S

Q.

Proof. See Appendix C.

Remark: For the symbolic bisimulation, for a transition
from P , there should be a finite partition from Q. In the proof
of Proposition 1, we show the existence of such finite partition.

IV. A COMPLETE INFERENCE SYSTEM FOR HYBRID
PROCESS CALCULUS

In this section, we give an inference system for symbolic
bisimulation. The soundness and completeness of this infer-
ence system are also studied.

A. An Inference System for Bisimulation of Hybrid Process
Calculus

An inference system for symbolic bisimulation consists of

the following rules. The rules are in the form of
A1, ..., An

B
,

which means B is true if A1, ..., An are all true. In these
rules, the notation Γ ◃ P = Q means process P is equivalent
to process Q if formula Γ is true.

(1)

Γ |= Φ1 ↔ Φ3,
|= ∃t.(t′ ≥ t ∧ Φ1 ∧ Γ ∧ Φ2)↔ ∃t.(t′ ≥ t ∧ Φ3∧

Γ ∧ Φ4)

Γ ◃ ε(Φ1,Φ2).P = ε(Φ3,Φ4).P

(2)

Γ |= Φ1,

(∃
⇀

X .(Φ1 ∧ Γ ∧ Φ2 ∧ t′ ≥ t){
⇀

X /
⇀

X ′} ◃ P = Q

Γ ◃ ε(Φ1,Φ2).P = ε(Φ1,Φ2).Q

(3)
Γ |= Ψ1 ↔ Ψ3, |= (Ψ1 ∧ Γ ∧Ψ2)↔ (Ψ3 ∧ Γ ∧Ψ4)

Γ ◃ a(Ψ1,Ψ2).P = a(Ψ3,Ψ4).P

(4)
Γ |= Ψ1, (∃

⇀

X .(Ψ1 ∧ Γ ∧Ψ2)){
⇀

X /
⇀

X ′} ◃ P = Q

Γ ◃ a(Ψ1,Ψ2).P = a(Ψ1,Ψ2).Q

(5)
Γ |= ¬Φ1

Γ ◃ ε(Φ1,Φ2).P = 0

(6)
Γ |= ¬Ψ1

Γ ◃ a(Ψ1,Ψ2).P = 0

(7)
Γ |= ¬Φ2

Γ ◃ ε(Φ1,Φ2).P = 0

(8)
Γ |= ¬Ψ2

Γ ◃ a(Ψ1,Ψ2).P = 0

(9)
Γ ◃ P = Q

Γ ◃ P +R = Q+R

(10)
Γ ◃ fixX.P = P{fixX.P/X}

(11)
Γ ◃ P = Q{P/X}
Γ ◃ P = fixX.Q

(12)
Γ ◃ P = Q

Γ ◃ fixX.P = fixX.Q

(13)
Γ ◃ P = P

(14)
Γ ◃ P = Q

Γ ◃ Q = P

(15)
Γ ◃ P = Q, Γ ◃ Q = R

Γ ◃ P = R

(16)
F ◃ P = Q

where F denotes the constant false formu-

la.

(17)
Γ1 ◃ P = Q, Γ2 ◃ P = Q, Γ |= Γ1 ∨ Γ2

Γ ◃ P = Q

(18)
Γ ◃ ε(Φ1 ∨ Φ2,Φ3).P = ε(Φ1,Φ3).P + ε(Φ2,Φ3).P

(19)
Γ ◃ ε(Φ1,Φ2 ∨ Φ3).P = ε(Φ1,Φ2).P + ε(Φ1,Φ3).P

(20)
Γ ◃ a(Φ1 ∨ Φ2,Φ3).P = a(Φ1,Φ3).P + a(Φ2,Φ3).P

(21)
Γ ◃ a(Φ1,Φ2 ∨ Φ3).P = a(Φ1,Φ2).P + a(Φ1,Φ3).P

Remark: A special case of Rule (17) is the Rule CONS:
Γ′ ◃ P = Q, Γ |= Γ′

Γ ◃ P = R

We write ⊢ Γ ◃ P = Q to mean that Γ ◃ P = Q can be
derived from this proof system.

B. Soundness and Completeness of Inference System

In this section, we study the soundness and completeness
of inference system.

We firstly give the soundness of inference system.

Proposition 2. ⊢ Γ ◃ P = Q⇒ P ∼Γ
S Q.

Proof. By induction on the length of inference. The base
case when the length is 0 is straightforward. For the induction
step we do case analysis on the last rule applied.

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 60

Now we turn to completeness. To prove the completeness
of inference system, we give the following definitions and
lemmas.

Definition 5. A standard equation set

E : {Xi = Σl∈Lε(Φl1,Φl2).Xl + Σm∈Mam(Ψm1,Ψm2).
Xm +Σn∈NWn | i ∈ I}

is an equation set with formal process variables in {Xi}
and free process variables in {Wj | j ∈ J}. E is closed if
{Wj | j ∈ J} = ∅.

Definition 6. A process P provably Γ−satisfy an equation
set E ({Xi = Qi | i ∈ I}) if there exist a vector of processes
{Pi | i ∈ I} and a condition Γ such that ⊢ Γ ◃ P1 = P,
and ⊢ Γ ◃ Pi = Qi{Pj/Xj} for each i ∈ I. We will simply
say “provably satisfies E” when Γ = T, where T denotes the
constant true formula.

The following lemma states that any process can be repre-
sented as a standard equation set.

Lemma 5. For any process P with free process variables
W there exists a standard equation set E, with free process
variables in W , which is provably satisfied by P . In particular,
if P is closed then E is also closed.

Proof. See Appendix D.

The following lemma shows that two bisimilar processes
can be represented as same standard equation set.

Lemma 6. For closed processes P and Q, if P ∼Γ
S Q then

there exist a standard, closed equation set E, which is provably
Γ−satisfied by both P and Q.

Proof. See Appendix E.

The following lemma states that two processes can be
proved to be equivalent if they can be represented as same
standard equation set.

Lemma 7. If both P and Q provably Γ−satisfy an equation
set E then ⊢ Γ ◃ P = Q.

Proof. See Appendix F.

Now we prove the completeness of inference system.

Proposition 3. For closed processes P and Q, P ∼Γ
S

Q⇒⊢ Γ ◃ P = Q.

Proof. By Lemma 6, there is a standard equation set E
such that which are Γ′−satisfied by both P and Q for some
Γ′ such that Γ′ ⇒ Γ. By Lemma 6, ⊢ Γ′ ◃P = Q. Finally, by
Rule CONS, ⊢ Γ′ ◃ P = Q.

The soundness and completeness of inference system is
given as follows.

Proposition 4. For closed processes P and Q, P ∼Γ
S

Q⇔⊢ Γ ◃ P = Q.

Proof. By Proposition 2 and Proposition 3.

Since concrete bisimulation is equivalent to symbolic
bisimulation, the inference system is also sound and complete
for concrete bisimulation.

Proposition 5. For any ρ |= Γ, ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩ ⇔⊢ Γ ◃
P = Q.

Proof. By Proposition 1 and Proposition 4.

V. CONCLUSIONS

There are many works on hybrid systems such as [2], [3],
[4], [7], and [12]. But as far as we know, there are seldom
works on sound and complete inference systems for bisim-
ulation of hybrid systems. However, the sound and complete
inference systems for some special kind of hybrid system, such
as real timed system, have been proposed. In [11], a timed
process calculus where processes denotes timed automata was
proposed. Then a complete inference system for such a timed
process calculus was presented.

The main aim of this paper is to present a sound and
complete inference system for bisimulation of hybrid systems.
This paper proposed a hybrid process calculus firstly. Then
the concrete bisimulation and symbolic bisimulation for this
hybrid process calculus were presented and the equivalence
between the two bisimulations were proved. We proposed an
inference system for symbolic bisimulation. Furthermore, the
soundness and completeness of the inference system were also
proved.

ACKNOWLEDGMENT

This work was supported by the Aviation Science Fund of
China under Grant No. 20128052064 and the National Natural
Science Foundation of China under Grant No. 60873025.

REFERENCES

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126: 1994, pp. 183-235.

[2] J.A.Bergstra and C.A.Middelburg. Process Algebra for Hybrid Systems,
Theoretical Computer Science 335, 2005, pp. 215-280.

[3] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R. Schiffelers.
Syntax and Consistent Equation Semantics of Hybrid Chi, Journal of
Logic and Algebraic Programming 68, 2006, pp. 129-210.

[4] P.J. Cuijpers and M.A. Reniers. Hybrid Process Algebra, Journal of
Logic and Algebraic Programming 62, 2005, pp. 191-245.

[5] Jan Friso Groote and Alban Ponse. The Syntax and Semantics of µCRL,
Report, Stichting Mathematisch Centrum, 1990, 35 pages.

[6] Jifeng H. From CSP to hybrid Systems, in A.W.Roscoe(Ed.), A Classi-
cal Mind: Essays in honour of C.A.R. Hoare, Prentice hall, Englewood
Cliffs, NJ, 1994, pp. 171-189.

[7] Thomas A. Henzinger. The Theory of Hybrid Automata. In the Pro-
ceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science (LICS 96), 1996, pp. 278-292.

[8] M. Hennessy, H. Lin. Symbolic bisimulations. Theoretical Computer
Science, 138(2), 1995, pp. 353-389.

[9] Uzma Khadim. A Comparative Study of Process Algebras for Hybrid
Systems. Report, Technische Universiteit Eindhoven, 2006. 108 pages.

[10] N. Lynch, R. Segala, and F.W. Vaandrager, Hybrid I/O automata,
Information and Computation 185 (1), 2003, pp.105-157.

[11] H. Lin and W. Yi. Axiomatising Timed Automata. In FST&TCS 2000,
LNCS 1974, 2000, pp. 277-289.

[12] W. Rounds and H. Song. The ϕ-calculus: a language for distributed
con- trol of reconfigurable embedded systems, In the Proceedings of
HSCC 2003, LNCS 2623, 2003, pp. 435-449, Springer-Verlag.

Appendix A. Proof of Lemma 1

Lemma 1. There exists ρ such that ρ ∪ ρ′ |= Γ ⇔ ρ′ |=
(∃x1...∃xm.Γ), where the domain of ρ is {x1, ..., xm}, the
domain of ρ′ is {y1, ..., yn}, {x1, ..., xm} ∩ {y1, ..., yn} = ∅.

P roof. ⇒: Suppose there exists ρ such that ρ ∪ ρ′ |= Γ,
where the domain of ρ is {x1, ..., xm}, the domain of ρ′ is

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 60

{y1, ..., yn}, {x1, ..., xm}∩{y1, ..., yn} = ∅. It is immediately
that ρ′ |= (∃x1...∃xm.Γ).

⇐: Suppose ρ′ |= (∃x1...∃xm.Γ), where the domain of ρ′
is {y1, ..., yn}, {x1, ..., xm} ∩ {y1, ..., yn} = ∅. Then there is
ρ such that the domain of ρ is {x1, ..., xm}, ρ ∪ ρ′ |= Γ.

Appendix B. Proof of Lemma 2

Lemma 2. (1) Given Γ and Γ′, if for any ρ |= Γ, there
is ρ′, such that ρ′ |= Γ′, ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Φ2, and

⟨P, ρ⟩ ε(Φ1,Φ2),T−→ ⟨P ′, ρ′⟩, then P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P ′, where
|= ∀δ ∈ [0, T].Γ{t+ δ/t} → Φ1{t+ δ/t}, |= (∃

⇀

X .(Γ∧Φ2 ∧
t′ = t+ T)){

⇀

X /
⇀

X ′} → Γ′;

(2) Given Γ and Γ′, if for any ρ |= Γ, there is ρ′, such

that ρ′ |= Γ′, ρ ∪ (ρ′[x⇐ x′]) |= Γ ∧Ψ2, and ⟨P, ρ⟩ a(Ψ1,Ψ2)−→
⟨P ′, ρ′⟩, then P

Γ,a(Ψ1,Ψ2),Γ
′

−→ P ′, where |= Γ→ Ψ1, |= (∃
⇀

X

.(Γ ∧Ψ2)){
⇀

X /
⇀

X ′} → Γ′;

(3) P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P ′ implies for any ρ |= Γ, there
is ρ′, such that ρ′ |= Γ′ and ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Φ2,

⟨P, ρ⟩ ε(Φ1,Φ2),T−→ ⟨P ′, ρ′⟩, where |= ∀δ ∈ [0, T].Γ{t+ δ/t} →
Φ1{t+ δ/t}, |= (∃

⇀

X .(Γ∧Φ2∧ t′ = t+T)){
⇀

X /
⇀

X ′} → Γ′;

(4) P
Γ,a(Ψ1,Ψ2),Γ

′

−→ P ′ implies for any ρ |= Γ, there is
ρ′, such that ρ′ |= Γ′ and ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Ψ2,

⟨P, ρ⟩ a(Ψ1,Ψ2)−→ ⟨P ′, ρ′⟩, where |= Γ → Ψ1, |= (∃
⇀

X

.(Γ ∧Ψ2)){
⇀

X /
⇀

X ′} → Γ′.

P roof. By induction on the inference length.

(1) Suppose for any ρ |= Γ, there is ρ′, ρ′ |= Γ′ and

ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Φ2, ⟨P, ρ⟩
ε(Φ1,Φ2),T−→ ⟨P ′, ρ′⟩. We

only discuss the case ⟨ε(Φ1,Φ2).P, ρ⟩
ε(Φ1,Φ2),T−→ ⟨P, ρ′⟩. Other

cases are similar or trivial.

Suppose for any ρ |= Γ, there is ρ′, ρ′ |= Γ′ and ρ∪(ρ′[x⇐
x′]) |= Γ ∧ Φ2, ⟨ε(Φ1,Φ2).P, ρ⟩

ε(Φ1,Φ2),T−→ ⟨P, ρ′⟩. We have
∀δ ∈ [0, T].ρ[t← ρ(t)+δ] |= Φ1, ρ

′(t) = ρ(t)+T, ρ∪(ρ′[x⇐
x′]) |= Φ2. Therefore ε(Φ1,Φ2).P

Γ,(ε(Φ1,Φ2),T),Γ′

−→ P, where
|= ∀δ ∈ [0, T].Γ{t+ δ/t} → Φ1{t+ δ/t}, |= (∃

⇀

X .(Γ∧Φ2 ∧
t′ = t+ T)){

⇀

X /
⇀

X ′} → Γ′.

(2) Suppose for any ρ |= Γ, there is ρ′, ρ′ |= Γ′ and

ρ ∪ (ρ′[x ⇐ x′]) |= Γ ∧ Ψ2, ⟨P, ρ⟩
a(Ψ1,Ψ2)−→ ⟨P ′, ρ′⟩. Similar

to Case (1).

(3) Suppose P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P ′. We only discuss the

case ε(Φ1,Φ2).P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P. Other cases are similar
or trivial.

Suppose ε(Φ1,Φ2).P
Γ,(ε(Φ1,Φ2),T),Γ′

−→ P. We have |= ∀δ ∈
[0, T].Γ{t + δ/t} → Φ1{t + δ/t}, |= (∃

⇀

X .(Γ ∧ Φ2 ∧ t′ =

t+T)){
⇀

X /
⇀

X ′} → Γ′. Therefore ⟨ε(Φ1,Φ2).P, ρ⟩
ε(Φ1,Φ2),T−→

⟨P, ρ′⟩, where ∀δ ∈ [0, T].ρ[t ← ρ(t) + δ] |= Φ1, ρ
′(t) =

ρ(t) + T, ρ ∪ (ρ′[x⇐ x′]) |= Φ2.

(4) Suppose P
Γ,a(Ψ1,Ψ2),Γ

′

−→ P ′. Similar to Case (3).

Appendix C. Proof of Proposition 1

Proposition 1. For any ρ |= Γ, ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩ ⇔ P ∼Γ
S

Q.

Proof. ⇒: Let R = {(P,Q) | ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩ for any
ρ |= Γ}. It is enough to prove that R ⊆∼Γ

S .

It holds that P ∼Γ
S Σl∈Lε(Φl1,Φl2).Pl +Σm∈Mam(Ψm1,

Ψm2).Pm and Q ∼Γ
S Σo∈Oε(Φo1,Φo2).Qo + Σp∈P

ap(Ψp1,Ψp2).Qp by Lemma 3 and Lemma 4.

(1) Since ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩, we have that Γ |= (∨l∈LΦl1)↔
(∨o∈OΦo1), Γ |= (∨l∈LΦl2) ↔ (∨o∈OΦo2), Γ |=
(∨m∈MΨm1) ↔ (∨p∈PΨp1), and Γ |= (∨m∈MΨm2) ↔
(∨p∈PΨp2), otherwise P can perform some action that
Q can not, and that is a contradiction. Therefore, Γ |=
∨l∈L,o∈O(Φl1∧Φo1)↔ ∨l∈LΦl1 ↔ ∨o∈OΦo1 and {Φl1∧Φo1

| l ∈ L, o ∈ O} is a finite partition of ∨l∈LΦl1 and
∨o∈OΦo1. Similarly, there is a finite partition of (∨l∈LΦl2) and
(∨o∈OΦo2), a finite partition of (∨m∈MΨm1) and (∨p∈PΨp1),
and a finite partition of (∨m∈MΨm2) and (∨p∈PΨp2).

Suppose ⟨P, ρ⟩ ε(Φl1,Φl2),T−→ ⟨P ′, ρ′⟩ for any ρ |= Γ. By

Lemma 2, P
Γ,(ε(Φl1,Φl2),T),Γ′

P−→ P ′, where |= ∀δ ∈ [0, T].Γ{t+
δ/t} → Φl1{t+δ/t}, |= (∃

⇀

X .(Γ∧Φl2∧t′ = t+T)){
⇀

X /
⇀

X ′

} → Γ′
P . Since ⟨P, ρ⟩ ∼ ⟨Q, ρ⟩, by Lemma 2 and Lemma 4,

we have that there exists a finite partition Σ = {Γ∧Φl1 ∧Φo1

| l ∈ L, o ∈ O}, |= Γ ∧Φl1 ↔ ∨o∈O(Γ ∧Φl1 ∧Φo1), for any
Γ∧Φl1∧Φo1, there exists a finite partition Π = {Γ∧Φl2∧Φo2},
|= Γ ∧ Φl1 ∧ Φo1 ∧ Φl2 ↔ ∨o∈O(Γ ∧ Φl2 ∧ Φo2), for any

Γ∧Φl2∧Φo2, there exists Q′ such that Q
Γ,(ε(Φo1,Φo2),T),Γ′

Q−→ Q′

and Γ ∧Φl1 ∧Φo1 |= Γ ∧Φo1, Γ ∧Φl2 ∧Φo2 |= Γ ∧Φo2 and

P ′ R(∃
→
X.(Γ∧Φl2∧Φo2∧t′=t+T)){

→
X/

→
X′} Q′.

(2) In the case of P
Γ,am(Ψm1,Ψm2),Γ

′
P−→ P ′, proof is similar

to Case (1).

⇐: Let R = {(⟨P, ρ⟩, ⟨Q, ρ⟩) | P ∼Γ
S Q where ρ |= Γ}. It

is enough to prove that R ⊆∼ .

(1) Suppose P ∼Γ
S Q. It holds that P ∼Γ

S Σl∈L

ε(Φl1,Φl2).Pl + Σm∈Mam(Ψm1,Ψm2).Pm and Q ∼Γ
S

Σo∈Oε(Φo1,Φo2).Qo + Σp∈Pap(Ψp1,Ψp2).Qp by Lemma 3
and Lemma 4. We have that Γ |= (∨l∈LΦl1) ↔ (∨o∈OΦo1),
Γ |= (∨l∈LΦl2) ↔ (∨o∈OΦo2), Γ |= (∨m∈MΨm1) ↔
(∨p∈PΨp1), and Γ |= (∨m∈MΨm2)↔ (∨p∈PΨp2), otherwise
P can perform some action that Q can not, and that is
a contradiction. Therefore, Γ |= ∨l∈L,o∈O(Φl1 ∧ Φo1) ↔
∨l∈LΦl1 ↔ ∨o∈OΦo1 and {Φl1 ∧ Φo1 | l ∈ L, o ∈ O} is a
finite partition of ∨l∈LΦl1 and ∨o∈OΦo1. Similarly, there is a
finite partition of (∨l∈LΦl2) and (∨o∈OΦo2), a finite partition
of (∨m∈MΨm1) and (∨p∈PΨp1), and a finite partition of
(∨m∈MΨm2) and (∨p∈PΨp2).

Suppose P
Γ,(ε(Φl1,Φl2),T),Γ′

P−→ P ′. By Lemma 2, for any
ρ |= Γ, there is ρ′, ρ′ |= Γ′

P and ρ ∪ (ρ′[x⇐ x′]) |= Γ ∧ Φl2,

⟨P, ρ⟩ ε(Φl1,Φl2),T−→ ⟨P ′, ρ′⟩, where |= ∀δ ∈ [0, T].Γ{t+δ/t} →
Φl1{t+δ/t}, |= (∃

⇀

X .(Γ∧Φl2∧t′ = t+T)){
⇀

X /
⇀

X ′} → Γ′
P .

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 60

Since P ∼Γ
S Q, we have that there exists a finite partition

Σ = {ϕi | i ∈ I}, |= Γ∧Φl1 ↔ ∨i∈Iϕi, for any ϕi, there exists
a finite partition Π = {χj | j ∈ J}, |= ϕi∧Φl2 ↔ ∨j∈Jχj , for

any χj , there exists Q′ such that Q
Γ,(ε(Φo1,Φo2),T),Γ′

Q−→ Q′ and

ϕi |= Γ∧Φo1, χj |= Γ∧Φo2 and P ′ R(∃
⇀
X.χj∧t′=t+T){

⇀
X/

⇀

X′}

Q′. Hence ρ |= ϕi |= Γ ∧ Φo1 and ρ′ |= (∃
⇀

X .χj ∧ t′ =

t + T){
⇀

X /
⇀

X ′} |= (∃
⇀

X .Γ ∧ Φo2 ∧ t′ = t + T){
⇀

X /
⇀

X ′}.
Therefore by Lemma 2 we have that there exists Q′ such that
⟨Q, ρ⟩ ε(Φo1,Φo2),T−→ ⟨Q′, ρ′⟩ and ⟨P ′, ρ′⟩ R ⟨Q′, ρ′⟩.

(2) In the case of ⟨P, ρ⟩ am(Ψm1,Ψm2)−→ ⟨P ′, ρ′⟩, proof is
similar to Case (1).

Appendix D. Proof of Lemma 5

Lemma 5. For any process P with free process variables
W there exists a standard equation set E, with free process
variables in W , which is provably satisfied by P . In particular,
if P is closed then E is also closed.

Proof. By induction on the structure of P. The only non-
trivial case is recursion when P ≡ fixX.P ′. By induction,
there is a standard equation set E′ : {Xi = Ui | i ∈ I}
with free process variables in FV (P)∪{X} and P ′

i such that
⊢ P ′ = P ′

1 and ⊢ P ′
i = Ui{P ′

j/Xj | j ∈ I}.
We may assume that X is different from any Xi. Let

Vi = Ui{U1/X} for each i ∈ I . Note that since X is under
an action prefixing in P ′, it does not occur free in U1. Hence
V1 = U1. Consider the equation set E : {Xi = Vi | i ∈ I}.
Set Pi = P ′

i{P/X}. Then ⊢ P = fixX.P ′ = fixX.P ′
1 =

P ′
1{fixX.P ′

1/X} = P ′
1{P/X} = P1 and ⊢ P = P ′

1{P/X
} = U1{P ′

i/Xi | i ∈ I}{P/X} = U1{P ′
i{P/X}/Xi |

i ∈ I} = U1{Pi/Xi | i ∈ I}. Now ⊢ Pi = P ′
i{P/X} =

Ui{P ′
j/Xj | j ∈ I}{P/X} = Ui{P, P ′

j{P/X}/X,Xj |
j ∈ I} = Ui{P, Pj/X,Xj | j ∈ I} = Ui{U1{Pj/Xj |
j ∈ I}, P ′

j{P/X}/X,Xj | j ∈ I} = Ui{U1/X}{Pj/Xj |
j ∈ I} = Vi{Pj/Xj | j ∈ I}. This shows that P satisfies
E.

Appendix E. Proof of Lemma 6

Lemma 6. For closed processes P and Q, if P ∼Γ
S Q then

there exist a standard, closed equation set E, which is provably
Γ−satisfied by both P and Q.

Proof. Let E1 and E2 be the standard equation sets for
P and Q, respectively: E1 : {Xi = Σl∈Lε(Φl1,Φl2).Xl +
Σm∈Mam(Ψm1,Ψm2).Xm + Σn∈NWn | i ∈ I}, E2 : {Yj =
Σo∈Oε(Φo1,Φo2).Xo + Σp∈P bp(Ψp1,Ψp2).Xp + Σq∈QWq |
j ∈ J}. So there are Pi, Qj such that ⊢ P1 = P, ⊢ Q1 = Q,
and ⊢ Pi = Σl∈Lε(Φl1,Φl2).Pl +Σm∈Mam(Ψm1,Ψm2).Pm,
⊢ Qj = Σo∈Oε(Φo1,Φo2).Qo+Σp∈P bp(Ψp1,Ψp2).Qp. With-
out loss of generality, we may assume am = bp = a for all
m, p.

Define E : {Zij = Σl∈L,o∈Oε(Φl1∧Φo1,Φl2∧Φo2).Zlo+
Σm∈M,p∈Pa(Ψm1 ∧Ψp1,Ψm2 ∧Ψp2).Zmp +Σn∈N,q∈QZnq |
i ∈ I, j ∈ J}.

We claim that E is provably Γ−satisfied by P when each
Zij is instantiated with Pi.

We need to show, for each i, ⊢ Γ ◃ Pi = Σl∈L,o∈Oε(Φl1 ∧
Φo1,Φl2∧Φo2).Pl+Σm∈M,p∈Pa(Ψm1∧Ψp1,Ψm2∧Ψp2).Pm.

Since P ∼Γ
S Q, we have for any l, Φl1∧¬(∨o∈OΦo1) = F,

Φl2∧¬(∨o∈OΦo2) = F, and for any m, Ψm1∧¬(∨p∈PΨp1) =
F, Ψm2 ∧ ¬(∨p∈PΨp2) = F.

Therefore, ⊢ Γ ◃ Σl∈L,o∈Oε(Φl1 ∧ Φo1,Φl2 ∧ Φo2).Pl +
Σm∈M,p∈Pa(Ψm1 ∧Ψp1,Ψm2 ∧Ψp2).Pm

= Σl∈L,o∈Oε(Φl1 ∧ Φo1,Φl2 ∧ Φo2).Pl + 0 + 0 +
Σm∈M,p∈Pa(Ψm1 ∧Ψp1,Ψm2 ∧Ψp2).Pm + 0 + 0

= Σl∈L,o∈Oε(Φl1∧Φo1,Φl2∧Φo2).Pl+Σl∈L,o∈Oε(Φl1∧
¬(∨o∈OΦo1),Φl2 ∧ Φo2).Pl + Σl∈L,o∈Oε(Φl1 ∧ Φo1,Φl2 ∧
¬(∨o∈OΦo2)).Pl+Σm∈M,p∈Pa(Ψm1∧Ψp1,Ψm2∧Ψp2).Pm+
Σm∈M,p∈Pa(Ψm1 ∧ ¬(∨p∈PΨp1),Ψm2 ∧ Ψp2).Pm +
Σm∈M,p∈Pa(Ψm1 ∧Ψp1,Ψm2 ∧ ¬(∨p∈PΨp2)).Pm

= Σl∈Lε(Φl1,Φl2).Pl +Σm∈Ma(Ψm1,Ψm2).Pm = Pi

Symmetrically we can show that E is provably Γ−satisfied
by Q when each Zij is instantiated with Qj .

Appendix F. Proof of Lemma 7

Lemma 7. If both P and Q provably Γ−satisfy an equation
set E then ⊢ Γ ◃ P = Q.

Proof. By induction on the size of E. For the base case
when E contains only one equation X1 = V1, we have ⊢
Γ◃P = V1{P/X1}. Therefore ⊢ Γ◃P = fixX1.V1. Similarly,
⊢ Γ ◃ Q = fixX1.V1. Hence ⊢ Γ ◃ P = Q.

Assume the result for m and let E contain m+1 equations:
Xi = Vi, 1 ≤ i ≤ m + 1. Since P provably Γ−satisfies E,
there are Pi, 1 ≤ i ≤ m + 1, such that ⊢ Γ ◃ P1 = P, and ⊢
Γ◃Pi = Vi{Pj/Xj} for each 1 ≤ i, j ≤ m+1. In particular, ⊢
Γ ◃Pm+1 = Vm+1{Pi/Xi | 1 ≤ i ≤ m+1} = (Vm+1{Pi/Xi

| 1 ≤ j ≤ m}){Pm+1/Xm+1}. By Rule (11), ⊢ Γ ◃ Pm+1 =
fixXm+1.Vm+1{Pi/Xi | 1 ≤ i ≤ m}. Writing Wm+1 for
fixXm+1.Vm+1, we have ⊢ Γ ◃ Pm+1 = Wm+1{Pi/Xi

| 1 ≤ i ≤ m}. Therefore, ⊢ Γ ◃ Pi = Vi{Pj/Xj |
1 ≤ j ≤ m+1} = Vi{Pj/Xj | 1 ≤ j ≤ m}{Pm+1/Xm+1} =
Vi{Pj/Xj | 1 ≤ j ≤ m}{Wm+1{Pi/Xi | 1 ≤ i ≤
m}/Xm+1} = Vi{Wm+1/Xm+1}{Pj/Xj | 1 ≤ j ≤ m}.
This shows P provably Γ−satisfies the equation set E′ : Xi =
Vi{Wm+1/Xm+1} for each 1 ≤ i ≤ m. Symmetrically we
can show that Q provably Γ−satisfies the equation set E′. By
induction we conclude ⊢ Γ ◃ P = Q.

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 60

Static and Dynamic Analysis
for Robustness under Slowdown

Ingram Bondin
Department of Computer Science

University of Malta
Msida, Malta

email: ingrambondin@gmail.com

Gordon J. Pace
Deparment of Computer Science

University of Malta
Msida, Malta

email: gordon.pace@um.edu.mt

Abstract—Robustness of embedded systems to potential
changes in their environment, which may result in the inputs
being affected, is crucial for reliable behaviour. One typical
possible change is that the system’s inputs are slowed down,
altering its temporal behaviour. Algorithmic analysis of systems
to be able to deduce their robustness under such environmental
interference is desirable. In this paper, we present a framework
for the analysis of synchronous systems to analyse their behaviour
when the inputs slow down through stuttering. We identify
different types of slowdown robustness constraints and present
static and dynamic analysis techniques for determining whether
systems written in Lustre satisfy these robustness properties.

Keywords-Synchronous Languages; Lustre; Slowdown

I. INTRODUCTION

Software is increasingly becoming more prominent as a
controller for a variety of devices and processes. Embedded
systems operate within an environment, by which they are
affected and with which they interact — this tight interaction
usually means that changes to the environment directly affect
the behaviour of the embedded system. One such situation
can occur when the environment slows down its provision
of input to the system, possibly resulting from a variety of
reasons. For example, the system producing the inputs or the
communications channel on which these inputs pass to the
program might be under heavy load, delaying the inputs; or
the program is deployed on a faster platform, therefore making
the input relatively slower.

One question which arises immediately in such scenarios
is how the system behaves when its input slows down. Does
it act in an expected manner, or does the slow input cause
it to produce unwanted output? In this paper, we develop
an approach to study whether a system continues to behave
correctly under these conditions. We characterise different
notions of correctness since, for instance, in some cases we
may desire the output to be delayed by the same amount as the
inputs, whereas in others, the values but not the actual delays
on the outputs are important.

The theory we develop is applied to the synchronous
language Lustre [1], which enables the static deduction of
a program’s resource requirements, making it ideal for the
design of embedded systems. Although retiming analysis
techniques for continuous time can be found in the literature

[2], our approach adapts them for discrete time, the timing
model used by Lustre and other synchronous languages.

Such a theory requires addressing a number of considera-
tions. In section II we define streams [3], which are infinite
sequences of values, as well as the Lustre programs which
manipulate them. In the model we adopt, streams can be
slowed down through the repetition of values, which is also
called stuttering. Stuttering can be a valid model for slow input
under several scenarios:

• If a memory’s clock signal becomes slower, the memory
will take more time to read new input, and thus will
maintain its present output for a longer time. A program
which samples the values of this memory at the same rate
will then experience repetition in its input.

• The system providing the input might not be ready to
provide its output, or it might experience a fault from
which it needs time to recover. In these situations, some
systems might keep their present output constant until
they are ready once again. In this case, the receiving
program will also experience repetition in its input.

• A physical process which is being sampled in order to
provide input to a program might slow down. Under
certain sampling conditions, the resulting input received
by the program corresponds to experiencing stutter in its
inputs.

Providing stuttered input to a program will cause it to react
in a particular manner. A program can be said to be robust with
respect to slow input if it behaves in a way which is acceptable
to the scenario under consideration. Section III provides a
number of robustness properties which characterise what may
be acceptable in different scenarios. Given such a property, one
needs some algorithmic means of checking whether it holds or
not for a given program. Section IV considers a method based
on the static analysis of the program’s text, while section V
focuses on a method based on the dynamic analysis of its
state space. This is followed by a case study in section VI,
in which these two approaches are applied to a number of
Boolean Lustre programs. Section VII presents work related
to the theory which has been developed, while section VIII
provides some concluding remarks.

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 21 / 60

II. STREAMS, SLOWDOWN AND LUSTRE PROGRAMS

We adopt the standard view of a stream as an infinite
sequence of values over a particular type, representing the
value of the stream over a discrete time domain. We will
write s(t) to denote the value taken by stream s at time t,
lifting the notation for vectors of streams. For instance, for
two streams s and s′, 〈s, s′〉(t) is defined to be the tuple of
values 〈s(t), s′(t)〉.

By slowing down a stream, one obtains the same sequence
of values, but possibly with some of the values repeated a
number of times, representing stutter. A slowdown can be
characterised using a latency function — a total function which
returns the number of times each value in the stream will
stutter for. Given a stream s, which is slowed down according
to a latency function λ, one obtains the slowed down stream
sλ:

sλ = s(0), . . . s(0)︸ ︷︷ ︸
λ(0)+1

, s(1), . . . s(1)︸ ︷︷ ︸
λ(1)+1

, . . . s(n), . . . s(n)︸ ︷︷ ︸
λ(n)+1

. . .

Note that sλ is obtained from s by replacing the value of s at
time t by a block of of λ(t) + 1 copies of this value. We will
write Startλt to denote the time instant at which the tth such
block begins:

∑t−1
i=0 λ(i). Similarly, Endλt denotes the time

instant at which the block ends and is analogously defined.
Note that the constant zero latency function leaves the

stream untouched. If a latency function is a constant function,
we shall refer to it as uniform.

As before, we will overload this notation for vectors of
streams, with 〈s, s′〉λ being equivalent to 〈sλ, s′λ〉.

Lustre [1] provides a way of symbolically specifying sys-
tems which process streams in a declarative manner. A Lustre
program P = 〈V, I,O,E〉 is defined over a set of stream
variables V , with two disjoint subsets I and O consisting of the
input and output stream variables of the program respectively,
and a set of equations E which explains how to compute the
value of each output variable at every instant of time in terms
of other program variables. Equations can take one of the
following forms:

y = ⊗(x1, . . . xn)
y = pre x1
y = x1 -> x2
y = x1 fby x2

Instantaneous operators ⊗ are used to represent computation
performed at each time instant. For instance, the equation
y = ∧(x1, x2) would update the value of stream variable y
with the value of the conjunction of the stream variables x1
and x2 at each time instant: y(t) = x1(t) ∧ x2(t). The delay
operator pre allows access to the previous value of a given
stream variable: (pre x)(t+1) = x(t) with the resulting stream
being undefined for the initial time point, at which it is said
to take the value Nil. In fact, pre behaves like an uninitialised
memory. The initialisation operator x1 -> x2 yields a stream
behaving like x1 at the first time instant, and like x2 elsewhere:

(x1 -> x2)(0) = x1(0) and (x1 -> x2)(t+1) = x2(t+1).
These last two operators are frequently combined to produce
an initialised memory using the followed-by operator, with
x1 fby x2 being equivalent to x1 -> pre x2.

Below we illustrate two sample programs. The program
TOGGLE represents a toggle switch which starts in the Boolean
state true, and which outputs its present state if its toggle input
is false and inverts and outputs its present state if the toggle
input is true. On the other hand, the program SISO is a 4-bit
serial in serial out register, which starts with all its memories
set to true.

node TOGGLE(toggle : bool)
returns(out : bool);
var X, Y : bool;
let

out = if toggle then x else y;
x = not y;
y = true fby out

tel;

node SISO(i1 : bool)
returns(i5 : bool);
var i2, i3, i4 : bool;
let

i2 = true fby i1;
i3 = true fby i2;
i4 = true fby i3;
i5 = true fby i4;

tel;

We will use the notation Pinst, Pdelay, Pinit, and Pfby for
the primitive programs with just one equation consisting of a
single application of an instantaneous, delay, initialisation or
followed-by operator respectively. For each primitive program,
the variable occurring on the left hand side of its equation is
an output variable, those appearing on the right are inputs.

For a Lustre program P , dep0(P) ⊆ V × V relates a
stream variable y to a stream variable x if y is defined in
P by an equation with x appearing on the right hand side.
The irreflexive transitive closure of this relation denotes the
dependencies between the stream variables and is written as
dep(P). Another important concept is that of an instantaneous
dependency relation. This relation can be obtained by starting
from the relation inst0(P) ⊆ V × V , which relates a stream
variable y to a stream variable x only if y’s defining equation
involves x, and x does not appear in a pre equation or on the
right hand side of an fby equation. The irreflexive transitive
closure of this relation, inst(P) denotes the instantaneous
dependencies between stream variables. A Lustre program P is
said to be well-formed if none of its variables instantaneously
depend on themselves: ∀s · (s, s) /∈ inst(P).

Given two Lustre programs P1 and P2 (with inputs I1, I2
and outputs O1, O2 respectively) their composition, written
P1 | P2, is the Lustre program whose equation set is the union
of the equation sets of the respective programs. Its inputs are
the inputs of either program not appearing as outputs of the
other (I = (I1∪I2)\(O1∪O2)), and vice versa for its outputs
(O = (O1∪O2)\(I1∪I2)). In particular, certain specific types
of composition shall be referred to as follows:
• Disjoint composition, if O2 ∩ I1 = O1 ∩ I2 = ∅.
• Composition without feedback, if O2∩I1 = ∅ or O1∩I2 =
∅.

• Fully connected composition, if O2∩I1 = ∅ and O1 = I2,
or conversely O1 ∩ I2 = ∅ and O2 = I1.

Another important operation is that of adding a feedback
loop to a program P by connecting an output y to an

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 22 / 60

input x written P [y → x], provided y does not depend
on x, that is (y, x) 6∈ dep(P). Given the Lustre program
P ′ = 〈{x, y}, {y}, {x}, {x = y}〉, adding a feedback loop
can also be defined in terms of composition as follows:

P [y → x]
df
= P | P ′

Assuming the existence of an ordering on the program’s
variables, given a Lustre program P , and a vector i which
assigns a stream to each of the program’s input variables, P (i)
denotes the vector o of output streams corresponding to the
output variables of P as computed by the semantics of Lustre
[1].

Our goal is therefore that of identifying Lustre programs
P such that upon slowing down their inputs i according to a
latency function λ, will result in P still being well behaved. In
the next section we will identify different forms of such well-
behaviour of P (iλ) with respect to the unslowed behaviour
P (i).

Boolean Lustre programs can also be compiled into au-
tomata spanning over the state space they cover [4]. This can
be defined for Lustre programs using fby (instead of delays)
as follows:

Definition 1: (Lustre Automaton). Let P be a Boolean Lus-
tre program with n input variables, m output variables, and k
fby equations of the form y = x1 fby x2. Then, this program
can be compiled into an automaton A = 〈S, sinit, τ, δ〉, where
S is its set of states, sinit is its initial state, τ : Bn × S → S
is its transition function and δ : Bn × S → Bm is its output
function. The automaton processes the input vector provided
to the program one tuple at a time. During each instant, it
uses its current input tuple and its present state to (i) move to
a new state under the guidance of its transition function τ and
(ii) output an output tuple as defined by its output function δ,
which represents the values of the program’s output variables
at that particular time instant. The program P can be converted
into automaton A using the following procedure.
External Initialisation: A program is said to be initialised
externally if in at least one of its fby statements x1 fby x2,
the initial variable x1 depends on one of the program’s input
variables.
States: Each fby statement x1 fby x2 corresponds to a mem-
ory element in the program, whose value is determined by
the variable x1 at the first instant and by the variable x2 at
all further instants. Since each such memory can either be
true or false, we create 2k states, with each state representing
one possible configuration of the program’s memories. If the
program is initialised externally, we also add a special initial
state init to the set of states.
Initial State: If the program is initialised externally, the
initial state is init. Otherwise, the initial state is the state
corresponding to the configuration obtained by evaluating the
variables of the form x1 within the program’s fby statements.
Transition Function: With n input variables, there are 2n

possible input tuples. Each state therefore has 2n transitions,
with each transition labeled with the associated input tuple.

truestart false

true/false

true/true

false/true false/false

Fig. 1. Automaton obtained from toggle switch program

Given a state s 6= init and input tuple a, the next state τ(a, s)
is computed as follows: (i) assign the configuration represented
by present state s to the respective variables of the form
x2 occurring on the right hand side of fby statements, (ii)
assign the input values represented by tuple a to the respective
input variables and (iii) simulate the Lustre program, using the
defining equations of the variables of the form x2 to determine
the configuration of the memories at the next time instant,
allowing the selection of the appropriate next state. The initial
state init, if present, also has 2n transitions. The next states are
determined as follows (i) assign the input values represented
by tuple a to the respective input variables, (ii) use the defining
equations of variables of the form x1 to compute the value of
the initialisation variables and (iii) simulate the Lustre program
using the defining equations of the variables of the form x2
which determine the next state. Again, these values determine
the configuration of the memories at the next time instant and
allow the selection of the appropriate next state.
Output Function: Each transition is associated with an m-
tuple, which represents the values of the output variables when
the automaton finds itself in a certain state and processes a
certain input tuple. The procedure for obtaining the output
tuple is similar to that for obtaining the next state, except that
the output tuple is constructed by simulating the program and
considering the values of the output variables.

Fig. 1 shows the automaton which would be obtained by
applying the above procedure to the toggle switch program
TOGGLE. The two states represent the two possible configu-
rations which the memory corresponding to the program’s only
fby equation can be in. Meanwhile, for each transition, the

value on the left shows the value of the toggle input variable
which causes the transition, and the value on the right shows
the output value computed by the program. We shall return to
this representation of the TOGGLE program at a later stage.

We now consider a number of different forms of program
robustness to slow input.

III. SLOWDOWN ROBUSTNESS

Whether a program behaves in an acceptable way depends
on the scenario it is operating in. In this section, the four well
behaviour properties of stretch robustness, stutter robustness,
fast-enough robutness and immediate-at-first robustness are
introduced, characterising desirable behaviour under different
circumstances.

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 23 / 60

A. Stretch Robustness

Stretch robustness (STR) specifies the fact that if the input
of a program slows down by some amount, then the output
of a program should slow down by the same amount. This
property can be formalised by requiring that whenever a
latency function λ is applied to a program’s input, the program
will respond by applying the same latency to its output.

Definition 2: (Stretch Robustness). A program P is said to
be stretch robust with respect to a latency function λ, if for
any input vector i: P (iλ) = P (i)λ. P is simply said to be
stretch robust if it is stretch robust with respect to all latency
functions.

The table below shows the relationship between a slow input
vector iλ and the required program output P (iλ):

iλ i(0), . . . i(0)︸ ︷︷ ︸
λ(0)+1

, i(1), . . . i(1)︸ ︷︷ ︸
λ(1)+1

, . . . i(n), . . . i(n)︸ ︷︷ ︸
λ(n)+1

. . .

P (iλ) o(0), . . . o(0)︸ ︷︷ ︸
λ(0)+1

, o(1), . . . o(1)︸ ︷︷ ︸
λ(1)+1

, . . . o(n), . . . o(n)︸ ︷︷ ︸
λ(n)+1

. . .

One immediate consequence of this property is that addi-
tional repetition of the program’s input does not cause the
program to change its output. Stretch robustness is thus useful
in situations where one requires the program not to change its
output when faced with additional latency. Stretch robustness
is a very strong property, which can be relaxed in a number
of ways to obtain weaker criteria which may be sufficient in
certain circumstances. We shall now consider these criteria.

B. Stutter Robustness

Stutter robustness (STU) requires that if the input of a
program slows down by some amount, the output of the
program should also slow down, but possibly at a different
rate. This will be modeled by requiring that whenever a latency
function λ is applied to a program’s input, the program will
respond by applying some latency function λ′ to its output.
Unlike stretch robustness, λ and λ′ need not be equal:

Definition 3: (Stutter Robustness). A program P is stutter
robust with respect to a latency function λ if there exists a
latency function λ′ such that for every input vector i: P (iλ) =
P (i)λ′ . P is said to be stutter robust if it is stutter robust with
respect to any latency function.

The relationship between a slow vector of inputs iλ and the
required program output P (iλ) is shown below:

iλ i(0), . . . i(0)︸ ︷︷ ︸
λ(0)+1

, i(1), . . . i(1)︸ ︷︷ ︸
λ(1)+1

, . . . i(n), . . . i(n)︸ ︷︷ ︸
λ(n)+1

. . .

P (iλ) o(0), . . . o(0)︸ ︷︷ ︸
λ′(0)+1

, o(1), . . . o(1)︸ ︷︷ ︸
λ′(1)+1

, . . . o(n), . . . o(n)︸ ︷︷ ︸
λ′(n)+1

. . .

Thus for a stutter robust program, the output under slow
input can be obtained from the original output by adding any
number of repetitions to the values appearing in the original
output, without adding any other artifacts nor removing any

values. This means that stutter robustness is useful as a well
behaviour property in situations where one needs to ensure
that the output under slow input has the same structure as the
original output, but one is able to tolerate additional repetition
in the slow output.

C. Fast-Enough and Immediate-at-First Robustness

In stretch robustness, the value of the outputs remains equal
to the original value in the unslowed system. In fast-enough
robustness (FE) this constraint is relaxed by requiring only that
the program converge to the original output before the slowed
down input ends. Formally, we shall say that a program is
fast-enough robust if, when we apply a latency function λ to
the program’s input, the slow output has the property that its
value at the end of each block of repetitions (at points of the
form Endλt) is equal to the value taken by the original output
at the points t (i.e. those points which were expanded into the
blocks of repetitions).

Definition 4: (Fast-Enough Robustness). A program P is
fast-enough robust with respect to a latency function λ if for
any input vector i:

∀t : T · P (iλ)(Endλt) = P (i)(t)

Program P is said to be fast-enough robust if it is fast-
enough robust with respect to any latency function.

Fast-enough robustness is primarily of interest for particular
latency functions, since general fast-enough robustness can be
proved to be equivalent to general stretch robustness.

Fast-enough robustness can be visualised as follows (using
? to indicate don’t-care values):

iλ i(0), . . . i(0)︸ ︷︷ ︸
λ(0)+1

, i(1), . . . i(1)︸ ︷︷ ︸
λ(1)+1

, . . . i(n), . . . i(n)︸ ︷︷ ︸
λ(n)+1

. . .

P (iλ) ?, . . .?, o(0)︸ ︷︷ ︸
λ(0)+1

, ?, . . .?, o(1)︸ ︷︷ ︸
λ(1)+1

, . . . ?, . . .?, o(n)︸ ︷︷ ︸
λ(n)+1

. . .

This well behaviour property is useful in scenarios in which
one can tolerate the fact that additional latency on the input
might produce undesirable intermediate results as long as the
original value is produced by the end of the latency period.

The dual of fast-enough robustness is immediate-at-first
robustness (IAF) — instead of constraining the slow input
to converge to the original value before a block of repetitions
ends, it requires it to produce the original value as soon as a
block of repetitions starts, leaving it free to assume any value
until that block of repetition ends.

Definition 5: (Immediate-At-First Robustness). A program
P is said to be immediate-at-first robust with respect to latency
function λ if for any input vector i:

∀t : T · P (iλ)(Startλt) = P (i)(t)

P is said to be immediate-at-first robust if it satisfies the
above constraint with respect to any latency function.

Immediate-at-first robustness can be visualised as follows:

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 24 / 60

iλ i(0), . . . i(0)︸ ︷︷ ︸
λ(0)+1

, i(1), . . . i(1)︸ ︷︷ ︸
λ(1)+1

, . . . i(n), . . . i(n)︸ ︷︷ ︸
λ(n)+1

. . .

P (iλ) o(0), ?, . . .?︸ ︷︷ ︸
λ(0)+1

, o(1), ?, . . .?︸ ︷︷ ︸
λ(1)+1

, . . . o(n), ?, . . .?︸ ︷︷ ︸
λ(n)+1

. . .

This well behaviour property is useful in scenarios in which
one requires the program to react immediately as soon as
the latency on a previous input value wears off, but in
which further repetition of the input can be safely ignored
by outputing any result.

We shall now consider algorithmic means to check Lustre
programs for robustness.

IV. DETECTING ROBUSTNESS: STATIC ANALYSIS

The first approach to checking whether a program satisfies
a well behaviour property is based on a static analysis of
the structure of the Lustre program. The analysis is based
on two main theorems: (i) Theorem 1 which identifies which
primitive programs satisfy which well behaviour properties
and; (ii) Theorem 2 which identifies which well behaviour
properties are preserved upon composition of two well be-
haved programs.

Theorem 1: Primitive Lustre programs all come with a level
of guaranteed robustness: (i) instantaneous programs are robust
under all four forms; (ii) delay and followed-by programs are
robust under stutter and immediate-at-first robustness; and (iii)
primitive initialisation programs are immediate-at-first robust.
Proof: (i) Instantaneous programs apply a pointwise operator
to their input streams to obtain their output streams. Thus,
the same input tuple always causes the same output tuple.
Repetition of inputs through latency will therefore cause
repetition of outputs, which makes the program stretch robust.
(ii) The output of delay and fby programs has an additional
initial value with respect to the input stream. Slowing the input
stream down by a latency function, causes the program to
attach this value to the slow stream. The output under slow
input can therefore be obtained from the original input through
a latency function, which does not repeat the attached element,
and which repeats all subsequent elements accordingly. These
programs are therefore stutter robust. The programs are also
immediate-at-first robust as can be inferred from the depiction
below, which shows how the values of the original output (first
row) are associated to the corresponding blocks of the output
under latency (second row). It is clear that the value at the
beginning of each block is equal to the corresponding value
in the original output.

P (i) Nil x1(0) x1(1)

P (iλ) Nil, x1(0)...x1(0)︸ ︷︷ ︸
λ(0)

x1(0), x1(1)...x1(1)︸ ︷︷ ︸
λ(1)

x1(1), x1(2)...x1(2)︸ ︷︷ ︸
λ(2)

(iii) Initialisation programs take the first value of stream
x1, and attach to it the stream x2 from its second value
onwards. Below one can see how the blocks of output under

i

λ

P1

j

λ′

P2

o

λ′′

Fig. 2. Fully connected composition preserves STU

slow input relate to the original output; this illustrates the fact
that the value at the beginning of each block is equal to the
corresponding value in the original output.

P (i) x1(0) x2(1) x2(2)

P (iλ) x1(0), x2(0)...x2(0)︸ ︷︷ ︸
λ(0)

x2(1)...x2(1)︸ ︷︷ ︸
λ(1)+1

x2(2)...x2(2)︸ ︷︷ ︸
λ(2)+1

�
We can now consider the effect of composing robust programs.

Theorem 2: Some forms of composition of robust programs
guarantee robustness of the resulting program: (i) the composi-
tion without feedback of two stretch robust programs is always
stretch robust, so is adding a feedback loop to a stretch robust
program; (ii) the fully connected composition of two stutter
robust Lustre programs is always stutter robust; and (iii) the
disjoint composition of two immediate-at-first robust programs
is always immediate-at-first robust.
Proof: We provide a proof of (ii) to illustrate the proof idea.
We consider two arbitrary stutter robust programs P1 and
P2, and show that their fully connected composition is also
stutter robust. Since P1 and P2 are being composed in a fully
connected way, every output of P1 is connected to an input of
P2, and there are no feedback connections. This is shown in
Fig. 2.

Now suppose that if we pass a vector i to P1, the program
responds by outputting vector j. Also suppose that when P2

receives vector j it outputs vector o in response. We need to
show that if a latency function λ is applied to the composite
program’s input vector i, the composite program applies some
latency function to its output vector o. Since P1 is stutter
robust, applying λ to the input vector i will make P1 apply
some latency function λ′ to its output j. Hence, P2 receives
the vector j slowed down by λ′ as input. Since P2 is also
stutter robust it will apply some other latency function λ′′ to
its output o. Thus, applying a latency function to the input
of the composed program, causes the composed program to
slow its output by some latency function, proving that stutter
robustness is preserved by fully connected composition. �

We now consider a method which analyses the behaviour
of the particular program under examination, rather than its
structure.

V. DETECTING ROBUSTNESS: DYNAMIC ANALYSIS

Theorem 2 allows us to conclude robustness of composed
programs in a syntactically compositional manner. In this

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 25 / 60

section, we give richer, although more expensive, semantic
analysis techniques for Lustre programs allowing for dynamic
robustness analysis of their behaviour. Through the use of
symbolic methods, such as with Binary Decision Diagrams
(BDDs), the analysis can be applied either on whole programs
or to subprograms. In the latter case, Theorem 2 can then be
used to obtain results about the composition of the subpro-
grams.

The techniques we shall discuss rely on identifying condi-
tions on the Lustre automaton which are sufficient to guarantee
that certain well behaviour properties are satisfied by that
program. Two types of conditions are defined: (i) latency
independent conditions, which check whether a robustness
property holds in general, and (ii) latency dependent con-
ditions, which check whether a property holds when some
particular latency function is applied to the program’s input.

The conditions identified can be checked using either an
exhaustive analysis of the automaton’s state space, or prefer-
ably using a symbolic representation of the automaton such as
BDDs to ensure that the approach scales up to larger systems.

A. Latency Independent Conditions

We start by identifying properties which guarantee slow-
down robustness for any latency function. The strongest con-
dition, is that stateless1 programs are always stretch robust.

Theorem 3: (Condition 1 — Stretch Robustness). If
∀a, s, s′ · δ(a, s) = δ(a, s′), then the program is stretch
robust.
Proof: Under such a condition, a particular input tuple always
generates the same output tuple, independently of the state
the automaton finds itself in. Thus, any repetition of an input
tuple caused by a latency function causes a repetition of the
corresponding output tuple. This is sufficient to ensure stretch
robustness. �

Under stutter robustness, slowing a program’s input by a
latency function λ, causes the program to slow its output by
a latency function λ′. In practice, this means that the output
under slow input can be obtained through the repetition of the
original output tuples only. We now show that if the automaton
has a certain feature, then this property cannot hold.

Theorem 4: (Condition 2 — Failure Of Stutter Robustness).
Programs satisfying the following condition are not stutter
robust:

∃a, b, s, s′, j, k, l ·
δ(a, s) = j ∧ τ(a, s) = s′∧
δ(a, s′) = k ∧ k 6= j ∧
δ(b, s′) = l ∧ b 6= a ∧ l 6= k

Proof: Condition 2 looks for the presence of reachable states
s and s′ having the following properties: (i) under input tuple
a, state s outputs tuple j and passes to state s′; (ii) under
input tuple a, state s′ outputs k 6= j and (iii) under input tuple
b 6= a, state s′ outputs tuple l 6= k.

We now show that if this structure is present in the automa-
ton, there will always be some input vector and some latency

1A program is stateless if the output depends solely on the input at that
point in time.

function which breaks the stutter robustness property. We first
construct the input vector as follows. Choose a path from the
start state sinit to the state s. By following this path of n
transitions, we obtain the first n tuples of the input vector. We
also obtain the first n tuples of the output vector. To this initial
segment of the input vector, one appends the input tuples a, b,
which causes the resulting output vector to be augmented by
the output tuples j, l. The rest of the input vector can be chosen
arbitrarily.

We now choose a latency function, which when applied
to the input vector above, breaks the property. The chosen
latency function will insert 1 repetition for the input tuple at
time instant n+1, and 0 repetitions elsewhere. Applying this
latency function to the input vector chosen earlier yields the
original initial segment followed by the tuples a, a, b. Through
the presence of the regularity identified in the theorem, the
resulting output will be the initial segment of the output vector
followed by the output tuples j, k, which means that with
respect to the original output an l tuple has been deleted. This
makes it impossible to derive the output under slow input from
the original output through the addition of repetitions only. �

Finally, we can also identify a sufficient condition for
immediate-at-first robustness. If the automaton obtained from
the program always loops with repetitions after the first
occurrence of an input, then the program is guaranteed to be
immediate-at-first robust.

Theorem 5: (Condition 3 — Immediate-At-First Robust-
ness). If ∀a, s, s′ · (τ(a, s) = s′) =⇒ (τ(a, s′) = s′),
then the program is immediate-at-first robust.
Proof: When processing an input vector i, the automaton uses
the current input i(t) and state s(t), to compute the output o(t)
and next state s(t+1). When input i has latency λ, the program
receives consecutive blocks of constant inputs, with the nth

block consisting of tuples of the form i(n). For the program
to be immediate-at-first robust, the output at the beginning of
the nth block must have the form o(n).

We observe that if the automaton finds itself in state s(n) at
the beginning of block n, the condition guarantees that (i) at
the first time instant in the block the automaton moves to state
s(n + 1); (ii) it stays in state s(n + 1) for the remainder of
the block and (iii) the (n+1)th block starts in state s(n+1).
Noting that in block 0, the automaton starts in the initial state
s(0), provides the base case for an inductive argument which
guarantees that the automaton finds itself in state s(n) at the
beginning of the nth block, causing the output to be o(n) as
required. �

B. Latency Dependent Conditions

So far, we tried to identify programs which are robust under
an input slowed down by an unknown latency. If one knows
that the inputs of a program are going to slow down by some
uniform latency function λ(t) = c, where c is a constant, it
is possible to check whether the program is robust for that
particular scenario using the following weakened conditions.

Condition 4 requires that for any state s, the state reached
by the automaton after the occurrence of a specific input tuple,

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 26 / 60

τ(a, s), is the same state reached after the occurrence of c+1
such input tuples, which we denote by τ c+1(a, s).

Theorem 6: (Condition 4 — Immediate-At-First-
Robustness). If ∀a, s · τ(a, s) = τ c+1(a, s) for some
positive natural number c ≥ 2, the program is immediate-at-
first robust for latency functions of the form λ(t) = c

Proof: When processing an input vector i, the automaton uses
the current input i(t) and state s(t), to compute the output
o(t) and next state s(t+ 1). When input i has latency λ, the
program receives consecutive blocks of constant inputs of size
c+1, with the nth block consisting of tuples of the form i(n).
For the program to be immediate-at-first robust, the output at
the beginning of the nth block must have the form o(n).

Suppose that at the beginning of the nth block the automa-
ton finds itself in state s(n). Then at the beginning of the
(n + 1)th block it is in state s(n + 1) on account of the
following facts: (i) at the first time instant in the nth block the
automaton moves to s(n+1) and (ii) the condition guarantees
that after c+1 steps of the same input the automaton will return
to s(n + 1). Noting that in block 0, the automaton starts in
the initial state s(0), provides the base case for an inductive
argument which guarantees that the automaton finds itself in
state s(n) at the beginning of the nth block, causing the output
to be o(n) as required. �

The final condition which will be considered requires that
if an automaton is in state s, it will return to the same state s
after c repetitions of the input.

Theorem 7: (Condition 5 — Immediate-At-First and Fast-
Enough Robustness). If ∀a, s · τ c(a, s) = s for some positive
natural number c ≥ 2, the program is both immediate-at-first
robust, as well as fast-enough robust, for latency functions of
the form λ(t) = c.

Proof: When processing an input vector i, the automaton uses
the current input i(t) and state s(t), to compute the output o(t)
and next state s(t+1). When input i has latency λ, the program
receives consecutive blocks of constant inputs of size c + 1,
with the nth block consisting of tuples of the form i(n). For
the program to be immediate-at-first robust, the output at the
beginning of the nth block must have the form o(n). Similarly,
for a program to be fast-enough robust, the output at the end
of the nth block must have the form o(n).

Suppose that at the beginning of the nth block the automa-
ton finds itself in state s(n). Then at the end of the nth block
it is in state s(n) on account of the fact that the automaton
returns to its original state after c transitions of the same input.
This state also combines with input i(n) to ensure passage to
state s(n+1) at beginning of the (n+1)th block. Noting that in
block 0, the automaton starts in the initial state s(0), provides
the base case for an inductive argument which guarantees that
the automaton always finds itself in state s(n) at the end of
the nth block, causing the output to be o(n) as required for
fast-enough robustness, and in state s(n+1) at the beginning
of the (n+1)th block guaranteeing that the output is o(n+1)
as required by immediate-at-first robustness. �

i1 SISO1
i2 SISO2

i3 SISO3
i4 SISO4

i5

Fig. 3. SISO program broken into primitive programs

VI. CASE STUDY

The static and dynamic analysis theorems were applied to
six Boolean Lustre programs to examine whether these are
strong enough to deduce slowdown robustness. For compari-
son purposes, a manual analysis of these programs was also
performed in order to discover which robustness properties
each program satisfies or fails to satisfy. The programs under
consideration, with the actual properties satisfied by each are
listed below:
• RCA, a (stateless) ripple carry adder which satisfies

stretch robustness.
• RISE, a program which receives a Boolean stream and

detects the presence of rising edges, and which satisfies
stutter robustness and immediate-at-first robustness.

• SWSR, a switch with a set and reset input, which satisfies
stretch robustness.

• TOGGLE, a switch with a toggle input, which does not
satisfy any property for every latency function.

• SISO, a serial in serial out register, which satisfies stutter
robustness.

• PIPO, a parallel in parallel out register, which satisfies
stutter robustness and immediate-at-first robustness.

We shall now discuss the application of the static and
dynamic analysis theorems to the programs in question. To
illustrate how the static analysis theorems can be employed to
reason about a program, we will consider their use to prove
that the SISO register program is stutter robust.

Example 1: Since the SISO program has 4 equations, we
first break it down into four separate primitive programs
SISO1, SISO2, SISO3 and SISO4 as shown in Fig. 3, where
SISOj = 〈{ij , ij+1}, {ij}, {ij+1}, {ij+1 = true fby ij}〉

It is clear that each such program is an fby primitive
program, and that these primitive programs can be composed
through fully connected composition to obtain the program
SISO. This can be done by starting from SISO1 and sequen-
tially composing the programs SISO2, SISO3 and SISO4. Since
SISO can be built from stutter robust primitives and through
stutter robustness preserving compositions, we can conclude
that it is stutter robust.

Table I illustrates the results which can be obtained in a
similar manner through the static analysis of the programs
in question. An entry in the table indicates whether the
corresponding program can be shown to satisfy a particular
robustness property or not through this technique. Within an
entry, a X symbol indicates that the program was found to
satisfy the property. In addition, a ? symbol indicates that the
static analysis yielded an inconclusive result, while a − symbol
indicates that a test was unnecessary since the program was
found to satisfy the stronger property of stretch robustness.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 27 / 60

TABLE I
RESULTS OBTAINED THROUGH STATIC ANALYSIS

Property/Program RCA RISE SWSR TOGGLE SISO PIPO
STR X ? ? ? ? ?
STU - ? ? ? X ?
IAF - ? ? ? ? X

TABLE II
RESULTS OBTAINED THROUGH DYNAMIC ANALYSIS

Property/Program RCA RISE SWSR TOGGLE SISO PIPO
STR X ? ? ? ? ?
STU - ? ? × ? ?
IAF - X X Xc=2 ? X
FE - ? ? Xc=2 ? ?

As one can see, the static analysis reveals that the ripple
carry adder is stretch robust, that the SISO register is stutter
robust and that the PIPO register is immediate-at-first robust.
Static analysis thus yields results when the programs have a
simple structure in terms of the interconnections between the
component primitive programs.

We now illustrate how dynamic analysis can be applied by
means of another example. We shall show that the Toggle
Switch program TOGGLE is both immediate-at-first robust as
well as fast-enough robust for the latency function λ(t) = 2.

Example 2: Starting from the TOGGLE program, we first
obtain the automaton representation of the program by using
the construction outlined in Definition 1. This yields the
automaton depicted earlier in Fig. 1. By observing the structure
of the automaton, we note that from any state, taking 2
transitions with the same input tuple returns the automaton
to the same state. The program thus satisfies the properties in
question through the use of Theorem 7.

Table II summarises the results obtained through the dy-
namic analysis of the programs under consideration. In ad-
dition to the earlier conventions, an × symbol indicates that
the program was found not to satisfy the property in question,
while a X symbol with subscript c = 2, indicates that the
program has been proven to satisfy the property for the latency
function λ(t) = 2 through the use of a latency dependent
condition. In practice, BDD techniques were used to evaluate
the conditions, and the evaluation was instantaneous for the
programs in question.

Dynamic analysis enlarges the scope of automatically de-
rived well behaviour results to programs which have more
complex structures. The ripple carry adder is reconfirmed
as strech robust and the PIPO register has been reconfirmed
imemdiate-at-first robust. In addition, the rising edge program,
the switch with set and reset program and the PIPO register
have been shown to be immediate-at-first robust, and the toggle
switch has been conclusively shown not to be stutter robust.
More over, the toggle switch program has been shown to be
both immediate-at-first robust and fast-enough robust for the
specific latency function λ(t) = 2.

While not all of the properties satisfied by the programs
have been discovered through the automated analysis, the
combination of static and dynamic analysis has revealed many

details about the well behaviour of the programs in question.
The number of programs which have been proved immediate-
at-first robust indicates that the condition which detects it
might be applicable for some interesting set of programs. On
the other hand, the results obtained using the latency dependent
conditions are encouraging as they indicate the possibility of
satisfying a property under a particular slowdown scenario
even though the program might not satisfy it in general. One
can also note that the two approaches complement one another;
in particular, unlike dynamic analysis, static analysis can be
used to reason about programs which satisfy stutter robustness.

VII. RELATED WORK

The discrete theory of slowdown considers the effect of
slowing down all the input streams of a stream processing pro-
gram by the same amount through the addition of stutter. There
are various other models of slowdown which can be found
in the literature. The theory of latency insensitive design [5]
allows streams to slow down through the addition of explicit
stall moves into those streams. In reaction to performing a stall
move on an input stream, a program reacts by performing
a procrastination effect, that is by inserting additional stall
moves in its other streams to ensure that causality between
the events of a program is preserved. A program is said to
be patient if it knows how to perform a procrastination effect
in response to any possible stall move. In other words, the
program is always able to delay its operation in response
to slow input without breaking. Patience is thus a form of
robustness to delays in the process’ streams, but which, unlike
our properties, does not dictate the exact form which this
robustness should take.

In the theory of polychronous processes [6], used to give
a semantics to the synchronous language Signal [3], streams
do not have to take a value at every time instant. Given
a particular program behaviour, consisting of the input and
output streams of a program, the operations of stretching and
relaxation can be used to obtain a slower program behaviour.
Stretching remaps the time instants at which the values occour
on each stream, preserving the order of values in each stream,
and the simultaneity of values between different streams. The
stretching operation stretches all the streams by exactly the
same amount and is similar to how a stretch robust program
would behave when its inputs are slowed down. On the other
hand, when relaxation slows a behaviour, it only guarantees
that the order of values within each stream is preserved. The
notion of relaxation which arises when all input streams are
slowed down by one amount, and all output streams by another
amount, is similar to how to a stutter robust program would
behave under input slowdown. Signal guarantees that all its
programs are stretch closed (a property analogous to stretch
robustness), but this is only possible because no additional
values are ever inserted as a result of slowing down a stream.

Reasoning about slowdown and speedup for continuous time
behaviour has been investigated in [2]. The behaviour of a
program can be slowed down by stretching these real-time
signals through time by using the concept of time transforms.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 28 / 60

The concept of a latency function can be seen as a discrete
time version of a time transform. When one slows a behaviour
through a time transform, all streams are slowed down exactly
by the same amount. This manner of slowing down a behaviour
corresponds to how one would expect a stretch robust system
to react in our discrete theory.

Stutter invariance for Linear Temporal Logic (LTL) proper-
ties has been investigated in [7], in which a stuttered path slows
down all inputs and outputs of a program by the same amount.
Stutter invariant properties are ones which, if they are satisfied
by a program, then they are also satisfied by all stutterings of
its behaviour. If a Lustre program is stretch robust, then its
inputs can be safely slowed down without the risk of breaking
the constraint imposed by a stutter invariant property on the
program.

The theory of stability [8] considers programs whose out-
puts fluctuate when their inputs are kept constant. Programs
which do not exhibit such a phenomenon are said to be stable;
when the inputs of these programs are unchanged, the outputs
will converge to stable values after a finite period of time.
The concept of stability relates to the concept of fast-enough
robustness. An input which has stopped changing is similar
to an input which is stuttering when considered over some
finite horizon of time. While the theory of stability requires the
output of a system to eventually converge to some particular
value, fast-enough robustness requires an output to converge
to an expected value before the sequence of repetitions ends.

Instead of checking whether a system exhibits certain
classes of behaviour when an environment changes, it is
possible to check whether a system degrades gracefully when
the environment misbehaves. In [9] the authors consider a
robustness approach in response to environments which fail to
obey the assumptions made during system design. A system
is said to be robust, if a small number of violations of
the environment assumptions causes only a small number of
violations of the system specification.

It is also possible to use a probabilistic approach to under-
stand how changes in the environment are propagated through
the system’s components, and how the behaviour of these
components under changed or missing input contributes to
cause unacceptable system wide behaviour [10]. From our
perspective, the general approach is interesting because it can
help to isolate which components misbehave under slow input,
causing a complex system to fail.

VIII. CONCLUSIONS

Since input stutter can arise in various situations, especially
in systems which finely sample input, it is crucial that such
systems do not change their behaviour as such transformations
on their input occur. In this paper we have identified a number
of different levels of robustness with respect to slowdown
which one may require, and presented sound checks using
static analysis of the code or using symbolic verification
techniques over the system’s behaviour.

Of these robustness properties, the most restrictive, stretch
robustness is highly compositional, and relaxing it to obtain

the weaker properties loses this compositionality property. Dy-
namic analysis allows for the analysis of programs on a global
level, at an increased computational cost. The two approaches
can, however, be combined, allowing for the analysis of more
complex programs.

One major restriction of our results is that we assume that all
the inputs of the system are slowed down by the same amount.
In practice, this may be too strong a restriction, for instance
with some nodes using a combination of external inputs and
streams coming from other nodes and which may have been
slowed down further. Another restriction is that we limit our
dynamic analysis techniques to Boolean Lustre programs or
circuits.

In the future, we plan to relax this constraint by using
control graph analysis techniques to programs with numeric
values, using approaches similar to [11].

REFERENCES

[1] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: a declara-
tive language for programming synchronous systems,” Proc. 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages
(POPL ’87), ACM, Jan. 1987, pp. 178 - 188.

[2] C. Colombo, G. Pace, and G. Schneider, “Safe runtime verification of real-
time properties,” Proc. 7th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS ’09), Springer Verlag, Sep.
2009, pp.103–111.

[3] A. Gamatié, Designing embdedded systems with the SIGNAL program-
ming language - synchronous reactive specification. Springer, 2010.

[4] N. Halbwachs, P. Raymond, and C. Ratel, “Generating efficient code from
data-flow programs,” Proc. 3rd International Symposium on Programming
Language Implementation and Logic Programming (PLILP ’91), LNCS
528, Springer Verlag, Aug. 1991, pp. 207–218.

[5] L. Carloni, K. Mcmillan, and A. Sangiovanni-Vincentelli, “Theory of la-
tency insensitive design,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20(9), Sep. 2001, pp.1059–1076.

[6] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” Journal of Circuits, Systems and Computers, vol. 12(3), Jun.
2003, pp.261–304.

[7] D. Peled and T. Wilke, “Stutter-invariant temporal properties are express-
ible without the next-time operator,” Information Processing Letters, vol.
63(5), Sep. 1997 pp. 243–246.

[8] N. Halbwachs, J.-F. Héry, J.-C. Laleuf, and X. Nicollin, “Stability of
discrete sampled systems,” Proc. 6th International Symposium on Formal
Techniques in Real-Time and Fault-Tollerant Systems (FTRTFT ’00),
Springer Verlag, London, Sep. 2000, pp.1-11.

[9] R. Bloem, K. Greimel, T. Henzinger, and B. Jobstmann, “Synthesizing
robust systems,” Proc. Formal Methods in Computer-Aided Design (FM-
CAD ’09), IEEE Computer Society, Nov. 2009, pp. 85–92.

[10] X. Ge, R. Paige, and J. McDermid, “Probabilistic failure propagation
and transformation analysis,” Proc. 28th International Conference on
Computer Safety, Reliability and Security (SAFECOMP ’09), LNCS
5775, Springer Verlag, Sep. 2009, pp. 215–228.

[11] B. Jeannet, N. Halbwachs, and P. Raymond, “Dynamic partitioning
in analyses of numerical properties,” Proc. Static Analysis Symposium
(SAS’99), LNCS 1694, Springer Verlag, Sep. 1999, pp. 39–50.

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 29 / 60

Prediction System of Larynx Cancer

Benjamín Moreno-Montiel and Carlos Hiram Moreno-Montiel

Posgrado Ciencias y Tecnologías de la Información

Universidad Autónoma Metropolitana - Iztapalapa,

México D.F., México

opelo1209@yahoo.com, hiramoreno@gmail.com

Abstract—In the task of data classification, there exist many

uses and applications such as Credit assignment, Business,

games Development, gene Research in public health problems,

among others. In this research there is a large collection of

data for treatment and prevention of some diseases, the most

complex is the study of Cancer. The databases there have

provided valuable knowledge useful for study of this disease

that in many cases is unknown. An example of these databases

is at the Centro Medico Nacional Siglo XXI, with information

of human laryngeal carcinoma (LaCa). In this paper, we

propose a Prediction System of Larynx Cancer (PSLC) to

apply the task of classification of this type of databases to

obtain novel knowledge for LaCa. The prediction system has

two components, one component is the transformation and

selection of data, the second component is a set of classifiers to

obtain the prediction of life of sample patients with this type of

cancer. With this prediction system, we found that, when there

is an increase in CRBP-1 gene, it was correlated with patient

survival; this allowed us to implement a Hybrid Classifier of

Decision Rules (HCDR). The HCDR obtained the highest

predictive value using genes CRBP-1 and provided a better

degree of accuracy, with more than 90%, in comparison with

different classifiers, indicating that the PSLC has a high degree

of reliability.

Keywords-Data Minning; Classification; Classifier; Biochip

genetic; Larynx Cancer.

I. INTRODUCTION

One of the most recent advances in genomic science is

the search of genes responsible for alterations in different
organisms, generating new research, in areas such as
Agriculture, Medicine, Biomedical Sciences, among others.
Some techniques, such as comparative genomic
hybridization [6] and immunohistochemical assays on tissues
[14] can determine the possible origin of different diseases
such as cancer. By exhaustive search techniques and use of
decision trees [2], there have been developed systems that
make use of these techniques, finding relationship between
genetic patterns of patients with some types of cancer, to
provide prevention and early treatment.

An example of these systems is OncoTree [11] (for renal
carcinoma progression), which finds relationship between
genetic patterns of Renal Cancer using decision trees.
Although having good results on this type of cancer, this
system has two limitations: on the one hand, it can only do
an analysis of renal cancer, and, on the other hand, limiting

the use of this system is reserved only for some businesses
due to their high prices.

There exist a small number of these and other predictive
systems in only some countries; with high prices for use and
analysis of results, limiting research in this area worldwide,
this is a main problem with cancer prediction systems.

Because of this problem in some institutions [4], studies
have been generated on different types of cancer, seeking to
develop prediction systems like Onco Tree. An example of
these studies was conducted in the Centro Medico Nacional
Siglo XXI in Mexico City, which obtained a database (DB)
with information about Larynx Cancer. This DB has the
study of 21 patients with this type of cancer for over five
years, which represents one of the largest repositories in
Mexico.

The problem with this DB is that only specialists in the
area of genetics have studies of how this may originate this
type of cancer at the chromosomal level. In a study
conducted with the Universidad Autónoma Metropolitana
(UAM) and Instituto de Ciencias y Tecnologías de la
Información (ICyTDF), we had access to this DB, for which
we proposed as a way to find these patterns using Data
Mining, such as those used in Onco Tree.

Data Mining [10] is the exploration and analysis to
identify patterns non trivial (knowledge) within large
amounts of data, which may be valid, novel, potentially,
useful and understandable. With Data Mining we solve many
tasks [13] as Prediction, Classification, Identification,
Grouping and Association.

In this paper, we propose a Prediction System of Larynx
Cancer (PSLC), with which we use the first and second Data
Mining tasks. The prediction we use to find the correlations
of the attributes within the DB’s of Genetic Markers
(dbGM). The task of classification is used to make the
analysis and diagnosis of potential patients using the
correlations found in the prediction task.

The PSCL is composed of two components; the first
component is the transformation and selection of data,
because dbGM has a special format called ISCN (An
International System for Human Cytogenetic Nomenclature),
which corresponds to all nomenclature that is handled in the
research area of Human Genetics.

For the second component, we mix the prediction and
classification tasks to get a prediction of laryngeal cancer in
patients who are predisposed to have this type of cancer. At
this stage we call the Engine of Operation (EM) of PSCL,
which we use to obtain the experimental results of the
classification of dbGM.

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 30 / 60

This paper is organized as follows. In Section 2, we will
discuss previous work on prediction systems and the main
algorithms used for constructing such systems. In Section 3,
we describe how we build the PSLC. In Section 4, the tests
that were performed to a DB of genetic biochips, will be
discussed along with the results obtained using several Data
Mining classifiers. Finally, we will present a conclusion and
future work steps.

II. PREVIOUS WORK

A. Background of LaCa

Laryngeal cancer (LaCa) represents an important public

health problem mainly affecting people over fifty years
worldwide. Several methods are used for treatment and
prevention. Comparative genomic hybridization (CGH) has
been widely used in cancer research [8], [10], [14] the
detection of specific patterns of chromosomal imbalances,
for example, loss of chromosome 13 in all carcinomas cell
carcinomas of the larynx [9], [10].

However, in the spatial resolution of CGH not much is
known about the identity of specific genes that could be
targeted chromosomal regional imbalances. The CGH array
solves this problem by increasing the sensitivity for detection
of changes in DNA copy number in specific loci (which are
the specific location of a gene or DNA sequence on a
chromosome) through the use of genomic DNA fragments is
defined by a mapping location.

It is known that these arrays extend over a solid surface,
resulting in a resolution of the imbalances in a number of
copies of a single gene level [12]. To refine patterns of
chromosomal imbalances present in squamous cell
carcinoma of the larynx, and especially to identify the
specific genes that could target the of copy number changes
in this tumor type, array CGH is applied with oncogenes,
tumor suppressor genes or some other genes associated with
cancer.

This is achieved by determining the relation of level
chromosomal patterns of samples obtained using different
classification models in data mining, to determine which
genes are involved, below some methods are described for
classifying data. In the next section we review some data
mining classifiers.

B. Several Methods for classification

In the literature, there have been a large number of

classifiers that allow us to differentiate a set of samples
according to the category or as usually called the class to
which they belong.

There is a large number of classifiers [5] for instance the

classifiers based on decision trees as adultery, C4.5 and ID3,

classifiers based on decision rules as Decision Tables and

Decision List, ensemble-based systems such as Bagging and

Boosting, classifiers based on separating classes by

hyperplanes such as Support Vector Machine (SVM)

classifier, among others.

In this paper, we developed a Hybrid Classifier of

Decision Rules (HCDR) [2], which was incorporated in the

information on the main genetic markers within the dbGM,

which allow us to obtain better performance measures.

Since this classifier has the better results, in this section we

focus on the previous work of this classifier.

There are three ways [13] of how to build a classifier

based on decision rules, which are described below:

 Decision Trees: With this method we create a set

of rules, each of them for each leaf of the tree,

which are easy to interpret.

 Specific algorithms for rule induction: The

language of representation of decision rules is

essentially propositional. Is this method, each rule

is learned one by one, so each time it selects a

rule, the examples that are covered by the selected

rule are removed from the training set.

The process is repeated iteratively until a stop

condition is fulfilled. To learn a rule begins with

rules as general as possible, then these records are

being added to maximize classification accuracy

of this rule.

 Models based on association rules: The aim of

the association rules is to find associations or

correlations between items or objects in the

database. Wanted the best association rules, in

order to overcome some limitations of the models

based on decision trees, which consider only the

attributes one by one partially.

Once we review the main strategies on how to build

classifiers based on decision rules, in the next section we

describe how we build the PSLC we propose.

III. PREDICTION SYSTEM OF LARYNX CANCER (PSLC)

A. PSLC components

The PSLC has two components [7], the component of

Transformation and Selection of Data (TSD) and the Engine

of Operation (EO).

In the TSD component receiving data input, either read

from a file or entered manually by people who will use the

PSLC, which have a special format ISCN. The function of

this component will convert this format to a matrix format

for easier the processing in EO component.

In the EO component, once the data are in the matrix

format we perform the classification of each patient tested.

This component is implemented in the HCDR, which will

allow us to make a prediction of what kind of life has one

patient. The following sections explain in more detail each

component of PCS_EME.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 31 / 60

B. Transformation and Selection of Data

For this component, we implement techniques to apply

the pre-processing and transformation phases on dbGM. For

these two phases we implement two algorithms of

Digitization or Labeling and Discretization, which perform

the pre-processing and transformation phases. First, we

show the ISCN format, taking an example of genetic

biochip BD; then, later, we describe each algorithm of the

TSD component.

1) ISCN Format

The DB has some special format called ISCN, which has

an entire nomenclature that is handled in the area of Human
Genetics, for the specific case of the dbGM.

These nomenclatures are reduced to a subset, which
contains the information about possible genetic alterations
associated with certain cancers. In one study of Centro
Médico Nacional Siglo XXI of Instituto Mexicano Del
Seguro Social, they obtained a dbGM with 19 records of
patients with laryngeal cancer and two patients with cervical
cancer [4], over five years.

They obtained this dbGM from progenetix (this database
containing an overview of the anomalies in the number of
copies of Human Cancer of Comparative Genomic
Hybridization (CGH)), to generate a karyotype and a
grouping of data; one record of this base is as follows:

L1 rev ish enh(1p36.22, 1p13.1, 1qtel, 2q14, 3p14.2,

3q26.3, 5q21q22, 5q33q35, 7q32q34, 8p22, 8p22q21.3,
8q24qter, 9q22.3, 14qtel, 15qtel, 16qtel, 17ptel, 17q23,
20q13.2, 20qtel, Xq12) dim enh(19ptel) amp enh(1q21,
Xp22.3)

As we can see, this information is totally unknown

because it is in a specialized format, such as the ISCN, but
each acronym has a special meaning, which we are going to
describe for each acronym that appears on this record:

 L1:Label assigned to the patient.

 rev, ish, enh, dim and amp: Techniques used to
obtain genetic information, rev is the technique
called Reverse, ish is the technique called In Situ
Hybridization, enh is the technique called
Enhanced, dim is the technique called Diminished
and finally amp is the technique called Amplified
Signal.

 1p36.22:It is the first record in the parentheses, the
number at the start leading 1 is the number of
chromosomes, p is the kind of arm that is in this
case p is the short arm, if occupied q it would be the
long arm, and finally 36.22 refers to the area of the
chromosome where there is a change.

We can see that each record has a set of implicit
information, which is difficult to handle for most classifiers,
which is why we implement a method of transformation for
these data. To achieve this objective, we implement

digitization and discretization algorithms to apply on this
dbGM and we obtain a format more appropriate for the
incorporation of classifiers, then we show how we apply
these algorithms on dbGM

2) Implementing Labeling and Discretization

techniques.

In the example of the previous subsection, there are terms

that are used exclusively in the ISCN format, which
represent the acronym of each element that compose a record
of this type of the dbGM.

With these acronyms, the labeling and discretization
techniques were applied for change to integer values, which
are handled by classifiers more directly, as a first element
each acronym that are present in the dbGM is listed.

Techniquesfor each patient

 rev ish enh

 dim enh

 amp enh

 amp

 dim
Chromosomes

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, X, Y

Type of arm on chromosome

 p: Short arm.

 q: Long arm.
Region where the genetic alteration is present:

 Real values associated with each of the
chromosomes that can go terminal region (ter) at
the telomeric (tel).

So, when we apply the labeling and discretization
techniques, we have to assign a nomenclature to each of
these acronyms, the nomenclature used is as follows:

Techniques:

 rev ish enh → 101

 amp enh → 102

 dim enh → 103

 amp → 104

 dim → 105
Chromosomes:

 From 1, 2, …, 22

 X → 23

 Y → 24
Arm:

 P → 300

 Q → 301
Region:

 Real values multiplied by 100

 ter → 4000

 tel → 4001

The allocation of these values was arbitrary, having this
way the transformation of all acronyms of ISCN format. In
Table I, we can see an example of the application of these
techniques on the record shown in Section 1).

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 32 / 60

The allocation of these values was arbitrary, having this
way the transformation of all acronyms of ISCN format. In
Table I, we can see an example of the application of these
techniques on the record shown in Section 1.

Record in ISCN format:

L1, rev ish enh (1p36.22, 1p13.1, 1qtel, 2q14, 3p14.2,
3q26.3,5q21q22, 5q33q35, 7q32q34, 8p22, 8p22q21.3,
8q24qter, 9q22.314qtel, 15qtel, 16qtel, 17ptel, 17q23,
20q13.2,20qtel, Xq12) dim enh(19ptel) amp enh(1q21,
Xp22.3)

TABLE I. RECORD AFTER WE APPLY THE LABELING AND

DISCRTETIZATION TECHNIQUES.

1011 300 3622 1 300 1310 1

 301 4000 2 301 1400 3

 300 1420 3 301 2630 5

 301 2100 5 301 2200 5

 301 3300 5 301 3500 7

 301 3200 7 301 3400 8

 300 2200 8 300 2200 8

 301 2130 8 301 2400 8

 301 4000 9 301 2230 14

 301 4000 15 301 4000 26

 301 4000 17 300 4000 17

 301 2300 20 301 1320 20

 301 4000 23 301 1200 104

 19 300 4000 101 1 301

 2100 23 300 2230

In the record of Table I, there are only integer data so

makes it easier handling it for the classifiers, however exist a
problem because the size of registration is large and each
record has a different length. For this reason we propose a
way of how to make the registers have the same size, we do
this by separating techniques which have in a register.

To show how we apply this change in records to have the
same size, we use another record of dbGM, which contains
the following information:

L8T2N0 amp (19ptel, 22q11.21, 22q11.2, 22q13.3,

22qtel) dim (19ptel)

As we can see in the previous record, there are two

techniques, which are the amp and dim, this example will
help to illustrate each phase that must be performed to
transform the format ISCN to the format that handles PSLC.

The operation of transformation has four phases, which are
as follows.

Phase 1:

In the record above, there are two techniques, amp and

dim, in this phase we identify the techniques, are divided,
and new records are formed according to the number of
techniques, the new records are creating as follows:

 amp(19ptel, 22q11.21, 22q11.2, 22q13.3, 22qtel)

 dim(19ptel)

Phase 2:

For each new record, we must separate it into each

genetic alteration, retaining the order for each technique,
after which we apply this phase to the new records and they
change as follows:

 amp
1. 19ptel
2. 22q11.21
3. 22q11.2
4. 22q13.3
5. 22qtel

 dim
1. 19ptel

Phase 3:

Since they have separate genetic alterations, we will

proceed to separate in chromosome number, type of arm and
area of the chromosome where the alteration is present,
respecting each new nomenclature established, we carry out
as follows:

 amp -> 104

Order Chromosome Arm Region

1 19 300 4001

2 22 301 1121

3 22 301 1120

4 22 301 1330

5 22 301 4001

 dim-> 105

Order Chromosome Arm Region

1 19 300 4001

Phase 4:

Once we have coded both records, all information

representing a new record in the dbGM, so now instead of

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 33 / 60

having two records, it will have six records, but all the same
size; the example obtained from this phase can be seen in
Table II:

TABLE II. FIRST CODING OF RECORD

Technique Chromosome Arm Area Order

104 19 300 4001 1

104 22 301 1121 2

104 22 301 1120 3

104 22 301 1330 4

104 22 301 4001 5

105 19 300 4001 6

We can see that in this matrix format, there are the

different techniques (amp and dim), with all information in
them, but we add new information of each record, for this
case we add two new attributes, number of changes and
sequence.

The number of changes attribute, has the techniques used
in some patient. In the sequence attribute, since each
technique was encoded in a range of 101 to 105, for this new
attribute the last digit is used and depending on whether one
or more techniques used they are strung together, returning
to the previous example used the technique amp and dim
which have associated values 104 and 105 respectively, so
that the new attribute would be 45. Finally, adding these two
attributes, the final record we can see in Table III.

With this example, we explain how we performed the
transformation the format of dbGM, for having a matrix
format to carry out the EO component of PSLC.

3) Operation Engine

When performing the task of data classification, there are
two sets, training and testing. With the training set the
models of classification algorithms are constructed. Using
the test sets the classification is performed for each of the
records in the DB, which are carried out individually, i.e.
record by record.

This is the traditional way of how to perform data
classification, however for the dbGM is not possible to carry
out the classification in the traditional way, since as we can
see in Table III; a set of six records in the matrix format is
equivalent to one record in the ICSN format.

In this paper, we develop a module called Engine of
Operation (EO) of PSLC. The EO implements a set of
classifiers as Naive Bayes, C4.5, k-NN and the HCDR,
among others to perform the task of classification. The
classification performed with these classifiers is the tradition;
therefore we find a way to change it, for this we implement a
voting criterion as used in classifiers based on ensembles.

A classifier based on ensembles [1], joins one or more
types of classifiers to obtain improvements in performance
measures, which is why we need a criterion to designate the

classification of each example in the test set, there have been
two voting criteria the Majority and Weighted voting
criterion.

TABLE III. MATRIX FORMAT OF A RECORD

In Majority Voting Criterion, each of the classifiers votes

to decide to which class each example belongs to for the test
set, eventually counting the votes and assigning the class
majority. For Weighted Voting Criterion, each classifier has
a weight, so each vote has a different weight, so that in the
end has a weighted voting, but the class is assigned given the
most voting weight.

With these two criteria, we decided to use the majority-
voting criterion [3] to adapt the classifiers of EO, to
exemplify this incorporation we can see the diagram in
Figure 1, which shows the traditional way to carry out the
classification (Tclass) and the applying of majority voting
criterion for classification (MVclass).

a)

b)

Figure 1. a) Traditional way to perform the classification. b)

Classification with a majority voting criterion.

As we can see in Figure 1, the difference between Tclass
and MVclass is the incorporation of the majority-voting
criterion, in which the votes are counted there for the class 1

Tech

nique

Number

ofchanges
Sequence

Chro

moso

me

Arm Area Order Class

104 2 45 19 300 4001 1 Survival

104 2 45 22 301 1121 2 Survival

104 2 45 22 301 1120 3 Survival

104 2 45 22 301 1330 4 Survival

104 2 45 22 301 4001 5 Survival

105 2 45 19 300 4001 6 Survival

Classifier i

Classifier i

Voting Criterion Five votes to

class 1

Three votes

to class 2

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 34 / 60

and the class 2. The class 1 has the most votes, this set of
examples that represent a single example in the ISCN
format, they assign the majority class, respecting the original
meaning that we have for each record, we conclude this
component; in the next section, we review the experiments
and results obtained by the PSLC.

IV. EXPERIMENTS AND RESULTS

In this section, we show the results obtained by

performing a series of tests with the BD of larynx cancer to
measure the performance of the PSLC. The tests consisted in
generating a number of test and training sets with different
sizes; we can see these sets in Table IV.

TABLE IV. SELECTED TRAINING SETS.

Cases Number of patients Number of records

1 3 49

2 5 92

3 7 135

4 9 151

5 11 160

6 13 224

7 15 299

8 17 332

9 19 382

10 Full DB (21) 431

With each training set of Table IV, the MVclass were

performed according to the following steps:
1. We take two sets of dbGM, a set classless and

another set with the class of each record; these will
be the test and training set respectively.

2. The test sets we use by some classifiers, to perform
the MVclass of each example.

3. Once it gets the MVclass of each record of the test
set, we compared them to their real classes.

4. At the end of this comparison, we obtained the
performance measures that will allow us to evaluate
each classifier.

At the end of the testing process, we choose the accuracy
as the performance measure to evaluate each classifier.
Accuracy provides information on the percentage of
correctly classified examples, out of the entire test set; this
performance measure is formally defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑎 + 𝑑)

(𝑎 + 𝑏 + 𝑐 + 𝑑)
 (1)

In equation 1 has the following:

 (a, d) is the correctly classified examples and

 (c, b) is the classified incorrectly examples

It is noteworthy that for each of the tests we used cross-
validation to determine the validity of each classifier we
implement. Figure 2 and Table V show the final results we
obtain in each of the tests that were performed.

Figure 2. Graph of the final results.

TABLE V. FINAL RESULTS FOREACH CLASSIFIER

Size of

test set

HCDR k-NN K Means C4.5 Decision

Tables

SVM

3 93.67 71.21 75.5 85.54 82.32 87.37

5 91.95 78.34 71.06 85.48 82.12 86.19

7 93.1 75.24 70.25 85.12 83.33 87.61

9 94.1 76.85 71.13 85.34 82.41 86.78

11 92.72 75.56 70.13 84.54 81.73 87.41

13 94.45 78.69 71.24 85.83 82.37 87.45

15 92.12 79.14 70.48 84.93 82.21 86.25

17 91.21 78.13 71.61 85.19 83.13 87.17

19 94.74 83.26 70.62 85.15 82.77 87.42

21 95.13 81.26 70.85 85.54 83.21 86.31

Average

of

accuracy

93.619 77.768 71.287 85.266 82.56 86.996

We can see in Figure 2 and Table IV that the HCDR

showed better results than traditional classifiers, obtaining an
average accuracy of 93,619. The HCDR was strengthened
with genetic markers found in the database of the study after
five years in patients with larynx cancer. By using new
technologies such as scanning AXON, the targets are
searched must be related to cancer of the larynx and cervical
cancer.

Table VI shows the class for each patient in the study
over five years. In these patients, we determined the main
patterns present at the genetic level, which are present in
ISCN format.

TABLE VI. PATIENTS WITH CANCER OF LARYNX, WITH THEIR

RESPECTIVE CLASS AND PATTERNS.

Patient Class Pattern

L3 Survival 3q21q22 and 3q27q29

L4 Survival 1q25q31, 3q21q22 and 7qtel

L5 Poor

survival

17q11.2

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 35 / 60

L6 Poor

survival

5q21q22, 5q33q35, 8p22q21.3, 8q29qter

and 7q32q34

L7 Poor

survival

8p22q21.3 and8q29qter

L8 Survival 22q11.2 and 22q13.3

L9 Survival 3q21q22

L10 Survival 2q31q32

L11 Survival 5q33q35

L12 Survival 22q11.2 and 22q13.3

L13 Poor

survival

1q25q31, 3q21q22, 3q27q29 and 7q21q22

L14 Poor

survival

3q21q22 and 7p12.3p12.18p22q21.3

L15 Poor

survival

1q25q31 and 3q21q22

L16 Poor

survival

3q21q22 and 7p12.3p12.1

L17 Survival 3p12p13 and 17q21q22

L18 Survival 12q13q14

L19 Survival 1q25q31, 3q21q22, 3q27q29 and

7p12.3q12.1

L20 Poor

survival

3q21q22, 3q27q29,7p12.3p12.1

and7q21q22

L21 Poor

survival

5q33q35

With Table VI, we locate the presence of CRBP-1 and

EGFR genes. CRBP-1 is a protein involved in the transport
of retinol from its storage sites of the liver to peripheral
tissues. Vitamin A plays an important role in a variety of
cellular processes associated with epithelial tissue
proliferation and differentiation. This protein could improve
the condition of some form of cancer, when analyzing our
database we observed that it actually improved the
conditions of patients with larynx cancer.

In contrast, EGFR amplification could be associated with
poor survival of patients with larynx cancer. A gain of
CRBP-gene may have a protective effect and increased
survival. These data suggest that alteration CRBP-1 gene and
its expression in carcinomas of the larynx squamous provide
prognostic information with greater potential patient
survival.

Previously, Peralta et al. [4] reported the behavior of
these two genes but with techniques in microarray data
analysis. For this work became the chromosomal level
analysis of each of the patients involved, and seek the
relationship patterns of each sample to determine the genes
present. In the same way, it was determined that the gene
CRBP-1 was present in patients who survived the EGFR
gene was present in poor survival. In this way it was shown
at the chromosome level and table’s decision techniques and
data mining obtained the correct result.

By identifying these genetic patterns, we could
implement the HCDR, which is able to incorporate decision
rules that endorse the existence of these patterns in any of the
branches of the decision tree constructed, which resulted an
average accuracy of over 15% compared to traditional
classifiers.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a Prediction System of Larynx
Cancer (PSLC), for exploration and analysis of the databases
of genetic markers (dbGM). The PSLC has two components,
the Transformation and Selection of Data (TSD) component
and the Operation Engine (EO).

With the TSD component, we perform data
transformation that was in ISCN format to a matrix format
for better data handling. This component was necessary since
most of the classifiers are better suited to this type of data
format. Otherwise if we had taken the raw ISCN format,
many changes should have been made in the operation of
each classifier. That is why we decided to not make these
changes and implement the TSD module.

With the EO component implemented as an alternative
way to perform the classification by incorporating a majority
voting criterion (MVclass). With this alternative form of
classification, we performed a series of tests with a set of
classifiers. In Table V and Figure 2, the accuracy grew 15%
with respect to the other classifiers considered for the tests;
this gives us the result that the HCDR performs better than
traditional classifiers.

This classifier considers the incorporation of decision
rules with tree structures, together with the genetic markers,
the CRBP-1 to survival of patients and EGFR to poor
survival of patients, located in a series of preliminary tests.

With PSLC we proved that by incorporating two areas of
knowledge (Artificial Intelligence and Genetics), different
from one another, there may be generated more complex
algorithms; such is the case of HCDR. With this model of
classification we obtained a better accuracy for each one of
the tests we made to the dbGM, comparing it with different
traditional classifiers. The PCSL is an example of the new
interdisciplinary projects of Science and Technology that
combine more than one area of current research.

For the PSLC we consider its seminal work on the issue,
since if we want to develop new versions incorporating other
types of cancer, it will be directly because in tests we found
that the genetic information of two different types of cancer,
in this case larynx and cervical, show many similarities, so
we left the base ready to scale this project.

ACKNOWLEDGMENT

Special thanks to Instituto de Ciencia y Tecnologia Del
Distrito Federal - ICyTDF and Universidad Autónoma
Metropolitana - UAM for their support for the realization of
this system we propose in this paper. We also thank Dr.
Mauricio Salcedo-Vargas, which belongs to the Centro
Médico Nacional Siglo XXI of Departamento de Oncología
for their valuable collaboration is aspects of genetics.

REFERENCES

[1] B. Moreno Montiel and R. Mac Kinney Romero,“A Hybrid Classifier

with Genetic Weighting,” in Proceedings of the Sixth International
Conference on Software and Data Technologies, July 2011, vol. 2,
pp. 359–364.

[2] T. Gunnar Houeland and A. Aamodt, “An efficient hybrid
classification algorithm: an example from palliative care,”

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 36 / 60

Proceedings of the 6th international conference on Hybrid artificial
intelligent systems, September 2011, vol. II, pp. 197–204.

[3] E. Hüllermeier and S. Vanderlooy, “Combining predictions in
pairwise classification: An optimal adaptive voting strategy and its
relation to weighted voting,” Pattern Recognition, January 2010, vol.
43, pp. 128–142, doi:10.1016/j.patcog.2009.06.013.

[4] R. Peralta, M. Baudis, G. Vazquez, S. Juárez, H. Decanini, D.
Hernandez, F. Gallegos, A. Valdivia, P. Piña, and M. Salcedo,
“Increased expression of cellular retinol-binding protein 1 in
laryngeal squamous cell carcinoma,” Journal of Cancer Research and
Clinical Oncology. January 2010, vol. 136, pp. 931–938, doi:
10.1007/s00432-009-0735-9. Epub 2010 Jan 7.

[5] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. Yu, ZH. Zhou, M. Steinbach, D.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,”
Knowledge and Information Systems, April 2009, vol. 14, pp. 1–37,
doi:10.1007/s10115-007-0114-2.

[6] M. Shinawi and SW. Cheung. "The array CGH and its clinical
applications,". Drug Discov Today, September 2008, vol. 13, pp.
760–770, doi:10.1016/j.drudis.2008.06.007. PMID 18617013.

[7] I. Witten and E. Frank, “Data Mining: Practical Machine Learning
Tools and Techniques,” Morgan Kaufmann Publishers, January 2005,
2nd edition, pp. 560.

[8] D . Albertson, and D. Pinkel,“Genomic microarrays in human genetic
disease and cancer,” Hum Mol Genet, October 2003, no. 2:R, pp.
145-52, doi: 10.1093/hmg/ddg261.

[9] M. Kujawski, M. Rydzanics, M. Sarlom-Rikala, and K. Szyfter,
“Rearrangements involving the 13q chromosome arm committed to
the progression of laryngeal squamous cell carcinoma,” Cancer Genet
Cytogenet, August 2002, vol. 137, No 1 pp.54-58.

[10] S. Struski, M. Doco-Fenzy, and P. Cornillet-Lefebvre “Compilation
of published comparative genomic hybridization studies”, Cancer
Genet Cytogenet, May 2002, vol. 135, No 1 pp. 63-90.

[11] F. Jiang, R. Desper, C. H. Papadimitriou, R. A. Schäffer , O.
Kallioniem, J. Richter, P. Schraml, G. Sauter, M. J. Mihatsch, and H.
Moch, “Construction of evolutionary tree models for renal cell
carcinoma from comparative genomic hybridization data,”Cance
research, November 2000, vol. 60, No22 pp. 6503-6509.

[12] D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole, D. Kowbel, C.
Collins, W. L. Kuo, C. Chen, Y. Zhai, S. H. Dairkee, B. M. Ljung, J.
W. Gray, and D. G. Albertson, “High resolution analysis of DNA
copy number variation using compartive genomic hybridization to
microarrays,” Nature Genetics, October 1998, vol. 20, pp. 207-211,,
doi: 10.1101/gr.2012304.

[13] T. M. Mitchell, “Machine Learning”, McGraw-Hill
Science/Engineering/Math, March 1997

[14] S. Solinas-Toldo, S. Lampel, S. Stilgenbauer, J. Nickolenko, A.
Benner, H.Döhner, T. Creme, and P.Lichter, “Matrix-based
comparative genomic hybridization: biochips to screen for genomic
imbalances,” Genes Chromosomes Cancer, December 1997, vol. 20,
No 4 pp. 399-407, doi: 10.1002/(SICI)1098-
2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I.

.

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 37 / 60

Introduction in First-Order Combinatorics
Providing a Conceptual Framework for Computation in Predicate Logic

Mikhail G. Peretyat'kin

Institute of Mathematics and Mathematical Modeling
125 Pushkin Street, 050010 Almaty, Kazakhstan

e-mail: m.g.peretyatkin@predicate-logic.org

Abstract—In this work, we introduce general specifications
for the concepts of finitary and infinitary first-order
combinatorics as well as give preliminary definitions of
semantic layers of model-theoretic properties connected with
these combinatorics. We use only the simplest notions of first-
order logic and algorithm theory together with elementary
properties of signature reduction procedures and constructions
of finitely axiomatizable theories known in common practice.
The work represents an ideological basis and starting point for
investigations on expressive power of first-order predicate
logic.

Keywords—first-order logic; computation; theory;
computably axiomatizable theory; interpretation; signature
reduction procedure; combinatorics.

I. INTRODUCTION

The principal problem concerning expressive power of
first-order predicate logic was solved by W. Hanf [2][3],
who proved that, for any computably axiomatizable theory
𝑇𝑇, there is a finitely axiomatizable theory 𝐹𝐹 together with a
computable isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝐹𝐹) between their
Tarski–Lindenbaum algebras. Moreover, in the same work
[3], Hanf gives a direct formula that presents the
isomorphism type of the Tarski–Lindenbaum algebra
ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎)) of predicate calculus 𝑃𝑃𝑃𝑃(𝜎𝜎) of a finite rich
signature 𝜎𝜎. The works of Hanf–Myers [4] and Myers [6]
introduce a method of constructing computable
isomorphisms between ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎1)) and ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎2)) , where
𝜎𝜎1 and 𝜎𝜎2 are arbitrary finite rich signatures.

Subsequent work of Myers [7] describes an enhanced
isomorphism between the Tarski–Lindenbaum algebras
ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎2)) and ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎3)), where signature 𝜎𝜎2 consists of a
single binary predicate, while 𝜎𝜎3 consists of a single ternary
(or 𝑛𝑛 -ary, 𝑛𝑛 > 3) predicate. He builds a computable
isomorphism 𝜇𝜇:ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎2)) → ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎3)) such that, for any
complete extension 𝑇𝑇′ of 𝑃𝑃𝑃𝑃(𝜎𝜎2) and corresponding
complete extension 𝑆𝑆′ of 𝑃𝑃𝑃𝑃(𝜎𝜎3), 𝑆𝑆′ = 𝜇𝜇(𝑇𝑇′), the theories 𝑇𝑇′
and 𝑆𝑆′ are mutually interpretable in each other via so-called
tuple-quotient interpretations (using a definable set of tuples
of a finite length modulo a definable equivalence relation as
a domain of the interpretation). Thereby, the corresponding
completions will have rather like model-theoretic properties.

Our previous work [10] represents a universal
construction of finitely axiomatizable theories controlling
the structure of the Tarski–Lindenbaum algebra of a theory
together with a large layer of model-theoretic properties,
while the works [8] and [9] describe special methods of

constructing isomorphisms between the Tarski–Lindenbaum
algebras of predicate calculi of different finite rich
signatures. Notice that, the methods in [8] are based on the
universal construction providing computable transformation
of the theory, that corresponds to the term “infinitary
combinatorics”. Furthermore, the methods in [9] are based
on finite-to-finite signature reduction procedures providing
first-order definable transformation of the theory, that
corresponds to the term “finitary combinatorics”. Therefore,
a natural idea arises to use the combinatory terminology for
further works in this direction.

Probably, any exact definition is impossible for the
concept of combinatorics as well as for its particular cases
such as “finite combinatorics” or “infinite combinatorics”.
However, some specifications are possible for these
concepts if to restrict ourselves to the case of the language
of first-order logic. The problem to define such
specifications arises just in connection with the idea to
define a new approach for investigations on expressive
power of first-order predicate logic. Earlier, this problem
was not even posed at all while the methods of first-order
combinatorics were considered as obvious constructions of
model theory available in the common practice;
furthermore, different specialists considered different
meanings of the term “first-order combinatorics” itself.

The given work introduces some general specifications
to finitary and infinitary combinatorics. They are intended to
be used during investigations on the problem of
characterization of the Tarski–Lindenbaum algebras of
predicate calculi of finite rich signatures; these algebras
should be considered as generalized, i.e., enhanced with an
assignment function within the finitary or infinitary
semantic layer of model-theoretic properties. At such an
approach, finitary first-order methods represent the finite
(one can say, combinatorial) level of computation, while
infinitary first-order methods represent the algorithmic level
of computation in first-order predicate logic.

II. PRELIMINARIES

We consider theories in first-order predicate logic with
equality and use general concepts of logic, model theory,
algorithm theory, and constructive models found in
Rautenberg [11], Hodges [5], Rogers [12], Goncharov and
Ershov [1]. Generally, incomplete theories are considered.

A finite signature is called rich if it contains at least an
𝑛𝑛-ary predicate or function symbol for 𝑛𝑛 > 1, or two unary
function symbols. In this work, the signatures are

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 38 / 60

considered only, which admit Gödel's numbering of the
formulas. Such a signature is called enumerable. In writing
of a signature, capital letters are used for predicates, small
letters for functions and constants, and superscripts specify
arities of appropriate symbols. If 𝔐𝔐 is a model, |𝔐𝔐| stands
for the universe set of 𝔐𝔐. If 𝑇𝑇 is a theory, by 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇), we
denote the class of all models of 𝑇𝑇. The Tarski–Lindenbaum
algebra of theory 𝑇𝑇 over formulas without free variables is
denoted by 𝐿𝐿(𝑇𝑇) , while ℒ(𝑇𝑇) stands for the Tarski–
Lindenbaum algebra 𝐿𝐿(𝑇𝑇) considered together with a Gödel
numbering 𝛾𝛾 such that the concept of a computable
isomorphism becomes applicable to such objects. Such
isomorphisms between the Tarski–Lindenbaum algebras of
theories were initially considered by Hanf [2].

Let 𝑇𝑇 be a theory of signature 𝜎𝜎 and 𝜎𝜎′ ⊆ 𝜎𝜎. An 𝑚𝑚-ary
relation 𝑃𝑃𝑚𝑚 is called first-order definable in 𝑇𝑇 relative to 𝜎𝜎′
if there is a formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) of signature 𝜎𝜎′ such that

𝑇𝑇 ⊢ 𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) ↔ 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚).

Relation 𝑃𝑃 is called ∃ ∩ ∀-definable in 𝑇𝑇 relative to 𝜎𝜎′, if
there are formulas 𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) and 𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) of
signature 𝜎𝜎′ , such that 𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) is an ∃ -formula,
𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) is a ∀-formula, and two following conditions
are satisfied:

𝑇𝑇 ⊢ 𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) ↔ 𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚),

𝑇𝑇 ⊢ 𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) ↔ 𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚).

Particularly, the formula (∀𝑥𝑥1 … 𝑥𝑥𝑚𝑚)(𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) ↔
𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚)) must be true in the theory 𝑇𝑇. Similar
definitions also apply for functions and constants instead of
the relation 𝑃𝑃.

Theories 𝑇𝑇 and 𝑆𝑆 are called first-order equivalent or
isomorphic, written as 𝑇𝑇 ≈ 𝑆𝑆, if 𝑆𝑆 can be obtained from 𝑇𝑇
by a finite number of operations of renaming signature
symbols and by adding and eliminating those signature
symbols that are first-order definable in terms of other
signature symbols. Theories 𝑇𝑇 and 𝑆𝑆 are called first-order
∃ ∩ ∀ -equivalent or algebraically isomorphic, written as
𝑇𝑇 ≈𝑎𝑎 𝑆𝑆, if 𝑆𝑆 can be obtained from 𝑇𝑇 by a finite number of
operations of renaming signature symbols and by adding
and eliminating those signature symbols that are ∃ ∩ ∀ -
definable in terms of other signature symbols. Obviously,
we have 𝑇𝑇 ≈𝑎𝑎 𝑆𝑆 ⇒ 𝑇𝑇 ≈ 𝑆𝑆 for arbitrary theories 𝑇𝑇 and 𝑆𝑆.

An arbitrary set 𝔭𝔭 of complete theories of enumerable
signatures which is closed under ≈ is said to be a model
property, while a set 𝔭𝔭 of complete theories closed under ≈𝑎𝑎
is said to be an algebraic property. Both types of properties
are called model-theoretic properties. Examples of model-
theoretic properties of model type: ''theory has a prime
model'', ''theory is not stable''. An example of property of
algebraic type: ''theory is model complete''. By 𝐴𝐴𝐿𝐿 , we
denote the set of all model-theoretic properties of algebraic
type, while 𝑀𝑀𝐿𝐿 stands for the set of all properties of model
type; the inclusion 𝑀𝑀𝐿𝐿 ⊆ 𝐴𝐴𝐿𝐿 is obvious. An arbitrary
collection 𝐿𝐿 of model-theoretic properties is said to be a

semantic layer. A set 𝐿𝐿 ⊆ 𝑀𝑀𝐿𝐿 is called a model semantic
layer, while a set 𝐿𝐿 ⊆ 𝐴𝐴𝐿𝐿 is called an algebraic semantic
layer. Notice that, any model semantic layer can be regarded
as an algebraic layer. In the case when there is a computable
isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆) preserving any model-
theoretic properties within a layer 𝐿𝐿, the theories 𝑇𝑇 and 𝑆𝑆 are
said to be semantically similar over the layer 𝐿𝐿 ,
symbolically written as 𝑇𝑇 ≡𝐿𝐿 𝑆𝑆.

A. Demonstration of the relation of semantic similarity

It is a simple exercise to construct a computably
axiomatizable theory 𝑇𝑇 satisfying the following properties: 𝑇𝑇
is decidable, the set of all complete extensions of 𝑇𝑇, called
its Stone space, consists of a countable sequence 𝑇𝑇𝑘𝑘 , 𝑘𝑘 ∈ ℕ ∪
{𝜔𝜔}, such that, each of the theories 𝑇𝑇0,𝑇𝑇1,𝑇𝑇2, … is a stable
theory without prime models and is finitely axiomatizable
over 𝑇𝑇, while 𝑇𝑇𝜔𝜔 is not finitely axiomatizable over 𝑇𝑇, it is not
stable and has a prime model. Applying the universal
construction, [10,Th.0.6.1], we can find a finitely
axiomatizable theory 𝐹𝐹 together with a computable
isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝐹𝐹) preserving any property in the
following immediately listed semantic layer of model-
theoretic properties:

𝐿𝐿 = {"theory is stable ", "theory has a prime model "}.

Thereby, within the layer 𝐿𝐿, this theory 𝐹𝐹 has exactly the

same model-theoretic properties as 𝑇𝑇 did. This example
demonstrates concepts of a model-theoretic property,
semantic layer, computable isomorphism between the
Tarski–Lindenbaum algebras, as well as a possibility of
applications of the universal construction.

B. Demonstration of model versus algebraic properties

Algebraic-type properties are thinner in comparison
with those of model-type. Often, model-type properties are
considered, while sometimes, thinner algebraic-type
properties are also needed. For instance, let 𝑇𝑇 be the theory
of discrete linear orders considered in signature 𝜎𝜎 =
{<2,⊲2}, where

𝑥𝑥 ⊲ 𝑦𝑦 ↔ (𝑥𝑥 < 𝑦𝑦) & (∀𝑧𝑧)(𝑥𝑥 ≤ 𝑧𝑧 ≤ 𝑦𝑦 → (𝑥𝑥 = 𝑧𝑧 ∨ 𝑧𝑧 = 𝑦𝑦)).

Since ⊲ is first-order definable relative to <, we can

omit predicate ⊲ obtaining another theory 𝑇𝑇0 of discrete
linear orders in smaller signature 𝜎𝜎0 = {<2}. Theories 𝑇𝑇 and
𝑇𝑇0 are isomorphic with each other; particularly, we have
𝑇𝑇 ≡𝑀𝑀𝐿𝐿 𝑇𝑇0. On the other hand, 𝑇𝑇 and 𝑇𝑇0 are not algebraically
isomorphic because 𝑇𝑇 is model complete; thus, all its
complete extensions are model complete as well; on the
contrary, there is a complete extension of 𝑇𝑇0 which is not
model complete. Thereby, 𝑇𝑇 ≡𝐴𝐴𝐿𝐿 𝑇𝑇0 does not the case.

III. CARTESIAN EXTENSIONS OF THEORIES

Let 𝜎𝜎 be a signature and

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 39 / 60

 𝜉𝜉 = 〈𝜑𝜑1
𝑚𝑚1 ,𝜑𝜑2

𝑚𝑚2 , … ,𝜑𝜑𝑠𝑠
𝑚𝑚𝑠𝑠〉 (1)

be a finite sequence of formulas of this signature, where 𝜑𝜑𝑘𝑘
is a formula with 𝑚𝑚𝑘𝑘 free variables. Starting from a tuple 𝜉𝜉
and an arbitrary model 𝔐𝔐 of signature 𝜎𝜎, we will construct
some new model 𝔐𝔐1 = 𝔐𝔐〈 𝜉𝜉〉 of signature

 𝜎𝜎1 = 𝜎𝜎 ∪ {𝑈𝑈1,𝑈𝑈1

1, … ,𝑈𝑈𝑠𝑠1} ∪ {𝐾𝐾1
𝑚𝑚1+1, … ,𝐾𝐾𝑠𝑠

𝑚𝑚𝑠𝑠+1} (2)

as follows. As a universe for the model, we take the
following set

|𝔐𝔐1| = |𝔐𝔐| ∪ 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ …∪ 𝐴𝐴𝑠𝑠 ,

where the pointed out parts are pairwise disjoint. In the part
|𝔐𝔐|, all symbols of signature 𝜎𝜎 are defined exactly as they
were defined in 𝔐𝔐; in remaining, these symbols are defined
trivially; 𝑈𝑈 is defined by 𝑈𝑈(𝑥𝑥) ⇔ 𝑥𝑥 ∈ |𝔐𝔐|; 𝑈𝑈𝑘𝑘 is defined by
𝑈𝑈𝑘𝑘(𝑥𝑥) ⇔ 𝑥𝑥 ∈ 𝐴𝐴𝑘𝑘 ; predicate 𝐾𝐾𝑘𝑘 represents a one-to-one
correspondence between the set of tuples {𝑎𝑎�|𝔐𝔐 ⊨ 𝜑𝜑𝑘𝑘(𝑎𝑎�)}
and the set 𝐴𝐴𝑘𝑘 . So defined model 𝔐𝔐〈 𝜉𝜉〉 is said to be
Cartesian extension of 𝔐𝔐 by means of sequence (1), denoted
by 𝔐𝔐〈 𝜑𝜑1

𝑚𝑚1 ,𝜑𝜑2
𝑚𝑚2 , … ,𝜑𝜑𝑠𝑠

𝑚𝑚𝑠𝑠〉 , or 𝔐𝔐〈 𝜉𝜉〉 for short. Now, we
consider a theory 𝑇𝑇 of signature 𝜎𝜎, and fix signature (2) for
extensions of models. Let us define a new theory 𝑇𝑇′ as
follows

𝑇𝑇′ = 𝑇𝑇ℎ{𝔐𝔐〈𝜉𝜉〉|𝔐𝔐 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇)}.

It is said to be Cartesian extension of 𝑇𝑇 by means of
sequence of formulas (1), denoted by 𝑇𝑇〈 𝜑𝜑1

𝑚𝑚1 ,𝜑𝜑2
𝑚𝑚2 , … ,𝜑𝜑𝑠𝑠

𝑚𝑚𝑠𝑠〉,
or 𝑇𝑇〈 𝜉𝜉〉 for short. According to the construction, the theory
𝑇𝑇〈 𝜉𝜉〉 is defined uniquely up to an algebraic isomorphism of
theories; moreover, an interpretation 𝐼𝐼𝑇𝑇,𝜉𝜉 of the source theory
𝑇𝑇 in the target theory 𝑇𝑇〈 𝜉𝜉〉 is naturally defined.

Now, we consider a sequence of formulas of signature 𝜎𝜎
of a more common form

 𝜘𝜘 = 〈𝜑𝜑1

𝑚𝑚1 /𝜀𝜀1,𝜑𝜑2
𝑚𝑚2 /𝜀𝜀2, … ,𝜑𝜑𝑠𝑠

𝑚𝑚𝑠𝑠/𝜀𝜀𝑠𝑠〉, (3)

where 𝜑𝜑𝑘𝑘(�̅�𝑥) is a formula with 𝑚𝑚𝑘𝑘 free variables, while
𝜀𝜀𝑘𝑘(𝑦𝑦�, 𝑧𝑧)̅ is a formula with 2𝑚𝑚𝑘𝑘 free variables. By
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜀𝜀𝑘𝑘 ,𝜑𝜑𝑘𝑘), we denote a sentence stating that 𝜀𝜀𝑘𝑘 is an
equivalence relation on the set of tuples distinguished by the
formula 𝜑𝜑𝑘𝑘(�̅�𝑥). Let us repeat the construction given above
with the only difference that (𝑚𝑚𝑘𝑘 + 1) -ary predicate 𝐾𝐾𝑘𝑘
represents a one-to-one correspondence between the quotient
set {𝑎𝑎�|𝔐𝔐 ⊨ 𝜑𝜑𝑘𝑘(𝑎𝑎�)}/𝜀𝜀�̂�𝑘 and the set 𝐴𝐴𝑘𝑘 , where 𝜀𝜀�̂�𝑘(𝑦𝑦�, 𝑧𝑧)̅ =
𝜀𝜀𝑘𝑘(𝑦𝑦�, 𝑧𝑧)̅ ∨⌝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜀𝜀𝑘𝑘 ,𝜑𝜑𝑘𝑘). The obtained theory 𝑇𝑇〈 𝜘𝜘〉 is said
to be Cartesian-quotient extension of 𝑇𝑇 by means of
sequence of formulas 𝜘𝜘. Similarly to the previous case, the
theory 𝑇𝑇〈 𝜘𝜘〉 is determined uniquely up to an algebraic
isomorphism of theories; moreover, there is a natural
interpretation 𝐼𝐼𝑇𝑇 ,𝜘𝜘 of the source theory 𝑇𝑇 in the target theory
𝑇𝑇〈 𝜘𝜘〉.

The introduced operations are used in further definition
of first-order combinatorics.

1. Statement: Up to an algebraic isomorphism of
theories, each finite-to-finite signature reduction procedure
represents a particular case of Cartesian extension of
theories.

Proof. Immediately, by Beth's Definability Theorem, [5,
Th. 5.5.4]. □

IV. FIRST-ORDER COMBINATORICS

First, we introduce some common specification in a
compact form.

By first-order combinatorics, we mean transformation
methods of countable (specifically, computably
axiomatizable) theories, which can change both signature
and axiomatic of the theory preserving, as much as possible,
its model-theoretic properties. The emphasis is on the
methods definable in first-order predicate logic, while the
principal goal is the maximality of the collection of
preserved model-theoretic properties. Moreover, the main
objective is naturalness of the accepted specification.
Significance of the complex of definitions for combinatorics
is considered as higher if these definitions adequately
correspond to an available approach to logic (particularly, in
set theory or model theory). In the case of ambiguity in the
choice of some technical details, the preference should be
directed to the variants of concepts simplifying the situation
or providing more perfect appearance. As an initial basis for
the concept of combinatorics we take the class of signature
reduction procedures, which are considered as a particular
case of combinatorial methods in first-order logic. The
common problem is to generalize these particular methods to
maximum wide natural approach in such a way that so
serious term as "combinatorics" would become acceptable
here.

With this, the common specification is complete.
Now, we turn to develop the common idea in a

mathematical form.
A signature reduction procedure is normally applied,

when we are going to transform a given theory 𝑇𝑇 having an
infinite or too large finite signature to some new theory 𝑆𝑆
having a small finite signature. Moreover, the target theory 𝑆𝑆
must inherit from the source theory 𝑇𝑇 all model-theoretic
properties within a given layer 𝐿𝐿 = {𝔭𝔭0, 𝔭𝔭1, 𝔭𝔭2, … }.
Generally, specifications for the signature reduction methods
are subordinated to the purpose to pass from 𝑇𝑇 to 𝑆𝑆 as large
collection of properties as possible; thus, any exotic methods
of signature reduction distorting some evident model-
theoretic properties should be rejected. Ordinarily, the
signature reduction procedure is determined by an
interpretation 𝐼𝐼 of 𝑇𝑇 in 𝑆𝑆 preserving the demanded
properties. It is possible to establish (for instance, with the
back-and-forth Ehrenfeucht method), that generally, such an
interpretation 𝐼𝐼 defines an isomorphism of the Tarski–
Lindenbaum algebras 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆) passing from 𝑇𝑇 to 𝑆𝑆
both structure of extensions of theory and any model-
theoretic properties within the layer 𝐿𝐿 from complete
extensions of 𝑇𝑇 to corresponding complete extensions of 𝑆𝑆.
In many cases, reviewing is limited by complete theories

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 40 / 60

only; in this case, the Tarski–Lindenbaum algebras ℒ(𝑇𝑇) and
ℒ(𝑆𝑆) are 2-element Boolean algebras.

Notice that, in technical realization, signature reduction
procedures may consist of two or more separate stages.
Particularly, first, a reduction from an infinite in some finite
signature could be performed, while on the second stage, the
obtained finite signature is reduced to the wished small finite
signature. Another remark is that the universal construction
of finitely axiomatizable theories (see [10, Th.0.6.1]) is a
transformation from the class of computably axiomatizable
theories in the class of finitely axiomatizable theories (of
finite signatures); thereby, such a transformation can be
considered as an improved variant of infinite-to-finite
signature reduction procedure. Moreover, for the
construction, the whole transformation procedure consists of
so called main stage (performing the actual passage from a
computably axiomatizable theory to a finitely axiomatizable
theory) and a few auxiliary stages performing signature
reductions of certain types. Practical observation shows that,
the universal construction can control the same model-
theoretic properties which are under control of infinite-to-
finite signature reduction procedures. This definitely shows
that, both signature reduction procedures and constructions
of finitely axiomatizable theories should be considered
jointly as an integrated complex of transformations of
theories.

V. TWO TYPES OF FIRST-ORDER COMBINATORICS

Combinatorics of a given type is characterized by a
definite set of used methods and by collection of those
model-theoretic properties which are controlled by
application of these methods. Since we consider
combinatorics in first-order logic, the concept of a method is
understood as some manner 𝔪𝔪 of first-order transformation
of a computably axiomatizable theory 𝑇𝑇 in another such
theory 𝑆𝑆 producing a computable isomorphism of the
Tarski–Lindenbaum algebras 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆); moreover, as
a control over a model-theoretic property 𝔭𝔭 we mean that the
isomorphism 𝜇𝜇 passes without change this property 𝔭𝔭 from
any complete extension of 𝑇𝑇 to corresponding complete
extension of 𝑆𝑆. As mentioned above, some interpretation 𝐼𝐼 of
𝑇𝑇 in 𝑆𝑆 is meant behind the isomorphism 𝜇𝜇. Thus, by way of
constructing an input theory 𝑇𝑇, it is possible to influence on
properties of the target theory 𝑆𝑆 within the semantic layer 𝐿𝐿
of the controlled properties.

Now, we define finite first-order combinatorics or
shortly finitary combinatorics as combinatorics that is
determined by finitary transformation methods between first-
order theories, and infinite computable first-order
combinatorics or shortly infinitary combinatorics as
combinatorics that is determined by effective infinitary
transformation methods between first-order theories. Finite-
to-finite (𝑓𝑓2𝑓𝑓) signature reduction procedures represent
transformations of theory from one finite signature in another
finite signature. They are examples of finitary methods in
first-order logic; at the same time, some other finitary
methods in this logic exist; particularly, any Cartesian-
quotient (or Cartesian) extension of a theory represents a

finitary first-order method. Infinite-to-finite (𝐸𝐸2𝑓𝑓) signature
reduction procedures represent transformations of theory
from an infinite enumerable signature in a finite signature.
They are examples of infinitary methods in first-order logic;
at the same time, some other infinitary methods in this logic
exist; particularly, any release of the universal construction
represents infinitary first-order methods transforming
computably axiomatizable theories in finitely axiomatizable
theories.

There are two possibilities to compare semantic layers.
2. Rule of inverse inclusion: Any relatively smaller

class of methods defines the relatively larger semantic layer,
i.e., if ℳ1 and ℳ2 are classes of transformation methods of
theories, while 𝐿𝐿1 and 𝐿𝐿2 are the semantic layers determined
by these classes, we have ℳ1 ⊂ℳ2 ⇒ 𝐿𝐿1 ⊇ 𝐿𝐿2 ;
furthermore, the union of classes of methods ℳ1 ∪ℳ2
determines the intersection of layers 𝐿𝐿1 ∩ 𝐿𝐿2 ; the rule is
formally exact.

3. Rule of representative check: We fix a large
enough list ℛ of commonly known model-theoretic
properties, which is agreed to be considered as
representative. For two semantic layers 𝐿𝐿1 and 𝐿𝐿2 , 𝐿𝐿1 𝐿𝐿2
means that 𝔭𝔭 ∈ 𝐿𝐿1 ⇔ 𝔭𝔭 ∈ 𝐿𝐿2 for all 𝔭𝔭 ∈ ℛ , and 𝐿𝐿1 𝐿𝐿2
means that 𝔭𝔭 ∈ 𝐿𝐿1 ⇒ 𝔭𝔭 ∈ 𝐿𝐿2 for all 𝔭𝔭 ∈ ℛ ; this rule
represents a practical method of comparison even in the case
when no possibility exists for formally exact comparison of
volumes of the semantic layers; for ℛ, it are possible to take
the join of collections of model-theoretic properties
immediately listed in [9, Lem.4.2] and [10, Th.0.6.1].

Let us formulate an important relation between finitary
and infinitary methods.

4. Principle of subordination of finite to infinite: If a
class of transformation methods ℳ is intended for definition
of some version of infinitary layer, we must include in ℳ all
finitary methods relevant to this class; this requirement
prevents unacceptable situation when an infinitary semantic
layer is defined by a class of infinitary methods where some
finitary methods are missed.

There is an obvious possibility to introduce the concept
of abstract infinite first-order combinatorics as a version of
infinite combinatorics with omitted requirement of
computability for the passage from 𝑇𝑇 to 𝑆𝑆, and thus, for the
isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆) . Since the class of abstract
infinite methods is obviously wider in comparison with the
class of computable infinite methods, by the rule of inverse
inclusion, the semantic layer defined by computable infinite
methods extends the layer defined by abstract infinite
methods. This shows minor significance of the abstract
approach and establishes computable infinite first-order
combinatorics as the principal player in this direction of
investigations.

VI. SEMANTIC LAYERS DEFINED BY COMBINATORICS

Now, we specify semantic layers, which are actual in
this problematic.

We introduce the following notations:

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 41 / 60

𝐹𝐹2𝑓𝑓ℒ = the set of all model-theoretic properties of algebraic
type preserved by any 𝑓𝑓2𝑓𝑓 signature reduction
procedure,

𝐼𝐼2𝑓𝑓ℒ = the set of all model-theoretic properties of algebraic
type preserved by any 𝐸𝐸2𝑓𝑓 signature reduction
procedure ∩𝐹𝐹2𝑓𝑓ℒ,

𝑈𝑈𝑛𝑛𝐸𝐸ℒ = the set of all model-theoretic properties of model
type preserved by any transformation of theories
defined by the universal construction of finitely
axiomatizable theories ∩ 𝐼𝐼2𝑓𝑓ℒ ∩ 𝐹𝐹2𝑓𝑓ℒ,

𝐴𝐴𝑃𝑃𝐿𝐿 = the set of all model-theoretic properties of algebraic
type preserved by any Cartesian extension of any
computably axiomatizable theory,

𝐴𝐴𝐴𝐴𝐿𝐿 = the set of all model-theoretic properties of algebraic
type preserved by any Cartesian-quotient extension
of any computably axiomatizable theory,

𝑀𝑀𝐴𝐴𝐿𝐿 = the set of all model-theoretic properties of model
type preserved by any Cartesian-quotient extension
of any computably axiomatizable theory,

𝑀𝑀𝑀𝑀𝐿𝐿 = the set of all model-theoretic properties of model
type preserved by any quasiexact interpretation from
a computably axiomatizable theory to another such
theory ∩𝑀𝑀𝐴𝐴𝐿𝐿,

𝐹𝐹𝐸𝐸𝑛𝑛ℒ = the set of all model-theoretic properties of algebraic
type preserved by any finitary method between
computably axiomatizable theories (an ideal
concept),

𝐼𝐼𝑛𝑛𝑓𝑓ℒ = the set of all model-theoretic properties of model
type preserved by any infinitary method between
computably axiomatizable theories (an ideal
concept).

For infinitary layers, intersections with finitary layers
∩𝐹𝐹2𝑓𝑓ℒ and ∩𝑀𝑀𝐴𝐴𝐿𝐿 are added for the sake of realization the
requirement of subordination of finite methods to infinite
ones, while ∩ 𝐼𝐼2𝑓𝑓ℒ ∩𝐹𝐹2𝑓𝑓ℒ is added because the universal
construction includes intermediate stages of types 𝐸𝐸2𝑓𝑓 and
𝑓𝑓2𝑓𝑓. By the rule of inverse inclusion, these intersections can
be equivalently realized by adding corresponding methods in
the definition. The class of quasiexact interpretations, [10,
Ch.5], represents a technical framework for the universal
construction, while currently, an advanced definition is
available for this class (in forthcoming publication).

Semantic layer 𝐹𝐹𝐸𝐸𝑛𝑛ℒ is said to be the truly finitary layer,
while another layer 𝐼𝐼𝑛𝑛𝑓𝑓ℒ is the truly infinitary layer.
Currently, these definitions are just formal (presenting some
ideal concepts), since we have not provided specifications to
the set of all methods for the combinatorics. Nevertheless,
one can believe that these two classes of methods must exist
as mathematical objects.

The scheme in Fig. 1 shows all available model-theoretic
inclusions between the layers we have defined, where the
relation 𝐿𝐿1 𝐿𝐿2 ⇔𝑀𝑀𝑓𝑓𝑛𝑛 (𝐿𝐿1 ⊆ 𝐿𝐿2 & 𝐿𝐿1 𝐿𝐿2) is used pre-
senting so called 'inclusion-almost-coincidence' relation.
Two upper rows in the scheme represent layers of algebraic
types, while its lower part represents layers of model type.

Figure 1. A dependence scheme between the semantic layers

5. Statement: All inclusions and inclusions-almost-
coincidences between the semantic layers presented in Fig. 1
take place.

Justification. Most of the inclusions are checked
immediately, using the rules of inverse inclusion and
representative check. The inclusion 𝐴𝐴𝑃𝑃𝐿𝐿 ⊆ 𝐹𝐹2𝑓𝑓ℒ is
provided by Statement 1, while inclusions 𝑀𝑀𝑀𝑀𝐿𝐿 ⊆ 𝐴𝐴𝐴𝐴𝐿𝐿 and
𝐼𝐼𝑛𝑛𝑓𝑓ℒ ⊂ 𝐹𝐹𝐸𝐸𝑛𝑛ℒ are justified by the principle of subordination
of finite layers to infinite. □

In Fig. 1, we have marked two particular semantic layers
𝐴𝐴𝑃𝑃𝐿𝐿 and 𝑀𝑀𝑀𝑀𝐿𝐿. They play the role of working versions of the
semantic layers for finitary and respectively infinitary
combinatorics. It is important that the pointed out layers have
complete definitions; moreover, they are most useful in
applications. On the other hand, these two layers properly
cover the truly finitary and respectively truly infinitary layer
ensuring that practical applications with 𝐴𝐴𝑃𝑃𝐿𝐿 and 𝑀𝑀𝑀𝑀𝐿𝐿 are
independent of investigations concerning approaches to
definition of the truly semantic layers 𝐹𝐹𝐸𝐸𝑛𝑛ℒ and 𝐼𝐼𝑛𝑛𝑓𝑓ℒ.

VII. CONCLUSION

Methods of finitary combinatorics represent simple and
evident constructions in model theory. Methods of infinitary
combinatorics are also often used. A key moment is that,
each combinatorial method 𝔪𝔪 transforming 𝑇𝑇 to 𝑆𝑆 must
define a computable isomorphism of the Tarski–Lindenbaum
algebras 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆). Operation of a Cartesian extension
of the theory as well as other methods of finitary first-order
combinatorics do not represent a great interest themselves,
but they become an effective tool for investigations of the
Tarski–Lindenbaum algebra of predicate calculi of finite rich
signatures. However, the pointed out types of combinatorics
were not provided with any strict definitions or even general
agreements.

Regular references to the results known in the common
practice are inappropriate within technically complicated
fragments of reasoning; therefore, it is needed to introduce
some formal basis for the concepts of finitary and infinitary
combinatorics. This paper, providing a fundament to initial
definitions concerning these combinatorics, represents a
conceptual framework for the further investigations on
expressive power of first-order predicate logic.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 42 / 60

REFERENCES
[1] S. S. Goncharov and Yu. L. Ershov, Constructive models, Plenum,

New York, 1999.
[2] W. Hanf, “Model-theoretic methods in the study of elementary logic,”

Symposium on Theory of Models, North-Holland, Amsterdam, 1965,
pp. 33-46.

[3] W. Hanf, “The Boolean algebra of Logic,” Bull. American Math.
Soc., vol. 31, 1975, pp. 587-589.

[4] W. Hanf and D. Myers, “Boolean sentence algebras: Isomorphism
constructions, ”J. Symbolic Logic, vol. 48, no. 2, 1983, pp. 329-338.

[5] W. Hodges, A shorter model theory, Cambridge University Press,
Cambridge, 1997.

[6] D. Myers, “Lindenbaum–Tarski algebras,” Handbook of Boolean
algebras, Ed: J. D. Monk, R. Bonnet, Elsevier Science Publishers,
1989, pp. 1167-1195.

[7] D. Myers, “An interpretive isomorphism between binary and ternary
relations,” Structures in Logic and Computer Science: A Selection of
Essays in Honor of Andrzej Ehrenfeucht, 1997, pp. 84-105.

[8] M. G. Peretyat'kin, “Semantic universal classes of models,” Algebra
and Logic, 1991, vol. 30, no. 4, pp. 414-434.

[9] M. G. Peretyat'kin, “Semantic universality of theories over superlist,”
Algebra and Logic, 1992, vol. 30, no. 5, pp. 517-539.

[10] M. G. Peretyat'kin, Finitely axiomatizable theories, Plenum, New
York, 1997.

[11] W. Rautenberg, A concise introduction to mathematical logic,
Textbook, Third Edition, Springer, 2010.

[12] H. J. Rogers. Theory of Recursive Functions and Effective
Computability, McGraw-Hill Book Co., New York, 1967.

.

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 43 / 60

Using an Expression Interpreter to Reason With
Partial Terms

Lev Naiman
Department of Computer Science

University of Toronto
Toronto, Canada

Email: naiman@cs.toronto.edu

Abstract — Refinements of programming specifications often
include partial terms and need to be handled using formal rules.
The idea of an expression interpreter over character strings is
presented as a candidate solution. The interpreter allows for
reasoning with partial terms without requiring a meta-logic or
a logic with more than two values. We show how the interpreter
can be used to create generic and compact laws, which also allow
simple reasoning about expressions syntactically. We argue that
it is simple to integrate the interpreter within existing theorem
provers.

Keywords — logic; partial-terms;expression interpreter;
theorem prover; two-valued logic

I. INTRODUCTION

In programming specifications and their refinements we
commonly encounter partial terms. Partial terms are defined as
expressions that fail to denote a value. A term t in a theory T
is partial if there are no laws in T that apply to t. An example
is where a function or an operator is applied to an argument
outside of its domain, such as 1/0. We also say that a formula e
is unclassified in theory T if it is neither classified as a theorem
or an anti-theorem. Such expressions are present in proofs
of programs due to the partial functions and operators that
are often used in specifications. Borrowing an example from
[1], we might implement the difference function as follows
(where the domain of diff is integers, and the assumed theory
is arithmetic and first-order two-valued logic).

diff i j = if i = j then 0 else (diff i (j + 1)) + 1fi (1)

We would like to prove

∀i, j : int · i ≥ j ⇒ (diff i j) = i− j (2)

but when trying to simplify this expression instantiated with
1 and 2 respectively for i and j we get

1 ≥ 2 ⇒ (diff 1 2) = 1− 2 (3)
= F ⇒ (diff 1 2) = −1

and we cannot apply any laws at this point to simplify it
further. A law would allow simplifying the expression to true,
but it requires that both operands be boolean. The expression
diff 1 2 is a partial term because no laws apply to it. For this
reason we cannot use any law to conclude that (diff 1 2) = −1
is a boolean, even though it has the form X = Y . Tools
that reason with such expressions must be based on formal

rules in order to have confidence in their proofs. We propose
a character-string interpreter to solve this problem.

The rest of the paper is organized as follows: in section II
we examine the existing approaches in the literature to cope
with partial terms. In section III we describe the background
theories we use to define the interpreter in IV. Section V
shows how the interpreter can be used to cope with partial
terms. Section VI describes other benefits of the interpreter
when constructing theories. Section VII describes how we can
extend the definition of the interpreter to be more expressive.

II. CURRENT APPROACHES TO PARTIAL TERMS

One approach to resolve partial terms is to make all terms
denote. Formally this means that for each partial term such
as x/0, a law must exist saying which set of values that
expression is a member of. This set of values is assumed to
already be defined in the logic, as opposed to newly created
values. In this case there could be a law defined saying that
∀x : int · x/0 : int. This is the approach used in the
programming theory of [2]. Such laws do not explicitly say
what value a partial term is equal to, and this can cause certain
peculiar and possibly unwanted results such as 0/0 = 0 being
a theorem.

0 (4)
= 0× (1/0)

= 1× (0/0)

= 0/0

This approach can be slightly modified and the value of partial
terms can be fixed. However, this might cause some unwanted
properties. In the case of division by zero a choice of 42 as
used in [3] cannot be allowed due to inconsistency.

In [4] the authors point out that underspecification alone
may cause problems. If we allow domains of single elements
then these problems can go as far as inconsistency. The
semantic model of our interpreter uses underspecification, but
not exclusively. In some cases, similarly to LPF, the interpreter
would leave some expressions unclassified. One way of finding
a model for partial functions in set theory is the standard
approach of mapping any unmapped element from the domain
to a special value, usually called ⊥ [5]. The denotational
semantics for a generic law for equality are extended with

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 44 / 60

TABLE I
THREE-VALUED BOOLEAN OPERATORS

T F ⊥

¬ F T ⊥

TT TF FT FF T⊥ ⊥T ⊥F F⊥ ⊥⊥

∨ T T T F T T ⊥ ⊥ ⊥

∧ T F F F ⊥ ⊥ F F ⊥

this value, and in this particular model 7/0 = 5/0 would be a
theorem (assuming strict equality). However, a user of a logic
that includes the interpreter would not need to perform any
calculations that concern this extra value.

The logic of partial terms (LPT) [6], [7] is an example
of a logic that does not include the undefined constant. It
does however include a definedness operator ↓. In this theory
the specialization law (∀x · A(x)) ⇒ A(v) requires that v
be defined. The basic logic of partial terms (BPT) [8] is a
modification of LPT, and relaxes the previous requirement
for some laws. It allows for reasoning with non-terminating
functional programs. Some logics such as [9] inlcude multiple
notions of equality to be used in calculations. This may
complicate the laws of quantifiers.

Another approach to deal with partial terms is a non-
classical logic such as LPF [3] with more than two values.
In these logics the truth table of boolean operators is usually
extended as in table I (where ⊥ represents an “undefined”
value, and the column heads are both of the arguments to
the operator). In this logic the expression 0/0 = 1 would not
be classified to one of the boolean values, but would rather
be classified as ⊥. Undefinedness is either resolved by the
boolean operators or is carried up the tree of the expression.
Some three valued logics have a distinct undefined value for
each value domain, such as integers and booleans.

Three and more valued logics have varied useful applica-
tions. However, a drawback of using a logic with multiple
truth values is that certain useful boolean laws no longer hold.
This is particularly true of the law of the excluded middle,
∀x : bool · x ∨ ¬x, which in a three value logic can be
modified to ∀x : bool · x ∨ ¬x ∨ undefined(x). In the Logic
of Computable Functions (LCF) [10] there is a ⊥t value for
each type t, requiring the modification of several laws. Another
issue of multiple valued logics is that not knowing the value
of an expression seems to be pushed one level up; attempting
to formalize these extra values will result in a semantic gap.
There are always expressions that must remain unclassified for
a theory to remain consistent.

A further method of dealing with partial terms is condi-
tional, or short-circuit operators [11]. This approach is similar
to those logics with three values, since it gives special treat-
ment to partial terms. Boolean operators have an analogous
syntax a cor b, a cand b, a cimp b, etc. In these expressions
if the first value is undefined, then the whole expression is

undefined. These conditional operators are not commutative.

III. BACKGROUND THEORIES

We introduce two theories from [12] that we will use to
define the interpreter.

A. Bunch Theory

A bunch is a collection of objects. It is different from a
set, which is a collection of objects in a package. A bunch is
instead just those objects, and a bunch of a single element is
just the element itself. Every expression is a bunch, but not
all bunches are elementary. Here are two bunch operators.

A ,B A union B (5)
A : B A in B, or A included in B (6)

Operators such as a comma, colon, and equality apply to whole
bunches, but some operators apply to their elements instead.
In other words, they distribute over bunch union. For example

1 + (4, 7) (7)
= 1 + 4 , 1 + 7

= 5 , 8

Bunch distribution is similar to a cross-product in set theory.

B. String Theory

A string is an indexed collection of objects. It is different
from a list or ordered pair, which are indexed collections of
objects in a package. A string of a single item is just that item.
The simplest string is the empty string, called nil. Strings are
joined together, or concatenated with the semicolon operator
to form larger strings. This operator is associative but not
commutative. The string 0; 1 has zero as the first item and
one as the second. For a natural number n and a string S,
n ∗ S means n copies of S. Let nat be the bunch of natural
numbers. The copies operator is defined as follows.

0 ∗ S = nil (8)
∀n : nat · (n+ 1) ∗ S = n ∗ S;S (9)

Strings can be indexed, and their length can be obtained with
the length operator (↔).

Sn S at index n (10)
↔ S length of S (11)

A semicolon distributes over bunch union, as so does an
asterisk in its left operand. Some examples of the operators
defined are

↔ (7; 1; 0) = 3 (12)
(7; 1; 0)0 = 7

1; (5, 17); 0 = (1; 5; 0), (1; 17; 0)

3 ∗ (0; 1) = 0; 1; 0; 1; 0; 1

(0, 1) ∗ (0; 1) = 0 ∗ (0; 1), 1 ∗ (0; 1) = nil, 0; 1

The prefix copies operator ∗S is defined to mean nat ∗ S, or
informally the bunch of any number of copies of S. Finally,

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 45 / 60

we introduce characters, which we write with double quote
marks such as “a”, “b”, etc. To include the open and close
double-quote characters we escape them with a backslash:
“\“”. Strings that contain exclusively character strings are
sometimes abbreviated with a single pair of quotes: “abc” is
short for “a”; “b”; “c”. If the bunch of all characters is called
char, then the bunch of all two-character strings is char; char.

Bunch and string theory are used because they allow for
compact language definitions. For example, denoting the col-
lection of naturals greater than zero in set theory can be done
by writing {n : nat|n > 0}. In bunch theory it can be written
as nat + 1. We can of course define an addition operator
that distributes over the contents of a set, but the benefit of
bunch theory (and analogously string theory) is that no such
duplication is necessary.

IV. DEFINING THE INTERPRETER

We would like a simple method to reason with partial terms
that introduces as few new operators as possible, and which
preserves the properties of existing operators. We would also
like to avoid a separate meta-language, and to do all reasoning
within a single logic. In the literature authors often use one
set of symbols for the meta-logic operators and another for
the object logic. We use character strings instead both for
clarity, and in the case where we wish to use the logic to
study itself. We take the idea of the character-string predicate
of Hehner [13], and we expand it to be a general interpreter
for any expression in our language. To maintain consistency
we exclude the interpreter itself from the interpreted language.
The interpreter, which we call I is an operator which applies to
character strings and produces an expression. The interpreter
can be thought of as unquoting a string. We first define our
language as a bunch of character strings.

Let char be the bunch of all character symbols, let alpha
be the bunch of character symbols in the English alphabet,
and let digit be the bunch of digit character. We define our
language lang to be the following bunch of strings.

alpha; ∗alpha; ∗“′” = var (13)
digit; ∗digit = num

binops = “ ∧ ”, “ ∨ ”, “ = ”, “⇒ ”, “⇐ ”, “; ”, “− ”, “ ”

var, num, “T”, “F” : lang

“〈”; var; “ : ”; lang; “→ ”; lang; “〉” : lang

“(”; lang; “)” : lang

lang; binops; lang : lang

“¬”, “− ”, “∀”, “∃”; lang : lang

“\“”; ∗char; “\”” : lang

Here we have defined a language that includes boolean
algebra, numbers, logical quantifiers, functions, and strings.
The language is defined similarly to how a grammar for a
language would be given. Function syntax is 〈v : D → B〉,
where the angle brackets denote the scope of the function, and
v is the introduced variable of type D. We treat quantifiers as
operators that apply to functions. The quantifiers ∃ and ∀ give

boolean results. When we use more standard notation such
as ∀v : domain · body we mean it as an abbreviation for
∀〈v : D → B〉.

The interpreter is intuitively similar to a program interpreter:
it turns passive data into active code. Our interpreter turns a
text that represents an expression into the expression itself. The
interpreter is defined very closely to how lang was defined.
The laws are as follows.

I“T” = T (14)
I“F” = F

∀ s : (digit; ∗digit) · ∀ d : digit · I(s; d) = (Is)× 10 + (Id)
∀ dom, body : lang·
I(“〈a : ”; dom; “→ ”; body; “〉”) = 〈a : Idom→ Ibody〉
∀ s : lang · I“(”; s; “)” = Is ∧

I(“¬”; “(”; s; “)”) = ¬(Is) ∧
I(“∀”; “(”; s; “)”) = ∀(Is) ∧
I(“∃”; “(”; s; “)”) = ∃(Is) ∧
I(“− ”; “(”; s; “)”) = −(Is)

∀s, t : lang · I(“(”; s; “)”; “ ∧ ”; “(”; t; “)”) = (Is) ∧ (It) ∧
I(“(”; s; “)”; “ = ”; “(”; t; “)”) = (Is) = (It) ∧
I(“(”; s; “)”; “⇒ ”; “(”; t; “)”) = (Is)⇒ (It) ∧
I(“(”; s; “)”; “⇐ ”; “(”; t; “)”) = (Is)⇐ (It) ∧
I(“(”; s; “)”; “; ” ; “(”; t; “)”) = (Is); (It) ∧
I(“(”; s; “)”; “− ”; “(”; t; “)”) = (Is)− (It) ∧
I(“(”; s; “)”; “ ”; “(”; t; “)”) = (Is) (It)

∀ s : ∗char · I(“\“”; s; “\””) = s

To save space we leave out the interpretation of each digit.
For scopes the introduced variable must be an identifier, and
the expression Ia in that position would not satisfy this
requirement. We instead have a law for only the identifier a,
and other identifiers can be obtained through an application
of a renaming law. We add character brackets to these laws in
order to avoid precedence issues.

Note that we defined lang as a bunch of texts, and not the
expressions themselves. When these texts are interpreted, the
results are expressions or values in the language. The text “2”
is in lang, but not the value 2. The interpreter is similar to
a function of strings and distributes over bunch union. It is
of course possible to have a logical language to parallel the
texts in lang; all the expressions in the language which do
not contain I can then be denoted as I lang. In this paper
we leave out some operators from lang, such as the ones in
bunch theory.

The interpreter is similar to a traditional semantic valuation
function, with a few differences. First, the interpreter is a way
of encoding meta-logic within the logic itself; no extra meta-
logic is required. Second, the interpreter does not necessarily
map every string in the language to a value. Rather, we
later introduce generic laws that reason with such expressions
directly. Lastly, we will show how the interpreter can be
included in the interpreted language without inconsistency.

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 46 / 60

A. Variables

One significant change that we allow in our logic is for
variables. The interpreter needs to refer to an infinite collection
of strings that represent variables, and there is no simple
way to refer to all variables themselves. We would like the
interpretation of a string representing a variable to be the
variable that is represented:

I “a” = a (15)
I “b” = b

. . .

We instead say that a variable with the name a is an abbre-
viation for I“a”, and similarly for all other variable names.
Although in our initial definition we excluded the interpreter
from the interpreted strings, we later show in VII how we can
extend our language to safely include the interpreter.

There is an important consequence of making variable
syntax more expressive: function application and variable
instantiation is no longer a decidable procedure in general.
This is because deciding whether two variable strings are
equal is now as difficult as all of proving. However, this
does not pose a problem for the implementation of function
application along with the interpreter in a theorem prover. The
simple solution is that whenever we see an interpreter in the
body, we simply do not apply the function. We argue that
this rarely hinders the use of the interpreter, since users can
do all calculation in the sub-language that does not include
the interpreter, exactly as before. In the case where reasoning
with the interpreter is desired, standard proof obligations can
be generated and discharged.

We finish this section by noting that we could have simpli-
fied the definition considerably if we had a fully parenthesized
prefix language. All operator interpretation could be com-
pressed to a single law, and some bracket characters removed.

V. RESOLVING PARTIAL TERMS WITH THE INTERPRETER

Our solution to reasoning with partial terms is neither at the
term or propositional level. We rather say that some operators,
such as equality or bunch inclusion are generic. For example,
here are two of the generic laws for equality.

∀a, b : lang · I (a; “ = ”; b) : bool Boolean Equality (16)
∀a : I lang · a = a Reflexivity (17)

The first law says that any equality is a boolean expression,
similarly to the Excluded Fourth Law in LPF which implies an
equality is either true, false or undefined [1]. The arguments
can be any expressions in the interpreted language. For a
simple formal example of the use of the law we continue with

the difference example.

(18)
F⇒ diff 1 2 = −1 Bool Base Law

Type Checking Proof Obligation
(diff 1 2 = −1) : bool Interpreter laws

= I“diff 1 2 = −1” : bool String Assoc.
= I(“diff 1 2”; “ = ”; “− 1”) : bool Bool Equality
= T

= T

As we can see in the example, since the interpreter unquotes
expressions, using it in proofs is usually just the reverse
process.

A. Implementation

In general, implementing laws that use the interpreter in a
theorem prover is non-trivial. This is because it is difficult to
determine if unification alone is sufficient to check if a law
applies. We deliberately wrote two equality laws differently to
illustrate a couple cases where this task can be made easy. If
the only place the interpreter appears in a law is the expression
I lang in the domain of a variable, it can be treated as a
generic type. Type checking can be done by scanning to
see that the interpreter does not appear in any instantiated
expression with a generic type. In the case of the second law,
instantiating the variables and parsing yields a valid expression
without any further computation.

VI. METALOGICAL REASONING WITHIN THE LOGIC

There are several benefits of defining the interpreter and
using it to create laws. One such benefit is the creation
of generic laws, where type-checking for variables is not
necessary. The removal of type-checking is not only beneficial
for simplicity, partiality, and efficiency, but some operators
are meant to be truly generic. For example, the left operand
of the set-membership operator (∈) can be any expression
in the language, and set brackets can be placed around any
expression. By including the interpreter in the logic these laws
are expressed with full formality. For sets, an example would
be

∀A,B : I lang · ({A} = {B}) = (A = B) (19)

Another benefit is compact laws. For example, we wish to
define a generic symmetry law for natural arithmetic in our
logic. If we had a prefix notation then we could have written
it like this.

∀f : (+,×,=) · ∀a, b : nat· = (f a b)(f b a) (20)

Using the interpreter we can create a law in a similar fashion
for non-prefix notation.

∀f : “ + ”, “× ”, “ = ” · ∀a, b : lang· (21)
I (a, b) : nat⇒ I (a; f ; b) = I (b; f ; a)

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 47 / 60

This law can be made completely generic and include more
than arithmetic operators. It even becomes simpler to write.

∀f : “ + ”, “× ”, “ ∧ ”, “ ∨ ”, “ = ” · ∀a, b : lang· (22)
I (a; f ; b) = I (b; f ; a) (23)

These sorts of laws allow us to capture an idea like
associativity or commutativity in a compact way, and can be
easily extended by concatenating to the operator text.

One of the most useful features of the interpreter is rea-
soning about the syntactic structure of an expression without
requiring a meta-logic. These laws include function application
and several programming laws. Some laws have caveats, such
as requiring that in some expressions certain variables or
operators do not appear. For example, there is a quantifier
law for ∀ that says if the variable a does not appear free in
P .

(∀a : D · P) = P (24)

We would like to formalize this caveat. It is straight forward to
write a program that checks variable or operator appearance
in a string (respecting scope). We formalize a specification
of the “no free variable” requirement using the interpreter.
For simplicity, assume that variables are single characters, and
strings are not in the interpreted language. For a string P in
our language and a variable named a we specify

∃i : (0..↔ P) · Pi = “a” ∧ (25)
¬∃s, t,D, pre, post : ∗char·

(pre; “〈a : ”;D; “→ ”; s;Pi; t; “〉”; post) = P

∨ (pre; “〈”;Pi;D; “→ ”; s; “〉”; post) = P

This specification says that a is free in P . The first part says
that there is an index i in P at which a appears. The second
part says that a is not local. Let free denote this specification
parameterized for an expression and a variable; free “a”P
says that a is free in P . The caveat for the quantifier law is
formalized as

¬(free “a”P) ⇒ I (“∀a : ”;D; “ · ”;P) = I P (26)

In a similar manner we can avoid including axiom schemas
in some theories and have just a single axiom. The notation
allows us to refer to all variables in an expression.

VII. INCLUDING THE INTERPRETER

So far we have excluded the interpreter itself from the
interpreted language to maintain consistency. Gödel’s First
Incompleteness Theorem implies that we could never define
our interpreter to be both consistent and complete [14], [15].
Let the § symbol denote bunch comprehension, and be treated
as a quantifier; when applied to a function it returns a bunch.
Then there are expressions such as {§x : I lang · ¬(x ∈ x)}
whose string representation we cannot interpret (interpreting
this expression in particular causes Russell’s paradox). A
simpler proof of Gödel’s theorem by [13] shows why a

straight-forward inclusion of the interpreter is inconsistent.
However, as [13] also suggests, any logic can be completely
described by another. This point is intuitively manifested in the
fact that all expressions that cannot be interpreted include the
interpreter itself. In a sense, we relegate all issues of partiality
in our logic to involve only the interpreter.

However, we can weaken the restriction on the interpreter
being excluded from the language. The motivation for includ-
ing the interpreter is to reason about languages that allow
this sort of self reference. In practice, theorem provers such
Coq [16] allow reflection as a proving technique. We would
like to use the interpreter as a simple way of reasoning about
termination and consistency of definitions. The key insight is
that a mathematical function disregards computation time. The
domain xnat is the naturals extended with∞. We can measure
computation time recursively by defining the following timing
function.

T = 〈s : lang → result r : xnat· (27)

var f : (char → bool) := 〈t : lang → “\“”; t; “\”” = s〉·
if ∃f then r := 1 else

var f : (lang → bool) := 〈t : lang → “¬”; t = s〉·
if ∃f then r := 1 + T (§f) else

var f : (lang → lang → bool) :=

〈t, t′ : lang → t; “ ∧ ”; t′ = s〉·
if ∃f then r := 1 + T (§t : lang · ∃t′ : lang · ft t′)

+ T (§t′ : lang · ∃t : lang · ft t′) else

...
var f : (lang → bool) := 〈t : lang → “I”; t = s〉·
if ∃f then r := 1 + T (if §f : var ∧ I(§f) : lang

then I(§f) else §f fi) else

r :=∞
fi

〉

This function is in a way parallel to how an interpretation
works, except that it counts time. The time in question is the
number of law applications needed to simplify an expression
to have no interpreter symbol in it. At each if-statement the
function checks for the occurrence of a certain piece of syntax,
and the vertical ellipsis would include a similar check for the
rest of the syntax. The special part of this function is when
we see the interpreter symbol. If the interpreter was applied
to a string representing a variable, and that variable’s value
is a string in the language, we recurse on its value. If the
interpreter is applied to any other expression, we recurse on

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 48 / 60

that expression’s string representation. For example, if we have

Q = “¬IQ” (28)

then we calculate

T Q (29)
= T “¬IQ”

= 1 + T “IQ”

= 1 + T Q

and therefore T Q =∞ since T Q : xnat. For any string that
does not include the interpreter the time is linear; this can be
proven by structural induction over lang if we add an induction
axiom along with the construction axioms we defined earlier.
We should only interpret an expression that includes the
interpreter if the execution time of the interpretation is finite. If
it is infinite or cannot be determined, then there is a potential
for inconsistency had we decided to interpret it regardless. We
can add the interpreter to the interpreted language as follows:

∀s : lang · T s <∞⇒ I“I\“”; s; “\”” = Is (30)

This also implies that interpreting variables in their un-
abbreviated form is also safe. If we have s : var then:

T “I”; s (31)
= 1 + T s
= 1 + 1

= 2

In general, proving a finite execution time is the halting
problem. When reasoning about logics it may be useful to
include the interpreter in the interpreted language. For many
practical purposes it can be left out.

VIII. PROOF OF CONSISTENCY

To prove the interpreter consistent we will find a model in
set theory. Characters are implemented as natural numbers,
having

“0” = 0, . . . “9” = 9, “a” = 10, . . . “z” = 25, . . . (32)

Strings are implemented as ordered pairs in the standard way.

a; b = {{a}, {a, b}} (33)

The interpreter is a mapping from the set of all strings in our
language lang to the class of all sets. I ⊆ lang × Sets. It
is assumed that all other theories (functions, boolean algebra,
numbers) are implemented in set theory in the standard way.
For this reason partial functions might be implemented using
another special value that all remaining domain elements will
be mapped to. We will not delve into the implementation of
functions and other theories, since once they are implemented
in set theory, they are included in the class Sets.

We must prove that there exists a function I such that the
interpreter axioms are true. The recursion theorem will be used
to prove this [5]. The theorem states that given a set X , an

element a of X , and a function f : X → X there exists a
unique function F such that

F 0 = a (34)
∀n : nat · F (n+ 1) = f(F n) (35)

Since I ⊆ lang × Sets it is necessary to first find a function
from lang to the naturals; this is an enumeration of the strings
in lang. Let charNum be the total number of characters in
char. Character string comparison for strings s, t is defined
as

(s > t) = strNum(s) > strNum(t) (36)
strNum = 〈S : ∗char → if S = nil then 0 (37)

elseS0 + charNum× S1..↔S fi〉

The enumeration function enum of strings in lang is defined
as

enum = (g−1) (38)
g = 〈n : nat→ if n = 0 then (MIN s : lang · s) (39)

else (MIN s : (§t : lang · t > g(n− 1)) · s)fi〉

The function strNum assigns a unique number to each
string. Some character strings are not in lang, and we desire an
enumeration free from gaps. The function g assigns a unique
string in lang to each natural as follows: zero is mapped to
the first string in the language, and each subsequent number is
mapped to the next smallest string. Since g is one-to-one, we
define enum as its inverse. We define function F for a given
state in the model with finite single-character variables as

F 0 = {0; 0} (40)
...
F 9 = {9; 9} ∪ F 8

For all s : char let m = enum(“\“”; s; “\””) in
F m = {m; s} ∪ F (m− 1) (41)

F (n+ 1) = {(n+ 1); (H (n+ 1) (F n))} ∪ F n (42)
(H is defined below)

At each argument n function F is a mapping of all previous
numbers to their corresponding expressions, in addition to the
current one. The base elements are the variables, numbers and
strings. Function H constructs expressions using the operators
in our language from previous expressions. It is defined as

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 49 / 60

follows.

H k I = (43)
{S : Sets|∃n,m : dom(I) · g k = (g n); “ + ”; (gm)

∧ S = I n+ I m}∪
{S : Sets|∃n,m : dom(I) · g k = (g n); “ ∧ ”; (gm)

∧ S = I n ∧ I m}∪
{S : Sets|∃n : dom(I) · g k = “¬”; (g n) ∧ S = ¬I n}∪
...

Like the timing function, the vertical ellipsis represents a
similar treatment for other operators and is used to save space.
Since g is one-to-one, only a single set in this union will have
an element in it. In other words, each number is mapped to a
single expression (but not vice-versa). Finally, the interpreter
is implemented as follows.

I = 〈s : lang → (F (enums)) (enums)〉 (44)

IX. CONCLUSION

We have presented the formalism of an expression inter-
preter for the purpose of reasoning with partial terms. Our
technique requires no separate meta-logic, and we believe that
our encoding of expressions as character strings is simple
and transparent. The use of the interpreter allows proofs with
partial terms to proceed in a fully formal fashion classically;
that is, with just the standard boolean algebra. We show how
the interpreter can be used to create generic and compact laws,
which also allow syntactic reasoning about expressions. We
also argue that the incorporation of the interpreter in theorem
provers is simple, since the parsing that is required for its use
is an efficient linear-time algorithm.

REFERENCES

[1] C. B. Jones and C. A. Middelburg, “A typed logic of partial functions
reconstructed classically,” ACTA, vol. 31, no. 5, pp. 399–430, 1994.

[2] C. C. Morgan, Programming from specifications, 2nd Edition. Upper
Saddle River, NJ, USA: Prentice Hall, 1994.

[3] C. B. Jones, M. J. Lovert, and L. J. Steggles, “A semantic analysis
of logics that cope with partial terms,” in ABZ, ser. LNCS, J. Derrick,
J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel, S. Reeves, and
E. Riccobene, Eds., vol. 7316. Springer, 2012, pp. 252–265.

[4] C. B. Jones, “Partial functions and logics: A warning,” IPL, vol. 54,
no. 2, pp. 65–67, 1995.

[5] W. Just and M. Weese, Discovering Modern Set Theory. I. American
Mathematical Society, 1996, vol. 8.

[6] M. Beeson, Foundations of Constructive Mathematics. New York, NY,
USA: Springer-Verlag, 1985.

[7] ——, “Lambda logic,” in Automated Reasoning: Second International
Joint Conference, IJCAR 2004. Springer, 2004, pp. 4–8.

[8] R. F. Stärk, “Why the constant ’undefined’? logics of partial terms
for strict and non-strict functional programming languages,” J. Funct.
Program., vol. 8, no. 2, pp. 97–129, 1998.

[9] R. D. Gumb, “The lazy logic of partial terms,” JSYML, vol. 67, no. 3,
pp. 1065–1077, 2002.

[10] M. J. C. Gordon, R. Milner, and C. P. Wadsworth, Edinburgh LCF, ser.
Lecture Notes in Computer Science. Springer, 1979, vol. 78.

[11] D. Gries, The Science of Programming. New York: Springer-Verlang,
1981.

[12] E. C. R. Hehner, A Practical Theory of Program-
ming. New York: Springer, 1993. [Online]. Available:
http://www.cs.toronto.edu/ hehner/aPToP/

[13] ——, “Beautifying gödel,” pp. 163–172, 1990.
[14] K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathemat-

ica und verwandter Systeme,” Monatshefte für Mathematik und Physik,
vol. 38, no. 1, pp. 173–198, 1931.

[15] R. Zach, “Kurt gödel and computability theory,” in Logical Approaches
to Computational Barriers, ser. Lecture Notes in Computer Science,
A. Beckmann, U. Berger, B. Löwe, and J. Tucker, Eds. Springer Berlin
Heidelberg, 2006, vol. 3988, pp. 575–583.

[16] T. C. D. Team, “The coq proof assistant reference manual,” 2009.

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 50 / 60

Reducing Higher Order π-Calculus to Spatial Logics

Zining Cao1,2

1Department of Computer Science and Technology
Nanjing University of Aeronautics & Astronautics

Nanjing 210016, China
2State Key Laboratory for Civil Aircraft Flight Simulation

Shanghai Aircraft Design and Research Institute
Shanghai 201210, China

Abstract—In this paper, we show that the theory of processes
can be reduced to the theory of spatial logic. Firstly, we propose a
spatial logic SL for higher order π-calculus, and give an inference
system of SL. The soundness and incompleteness of SL are
proved. Furthermore, we show that the structure congruence
relation and one-step transition relation can be described as the
logical relation of SL formulas. At last we extend all definitions
and results of SL to a weak semantics version of SL, called WL.

Keywords—higher order π-calculus; spatial logic; inference
system

I. INTRODUCTION

Higher order π-calculus was proposed and studied inten-
sively in Sangiorgi’s dissertation [29]. In higher order π-
calculus, processes and abstractions over processes of arbi-
trarily high order, can be communicated. Some interesting
equivalences for higher order π-calculus, such as barbed equiv-
alence, context bisimulation and normal bisimulation, were
presented in [29]. Barbed equivalence can be regarded as a
uniform definition of bisimulation for a variety of concurrent
calculi. Context bisimulation is a very intuitive definition of
bisimulation for higher order π-calculus, but it is heavy to
handle, due to the appearance of universal quantifications in
its definition. In the definition of normal bisimulation, all
universal quantifications disappeared, therefore normal bisim-
ulation is a very economic characterization of bisimulation
for higher order π-calculus. The coincidence among the three
weak equivalences was proven [29], [28], [20]. Moreover, this
proposition was generalized to the strong bisimulation case
[10].

Spatial logic was presented in [12]. Spatial logic extends
classical logic with connectives to reason about the structure of
the processes. The additional connectives belong to two fam-
ilies. Intensional operators allow one to inspect the structure
of the process. A formula A1|A2 is satisfied whenever we can
split the process into two parts satisfying the corresponding
subformula Ai, i = 1, 2. In the presence of restriction in
the underlying model, a process P satisfies formula nrA
if we can write P as (νn)P ′ with P ′ satisfying A. Finally,
formula 0 is only satisfied by the inaction process. Connectives
| and r come with adjunct operators, called guarantee (◃) and
hiding (⊘) respectively, which allow one to extend the process
being observed. In this sense, these can be called contextual
operators. P satisfies A1◃A2 whenever the spatial composition

(using |) of P with any process satisfying A1 satisfies A2, and
P satisfies A ⊘ n if (νn)P satisfies A. Some spatial logics
have an operator for fresh name quantification [11].

There are lots of works of spatial logics for π-calculus and
Mobile Ambients. In some papers, spatial logic was studied on
its relations with structural congruence, bisimulation, model
checking and type system of process calculi [5], [6], [9], [16],
[27].

The main idea of this paper is that the theory of processes
can be reduced to the theory of spatial logic.

In this paper, we present a spatial logic for higher order
π-calculus, called SL, which comprises some action temporal
operators such as ⟨τ⟩ and ⟨a⟨A⟩⟩, some spatial operators such
as prefix and composition, some adjunct operators of spatial
operators such as ◃ and ⊘, and some operators on the property
of free names and bound names such as ⊖n and ⊖̃. We
give an inference system of SL, and prove the soundness
of the inference system for SL. Furthermore, we show that
there is no finite complete inference system for SL. Then we
study the relation between processes and SL formulas. We
show that an SL formula can be viewed as a specification of
processes, and conversely, a process can be viewed as a special
kind of SL formulas. Therefore, SL is a generalization of
processes, which extend process with specification statements.
We show that the structural congruence relation and one-step
transition relation can be described as the logical relation of
SL formulas. We also show that bisimulations for higher order
processes coincide with logical equivalence with respect to
some fragment of a sublogic of SL.

Furthermore, we give a weak semantics version of SL,
called WL, where the internal action is unobservable. The
results of SL are extended to WL, such as an inference system
for WL, the soundness of this inference system, and the non-
existence of a finite complete inference system for WL.

Finally, we add µ-operator to SL. The new logic is named
µSL. We show that WL is a sublogic of µSL and replication
operator can be expressed in µSL. Thus µSL is a powerful
logic which can express both strong semantics and weak
semantics for higher order processes.

This paper is organized as follows: In Section 2, we briefly
review higher order π-calculus. In Section 3, we present a
spatial logic SL, including its syntax, semantics and inference
system. The soundness and incompleteness of the inference

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 51 / 60

system of SL are proved. Furthermore, we discuss that SL
can be regarded as a specification language of processes and
processes can be regarded as a kind of special formulas of SL.
Bisimulation in higher order π-calculus coincides with logical
equivalence with respect to some fragment of a sublogic of
SL. In Section 4, we give a weak semantics version of SL,
called WL. We generalize concepts and results of SL to WL.
The paper is concluded in Section 5.

II. HIGHER ORDER π-CALCULUS

A. Syntax and Labelled Transition System

In this section we briefly recall the syntax and labelled
transition system of the higher order π-calculus. Similar to
[28], we only focus on a second-order fragment of the higher
order π-calculus, i.e., there is no abstraction in this fragment.

We assume a set N of names, ranged over by a, b, c, ... and
a set V ar of process variables, ranged over by X,Y, Z, U,
We use E,F, P,Q, ... to stand for processes. Pr denotes the
set of all processes.

We first give the syntax for the higher order π-calculus
processes as follows:

P ::= 0 | U | π.P | P1|P2 | (νa)P
π is called a prefix and can have one of the following

forms:

π ::= a(U) | a⟨P ⟩, here a(U) is a higher order input prefix
and a⟨P ⟩ is a higher order output prefix.

In each process of the form (νa)P the occurrence of a is
bound within the scope of P . An occurrence of a in a process
is said to be free iff it does not lie within the scope of a
bound occurrence of a. The set of names occurring free in
P is denoted fn(P). An occurrence of a name in a process
is said to be bound if it is not free, and we write the set of
bound names as bn(P). n(P) denotes the set of names of P ,
i.e., n(P) = fn(P) ∪ bn(P).

Higher order input prefix a(U).P binds all free occurrences
of U in P . The set of variables occurring free in P is denoted
fv(P). We write the set of bound variables as bv(P). A
process is closed if it has no free variable; it is open if it
may have free variables. Prc is the set of all closed processes.

Processes P and Q are α-convertible, P ≡α Q, if Q can
be obtained from P by a finite number of changes of bound
names and variables. For example, (νb)(a⟨b(U).U⟩.0) ≡α

(νc)(a⟨c(U).U⟩.0).
Structural congruence is the smallest congruence relation

that validates the following axioms: P |Q ≡ Q|P ; (P |Q)|R ≡
P |(Q|R); P |0 ≡ P ; (νa)0 ≡ 0; (νm)(νn)P ≡ (νn)(νm)P ;
(νa)(P |Q) ≡ P |(νa)Q if a /∈ fn(P).

In [26], Parrow has shown that in higher order π-calculus,
the replication can be defined by other operators such as
higher order prefix, parallel and restriction. For example,
!P can be simulated by RP = (νa)(D|a⟨P |D⟩.0), where
D = a(X).(X|a⟨X⟩.0).

The operational semantics of higher order processes is
given in Table 1. We have omitted the symmetric cases of
the parallelism and communication rules.

ALP :
P

α−→ P ′

Q
α−→ Q′

P ≡ Q,P ′ ≡ Q′

OUT : a⟨E⟩.P a⟨E⟩−→ P

IN : a(U).P
a⟨E⟩−→ P{E/U} bn(E) = ∅

PAR :
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM :
P

(νb̃)a⟨E⟩−→ P ′ Q
a⟨E⟩−→ Q′

P |Q τ−→ (νb̃)(P ′|Q′)
b̃ ∩ fn(Q) = ∅

RES :
P

α−→ P ′

(νa)P
α−→ (νa)P ′

a /∈ n(α)

OPEN :
P

(νc̃)a⟨E⟩−→ P ′

(νb)P
(νb,c̃)a⟨E⟩−→ P ′

a ̸= b, b ∈ fn(E)− c̃

REP :
P |!P α−→ P ′

!P
α−→ P ′

Table 1. The operational semantics of higher order π-calculus

B. Bisimulations in Higher Order π-Calculus

Context bisimulation and contextual barbed bisimulation
were presented in [29] to describe the behavioral equivalences
for higher order π-calculus. Let us review the definition of
these bisimulations. In the following, we abbreviate P{E/U}
as P ⟨E⟩.

Context bisimulation is an intuitive definition of bisimula-
tion for higher order π-calculus.

Definition 1 A symmetric relation R ⊆ Prc × Prc is a
strong context bisimulation if P R Q implies:

(1) whenever P τ−→ P ′, there exists Q′ such that Q τ−→ Q′

and P ′ R Q′;

(2) whenever P
a⟨E⟩−→ P ′, there exists Q′ such that Q

a⟨E⟩−→
Q′ and P ′ R Q′;

(3) whenever P
(νb̃)a⟨E⟩−→ P ′, there exist Q′, F , c̃ such that

Q
(νc̃)a⟨F ⟩−→ Q′ and for all C(U) with fn(C(U)) ∩ {b̃, c̃} =

∅, (νb̃)(P ′|C⟨E⟩) R (νc̃)(Q′|C⟨F ⟩). Here C(U) represents a
process containing a unique free variable U.

We write P ∼Ct Q if P and Q are strongly context
bisimilar.

Contextual barbed equivalence can be regarded as a uni-
form definition of bisimulation for a variety of process calculi.

Definition 2 A symmetric relation R ⊆ Prc × Prc is a
strong contextual barbed bisimulation if P R Q implies:

(1) P |C R Q|C for any C;

(2) whenever P
τ−→ P ′ then there exists Q′ such that

Q
τ−→ Q′ and P ′ R Q′;

(3) P ↓µ implies Q ↓µ, where P ↓a if ∃P ′, P a⟨E⟩−→ P ′,

and P ↓a if ∃P ′, P (νb̃)a⟨E⟩−→ P ′.

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 52 / 60

We write P ∼Ba Q if P and Q are strongly contextual
barbed bisimilar.

Intuitively, a tau action represents the internal action of
processes. If we just consider external actions, then we should
adopt weak bisimulations to characterize the equivalence of
processes.

Definition 3 A symmetric relation R ⊆ Prc × Prc is a
weak context bisimulation if P R Q implies:

(1) whenever P ε
=⇒ P ′, there exists Q′ such that Q ε

=⇒ Q′

and P ′ R Q′;

(2) whenever P
a⟨E⟩
=⇒ P ′, there exists Q′ such that Q

a⟨E⟩
=⇒

Q′ and P ′ R Q′;

(3) whenever P
(νb̃)a⟨E⟩
=⇒ P ′, there exist Q′, F , c̃ such that

Q
(νc̃)a⟨F ⟩
=⇒ Q′ and for all C(U) with fn(C(U)) ∩ {b̃, c̃} =

∅, (νb̃)(P ′|C⟨E⟩) R (νc̃)(Q′|C⟨F ⟩). Here C(U) represents a
process containing a unique free variable U.

We write P ≈Ct Q if P and Q are weakly context
bisimilar.

Definition 4 A symmetric relation R ⊆ Prc × Prc is a
weak contextual barbed bisimulation if P R Q implies:

(1) P |C R Q|C for any C;

(2) whenever P
ε

=⇒ P ′ then there exists Q′ such that
Q

ε
=⇒ Q′ and P ′ R Q′;

(3) P ⇓µ implies Q ⇓µ, where P ⇓µ if ∃P ′, P ε
=⇒ P ′

and P ′ ↓µ .

We write P ≈Ba Q if P and Q are weakly contextual
barbed bisimilar.

III. LOGICS FOR STRONG SEMANTICS

In this section, we present a logic to reason about higher
order π-calculus called SL. This logic extends propositional
logic with three kinds of connectives: action temporal opera-
tors, spatial operators, operators about names and variables. We
give the syntax and semantics of SL. The inference system of
SL is also given. We prove the soundness and incompleteness
of this inference system. As far as we know, this is the first
result on the completeness problem of the inference system of
spatial logic. Furthermore, we show that structural congruence,
one-step transition relation and bisimulation can all be char-
acterized by this spatial logic. It is well known that structural
congruence, one-step transition relation and bisimulation are
the central concepts in the theory of processes, and almost
all the studies of process calculi are about these concepts.
Therefore, our study gives an approach of reducing theory of
processes to theory of spatial logic. Moreover, since processes
can be regarded as a special kind of spatial logic formulas,
spatial logic can be viewed as an extension of process calculus.
Based on spatial logic, it is possible to propose a refinement
calculus [23] of concurrent processes.

A. Syntax and Semantics of Logic SL

Now we introduce a logic called SL, which is a spatial
logic for higher order π-calculus.

Definition 5 Syntax of logic SL

A ::= ⊤| ⊥| ¬A | A1∧A2 | ⟨τ⟩A | ⟨a⟨A1⟩⟩A2 | ⟨a[A1]⟩A2

| ⟨a⟨A1⟩⟩A2 | 0 | X | a⊙X.A | A\a⊙X | a⟨A1⟩.A2 | A\a
| A1|A2 | A1 ◃A2 | arA | A⊘a | (Nx)A | (NX)A | (⊖a)A
| (⊖̃)A | a ̸= b | X | µX.A(X) where X occurs positively
in A(X), i.e., all free occurrences of X fall under an even
number of negations.

In (Nx)A, (NX)A, the variables x (and X) are bound
within the scope of the formula A. We assume that the standard
relation ≡α of α-conversion (safe renaming of bound vari-
ables) was defined on formulas, but we never implicitly take
formulas “up to α-conversion”: our manipulation of variables
via α-conversion steps is always quite explicit. The set fn(A)
of free names in A, and the set fpv(A) of free propositional
variables in A, are defined in the usual way. A formula is
closed if it has no free variable such as X , and it is open
if it may have free variables. SLc is the set of all closed
formulas. In the following, we use A{b/a} to denote the
formula obtained by replacing all occurrences of a in A by
b. Similarly, we use A{Y/X} to denote the formula obtained
by replacing all occurrences of X in A by Y. It is easy to
see that a process can also be regarded as a spatial formula.
For example, process a⟨E⟩.P is also a spatial formula. In this
paper, we say that such a formula is in the form of process
formula.

Semantics of SL is given as following:

We write such set of processes in which A is true as
[[A]]ePr, where e: V ar → 2Pr is an environment. We denote
by e[X ←W] a new environment that is the same as e except
that e[X ←W](X) = W. The set [[A]]eS is the set of processes
that satisfy A with respect to e.

Definition 6 Semantics of logic SL

[[⊤]]ePr = Pr;

[[⊥]]ePr = ∅;
[[¬A]]ePr = Pr − [[A]]ePr;

[[A1 ∧A2]]
e
Pr = [[A1]]

e
Pr ∩ [[A2]]

e
Pr;

[[⟨τ⟩A]]ePr = {P | ∃Q. P τ−→ Q and Q ∈ [[A]]ePr};

[[⟨a⟨A1⟩⟩A2]]
e
Pr = {P | ∃P1, P2. P

a⟨P1⟩−→ P2, P1 ∈
[[A1]]

e
Pr and P2 ∈ [[A2]]

e
Pr};

[[⟨a[A1]⟩A2]]
e
Pr = {P | ∀R,R ∈ [[A1]]

e
Pr, ∃Q. P

a⟨R⟩−→ Q
and Q ∈ [[A2]]

e
Pr};

[[⟨a⟨A1⟩⟩A2]]
e
Pr = {P | ∃P1, P2. P

(νb̃)a⟨P1⟩−→ P2, (νb̃)P1 ∈
[[A1]]

e
Pr and P2 ∈ [[A2]]

e
Pr};

[[0]]ePr = {P | P ≡ 0};
[[X]]ePr = {P | P ≡ X};
[[a⊙X.A]]ePr = {P | ∃Q. P ≡ a(X).Q and Q ∈ [[A]]ePr};
[[A \ a⊙X]]ePr = {P | a(X).P ∈ [[A]]ePr};
[[a⟨A1⟩.A2]]

e
Pr = {P | ∃P1, P2. P ≡ a⟨P1⟩.P2, P1 ∈

[[A1]]
e
Pr and P2 ∈ [[A2]]

e
Pr};

[[A \ a]]ePr = {P | a⟨P ⟩.0 ∈ [[A]]ePr};

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 53 / 60

[[A1|A2]]
e
Pr = {P | ∃Q1, Q2. P ≡ Q1|Q2, Q1 ∈ [[A1]]

e
Pr

and Q2 ∈ [[A2]]
e
Pr};

[[A1 ◃ A2]]
e
Pr = {P | ∀Q. Q ∈ [[A1]]

e
Pr implies P |Q ∈

[[A2]]
e
Pr};

[[arA]]ePr = {P | ∃Q. P ≡ (νa)Q and Q ∈ [[A]]ePr};
[[A⊘ a]]ePr = {P | (νa)P ∈ [[A]]ePr};
[[(Nx)A]]ePr = ∪n/∈fn((Nx)A)([[A{n/x}]]ePr\{P | n ∈

fn(P)});
[[(NX)A]]ePr = ∪V /∈fpv((NX)A)([[A{V/X}]]ePr\{P |

V ∈ fpv(P)});
[[(⊖a)A]]ePr = {P | a /∈ fn(P) and P ∈ [[A]]ePr};
[[(⊖̃)A]]ePr = {P | ∃Q. P ≡ Q and bn(Q) = ∅ and

Q ∈ [[A]]ePr};
[[a ̸= b]]ePr = Pr if a ̸= b;

[[a ̸= b]]ePr = ∅ if a = b.

[[X]]ePr = e(X)

[[µX.A(X)]]ePr = ∩{W ⊆ Pr | [[A(X)]]
e[X←W]
Pr ⊆W}.

In SL, formula ⟨a⟨A1⟩⟩A2 is satisfied by the processes
that can receive a process satisfying A1 and then become a
process satisfying A2. A process satsfies formula ⟨a[A1]⟩A2 if
it receive any process satisfying A1 then it becomes a process
satisfying A2. A \ a⊙X is an adjunct operator of a⊙X.A,
and A \a is an adjunct operator of a⟨A⟩.0. (⊖a)A is satisfied
by processes that satisfy A and a is not its free name. (⊖̃)A is
satisfied by processes that satisfy A and have no bound names.
Other operators in SL are well known in spatial logic or can
be interpreted similarly as above operators.

Definition 7 P |=SL A if P ∈ [[A]]ePr.

Definition 8 For a set of formulas Γ and a formula A, we
write Γ |=SL A, if A is valid in all processes that satisfy all
formulas of Γ.

For example, the following equations hold in SL:

{P | ∀P1. P1 ∈ [[A1]]
e
Pr implies a⟨P1⟩.P ∈ [[A2]]

e
Pr} =

[[(b⊙ Y.a⟨A1⟩.Y ◃ ⟨τ⟩A2) \ b]]ePr.

{P | ∀P1. P1 ∈ [[A1]]
e
Pr implies a⟨P ⟩.P1 ∈ [[A2]]

e
Pr} =

[[(b⊙ Y.a⟨Y ⟩.A1 ◃ ⟨τ⟩A2) \ b]]ePr.

{P | a ∈ fn(P) and P ∈ [[A]]ePr} = [[¬(⊖a)⊤ ∧A]]ePr.

{P | X ∈ fv(P) and P ∈ [[A]]ePr} = [[¬(⊖X)⊤∧A]]ePr.

{(νn)P | P ∈ [[A{n/x}]]ePr} = [[(Nx)xrA]]ePr.

{a(U).P | P ∈ [[A{U/X}]]ePr} = [[(NX)a⊙X.A]]ePr.

[[A|!A]]ePr = [[!A]]ePr, where !A
def
= ¬µX.¬(A|¬X).

B. Inference System of SL

Now we list a number of valid properties of spatial logic.
The combination of the complete inference system of first
order logic and the following axioms and rules form the
inference system S of SL.

(1) ⟨α⟩⊥ → ⊥;

(2) a⊙X.⊥ → ⊥;

(3) a⟨⊤⟩.⊥ → ⊥;

(4) a⟨⊥⟩.⊤ → ⊥;

(5) ⊥ \ a⊙X → ⊥;

(6) ⊥ \ a→ ⊥;

(7) A|⊥ → ⊥;

(8) A ◃⊥ → ¬A;

(9) ⊥ ◃ A↔ ⊤;

(10) ar⊥ → ⊥;
(11) ⊥⊘ a→ ⊥;

(12) (⊖a)⊥ → ⊥;

(13) (Nx)⊥ → ⊥;

(14) (⊖̃)⊥ → ⊥;

(15) (NX)⊥ → ⊥;

(16) A|B ↔ B|A;

(17) (A|B)|C ↔ A|(B|C);

(18) A|0↔ A;

(19) ar0↔ 0;

(20) arbrA↔ brarA;

(21) ar((⊖a)A|B)↔ (⊖a)A|arB;

(22) arA→ (Nb)brA{b/a};

(23) a⊙X.A→ (NY)a⊙ Y.A{Y/X};

(24) (⊖a)0↔ 0;

(25) (⊖a)X ↔ X;

(26) (⊖a)a⊙X.A↔ ⊥;

(27) (⊖a)a⟨B⟩.A↔ ⊥;

(28) a ̸= b→ ((⊖a)b⊙X.A↔ b⊙X.(⊖a)A);

(29) a ̸= b→ ((⊖a)b⟨B⟩.A↔ b⟨(⊖a)B⟩.(⊖a)A);

(30) (⊖a)A|(⊖a)B ↔ (⊖a)(A|B);

(31) a ̸= b→ ((⊖a)(⊖b)A↔ (⊖b)(⊖a)A);

(32) (⊖a)arA↔ arA;

(33) (⊖̃)0↔ 0;

(34) (⊖̃)X ↔ X;

(35) (⊖̃)a⊙X.A↔ a⊙X.(⊖̃)A;

(36) (⊖̃)a⟨B⟩.A↔ a⟨(⊖̃)B⟩.(⊖̃)A;

(37) (⊖̃)A|(⊖̃)B ↔ (⊖̃)(A|B);

(38) (⊖̃)ar¬(⊖a)⊤ → ⊥;
(39) (Nx)0↔ 0;

(40) (Nx)X ↔ X;

(41) (Nx)a⊙X.A↔ a⊙X.(Nx)(x ̸= a ∧A);

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 54 / 60

(42) (Nx)a⟨B⟩.A→ a⟨(Nx)(x ̸= a ∧B)⟩.(Nx)(x ̸= a

∧A);

(43) (Nx)(A|B)→ (Nx)A|(Nx)B;

(44) (Nx)x ̸= a ∧ arA→ ar(Nx)A;

(45) (NX)0↔ 0;

(46) (NX)X → Y ;

(47) (NX)a⊙ Y.A↔ a⊙ Y.(NX)A;

(48) (NX)a⟨B⟩.A→ a⟨(NX)B⟩.(NX)A;

(49) (NX)(A|B)→ (NX)A|(NX)B;

(50) (NX)arA↔ ar(NX)A;

(51) a⊙X.(A \ a⊙X)→ A;

(52) A→ (a⊙X.A) \ a⊙X);

(53) a⟨A \ a⟩.0→ A;

(54) A→ ((a⟨A⟩.0) \ a);

(55) (A|A ◃ B)→ B;

(56) A→ (B ◃ A|B);

(57) ar(A⊘ a)→ A;

(58) A→ (arA⊘ a);

(59) ⟨α⟩A,A→ B ⊢ ⟨α⟩B;

(60) a⊙X.A,A→ B ⊢ a⊙X.B;

(61) a⟨C⟩.A,A→ B ⊢ a⟨C⟩.B;

(62) a⟨B⟩.A,B → C ⊢ a⟨C⟩.A;

(63) ⟨a⟨B⟩⟩A,C → B ⊢ ⟨a⟨C⟩⟩A;

(64) ⟨a[B]⟩A,C → B ⊢ ⟨a[C]⟩A;

(65) A \ a⊙X,A→ B ⊢ B \ a⊙X;

(66) A \ a,A→ B ⊢ B \ a;

(67) A→ B ⊢ A|C → B|C;

(68) arA,A→ B ⊢ arB;

(69) (⊖a)A,A→ B ⊢ (⊖a)B;

(70) (⊖̃)A,A→ B ⊢ (⊖̃)B;

(71) a⟨B⟩.A→ ⟨a⟨B⟩⟩A;

(72) (⟨τ⟩A)|B → ⟨τ⟩(A|B);

(73) (⟨a⟨C⟩⟩A)|B → ⟨a⟨C⟩⟩(A|B);

(74) (a⊙ U.A ∧ ((⊖̃)B ↔ B))→ ⟨a[B]⟩A{B/U};

(75) (((⊖b1, ...,⊖bn)B ↔ B) ∧ ((⊖̃)C ↔ C))→

((⟨a⟨b1r...bnrC⟩⟩A)|B → ⟨a⟨b1r...bnrC⟩⟩(A|B));

(76) (((⊖b1, ...,⊖bn)B ↔ B) ∧ ((⊖̃)C ↔ C))→

((⟨a⟨b1r...bnrC⟩⟩A)|⟨a[C]⟩B → ⟨τ⟩b1r...bnr(A|B));

(77) (a ̸= b ∧ ((⊖a)B ↔ B) ∧ ((⊖̃)B ↔ B))→

(ar⟨b⟨B⟩⟩A→ ⟨b⟨B⟩⟩arA);

(78) (∧ni=1a ̸= bi∧a ̸= c∧((⊖a)B ↔ B)∧((⊖̃)B ↔ B))

→ (ar⟨c⟨b1r...bnrB⟩⟩A→ ⟨c⟨b1r...bnrB⟩⟩arA);

(79) (a ̸= b∧ (∧ni=1b ̸= ci)∧ (B → ¬(⊖b)⊤)∧ ((⊖̃)B ↔
B))→ (br⟨a⟨c1r...cnrB⟩⟩A→
⟨a⟨brc1r...cnrB⟩⟩A);
(80) ⟨a[B]⟩A→ ⟨a⟨B⟩⟩A;

(81) ⟨a⟨B⟩⟩A→ ⟨a[B]⟩A, where B is syntactically a

valid process in the higher order π − calculus.

(82) A(µX.A(X))→ µX.A(X);

(83) (A(B)→ B)→ (µX.A(X)→ B).

Intuitively, axiom arA → (Nb)brA{b/a} means that
if process P satisfies (νa)A and b is a fresh name then
P satisfies (νb)A{b/a}. Axiom a⟨B⟩.A → ⟨a⟨B⟩⟩A means
that an output prefix process can perform an output action,
which is a spatial logical version of Rule OUT in the la-
belled transition system of higher order π-calculus. Axiom
(a ⊙ U.A ∧ ((⊖̃)B ↔ B)) → ⟨a[B]⟩A{B/U} means that an
input prefix process can perform an input action, which is a
spatial logical version of Rule IN in the labelled transition sys-
tem of higher order π-calculus. Axiom (((⊖b1, ...,⊖bn)B ↔
B) ∧ ((⊖̃)C ↔ C)) → ((⟨a⟨b1r...bnrC⟩⟩A)|⟨a[C]⟩B
→ ⟨τ⟩b1r...bnr(A|B)) is a spatial logical version of Rule
COM . Other axioms and rules are spatial logical version
of structural congruence rules or labelled transition rules
similarly.

Definition 9 If “A1, ..., An infer B” is an instance of an
inference rule, and if the formulas A1, ..., An have appeared
earlier in the proof, then we say that B follows from an
application of an inference rule. A proof is said to be from
Γ to A if the premise is Γ and the last formula is A in the
proof. We say A is provable from Γ in an inference system
AX , and write Γ ⊢AX A, if there is a proof from Γ to A in
AX .

C. Soundness of SL

Inference system of SL is said to be sound with respect to
processes if every formula provable in SL is valid with respect
to processes.

Now, we can prove the soundness of inference system S
of SL:

Proposition 1 Γ ⊢S A⇒ Γ |=SL A

Proof. See Appendix A.

D. Incompleteness of SL

The system SL is complete with respect to processes if
every formula valid with respect to processes is provable
in SL. For a logic, completeness is an important property.
The soundness and completeness provide a tight connection
between the syntactic notion of provability and the semantic
notion of validity. Unfortunately, by the compactness property
[18], the inference system of SL is not complete.

The depth of higher order processes in Pr, is defined as
below:

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 55 / 60

Definition 10 d(0) = 0; d(U) = 0; d(a(U).P) = 1+d(P);
d(a⟨E⟩.P) = 1 + d(E) + d(P); d(P1|P2) = d(P1) + d(P2);
d((νa)P) = d(P).

Lemma 1 For any P ∈ Pr, there exists n, such that
d(P) = n.

Proof. Induction on the structure of P .

Proposition 2 There is no finite sound inference system
AX such that Γ |=SL A⇒ Γ ⊢AX A.

Proof. See Appendix B.

E. Spatial Logic as a Specification of Processes

In the refinement calculus [23], imperative programming
languages are extended by specification statements, which
specify parts of a program “yet to be developed”. Then
the development of a program begins with a specification
statement, and ends with an executable program by refining
a specification to its possible implementations. In this paper,
we generalize this idea to the case of process calculi. Roughly
speaking, we extend processes to spatial logic formulas which
are regarded as the specification statements. One can view
the intensional operators of spatial logic as the “executable
program statements”, for example, a⟨P ⟩.Q, P |Q and etc;
and view the extensional operators of spatial logic as the
“specification statements”, for example, A◃B, A\b and etc. For
example, (b⊙Y.a⟨Y ⟩.A1◃⟨τ⟩A2)\b|(d⊙Y.c⟨B1⟩.Y ◃⟨τ⟩B2)\d
represents a specification statement which describes a process
consisting of a parallel of two processes satisfying statements
(b⊙ Y.a⟨Y ⟩.A1 ◃ ⟨τ⟩A2) \ b and (d⊙ Y.c⟨B1⟩.Y ◃ ⟨τ⟩B2) \ d
respectively. Furthermore, (b ⊙ Y.a⟨Y ⟩.A1 ◃ ⟨τ⟩A2) \ b rep-
resents a specification which describes a process P such
that a⟨P ⟩.Q satisfies A2 for any Q satisfying A1. Similarly,
(d⊙Y.c⟨B1⟩.Y ◃⟨τ⟩B2)\d represents a specification statement
which describes a process M such that c⟨N⟩.M satisfies B2

for any N satisfying B1. We can also define refinement relation
on spatial logic formulas. Intuitively, if |=SL A → B, then
A refines B. For example, ar(a⊙X.d.X|a⟨c.0⟩.e.0) refines
ar(⟨a[c.0]⟩d.c.0|⟨a⟨c.0⟩⟩e.0). Based on spatial logic, one may
develop a theory of refinement for concurrent processes. This
will be a future research direction for us.

F. Processes as Special Formulas of Spatial Logic

Any process can be regarded as a special formula of spatial
logic. For example, (Na)ar(NX)(a ⊙X.d.X|a⟨c.0⟩.e.0) is
a spatial logic formula, which represents the process which
is structural congruent to (νa)(a(X).d.X|a⟨c.0⟩.e.0). Further-
more, in this section, we will show that structural congruence
and labelled transition relation can be reformulated as the
logical relation of spatial logical formulas.

Definition 11 The translating function TPS is defined
inductively as follows:

TPS(P)
def
= P for process P that has no operators of

(νa)·, or a(X).·;

TPS((νa)P)
def
= (Ha)TPS(P);

TPS(a(X).P)
def
= (aHX)TPS(P).

Lemma 2 ⊢SL A|!A↔!A, where !A
def
= ¬µX.¬(A|¬X).

P roof : See Appendix C.

Proposition 3 For any P,Q ∈ Prc, P ≡ Q ⇔ P |=SL

TPS(Q) and Q |=SL TPS(P) ⇔ TPS(P) ⊢SL TPS(Q) and
TPS(Q) ⊢SL TPS(P).

P roof. See Appendix D.

Proposition 4 For any P,Q ∈ Prc, P
α−→ Q ⇔ P |=SL

⟨α⟩TPS(Q)⇔ TPS(P) ⊢SL ⟨α⟩TPS(Q).

P roof. See Appendix E.

Although Proposition 2 states that the inference system is
not complete, Propositions 3 and 4 show that this inference
system is complete with respect to structural congruence and
labelled transition relation of processes.

G. Behavioral Equivalence Relation of Spatial Logic

In [9], we introduced a spatial logic called L, and proved
that L gives a characterization of context bisimulation.

Definition 12 [9] Syntax of logic L

A ::= ¬A | A1∧A2 | ⟨a⟨⊤⟩⟩⊤ | ⟨a⟨⊤⟩⟩⊤ | ⟨τ⟩A | A1◃A2.

It is easy to see that L is a sublogic of SL.

In [9], we proved the equivalence between ∼Ct and logical
equivalence with respect to L.

Proposition 5 [9] For any P,Q ∈ Prc, P ∼Ct Q ⇔for
any formula A ∈ L, P |=L A iff Q |=L A.

Definition 13 A and B are behavioral equivalent with
respect to L, written A ∼L B, iff for any formula C ∈ L,
|=SL A→ C iff |=SL B → C.

By Proposition 5, it is easy to get the following corollary,
which characterizes ∼Ct by SL property.

Corollary 1 For any P,Q ∈ Prc, P ∼Ct Q⇔ P ∼L Q.

Relation ∼L is a binary relation on spatial logical formulas.
The above results show that ∼L gives a logical characterization
of bisimulation when formulas are in the form of processes.
Moreover, relation ∼L also gives a possibility to generialize
bisimulation on processes to that on spatial logical formulas.
Since we have discussed that spatial logical formulas can be
regarded as specifications of processes, we may get a concept
of bisimulation on specifications of processes based on ∼L .

IV. LOGICS FOR WEAK SEMANTICS

In this section, we present a logic for weak semantics,
named WL. Roughly speaking, in this logic, action temporal
operators ⟨τ⟩, ⟨a⟨A⟩⟩, ⟨a[A]⟩ and ⟨a⟨A⟩⟩ in SL are replaced
by the weak semantics version of operators ⟨⟨ε⟩⟩, ⟨⟨a⟨A⟩⟩⟩,
⟨⟨a[A]⟩⟩ and ⟨⟨a⟨A⟩⟩⟩. Almost all definitions and results of
SL can be generalized to WL.

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 56 / 60

A. Syntax and Semantics of Logic WL

Now we introduce a logic called WL, which is a weak
semantics version of spatial logic.

Definition 14 Syntax of logic WL

A ::= ⊤| ⊥| ¬A | A1 ∧ A2 | ⟨⟨ε⟩⟩A | ⟨⟨a⟨A1⟩⟩⟩A2 |
⟨⟨a[A1]⟩⟩A2 | ⟨⟨a⟨A1⟩⟩⟩A2 | 0 | X | a⊙X.A | A \ a⊙X |
a⟨A1⟩.A2 | A \ a | A1|A2 | A1 ◃A2 | arA | A⊘ a | (Nx)A
| (NX)A | (⊖a)A | (⊖̃)A | a ̸= b | X | µX.A(X) where X
occurs positively in A(X), i.e., all free occurrences of X fall
under an even number of negations.

Definition 15 Semantics of logic WL

In the following, we use ε
=⇒ to abbreviate the reflexive

and transitive closure of τ−→, and use α
=⇒ to abbreviate

ε
=⇒ α−→ ε

=⇒ . By neglecting the tau action, we can get the
weak semantics of processes. Semantics of formulas of WL
can be the same as formulas of SL, except that semantics of
operators ⟨⟨ε⟩⟩, ⟨⟨a⟨A⟩⟩⟩, ⟨⟨a[A]⟩⟩ and ⟨⟨a⟨A⟩⟩⟩ should be
defined as follows:

[[⟨⟨ε⟩⟩A]]ePr = {P | ∃Q. P ε
=⇒ Q and Q ∈ [[A]]ePr};

[[⟨⟨a⟨A1⟩⟩⟩A2]]
e
Pr = {P | ∃P1, P2. P

a⟨P1⟩
=⇒ P2, P1 ∈

[[A1]]
e
Pr and P2 ∈ [[A2]]

e
Pr};

[[⟨⟨a[A1]⟩⟩A2]]
e
Pr = {P | ∀R,R ∈ [[A1]]

e
Pr,∃Q. P

a⟨R⟩
=⇒ Q

and Q ∈ [[A2]]
e
Pr};

[[⟨⟨a⟨A1⟩⟩⟩A2]]
e
Pr = {P | ∃P1, P2. P

(νb̃)a⟨P1⟩
=⇒ P2,

(νb̃)P1 ∈ [[A1]]
e
Pr and P2 ∈ [[A2]]

e
Pr}.

B. Inference System of WL

The inference system of WL is similar to the inference
system of SL except that any inference rule about action
temporal operators ⟨τ⟩, ⟨a⟨A⟩⟩, ⟨a[A]⟩ and ⟨a⟨A⟩⟩ in SL is
replaced by one of the following inference rules.

(1) ⟨⟨α⟩⟩⊥ → ⊥;

(2) ⟨⟨α⟩⟩A,A→ B ⊢ ⟨⟨α⟩⟩B;

(3) ⟨⟨α⟩⟩A,A→ ⟨⟨ε⟩⟩B ⊢ ⟨⟨α⟩⟩B;

(4) ⟨⟨ε⟩⟩A,A→ ⟨⟨α⟩⟩B ⊢ ⟨⟨α⟩⟩B;

(5) ⟨⟨a⟨B⟩⟩⟩A,C → B ⊢ ⟨⟨a⟨C⟩⟩⟩A;

(6) ⟨⟨a[B]⟩⟩A,C → B ⊢ ⟨⟨a[C]⟩⟩A;

(7) a⟨B⟩.A→ ⟨⟨a⟨B⟩⟩⟩A;

(8) (a⊙ U.A ∧ ((⊖̃)B ↔ B))→ ⟨⟨a[B]⟩⟩A{B/U};

(9) (⟨⟨ε⟩⟩A)|B → ⟨⟨ε⟩⟩(A|B);

(10) (⟨⟨a⟨C⟩⟩⟩A)|B → ⟨⟨a⟨C⟩⟩⟩(A|B);

(11) (((⊖b1, ...,⊖bn)B ↔ B) ∧ ((⊖̃)C ↔ C))→

((⟨⟨a⟨b1r...bnrC⟩⟩⟩A)|B →

⟨⟨a⟨b1r...bnrC⟩⟩⟩(A|B));

(12) (((⊖b1, ...,⊖bn)B ↔ B) ∧ ((⊖̃)C ↔ C))→

((⟨⟨a⟨b1r...bnrC⟩⟩⟩A)|⟨⟨a[C]⟩⟩B →

⟨⟨ε⟩⟩b1r...bnr(A|B));

(13) ar⟨⟨ε⟩⟩A→ ⟨⟨ε⟩⟩arA;

(14) (a ̸= b ∧ (((⊖a)B ∧ (⊖̃)B)↔ B))→

(ar⟨⟨b⟨B⟩⟩⟩A→ ⟨⟨b⟨B⟩⟩⟩arA);

(15) (∧ni=1a ̸= bi∧a ̸= c∧((⊖a)B ↔ B)∧((⊖̃)B ↔ B))

→ (ar⟨⟨c⟨b1r...bnrB⟩⟩⟩A→

⟨⟨c⟨b1r...bnrB⟩⟩⟩arA);

(16) (a ̸= b∧ (∧ni=1b ̸= ci)∧ (B → ¬(⊖b)⊤)∧ ((⊖̃)B ↔

B))→ (br⟨⟨a⟨c1r...cnrB⟩⟩⟩A→

⟨⟨a⟨brc1r...cnrB⟩⟩⟩A);

(17) ⟨⟨a[B]⟩⟩A→ ⟨⟨a⟨B⟩⟩⟩A;

(18) ⟨⟨a⟨B⟩⟩⟩A→ ⟨⟨a[B]⟩⟩A, where B is syntactically

a valid process in the higher order π − calculus.

The above axioms and rules are weak semantics version of
corresponding axioms and rules in SL. We name the above
inference system of WL as W .

The soundness and incompleteness of inference system W
of WL can be given similarly as the case of SL:

Proposition 6 Γ ⊢W A⇒ Γ |=WL A

Proposition 7 There is no finite sound inference system
AX such that Γ |=WL A⇒ Γ ⊢AX A.

Similar to Proposition 4, we show that many steps transi-
tion relation α

=⇒ is provable in WL.

Proposition 8 For any P,Q ∈ Prc, P
α

=⇒ Q ⇔ P |=WL

⟨⟨α⟩⟩TPS(Q)⇔ TPS(P) ⊢WL ⟨⟨α⟩⟩TPS(Q).

Since structural congruence and labelled transition relation
are central concepts in the theory of processes, and they can be
characterized in WL, the above propositions give a possible
approach to reduce the theory of processes to the theory of
spatial logic in the case of weak semantics.

V. CONCLUSIONS

Spatial logic was proposed to describe structural and be-
havioral properties of processes. There are many papers on s-
patial logic and process calculi. Spatial logic is related to some
topics on process calculi, such as model checking, structural
congruence, bisimulation and type system. In [16], a spatial
logic for ambients calculus was studied, and a model checking
algorithm was proposed. Some axioms of spatial logic were
given, but the completeness of logic was not studied. Most
spatial logics for concurrency are intensional [27], in the sense
that they induce an equivalence that coincides with structural
congruence, which is much finer than bisimilarity. In [22],
Hirschkoff studied an extensional spatial logic. This logic only
has spatial composition adjunct (◃), revelation adjunct (⊘), a
simple temporal modality (⟨⟩), and an operator for fresh name
quantification. For π-calculus, this extensional spatial logic
was proven to induce the same separative power as strong
early bisimilarity. In [9], context bisimulation of higher order
π-calculus was characterized by an extensional spatial logic.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 57 / 60

In [5], a type system of processes based on spatial logic was
given, where types are interpreted as formulas of spatial logic.

In this paper, we want to show that the theory of processes
can be reduced to the theory of spatial logics. We firstly defined
a logic SL, which comprises some temporal operators and
spatial operators. We gave the inference system of SL and
showed the soundness and incompleteness of SL. Furthermore,
we showed that structural congruence and transition relation of
higher order π-calculus can be reduced to the logical relation
of SL formulas. We also showed that bisimulations in higher
order π-calculus can be characterized by a sublogic of SL.
At last, we propose a weak semantics version of SL, called
WL. These results can be generalized to other process calculi.
Since some important concepts of processes can be described
in spatial logic, we think that this paper may give an approach
of reducing the study of processes to the study of spatial logic.
The further work for us is to develop a refinement calculus [23]
for concurrent processes based on our spatial logic.

ACKNOWLEDGMENT

This work was supported by the Aviation Science Fund of
China under Grant No. 20128052064 and the National Natural
Science Foundation of China under Grant No. 60873025.

REFERENCES

[1] R. M. Amadio and M. Dam. Reasoning about Higher-order Processes.
In TAPSOFT95, LNCS 915, 1995, pp. 202-216.

[2] R. M. Amadio. On the Reduction of CHOCS-Bisimulation to π-calculus
Bisimulation. In CONCUR93, LNCS 715, 1993, pp. 112-126.

[3] A. Arnold and D. Niwinski. Rudiments of µ-calculus. Studies in Logic,
Vol 146, North-Holland, 2001.

[4] M. Baldamus and J. Dingel. Modal Characterization of Weak Bisimu-
lation for Higher-order Processes. In TAPSOFT97, LNCS 1214, 1997,
pp. 285–296.

[5] L. Caires. Spatial-Behavioral Types for Concurrency and Resource
Control in Distributed Systems. In Theoretical Computer Science 402(2-
3), 2008, pp. 120-141.

[6] L. Caires. Logical Semantics of Types for Concurrency . In CALCO’07,
LNCS, 2007, pp. 16-35.

[7] L. Caires, H. T. Vieira. Extensionality of Spatial Observations in
Distributed Systems. In EXPRESS’2006, ENTCS, 2006.

[8] L. Caires. Behavioral and spatial observations in a logic for the π-
calculus. In FOSSACS04, LNCS 2987, 2004, pp. 72-87.

[9] Z. Cao. A Spatial Logical Characterisation of Context Bisimulation. In
Proceeding of ASIAN 2006, LNCS 4435, 2006, pp. 232-240.

[10] Z. Cao. More on bisimulations for higher-order π-calculus. In FOS-
SACS06, LNCS 3921, 2006, pp. 63-78.

[11] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II),
Theoretical Computer Science, Vol 322(3), 2004, pp. 517-565.

[12] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I).
Information and Computation, Vol 186(2), 2003, pp. 194-235.

[13] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, and
J.-M. Talbot. The complexity of model checking mobile ambients. In
FoSSaCS’01, LNCS 2030, 2001, pp. 152-167.

[14] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, J.-M.
Talbot. Model Checking Mobile Ambients.

[15] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In
Proc. of TLCA’01, LNCS 2044. 2001.

[16] L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for
Mobile Ambients. In Proc. of POPL’00, 2000, pp. 365-377. ACM Press.

[17] G. Conforti and G. Ghelli. Decidability of Freshness ,Undecidability of
Revelation. In : Proc. of FoSSaCS’04 , LNCS 2987. 2004.

[18] C. C. Chang. Model Theory. North-Holland, 1977.

[19] L. Caires1 and E. Lozes. Elimination of Quantifiers and Undecidability
in Spatial Logics for Concurrency. In Theoretical Computer ScienceVol-
ume 358 , Issue 2, August 2006, pp. 293 - 314.

[20] A. Jeffrey, J. Rathke. Contextual equivalence for higher-order π-calculus
revisited. In Proceedings of Mathematical Foundations of Programming
Semantics, Elsevier, 2003.

[21] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness
and Decidability in the Ambient Logic. In Proc. of LICS’02, 2002, pp.
423-432, IEEE Computer Society.

[22] D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes.
CONCUR’04, LNCS 3170, 2004, pp. 325-339, Springer-Verlag.

[23] C. Morgan, P. Gardiner, K. Robision, and T. Vickers. On the Refinement
Calculus. Springer-Verlag, 1994.

[24] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.
Theoretical Computer Science, 114(1), 1993, pp.149-171.

[25] L. Gregory Meredith, Matthias Radestock: Namespace Logic: A Logic
for a Reflective Higher-Order Calculus. TGC 2005, 2005, pp. 353-369.

[26] J.Parrow. An introduction to the π-calculus. In J. Bergstra, A. Ponse
and S. Smolka editors, Handbook of Process Algebra, North-Holland,
Amsterdam, 2001.

[27] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic.
In Proc. of the 28th POPL, 2001, pp. 4-17. ACM Press,

[28] D. Sangiorgi. Bisimulation in higher-order calculi. Information and
Computation, 131(2), 1996, pp. 141-178.

[29] D. Sangiorgi. Expressing mobility in process algebras: first-order and
higher-order paradigms. Ph.D thesis, Department of Computer Science,
University of Einburgh, 1992.

[30] C. Stirling. Modal Logics for Communicating Systems. Theoretical
Computer Science, (49), 1987, pp. 311-347.

[31] B. Thomsen, Plain CHOCS: A second generation calculus for higher
order processes. Acta Informatica, Vol 30, 1993, pp. 1-59.

Appendix A. Proof of Proposition 1

Proposition 1 Γ ⊢SL A⇒ Γ |=SL A

Proof. It is enough by proving that every axiom and every
inference rule of inference system is sound. We only discuss
the following cases:

Case (1): Axiom ar((⊖a)A|B)↔ (⊖a)A|arB.

Suppose P ∈ [[ar((⊖a)A|B)]], then P ≡ (νa)(P1|P2),
a /∈ fn(P1), P1 ∈ [[A]] and P2 ∈ [[B]]. Therefore we have
P ≡ (νa)(P1|P2) ≡ P1|(νa)P2, P ∈ [[(⊖a)A|arB]]. Hence
ar((⊖a)A|B)↔ (⊖a)A|arB. The inverse case is similar.

Case (2): Axiom a ̸= b → ((⊖a)b⟨B⟩.A ↔ b⟨(⊖a)B⟩.
(⊖a)A).

Suppose a ̸= b and P ∈ [[(⊖a)b⟨B⟩.A]], then P ≡
b⟨P1⟩.P2, a /∈ fn(P1), a /∈ fn(P2), P1 ∈ [[B]] and P2 ∈
[[A]]. Therefore we have P1 ∈ [[(⊖a)B]] and P2 ∈ [[(⊖a)A]],
P ∈ [[b⟨(⊖a)B⟩.(⊖a)A)]]. Hence a ̸= b → ((⊖a)b⟨B⟩.A →
b⟨(⊖a)B⟩.(⊖a)A). The inverse case is similar.

Case (3): Axiom (A|A ◃ B)→ B.

Suppose P ∈ [[A|A◃B]], then P ≡ P1|P2, P1 ∈ [[A]] and
P2 ∈ [[A ◃ B]]. Therefore, P ≡ P1|P2 ∈ [[A|A ◃ B]]. Hence
(A|A ◃ B)→ B.

Case (4): Axiom A→ (B ◃ A|B).

Suppose P ∈ [[A]], then for any Q ∈ [[B]], P |Q ∈ [[A|B]].
Hence A→ (B ◃ A|B).

Case (5): Axiom (((⊖b1, ...,⊖bn)B ↔ B) ∧ ((⊖̃)C
↔ C)) → ((⟨a⟨b1r...bnrC⟩⟩A)|B → ⟨a⟨b1r...bnrC⟩⟩
(A|B)).

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 58 / 60

Suppose P ∈ [[(⟨a⟨b1r...bnrC⟩⟩A)|B]], then P ≡
P1|P2, P1

(νb1,...,bn)a⟨Q⟩−→ P ′1, P ′1 ∈ [[A]], P2 ∈ [[B]]
and Q ∈ [[C]]. Since (⊖b1, ..., bn)B ↔ B, {b1, ..., bn} ∩
fn(P2) = ∅. Therefore we have P1|P2

(νb1,...,bn)a⟨Q⟩−→ P ′1|P2.
Hence (((⊖b1, ...,⊖bn)B ↔ B) ∧ ((⊖̃)C ↔ C)) →
((⟨a⟨b1r...bnrC⟩⟩A)|B → ⟨a⟨b1r...bnrC⟩⟩(A|B)).

Case (6): Axiom (((⊖b1, ...,⊖bn)B ↔ B) ∧
((⊖̃)C ↔ C)) → ((⟨a⟨b1r...bnrC⟩⟩A)|⟨a[C]⟩B →
⟨τ⟩b1r...bnr(A|B)).

Suppose P ∈ [[(⟨a⟨b1r...bnrC⟩⟩A)|⟨a[C]⟩B]], then P ≡
P1|P2, P1

(νb1,...,bn)a⟨Q⟩−→ P ′1, P2
a⟨Q⟩−→ P ′2, P ′1 ∈ [[A]],

P ′2 ∈ [[B]] and Q ∈ [[C]]. Since (⊖b1, ..., bn)B ↔ B,
{b1, ..., bn} ∩ fn(P ′2) = ∅. Therefore we have P1|P2

τ−→
(νb1, ..., bn)(P

′
1|P ′2). Hence (((⊖b1, ...,⊖bn)B ↔ B) ∧

((⊖̃)C ↔ C)) → ((⟨a⟨b1r...bnrC⟩⟩A)|⟨a[C]⟩B →
⟨τ⟩b1r...bnr(A|B)).

Case (7): Axiom (∧ni=1a ̸= bi ∧ a ̸= c ∧ ((⊖a)B ↔
B) ∧ ((⊖̃)B ↔ B)) → (ar⟨c⟨b1r...bnrB⟩⟩A →
⟨c⟨b1r...bnrB⟩⟩arA).

Suppose P ∈ [[ar⟨c⟨b1r...bnrB⟩⟩A]], then P ≡
(νa)P1, P1

(νb1,...,bn)c⟨Q⟩−→ P ′1, Q ∈ [[B]], P ′1 ∈ [[A]]. Since
∧ni=1a ̸= bi∧a ̸= c∧((⊖a)B ↔ B)∧((⊖̃)B ↔ B), a /∈ n(Q).

Therefore we have P ≡ (νa)P1
(νb1,...,bn)c⟨Q⟩−→ (νa)P ′1. Hence

(∧ni=1a ̸= bi ∧ a ̸= c ∧ ((⊖a)B ↔ B) ∧ ((⊖̃)B ↔ B)) →
(ar⟨c⟨b1r...bnrB⟩⟩A→ ⟨c⟨b1r...bnrB⟩⟩arA).

Case (8): Axiom (a ̸= b ∧ ∧ni=1b ̸= ci ∧ (B →
¬(⊖b)⊤) ∧ ((⊖̃)B ↔ B)) → (br⟨a⟨c1r...cnrB⟩⟩A →
⟨a⟨brc1r...cnrB⟩⟩A).

Suppose P ∈ [[br⟨a⟨c1r...cnrB⟩⟩A]], then P ≡
(νb)P1, P1

(νc1,...,cn)a⟨Q⟩−→ P ′1, Q ∈ [[B]], P ′1 ∈ [[A]].
Since a ̸= b ∧ ∧ni=1b ̸= ci ∧ (B → ¬(⊖b)⊤) ∧
((⊖̃)B ↔ B), b ∈ fn(Q). Therefore we have

P ≡ (νb)P1
(νb)(νc1,...,cn)a⟨Q⟩−→ P ′1. Hence (a ̸= b ∧

∧ni=1b ̸= ci ∧ (B → ¬(⊖b)⊤) ∧ ((⊖̃)B ↔ B)) →
(br⟨a⟨c1r...cnrB⟩⟩A→ ⟨a⟨brc1r...cnrB⟩⟩A).

Appendix B. Proof of Proposition 2

Proposition 2 There is no finite sound inference system
AX such that Γ |=SL A⇒ Γ ⊢AX A.

Proof. Let Φ = {a⟨0⟩.⊤, a⟨0⟩.a⟨b.0⟩.⊤, a⟨0⟩.a⟨b.0⟩.
a⟨b.b.0⟩.⊤, a⟨0⟩.a⟨b.0⟩.a⟨b.b.0⟩.a⟨b.b.b.0⟩.⊤, ...}. It is easy to
see that any finite subset of Φ can be satisfied in Pr, but Φ
can not be satisfied in Pr. Suppose it is not true, let P satisfies
Φ. By Lemma 1, there exists n, such that d(P) = n. But for
any n, there exists φn in Φ such that for any P satisfying φn,
d(P) > n. This contradicts the assumption. Therefore Φ can
not be satisfied in Pr.

Suppose there is a finite inference system such that Γ |=SL

A ⇒ Γ ⊢SL A. Since Φ can not be be satisfied in Pr, we
have Φ |=SL ⊥. By the assumption, Φ ⊢SL ⊥. Hence there
is a proof from Φ to ⊥ in SL. Since proof is a finite formula
sequence, there is finite many formulas φi in Φ occur in the
proof. Therefore we have ∧Φi ⊢SL ⊥, where Φi = {φi | φi

is in the proof}. Then by the soundness of inference system

of SL, we have that Φi is not satisfiable. Since Φi is a finite
subset of Φ, this contradicts the assumption. Therefore SL
have no finite complete inference system.

Appendix C. Proof of Lemma 2

Lemma 2 ⊢SL A|!A↔!A.

Proof : Since by the inference system, ⊢SL

S(µX.S(X))→ µX.S(X), we have ¬µX.S(X)→ ¬S(µX.
S(X)). Let S(X) = ¬(A|¬X), then ¬µX.S(X) =
¬µX.¬(A|¬X) =!A, ¬S(µX.S(X)) = A|¬µX.¬(A|¬X) =
A|!A. Therefore we get ⊢SL!A→ A|!A.

Since by the inference system, ⊢SL!A → A|!A, we
have ⊢SL ¬(A|A|!A) → ¬(A|!A). Let T (X) = ¬(A|¬X),
then T (¬(A|!A)) = ¬(A|A|!A). Since ⊢SL T (¬(A|!A)) →
¬(A|!A), by the inference system, we have ⊢SL µX.T (X)→
¬(A|!A). Furthermore, µX.T (X) = µX.¬(A|¬X) = ¬!A,
hence ⊢SL ¬!A→ ¬(A|!A), we have ⊢SL A|!A→!A.

Appendix D. Proof of Proposition 3

Proposition 3 For any P,Q ∈ Prc, P ≡ Q ⇔ P |=SL

TPS(Q) and Q |=SL TPS(P) ⇔ TPS(P) ⊢SL TPS(Q) and
TPS(Q) ⊢SL TPS(P).

P roof. It is trivial by the definition that P ≡ Q ⇔
P |=SL TPS(Q) and Q |=SL TPS(P). By the soundness,
TPS(P) ⊢SL TPS(Q) ⇒ P |=SL TPS(Q). We only need to
prove P ≡ Q ⇒ TPS(P) ⊢SL TPS(Q) and TPS(Q) ⊢SL

TPS(P).

We only discuss the following cases, other cases are similar
or trivial:

Case (1): (νm)(νn)P ≡ (νn)(νm)P : Since mrnr
TPS(P) ↔ nrmrTPS(P), we have mrnrTPS(P) ⊢SL

nrmrTPS(P). The inverse case is similar.

Case (2): (νa)(P |Q) ≡ P |(νa)Q if a /∈ fn(P) : Since
a /∈ fn(P), (⊖a)TPS(P) ↔ TPS(P). Furthermore, since
ar((⊖a)TPS(P)|TPS(Q)) ↔ (⊖a)TPS(P)|arTPS(Q),
we have ar(TPS(P)|TPS(Q)) ⊢SL TPS(P)|arTPS(Q).
The inverse case is similar.

Appendix E. Proof of Proposition 4

Proposition 4 For any P,Q ∈ Prc, P
α−→ Q ⇔ P |=SL

⟨α⟩TPS(Q)⇔ TPS(P) ⊢SL ⟨α⟩TPS(Q).

P roof. It is trivial by the definition that P
α−→ Q

⇔ P |=SL ⟨α⟩TPS(Q). By the soundness, TPS(P) ⊢SL

⟨α⟩TPS(Q) ⇒ P |=SL ⟨α⟩TPS(Q). We only need to prove
P

α−→ Q ⇒ P ⊢SL ⟨α⟩TPS(P).

We apply the induction on the length of the inference tree
of P α−→ Q :

Case (1): if the length is 0, then P
α−→ Q is in the form

of a⟨E⟩.K a⟨E⟩−→ K or a(U).K
a⟨E⟩−→ K{E/U}.

Subcase (a): a⟨E⟩.K a⟨E⟩−→ K : Since a⟨E⟩.
TPS(K) → ⟨a⟨E⟩⟩TPS(K), we have a⟨E⟩.TPS(K) ⊢SL

⟨a⟨E⟩⟩TPS(K).

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 59 / 60

Subcase (b): a(U).K
a⟨E⟩−→ K{E/U} : Since (a(U).

TPS(K) ∧ ((⊖̃)TPS(E) ↔ TPS(E))) → ⟨a[TPS(E)]⟩
TPS(K){TPS(E)/U}, we have a(U).TPS(K) ⊢SL

⟨a[TPS(E)]⟩TPS(K){TPS(E)/U}.
Case (2): Assume the claim holds if length is n, now we

discuss the case that length is n+ 1.

Subcase (a):
M

(νb̃)a⟨E⟩−→ M ′ N
a⟨E⟩−→ N ′

M |N τ−→ (νb̃)(M ′|N ′)
b̃ ∩ fn(N) = ∅.

Since M
(νb̃)a⟨E⟩−→ M ′, N

a⟨E⟩−→ N ′, and b̃∩ fn(N) = ∅, we
have TPS(M) → ⟨a⟨̃brTPS(E)⟩⟩TPS(M ′), TPS(N) →
⟨a[TPS(E)]⟩TPS(N ′) and (⊖b1, ..., bn)TPS(E)↔ TPS(E).
By the axiom: (((⊖b1, ..., bn)TPS(N) ↔ TPS(N))
∧ (⊖̃)TPS(E)) → ((⟨a⟨b1r...bnrTPS(E)⟩⟩TPS(M))|
⟨a[TPS(E)]⟩TPS(N)→ ⟨τ⟩b1r...bnr(TPS(M)|TPS(N))),
we have P ≡ TPS(M)|TPS(N) ⊢SL ⟨τ⟩b1r...bnr
(TPS(M ′)|TPS(N ′)).

Subcase (b):
M

b⟨E⟩−→M ′

(νa)M
b⟨E⟩−→ (νa)M ′

a /∈ n(α).

Since M
b⟨E⟩−→ M ′ and a /∈ n(b⟨E⟩), we have

TPS(M) → ⟨b⟨TPS(E)⟩⟩TPS(M ′) and ((⊖a)TPS(E)
∧ (⊖̃)TPS(E)) ↔ TPS(E). By the axiom (a ̸= b
∧ ((⊖a)TPS(E) ∧ (⊖̃)TPS(E)) ↔ TPS(E)) → (ar
⟨b⟨TPS(E)⟩⟩TPS(M) → ⟨b⟨TPS(E)⟩⟩arTPS(M)), we
have TPS(P) = arTPS(M) ⊢SL ar⟨b⟨TPS(E)⟩⟩
TPS(M) ⊢SL ⟨b⟨TPS(E)⟩⟩arTPS(M)).

Subcase (c):
M

(νc̃)a⟨E⟩−→ M ′

(νb)M
(νb,c̃)a⟨E⟩−→ M ′

a ̸= b, b ∈ fn(E)− c̃.

Since M
(νc̃)a⟨E⟩−→ M ′ and a ̸= b, b ∈ fn(E) − c̃,

we have TPS(M) → ⟨a⟨c̃rTPS(E)⟩⟩TPS(M ′) and
a ̸= b ∧ ∧ni=1b ̸= ci ∧ (B → ¬(⊖b)⊤). By the axiom
(a ̸= b ∧ ∧ni=1b ̸= ci ∧ (E → ¬(⊖b)⊤) ∧ ((⊖̃)E ↔
E)) → (br⟨a⟨c1r...cnrTPS(E)⟩⟩TPS(M ′) → ⟨a⟨brc1
r...cnrTPS(E)⟩⟩TPS(M ′)), we have TPS(P) =
brTPS(M) ⊢SL (br⟨a⟨c1r...cnrTPS(E)⟩⟩TPS(M ′) ⊢SL

⟨a⟨brc1r...cnrTPS(E)⟩⟩TPS(M ′).

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 60 / 60

http://www.tcpdf.org

