
COMPUTATION TOOLS 2014

The Fifth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-344-5

May 25 - 29, 2014

Venice, Italy

COMPUTATION TOOLS 2014 Editors

Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany

Petre Dini, Concordia University, Canada | China Space Agency Center, China

 1 / 49

COMPUTATION TOOLS 2014

Foreword

The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking (COMPUTATION TOOLS 2014), held between May 25-29, 2014 in Venice, Italy, continued
an event under the umbrella of ComputationWorld 2014 dealing with logics, algebras, advanced
computation techniques, specialized programming languages, and tools for distributed computation.
Mainly, the event targeted those aspects supporting context-oriented systems, adaptive systems,
service computing, patterns and content-oriented features, temporal and ubiquitous aspects, and many
facets of computational benchmarking.

The advent of advanced computing embracing various forms of computational intelligence,
large-scale strategies, and technology-oriented approaches relays on fundamental achievements in
systems and feature specification, domain-oriented programming and deployment platforms and
benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2014 Technical Program Committee, as well as all of the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to COMPUTATION TOOLS 2014.
We truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COMPUTATION TOOLS 2014
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that COMPUTATION TOOLS 2014 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of progress in the
areas of computational logics, algebras, programming, tools, and benchmarking.

We are convinced that the participants found the event useful and communications very open.
We hope that Venice, Italy, provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

COMPUTATION TOOLS 2014 Chairs:

Kenneth Scerri, University of Malta, Malta
Alexander Gegov, University of Portsmouth, UK
Ahmed Khedr, University of Sharjah, UAE
Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao
Lev Naiman, University of Toronto, Canada
Ingram Bondin, University of Malta, Malta
Tomáš Bublík, Czech Technical University in Prague, Czech Republic

 2 / 49

COMPUTATION TOOLS 2014

Committee

COMPUTATION TOOLS Advisory Chairs

Kenneth Scerri, University of Malta, Malta
Alexander Gegov, University of Portsmouth, UK
Ahmed Khedr, University of Sharjah, UAE

COMPUTATIONAL TOOLS Industry/Research Chairs

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

COMPUTATION TOOLS Publicity Chair

Lev Naiman, University of Toronto, Canada
Ingram Bondin, University of Malta, Malta
Tomáš Bublík, Czech Technical University in Prague, Czech Republic

COMPUTATION TOOLS 2014 Technical Program Committee

François Anton, Technical University of Denmark, Denmark
Henri Basson, University of Lille North of France (Littoral), France
Steffen Bernhard, TU-Dortmund, Germany
Ateet Bhalla, Oriental Institute of Science & Technology - Bhopal, India
Paul-Antoine Bisgambiglia, Université de Corse, France
Narhimene Boustia, Saad Dahlab University - Blida, Algeria
Luca Cassano, University of Pisa, Italy
Emanuele Covino, Università di Bari, Italy
Hepu Deng, RMIT University - Melbourne, Australia
Eugene Feinberg, Stony Brook University, USA
Tommaso Flaminio, University of Insubria, Italy
Janos Fodor, Obuda University, Hungary
Alexander Gegov, University of Portsmouth, UK
Luis Gomes, Universidade Nova de Lisboa, Portugal
Rajiv Gupta, University of California - Riverside, USA
Fikret Gurgen, Bogazici University - Istanbul, Turkey
Hani Hamdan, École Supérieure d’Électricité (SUPÉLEC), France
Cornel Klein, Siemens AG - Munich, Germany
Stano Krajci, Safarik University - Kosice, Slovakia
Giovanni Lagorio, University of Genova, Italy
Tsung-Chih Lin, Feng-Chia University, Taichung, Taiwan
Giuseppe Longo, Ecole Normale Supérieure Paris, France
Glenn R. Luecke, Iowa State University, USA
Elisa Marengo, Free University of Bozen-Bolzano, Italy

 3 / 49

Julian Molina, University of Malaga, Spain
Gianina Alina Negoita, Iowa State University, USA
Cecilia E. Nugraheni, Parahyangan Catholic University - Bandung, Indonesia
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Mario Pavone, University of Catania, Italy
Mikhail Peretyat'kin, Institute of mathematics and mathematical modeling, Kazakhstan
Alexandre Pinto, ISG - Royal Holloway University of London, UK / Instituto Superior da Maia, Portugal
Enrico Pontelli, New Mexico State University, USA
Corrado Priami, CoSBi & University of Trento, Italy
Marcus Randall, Bond University, Australia
Evgenia Smirni, College of William and Mary - Williamsburg, USA
Patrick Siarry, Université de Paris 12, France
James Tan, SIM University, Singapore
Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria
Miroslav Velev, Aries Design Automation, USA
Zhonglei Wang, Karlsruhe Institute of Technology, Germany
Marek Zaremba, Universite du Quebec en Outaouais - Gatineau, Canada
Naijun Zhan, Institute of Software/Chinese Academy of Sciences - Beijing, China

 4 / 49

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 49

Table of Contents

Dessert, an Open-Source .NET Framework for Process-Based Discrete-Event Simulation
Giovanni Lagorio and Alessio Parma

1

Tests as Documentation: a First Attempt at Quality Evaluation
Maura Cerioli and Giovanni Lagorio

7

Hardware Realization of Embedded Control Algorithm on FPGA
Robert Krasnansky, Branislav Dvorscak, and Stefan Kozak

13

First-order Combinatorics Presenting a Conceptual Framework for Two Levels of Expressive Power of Predicate
Logic
Mikhail Peretyatkin

19

A Contextual Access Control Model for Online Social Network
Khalida Guesmia and Narhimene Boustia

26

First Steps towards Automated Synthesis of Tableau Systems for Interval Temporal Logics
Dario Della Monica, Angelo Montanari, Guido Sciavicco, and Dmitry Tishkovsky

32

Semi-Automated Task Planning in Metric Propositional Interval Neighborhood Logic
Laura Gonzalez-Garcia and Guido Sciavicco

38

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 49

Dessert, an Open-Source .NET Framework for
Process-Based Discrete-Event Simulation

Giovanni Lagorio

DIBRIS - University of Genova
Genova, Italy

Email: giovanni.lagorio@unige.it

Alessio Parma

Finsa S.p.A.
Genova, Italy

Email: alessio.parma@finsa.it

Abstract—We present Dessert, an open-source framework for
process-based discrete-event simulation, designed to retain the
simplicity and flexibility of SimPy, within the strongly-typed .NET
environment. Both frameworks build domain-specific languages,
for simulation writing, by using existing constructs in a novel
way and providing a rich library of classes. By exploiting .NET
generic types and iterators, we have successfully retained, and in
few places even enhanced, the lean syntax and usability of the
original library, without sacrificing static type checking. Static
type-safety, in addition to being a very important property by
itself, facilitates runtime code optimizations; indeed, benchmarks
show that our Dessert outperforms SimPy.

Keywords–Discrete-event simulation; .NET; Python.

I. INTRODUCTION

DES (Discrete-Event Simulation) is an intuitive and flex-
ible form of modeling that enables to represent and simulate
complex systems in a wide range of application domains, from
logistics and supply chain management, to health care. In this
paper, we present Dessert, a process-based DES framework for
.NET, explaining the rationale behind its design, and discussing
the technical challenges we have faced during its development.
The design of Dessert has been heavily inspired by SimPy [1]
[2], which exploits Python generators [3], a special form of
coroutines [4], for writing process-based simulations cleanly
and easily.

Being written in, and consumed from, Python can be seen
as a double-edged sword for SimPy, since typing errors are
found at runtime and the (dynamic) typechecking overhead
harms simulation running times. In designing Dessert we
have striven to create a first-class “citizen” in the strongly-
typed .NET environment, while retaining the lean syntax and
usability of SimPy. For instance, Figure 1 shows a simple
example simulation in Python, using SimPy, and Figure 2
shows the same example, written in F# using Dessert. This
example is described more in Section II but, as the reader
can easily verify, both listings are, with the exception of small
syntactic differences, quite similar and very readable; indeed,
even without knowing anything about SimPy or Dessert, the
meaning of the simulation can be easily inferred.

We have developed Dessert as an open-source project,
readily available via both NuGet [5], the package-management
platform for .NET, and GitHub [6], one of the most popular
hosting service for software development projects. Any .NET
language can be used to write simulations to be run on
our engine, since it complies with the Common Language

Specification (CLS), a strict subset of the .NET Common
Type System that describes how to design types that can be
manipulated by any CLS consumer [7].

The paper is organized as follows: Section II gives an
overview of SimPy and Dessert, Section III analyzes design
and implementation issues, and Section IV compares the per-
formance of our framework in various environments. Finally,
Section V discusses related work, while Section VI outlines
some concluding remarks and further work.

1 import simpy
2
3 def car(env):
4 while True:
5 print(’Start parking at %d’ % env.now)
6 parking_duration = 5
7 yield env.timeout(parking_duration)
8 print(’Start driving at %d’ % env.now)
9 trip_duration = 2

10 yield env.timeout(trip_duration)
11
12 env = simpy.Environment()
13 env.process(car(env))
14 env.run(until=15)

Figure 1. A simple example of SimPy (Python).

1 open Dessert
2
3 let rec car(env:SimEnvironment)=seq<SimEvent> {
4 printfn "Start parking at %g" env.Now
5 let parkingDuration = 5.0
6 yield upcast env.Timeout(parkingDuration)
7 printfn "Start driving at %g" env.Now
8 let tripDuration = 2.0
9 yield upcast env.Timeout(tripDuration)

10 yield! car(env)
11 }
12
13 let env = Sim.NewEnvironment()
14 env.Process(car(env)) |> ignore
15 env.Run(until = 15.0)

Figure 2. A simple example of Dessert (F#).

II. OVERVIEW OF SIMPY AND DESSERT

As mentioned in Section I, SimPy exploits Python genera-
tors for writing process-based simulations. Indeed, in SimPy a
process is simply a generator function, which is used to model
active components like customers, vehicles or agents.

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 7 / 49

All processes live in an environment, and interact with it
and with each other via events. This is shown in Figure 1,
where the function car is used to model a process where
a car alternates between being parked and driving. More in
detail, an environment env is created (line 12), then a process
is created by passing car(env) to the method process of the
environment (line 13) and the simulation is run for 15 units of
time, by calling run(until=15) (line 14). The process defined
by the function car enters in an “infinite” (that is, until the
simulation runs) loop that consists in:
• “parking the car”, simulated by suspending the process

for five units of time by yielding a timeout event,
created by calling env.timeout (line 7);

• “driving the car”, simulated by suspending for two
units of time (line 10).

The environment env is used both to create new events and to
get the current time, given in simulation units, by accessing
env.now (lines 5 and 8). It is up to the simulation writers to
decide what a unit of time corresponds to; for some simulations
using seconds is a sensible choice, for others it makes more
sense to use minutes and so on. While in SimPy simulations
can be performed “as fast as possible”, in real time or by
manually stepping through the events, the current version
of Dessert always run simulations at “full speed”, so the
simulation time never corresponds to the real (wall clock) time.

Figure 2 shows the same simulation of Figure 1, but written
in F# using Dessert. As the reader can see, the former is
just a little more verbose and, more importantly, contains
type annotations (for instance, env : SimEnvironment, which
declares that the parameter env must comply with the type
SimEnvironment) that are statically checked by the compiler.

While events are obviously the central topic of DES,
Dessert also provides some utility types for representing:
• resources (modeled by classes Resource and

PreemptiveResource), which can be used by a
limited number of processes at a time (e.g., a gas
station with a limited number of fuel pumps);

• containers (Container), which model the production
and consumption of a homogeneous, undifferentiated
bulk. It may either be continuous (like water) or
discrete (like apples);

• stores (Store<T> and FilterStore<T>), which are
resources that enable the production and consumption
of discrete objects of type T.

Moreover, other classes aid in gathering statistics about re-
sources and processes. Given the available space we cannot
detail all features, so we give an overview of the key concepts
by means of the small, yet feature packed, following example.

Figure 3 contains a stripped down version of a process
representing a network switch, which is used in the peer to
peer simulation presented in Section IV-C. In this simulation,
the switch waits quietly for incoming frames and, when one
arrives, the switch delivers it to the right target. However,
to perform its work, the switch needs to temporarily store
incoming frames inside the buffer _buffer, which can only
store G.BufferSize frames. When the buffer is full, any
incoming frame is simply dropped, that is, thrown away;
this fact is logged, inside method Receive, by invoking
G.Stats.DroppedFrame(). We point out that, except for syn-
tactic differences, this code is analogous to the one that it

1 sealed class Switch : Entity {
2 readonly Store<Frame> _buffer;
3 Switch(SimEnvironment e, G g) : base(e, g) {
4 var cap = G.BufferSize;
5 _buffer = Sim.NewStore<Frame>(e, cap);
6 }
7 IEnumerable<SimEvent> Run() {
8 while (true) {
9 var getFrame = _buffer.Get();

10 yield return getFrame;
11 var f = getFrame.Value;
12 var w = WaitForSend(f, f.Len);
13 yield return Env.Call(w);
14 Send(f);
15 }
16 }
17 void Receive(Frame f) {
18 if (_buffer.Count == G.BufferSize)
19 G.Stats.DroppedFrame();
20 else
21 _buffer.Put(f);
22 }
23 void Send(Frame f) {
24 if (f.Type == FrameType.Request)
25 G.ServerOSes[p.Dst].Receive(f);
26 else
27 G.ClientOSes[p.Dst].Receive(f);
28 }
29 }

Figure 3. The switch process in (C#).

could have been written for SimPy. This is not just a matter of
name similarity: the key point is that the usage of generators
is fully preserved. Consider, for instance, the method Run, at
line 7, which implements the behavior of the switch as an
infinite generator. The body of the method just consists of an
infinite loop, which contains the instructions that “animate”
the switch. In particular, the first yield return yields an event
that corresponds to the wait for an incoming frame. When an
incoming frame f arrives, method Receive puts f in the buffer
_buffer, awakening Run, that continues its execution at line
11. From there, the process calls a subroutine, WaitForSend

(not shown), that stops the switch for the required time to send
the frame f; then, as the final step, the frame is really sent to
the proper target.

In this example, the buffer is represented as store of Frame,
Store<Frame>, allowing us to use its blocking operations (Get,
in this case), to stop the process until the buffer contains
something to get. While the API of Dessert resembles the
one of SimPy, there are some important differences. On the
one hand, as we detail in Section II, everything, from events
to stores, is strongly typed in Dessert so, for instance, local
variable f, in line 12, has (inferred) static type Frame, since
_buffer has static type Store<Frame>.

On the other hand, our goal was not to make a straight
“clone” of SimPy, but keeping what we liked (a lot of design
choices and features) while trying to improve the usability even
more, by making some changes and additions. One addition
is the introduction of a new type of events, the call events.
In the example, a call event is used at line 14, and expresses
a “call” to a subgenerator. While newer versions of Python,
since version 3.3, elegantly handle this situation by using the
new yield from expression [8], previous versions of Python
and all mainstream .NET languages do not offer such a feature.

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 49

def f(): # f is a generator function
two = yield 1 # two gets the argument of send
yield 3
...

g = f() # gets the generator
one = g.next() # gets the 1st yielded value
three = g.send(2) # gets the 2nd yielded value

Figure 4. Example of Python generators.

A possible workaround, not particularly elegant nor intuitive, is
to iterate through the result of a subgenerator call, v1, v2, . . .,
yielding each value vi. We think that expressing these calls
through our call events makes the code more readable and
intuitive.

III. DESIGN AND IMPLEMENTATION ISSUES

In this section, we first describe a couple of prerequisites,
common to any implementation of a DES engine, and then we
focus on typing issues.

The common prerequisite are: an efficient priority queue, to
store the (pending) event set, and a random number generator,
able to deal with various probability distributions. Curiously,
both are absent in the .NET standard library. While there
is not a single data structure that is the best choice for
storing the event set in all situations, an heap is a fairly
reasonable choice [9]. For this reason, we have implemented,
and experimented with, various kinds of heaps (array, binary,
binomial, Fibonacci, and pairing) and finally settled with a
skew heap [10] that, in our experiments, outperformed all the
other kinds. The standard .NET System.Random class only
provides the uniform number distributions; fortunately, we
have found, and used, an excellent free library [11], that
supports four different random number generators and many
discrete and continuous probability distributions.

When “translating” the idea of modeling a process as
generator function yielding events, one of the major issues
we had to face has been the fact that in Python the yield
construct is an expression, while in .NET the corresponding
construct is a statement. Moreover, in our settings, the type of
such a value should be statically determined. More in detail, in
Python a function f containing an yield expression e, that is,
e ≡ yield e′, is a generator function, which returns an iterator,
known as a generator g, which is an automatically generated
object that permits to iterate through the values generated by
evaluating the yield-expressions. The evaluation of e suspends
the execution of f , which is then resumed when a method
(as next or send) is invoked on g. The resulting value of
e depends on the method which resumed the execution; for
instance, consider the snippet of code shown in Figure 4: the
call g.next() evaluates the body of f until it yields the value
1, which is assigned to one. The subsequent call g.send(2)

resumes the evaluation of f, that assigns 2 to two and yields
the value 3, which is finally assigned to three.

This passing values back-and-forth works very well for
SimPy, where triggered events can “return” values (by sending
them to the generator). We tried to translate this idea in
.NET as close as possible; unfortunately, in all mainstream
.NET languages there are some critical differences in how
generators work. Terminology aside (we stick with the Python

terminology, double-quoting Python terms when used in place
of the .NET terms, to make the comparison easier to follow),
a method m containing a yield return statement s is a
“generator function”, whose invocation returns a “generator”
g. As in Python, the evaluation of s suspends the execution
of m, which is resumed when the parameterless method
MoveNext() is called on g. The key difference is that yield
return is a statement, so there is no way to pass a value
v to be used as the “resulting value” of evaluating s (since
s, being a statement, does not evaluate to a value!). Since
a process yields only events, we introduced the (read-only)
property Value in SimEvent, the supertype of all event types
in Dessert, to emulate the Python behavior: when the execution
of a generator function f is resumed, after an invocation of
MoveNext() on the corresponding generator, f can retrieve
the “returned/sent” value by reading the property Value of
the yielded event object; see, for instance, lines 10 and 11 of
Figure 3.

In order to statically type these values, we would have
liked to introduce a generic type SimEvent<TVal>, exposing a
property Value of type TVal, to represent events that “return”
values of type TVal. Unfortunately, the situation is more com-
plex than that: each event type E must also expose a collection
of callbacks Callbacks, which are invoked when the event is
triggered. In .NET the standard type to model a strongly-typed
callback, that gets an object of type E as the only argument,
is Action<E>. If we try to implement this common interface
in SimEvent<...> we stumble in an inherent recursion: if E
is an event type returning values of type T , then E should
be a subtype of SimEvent<T>, which, in turn, should expose
a collection of Action<E>. This is a known and recurring
situation [12] that can be solved by introducing a second
type-argument; indeed, we have defined SimEvent<TEv,TVal>

where TEv is the type of the event, and TVal is the type
of the “returned” values, as described above. In this way,
inside SimEvent<TEv,TVal>, we can declare a collection of
strongly-typed callbacks as ICollection<Action<TEv>>. For
instance, consider Timeout<T>, which represents events that
are scheduled with a certain delay and return values of type T.
Such a type (indirectly) extends SimEvent<Timeout<T>,T>; so
when we create a timeout event of type, say, Timeout<double>
we obtain an object that exposes the collection Callbacks of
type ICollection<Action<Timeout<double>>>. This guaran-
tees that the callbacks of Timeout<double> are, correctly, a
collection of Action<Timeout<double>>.

In SimPy, and so in Dessert, events can be combined
together to form event conditions, that is, events that are
triggered when some condition becomes true. For instance,
given two events e1 and e2, we could create a new condition
event eAND that is triggered when both e1 and e2 are triggered,
or create another event eOR that is triggered when any of them
is triggered, and so on. In general, any number of events and
any predicate p can be specified, allowing simulation authors
to build arbitrarily complex conditions that are triggered when-
ever p becomes true on the given events. A common use
of event combinations is implementing timeout policies; for
instance, given a certain event e, obtaining a new event that
corresponds to waiting for e or the expiration of a timeout
event.

Differently from SimPy, in our strongly-typed settings,
the result of combining arbitrary events, of types t1,. . . ,tn,

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 49

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 4000 8000 12000 16000 20000

E
v
e
n
ts

 p
e
r

s
e
c
o
n
d

Number of processes

Raw event benchmark - Processing speed

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 5. Events per second in timeout benchmark.

must have a type that “remembers” the types t1,. . . ,tn. That
is, if an event has some type t1, and another event has
type t2, then the resulting type of combining them must
include (some encoding of) both t1 and t2. For this reason,
we use the “variadic-generic type” Condition<t1,. . .,tn> to
encode the type of condition events built from events of type
t1, . . . tn. Inside an object of type Condition<t1,. . .,tn> the
source events are available through the read-only properties
named EvN , where N ∈ {1, . . . , n}. Note that Condition

cannot really be single generic type, since in .NET each
generic type is constrained to have a fixed number of type
arguments. Handling the combination of an arbitrary number of
events would require a mechanism analogous to C++ variadic
templates [13] which, at the moment, is not available in C#
(and the other mainstream .NET languages). So, we had to use
a family of generic types (Condition<T1>, Condition<T1,T2>,
Condition<T1,T2,T3> and so on); fortunately, this family of
types can be automatically generated, for any arbitrary number
of type arguments, by exploiting the T4 [14] (Text Template
Transformation Toolkit) offered by Visual Studio.

IV. BENCHMARKS

In this section, we describe the benchmarks used to assess
the relative performance of our Dessert, with respect to SimPy.
We start, in Section IV-A, with the specifications of the ma-
chines used to run the benchmarks and the general description
of the benchmark environment. Then, we describe the two
kinds of benchmarks we carried out. The former, described
in Section IV-B, is an artificial simulation, akin to a stress-
test, where we obtain the average raw event processing time
of the engines. The latter, described in Section IV-C, consists
in running a real simulation of a peer-to-peer (P2P) system,
thus measuring how the different engines perform on a “real-
world” simulation.

def timeoutBenchmarkProcess(env, counter):
while True:
yield env.timeout(randomDelay())
counter.increment()

Figure 6. Benchmark process.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 4000 8000 12000 16000 20000

M
e
g
a
b
y
te

s

Number of processes

Raw event benchmark - Memory usage

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 7. Memory usage in timeout benchmark.

A. Benchmark environment
Every benchmark has been run under a dedicated virtual

machine (VM), created and run by VirtualBox [15] 4.3.2,
hosted on Ubuntu 13.10 on a Intel Core 2 Duo E4700 with
4 GB or RAM. We created a Windows VM, with Windows
7 SP1 and the .NET Framework 4.5.1, and a GNU/Linux
one, with Lubuntu [16], a lightweight variant of the more
famous Ubuntu, and Mono 3.2. Both VMs share the same
hardware profile: 2 CPU cores and 2 GB of RAM. Since DES
is a strongly CPU-bound process, neither Dessert nor SimPy
use secondary storage, we do not detail storage specifications.
As concerns Python interpreters, we tried out both CPython
2.7, the “default” language implementation, and PyPy [17]
2.2, a recent and highly optimized alternative Python im-
plementation. Both implementations have been run with full
optimizations enabled (-OO flag).

In order to time our benchmarks, we started a virtual
stopwatch at the beginning of each run and we stopped it
at the end. On .NET we used a standard dedicated class,
System.Diagnostics.Stopwatch, while on Python we used
the facilities exposed by the general time module. To evaluate
memory usage, we sampled the resident set size (RSS) of
the (operating system) process at fixed intervals, by taking
advantage of the standard class System.Diagnostics.Process

on .NET, and of the library psutil [18] on Python.
In the following sections, for lack of space, we thoroughly

analyze only the benchmarks on Windows. Anyway, the tests
on GNU/Linux confirmed what we found on Windows, with a
caveat: since Mono is not as optimized as .NET, Dessert still
outperforms SimPy on CPython, but PyPy becomes an inter-
esting competitor, yielding better results in the P2P simulation
tests, but consuming an enormous quantity of memory, as it
does on Windows. Given Mono continuous improvements, the
performance of Dessert on Linux can only get better, so we
hope to achieve soon the same results we already obtain on
Windows.

B. Raw event processing benchmark
The goal of this benchmark is to measure the raw event

processing speed of the DES engines. To do this, we designed
a rather artificial simulation, in which we spawn an increasing
number of extremely simple processes, as shown in Figure 6.

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 49

 0

 50

 100

 150

 200

 250

4 8 16 32

M
in

u
te

s

Number of active machines

P2P simulation - Time usage

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 8. Time usage in P2P simulation.

Each of those processes simply awaits a random timeout
and, when woken up, increases a shared counter, which records
the total amount of timeout events properly handled by the en-
gine. So, by dividing that counter by the simulation execution
(wall) time, we obtain a good approximation of the average
event handling speed. Analogously, we measure how much
memory each engine consumes by repeatedly running the
same simulation and varying the number of processes from an
already significant 1, 000, to a rather big 20, 000. In this way,
we evaluate how the engines perform when heavily loaded.
For any given process count, we have run twenty simulations
and averaged the results.

Before discussing the results, we would like to emphasize
that these benchmarks, by themselves, cannot tell us which
is the fastest engine, but only which engine has the potential
of being the fastest. As it is shown Figure 5, the raw event
processing speed of Dessert is impressive, especially when the
number of processes is (relatively) low. Anyway, as the graph
clearly shows, in this benchmark Dessert always outperforms
SimPy, even when it is run by PyPy. We also note that the
graph shows the results of PyPy only to 13, 000 processes be-
cause, given its huge memory consumption, PyPy crashes after
a period of uninterrupted swapping activity (that is, thrash-
ing). This fact can be clearly seen in Figure 7, where PyPy
memory consumption goes off the charts even with a small
number of processes. The same figure shows that Dessert and
CPython follow, more or less, the same curve, demonstrating
that Dessert potentially allows users to run simulations faster
without incurring on higher memory consumption. Moreover,
on higher loads Dessert is faster (Figure 5) and consumes less
memory (Figure 7).

C. P2P simulation
While the benchmarks previously discussed are useful to

understand how fast the simulation engines could perform,
they could not answer to a crucial question: what is the fastest
engine on common, “real-world”, simulations? To answer such
a question, we have simulated the execution of a peer to peer
protocol based on linear network encoding [19]. Since the
protocol was created solely for teaching purposes, we will
describe it here very briefly.

Suppose we have n machines, each one running both a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

4 8 16 32

M
e
g
a
b
y
te

s

Number of active machines

P2P simulation - Memory usage

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 9. Memory usage in P2P simulation.

client and a server process, and set k = bn2 c. At first, each
file that must be shared is first split into k parts, then other
k − 1 parts are created by linear combinations of the first k
parts. Thus, every file is encoded in n− 1 parts, and each part
is stored on a different machine. The rest of the simulation
consists in seeing whether the clients, that try to retrieve (parts
of) the files from the servers, saturate the whole network,
since all communications are routed through a single switch.
In particular, each client needs to request at least k parts to
recover a file, but it could do more requests to reduce wait
times. Therefore, one of the goals of the simulation is to
understand how many extra requests give the lowest wait times.
For each combination of machine count n and extra-request
count r, we run twenty simulations, so that results are pretty
accurate and reliable. Therefore, since r lies in the interval
[0, k − 1], for each n we execute 20 · k = 10 · n simulations.

As it is shown in Figure 8, Dessert can execute these
simulations faster than SimPy, especially when the number of
machines gets higher. Under these particular settings, Dessert
is five times faster than SimPy run on CPython, and twice as
fast than SimPy when run on PyPy, which we deem as a good
result. Results on memory consumption, shown in Figure 9,
confirm PyPy memory problems and the fact that Dessert and
SimPy, when run on CPython, have nearly the same footprint,
although in this case the one of Dessert is slightly higher.

V. RELATED WORK

On the one hand, many libraries enable to write discrete-
event simulations, using a variety of programming languages
and environments. Indeed, as we have already said, our work
has been greatly inspired by SimPy [1][2][20], which is
written in, and usable from, Python. On the other hand,
the .NET framework has been somewhat neglected by DES
library authors, so there are very few free options (some
commercial options are: Micro Saint R© Sharp [21] and Sage R©,
the successor of HighMAST

TM
[22]) to choose from.

In particular, as far as we know, our Dessert is the
first open-source (complete) project, on the .NET framework,
for writing discrete event simulations following the process
oriented paradigm. In this paradigm, simulations consist of
interacting processes, that is sequences of events and activities.

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 49

This approach allows users to write simple and readable simu-
lation code; the relationships between various paradigms and,
especially, the challenges associated with modeling problems
with different aspects best represented by different paradigms
is a topic of on-going research [23].

Focusing on the .NET framework, the only free options
that we have found implement a different paradigm or are
incomplete and, apparently, abandoned. SharpSim [24] is an
open-source library, written in C#, that implements the event-
oriented paradigm. In this paradigm, users model the systems
in terms of events. Implementations of this paradigm can
be very efficient, but simulation code following this style
is less modular, and harder to write and understand [25].
React.NET [26] is another open-source library written in C#,
which shares our paradigm and general goals. Unfortunately,
the project seems dead, since there are no stable releases and
it has not been updated since 2006. Finally, DotNetSim [27]
is described as a prototype that exploits .NET for writing
fully object-orientated components that cross programming
languages, packages and platforms and link them in a single
application. However, this seems to be another dead project,
since we could not find any prototype to download and
evaluate.

VI. CONCLUSION AND FUTURE WORK

We have presented Dessert, a fully managed .NET en-
gine for process-based discrete-event simulation. On the one
hand, Dessert has been heavily inspired, and tries to follow,
the simplicity and leanness of SimPy, in the strongly typed
.NET world. On the other hand, Dessert is not, and was not
supposed to be, a straight “clone” of SimPy: we kept what we
liked, which is a lot, but we have also tried to improve the
usability even more, by making some changes and additions.
Moreover, by leveraging the .NET framework, and adhering to
Common Language Specification, Dessert allows user to write
simulations in a variety of different programming languages.
For these reasons, Dessert yields better performances both at
development and execution time, since static typing is benefi-
cial for both catching many problems early on, and permitting
the use of refactoring and context-aware code completion tools,
like Visual Studio IntelliSense. Indeed, the speed-up offered by
Dessert is impressive, especially when SimPy is interpreted
through CPython, the “default” Python interpreter, and has
nearly the same memory footprint. We also benchmarked
SimPy on PyPy, a recent and highly optimized alternative
Python implementation, which closes the gap in running times,
but at the cost of a huge memory consumption. For this reason,
SimPy on PyPy crashes on “big” simulations that our Dessert
handles effortlessly.

Since Dessert is completely open-source, its future devel-
opments are somewhat unpredictable. We plan to develop a
library of higher level abstractions, like network components
and elements of stocking chains, to ease the development of
complex simulations. Moreover, we would like to address the
loss of performance when running on Mono. Another direction
for further work is the development of a proper domain-specific
language, to write simulations even more easily, which could
be compiled and run on our engine.

REFERENCES
[1] “SimPy,” 2014, URL: https://pypi.python.org/pypi/simpy [accessed:

2014-03-08].
[2] K. Müller, “Advanced systems simulation capabilities in SimPy,”

2004, europython 2004, URL: http://simpy.sourceforge.net/old/images/
Advanced Systems Simulation Capabilities in%20SimPy Fallback
Last.pdf [accessed: 2014-03-09].

[3] N. Schemenauer, T. Peters, and M. L. Hetland, “Simple generators,”
2001, python Enhancement Proposal 255 URL: http://www.python.org/
dev/peps/pep-0255/ [accessed: 2014-03-08].

[4] A. L. D. Moura and R. Ierusalimschy, “Revisiting coroutines,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 31, no. 2, Feb. 2009, pp. 6:1–6:31.

[5] “Dessert on NuGet,” 2014, URL: https://www.nuget.org/packages/
Dessert/ [accessed: 2014-03-08].

[6] “Dessert on GitHub,” 2014, URL: https://github.com/pomma89/Dessert
[accessed: 2014-03-08].

[7] J. Hamilton, “Language integration in the common language runtime,”
ACM Sigplan Notices, vol. 38, no. 2, 2003, pp. 19–28.

[8] “What is new in Python 3.3,” 2014, URL: http://docs.python.org/3.3/
whatsnew/3.3.html [accessed: 2014-03-08].

[9] R. Rönngren and R. Ayani, “A comparative study of parallel and
sequential priority queue algorithms,” ACM Transactions on Modeling
and Computer Simulation (TOMACS), vol. 7, no. 2, 1997, pp. 157–209.

[10] D. D. Sleator and R. E. Tarjan, “Self-adjusting heaps,” SIAM Journal
on Computing, vol. 15, no. 1, 1986, pp. 52–69.

[11] S. Troschuetz, “.NET random number generators and
distributions,” 2014, URL: http://www.codeproject.com/articles/
15102/net-random-number-generators-and-distributions [accessed:
2014-03-08].

[12] J. O. Coplien, “Curiously recurring template patterns,” C++ Report,
vol. 7, no. 2, 1995, pp. 24–27.

[13] D. Gregor and J. Järvi, “Variadic templates for C++0x.” Journal of
Object Technology, vol. 7, no. 2, 2008, pp. 31–51.

[14] “Code generation and t4 text templates,” 2014, URL: http://msdn.
microsoft.com/en-us/library/bb126445.aspx [accessed: 2014-03-08].

[15] “VirtualBox,” 2014, URL: https://www.virtualbox.org/ [accessed: 2014-
03-08].

[16] “Lubuntu,” 2014, URL: http://lubuntu.net/ [accessed: 2014-03-08].
[17] “PyPy,” 2014, URL: http://pypy.org/ [accessed: 2014-03-08].
[18] “psutil,” 2014, URL: https://code.google.com/p/psutil/ [accessed: 2014-

03-08].
[19] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” Informa-

tion Theory, IEEE Transactions on, vol. 49, no. 2, 2003, pp. 371–381.
[20] K. Müller and T. Vignaux, “SimPy: Simulating systems in Python,”

2003, ONLamp.com Python DevCenter, URL: http://www.onlamp.com/
pub/a/python/2003/02/27/simpy.html [accessed: 2014-03-08].

[21] W. K. Bloechle and D. Schunk, “Micro saint R© sharp simulation
software,” in Proceedings of the 35th conference on Winter simulation:
driving innovation. Winter Simulation Conference, 2003, pp. 182–187.

[22] P. C. Bosch, “Simulations on .NET using HighPoint’s highmast
TM

simulation toolkit,” in Simulation Conference, 2003. Proceedings of the
2003 Winter, vol. 2. IEEE, 2003, pp. 1852–1859.

[23] S. K. Heath, A. Buss, S. C. Brailsford, and C. M. Macal, “Cross-
paradigm simulation modeling: challenges and successes,” in Proceed-
ings of the Winter Simulation Conference, 2011, pp. 2788–2802.

[24] “SharpSim,” 2014, URL: http://sharpsim.codeplex.com/ [accessed:
2014-03-08].

[25] N. Matloff, “Introduction to Discrete-Event Simulation and the SimPy
language,” 2008, URL: http://heather.cs.ucdavis.edu/∼matloff/156/PLN/
DESimIntro.pdf [accessed: 2014-03-08].

[26] “React.NET,” 2014, URL: http://reactnet.sourceforge.net/ [accessed:
2014-03-08].

[27] M. Pidd and A. Carvalho, “Simulation software: not the same yesterday,
today or forever,” Journal of Simulation, vol. 1, no. 1, 2006, pp. 7–20.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 49

Tests as Documentation:
a First Attempt at Quality Evaluation

Maura Cerioli and Giovanni Lagorio

DIBRIS - University of Genova
Genova, Italy

Email: {maura.cerioli,giovanni.lagorio}@unige.it

Abstract—We present a novel method, and its associated sup-
porting tool, for automatically singling out sloppy tests; that is,
tests that run successfully on (some) incorrect implementations,
that violate the property they are expected to verify. Our freely
available tool is written in C#, but the technique is language
agnostic and can be easily applied to other languages.

Keywords–Testing; Debugging.

I. INTRODUCTION

Test methods, for instance those written using a framework
of the xUnit family [1], simply called tests from now on, have
initially been introduced in software development process for
unit testing, that is, testing of small units of code during their
development, more than thirty years ago [2].

More recently, tests have been also used to capture infor-
mation about the code to be developed, playing in some sense
the role of running specifications. This is the case, for instance,
of the test-driven approach [3], where tests are developed
along with the code, and used to improve the developer
understanding of the required code, making it explicit. Though
tests in the test-driven approach are aimed more at knowledge
capture than code improvement, they are still white box, written
by the software developers taking advantage of private code
structures for the set up.

A more innovative use of tests is in refactoring and/or
migration of legacy systems [4], or in iterative development
processes. Indeed, in those cases, tests are defined and verified
against a version of the system, be it the system to be
refactored or the current iteration prototype, but are intended to
be run on the next versions, still to be developed at the moment
such tests are written. In this way, tests capture observable
behaviors of the system, approved by the stakeholders on the
current version, and guarantee the next version to preserve
such behaviors, complementing (or altogether replacing) the
corresponding documentation.

To put the system in the required state, before the call of
the method to be tested, this approach requires the tests not
to rely on the internal structure of the system, that is going to
change. Instead, each operation has to go through the interface
of the system [5][6][7], in a black box style. Moreover, the
design of the overall test suite cannot be driven by the current
implementation, as it is going to change, and all the adequacy
criteria based on code coverage are unreliable.

Analogous problems arise for tests distributed along the
specification of components/services, as convincing evidence
of their correctness [8]. Indeed, when the tests are used to

capture knowledge about the functionalities of a system, they
cannot rely on its internal structure when preparing the initial
state for the call under test. Otherwise, they would risk undue
disclosures of the system implementation to users, who have
full access to the tests, and the approach would be brittle
against changes to the implementation.

Moving from white box tests used to improve the system
implementation, to black box tests used to document the
system, requires to change the definition of test quality, as well
as the techniques to evaluate it. Indeed, when tests are aimed
at improving the technical quality of the system under test, it
may suffice that the overall test suite is capturing enough bugs.
Thus, in literature, we find plenty of techniques to assess the
quality of a test suite, by measuring how extensively the test
suite, as a whole, exercize the system. The exact meaning of
extensively may vary, giving rise to different quality criteria.
For instance, statement/branch/multiple condition coverage [9],
or mutation testing [10].

However, in our target cases, tests are used as living doc-
umentation [11]. Thus, the description of each individual test
must correspond to its implementation, because stakeholders
and maintenance staff will rely on those test descriptions to
understand the system behavior. Therefore, in this setting, we
need to assess the quality of each individual test, as opposite
to the quality of the overall test suite. Moreover, the meaning
of quality is also different w.r.t. standard approaches, because
a test has a high quality when it strictly conforms to its
description, disregarding both its capability to spot bugs, and
the portion of system it exercises.

Therefore, standard evaluation techniques are not appropri-
ate, and we propose here a different approach.

The first step to get high-quality tests is to verify their
correctness, that is, that they run successfully on a correct
implementation of the system. In other words, tests, as any
other software, need to be tested. Such a necessity is partially
reduced by their intrinsically limited complexity. However,
even when writing small tests, it is rather easy to introduce
mistakes or to misinterpret their goals. There are basically
two approaches to test verification: inspection by a human
reader, as peer review can improve the quality of tests [12],
and the execution on a reference implementation, known to
be correct. The former method permits, in a single pass, to
verify the correctness of the tests and evaluate their quality,
in terms of correspondence to their definition. However, it is
extremely time consuming [13], hence expensive. Moreover,
as tests are many and often quite similar, the attention level of
the human inspector and, accordingly, the number of detected

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 49

imperfections/mistakes may decrease. Finally, such costs have
to be sustained whenever tests are updated.

The automatic verification by a reference implementation,
on the other hand, is widely used in practice whenever a
reference system is available during the implementation of the
tests, as in the cases we are addressing. In such settings, the
reference system is assumed to be a correct oracle so, if a
particular test fails, then it is known a priori to be incorrect.
Once tests appear to be correct, i.e., they successfully run on
the oracle, their quality has to be evaluated.

To carry on this task in automatic verification style, we
need slight variations of the system. Each of these variations,
that we call anti-oracles, intentionally violates the description
of a specific test t, and hence it is a prospective victim of the
t, that should be able to kill it. Then, from the outcome of t
on that anti-oracle, we can get precise information about the
adequacy of t w..r.t. its description, that is, on its quality.

To keep the design effort of such anti-oracles sustainable,
we propose a method to instrument the oracle. The instru-
mented oracle, I , can behave both as a correct implementation
and as the needed anti-oracles, in different runs.

Our method is supported by a lightweight tool, which takes
care of differentiating the runs on I . Note that, in our target
scenarios, tests, in their setup code, must (only) use the very
same elements of the public interfaces under test. Thus, our
anti-oracles, to be effective, should behave correctly on all
calls, except for the call under test. This fact imposes further
requirements on the design of the supporting tool.

Our approach is reminiscent of the mutation testing tech-
nique, in that our anti-oracles are variation of the oracle. But,
while mutants are randomly generated and used to estimate
the probability of the whole test suite to detect technical
bugs, each anti-oracle is designed to target an individual
test and verify the adequacy to its description. Thus, the
mutation testing technique cannot address the problem we are
interested into. We introduce our method in Section II, and we
briefly sketch its implementation in Section III. A preliminary
evaluation of our method is provided in Section IV, and in
Section V we discuss its relations to mutation testing, while
some conclusions are drawn in Section VI.

II. PROPOSED METHOD

We consider basic standard test methods consisting of three
parts: the setup, usually few lines of code to initialize the status
of the system, the call under test, that is the specific method
invocation whose behaviour is verified by the test, and, finally,
an assertion stating properties about the result of the call, in
terms of both the yielded value, if any, and the resulting state
of the system.

Our method assumes the existence of a working system, to
be used as the oracle, and of the specifications of the tests to
be implemented. Such specifications should be as accurate as
possible, but cannot be expected to be formally expressed in a
rigorous specification language, like, for instance, some kind
of logic. Indeed, in most realistic cases it is not possible, or
highly inconvenient, to formalize the properties to be checked.

This limitation rules out the possibility of automatically
generating tests from their formal specification (such tests
would be obviously consistent with their specification by
construction, provided the generator to be correct).

Let us clarify the expected level of formality of test

public class IntStack {
private Stack<int> _stack = new Stack<int>();
public int Size(){
return this._stack.Count;

}
public void Push(int i){
this._stack.Push(i);

}
public void Pop(){
this._stack.Pop();

}
/* ... */ }

Figure 1. A stack of integers.

specifications on a toy example, written in C# and using
NUnit [14] (however, the idea is independent from both). The
class IntStack, shown in Figure 1, implements a very basic
stack of integers as a tiny wrapper on the standard generic
class Stack<>.

Using this prototype, we want to polish a set of tests, for
instance, targeting the method Push:
• PushDoesNotAffectPreviousElements

• AfterPushSizeIsPositive

• PushIncreasesSizeFrom3To4

• PushAddsElement

PushDoesNotAffectPreviousElements could be specified by:
“after pushing a number on a stack, already containing some
items, they will be still on the stack and in the same order”.

The goal is verifying the individual tests to be adequate
w.r.t. their specification. The oracle (i.e., the reference im-
plementation) is used first to verify that all the tests appear
to be correct, that is, successfully running on the oracle.
The next step of our method is to verify that they are also
sufficiently strict. To this end, we first derive, from each test
specification, a list of possible mistakes, which the test should
be able to detect accordingly to its specification. For instance,
for PushDoesNotAffectPreviousElements, the list of possible
mistakes includes: one of the original items is dropped; one of
the original items is replaced by another number; two of the
original items are swapped.

Then, each mistake from such a list is implemented by an
anti-oracle, which should replace the correct oracle implemen-
tation to answer the call under test, and only that particular
call, making the test fail (if it is sufficiently strict).

For instance, AfterPushSizeIsPositive should be able to
capture anti-oracles where the size is zero after an element has
been pushed. So, the body of Push, in such a anti-oracle, could
simply empty this._stack.

Finally, we instrument the oracle to derive an enriched
system able to make the call under test fail for each test. At
this aim we define a utility class FindCaller that, depending
on a global switch (for instance, the value of an environment
variable), may operate in two modes: record and evaluate.

The basic idea is that in record mode the enriched system
behaves like the oracle, so all tests must be successful, while
our utility class logs some information about the execution,
which are needed for subsequent runs in evaluate mode. In
such a mode, instead, for each test t, the anti-oracle(s) designed
for t is used to answer the call under test by t, while all other
calls are answered by the (correct) oracle methods. Thus, in

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 49

public void Push(int i) {
string caller = FindCaller.GetTestName();
if (caller == "AfterPushSizeIsPositive" ||

caller == "PushIncreasesSizeFrom3To4") {
this._stack.Clear();
return;

}
if (caller ==

"PushDoesNotAffectPreviousElements") {
int previous = this._stack.Pop();
this._stack.Push(previous+123);
// continue as if nothing has happened

}
if (caller == "PushAddsElement") {
this.Push(i+1);

// the *direct* caller for this recursive
// call is not PushAddsElement, so we get
// normal behavior for this call

return;
}

// everything as before...
// (that is, the behaviour of the oracle)

Figure 2. Instrumented Push method.

[Test]
public void PushIncreasesSizeFrom3To4() {
IntStack s = new IntStack();
for (int i=0; i<=2; i++)
s.Push(i);

int sizeBeforePush = s.Size();
s.Push(3);
Assert.That(s.Size(),

Is.Not.EqualTo(sizeBeforePush));
}

Figure 3. An example of a sloppy test.

this mode, all tests should fail.
The class FindCaller offers the method GetTestName,

whose behavior changes dramatically depending on the op-
erating mode:
• in record mode, GetTestName always returns null, but

also logs some method call information, to be later
used in evaluate mode;

• in evaluate mode, GetTestName returns the name of a
test-method t if it is invoked by the call under test by
t; otherwise it yields null.

Thus, to decide if the standard implementation of a method, or
its anti-oracle, failing on a test-method t, has to be used, we
can simply check if GetTestName() returns the string t. Hence,
we can inject the failing anti-oracle into our oracle and have
a single software product P to maintain (we will address how
to keep the actual implementation and its anti-oracles separate
in Section VI). This product P behaves, in record mode, as the
original oracle, while in evaluate mode behaves as the needed
sophisticated anti-oracles previously discussed.

Figure 2 shows how to instrument the method Push in P .
In evaluate mode, the instrumented code behaves as the

provided failing anti-oracle for each test-method, on its call
under test. Hence, all tests should fail. Yet, if we ran the test
shown in Figure 3, we would discover that it still passes.

This points out an inadequacy of the test (i.e., the test is
sloppy): indeed, instead of asserting that the Size() of the

stack, after the Push(3), is different than before, it should
assert that the size has increased by one.

Notice that, in the code of anti-oracles, all the internal
structure of the oracle can be used, including calls to the public
methods, because such calls will be automatically answered by
the oracle code. Thus, each anti-oracle is usually implemented
by very few lines of code, in most cases just a single one.

Every time a verification fails, that is, tests pass in evaluate
mode, a refinement step is needed. However, our method does
not prescribe how to perform it. Thus, it can be plugged on
different processes for improving test quality.

III. IMPLEMENTATION OF THE UTILITY CLASS

As described in the previous section, our utility class
FindCaller offers the static method GetTestName that allows
any implementation method m to know the name of the
running test t, when the current call of m is the call under
test of t (otherwise, GetTestName simply returns null).

The simplest way to detect if the current call of m is the
call under test, for some test t, would be to require call under
test to be annotated in some way (e.g., by some attribute, and
use such information via reflection). However, we want to be
able to evaluate existing tests as they are, without having to
tamper with them, so the implementation of GetTestName is
more challenging.

Here, we just sketch the idea, since our C# implementation
takes into consideration some technical details that are not
particularly relevant. We refer interested readers to the freely
available source code [15].

In order to understand if a call to a method m, of the
implementation, may be the call under test for some test t,
GetTestName simply rules out the cases that cannot be a call
under test, which are:

1) m has been called by another implementation method
m′ (possibly coinciding with m, in case of recursion),
instead than directly by some test;

2) there is a (temporally) subsequent direct call to m,
by the same test t, hence the current call is just part
of the setup.

Thus, GetTestName returns t for the last call of any im-
plementation method m directly called by t (or one of its
auxiliary methods), even if m is not the one tested by t,
say mt. However, this is not a problem, as the condition
FindCaller.GetTestName()=="t" is only checked inside the
instrumented version of mt, so that returning t, instead of
null, to the call of some other method goes undetected, and
is immaterial.

Therefore, the tasks of method GetTestName are to identify:
1) the name of the currently running test, say t;
2) if m has been called by another method of the

implementation;
3) if this call to m by t is its (temporally) last call to

m.
Since almost every programming language keeps the infor-
mation about the (direct and indirect) callers of a method in
the (machine) call-stack, we can address tasks 1 and 2, by
performing a stack walk. The remaining task, 3, needs another
technique, which is discussed below.

In languages offering reflection/introspection features, like
C# and Java, the call-stack is readily available. For instance, in

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 49

Figure 4. Two examples of call stacks.

C#, using the standard class StackTrace we can easily obtain
an array of StackFrame objects.

Figure 4 shows two examples of the kind of call stacks that
GetTestName has to deal with. The topmost frame is always
for GetTestName. The rest of the stack consists of three groups
of frames (from the bottom): those of the test runner, those
of the test methods, and, finally, those of the implementation
methods. The topmost of this latest group, that is, the second
frame from the top, belongs to the method m, that has to decide
whether to behave as the oracle or some anti-oracle.

The lowest frame of the test method group is the one for
t (task 1) and is identified by our utility class by checking
whether the method is annotated by one of the custom at-
tributes of NUnit [14]. Of course, this can be easily generalized
to other testing-framework.

Task 2 corresponds to checking whether, between the frame
of m and the one of t, there are some other frames belonging
to implementation methods. Figure 4 shows, side by side, two
possibilities:

• left: m is directly called by t (or some of its auxiliary
methods), so GetTestName must return t (unless Task 3
detects a subsequent call to m);

• right: t invokes mt, which could for instance be the
method under test, and then mt calls some other
implementation methods (m′, . . . ,m). Each of these
methods, being instrumented, will call GetTestName,
that must recognize that the current execution of its
direct caller (m, in the figure) does not correspond
to the call under test. Thus, even if its direct caller
coincided with mt, that is, m = mt, GetTestName

should return null.

These two cases are also exemplified in the sequence
diagram shown in Figure 5, where the test runner invokes the
test PushAddsElement, which, in turn, invokes Push, which
invokes GetTestName. In this case, GetTestName returns the
string "PushAddsElement", so the instrumented Push method
misbehaves by pushing (i+1), instead of i (see Figure 2),
by recursively invoking itself. In this second activation,

GetTestNames returns null, so no anti-oracle is activated and
the call is answered by running the oracle code. Notice that
the call of Top invokes GetTestName too, and gets the string
"PushAddsElement" as result. But, having no instrumentation
for that test, Top behaves as the oracle.

Task 3, that is, detecting if this call to m by t is its
(temporally) last call to m, can be tackled by exploiting the
following idea: since we want any failing implementation (for
t) to differ from the oracle only on the call under test c, the
execution flow of t, until it reaches c, has to be exactly the
same on both the oracle and the anti-oracle.

Because all tests pass on the oracle, a single run of all
tests in record mode allows our class FindCaller to collect
the information about the order of all the calls that any test
makes to any implementation method. After these information
have been collected and persisted, they can be used in evaluate
mode to discern, for each test t, which call is, indeed, the
temporally last one.

IV. PRELIMINARY EVALUATION

The proposed method has been experimented in the con-
text of the project evaluation of an undergraduate course on
component based development. Such a project consisted of
two independent phases: the development of tests against the
specification of a toy component for the management of an
auction site, and the implementation of the component itself.
The component specification consisted of five small interfaces
for about 20 methods and 12 properties, and a few exceptions.
The semantics of each method/property was expressed by few
lines of text in natural language, as in our running example,
and the reference implementation was about 600 lines of code.

The first phase was a collaborative activity by 16 groups
of 5 persons each, with the goal of redundantly implementing
150 test specifications. Each test specification, given in natural
language, fixed the method to be tested, the call parameters (if
any), the required setup of the system, and the expected result.

Each group member was required to individually develop
10 tests and inspect those written by the other group members.
Students were equally penalized by errors made during the

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 49

[Test]

public void PushAddsElement() {

IntStack s = new IntStack();

s.Push(7);

int pushedElement = s.Top();

Assert.That(pushedElement,

Is.EqualTo(7));

}

:NUnitRunner :TestClass :IntStack :FindCaller

new

PushAddsElement

new

Push

GetTestName

"PushAddsElement"

Push

GetTestName

null

Top

GetTestName

"PushAddsElement"

Figure 5. PushAddsElement and its sequence diagram.

development and peer review. Therefore, they were motivated
to carefully read the tests by other members of their team.
Indeed, from the discussions going on in a forum for intra-
group communications, we know that most students took the
assignment seriously and devoted energy and time to get it
done at the best of their abilities.

At the end of the review phase, we evaluated the tests
using our reference implementation, and 428 out of 590 passed
(note that not all the enrolled students completed the project;
so only 590 out of the expected 800 tests were submitted for
evaluation). Then, we applied our method to those apparently
correct, in order to detect sloppy tests: 13 tests out of 428 did
not fail as they should have been. That is, about the 3% of
the peer-reviewed tests were still slack. Notwithstanding the
apparently low value, it is worth noting that:

• 50% of the groups delivered at least one sloppy test,
and a group even produced 5 sloppy tests out of 30,
as it can be seen in Table I (only groups with at least
one sloppy tests have been inserted);

• the tests had been already manually inspected by other
members of the group to improve their quality [12];

• for each test specification we implemented just the

Group # test
methods Failed Correct Sloppy

16 40 10 25 5 (16,67%)
1 30 7 21 2 (8,70%)
4 40 9 30 1 (3,23%)
5 30 6 23 1 (4,17%)
6 40 7 32 1 (3,03%)
7 40 2 37 1 (2,63%)
8 40 8 31 1 (3,13%)

13 30 7 22 1 (4,35%)

TABLE I. EVALUATION RESULTS.

most obvious failure, hence, capturing only a part of
the sloppy tests;

• the given test specifications have been kept very sim-
ple to simplify the students’ work. With more complex
test specifications a higher number of sloppy tests
should be expected.

The sloppy tests detected by our experiment can be roughly
categorized into three classes:

• Verifying a property weaker than the one expressed
by their informal specification. For instance, though
required to verify that the result R of some operation
is S = {a, b, c}, they just check that R has three
elements, or that R ⊆ S, or viceversa. This is by
far the most common error, and corresponds to the
intuition of sloppy test.

• Verifying the thrown exception to be the one re-
quired, but without discriminating if it has been
thrown by the method under test, or by some pre-
vious call during the test setup. This sloppiness
may easily go undetected when system exceptions,
like, for instance, InvalidOperationException or
ArgumentNullException, are expected, since they
may be thrown in many different situations.

• Making blatantly stupid mistakes, like, for instance,
invoking a different method in place of the one to be
tested. It may sound unlikely that such evident mis-
takes are overlooked by reviewers. But, it does happen
since their attention is often focused on checking small
details, or the logical flow of the test to make sense
per se, forgetting to check it against its specification.

A threat to the validity of this experiment might be that
the subjects were students instead of professionals. Thus, the
evaluation could be biased by their limited skills. We plan to
apply our technique to the tests of some open-source project
in order to estimate its usefulness in a real world context.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 49

V. RELATED WORK

To the best of our knowledge, our method is the first one
proposed in literature for revealing sloppy test cases. While
our work uses an idea similar to mutation testing [16] [17],
there are substantial differences.

Mutation testing is a technique for evaluating the ability
of a test suite in detecting faults, and can also be used as a
tool to add new test cases to obtain higher coverage scores.
The technique consists of two steps: the creation of mutants
and their execution. First, mutants, i.e., clones of the original
program with the exception of one random atomic change, are
created. For example, a mutant could be produced by changing
a binary operator (e.g., “+”) into another (e.g., “*”) to create a
faulty version of the original program. The “rule” that changes
an operator with another is called mutation operator. Then, the
target test suite is executed against all the produced mutants.
A mutant is said killed if at least a test case belonging to
the suite is able to reveal the performed mutation. The test
suite adequacy is computed by dividing the number of killed
mutants by the total number of mutants.

Although mutation testing is largely recognized as a satis-
factory technique for the improvement of a test suite, the aim is
revealing parts of system code not exercised by any test, where
randomly mutations go undetected. This allows to improve
the test suite as a whole, by adding test cases targeting the
unexplored parts. But, mutation testing is inadequate for our
goal, that is, individual test adequacy against its specification,
in a setting where testing must go through the public interfaces
of the system. Indeed, mutation testing
• evaluates and improves test suites as a whole instead

of individual tests;
• addresses a different concept of quality, without any

connection to the users’ expectations about the kind of
bugs that should be detected by the tests, accordingly
to their description;

• could yield a false positive, if mutants are killed by a
failing test setup involving the very same methods to
be tested; this cannot happen with white-box testing,
where the setup explicitly accesses the internal struc-
ture of the system, but it is quite common when also
tests must go through the public interfaces.

VI. CONCLUSION AND FUTURE WORK

We have proposed a method to verify the adequacy of
individual tests to their specification. Our method requires
to elaborate minimal changes to a reference implementation,
making a well written test fail on the resulting anti-oracle.
Moreover, our method is supported by a tool, that takes care
of having such changes executed only on that test.

Currently, the changes are manually injected into the
oracle, except for those tests expecting an exception, where
the tool can automatically throws an exception of unexpected
type to verify that the test is correctly strict. We plan to
use aspect-oriented programming [18] techniques in order to
keep separate the code to be injected from the reference
implementation. Indeed, we are currently evaluating PostSharp
Express [19] for .NET, as a supporting tool.

A further enhancement is allowing several different
anti-oracles for the same test t, implementing different
bugs t should be able to detect. At this aim, the test-
runner should be made aware that some tests need to be

run several times, and method GetTestName should yield, on
the call under test, not only the test name, but also the number
of its run, in order to possibly change the behaviour.

The current version of the tool has been preliminarily eval-
uated by an experiment on the projects of a course. The results
were quite encouraging, as we captured 3% of sloppy tests on
a population already improved by a preliminary peer-review
process. However, they were also obviously limited, being
based on the performance of students instead of professionals.
Further applications to some industrial sized project are needed
in order to estimate its real usefulness.

ACKNOWLEDGMENT

We warmly thank Filippo Ricca for the helpful discussions
on mutation testing.

REFERENCES
[1] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software

Development. O’Reilly, 2004.
[2] G. Myers, The Art of Software Testing, ser. A Wiley-Interscience

publication. Wiley, 1979.
[3] K. Beck, Test-Driven Development by Example, ser. The Addison-

Wesley Signature Series. Addison-Wesley, 2003.
[4] A. Marchetto and F. Ricca, “From objects to services: toward a step-

wise migration approach for Java applications,” International Journal
Software Tools Technological Transfer, vol. 11, no. 6, 2009, pp. 427–
440.

[5] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “WSDL-Based automatic
test case generation for web services testing,” in SOSE ’05: Proceedings
of the IEEE International Workshop. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 215–220.

[6] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Systematic generation
of XML instances to test complex software applications,” in RISE, 2006,
pp. 114–129.

[7] H. M. Sneed and S. Huang, “The design and use of WSDL-Test: a tool
for testing web services: Special issue articles,” J. Softw. Maint. Evol.,
vol. 19, no. 5, 2007, pp. 297–314.

[8] R. Heckel and L. Mariani, “Automatic conformance testing of web
services,” in FASE, 2005, pp. 34–48.

[9] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital
computer programs,” Communications of the ACM, vol. 6, no. 2, Feb.
1963, pp. 58–63.

[10] W. E. Wong, Mutation Testing for the New Century. Springer, 2001.
[11] G. Adzic, Specification by Example: How Successful Teams Deliver

the Right Software. Manning Publications, 2011.
[12] F. Lanubile and T. Mallardo, “Inspecting automated test code: A

preliminary study,” in Proc. of 8th International Conference on Agile
Software Development (XP 2007). Springer-Verlag, 2007.

[13] T. Thelin, H. Petersson, P. Runeson, and C. Wohlin, “Applying sampling
to improve software inspections,” Journal of Systems and Software,
vol. 73, no. 2, October 2004, pp. 257–269.

[14] “NUnit,” 2014, URL: http://www.nunit.org [accessed: 2014-03-09].
[15] “FindCaller,” 2014, URL: http://www.disi.unige.it/person/LagorioG/

FindCaller.cs [accessed: 2014-03-09].
[16] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE

Transactions on Software Engineering, vol. 3, no. 4, Jul. 1977, pp.
279–290.

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, Apr. 1978, pp. 34–41.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-m.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP.
Springer-Verlag, 1997.

[19] “PostSharp Express,” 2014, URL: http://www.postsharp.net/ [accessed:
2014-03-09].

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 49

Hardware Realization of Embedded Control Algorithm on FPGA

Róbert Krasňanský, Branislav Dvorščák and Štefan Kozák
Institute of Automotive Mechatronics, Faculty of Electrical Engineering and IT,

Slovak University of Technology in Bratislava,
Bratislava, Slovakia

{robert.krasnansky, branislav.dvorscak, stefan.kozak}@stuba.sk

Abstract—This paper explores an efficient algorithm for design
and implementation of Proportional-Integral-Derivative (PID)
controller on the Field Programmable Gate Array (FPGA)
technology. To create a synthesizable control algorithm, the
Very High Speed Integrated Circuits Hardware Development
Language (VHDL) was used as a programming tool. The paper
points to the possibilities of parallel computation with the aim
of speeding up the control implementation. The practical
application of proposed control algorithm is illustrated by a
test performed on a real laboratory Direct Current (DC) motor
system. The results confirm the legitimacy of using the FPGA
methodology for design of control algorithms, since it improves
speed, accuracy and compactness. In addition, it is cost
effective and has a low power consumption, which are
desirable attributes in embedded control applications.

Keywords-FPGA; PID controller; Spartan 6; DC motor;
VHDL language

I. INTRODUCTION

Motivated by the practical success of conventional
control methods applied in industrial process control, there
has been an increasing amount of work on development of
effective hardware realizations of these control algorithms.
Despite the numerous control design methods that have been
proposed in the literature, it is estimated that PID controllers
are still employed in more than 92% of the industrial
processes today and many control systems using PID control
have proved its satisfactory performance [1].

Recently, it has been shown that FPGAs can pose an
alternative solution for the realization of digital control
systems, previously dominated by the microprocessor
systems [2]. The motivation behind using FPGAs to
implement a PID controller, rather than microcontrollers or
digital signal processors (DSPs), is that they provide a good
balance between performance and cost. On the other hand,
although the microcontrollers may be cheaper, they do not
provide enough processing power to effectively perform
complex calculations in real-time. Digital signal processors
can implement complex algorithms quickly; however, these
implementations are expensive. In addition, the systems
designed on FPGA are flexible and can be reprogrammed an
unlimited number of times. Unlike processors, FPGA circuits
use dedicated hardware for processing commands. FPGAs
logical structures can be arranged to execute in a truly
parallel manner unlike the inherent sequential execution in
microcontrollers, so different processing operations do not

have to compete for the same resources. This functionality
also makes it possible for multiple control loops to run on a
single FPGA device at different rates. Execution time may
be this way dramatically reduced, since parallel architectures
allow FPGA-based controllers to reach the level of
performance of their analog counterparts without their main
drawbacks as parameter drifts or lack of flexibility [7]. These
features make FPGAs very interesting for rapid prototyping.

The objective of this work is to design and implement a
digital PI controller algorithm on FPGA platform and verify
its performance as well as assess the FPGA suitability for
control application.

The paper is organized as follows. Section II presents the
overview to the FPGA architecture and functionality as well
as VHDL language features and applications. Section III
introduces the technical background of the PID algorithm
followed by an approach for designing and implementation
of the control system extended with the anti-windup on
FPGA technology. In Section IV, an application of the
proposed design to a laboratory DC motor system is
presented and the experimental results on Xilinx FPGA chip
are discussed. Comparisons are made between the
implementation on a real system and the simulation results.
The conclusion and future work are provided in Section V.

II. BACKGROUND

A. FPGA Architecture

The Field Programmable Gate Array (FPGA) represents
an integrated circuit containing a two-dimensional array of
configurable logic blocks whose interconnection and
functionality can be reprogrammed depending upon the
requirement of the user [8]. A typical FPGA architecture
depicted in the Fig. 1 consists of three major elements:

• Programmable logic blocks, which consist of
Configurable Logic Blocks (CLBs) arranged in an
array that provides the functional elements and
implements most of the logic in an FPGA. Each
logic block has two flip flop and can realize any 5-
input combinational logic function.

• Programmable interconnect resources provide
routing path to connect between individual CLBs
and between CLBs and input-output blocks.

• Input-Output Blocks (IOBs) provide the interface
between the package pins and internal signal lines
and thus the interconnection of external signals and

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 49

internal signals in an array of CLBs. It can be
programmed and configured as input, output or
bidirectional port.

The CLBs, IOBs and their interconnectors are managed
by a configuration program stored in a memory chip.

Figure 1. FPGA internal structure

A custom design can be implemented by specifying the
function of each logic cell and setting the connection of each
programmable switch. The CLBs structures include 2, 4 or
more logic cells, also called logic elements. The structure of
a logic cell, as the basic grain of the FPGA, is presented in
Fig. 2. It consists of a Look-up Table (LUT), which can be
configured either as a ROM, RAM or a combinatorial
function.

Figure 2. Logic cell [7]

Also, a carry look-ahead data path is included in order to
build arithmetic operators and a D-Type Flip-Flop with all its
control inputs, allowing registering the output of the logic
cell.

B. VHDL Programming Language

FPGAs can be programmed using Very High Speed
Integrated Circuits Hardware Development Language
(VHDL) [1] specifically developed to describe the behavior
and structure of a digital circuit and its attributes. It uses
significantly different principles than C language; for
instance, the commands in the code are not executed
sequentially, from the top to the bottom but in parallel way.
VHDL describes the connections of the logic gates together
to form adders, multipliers, registers and so on. A custom

design can be implemented by specifying the function of
each logic cell and setting the connection of each
programmable switch.

A circuit design process can be carried out as shown in
the Fig. 3. Once a FPGA is programmed, the internal
circuitry is connected in a way that creates a hardware
implementation of the application defined in the software.
The big advantage of FPGA-based algorithms design is the
possibility to employ the modular approach. Since there are a
lot of I/O ports, it is theoretically possible to design more
algorithms on one chip without influencing one another.

Figure 3. Design process of the circuit

The result is a user programmable piece of hardware with
the reliability of dedicated hardware circuitry and the speed
of modern microprocessor. Finally, FPGAs are Join Test
Action Group (JTAG) compliant, thus the test data can be
serially loaded into the device and the test results can be
serially read out.

III. IMPLEMENTATION OF CONTROL ALGORITHM ON FPGA

A. Digital PI Controller

In this paper, the PID algorithm is applied for closed loop
control. Among the control structures used in the industrial
segment, the classic parallel PID controller depicted in Fig. 4
is one of the most widely used due to its well established
practical implementation and tuning. The controller output is
computed in continuous time as follows:

++= ∫
t

d
i

p dt

tde
Tdtte

T
tektu

0

)(
)(

1
)()((1)

where the adjustable parameters are the proportional gain
kp, the reset time Ti and the derivative time Td, while u(t) is
the control output and e(t) is the error signal (setpoint
response level – measured response). The compensation
parameters allow an increase in the system performance in a
variety of ways.

Proportional control increases gain margin and stabilizes

a potentially unstable system. Integral control, on the other

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 49

hand, minimizes steady-state error and derivative control
increases system speed by increasing system bandwidth.

For a small time sample T, (1) can be transformed to a
difference equation by discretization using Euler integration
method – rectangular integration.

Figure 4. PID controller structure

A difference equation can be implemented by digital
systems, either in hardware or software, where the derivative
term is replaced by a first-order difference expression and
the integral part by a sum, so the equation is given as:

))1()(()()()(
1

0

−−++= ∑
−

=
nenekjekneknu

n

j
dip (2)

where n is a discrete time instant, ki = kpT/Ti is the
integral coefficient, kd = kpTd/T is the derivative coefficient
and T is sampling time. Using this algorithm called the
“position form”, all past errors e(0) - e(n) have to be stored
to compute the sum. In this paper, we prefer the “incremental
form” of the PI algorithm, where the recursive equation
describing this algorithm is obtained when (2) for the time
instant n-1 is subtracted from the same equation for the time
instant n. Thus, the expression for u(n-1) is calculated in the
following way:

))2()1(()()1()1(
1

0

−−−++−=− ∑
−

=
nenekjekneknu

n

j
dip (3)

and the correction term as

))2()1(()(

)1()()(

210 −+−+=
−−=∆

nekneknek

nununu
 (4)

Subsequently, for the PI controller, the current control
input is in the form

)1()()1()()1()(10 −++−=∆+−= nekneknunununu (5)

where

pkk =0

 ip kkk +−=1

and ki = kpT/Ti is the integral coefficient. The big advantage
of this approach is that in software implementation, (5)
avoids accumulation of all past errors.

The PI incremental form (5) has to be decomposed into
basic arithmetic operations:

)()()(nynwne −= (6)

)(00 nekp = (7)

)1(11 −= nekp (8)

 101 pps += (9)

The current control output is then calculated as

)1()(1 −+= nusnu (10)

B. Parallel Design

For the implementation of the proposed PI algorithm
onto FPGA, the parallel design [3] has been used. This
design is mainly composed of combinational logic, so each
operation has got its own arithmetic unit – adder or
multiplier. Such modified control algorithms are then
feasible on FPGA circuits. The parallel design architecture of
the PI incremental algorithm is depicted in Fig. 5. The design
requires a total of 2 combinational logic multipliers, 3 adders
and 3 registers [6]. The clock signal clk is used to control
sampling frequency. The negation of y is generated using bit-
wise complementing and subsequently adding 1. The
difference w - y generates current error e(n).

Registers are used to store the intermediate results
obtained. Multipliers and adders are used for multiplication
and addition of input signals according to arithmetic
operations described in the previous section A. The block
REG stores error values e(n) and e(n−1). Hence, at the rising
edge of control, signal e(n) of the last cycle is latched at
register REG, thus becomes e(n−1) of this cycle. Similarly,
u(n − 1) are recorded at REGs by latching u(n) respectively
[10].

Figure 5. Parallel design of incremental PI algorithm

The values of e(n) and e(n−1) with their polarity
indicating whether the calculated value is positive or
negative are fed to PI equation (10) and the current control

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 21 / 49

output is calculated. From Fig. 5, it can be seen that the
register blocks (REG) depend on clock frequency. That
means that the functionality of these blocks shall be within
the process, which responds to the rising edge of clk signal.
At the same time, registers can be set to initial values of 0
after the first start or by asserting the reset signal. The
process code example can be developed as depicted in Fig. 6
below.

Figure 6. The laboratory model of DC motor

Once the signal reset is in logical state 1, the variables e(n),
e(n-1) and u(n-1) are reset. When the signal reset is in logical
state 0 and the rising edge of the signal clk occurs at the
same time, the program assigns to the variable e(n-1) the
value of the variable e(n), similarly to the variable u(n-1) the
value of the variable u(n) and calculates the difference of
input signals w –y.

C. Implementation of Anti-windup Control

In the motor speed control, the maximum control output
from a PI controller is determined by the converter
protection, magnetic saturation and motor overheating.
Hence, the saturation is applied even at the cost of
introduction a non-linearity into the system. This
phenomenon, called windup effect, can lead to a large
overshoot, long settling time or even unstable closed-loop
system.

The goal of the implementation of anti-windup in the
incremental form of the PI controller is to eliminate the
wind-up in the error integrator and to provide a strictly
aperiodic step response even in case with large input
disturbance. The implementation of anti-windup system is
easy using incremental PI algorithm. The control action
value is being checked and uout is determined according to
the following equation [4]:

≤
≥

>>

=

minmin

maxmax

minmax

 if

 if

 if

uuu

uuu

uuuu

u

in

in

inin

out (11)

where uin(n) represents the control output before saturation
and uout(n) is the saturated control output variable.

IV. CASE STUDY

A. Laboratory DC Motor System

In this section, the proposed algorithm is applied to
control a real laboratory DC motor system (Fig. 7) to
demonstrate its high performance and efficacy. The system
consists of two co-operating real DC servomotors, where the
first one is connected as a drive motor and the other one as a
generator. The manipulated variable is the input voltage of
DC motor and the output controlled variable is the angular
speed represented by the output voltage in range of 0-10V.
To obtain a model of the system, input-output relations of the
plant have been identified with the help of the software
LABREG [5]. The interconnection of the laboratory model
with the software LABREG is assured by the Advantech data
acquisition card type PCI 1711.

Figure 7. The laboratory model of DC motor

The discrete transfer function we obtained with the
selected sampling rate Ts = 0.1s has been converted to the
following continuous-time model:

 ()
1053.141420

677.108047.0
2 ++

+=
ss.

s
sG (12)

The control objective was to drive the angular speed of
the motor to track the desired reference signal.

B. Design of Control Algorithm

The first control algorithm has been developed using
VHDL language in the Xilinx ISE Design Suite 14.4
software environment according to incremental PI from (Fig.
5). Firstly, a software implementation was developed and
tested to verify the algorithm functionality. By choosing of
appropriate sampling period and fixed point format a discrete
PI controller has been developed from continuous-time PI
controller, whereas the inverse dynamic tuning method has
been used to tune the parameters kp and Ti. From the
parameter tuning experiment the following results were
obtained: proportional gain kp = 0.2025, integral coefficient
Ti = 0.4752, derivative coefficient kd = 0 and sample period T
= 0.1s. The same discrete PI parameters were applied to the

Regist_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
 en1 <= to_sfixed (0, en1);
 un1 <= to_sfixed (0, un1);
 e <= to_sfixed (0, e);
ELSIF clk'EVENT AND clk = '1' THEN
 en1 <= e;
 e <= to_sfixed (to_integer (unsigned (w)) –
 to_integer (unsigned (y)), e);
 un1 <= "0" & Add3 (16 downto -9);
END IF;

END PROCESS Regist_process;

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 22 / 49

hardware implementation on FPGA to perform the control
tests.

Because of the fact that most FPGAs are limited to finite
precision signal processing using fixed-point arithmetic, the
bit word-length and radix setting of input and output signals
were determined carefully to ensure the fidelity of the
algorithm. Since every addition or subtraction causes adding
an extra bit as well as every multiplication result will have a
bit width equal to the sum of the number of bits in the inputs,
this was the most important part of the design. A simple flow
diagram (Fig. 8) shows the implementation of the designed
algorithm using FPGA. The algorithm has 4 inputs: the
motor system output, the reference signal w with the same bit
width as signal y, clock and reset.

Figure 8. FPGA-based control implementation cycle

The step sequence of the algorithm can be determined as
follows:

Step 1: Initialization of the system (set clock frequency,
declaration of system variables);

Step 2: Setting of bit width of the signals (input and
output signals according to the resolution of A/D
conversion results);

Step 3: Calculation of the current error according to the
reference signal defined by user (e = w – y);

Step 4: Calculation of the control output with the
current error based on the combinatorial logic
operations according to relation (10) and parallel
architecture (Fig. 5);

Step 5: Optimization of the obtained control output for
8-bit D/A converter;

Step 6: The analog output signal obtained is fed back to
drive the speed of DC motor system.

The second control algorithm was developed according
to section C and (11) and also applied to the real-time speed
control of the laboratory motor system. This algorithm is
unlike the first one augmented of the anti-windup
mechanism. The calculated control output is adjusted
according to (10) and after that optimized and fed back to
motor system through 8-bit DAC.

C. Experimental Results

The experimental studies were carried out to evaluate the
performance of the proposed control algorithm. The
algorithm was downloaded into SPARTAN-6 FPGA
development kit (Fig. 9) and the complete system was reset.

Figure 9. SPARTAN-6 development board

The comparison of the experimental results executed
using FPGA with the simulation results obtained from
MATLAB are illustrated in Fig. 10 below.

Figure 10. Time responses of the real system and simulation

The comparison of the performance of the proposed anti-
windup PI control algorithm with the PI control algorithm
without the anti-windup mechanism is also depicted. The

10 20 30
0

2

4

6

time [s]

a
ng

ul
a

r
sp

e
e

d
[r

a
d/

s]

setpoint
output (real)
output (simulation)

10 20 30
0

2

4

6

time [s]

setpoint
output
output (anti-windup)

10 20 30

1

2

3

4

time [s]

u
 [V

]

control (simulation)
control (real)

10 20 30

1

2

3

4

time [s]

upper bound
control
control (anti-winup)

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 23 / 49

results show the effectiveness and good performance of the
FPGA-based controller. The limited vector size of the signals
due to the different interpretation of the fixed-point
arithmetic has an effect in the calculation and therefore in the
shape of the obtained time responses.

The objective evaluation of quality has been performed
by meaning of various performance and quality criteria in the
time domain (settling time, maximal overshoot and root
mean square error (RMSE)) with results expressed in Table
1. The PID algorithm has been demonstrated to be effective
for DC motor speed control.

TABLE I. QUANTIFICATION OF QUALITY CONTROL CRITERIA

Control Performance

Controlled output Settling time
Max.

Overshoot (%)
RMSE

Real system 8,25 6,9449 0,8937

Simulation 9,1 5,6301 0,8992

Real system with anti-windup 5,3 0,7815 0,9217

As seen in Table 1, anti-windup mechanism has

improved the control performance mostly in the way of
overshoot and settling time.

D. Resource Usage

Xilinx tool device utilization summary and percentage of
available resources reports, which have been used for the
current design using FPGA are shown in Table 2 below.

TABLE II. DEVICES UTILIZATION SUMMARY

Device Utilization Summary

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 170 18,224 1%

Number used as Flip Flops 168

Number used as Latches 2

Number of Slice LUTs 313 9,112 3%

Number used as logic 305 9,112 3%

Number of occupied Slices 124 2,278 5%

Number of MUXCYs used 204 4,556 4%

Number with an unused Flip Flop 186 344 54%

Number with an unused LUT 31 344 9%

Number of fully used LUT-FF pairs 127 344 36%

Number of slice register sites lost to
control set restrictions

94 18,224 1%

Number of bonded IOBs 33 232 14%

Number of LOCed IOBs 13 33 39%

Number of RAMB16BWERs 0 32 0%

Number of RAMB8BWERs 0 64 0%

Number of BUFG/BUFGMUXs 5 16 31%

Number of DSP48A1s 3 32 9%

Hardware resources usage was: 168 slice flip-flops, 170
slice registers and 313 slice LUT's. It can be seen that just
5% of the FPGA was used.

V. CONCLUSION AND FUTURE WORK

In this paper, a closed-loop PI algorithm was proposed,
designed and successfully implemented on FPGA platform.
The performance was verified and tested for control of
laboratory DC motor system. The control algorithm has been
improved by using the anti-windup structure in case of
considering the input constraints. The overall control
algorithm has been programmed using VHDL language and
implemented on Xilinx Spartan-6 FPGA development kit.
The experimental results show a good set-point tracking and
demonstrate that FPGAs are well suited for implementation
of complex motor control algorithms due to their high speed
execution characteristics. The future work will deal with the
design and implementation of more complex predictive
control algorithm considering the constraints on input, state
and output variables.

ACKNOWLEDGMENT

The work has been supported by the Slovak Research
and Development Agency under grants APVV-0772-12 and
APVV-0246-12.

REFERENCES
[1] P. J. Ashenden, The Designer’s Guide to VHDL. Morgan

Kaufmann, 1995.
[2] K. J. Astrom and B. Wittenmark, Computer Controlled

Systems, Englewood Cliffs, NJ: Prentice-Hall, 1997.
[3] Y. F. Chang, M. Moallem, and W. Wang, “Efficient

implementation of PID control algorithm using FPGA
technology,” Proceedings of 43 IEEE Conference On
Decision and Control, vol. 5, Dec. 2004, pp. 4885–4890.

[4] L. Charaabi, E. Monmasson, and I. Slama-Belkhodja,
“Presentation of an efficient design methodology for FPGA
implementation of control systems: Application to the design
of an antiwindup PI controller,” Proc. IEEE Ind. Electron.
Soc. Annu. Conf., vol. 3, Nov. 2002, pp. 1942–1947.

[5] S. Kajan and M. Hypiusová, “Labreg Software for
Identification and Control of Real Processes in Matlab,”
Technical Computing Prague 2007: 15th Annual Conference
Proceedings, Prague, Czech Republic, Nov. 2007, pp. 71.

[6] R. Krasňanský and B. Dvorščák, “Design and Implementation
of FPGA-based PID controller,” In ACCS’13: 3rd
International Conference on Advanced Control Circuits and
Systems, ERI, Luxor, Dec. 2013, pp. 43.

[7] E. Monmasson and M. N. Cirstea, “FPGA Design
Methodology for Industrial Control Systems-A Review,”
IEEE Transactions on Industrial Electronics, vol. 54, August
2007, pp. 1824-1842.

[8] J. Oldfield and R. Dorf, Field-Programmable Gate Arrays,
John Wiley & Son, 1995.

[9] Xilinx Data Book, 2006, Available online at: www.xilinx.com
(accessed March 28, 2014).

[10] W. Zhao, B. H. Kim, A. C. Larson, and R. M. Voyles, “FPGA
implementation of closed-loop control system for small-scale
robot,” In ICAR’05: 12th International Conference on
Advanced Robotics, Seattle, WA, July 2005, pp. 70-77.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 24 / 49

First-Order Combinatorics Presenting a Conceptual Framework for Two Levels of
Expressive Power of Predicate Logic

Mikhail Peretyat’kin
Institute of Mathematics and Mathematical Modeling

Almaty, Kazakhstan
e-mail: m.g.peretyatkin@predicate-logic.org

Abstract—In this work, we proceed to study finitary and infini-
tary first-order combinatorics within the framework of a new
approach intended to investigations of predicate logic. Some
properties of these combinatorics are established. We present
a general scheme of semantic layers of model-theoretic prop-
erties having importance in the given direction. A number of
demonstrations is given showing essence of both finitary and
infinitary combinatorial methods for first-order theories. The
work represents a basis for further investigations on expressive
power of predicate logic.

Keywords—first order logic; theory; finitely axiomatizable the-
ory; computably axiomatizable theory; Tarski-Lindenbaum algebra;
model-theoretic property; computation; first-order combinatorics.

I. INTRODUCTION

Constructions of finitely axiomatizable theories were cre-
ated to answer questions concerning a common problem about
expressive power of first-order logic. There are constructions
of Church [2], Kleene [7], Hanf [5], Peretyat’kin [12], and
others. Each construction represents a general method for
constructing finitely axiomatizable theories that can yield a
series of finitely axiomatizable theories depending on one
or a few input parameters. One can manage properties of
the obtained theory by choice of the parameters. Some open
questions on expressive power of first-order logic can also be
solved with simpler methods based on the signature reduction
procedures.

The idea to introduce a first-order combinatorial termi-
nology have arisen from the available approaches to solve
a principal problem of characterization of predicate logic
of a finite language by building isomorphisms between the
Tarski-Lindenbaum algebras of predicate calculi of two finite
rich signatures with preservation as a large semantic layer
of model-theoretic properties as possible [9][10][11]. The
method of constructing such an isomorphism [10] is based
on algorithmic computation in first-order predicate logic. It
uses a universal construction of finitely axiomatizable theories
simulating some computation of a Turing machine carrying out
the role of a computer-controller. This approach can be said to
be an infinitary first-order combinatorics. The second method
of constructing the isomorphism, [11], is based on a finite
combinatorial transformation in predicate logic. It uses so-
called finite-to-finite signature reduction procedures and can be
said to be finitary first-order combinatorics. In the work [14],
a complex of concepts and general specifications connected

with first-order combinatorics was given together with some
reasoning justifying the combinatorial terminology for use in
this direction. In this work, we introduce a number of further
concepts and formulate some claims concerning applications of
the finitary and infinitary first-order combinatorial methods for
construction and transformation of theories in predicate logic.
Besides, a series of general statements is formulated, and a
number of demonstrations are given showing essence of the
concepts related with finitary and infinitary first-order combi-
natorics and outlining limits of their possible applications.

In the third section, we introduce definitions of semantic
layers relevant in this direction, in the fourth section we
introduce a concept of the relation of virtual definable equiv-
alence between theories, the fifth section describes a common
scheme of application for infinitary first-order combinatorics,
the sixth section specifies possible versions of the universal
construction of finitely axiomatizable theories, in the seventh
section we list some common statements concerning first-
order combinatorics, in the eighth section we describe main
situations corresponding to first-order combinatorics. In the
ninth section we give some summary to the paper.

II. PRELIMINARIES

Theories in first-order predicate logic with equality are con-
sidered. General concepts of model theory, algorithm theory,
Boolean algebras, and constructive models can be found in
Hodges [6], Rogers [17], and Goncharov and Ershov [4]. Basic
concepts concerning first-order combinatorics can be found in
[14]. Generally, incomplete theories of finite or enumerable
signatures are considered.

A finite signature is called rich, if it contains at least one
nary predicate or function symbol for n>1, or two unary
function symbols. The following notations are used: FL(σ) is
the set of all formulas of signature σ, FLk(σ) is the set of all
formulas of signature σ with free variables x0, ...,xk−1, SL(σ)
is the set of all sentences (i.e., closed formulas) of signature σ.
A theory is said to be computably axiomatizable if it admits a
computable system of axioms. By L(T), we denote the Tarski-
Lindenbaum algebra of theory T of formulas without free
variables, while L(T) denotes the Tarski-Lindenbaum algebra
L(T) considered together with a Gödel numbering γ; thereby,
the concept of a computable isomorphism is applicable to such
objects.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 25 / 49

Let σ be a signature, and Σ be a subset of SL(σ). By
[Σ]�, we denote a theory of a signature σ ′⊆σ generated
by the set Σ as a set of its axioms, where σ ′ contains
only those symbols from σ that occur in formulas of the set
Σ. Let σ∞ be a fixed enumerable maximally large infinite
signature containing countably many both constant symbols,
symbols of propositional variables, and predicate and function
symbols of each arity n> 0. If a theory T of signature σ∞
is defined by the set of axioms {Φi | i∈Wm} as follows:
T =[Σ]� (where Wm is mth computably enumerable set in
Posts’s numbering), the number m is called a weak computably
enumerable index or simply weak index of T , and we denote
this theory by T �{m}, m∈N. This sequence represents all
possible computably axiomatizable theories, up to an algebraic
isomorphism of theories. Symbol P(X0, ...,Xa), shortly P, is
specialized to denote a propositional formula of signature σ ∗=
{X0,X1, ...,Xk, ...;k∈N} (consisting of propositional vari-
ables), while a specializes the number of variables occurred in
the formula. By PRO, we denote the set of all such formulas,
while Pi(X0, ...,Xa(i)), i∈N, is a fixed Gödel numbering
of the set PRO. For a set A⊆N, record A |=P denotes
the value of term P(χA(0),χA(1), ...,χA(a)), where χA(x)
is characteristic function of the set A. Here, propositional
formula P plays the role of a table condition applicable for
set A⊆N.

Formulation to the universal construction FU of finitely
axiomatizable theories can be found in [12, Ch.6]. Main defi-
nitions connected with semantic layers are found in [14]. We
use notation MQL for the model quasiexact semantic layer
presenting infinitary first-order combinatorics, [14].

III. FIRST-ORDER COMBINATORICS AND A SCHEME OF
SEMANTIC LAYERS

In accordance with specifications [14], signature reduc-
tion procedures represent a basis for the concept of first-

order combinatorics; they are considered as particular cases
of combinatorial methods in predicate logic. Signature trans-
formations “finite-to-finite” represent finitary combinatorial
methods, while signature reduction procedures “infinite-to-
finite” represent infinitary combinatorial methods. The problem
is to generalize these particular methods to a maximum general
approach for which it would be possible to apply such a serious
term as ’combinatorics’. A principal aim of the combinatorial
approach is to characterize classes of finitary and infinitary
methods of transformation of theories. After that, we can
define the finitary semantic layer as the set of those model-
theoretic properties p which are preserved under finitary first-
order methods, and infinitary semantic layer as the set of those
properties p which are preserved under infinitary methods. For
the first-order combinatorial approach, its perfection is consid-
ered as a demand of higher priority, while the maximality of
the semantic layers of preserved model-theoretic properties is
considered as a demand of secondary priority.

In Fig. 1, we present a scheme of inclusions between
the semantic layers and similarity relations relevant for first-
order combinatorics. Two relations ≈ and ≈a in the top
are relations of isomorphism of theories, where ≈ means a
model isomorphism or simply isomorphism, while ≈a means
an algebraic isomorphism or ∃∩∀-presentable equivalence
between two theories. Although ≈ and ≈a are not similarity
relations, they are included in the scheme for the sake of
completeness. Relations ≡l and ≡al are similarity relations
relative to the semantic layer ML consisting of all model
properties, and respectively, to the layer AL consisting of all
algebraic properties. Semantic layers MDL,ADL,MCL, etc.,
and corresponding similarity relations ≡ad, ≡d, etc., are de-
fined by the classes of singleton, Cartesian, and respectively,
Cartesian-quotient interpretations [14]. Leading letter A means
an algebraic version while M means a model version. A
middle letter S means ’singleton’, C means ’Cartesian’, and

Fig. 1. A scheme of semantic layers of model-theoretic properties

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 26 / 49

D means ’Cartesian-quotient’. The Hanf layer HL is supposed
to be ∅.

Infinitary semantic layer MQL [12][14] has a sophisticated
definition. Therefore, it would be useful to introduce a simple
rule to check whether a model-theoretic property p is included
in this layer. For this purpose, we consider two following
classes of interpretations of theories:

I :T →T 〈ϕm1
1 /ε1, ...,ϕ

mk

k /εk〉, (1)
I :T →T 〈ϕm1

1 /ε1, ...,ϕ
mk

k /εk〉⊕SI, (2)

where T is a computably axiomatizable theory of an enu-
merable signature σ, κ= 〈ϕm1

1 /ε1, ...,ϕ
mk

k /εk〉 is a tuple of
formulas of signature σ suitable for the Cartesian-quotient
extensions, [14, Section 3], while SI is the theory of a successor
relation with an initial element in signature {�2,c}. Based on
this, we define two following semantic layers:

Reference_Block (3)

(a) FINL= the set of all model-theoretic properties p of
algebraic type preserved by any interpretation I of the form
(1) with an arbitrary computably axiomatizable theory T and
arbitrary tuple κ of this form,

(b) INFL = the set of all model-theoretic properties p of
algebraic type preserved by any interpretation I of the form
(2) with an arbitrary computably axiomatizable theory T and
arbitrary tuple κ of this form.

End_Ref

It can be checked that the following assertions take place:

FINL =ADL, (4)

INFL R= I2fL, INFL∩ML R= I2fL∩ML R=UniL. (5)

This shows that the family (1) forms a representative class of
interpretations for finitary semantic layer ADL. On the other
hand, a simple modification (2) of the scheme (1) forms a
class of interpretations for the semantic layer INFL, that, in
view of (5), can play the role of a simple rule to check
whether a model-theoretic property p is included in infinitary
semantic layer. The layer FINL is said to be the rapid finitary
semantic layer, while INFL is said to be the rapid infinitary
semantic layer. Simplicity of the definitions (3)(a) and (3)(b)
ensures relevance of the layers FINL and INFL for first-order
combinatorics.

As for the algebraic version of the infinitary semantic layer,
it is currently not supported by any version of the universal
construction of finitely axiomatizable theories. This layer is
included in the scheme in Fig. 1 for completeness (shown by
a dashed circle).

IV. VIRTUAL DEFINABLE EXTENSIONS AND FINITARY
FIRST-ORDER COMBINATORICS

There is a known in model theory method of addition to the
universe imaginary elements corresponding to a definable set
of elements or even to a first-order definable set of tuples of
certain length modulo a definable equivalence relation (they
are said to be virtual elements). Let’s add a finite set of
virtual regions to the universe. Furthermore, we have to include
in signature new predicates distinguishing these areas and

establishing a relation of the new elements with the old tuples
modulo the equivalence relations. There is a possibility, based
on predicate logic, to manipulate with first-order formulas in
the extended universe containing the source universe together
with the added virtual areas. For this purpose, it is required
to define special rules of construction and interpretation of
first-order formulas in such an extended region. This method
allows us, remaining inside the old universe of models of
theory T , to manipulate with language of first-order logic in
models of some new theory S, which is possible said to be
a virtual first-order definable extension of the source theory
T . One can mention that, any model-theoretic properties of
theories T and S should be considered as coincided since the
virtually extended theory S is presented in the initial theory
T . Furthermore, notice that such an operation of addition of
a finite number of virtual definable regions can be performed
in a general situation when the source theory T is incomplete.
In this case, we obtain a computable isomorphism between
the Tarski-Lindenbaum algebras μ :L(T)→L(S) preserving
all really model-theoretic properties.

Two theories T and S are said to be virtually definably
equivalent, written as T ∼≈S, if there are virtual definable
extensions T ′ of T and S ′ of S such that T ′ and S ′ are
algebraically isomorphic, T ′≈aS

′. This relation, close to that
considered in Manders [8], seems to be the most common
equivalence relation between first-order theories. Since the
operation of a virtual definable extension of a theory is closely
related to the operation of Cartesian-quotient extension of a
theory, [14, Section 3], we obtain that this relation between
theories plays the principal role within the complex of concepts
for finitary first-order combinatorics.

V. NORMALIZED SCHEME FOR INFINITARY FIRST-ORDER
COMBINATORICS

In this section, we specify some method of construction
of finitely axiomatizable theories with pre-assigned model-
theoretic properties. In the most common case, the target
theory depends on an input parameter n. Our goal is to con-
struct a finitely axiomatizable theory F =F (n) of a given finite
rich signature τ . First, we build an intermediate computably
axiomatizable theory T =T (n) using some particular method.
Signature of T :

σ= {Xi | i∈N} ∪ σ′, (6)

where Xi, i∈N, is a sequence of nulary predicates (i.e.,
propositional variables), and σ ′ depends on the aim of our
construction. Axioms of T consist of three groups:

Frame : a group of axioms describing general form of a
so-called skeleton of the theory; these axioms depend on the
aims of the construction;

Space : formulas of the form P(X0, ...,Xa), with P∈PRO;

Ext : formulas of the form P(X0, ...,Xa)→Ψ , with P∈
PRO and Ψ ∈SL(σ′).

Applying the universal construction FU, we build a finitely
axiomatizable theory F =F (n)=FU(T,τ) of the wished finite
rich signature τ together with a computable isomorphism μ :
L(T)→L(F) between the Tarski-Lindenbaum algebras pre-
serving model-theoretic properties of their completions within
the infinitary semantic layer MQL.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 27 / 49

Introduce the following notation

θi=μ(Xi), i∈N. (7)

For an arbitrary set A⊆N, we denote

T [A]=T + {Xi | i∈A}∪{�Xj | j∈N�A},
F [A]=F + {θi | i∈A}∪{�θj | j∈N�A}.

(8)

Furthermore, we define a number m such that

Wm= {k |T �Pk(X0, ...,Xa(k))}, (9)

and introduce the following notation

Ω(m)= {A⊆N | (∀k∈Ω(m))A |=Pk}. (10)

Any object involved in the transformation n �→ T �→ F
is presented via appropriate computably enumerable index or
Gödel number such that the whole passage n �→ T �→ F is
defined by an effective operator relative to indices and/or Gödel
numbers. The given complex of transformations is said to be
normalized if the following conditions are satisfied:

(a) T �P(X0, ...,Xa)⇔ T.Spase�P(X0, ...,Xa),P∈PRO,

(b) (∀A⊆N) T [A] is either complete or contradictory.
(11)

These conditions are, in fact, natural. If we have an
arbitrary effective transformation n �→ T ′ �→ F ′, where T ′ is
a computably axiomatizable theory constructed from n, and
F ′ is a finitely axiomatizable theory of signature τ obtained
from T ′ by the universal construction, then, this scheme
can equivalently be transformed in the form of a normalized
scheme n �→ T �→ F . Furthermore, any normalized complex
must satisfy the following properties: (a) T [A], A∈Ω(m)
represents the family of all complete extensions of T ; (b)

F [A], A∈Ω(m), represents the family of all complete ex-
tensions of F ; (c) isomorphism μ maps T [A] to F [A], for
all A∈Ω(m); (d) for any A∈Ω(m) complete theories T [A]
and F [A] have identical model-theoretic properties within the
infinitary semantic layer MQL; (e) effectively, in the system
of axioms of T , one can find s∈N such that function ϕA

s (t)
is characteristic for the set Nom(T [A]), for all A∈Ω(m); a
definition of ϕA

s (t) is found in [17, p.130].

VI. VERSIONS OF THE UNIVERSAL CONSTRUCTION

Hereafter, we use notation MQL for a sublayer of the
infinitary layer MQL.

Simplest form of the universal construction, denoted FǓ, is
presented by:

Statement 1. [GENERIC UNIVERSAL CONSTRUCTION: A PRIM-
ITIVE FORM] The following assertion holds (where MQL⊆
MQL):

(∀ c.a. theory T)(∃ f.a. theory F)
[
T ≡MQL F

]
. (12)

A more common formulation to the universal construction,
[12, Th.0.6.1]:

Statement 2. [GENERIC UNIVERSAL CONSTRUCTION: A NOR-
MAL FORM] Given an arbitrary computably axiomatizable
theory T and a finite rich signature σ. Effectively in a weak
c.e. index of T and Gödel number of σ, one can construct

a finitely axiomatizable theory F =FU(T,σ) of signature σ
together with a computable isomorphism μ :L(T)→L(F)
between the Tarski-Lindenbaum algebras preserving all model-
theoretic properties within the layer MQL (it is supposed that
MQL⊆MQL).

The following dependence statement takes place.

Lemma 3. Having any version of the universal construc-
tion in the primitive form (12) with the semantic layer MQL⊆
MQL, one can restore the missing effectiveness requirement
obtaining its normal form presented in Statement 2 with the
same layer MQL.

PROOF. First, we introduce an operation with a sequence
of theories. We use sequence T �{n}, n∈N, including all, up
to an isomorphism, c.a. theories, cf. Preliminaries. Let T �{n}

has signature σn. It is assumed that σn∩σk =∅ for all n, k
such that n �=k. Consider the following new signature

σ′= {Z0
i | i∈N}∪{U1, c}∪σ0∪σ1∪ . . .∪σk∪ . . . , (13)

where Z0
i , i∈N, are symbols of nulary predicates. It is

assumed that the symbols U , c, and Zi, i∈N, do not belong
to σ0∪σ1∪ ...∪σk ∪

Construct theory T u
c.a. of signature σ′ defined by the

following set of axioms:

1◦. U(x)↔ (x �= c),

2◦. (∃x)U(x),

3◦. Zn→ �Zk, n,k∈N, n �=k,

4◦. Zn→ (on U(x), axioms of Tn are satisfied), n∈N,

5◦. Zn→ (outside U(x), σn-symbols defined trivially),

6◦. �Zk→ (all σk-symbols are defined c-trivially), k∈N.

Denote this theory by
⊗

n∈NT �{n}. The statement above
“defined c-trivially” means that all σk-predicates are identically
false, each σk-function fm satisfies f(x1, ...,xm)=x1 for all
its arguments, and each σk-constant is interpreted by c.

We can show that the following assertions hold:

(a) theory T u
c.a.=

⊗
n∈NTn is computably axiomatizable;

(b) for any n∈N, theory T u
c.a.∪{Zn} is algebraically

isomorphic to the constant extension T �{n}〈c 〉 of the theory
T �{n};

(c) there is a computable isomorphism μn :L(T �{n})→
L(T u

c.a.∪{Zn}) preserving all model-theoretic properties
within the semantic layer ASL.

Part (a) is a consequence of the fact that the sequence
T �{n}, n∈N, is computable. Part (b) is checked immediately.
Part (c) is a consequence of (b).

Now, we are going to use the universal c.a. theory T u
c.a.

to deduce the normal form of the universal construction from
its primitive form. Applying the primitive form (12) of the
universal construction, we find a finitely axiomatizable theory
F0 together with a computable isomorphism μ0 :L(T u

c.a.)→L(F0) preserving the layer MQL. After that, a construction
with the effectiveness requirement is obtained as an immediate
consequence of the universality condition for T u

c.a. stated in

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 28 / 49

(a)–(c); namely, we have to perform the following transforma-
tion:

T �{n} �→ T u
c.a.+{Zn}︸ ︷︷ ︸

S

�→ FǓ(S) �→ Redu(FǓ(S),σ), (14)

where Redu(H,σ) denotes a signature reduction procedure
from a finitely axiomatizable theory H to such a theory of fi-
nite rich signature σ. By construction, we can effectively build
a computable isomorphism between the Tarski-Lindenbaum
algebras of theories T �{n} and Redu(FǓ(T u

c.a.+{Zn}),σ).
Thus, the transformation (14) can play the role of a normal
form of the universal construction with the layer MQL. �

The following statement represents so-called universal-
under-canonical construction; alternatively, it is said to be the
canonical-mini construction:

Statement 4. There is a routine proof (by way of transfor-
mation of theories based on the methods of infinitary first-
order combinatorics) that, from statement of the canonical
construction, [12, Ch.3, Th.3.1.1], deduces a weak version of
the universal construction with the following semantic layer
of model-theoretic properties (denoted by M1L◦):

(a) existence of a prime model, its strong constructivizabil-
ity, and the value of its algorithmic dimension (relative
to strong constructivizations);

(b) existence of a countable saturated model and its strong
constructivizability.

PROOF. Only outline of the proof is given. The canoni-
cal construction can control those model-theoretic properties
which are expressible in signature σ∗= {P 1

0 ,P
1
1 , ...,P

1
k , ...;k∈

N} with infinitely many unary predicates (pay an attention:
Chapter 3 of [12] is titled “The construction over a unary
list”, where the list means a layer). On the other hand,
the pointed out layer M1L◦ consists of exactly those model-
theoretic properties controlled by the canonical construction,
which are expressible in terms of structure of the Tarski-
Lindenbaum algebras Ln(T), n∈N, n> 0, of theory T .

Let T be an arbitrary computably axiomatizable theory
of an enumerable signature σ ′ having Gödel numbering Φi,
i∈N, for the set SL(σ′). The sequence of sentences Φi, i∈N,
is a generating set for the Tarski-Lindenbaum algebra L(T).
Enrich σ′ with propositional variables Xi, i∈N, and add to
T additional axioms Xi↔Φi, i∈N. Construct parameterized
Stone space Ω(m) for T relative to generating sequence
Xi, i∈N. Considering a set A∈Ω(m) as an oracle, let’s
construct Boolean algebra B=

⊗
0<i<ωLk(T [A]) that, in fact,

is a c.e. Boolean algebra relative to computation with oracle
A. It is an important moment that satisfaction of each model-
theoretic property p∈M1L◦ in theory T is expressible (in a
known way) via the algebra B. On the other hand, we can
present the algebra B (depending on oracle A) via c.e. binary
tree computable with the same oracle. This gives a value
to the second parameter s∈N to the canonical construction.
Applying the construction FC to the obtained pair of input
arguments (m,s), we finally build theory F =FC(m,s,σ) that,
by virtue of main statement of the canonical construction, is
the required finitely axiomatizable theory. �

Mention that, an available proof for the canonical con-
struction is essentially simpler in comparison with that for

the universal construction. On the other hand, the proof given
above represents a demonstration of the methods of infinitary
first-order combinatorics.

VII. SUMMARY: SOME COMMON STATEMENTS
CONCERNING FIRST-ORDER COMBINATORICS

In this paragraph, we formulate a series of common
statements corresponding to finitary and infinitary first-order
combinatorics (or not corresponding to such a combinatorics).

S1. In the case of finitary first-order combinatorics, char-
acteristic property of the transformation between theories is
availability of a one-to-one mapping between the isomorphism
types of their models (this property is said to be the model-
bijectiveness).

S2. In the case of infinitary first-order combinatorics, a
characteristic property of the construction is availability of
non-standard fragments in models of the target theory, whose
description should be simple enough; moreover, this simplicity
is a principal demand of infinitary first-order combinatorics.

S3. In the case of infinitary first-order combinatorics,
our goal is to build a computably axiomatizable theory that,
generally, may be incomplete; a description of the family of
all complete extensions of the theory should be presented;
the axioms should provide some pre-assigned properties of
these extensions depending on an input parameter; applying
an appropriate version of the universal construction, we obtain
the target finitely axiomatizable theory.

S4. In the case of infinitary first-order combinatorics, the
input parameter could be absent if our goal is to build a
separate example of finitely axiomatizable theory with some
pre-assigned properties; on the other hand, we can use a few
input parameters (more than one) if it is necessary for the
problem considered.

S5. In the case of infinitary first-order combinatorics, a
complete theory may be considered as a particular case of
incomplete theories; however, if the purpose is limited with
complete theories only, such a construction does not corre-
spond to specifications of infinitary first-order combinatorics
or is weakly linked with it.

S6. If we consider or build an incomplete theory, but it is
impossible to parameterize the family of its complete exten-
sions, such a construction does not correspond to specifications
of infinitary first-order combinatorics or is weakly linked with
it.

S7. In the case of infinitary first-order combinatorics, first
of all, the used methods of construction or transformation of
theories are principal; as for the requirements of computability
of the construction and enumerability of the signature, they
ordinarily are satisfied automatically.

S8. In the case of infinitary first-order combinatorics, a
sublayer of the full infinitary semantic layer MQL may be
considered; an empty layer ∅ is also admissible.

VIII. DEMONSTRATIONS: SITUATIONS CORRESPONDING
TO FIRST-ORDER COMBINATORICS

In this section, we consider a number of typical examples
of applications of finitary and infinitary combinatorial meth-

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 29 / 49

ods; we also demonstrate some situations when methods of
construction and transformation of theories does not corre-
spond to the concept of first-order combinatorics.

1) Definitionally equivalent theories: In [16, p. 481],
C. Pinter writes, “There are many common instances of the-
ories, which may be formulated naturally in more than one
way, using different sets of primitive relations and operations.
For example, lattice theory may be presented as a ... theory
... with the operations + and ·, or alternatively, as a theory ...
whose language has only one nonlogical symbol �. ... When
theories T and T ′ are related in this manner, they are said
to be definitionally equivalent.” Similar sense has the concept
of relation of synonymity of theories introduced in Bouvere
[1]. As mentioned in [18, p.130], “... synonymity requires the
universe to remain unchanged,” the same is also true relative
to Pinter’s definitional equivalence. Some additional examples:
Boolean algebras can be considered in the signature either
{∪,∩,−,0,1}, or {⊆,0,1}, or even {+, ·,0,1}; group theory
can be considered in the signature either {·,e}, or {·}, or even
{+,θ}, etc. In these situations, we have a simplified version
of finitary first-order combinatorics (because more common
virtual definable extensions of theories are not used here).

2) Virtual definitionally equivalent theories: Some situ-
ations which are close to finitary first-order combinatorics
were discussed by Leslaw Szczerba in [18]. At [18, p. 130]
he writes, “... authors frequently use sequences of elements
as new elements, members of a new universe (e.g., points
may be pairs of real numbers as in the case of the Cartesian
plane), universes might be restricted to definable subsets,
and moreover, new elements might be equivalence classes
with respect to some definable equivalence relation.” These
statements exactly correspond to the concept of Cartesian
extension of a theory and, in other words, to the concept of
a virtual definitional extension of a theory. Here, we exactly
have finitary first-order combinatorics. Dale Myers in [9, p.85]
calls this transformation an interpretive isomorphism and states
that this definition was introduced in Manders [8] (author’s
remark: Manders’ definition is based on Szczerba’s ideas).
Some additional examples: (a) Consider the class K of models,
which are Boolean algebras in signature {∪,∩} with omitted
both particular elements 0 and 1; thereby, the operations are
partial. Alternatively, we can consider this class of systems in
signature {⊆}. Applying virtual definable extension to Th(K),
we can obtain theory BA of Boolean algebras. From this
fact, we obtain that theories Th(K) and BA have identical
model-theoretic properties (namely, there is a computable
isomorphism μ :L(Th(K))→L(BA) that preserves all model-
theoretic properties). (b) Another example is a system of
positive real numbers N=(R>0, ·,+,−) with partial operation
−. Applying virtual definable extension to Th(N), we can ob-
tain theory Th(M), where M=(R, ·,+,−); thereby, theories
Th(N) and Th(M) have identical model-theoretic properties.

In all these cases, we have a situation of finitary first-order
combinatorics.

3) Particular examples of finitely axiomatizable theories:
Suppose that we are going to construct a finitely axiomatizable
theory F of a given finite rich signature σ satisfying the
following properties: the set of all complete extensions of
F consists of a countable sequence Fk, k∈N∪{ω}, such
that, each of the theories F0, F1, F2, ... is ω-stable theory

and is finitely axiomatizable over F , while Fω is not finitely
axiomatizable over F , it is not ω-stable and has a prime
model. First, we have to find a computably axiomatizable
theory T with these properties (it is a simple exercise to build
such a theory). Applying the universal construction to T , we
can pass a finitely axiomatizable theory F =FU(T,σ) together
with a computable isomorphism μ :L(T)→L(F) preserving
all model-theoretic properties of the infinitary semantic layer
MQL. Because both properties p1=“theory is ω-stable” and
p2=“theory has a prime model” belong to MQL, we obtain
finally that the theory F indeed satisfies the posed properties.

This example demonstrates methods of infinitary first-order
combinatorics.

4) Algorithmic complexity estimates for semantic classes:
Let σ be a finite rich signature, and Φi, i∈N, be a fixed Gödel
numbering for the set of sentences of this signature. We are
going to prove the following statement.

Theorem 5. {n |Φn determines a complete theory}≈Π0
2.

PROOF. The upper estimate can be established immedi-
ately.

For the lower estimate, we consider the following m-
universal in Π0

2 set: I= {n |Wn is infinite }, [17, Th.13-
VIII, p.264]. Signature of the theory σ= {X0, ...,Xi, ...} con-
sists of propositional variables (i.e., nulary predicates). Given
an input parameter n. Consider computably axiomatizable
theory T =T (n) of signature σ, determined by the following
set of axioms:

1◦. Xk ↔ (∃x1...xk)
∧

0<i<j�k(xi �=xj),

2◦. Xk, k∈Wn.

Applying the universal construction FU to T (n), we ef-
fectively find a finitely axiomatizable theory F =F (n)=
FU(T (n),σ) of signature σ together with a computable iso-
morphism μ :L(T)→L(F). First, consider the case n∈Wn.
In this case, Wn is infinite, so all models of T are infinite and
the theory is ω0-categorical; thus, T is complete by Vaught
Theorem. Now, consider the case n �∈Wn. In this case, Wn is
finite, thereby, theory T cannot be complete since it has both
finite and infinite models. As a result, we have obtained that
the theory T is complete if and only if n∈ I; thus, we have

n∈ I⇔Tn is complete ⇔Fn is complete.

The theory F (n) is defined effectively in T (n). Therefore, there
exists a total computable function f(n) such that the sentence
Φf(n) is an axiom of this theory. Finally, we obtain the required
lower estimate:

n∈ I⇔Φf(n) determines a complete theory.

Proof of Theorem 5 demonstrates methods of infinitary
first-order combinatorics. Furthermore, there are lots of results
in this direction in [12, Ch. 8].

5) Isomorphisms between predicate calculi of different fi-
nite rich signatures: We consider a problematic concern-
ing the isomorphism type of the Tarski-Lindenbaum algebra
L(PC(σ)) of predicate calculus PC(σ) of a finite rich signature
σ. Methods of [11] determine a Hanf’s isomorphism μ between
the Tarski-Lindenbaum algebras L(PC(σ1)) and L(PC(σ2)) of

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 30 / 49

any two finite rich signatures σ1 and σ2. It is assembled from
a countable set of partial mappings, which are finite-to-finite
signature reduction procedures; thereby, this isomorphism μ
preserves all really model-theoretic properties. The work by
Myers [9] also defines such an isomorphism between the
predicate calculi L(PC(σ1)) and L(PC(σ2)) that is assembled
from partial mappings described by Gaifman’s maps [3]. These
two approaches coincide with each other from the point of
view of finitary first-order combinatorics.

6) Structure of the Tarski-Lindenbaum algebras of semantic
classes: There are lots of results in this direction in papers
[13][15] and others. Their proofs demonstrate methods of
infinitary first-order combinatorics.

7) Definability in Peano Arithmetic and set theory: Let T
be a rich theory like arithmetic or set theory (for definiteness,
let T be Peano Arithmetic). It is a known fact that T is not
complete; moreover, any finitely axiomatizable extension of
T cannot be complete. Thereby, we have obtained that the
Tarski-Lindenbaum algebra L(T) must be countable, atomless
Boolean algebra. However, axiomatic of the theory T is such
that neither direct parameterization nor even understandable
description of the family of all complete extensions is possible.
Thus, argumentation of statement S6, cf. Section VII, is
applicable to this situation concerned to rich formal systems.
Some additional examples: Church construction [2], Kleene
construction [7] (presenting an extension of Peano Arithmetic),
first-order presentation of any universal computing system, etc.

All these examples demonstrate situations outside of the
approach based on the methods of first-order combinatorics.

IX. CONCLUSION

The work presents some extra details and gives general
demonstrations and specifications to the concepts of finitary
and infinitary first-order combinatorics. Based on both formal
substantiations and informal arguments, we show that the
introduced complex of concepts and definitions for the first-
order combinatorics adequately corresponds to the problems
on expressive possibilities of predicate logic presenting a firm
basis for Computer Science as well as for other branches of
mathematics.

In Section IV, we introduced the concept of virtual de-
finable equivalence between theories; this relation presents
essence of finitary first-order combinatorics. Further, in Section
V, we describe a scheme of application of infinitary first-order
combinatorics. This scheme represents the most general form
of a computable procedure to build a theory T from a complex
C of objects of computational nature with a transformation
of the obtained theory T to a finitely axiomatizable theory
F together with a computable isomorphism μ :L(T)→L(F)
between their Tarski-Lindenbaum algebras preserving model-
theoretic properties within the infinitary semantic layer MQL
whose fundamental nature is established in [14]. In fact, a
special set X⊆N is used in this construction presenting a
parameterization for Stone space of the target theory. This
set X plays the role of an oracle; thereby, the transformation
related to infinitary first-order combinatorics represents, as a
whole, is a common Turing computation (it is possible to say,
computable Brute Force with an oracle).

Summarizing, we can say that, the combinatorial approach
requires sophisticated definitions and is partially based on
informal substantiation. Nevertheless, the concepts of finitary
and infinitary first-order combinatorics adequately correspond
to the posed class of problems; moreover, the informal ar-
gumentations and limitations are rather natural justifying the
appropriateness of using the combinatorial terminology in this
direction.

REFERENCES

[1] K. Bouvere, “Synonymous theories,” The Theory of Models; Addison,
Henkin and Tarski, Eds., North-Holland, Amsterdam, 1965, pp. 402-
406.

[2] A. Church, “A note on Entscheidungsproblem,” J. Symbolic Logic,
vol. 1, no. 1, 1937, pp. 40–41; Correction: ibid, pp. 101–102.

[3] H. Gaifman, “Operations on relational structures, functors and classes.
I,” Proceedings of the Tarski Symposium, 1971, Proceedings of Sym-
posia in Pure Mathematics, American Mathematical Society, Provi-
dence, R.I., First edition: 1974, Second edition: 1979, pp. 21-39.

[4] S. S. Goncharov and Y. L. Ershov, Constructive models, Plenum, New
York, 1999.

[5] W. Hanf, “The Boolean algebra of Logic,” Bull. American Math. Soc.,
vol. 31, 1975, pp. 587–589.

[6] W. Hodges, A shorter model theory, Cambridge University Press, Cam-
bridge, 1997.

[7] S.C. Kleene, “Finite axiomatizability of theories in the predicate calcu-
lus using additional predicate symbol,” Memories of American Math.
Society, no. 10, 1952, pp. 27–68.

[8] K. Manders, “First-order logical systems and set-theoretic definability,”
Preprint, 1980.

[9] D. Myers, “An interpretive isomorphism between binary and ternary
relations,” Structures in Logic and Computer Science: A Selection of
Essays in Honor of Andrzej Ehrenfeucht, Springer, 1997, pp. 84-105.

[10] M. G. Peretyat’kin, “Semantic universal classes of models,” Algebra and
Logic, 1991, vol. 30, no. 4, pp. 414–434.

[11] M. G. Peretyat’kin, “Semantic universality of theories over superlist,”
Algebra and Logic, 1992, vol. 30, no. 5, pp. 517–539.

[12] M. G. Peretyat’kin, Finitely axiomatizable theories, Plenum, New York,
1997.

[13] M. G. Peretyat’kin, “On the Tarski-Lindenbaum algebra of the class of
all strongly constructivizable prime models,” Proceedings of the Turing
Centenary Conference CiE2012, Lecture notes in Computer Science,
vol. 7318, Springer-Verlag: Berlin-Heidelberg, June 2012, pp. 589–598.

[14] M. G. Peretyat’kin, “Introduction in first-order combinatorics providing
a conceptual framework for computation in predicate logic,” Computa-
tion tools 2013, The Fourth International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmarking, IARIA,
May–June 2013, pp. 31-36.

[15] M. G. Peretyat’kin, “The Tarski-Lindenbaum algebra of the class of all
strongly constructivizable countable saturated models,” P. Bonizzoni, V.
Brattka, and B. Lowe Eds., Computability in Europe CiE 2013, Lecture
notes in Computer Science, vol. 7921, Springer-Heidelberg, July 2013,
pp. 342–352.

[16] C. Pinter, “Properties preserved under definitional equivalence and in-
terpretations,” Zeitschr. f. math. Logik und Grundlagen d. Math, 24,
1978, pp. 481-488.

[17] H. J. Rogers, Theory of recursive functions and effective computability,
McGraw-Hill Book Co., New York, 1967.

[18] L. Szczerba, “Interpretability of elementary theories,” Logic, Founda-
tions of Mathematics and Computability Theory; Butts and Hintikka,
Eds., D. Reidel Publishing Co., Dordrecht-Holland, 1977, pp. 129-145.

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 31 / 49

A Contextual Access Control Model for Online Social Network

Khalida Guesmia, Narhimene Boustia

Department of Computer Science

University of Saad Dahleb

Blida, Algeria

{khalida.guesmia@gmail.com nboustia@gmail.com}

Abstract— The sharing of personal and sensitive data has

emerged as a popular activity over online social network. The

availability of this information obviously raises privacy and

confidentiality issues. The current access control models

provided by online social network do not allow users to specify

their access control on base of time, location, or under other

circumstances. In this paper, we propose an access control

model for social networks to express much more fine grained

access control policies than the existing models, the OrBAC

model is used because it provides a complete model to specify

contextual and dynamic access control requirements. We also

propose a logic specification of OrBAC with Temporal Logic of

Actions.

Keywords-Online social network; access control; OrBAC;

TLA; context.

I. INTRODUCTION

In the last few years, Online Social Network sites (OSNs)
have increasingly been used by more and more people
around the world which have become integrated into the
daily practices of millions of users [1]. OSNs are used to
communicate with friends and family, to publish and to share
different types of information with other members.
Therefore, an unexpected large number of users and massive
amount of data which is mainly representing a real life of the
users are available in OSNs [2]. As a result, many challenges
of scalability, management, and maintenance are posed in
OSNs [3]. Cloud Computing paradigm emerges to face these
challenges. Most of OSNs shift to Cloud Computing [4] by
using different services models (Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS)) to support the huge number of users and their
activities in OSNs. In the same time, it raises security and
privacy concerns. It is important to review and define what
we exactly mean by privacy in this context. Privacy means
the right to self-determination regarding data disclosure [5].
Most OSNs provide access control system for users to
configure their privacy settings by specifying who may
access to their own information. In fact, the available
protection settings are based primarily on relationship depth
so almost of users expose their contents to more or less users
than expected [6], which may lead to serious consequences
in some cases [7]. Further, the dynamic developments of
OSNs and the variety of data exists in social networks
introduce new access control requirements for privacy
management, which cannot be able to meet through the

available privacy configuration. It is clear that users should
be provided with more expressive and flexible mechanisms
to protect their information from unwanted disclosure and
unauthorized access. Defining access control policies in
OSNs is a non-trivial task due to their large number of
members and their connections and to the complexity of their
environment. Thus, our objective in this paper is to propose
appropriate access control model for Facebook that enables
users to specify their privacy preferences in an expressive
way without overburdening the users or the system [8].

The remainder of this paper is organized as follows: in
Section II, we give briefly an overview of the social network
Facebook, the most popular OSNs in the world. In Section
III, we discuss some related work of access control in OSNs.
In Section IV, we outline the main features of Organization
Based Access Control model. In Section V, we define the
Temporal Logic of Actions that we will be used to specify
our proposed security policy for Facebook which be
presented in Section VI. In Section VII, we show how to
specify various contexts in Facebook using our formalism. In
Section VIII, we apply our work to an example in Facebook,
and finally, in Section IX, we summarize this paper with
future works.

II. THE SOCIAL NETWORK FACEBOOK

Recently, the popularity of Facebook increased
significantly. Facebook is a platform for users to interact
with each other; according to statistics in December 2013,
Facebook is the busiest site on the internet with more than
700 million daily active users around the world and it has
built an extensive infrastructure to support this growth.
When a user joins Facebook, he/she has to create a profile of
himself/herself with biographical data, then sends and
accepts invitations to add other users as friends. A user can
directly communicate with his/her friends by messaging or
poking, he/she can upload different types of information
(photo, video, etc.) and share it with others; he/she can also
join groups, like fan pages, and organize events [9]. All
activities performed by a user are organized chronologically
in his/her Timeline through which other users, as well as the
user himself/herself, can check his/her past activities
conveniently. A user receives his/her friend’s updates on
Newsfeed. When he/she finds something interesting, he/she
can further perform actions, such as like, share and comment,
on it. Facebook has expanded its development scope by
adapting PaaS model. It opened up for third party application

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 32 / 49

by releasing its development Application Programming
Interface (API) in May 2007 [10]. The third party
applications bring value both to the platform and its users by
providing new features. So, users can add these applications
to their profiles and use them without having to install new
hardware or software. These applications are deployed on
their own servers and Facebook only acts as a proxy for
integrating the application’s output to its own pages. The
third party applications require user’s data to perform its
functionality. For example, a simple horoscope application
generates daily horoscope based on user’s birthday.
Furthermore, Facebook is a shared platform, used and
managed by different entities (the provider, the third party
application and the users). For that, users must carefully
control what contents are visible to whom in order to
preserve privacy. Therefore, users set their privacy
preferences through an audience selector which supports
only five modes (public, friends of friends, friends only,
specific friends and only me). So, users cannot specify their
access control on base of time, location, or under other
circumstances. Therefore, the privacy sitting provided by
Facebook is not expressive enough, it is limited somehow. In
addition, users cannot control what others reveal about them
such as tagging users in post, tag is option available in
Facebook where users can simply tag other users by
associating their profiles with post without their permission
[11]. It should be noted that Facebook provider has full
access to all user’s personal data. Further, Facebook provide
no privacy control against third party application. To
overcome the limitations and challenges of privacy control in
Facebook, the model Organization Based Access Control
(OrBAC)[12] is expressive enough to specify access privacy
based in various information and it supports in their policy
different types of context, so OrBAC model is well suitable
for Facebook [13].

III. RELATED WORK

Privacy is an emerging challenge in OSNs that caught
much attention recently. There exist different research works
that have examined different aspects of the privacy problem.
Ajami et al. [7], it is confirmed that users have trouble with
existing privacy controls, and they have difficulties to set
their preferences. The traditional access controls models are
not sufficiently flexible to specify the requirements of
privacy management in OSNs [14]. Different access control
models and mechanisms are proposed to support users when
they set their privacy settings in OSNs. Abdessalem and
BenDhia [15], it is proposed a reachability-based access
control model that allows users to express their privacy
preferences as constraints on existing links with other users.
Wang et al. [16], it is developed an automated access control
policy specification tool that helps ordinary users to specify
who should have access to which part of their data. Oo [17],
it is presented a fine-grained OSN access control model
based on semantic web technologies in order to
automatically construct access control rules for the user’s
privacy settings with the minimal effort from the user.
However, many of these mechanisms provided solution for a
certain privacy requirements but missed others. Ahmad and

Whitworth [18], it is provided a distributed access control
based on decentralised architecture for OSN instead the
centralized architecture to avoid the single authority of the
provider and that way, users have full control to manage
their privacy control. It is good idea but it requires a lot of
work. There is also considerable works [19] has been done in
the area of access control in the Cloud Computing
environment, which is completely challenging research
problem and there is no complete solution for it.

IV. ORGANIZATION-BASED ACCESS CONTROL MODEL

The central entity in OrBAC model is the Organization.
An organization may be viewed as any entity that has to
manage a security policy. In our case study, Facebook itself
corresponds to an organization. We can consider also user
profile, fan page, group, application and event as
organisations. There are always subject, object, action in
access control model. In OrBAC model, a subject will be any
active entity in a system that accesses objects. In Facebook,
subject can be users (Alice, Bob, ...), application, etc. Object
is any information or resource which can be accessed. For
example, list of friends, photo, fan page, etc. Action is
operations that subject are allowed to do on objects. For
example, like, share, send message, etc. The idea of OrBAC
model is to specify the security policy at the organizational
level so instead of modeling the policy by using the concrete
and implementation related concepts of subject, object and
action, the OrBAC model suggests reasoning with their
abstract concepts. The abstract concepts of subject, object
and action are respectively role, view and activity. The
concept of role in OrBAC is assigned to subjects with similar
permissions. For example, in user profile, we can define
admin, close friend, family, and colleague as roles.

If org is an organization, and r is a role, then
Role_appropriate (org, r) means that role r is defined in

organization org.
Role_Appropriate (user_profile, admin)
Role_Appropriate (user profile, colleague)

The concepts of view and activity are in the same way used
in OrBAC model to respectively group objects and actions
which similar permissions apply to, for example, the objects
in user profile can be grouped in the following views: public
data, limited data, and private data and for activity, we can
define publishing as abstract of actions post, share, comment,
and tag in Facebook.

If org is an organization, v is a view, then
view_ appropriate (org, v) means that view v is defined in

organization org.
View_Appropriate(user_profile, limited_data)

If org is an organization, a is an activity, then
Activity_Appropriate (org, a) means that activity a is defined

in organization org.
Activity_Appropriate(user_profile, publishing)

In OrBAC, specification of a security rule is not restricted to
permissions, but also includes the possibility to specify
prohibitions, obligations and recommendations. As we have
mentioned before, Security rules in OrBAC model are
specified with abstract entities as follows:

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 33 / 49

If org is an organization, r is a role, v is a view, a is an
activity and c is a context then Permission(org, r, v, a, c)

(resp. Prohibition(org, r, v, a, c), Obligation(org, r, v, a, c)
or Recommendation (org, r, v, a, c)) means that organization
org grants role r permission (resp. prohibition, obligation or
dispensation) to perform activity a on view v within context

c.
For instance, Permission(Facebook, member,

public_data, consulting, Default): “Facebook grants member
permission to consult public data within the Default
context”. The Default context represents a condition which is
always true.

 To activate a given security rule, the subject, the object
and the action must separately satisfy some conditions, these
conditions are that the subject must be assigned to a given
role, the object must be used in a given view and the action
implements some given activity. This is represented by the
following OrBAC relationships:

If org is an organization, s is a subject and r is a role,
then Employ (org, s, r) means that org employs subject s in

role r.
 Employ (Facebook, Alice, member): “the role member is

assigned to the user profile Alice in the Social Network
Facebook”.

 Employ (Alice_Profile, Alice, admin): “Alice is admin in
her own profile”.

If org is an organization, o is an object and v is a view,
then Use(org, o, v) means that org uses object o in view v.

 Use (Fashion_Page, Pub.mp4, public_data): “the
Page fan Fashion uses the video Pub.mp4 as a public

data”.
Use(Private_Group, Team.png ,limited_data): “the group

Facebook Private uses photo Team.png as a limited data”
If org is an organization, α is an action and a is an

activity, then Consider(org, α, a) means that org considers
that action α implements the activity a.

Consider(Fcaebook, read, consulting): “in Facebook, we
consider read as a consulting”

Consider(Alice_Profile, add_photo, publishing): “in
Profile Alice, we consider add photo as a publishing”

Besides these conditions, there are extra conditions that
must be satisfied to activate a security rule. These extra
conditions may be related to very different notions, such as
temporal or spatial requirements. We call context such extra
conditions.

If org is an organization, s is a subject, o is an object, α
is an action and c is a context, then Define(org, s, o, α, c)
means that within organization org, context c is true between
subject s, object o and action α. This issue will be detailed in
section VII.

For Concrete level, security rules are specified with
concrete entities as follows:

If s is a subject, o is an object and α is an action then
Is_permitted(s, o, α) (resp. Is_prohibited(s, o, α),

Is_obliged(s, o, α) and Is_recommended(s, o, α)) means
that subject s is permitted (resp. prohibited, obliged,

recommended) to perform action α on object o.
For instance, Is_permitted(Alice, Pub.mp4, read): “Alice

is permitted to read video Pub.mp4”.

V. TEMPORAL LOGIC OF ACTIONS OVERVIEW

Generally, the choice of a formal language for specifying
a security policy is based on the capabilities and richness of
this language, and on the requirements of the targeted
application. The Temporal Logic of Actions (TLA) is a
powerful tool to specify systems and their properties,
especially for interactive and concurrent systems. TLA
combines two logics: a logic of actions and a standard
temporal logic [20]. Variables, values, states, functions,
predicate and actions are basic concepts in TLA. Values are
elements of a data type. A variable has a name like x and y,
and can be assigned a value. A constant is a variable that is
assigned a fixed value. A state is characterized by
assignment of a value s[[x]] to each variable x. A function is
a nonboolean expression built from variables, operator
symbols, and constants, such as x

2
 + y - 3. The semantics

[[f]] of a function f is a mapping from states to values. For
example, [[x

2
 + y - 3]] is the mapping that assigns to the

state s the value s[[x]]
2
+s[[y]]-3, where s[[x]] and s[[y]]

denote the values that s assigns to x and y. Generally, s[[f]]

≡ f(∀ ‘v’: s[[v]]/v) where f(∀‘v’: s[[v]]/v) is the value

obtained by substituting s[[v]] for each variable v in the
expression. Semantically, a variable is also a function that
assigns the value s[[x]] to the state s. A predicate is a
boolean expression built from variables, operator symbols,
and constants, such as x = y+1. The semantics [[P]] of a
predicate P is a mapping from states to booleans. A state s
satisfies a predicate P iff s[[P]], the value of [[P]] in s,
equals true. An action is a boolean valued expression formed
from variables, primed variables, operator symbols, and
constants. Formally, an action represents a relation between
old states and new states, where unprimed variables refer to
the old state and the primed variables refer to the new state.
Formally, an action A is a function assigning a boolean
s[[A]]t to a pair of states (s, t) , where s is the old state with
unprimed variables, and t is the new state with primed
variables. For example, x’ = y + 1 has the boolean value of
t[[x]] = s[[y]] + 1. We say that (s, t) is an A step if s[[A]]t
equals true. Generally, s[[A]]t ≡ A(∀ ‘v’: s[[v]]/v, t[[v]]/v’).
Since a predicate P is a boolean expression built from
variables and constants, it is regarded as a special action
without primed variables. A pair (s,t) is a P step iff s[[P]] is
true. The basic temporal operator is □ (always). The
semantics of a temporal action is defined using the concept
of behavior. A behavior σ in TLA is an infinite sequence of
states < s0, s1, s2, … > (a finite set of states can be regarded
as infinite with identical repeating states).

< s0, s1, s2, … > [[A]] ≡s0 [[A]] s1

< s0, s1, s2, … > [[□A]] ≡∀n ≥0: sn [[A]] sn+1

The same semantics can be defined for predicates since a
predicate is a special form of action.

In TLA, a formula is built from predicates and actions
with logical connectors and temporal operators.

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 34 / 49

VI. A SECURITY POLICY FOR ONLINE SOCIAL NETWORK

SITE USING ORGANIZATION BASED ACCESS CONTROL

MODEL

In this section, we present a logical approach for
formalizing OrBAC adopted for Facebook. First we describe
the basic components, and then we define the logic model of
OrBAC with these components. A system state is a set of
assignments of values to variables. In OrBAC, there are eight
different kinds of entities, organization, subject, object,
action, role, view, activity, and context. Each entity is
specified by a finite set of attributes. We require that each
entity has at least one attribute for identity, which is unique
and cannot be changed. An attribute of an entity is denoted
as ent.att where ent is the entity’s identity and att is the
attribute name. Hereafter, we assume that an entity name
without any attribute specified denotes its identity. An
attribute is a variable of a specific datatype, which includes a
set of possible values, i.e., domain and operators to
manipulate them. For example, the domain of attribute
“gender” of entity “user profile” is {male, female}. The
assignment of a value to an attribute is denoted by ent.att =
value. We use ent.att to denote an attribute value. The
constants correspond to the instances of the entities. A
function is an expression built from one or more attributes
and constants. For example, Alice_profile.age= Alice_profile
.currentDate - Alice_profile.birthday. The variables, the
functions, and the constants comprise the basic terms of our
logical model. A predicate is a boolean expression built from
variables, functions, and constants. A predicate can be
defined with a number of attributes from a single entity, or
two entities, or the system. In our model, predicate
correspond to the relationships of OrBAC presented in
Section IV and for the concrete permissions, prohibitions,
obligations and recommendations that apply to subjects,
objects and actions are represented as follows:

∀s∀o∀α∀r∀v∀a∀c
Permission(org, r, v, a, c)∧
Employ(org, s, r)∧
Use(org, o, v)∧
Consider(org, α, a)∧

Define(org, s, o, α, c) → Is_permitted(s, o, α).
If organization org, within the context c, grants role r

permission to perform activity a on view v, if org employs
subject s in role r, if org uses object o in view v, if org
considers that action α implements the activity a and if,
within org, the context c is true between s, o and α then s has
permission to perform α on o.

VII. SPECIFYING CONTEXT IN ONLINE SOCIAL NETWORK

Different contexts may be expressed within OrBAC
model [21]. In order to show the expressiveness of our
proposed model, we design several scenarios and give their
corresponding formulas in our logic.

The temporal context depends on the time at which the
subject is requesting for an access to the system, it should be
possible to express that a given action made by a given user
on a given object is authorized only at a given time/date,
after or before a given time/date, or during a given time

interval. To validate a given request for an access, it is
necessary to be able to evaluate the current time/date, we
suppose each organization have a clock. For example, the
admin of group Library create new poll to choose best author
for 2013.The pool is open to only members of group until
20/12/2013.

Define(Library_Group, s, Best_Author_2013, select,
Before_date_31/01/2014) → Employ(Library_Group, s,
member) ∧ Library_Group.currentTime <=20/12/2013.
The spatial context depends on the subject location.

Knowing the location from where the user makes the request
can be useful to specify the access control policy. We can
distinguish two different types of spatial context. The
physical spatial context and the logical spatial context. The
first one corresponds to the physical location of the user,
namely his or her office, a security area, a specific building,
the country, etc. The logical spatial context corresponds to
the logical location he or she stands in. For example, it can
be the computer, the network or the sub-network, the
smartphone, etc. In some cases, physical and logical spatial
contexts are highly correlated. The network IP address from
which a user is connected probably corresponds to a specific
physical place such as a department area. For example, we
can specify that the participation in Marathon event is
allowed only to users who are connected from the same
country where the Marathon will be held.

Define(Marathon_Event, s, Page_Event, join, connected
_country) →s. connected_country = Marathon_Event.

country.
The prerequisite context, the permission is granted to a

subject, only if some specific conditions are satisfied. For
example, Bob want to share his video “How to root Samsung
Galaxy S3” with other members who are not necessarily
their friends but they search how to root Samsung
smartphone.

Define(Bob_Profile,s,How_to_root_Samsung_Galaxy_S3
.mp4,share, Hashtag_Video) → s.search∈ (rootsamsung,
rootsmartphone, samsungGalaxyS3).

The provisional context depends on previous actions the
subject has performed in the system. For example, Alice
wants to specify that when she adds new friend, this latter is
permitted to consult her Timeline from the moment that
became her friend.

Define(Alice_Profile,s, Timeline, read,
Adding_New_Freind) → Alice_Profile .currentTime>=

Alice_Profile.dateBeFreindWith(s)

VIII. EXAMPLE OF A SECURITY POLICY IN FACEBOOK

 In this section, we show how security policy of profile

user in Facebook can be expressed and deducing in our

formalism. Alice in her profile Facebook defines Mary as

close friend, John as member of family, Elena, Mike,Paul as

friends and she specifies that her friends who work at the

same work place as her, they have colleague as role in her

profile. She likes page fan Zinedine Zidane, she joins group

Photoshop Club, and she adds Puzzle Game as application.

In our formalism, this is represented by the following

instances:

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 35 / 49

 Subjects and Roles

 Role_appropriate (Alice_Profile, family)

Role_appropriate (Alice_Profile, close_friend)

Role_appropriate (Alice_Profile, colleague)

Role_appropriate (Alice_Profile, friend)

Employ(Alice_Profile, s, colleague) →

Employ(Alice_Profile, s, friend) ∧
Alice_Profile.workplace=s. workplace.

Employ(Alice_Profile, John, family)

Employ(Alice_Profile,Mary, close_friend)

Employ(Alice_Profile, Elena, friend)

Employ(Alice_Profile, Mike, friend)

Employ(Alice_Profile,Zinedine_Zidane,page)

Employ(Alice_Profile, Photoshop_Club,group)

Employ(Alice_Profile,Puzzle_Game, application)

 Objects and Views

Alice defines the following views and objects in her profile:

View_appropriate(Alice_Profile, limited_data)

View_appropriate(Alice_Profile, private_data)

View_appropriate(Alice_Profile, public_data)

Use(Alice_Profile, List_of_ friends , private_data)

Use(Alice_Profile, Birthday, private_data)

Use(Alice_Profile, Joke , limited_data)

Use(Alice_Profile,Gender, public_data)

 Actions and Activities

Alice defines the following actions and activities in her

profile:

Activity_appropriate(Alice_Profile, publishing),

Activity_appropriate(Alice_Profile, adding_friend),

Activity_appropriate(Alice_Profile, consulting),

Consider(Alice_Profile, post,publishing),

Consider(Alice_Profile, send_invitation ,adding_friend),

Consider(Alice_Profile,read, consulting).

 Hierarchies

In OrBAC, organizations, roles, views, activities can be

organized hierarchically. Sub_Role(Profile, family , friend).
The role family inherits the permissions from the role

friend.

 Context

Alice wants to share joke with her colleagues but only with

women.

Define(Alice_Profile, s, Joke, read,

Only_Women_Colleague) → Employ(Alice_Profile, s,

colleague) ∧ s.Gender=Female.

 Security policy

Alice specifies the following permissions:

Permission(Alice_Profile, friend, limited_data, consulting ,

Only_Women_Colleague)

Prohibition (Alice_Profile, friend, public_data, tagging ,

Default):Alice don’t want to be tagged in public post.

 Elena and Mike work at the same company as Alice and

they want to access to joke posted by Alice. On the basis of

the specified access policies defined by Alice, the system

determines whether access should be granted or denied.

First for Elena, we have:

Permission(Alice_Profile, friend, limited_data, consulting ,

Only_Women_Colleague) ∧

Employ(Alice_Profile, Elena, friend) ∧

Alice_Profile.workplace= Elena. workplace ∧

Employ(Alice_Profile, Elena, colleague) ∧
Use(Alice_Profile, Joke , limited_data) ∧

Consider(Alice_Profile, read, consulting) ∧

Elena.Gender=Female ∧

Define(Alice_Profile, Elena, Joke, read,

Only_Women_Colleague) → Is_permitted(Elena, Joke,

read).

So Elena is permitted to read Alice’s joke.

For Mike, we have:

Permission(Alice_Profile, friend, limited_data, consulting ,

Only_Women_Colleague) ∧

Employ(Alice_Profile, Mike, friend) ∧

Alice_Profile.workplace= Mike. workplace ∧

Employ(Alice_Profile, Mike, colleague) ∧

Use(Alice_Profile, Joke , limited_data) ∧

Consider(Alice_Profile, read, consulting) ∧

Mike.Gender=Female !
The context (Only_Women_Colleague) is not satisfied

for Mike so Mike is not permitted to read Alice’s joke.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a contextual access
control model for users to manage access to their data in
Facebook with a flexible and effective way. Using our
model, users can specify their privacy sittings based in
various information and they can configure access control to
users, as well as applications so, it give more control to the
users. We have also developed a logic specification of
OrBAC for Facebook with Temporal Logic of Actions. We
are currently working in developing our solution to perform
a user study in order to analyse the decidability and the
performance of our model in real case and we will plane to
develop configuration interface for users to easily specify
their privacy preferences based on our proposed model.

REFERENCES

[1] M. S. Ezaleila and H. Azizah, “Online social networking: a
new virtual playground”, International Proceedings of
Economics Development & Research, 2011, vol. 5, issue 2,
pp. 314-318.

[2] J. Becker and H. Chen, “Measuring privacy risk in online
social networks”, Web 2.0 Security and Privacy Workshop,
2009.

[3] P. Dudi, “Cloud computing and social networks: a
comparison study of myspace and facebook”, Journal of
Global Research in Computer Science, March 2013, vol. 4,
no. 3, pp. 51-54.

[4] B. Yang, W. Tsai, A. Chen, and S. Ramandeep,“ Cloud
computing architecture for social computing - a comparison
study of Facebook and Google”, International Conference on
Advances in Social Networks Analysis and Mining,
Kaohsiung, 2011, pp. 741–745.

[5] R. Iannella and A. Finden, “A privacy awareness: icons and
expression for social networks”, in 8th International
Workshop for Technical, Economic and Legal Aspects of

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 36 / 49

Business Models for Virtual Goods Incorporating the 6th
International ODRL Workshop, Namur, Belgium, 2010.

[6] Y. Liu , K. P. Gummadi, B. Krishnamurthy, and A. Mislove,
“Analyzing facebook privacy settings:user expectations vs.
reality”, Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference IMC’11,
Berlin, Germany, November 2-4, 2011, pp. 61-70.

[7] R. Ajami, N. Ramadan, N. Mohamed, and J. Al-Jaroodi,
“Security challenges and approaches in online social
networks: a survey”, International Journal of Computer
Science and Network Security IJCSNS, August 2011, vol.
11, no. 8, pp. 1-12.

[8] M. Beye, A. Jeckmans, Z. Erkin, P. Hartel, R. Lagendijk, and
Q. Tang, “ Literature overview - privacy in online social
networks”. Technical report, Centre for Telematics and
Information Technology, 2010.

[9] J. Pang and Y. Zhang, “A new access control scheme for
facebook-style social networks”, 2013.

[10] K. Singh , S. Bhola , and W. Lee, “xBook: redesigning
privacy control in social networking platforms”, Proceedings
of the 18th conference on USENIX security symposium,
Montreal, Canada, August 10-14, 2009, pp. 249-266.

[11] M. Madejski, M. Johnson, and S. M. Bellovin. “The failure
of online social network privacy settings”. Technical Report
CUCS-010-11, Columbia University, Feb. 2011.

[12] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F.
Cuppens, Y. Deswarte,A. Miège, C. Saurel, and G. Trouessin.
“Organization Based Access Control”. In 8th IEEE
International Workshop on Policies for Distributed Systems
and Networks (POLICY 2003), Lake Como, Italy, June 2003.

[13] F. Cuppens,N. Cuppens-Boulahia, and E. P. Vina, “Adaptive
access control enforcement in social network using aspect
weaving”, Proceedings,17th International Conference,
DASFAA 2012, International Workshops: FlashDB, ITEMS,

SNSM, SIM3, DQDI, Busan, South Korea, April 15-19, 2012,
pp. 154-167.

[14] A. Ahmad and B. Whitworth, “Future directions in access
control for online social networks”, International Conference
on Networks and Information ICNI, Bangkok, Thailand.
November 24-25, 2012.

[15] T. Abdessalem and I. BenDhia. “a Reachability-Based Access
Control Model for Online Social Networks”. In Proceedings
of the First ACM SIGMOD Workshop on Databases and
Social Networks, DBSocial' 11, Athens, Greece, June 12-16,
2011, pp. 31-36.

[16] T. Wang , M. Srivatsa , and L. Liu, “Fine-grained access
control of personal data”, Proceedings of the 17th ACM
symposium on Access Control Models and Technologies,
Newark, New Jersey, USA, June 20-22, 2012, pp. 145-156.

[17] S. H. P. Oo, “Intelligent access control policies for social
network site”, International Journal of Computer Science &
Information Technology (IJCSIT), June 2013, vol. 5, no. 3,
pp. 183-190.

[18] A. Ahmad and B. Whitworth, “Distributed access control for
social newtorks”, in 7th International Conference on
Information Assurance And Security, Malaysia, 2011, pp. 68-
73.

[19] J.M.A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M.
Wray, “Toward a Multi-Tenancy Authorization System for
Cloud Services”, Security & Privacy, IEEE, Nov. 2010, vol.
8 , issue 6, pp. 48-55.

[20] X. Zhang , J. Park , F. Parisi-Presicce ,and R. Sandhu, “A
logical specification for usage control”, Proceedings of the
ninth ACM symposium on Access control models and
technologies, Yorktown Heights, New York, USA, June 02-
04, 2004, pp. 1-10.

[21] F. Cuppens and N. Cuppens-Boulahia “Modelling Contextual
Security Policies”,International Journal of Information
Security, 2008, vol. 7, issue 4 , pp. 285-305.

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 37 / 49

First Steps towards Automated Synthesis of

Tableau Systems for Interval Temporal Logics

Dario Della Monica∗, Angelo Montanari†, Guido Sciavicco‡ and Dmitri Tishkovsky§
∗ ICE-TCS, School of Computer Science, Reykjavik University, Iceland

† Department of Mathematics and Computer Science, University of Udine, Italy
‡ Department of Information Engineering and Communications, University of Murcia, Spain

§ School of Computer Science, University of Manchester

dariodm@ru.is, angelo.montanari@uniud.it, guido@um.es, dmitry@cs.man.ac.uk

Abstract—Interval temporal logics are difficult to deal with in
many respects. In the last years, various meaningful fragments
of Halpern and Shoham’s modal logic of time intervals have
been shown to be decidable with complexities that range from
NP-complete to non-primitive recursive. However, even restricting
the attention to finite interval structures, the step from model-
theoretic decidability results to the actual implementations of
tableau-based decision procedures is quite challenging. In this
paper, we investigate the possibility of making use of automated
tableau generators. More precisely, we exploit the generator
METTEL2 to implement a tableau-based decision procedure for
the future fragment of the logic of temporal neighborhood over
finite linear orders. We explore and contrast two alternative
solutions: a concrete tableau system, that operates on a concrete
interval structure explicitly built over a finite, linearly-ordered
set of points, and an abstract one, that operates on an interval
frame which is forced to be isomorphic to a concrete interval
structure by suitably constraining its accessibility relation.

Keywords–Interval temporal logics; satisfiability; tableau sys-
tems; automated tableau system generation.

I. INTRODUCTION

In this paper, we make some initial steps towards the auto-
mated synthesis of tableau systems for interval temporal logics.
It is well-known that turning (optimal) declarative, tableau-
based systems for decidable temporal logics into effective
decision procedures is far from being trivial. Such a transition
turns out to be particularly complex in the case of interval
temporal logics. In the last years, it has been experimented
for two specific logics, namely, the temporal logic of sub-
intervals D, interpreted over dense linear orders [1], and the
future fragment of the logic of temporal neighborhood A,
interpreted over finite linear orders [2]. However, in both
cases the proposed solution is tailored to the logic under
consideration, and thus it lacks generality. In this paper, we
explore the possibility of exploiting a general tool for the
automated synthesis of tableau systems, namely, the generator
METTEL2, to deal with interval temporal logics. Even though
we will apply the proposed solution to the logic A only (as
Bresolin et al. did in [2]), there is no any limitation that
prevents its application to other interval temporal logics.

Propositional interval temporal logics play a significant
role in computer science, as they provide a natural framework
for representing and reasoning about temporal properties in
a number of application domains [3]. This is the case, for in-

stance, of computational linguistics, where significant interval-
based logical formalisms have been developed to represent
and reason about tenses and temporal prepositions [4]. As
another example, the possibility of encoding and reasoning
about various constructs of imperative programming in in-
terval temporal logic has been systematically explored by
Moszkowski in [5]. Other meaningful applications of interval
temporal logics can be found in knowledge representation,
systems for temporal planning and maintenance, qualitative
reasoning, theories of action and change, specification and de-
sign of hardware components, concurrent real-time processes,
event modeling, and temporal databases. Modalities of interval
temporal logics correspond to binary relations between time
intervals. In particular, Halpern and Shoham’s modal logic of
time intervals HS [6] features one modality for each Allen
interval relation [7]. In [6], the authors showed that HS is
undecidable over all meaningful classes of linear orders. Since
then, a lot of work has been devoted to the study of HS
fragments, mainly to disclose their computational properties
and relative expressiveness. The classification of HS fragments
with respect to the status (decidable/undecidable) of their
satisfiability problem is now almost completed. In this paper,
we focus our attention on the class of finite linear orders, which
comes into play in a variety of application domains, e.g., in
planning problems. A complete classification of HS fragments
over finite linear orders is given in [8]. It shows that there are
62 non-equivalent (with respect to expressiveness) decidable
HS fragments, which can be partitioned into four complexity
classes, ranging from NP-complete to non-primitive recursive.
For each decidable fragment, an optimal, tableau-based de-
cision procedure has been devised. However, since each of
such procedures has been given a declarative formulation, no
one of them is available as a working system, apart from the
tableau-based decision procedure for the fragment A reported
in [2]. The only attempt to apply a generic theorem prover to
an interval temporal logic can be found in [1], where a tableau-
based decision procedure for the fragment D, interpreted over
dense linear orders, has been developed in LoTREC [9][10].
LoTREC is a generic prover for modal and description logics
that can be used to prove validity and satisfiability of formulas.
Whenever a formula is satisfiable, it returns a model for it;
whenever a formula is not valid, it returns a counter-model
for it. In LoTREC, a tableau is a special kind of labeled
graph that is built, and possibly revised, according to a set
of user-defined rules. Every node of the graph is labeled with

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 38 / 49

a set of formulae and can be enriched by auxiliary markings,
if needed. Unfortunately, LoTREC, as well as most generic
theorem provers, cannot be exploited to deal with other interval
temporal logics because (i) it does not support an explicit treat-
ment of world labels, and (ii) it manages closing conditions
based on loop checks, but it does not allow explicit checks
on the number of worlds generated during the construction
of a tentative model. Such limitations are overcome by the
current version of METTEL2 [11], which provides the user with
a flexible language for specifying propositional syntaxes and
tableau calculi.

In the following, we make use of METTEL2 to implement
a tableau-based decision procedure for A over finite linear
orders. We explore and contrast two alternative solutions: a
concrete tableau system, that operates on a concrete interval
structure explicitly built over a finite, linearly-ordered set
of points, and an abstract one, that operates on an interval
frame which is forced to be isomorphic to a concrete interval
structure by suitably constraining its accessibility relation
(using the specification language provided by METTEL2). The
main contributions of the paper can be summarized as follows:
(i) it can be viewed as the first general attempt of using an
automated generator to synthesize a tableau system for an
interval temporal logic(D over dense linear orders is a very
special case because, due to its properties, it bears strong
resemblance to standard modal logic); (ii) while METTEL2
works perfectly on a variety of other logics (see, e.g., [12]
and Section III), it required a small, but not trivial, change to
make it possible to formulate closing conditions for A; (iii) the
abstract version of the tableau system, based on a suitable
representation theorem, gives new insigths into the role of
temporal knowledge representation and reasoning technique,
and representation theorems [7][13][14].

The paper is structured as follows. In the next section, we
introduce the logic A. In Section III, we provide an necessary
overview of the system METTEL2. In Section IV, we describe
the proposed A-prover. Section V given an account of the
experimental results. Section VI concludes the paper.

II. THE INTERVAL TEMPORAL LOGIC A

Given a linearly ordered set D = 〈D,<〉, a (strict) interval
is a pair [a, b], with a, b ∈ D and a < b. There are 12 different
relations (excluding the identity) between two intervals on a
linear order, often referred to as Allen’s relations [7]: the six re-
lations depicted in Fig. 1, namely RA, RL, RB , RE , RD, RO,
and the inverse ones, defined in the standard way, that is,
RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}. Intuitively,
an interval structure over a linear order D consists of the set
of all intervals over D, together with a set of Allen’s relations.
We treat interval structures as Kripke structures [15], where
Allen’s relations play the role of accessibility relations, and
we associate a modality 〈X〉 with each Allen relation RX .
Given a modality 〈X〉 associated with the relation RX , with
X ∈ {A,L,B,E,D,O}, its transpose is the modality 〈X〉,
corresponding to the inverse relation RX .

Syntax and (Concrete) Semantics. Halpern and Shoham’s
logic HS [6] is a multi-modal logic with formulae built
from a finite, non-empty set AP of atomic propositions, the
propositional connectives ∨ and ¬, and the complete set of

Modality

〈A〉
〈L〉
〈B〉
〈E〉
〈D〉
〈O〉

Relation

[a, b]RA[c, d]⇔ b = c

[a, b]RL[c, d]⇔ b < c

[a, b]RB [c, d]⇔ a = c, d < b

[a, b]RE [c, d]⇔ b = d, a < c

[a, b]RD[c, d]⇔ a < c, d < b

[a, b]RO[c, d]⇔ a < c < b < d

Representation
a b

c d

c d

c d

c d

c d

c d

Figure 1. Allen’s interval relations and the corresponding HS modalities.

modalities associated with all Allen’s relations. With each
subset {RX1

, . . . , RXk
} of this set of relations, we associate

the fragment X1X2 . . .Xk of HS, whose formulae are defined
by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ, with p ∈ AP.
The other propositional connectives and logical constants, e.g.,
∧, →, and >, can be derived in the standard way, as well as
the dual modalities, e.g., [A]ϕ ≡ ¬〈A〉¬ϕ. In this paper, we
focus our attention on the fragment A, whose formulae are
generated by the following restricted grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ, with p ∈ AP.
The concrete semantics of HS is given in terms of concrete
interval models.

Definition 1: Let D be a linearly ordered set and I(D) be
the set of all (strict) intervals over D (called concrete interval
structure). A concrete interval model is a pair M = 〈I(D), V 〉,
where V is a valuation function V : AP → 2I(D) that assigns
to every atomic proposition p ∈ AP the set of intervals V (p)
on which p holds.

The truth of a formula is defined with respect to a concrete
interval model M and an interval [a, b] on it by structural
induction on formulae as follows:

• M, [a, b] p iff [a, b] ∈ V (p), for each p ∈ AP;
• M, [a, b] ¬ψ iff it is not the case that M, [a, b] ψ;
• M, [a, b] ϕ ∨ ψ iff M, [a, b] ϕ or M, [a, b] ψ;
• M, [a, b] 〈X〉ψ iff there is an interval [c, d] such that
[a, b]RX [c, d] and M, [c, d] ψ, for each modality 〈X〉.

In the case of modality 〈A〉, the last semantic clause can be
instantiated as follows:

M, [a, b] 〈A〉ϕ iff there is c > b such that M, [b, c] ϕ.

Formulae of HS can be interpreted in various interesting
classes of concrete interval models, depending on the specific
class of linear orders over which the models are built. As for
the class of (concrete interval models built over) finite linear
orders, the following small model theorem holds [16].

Theorem 1: Let ϕ be an A-formula. Then, ϕ is finitely
satisfiable if and only if it is satisfiable on a model whose
domain has cardinality strictly less than 2m ·m+1, where m
is the number of diamonds and boxes in ϕ.

The above result immediately provides a termination condition
that can be used to implement a fair procedure that exhaus-
tively searches for a model of size smaller than the bound.

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 39 / 49

Abstract Semantics. As we already pointed out, METTEL2 is
flexible enough to allow one to provide an alternative, abstract
version of the tableau system for A, based on a different,
but equivalent, set of semantic conditions. To this end, we
first define a suitable class of interval frames for A, called
finite abstract interval A-structures, whose distinctive features
are expressed by a set of first-order conditions, and then we
show that any such frame is isomorphic to a concrete interval
structure. It is worth noticing that such an abstract semantics,
that takes intervals as first-class citizens, is quite common
in the field of interval temporal logics, but not in those of
modal and point-based temporal logics. In AI, the coexistence
of concrete and abstract interval structures is well known since
the early stages of interval-based temporal reasoning. The
variety of binary relations between intervals in a linear order
was first studied systematically by Allen, Hayes, and Fergu-
son [7][13][14], who explored their use in systems for time
management and planning. The work by Allen and colleagues
was based on the assumption that time can be represented as
a dense line, and that points are excluded from the semantics.
Both Allen and Hayes [17] and van Benthem [18] showed that
interval temporal reasoning can be formalized as an extension
of first-order logic with equality with one or more relations.
As pointed out in [19], the characteristics of the proposed
formalizations depend on basic choices about fundamental
semantic parameters, such as the class of linear orders on
which the interval structure is based (all dense linear orders,
the rational numbers, etc.), and the set of interval relations
added to the first-order language.

Given the dual nature of time intervals, that can be rep-
resented either as ordered pairs of time points over a linear
order or as suitably-constrained, first-order individual objects,
representation theorems have an important role in interval
temporal logics. They can be described as follows (with respect
to a specific class of linear orders). Given an extension of first-
order logic with a set of interval relations, such as, for instance,
{meets, during}, is there a set of axioms which constrain
abstract models in this signature to be isomorphic to concrete
ones? The problem can be alternatively stated as follows: can
we define an isomorphism into concrete models whose domain
is the set of intervals over the considered linear order and
whose relations are the concrete interval relations? A number
of representation theorems for interval logics can be found in
the literature, including van Benthem [18], who considers the
order of rational numbers and the interval relations during and
before; Allen and Hayes [17], which refer to unbounded, dense
linear orders, devoid of point intervals, and to the interval
relation meets only; Ladkin [20], who takes into consideration
point-based temporal structures with a 4-argument relation
that encodes the interval relation meets; Venema [21], who
considers dense linear orders with the interval relations starts
and finishes; Goranko, Montanari, and Sciavicco [22], which
deal with dense linear orders with the interval relations meets
and met-by; and Coetzee [23], who refers to dense linear orders
with the interval relations overlaps and meets.

In the present work, we focus our attention on the class
of finite linear orders and the interval relation meets (denoted
by RA), and we provide a representation theorem that forces
any finite, suitably-constrained Kripke frame 〈W,RA〉 to be
isomorphic to a finite, concrete interval structure. As a matter
of fact, some frame conditions will be explicitly forced by

introducing specific first-order constrains (this is the case with
irreflexivity, antisymmetry, composition, and linearity); other
ones will be embedded into the definition of the tableau rules
(this is the case with finiteness and connectedness).

Definition 2: Let W be a finite nonempty set and let RA ⊆
W ×W be such that for all x, y ∈ W , x = y or xRAy or
xRAy or xRLy or xRLy, and so on (connectedness)1. The
pair S = 〈W,RA〉 is a finite and connected, abstract interval
A-structure if and only if the following conditions are satisfied:

1) ∀x¬(xRAx) (irreflexivity);
2) ∀x, y(xRAy ∧ yRAx→ x = y) (antisymmetry);
3) ∀x, y(xRAy → ∃z(∀t(tRAz ↔ tRAx) ∧ ∀t(zRAt ↔

yRAt))) (composition);
4) ∀x, y, z, t((xRAy ∧ yRAt ∧ xRAz ∧ zRAt) → y = z)

(linearity).

The next representation theorem shows that the above condi-
tions suffice to force any finite and connected, abstract interval
A-structure to be isomorphic to a finite concrete one. For
the sake of readability, we introduce the relation RA as an
additional component of concrete interval structures, that is,
we substitute S = 〈I(D), RA〉 for I(D), Proving that any finite,
concrete interval structure satisfies conditions 1–4, as well as
connectedness, is trivial; proving that any finite and connected,
abstract interval A-structure is isomorphic to a finite, concrete
interval structure is definitely more involved. Such a result
is formally stated by the following theorem, whose proof is
omitted for space reasons.

Theorem 2: Every finite and connected, abstract interval
A-structure is isomorphic to a finite, concrete interval structure.

Thanks to Theorem 2, we can interpret the logic A on finite and
connected, abstract interval A-structures. To this end, we adapt
the notion of model for A by defining it as a pair M = 〈S, V 〉,
where S is a finite and connected, abstract interval A-structure
and V : AP 7→ 2W . Moreover, we accordingly revise the
semantic clause for 〈A〉 as follows:

M, i 〈A〉ψ iff there is j such that iRAj and M, j ψ.

In the following, we will show that one actually needs to
explicitly encode conditions 1–4 only. As for finiteness, it
can be forced by imposing a suitable cardinality constraint,
that is, by providing an interval counterpart (that applies to
S) of the constraint coming from Theorem 1 (that applies
to concrete models). As for connectedness, it is guaraanteed
by construction: all generated world are directly or indirectly
connected to the initial one (no incomparable world is ever
introduced).

III. AUTOMATED SYNTHESIS OF TABLEAU CALCULI AND
METTEL2

Tableau reasoning methods are powerful tools to reason
about logical formalisms. They have been extensively used
to develop decision procedures for description and modal
logics [24][25], as well as for intuitionistic logics, condi-
tional logics, metric and topological logics, and hybrid logics.

1In [17], Allen and Hayes showed that all Allen’s relations are first-order
definable in terms of the interval relation RA (meets) only. As a matter of fact,
the proof assumes the temporal domain to be dense and unbounded; however,
it can be shown that such an assumption is not necessary.

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 40 / 49

Schmidt and Tishkovsky [26] devise a method for automati-
cally generating tableau calculi from a first-order specification
of the formal semantics of a logic. The idea is that of turning
such a specification into a set of inference rules giving rise to
a sound, complete, and terminating deduction calculus for the
logic, provided that the logic has the finite model property.

The tableau synthesis method works as follows [26]. The
user defines the formal semantics of the given logic in a many-
sorted first-order language so that certain well-definedness
conditions hold. The semantic specification of the logic is
then automatically reduced to Skolemised implicational forms,
which are subsequently transformed into tableau inference
rules. Combined with a set of default closure and equality
rules, the generated rules provide a sound and complete
calculus for the logic. Under certain conditions, the generated
set of rules can be further refined [27]. If the logic has the finite
model property, the generated calculus can be automatically
turned into a terminating calculus by adding a suitable blocking
mechanism.

The tableau prover generator METTEL2 [11] has been
implemented to complement the theoretical tableau synthesis
framework given in [26]. METTEL2 produces Java code of
a tableau prover from specifications of a logical syntax and
a tableau calculus for a given logic. It aims at providing an
easy-to-use system for non-technical users and it allows tech-
nical users to improve/extend the implementation of generated
provers. METTEL2 has been successfully employed to produce
tableau provers for modal logics, description logics, epistemic
logics, and temporal logics with cardinality constraints. It is
worth pointing out that prior implementations of systems for
automated synthesis of tableau calculi already existed. Among
them, we would like to mention LoTREC [9], [10] and The
Tableau Work Bench (TWB) [28], which are the prover engi-
neering platforms most closely related to METTEL2. Although
METTEL2 does not give the user the same possibilities for
programming and controlling derivations as these systems, its
specification language is more expressive. As an example,
Skolem terms are allowed both in premises and conclusions
of rules. The expressive specification language also allows one
to specify the syntax of arbitrary propositional logics and it
makes METTEL2 able to deal with the interval temporal logic
A (which we focus on in this paper) and possibly with most
of the other fragments of HS.

IV. TABLEAU PROVERS FOR A

In this section, we describe the specifications of two tableau
provers for the logic A, which are based on the concrete and
the abstract semantics, respectively.

The steps for obtaining the specifications are common to
both provers. They can be summarized as follows. First, we
apply the tableau synthesis framework [26] to the semantics
of A. Since both concrete and abstract semantics for A consist
of connective definitions and the background theory, the well-
definedness conditions given in [26] are trivially fulfilled for
both of them. Therefore, the generated calculi are automat-
ically sound and (constructively) complete for the logic A.
Next, we apply the atomic refinement [27] to the rules of the
obtained calculi by moving negated atomic formulae in the
rule conclusions to its premises while changing their signs.

While retaining soundness and (constructive) completeness of
the calculi, this reduces branching factor of the rules and makes
tableau algorithms based on the calculi more efficient. Finally,
we extend the tableau languages with additional constructs
which replace the first-order predicates in the original calculi.
This further simplifies the calculi, making them more readable
and specifiable in METTEL2.

The tableau specifications for the concrete and abstract
semantics of A in METTEL2 specification language are listed
in Fig. 2. The symbol / separates premises of a rule from its
conclusions and the symbol || separates branches of the rule.
A priority value is assigned to each rule with the keyword
priority. The less the value the more eagerly the rule is applied
during derivation.

The tableau specification for the concrete semantics of A
is based on two logical sorts: the sort of points and the sort
of logical formulae. Disjunction p ∨ q is represented in the
specification as p|q, negation ¬p is represented as ~p, and <A>
represents the modal operator 〈A〉. Constructs which extend
the language of the logic are the ordering predicate < on the
sort of points (a < b is represented as {a<b}), the equality
predicate ({{a=b}} stands for a = b), a Skolem function f , to
generate new terms of the sort of points, and expressions of the
form [a, b] : ϕ, which are formulae ϕ of A labeled by intervals
[a, b], where a and b are points. The rules at lines 1–8 of the
concrete tableau enforce < to be a strict linear ordering. The
rule at line 10 ensures that all the intervals are not degenerative.
The remaining rules are standard rules for modal-like logics.
It is worth pointing out that the rules at lines 1–8 and at line
15 are obtained by atomic refinement from the rules generated
by the tableau synthesis framework. As an example, the rule
[a,b]:~(<A>p) {b < c} / [b,c]:~p is obtained by the refinement
from the generated rule [a,b]:~(<A>p) / ~{b < c} || [b,c]:~p. As
a consequence of the results in [27], the calculus is sound and
(constructively) complete for the standard interval semantics
of the fragment A.

The tableau specification for the abstract semantics is also
based on two sorts: the sort of intervals and the sort of logical
formulae. The additional constructs are two Skolem functions
f and g, the equality predicate, and a binary relational symbol
R on the sort of intervals (for the sake of simplicity, we use
R for RA). The tableau operates on labeled formulae @iϕ
(@i p in the specification), where ϕ is a formula of A and i
is an interval. The lines 1–7 of the abstract tableau define the
theory of the relation R and correspond to the conditions 1–4 in
Definition 2. While the rest of the rules are similar to standard
rules for modal-like logics and they can be specified in tableau
development platforms like LoTREC and TWB, the four rules
listed at lines 3–6 are special. All the four rules make use of
the same Skolem function g; moreover, the rules at lines 3
and 5 have the Skolem function g in their premises. Allowing
specifications of tableau rules where Skolem functions occur
in the rule premises is a distinctive feature of METTEL2
prover generator, which demonstrate the expressiveness of the
METTEL2 specification language. Similarly to the case of the
concrete tableau, the rules at lines 1–7 and at line 13 are
obtained by atomic refinement. Therefore, the calculus is sound
and (constructively) complete for the relational semantics of
the fragment A.

Termination of both provers is achieved by a modification

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 41 / 49

1 {a < a} / priority 0;
2 {a < b} {b < c} / {a < c} priority 3;
3 {a < b} {c < d} /
4 {{c = a}} || {c < a} || {a < c} {c < b} ||
5 {{c = b}} || {b < c} priority 7;
6 {a < b} {c < d} /
7 {{d = a}} || {d < a} || {a < d} {d < b} ||
8 {{d = b}} || {b < d} priority 7;
9 [a,b]:p [a,b]:~p / priority 0;

10 [a,b]:p / {a < b} priority 1;
11 [a,b]:~(~p) / [a,b]:p priority 1;
12 [a,b]:(p|q) / [a,b]:p || [a,b]:q priority 5;
13 [a,b]:~(p|q) / [a,b]:~p [a,b]:~q priority 3;
14 [a,b]:<A>p / [b,f(b,p)]:p priority 9;
15 [a,b]:~(<A>p) {b < c} / [b,c]:~p priority 4;

1 R i i / priority 0;
2 R i j R j i / priority 0;
3 R i j R k g(i,j) / R k i priority 4;
4 R i j R k i / R k g(i,j) priority 10;
5 R i j R g(i,j) k / R j k priority 4;
6 R i j R j k / R g(i,j) k priority 10;
7 R i j R j k R i l R l k / {{ j = l }} priority 6;
8 @i p @i ~p / priority 0;
9 @i ~(~p) / @i p priority 1;

10 @i (p|q) / @i p || @i q priority 5;
11 @i ~(p|q) / @i ~p @i ~q priority 3;
12 @i <A>p / R i f(i,p) @f(i,p) p priority 9;
13 @i ~(<A>p) R i j / @j ~p priority 4;

Figure 2. Tableau specifications for concrete (left) and abstract (right) semantics.

to the generated Java code to ignore branches which exceed
the allowed limit of points or intervals (see Theorem 1).

V. TESTING AND RESULTS

We have tested our implementations against the same
benchmark of problems used in [2], although the absolute
speed results cannot be immediately compared since the two
experiments used a different hardware. These problems are
divided into two classes. First, we tested the scalability of the
implementation with respect to a set of combinatorial problems
of increasing complexity (COMBINATORICS), where the n-
th combinatorial problem is defined as the problem of finding
a model for a formula that contains n conjuncts, each one
of the form 〈A〉pi (0 ≤ i ≤ n), plus n(n+1)

2 conjuncts
of the form [A]¬(pi ∧ pj), with i 6= j. (Notice that there
are n(n + 1) different conjuncts of the pointed out form.
However, a conjunct with indices i, j is equivalent to another
one with indices j, i. This is why n(n+1)

2 is posed.) Then,
we considered the set of 72 purely randomized formulas
used in [29] to evaluate an evolutionary algorithm for the
same fragment (RANDOMIZED). Table I summarizes the
outcomes of the experiments. For each class of problems,
the corresponding table shows, for each instance n, the time
(in milliseconds) necessary to solve the problem taking into
account, when appropriate, the specific policy that has been
used. In particular, the concrete version has been run under
both the ‘breadth first’ and the ‘depth first’ (left branch first)
policies. A time-out of 1 minute was used to stop instances
running for too long.

At first sight, the relational (abstract) version of the tableau
system looks more (time) efficient than the standard (concrete)
one. However, the number of instances that generated a mem-
ory error indicates that the latter uses less memory, which
can be considered an interesting result on its own. All the
experiments were executed on Java 1.7.0 25 OpenJDK 64-Bit
Server VM under the Java heap size limit of 3Gb on a hardware
based on Intel R© CoreTM i7-880 CPU (3.07GHz, 8Mb), with
a total memory of 8Gb (1333MHz), under the 64-bit Fedora
Linux 17 operating system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we illustrated the outcomes of a first ex-
periment in automated generation of tableau-based decision

procedures for interval temporal logics using the automatic
prover generator METTEL2. Thanks to its expressive power
and flexibility, we explored and contrasted two alternative im-
plementations: a concrete and an abstract one (at the best of our
knowledge, this is the first tableau-based decision procedure
for interval temporal logics based on an abstract frame seman-
tics). Even though the performance of the developed systems is
not particularly exciting, the use of generators like METTEL2
provides a general and effective way of implementing tableau
systems for interval temporal logics. We believe it possible
to make the concrete tableau system more efficient, provided
that we represent the linear order by a list of points. This
would remedy the exponential blow-up of inequality formulae
in the tableau derivation, but, unfortunately, lists cannot be
represented in the language of METTEL2 yet. The addition of
such a feature to METTEL2 and the analysis of its actual impact
are left for future work. As for the abstract tableau system, in
principle, it allows us to compare alternative, but equivalent,
formulations of the first-order constraints for a given fragment.
Last but not least, we are going to validate the proposed
approach on other, more expressive HS fragments.

ACKNOWLEDGEMENTS

The authors acknowledge the support from the Spanish
fellowship program ‘Ramon y Cajal’ RYC-2011-07821 (G.
Sciavicco), the projects Processes and Modal Logics (project
nr. 100048021) and Decidability and Expressiveness for Inter-
val Temporal Logics (project nr. 130802-051) of the Icelandic
Research Fund (D. Della Monica), the Italian GNCS project
Automata, games, and temporal logics for verification and syn-
thesis of controllers in safety-critical systems (A. Montanari),
and the research grant EP/H043748/1 of the UK EPSRC (D.
Tishkovsky).

REFERENCES

[1] D. Bresolin, V. Goranko, A. Montanari, and P. Sala, “Tableaux for
logics of subinterval structures over dense orderings,” J. of Logic and
Computation, vol. 20, no. 1, 2010, pp. 133–166.

[2] D. Bresolin, D. Della Monica, A. Montanari, and G. Sciavicco, “A
tableau system for Right Propositional Neighborhood Logic over finite
linear orders: an implementation,” in Proc. of the 22nd TABLEAUX,
ser. LNCS, vol. 8123, 2013, pp. 74–80.

[3] V. Goranko, A. Montanari, and G. Sciavicco, “A road map of interval
temporal logics and duration calculi,” J. of Applied Non-Classical
Logics, vol. 14, no. 1–2, 2004, pp. 9–54.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 42 / 49

Table I. EXPERIMENTAL RESULTS (IN MILLISECONDS; ‘-’: “OUT OF TIME”; ‘M’: “OUT OF MEMORY”; ‘Y’: “SATISFIABLE”; ‘N’: “UNSATISFIABLE”).

COMBINATORICS
CON ABS

n DF BF sat
1 10 10 0 y
2 60 100 0 y
3 270 420 10 y
4 920 1360 30 y
5 2930 4010 70 y

CON ABS
n DF BF sat
6 7890 9850 150 y
7 19420 23670 300 y
8 47220 51220 560 y
9 - - 1000 y

10 - - 1790 y

CON ABS
n DF BF sat
11 - - 3440 y
12 - - 4660 y
13 - - 7600 y
14 - - 11560 y
15 - - 17170 y

CON ABS
n DF BF sat
16 - - 25160 y
17 - - 35610 y
18 - - 50740 y
19 - - - -
20 - - - -

RANDOMIZED
CON ABS

n DF BF sat
1 - - - -
2 0 0 0 y
3 10 0 0 y
4 0 10 0 y
5 - - - -
6 0 10 0 y
7 - - - -
8 10 10 0 y
9 20 20 10 y

10 10 10 0 y
11 - - - -
12 10 10 0 y
13 10 10 0 y
14 10 10 0 y
15 - - - -
16 10 20 0 y
17 30 50 10 y
18 - - - -

CON ABS
n DF BF sat
19 30 50 0 y
20 - - - -
21 20 50 10 y
22 - - - -
23 - - - -
24 20 20 0 y
25 - - - -
26 - - - -
27 - - - -
28 - - - -
29 - - - -
30 - - - -
31 10 10 10 n
32 - - - -
33 - - M -
34 60 70 10 y
35 - - - -
36 - - - -

CON ABS
n DF BF sat
37 - - M -
38 - - M -
39 - - M -
40 - - M -
41 - - - -
42 - - - -
43 - - - -
44 - - - -
45 - - M -
46 - - - -
47 - - - -
48 - - - -
49 - - - -
50 - - M -
51 - - M -
52 - - - -
53 - - M -
54 - - - -

CON ABS
n DF BF sat
55 - - M -
56 - - M -
57 - - M -
58 - - - -
59 - - M -
60 - - M -
61 - M M -
62 - - - -
63 M - - -
64 - - - -
65 - - M -
66 - - - -
67 M - - -
68 - - - -
69 M - - -
70 - - M -
71 M M M -
72 - - - -

[4] I. Pratt-Hartmann, “Temporal prepositions and their logic,” Artificial
Intelligence, vol. 166, no. 1-2, 2005, pp. 1–36.

[5] B. Moszkowski, “Reasoning about digital circuits,” Tech. Rep. STAN-
CS-83-970, Dept. of Computer Science, Stanford University, Stanford,
CA, 1983.

[6] J. Halpern and Y. Shoham, “A propositional modal logic of time
intervals,” J. of the ACM, vol. 38, no. 4, 1991, pp. 935–962.

[7] J. Allen, “Maintaining knowledge about temporal intervals,” Commu-
nications of the ACM, vol. 26, no. 11, 1983, pp. 832–843.

[8] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco,
“Interval temporal logics over finite linear orders: the complete picture,”
in Proc. of the 20th ECAI, 2012, pp. 199–204.

[9] F. del Cerro et al., “LoTREC: the generic tableau prover for modal and
description logics,” in Proc. of the 1st IJCAR, ser. LNCS, vol. 2083.
Springer, 2001, pp. 453–458.

[10] O. Gasquet, A. Herzig, D. Longin, and M. Sahade, “LoTREC: Logical
Tableaux Research Engineering Companion,” in Proc. of the 14th
TABLEAUX, ser. LNCS, vol. 3702, 2005, pp. 318–322.

[11] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi, “The tableau prover
generator METTEL2,” in Proc. of the 13th JELIA, 2012, pp. 492–495.

[12] M. Khodadadi, R. A. Schmidt, D. Tishkovsky, and M. Zawidzki,
“Terminating tableau calculi for modal logic K with global counting op-
erators,” 2012, technical report. Available at http://www.mettel-prover.
org/papers/KEn12.pdf.

[13] P. J. Hayes and J. F. Allen, “Short time periods,” in Proc. of the 10th
IJCAI, Milano, Italy, 1987, pp. 981–983.

[14] J. F. Allen and G. Ferguson, “Actions and events in interval temporal
logic,” J. Log. Comput., vol. 4, no. 5, 1994, pp. 531–579.

[15] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cambridge
University Press, 2002.

[16] D. Bresolin, A. Montanari, and G. Sciavicco, “An optimal decision pro-
cedure for Right Propositional Neighborhood Logic,” J. of Automated
Reasoning, vol. 38, no. 1-3, 2007, pp. 173–199.

[17] J. F. Allen and P. J. Hayes, “A common-sense theory of time,” in Proc.
of the 9th IJCAI, Los Angeles, CA, USA, 1985, pp. 528–531.

[18] J. Benthem, The Logic of Time, 2nd ed. Kluwer Academic Press,
1991.

[19] W. Conradie and G. Sciavicco, “On the expressive power of first order

logic extended with allenÕs relations in the strict case,” in Proc. of the
14th CAEPIA, ser. LNAI, vol. 7023. Springer, 2011, pp. 173–182.

[20] P. Ladkin, “The logic of time representation,” Ph.D. dissertation, Uni-
versity of California, Berkeley, 1987.

[21] Y. Venema, “A modal logic for chopping intervals,” Journal of Logic
and Computation, vol. 1, no. 4, 1991, pp. 453–476.

[22] V. Goranko, A. Montanari, and G. Sciavicco, “Propositional interval
neighborhood temporal logics,” J. of Universal Computer Science,
vol. 9, no. 9, 2003, pp. 1137–1167.

[23] C. J. Coetzee, “Representation theorems for classes of interval struc-
tures,” Master’s thesis, Department of Mathematics, University of
Johannesburg, 2009.

[24] F. Baader and U. Sattler, “An overview of tableau algorithms for
description logics,” Studia Logica, vol. 69, no. 1, 2001, pp. 5–40.

[25] R. Goré, “Tableau methods for modal and temporal logics,” in Hand-
book of Tableau Methods. Springer Netherlands, 1999, pp. 297–396.

[26] R. A. Schmidt and D. Tishkovsky, “Automated synthesis of tableau
calculi,” Logical Methods in Computer Science, vol. 7, no. 2:6, 2011,
pp. 1–32. [Online]. Available: http://arxiv.org/abs/1104.4131

[27] D. Tishkovsky and R. A. Schmidt, “Refinement in the tableau synthesis
framework,” CoRR, vol. abs/1305.3131, 2013.

[28] P. Abate and R. Goré, “The Tableau Workbench,” Electronic Notes in
Theoretical Computer Science, vol. 231, 2009, pp. 55 – 67.

[29] D. Bresolin, F. Jiménez, G. Sánchez, and G. Sciavicco, “Finite satis-
fiability of propositional interval logic formulas with multi-objective
evolutionary algorithms,” in Proc. of the 12th FOGA, 2013, pp. 25–36.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 43 / 49

Semi-Automated Task Planning in Metric Propositional Interval Neighborhood Logic

Laura González-Garcı́a
Polytechnic University of Cartagena

Cartagena, Spain
Email: lgg2@alu.uptc.es

Guido Sciavicco
Dep. of Information Engineering and Communications

University of Murcia, Murcia, Spain
Email: guido@um.es

Abstract—Planning is the process of thinking about and organiz-
ing the activities required to achieve a desired goal. It involves
the creation and maintenance of a plan. As such, planning is
a fundamental property of intelligent behaviour. This process is
essential to the creation and refinement of a plan, or integration of
it with other plans. In logistics planning, which is a fundamental
part of every engineering projects, planning is a usually hand-
crafted activity, often supported by high-level commercially
available software. These techniques are error-prone as they relay
on the expertise of the responsible engineer, and suffer of limited
reasoning capabilities, being usually based on temporal constraint
networks in Allen’s style. Recently, interval temporal logics have
been studied that allow one to describe temporal situations at a
higher level, and yet with a decidable satisfiability problem. We
propose here the use of Metric Interval Temporal Neighbourhood
Logic, a decidable fragment of Halpern and Shoham’s Modal
Logic for Time Intervals (HS), as a tool for task planning. The
main characteristics of this proposal is that the language, whose
syntax heavily restricts HS, and whose proposed applications so
far have been limited to theoretical and abstract situations, is
still expressive enough to cope with the complexity of a realistic
case study.

Keywords-Automated Planning; Interval Temporal Logics.

I. INTRODUCTION

Task management is the process of managing tasks through
its life cycle. It involves planning, testing, tracking and re-
porting. Task management can help either individuals achieve
goals, or groups of individuals collaborate and share knowl-
edge for the accomplishment of collective goals [1]. Tasks are
also differentiated by complexity, from low to high. Effective
task management requires managing all aspects of a task, in-
cluding its status, priority, time, human and financial resources
assignments, recurrence, notifications and so on. These can
be lumped together broadly into the basic activities of task
management. Managing multiple individual or team tasks may
require specialised task management software. Specific soft-
ware dimensions support common task management activities.
These dimensions exist across software products and services
and fit different task management initiatives in a number of
ways. In fact, many people believe that task management
should serve as a foundation for project management activities.
Task management may form part of project management
and process management and can serve as the foundation
for efficient work-flow in an organisation. Project managers
adhering to task-oriented management have a detailed and up-
to-date project schedule, and are usually good at directing team

members and moving the project forward.

As a discipline, task management embraces several key
activities. Various conceptual breakdowns exist, and these,
at a high-level, always include creative, functional, project,
performance and service activities. Creative activities per-
tain to task creation. These should allow for task planning,
brainstorming, creation, elaboration, clarification, organization,
reduction, targeting and preliminary prioritization. Functional
activities pertain to personnel, sales, quality or other manage-
ment areas, for the ultimate purpose of ensuring production
of final goods and services for delivery to customers. These
should allow for planning, reporting, tracking, prioritizing,
configuring, delegating, and managing of tasks. Project ac-
tivities pertain to planning and time/costs reporting. These
can encompass multiple functional activities but are always
greater and more purposeful than the sum of its parts. Project
activities should allow for project task breakdown, task al-
location, inventory across projects, and concurrent access to
task databases. Service activities pertain to client and internal
company services provision, including customer relationship
management and knowledge management. These should allow
for file attachment and links to tasks, document management,
access rights management, inventory of client and employee
records, orders and calls management, and annotating tasks.
Performance activities pertain to tracking performance and
fulfillment of assigned tasks. Finally, report activities pertain
to the presentation of information regarding the other five
activities listed, including graphical display.

Task management software tools abound in the market-
place [2][3]. Some are free; others exist for enterprise-wide de-
ployment purposes. Some boast enterprise-wide task creation,
visualization and notifications capabilities - among others -
scalable to smaller, medium and bigger size companies, from
individual projects to ongoing corporate task management.
Project management and calendaring software also often pro-
vide task management software with advanced support for
task management activities and corresponding software en-
vironment dimensions, reciprocating the myriad project and
performance activities built into most good enterprise-level
task management software products. Nevertheless, most of
such software lack truly intelligent capabilities, as they are
based on algebraic networks in Allen’s style [4][5]. The main
limits of algebraic, constraint-based reasoning, compared to
logical reasoning are discussed in [6], and include the fact that
algebraic networks: (i) are purely existential, and do not allow,

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 44 / 49

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

[i, j]RA[i′, j′] ⇔ j = i′

[i, j]RL[i′, j′] ⇔ j < i′

[i, j]RB [i′, j′] ⇔ i = i′, j < j′

[i, j]RE [i′, j′] ⇔ j = j′, i < i′

[i, j]RD [i′, j′] ⇔ i < i′, j′ < j

[i, j]RO [i′, j′] ⇔ i < i′ < j < j′

i j

i′ j′

i′ j′

i′ j′

i′ j′

i′ j′

i′ j′

Figure 1: Allen’s interval relations and the corresponding HS
modalities.

in general, the specification of universal properties; (ii) do not
allow, in general, the specification of negative information;
(iii) are not designed to easily integrate and/or compare two
or more plans.

The fact that constraint-based networks are usually pre-
ferred over logic-based reasoning systems in planning lan-
guages and software is explained by the usually bad compu-
tational behaviour of interval-based temporal logics. Interval
temporal logics provide a natural framework for temporal rep-
resentation and reasoning on interval structures over linearly
ordered domains. They take time intervals as the primitive
ontological entities and define truth of formulae with respect
to them instead of to time instants. Modal operators of interval
temporal logics correspond to binary relations between pairs of
intervals In the realm of interval temporal logics, a prominent
role is accorded to Halpern and Shoham’s modal logic of
time intervals (HS) [7], whose modalities make it possible
to express all Allen’s binary interval relations. Unfortunately,
most of them, including HS and the majority of its fragments,
turn out to be undecidable (a comprehensive survey on interval
logics can be found in [8]; more recent contributions include
[9][10]). Focusing our attention to the class of models built
on the set of the integers, in [10] it has been shown that
there exists exactly 44 expressively different fragments of HS
with a decidable satisfiability problem, with complexities from
NP-complete to EXPSPACE-complete, and 62 are decidable
in the finite case [11]. Among these, a metric extension of
the fragment that features 〈A〉 and 〈A〉 only (known as AA
or PNL) has been developed by Bresolin et al. in [12]. The
resulting interval temporal logic, called Metric PNL (MPNL
for short), pairs PNL modalities with a family of special
proposition letters expressing integer constraints (equalities
and inequalities) on the length of the intervals over which
they are evaluated. The authors show that the satisfiability
problem for MPNL, interpreted over finite linear orders and the
natural numbers, is decidable, and, in particular, EXPSPACE-
complete.

In this paper, we propose the use of MPNL as a task
planning reasoning tool. In the next section, we provide
the necessary preliminaries on MPNL and interval temporal
logics in general. In Section 3, we consider the problem of
representing a plan in MPNL, and in Section 4 we apply our
technique to a practical case-study, before concluding.

II. PRELIMINARIES

Let D = 〈D,<〉 be a linearly ordered set. An interval
over D is an ordered pair [i, j], where i, j ∈ D and i < j
(strict semantics). There are 12 different non-trivial ordering
relations (excluding equality) between any pair of intervals in a
linear order, often called Allen’s relations [4]: the six relations
depicted in Figure ?? and the inverse ones. We interpret
interval structures as Kripke structures and Allen’s relations
as accessibility relations, thus associating a modality 〈X〉 with
each Allen’s relation RX . For each operator 〈X〉, its inverse
(or transpose), denoted by 〈X〉, corresponds to the inverse
relation RX of RX (that is, RX = (RX)−1). Halpern and
Shoham’s logic HS is a multi-modal logic with formulas built
on a set AP of proposition letters, the boolean connectives ∨
and ¬, and a modality for each Allen’s relation. We denote
by X1 . . .Xk the fragment of HS featuring a modality for each
Allen’s relation in the subset {RX1

, . . . , RXk}. Formulas of
X1 . . .Xk are defined by the grammar:

ϕ ::= p | ¬ψ | ψ ∨ τ | 〈X1〉ψ | . . . | 〈Xk〉ψ,

where p ∈ AP is a propositional letter. The other boolean
connectives can be viewed as abbreviations, and the dual
operators [X] are defined, as usual, as [X]ϕ ≡ ¬〈X〉¬p.
The semantics of HS is given in terms of interval models
M = 〈I(D),V〉, where I(D) is the set of all intervals over
D and V : AP 7→ 2I(D) is a valuation function that assigns to
every p ∈ AP the set of intervals V(p) over which p holds.
The truth of a formula over a given interval [i, j] in an interval
model M is defined by structural induction on formulas:

M, [i, j] p iff [i, j] ∈ V(p)
M, [i, j] ¬ψ iff M, [i, j] 6 ψ
M, [i, j] ψ ∧ τ iff M, [i, j] ψ and M, [i, j] ϕ
M, [i, j] 〈Xk〉ψ iff M, [i′, j′] ψ

for some [i, j]RXk [i′, j′].

Formulae of HS can be interpreted over a class of interval
models (built on a given class of linear orders). Among others,
we mention the following important classes of (interval models
built on important classes of) linear orders: (i) the class of
all linear orders; (ii) the class of (all) dense linear orders,
that is, those in which for every pair of distinct points there
exists at least one point in between them; (iii) the class of (all)
discrete linear orders, that is, those in which every element,
apart from the greatest element, if it exists, has an immediate
successor, and every element, other than the least element, if
it exists, has an immediate predecessor (iv) the class of (all)
finite linear orders, that is, those having only finitely many
points. In the recent years, a great effort has been devoted to
the study of decidability of fragments of HS. Ever since HS
was introduced, it was immediately clear that its satisfiability
problem is undecidable when interpreted on every interesting
class of linearly ordered sets [7], including all of the above
mentioned ones. While this sweeping result initially discour-
aged further research in this direction, recent results showed
that the situation is slightly better then it seemed. Given the
set of HS modalities that correspond to the set of Allen’s
relations {RX1

, . . . , RXk}, we call fragment F = X1X2 . . .Xn

any subset of such modalities, displayed in alphabetical order.
There are 212 such fragments. Some of these are expressively
equivalent to each other; in [9] (respectively, [13]) it is possible

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 45 / 49

to find all possible inter-definability in the class of all linearly
ordered sets (respectively, all dense linearly ordered sets),
giving rise to 1347 (respectively, 966) expressively different
fragments. The number of different fragments on other classes
of linear orders has not been determined yet, but it is believed
that the situation in the finite or discrete case should be similar.
Out of these fragments, it has been possible to prove that
exactly 62 are decidable in the finite case [11], and 44 in
the (strongly) discrete case (and in the case of Z) [10], all of
which with complexities that range from NP-complete (in very
simple cases) to NEXPTIME-complete, EXPSPACE-complete,
to non-primitive recursive.

Motivated by the (potential) applicability of these logics, in
the discrete and the finite case the possibility of adding length
constraints has been studied. Following [14] we introduce a set
of pre-interpreted atomic propositions referring to the length of
the current interval. Given a distance function δ : Z×Z→ N,
defined as δ(i, j) = |i− j|, for each ∼∈ {<, ≤, =, ≥, >},
we introduce the length constraint len∼k, with the following
semantics:

M, [i, j] len∼k iff δ(i, j) ∼ k.

As studied in [14][12], the language of AA can be ex-
tended with length constraints when interpreted over N, Z, or
finite models without loosing the decidability of the fragment
itself; its complexity, though, worsen from NEXPTIME to
EXPSPACE. Equality and inequality constraints are mutually
definable, although there is a increase in formula length if
we consider, for example, only constraints of form len=k as
primitive. Length constraints can be expressed in HS in a direct
way. The simplest way to achieve this is to make use of 〈B〉 or
〈E〉. For example, under the discreteness hypothesis, we have
that:

M, [i, j] len=k iff 〈B〉k−1> ∧ [B]k⊥,

which proves that AA plus metric constraints (known as
MPNL) is a proper fragment of HS.

Finding an optimal balance between expressive power and
computational complexity is a challenge for every knowledge
representation and reasoning formalism. Interval temporal log-
ics are not an exception in this respect; in [14] the applicability
of MPNL has been advocated. To recall some of the arguments,
MPNL has been proved expressive enough to to encode (metric
versions of) basic operators of point-based linear temporal
logic (LTL) as well as interval modalities corresponding to
Allen’s relations. In addition, it allows one to express limited
forms of fuzziness. Limiting ourselves to a few examples, we
show that MPNL is expressive enough to encode the strict
sometimes in the future (respectively, sometimes in the past)
operator of LTL:

〈A〉(len>0 ∧ 〈A〉(len=0 ∧ p))
Moreover, length constraints allow one to define a metric
version of the until (respectively, since) operator. For instance,
the condition: ‘p is true at a point in the future at distance
k from the current interval and, until that point, q is true
(pointwise)’ can be expressed as follows:

〈A〉(len=k ∧ 〈A〉(len=0 ∧ p)) ∧ [A](len<k → 〈A〉(len=0 ∧ q)).

MPNL can also be used to constrain interval length and to
express metric versions of basic interval relations. First, we
can constrain the length of the intervals over which a given
property holds to be at least (respectively, at most, exactly)
k. As an example, the following formula constrains p to hold
only over intervals of length l, with k ≤ l ≤ k′:

[G](p→ len≥k ∧ len≤k′) (bl)

where the universal modality [G] (for all intervals) is express-
ible in the language, and its corresponding formula depends
on the class of models over which the formula is interpreted.
By exploiting such a capability, metric versions of almost all
Allen’s relations can be expressed (the only exception is the
during relation). As an example, we can state that: ‘p holds
only over intervals of length l, with k ≤ l ≤ k′, and any
p-interval begins a q-interval’ as follows:

(bl) ∧ [G]

k′∧
i=k

(p ∧ len=i → 〈A〉〈A〉(len>i ∧ q)).

Finally, MPNL makes it possible to express some forms of
‘fuzziness’. As an example, the condition: ‘p is true over the
current interval and q is true over some interval close to it’,
where by ‘close’ we mean that the right endpoint of the p-
interval is at distance at most k from the left endpoint of the
q-interval, can be expressed as follows:

p ∧ (〈A〉〈A〉(len<k ∧ 〈A〉〈A〉q) ∨ 〈A〉(len<k ∧ 〈A〉q)).

III. TASK PLANNING IN MPNL

It is generally accepted that task planning in Engineering
is a fundamental phase of the design, organization, and control
of any realistic work organization plan. In its simplest version,
it includes, at least:

1) A list of each atomic task, along with its properties
(including its temporal duration);

2) A set of precedence relations among tasks.

The purpose of a systematic organization of such set of task
is to answer the following question: Is the plan possible, and,
if so, what is its minimal temporal duration? In view of these
considerations, we may define a plan as follows.

Definition 1: A plan is a finite collections of tasks, each
one of which with a finite and univocally determined duration,
and such that they are placed over a finite temporal line
respecting a finite collection of precedence requirement.

The typical practical approach to the problem of finding
a plan from the collection of its requisite is twofold. On the
one side, engineers are trained to organize tasks in a systematic
network of precedence (for example, with the so-called critical
path method [15]), and to compute (by hand) the viability of
the entire network. On the other side, commercially available
software, such as, for example, Microsoft Project c© are used
to aid this process. Now, it is easy to observe that:

1) Atomic tasks can be logically treated as propositional
letters;

2) The precedence relation can be modeled as Allen’s rela-
tion meets;

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 46 / 49

3) On a dicrete/finite temporal line, durations are exactly
length constraints.

These considerations allow us to conclude that MPNL is a
suitable logical counterpart of a task planning network. Plans
are, by definition, temporally finite, and by seeing the plan the
logical conjunction of the (formulas corresponding to) set of
all constraints, plan viability corresponds to (MPNL-) formula
satisfiability. Moreover, the notion of minimal duration is
precisely the notion of minimal model of a formula.

From now on, we consider the language of MPNL inter-
preted in the class of finite (and, therefore, discrete) models.
Satisfiability of MPNL-formulas in the finite case can be safely
restricted to the initial interval, which we can denote as [−1, 0].
In fact, given any MPNL-formula ϕ, the latter is satisfiable if
and only if the MPNL-formula 〈A〉ϕ is initially satisfiable.
By applying such a small technical modification, we obtain a
task, represented as a propositional letter, will be placed on
the interval [i, j] exactly when the plan sets it to start at the
moment i and to finish at the moment j. In this context, the
universal modalitity, introduced in the previous section, can
be expressed as follows:

[G]p ≡ [A]p ∧ [A][A]p.

Let us assume, now, that tasks are represented by the
propositional letters T1, T2, . . . ∈ T , where T is a finite set of
tasks. Similarly, it is convenient to assume that task indexes
are collected in a subset of natural numbers I. Therefore, by
expressing:

〈A〉Tl ∨ 〈A〉〈A〉Tl,

where l ∈ I, we force the task T1 to be part of a plan.
Similarly, by adding:

[G](Tl → len=k),

we force Tl to have the duration of k units. The precedence
relation can be then expressed as follows. Given a constraint
of the type: the task Tl cannot start before the task Tg has
finished, we can set:

[G](Tl → 〈A〉(Tg ∨ 〈A〉Tg).

To make sure that we can exclude unwanted models, we can
add the following constraint that ensures tasks are unique:

∧
l∈I

[G]〈A〉(Tl → [A]¬Tl).

Unlike algebraic networks, MPNL allows one to express
more complex requirements. First of all, besides single tasks
T1, T2, . . ., we can express the concept of task type, by adding
suitable propositions in conjunction with those that denote
tasks, and, then, impose universal constraints over them.
Suppose, for example, that T ′ ⊂ T collects all and only those
tasks of a certain type, for which we have the constraint that:

between any two successive tasks of T ′ a temporal distance of
at least k units must get by. We can deal with such a constraint
by means of the following technique:

∧
Tl∈T ′ [G](Tl → P)∧

[G](P →
∨
Tl∈T ′)∧

[G](P ∧ 〈A〉〈A〉P → 〈A〉(len>k−1P)),

where by means of the first formula, we make sure that
elements of T ′ are labeled by an additional proposition P , by
the second one we guarantee that P labels only elements of T ′,
and, finally, by last one we introduce the temporal constraint.

Other types of constraints can be expressed, such as: the
tasks Tl and Tg cannot start at the same time:

[G]((〈A〉Tl ∧ 〈A〉Tg)→ ⊥).

Finally, it is worth noticing that more complex constraints
can be expressed in MPNL. In fact, we can easily identify the
maximal temporal duration k of any task in T ; by using this
information, as we have explained in Section 2, almost every
Allen’s relation can be expressed over bounded intervals (all
tasks are bounded), and they can be used in both existential
and universal statements.

In more advanced task planning systems, one would like
to be able to take into account a certain amount of finite
resources. Indeed, in real cases, not every temporally sound
plan is executable, if it requires, at any given moment of time,
more resources than those that are at disposition. It is not
difficult to see that this information can be expressed by using
only a propositional language, such as MPNL. Let us assume
that we measure our resources with a natural number n. The
requirements may indicate the resources that are consumed
by each task, and the total number of resources that are at
the disposition for the entire plan. We assume, for each task
Tl, that the propositional letter Rnl denotes the fact that n
resource units are necessary; clearly, if N is the maximum
number of units that are necessary for any task, at most |T |·N
different propositional letters must be added to the language.
We then have to assign the correct number of units to each
task, and, since we can only compare intervals, in order to take
into account overlapping tasks (and therefore, the combined
amount of resources required at any given moment), we collect
such information at the finest temporal granularity, that is, unit
intervals:

∧
Tl∈T [G](Tl → Rnl)∧∧
s=1,...,M

∧
l∈I

∧
k≤k[G] (〈A〉(len=k ∧ Tl ∧Rsl)→∧

k′<k〈A〉〈A〉(len=1 ∧Rsl)).

Now, we can easily pre-compute all and only those sequences
of indexes l1, l2, . . . in I, such that, for each such sequence
σ, there are tasks in T such that, by summing all resources
requested by each of them, we obtain a number greater than
the maximum numbers of units available, which we can denote
by M . Let Σ be the set of such sequences of indexes. If σ =
l1, l2, . . . , l|σ| ∈ Σ, then there exists tasks in T for which we

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 47 / 49

Table I: A FRAGMENT OF A REALISTIC CASE STUDY. UPPER SIDE: TASKS. LOWER SIDE: GENERAL REQUIREMENTS.

Symbol Name Type Duration Preceding Task(s) Formulas
T1 Water well building − 5 − 〈A〉T1 ∨ 〈A〉〈A〉T1

T2 Water convey construction work P1 12 T1 〈A〉T2 ∨ 〈A〉〈A〉T2, [G](T2 → len=12)

[G](T2 → 〈A〉(T1 ∨ 〈A〉T1)
T3 Water convey construction work P1 14 T2 〈A〉T3 ∨ 〈A〉〈A〉T3, [G](T3 → len=14)

[G](T3 → 〈A〉(T2 ∨ 〈A〉T2)
T4 Pumphouse construction − 15 − 〈A〉T4 ∨ 〈A〉〈A〉T4, [G](T4 → len=15)

T5 Pump acquisition,installation and electric connections − 30 T1 〈A〉T5 ∨ 〈A〉〈A〉T5, [G](T5 → len=30)

[G](T5 → 〈A〉(T1 ∨ 〈A〉T1)
T6 Ground filling-up and cleaning − 4 T3 〈A〉T6 ∨ 〈A〉〈A〉T6, [G](T6 → len=4)

[G](T6 → 〈A〉(T3 ∨ 〈A〉T3)

General Requirement or Generic Data Formula or Symbol
Maximal duration of a task 30
Tasks are unique

∧
l=1,...,6[G]〈A〉(Tl → [A]¬Tl)

∗Between any two convey construction works, a minimum of 5 time units [G]((T2 ∨ T3)↔ P1) ∧ [G](P1 ∧ 〈A〉〈A〉P1 → 〈A〉(len>4P1))
must be given for checking

have used the propositional letters, corresponding to the need
of resources, Rf(l1)

l1
, R

f(l2)
l2

, . . ., and the previous constraints
have placed them somewhere in the model. We need to make
sure that no such tuple of propositional letter is true at any
given unit interval:

∧
σ∈Σ

∧
l1,...,l|σ|∈σ

[G]((len=1∧Rf(l1)
l1
∧Rf(l2)

l2
∧. . .∧Rf(l|σ|)

l|σ|
)→ ⊥).

Concluding, this section shows the applicability of a logical
framework as an effective support tool for plan design and
test. The advantages of using a logical tool in substitution
of an algebraic one are well-known, and include, among
others, (i) the possibility of specifying universal properties;
(ii) the possibility of specifying negative information; (iii) the
possibility of comparing, under various points of view, two
or more plans. Moreover, it is worth recalling that algebraic
networks feature only limited disjunction capabilities; as for
example, the only way to encode a requirement such as the
task Tl precedes the task Tm or the task Tg in an algebraic
network is to compute two entirely separated networks, while
such a requirement has an immediate logical counterpart:

[G]((Tm ∨ Tg)→ 〈A〉(Tl ∨ 〈A〉Tl).

IV. A REALISTIC CASE STUDY

We present in this section a fragment of a realistic case
study that includes a planning phase. The project under
analysis is the construction of a drinkable water provision
system for various towns. It includes the building of two water
wells, one pumphouse, an impulsion system, and one energy
transformation unit. A realistic case study features various tens
of different requirements, all of which fall into some of the
categories explained in the previous section, and classified into
different (conceptual) groups.

In order to show the applicability of MPNL as planning
support system, we give in Table I an extract from the
collection of task requirements and conditions for this project,
and we translate it into MPNL, adding the general conditions

as explained in the previous section. To the original plan, we
added a further condition in order to show the capabilities
of this approach. We suppose that, at some point the chief
engineer requires a minimum time to check the construction
work before continuing (∗): instead of re-thinking the entire
plan, it is enough to add the corresponding formula and re-run
the satisfiability checker.

V. CONCLUSIONS

The purpose of this paper was twofold. On the one side,
we present a novel technique to solve a well-known problem,
that is, plan design and checking in Engineering. This problem
is usually solved by means of simple algebraic methods, well-
established in the field, but that suffer of intrinsic limitations.
On the other side, we give a clear and simple application
of a recently studied temporal logic for time intervals, that
is, MPNL. Algebraic networks are historically preferred over
logical formalism for planning applications; this is due to many
reasons, among which we mention computational properties
of the formalisms and simplicity of the approach. The recent
discover of decidable, pure temporal logic for time intervals
may change this perspective, allowing one to use more power
formalisms without giving up the decidability and therefore
the possibility of computer-assisted design. Moreover, while it
is true that algebraic networks present, usually, a satisfiability
problem with (non-deterministic) polynomial complexity, the
plan designing and checking phase needs not to be real-time
(it is usually a off-line procedure), and one can afford longer
computation times.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Spanish
fellowship program ‘Ramon y Cajal’ RYC-2011-07821 (G.
Sciavicco).

REFERENCES

[1] W. Bibel, “Let’s plan it deductively,” in Proc. of the 15th Int. Joint
Conference on Artificial Intelligence (IJCAI), 1997, pp. 1549–1562.

[2] U. Riss, A. Rickayzen, H. Maus, and W. van der Aalst, “Challenges
for business process and task management,” Journal of Universal
Knowledge Management, vol. 0, no. 2, pp. 77–100, 2002.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 48 / 49

[3] IBM. (2014, Jan.) Life cycle of human tasks. [Online]. Avail-
able: http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.
jsp?topic=/com.ibm.websphere.bpc.610.doc/doc/bpc/ctasklifecycle.html

[4] J. Allen, “Maintaining knowledge about temporal intervals,” Communi-
cations of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[5] J. F. Allen and P. J. Hayes, “A common-sense theory of time,” in Proc. of
the 9th International Joint Conference on Artificial Intelligence (IJCAI-
85), Los Angeles, CA, USA, 1985, pp. 528–531.

[6] G. Sciavicco, “Reasoning with time intervals: A logical and com-
putational perspective,” ISRN Artificial Intelligence, vol. 2012, 2002,
available online. Article ID 616087.

[7] J. Halpern and Y. Shoham, “A propositional modal logic of time
intervals,” J. of the ACM, vol. 38, no. 4, pp. 935–962, 1991.

[8] V. Goranko, A. Montanari, and G. Sciavicco, “A road map of interval
temporal logics and duration calculi,” J. of Applied Non-Classical
Logics, vol. 14, no. 1–2, pp. 9–54, 2004.

[9] D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco, “Ex-
pressiveness of the interval logics of allen’s relations on the class of
all linear orders: Complete classification,” in Proceedings of the 22th
International Joint Conference Artificial Intelligence (IJCAI), 2011, pp.
845–850.

[10] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco,
“Interval temporal logics over strongly discrete linear orders: the
complete picture,” in Proc. of the 3rd International Symposium on
Games, Automata, Logics and Formal Verication (GANDALF), 2012,
pp. 155–168.

[11] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco,
“Interval temporal logics over finite linear orders: the complete picture,”
in Proc. of the 20th ECAI, 2012, pp. 199–204.

[12] D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco, “Optimal decision
procedures for mpnl over finite structures, the natural numbers, and the
integers,” Theoretical Computer Science, no. 493, pp. 98–115, 2013.

[13] A. I. A. M. L. Aceto, D. Della Monica and G. Sciavicco, “Complete
classification of the expressiveness of fragments of halpern-shoham
logic over dense linear orders,” in 20th International Symposium on
Temporal Representation and Reasoning (TIME), 2013, pp. 65–72.

[14] D. Bresolin, D. D. Monica, V. Goranko, A. Montanari, and G. Sciav-
icco, “Metric propositional neighborhood logics on natural numbers,”
Software and System Modeling, vol. 12, no. 2, pp. 245–264, 2013.

[15] S. Shaheen, Practical Project Management. Wiley, 1986.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 49 / 49

http://www.tcpdf.org

