
COMPUTATION TOOLS 2016

The Seventh International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-466-4

March 20 - 24, 2016

Rome, Italy

COMPUTATION TOOLS 2016 Editors

Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster / Leibniz
Universität Hannover / North-German Supercomputing Alliance, Germany

Lorenzo Bettini, University of Torino, Italy

 1 / 33

COMPUTATION TOOLS 2016

Forward

The Seventh International Conference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking (COMPUTATION TOOLS 2016), held between March 20-24, 2016 in Rome,
Italy, continued a series of events dealing with logics, algebras, advanced computation
techniques, specialized programming languages, and tools for distributed computation. Mainly,
the event targeted those aspects supporting context-oriented systems, adaptive systems,
service computing, patterns and content-oriented features, temporal and ubiquitous aspects,
and many facets of computational benchmarking.

The conference had the following tracks:

 Advanced computation techniques

 Tools for distributed computation

 Logics

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2016 technical program committee, as well as the numerous reviewers. The creation of such a
high quality conference program would not have been possible without their involvement. We
also kindly thank all the authors that dedicated much of their time and effort to contribute to
COMPUTATION TOOLS 2016. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the COMPUTATION
TOOLS 2016 organizing committee for their help in handling the logistics and for their work that
made this professional meeting a success.

We hope COMPUTATION TOOLS 2016 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in the area
of computational logics, algebras, programming, tools, and benchmarking. We also hope that
Rome provided a pleasant environment during the conference and everyone saved some time
for exploring this beautiful city.

 2 / 33

COMPUTATION TOOLS 2016 Chairs

COMPUTATION TOOLS Advisory Chairs

Kenneth Scerri, University of Malta, Malta
Alexander Gegov, University of Portsmouth, UK
Ahmed Khedr, University of Sharjah, UAE

COMPUTATIONAL TOOLS Industry/Research Chairs

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

COMPUTATION TOOLS Publicity Chair

Lev Naiman, University of Toronto, Canada
Ingram Bondin, University of Malta, Malta
Tomáš Bublík, Czech Technical University in Prague, Czech Republic

 3 / 33

COMPUTATION TOOLS 2016

Committee

COMPUTATION TOOLS Advisory Committee

Kenneth Scerri, University of Malta, Malta
Alexander Gegov, University of Portsmouth, UK
Ahmed Khedr, University of Sharjah, UAE

COMPUTATIONAL TOOLS Industry/Research Chairs

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

COMPUTATION TOOLS Publicity Chair

Lev Naiman, University of Toronto, Canada
Ingram Bondin, University of Malta, Malta
Tomáš Bublík, Czech Technical University in Prague, Czech Republic

COMPUTATION TOOLS 2016 Technical Program Committee

Yas Aksultanny, Arabian Gulf University, Bahrain
Youssif B. Al-Nashif, Old Dominion University, USA
Adel Alimi, University of Sfax, Tunisia
François Anton, Technical University of Denmark, Denmark
Henri Basson, University of Lille North of France (Littoral), France
Steffen Bernhard, TU-Dortmund, Germany
Ateet Bhalla, Independent Consultant, India
Paul-Antoine Bisgambiglia, Université de Corse, France
Narhimene Boustia, Saad Dahlab University - Blida, Algeria
Azahara Camacho, Complutense University of Madrid, Spain
Luca Cassano, University of Pisa, Italy
Emanuele Covino, Università degli Studi di Bari Aldo Moro, Italy
Hepu Deng, RMIT University - Melbourne, Australia
Rene de Souza Pinto, University of Sao Paulo, Brazil
Craig C. Douglas, University of Wyoming / Yale University, USA
António Dourado, University of Coimbra, Portugal
Eugene Feinberg, Stony Brook University, USA
Tommaso Flaminio, University of Insubria, Italy
Janos Fodor, Obuda University, Hungary
Alexander Gegov, University of Portsmouth, UK
Victor Gergel, University of Nizhni Novgorod (UNN), Russia

 4 / 33

Veronica Gil-Costa, University of San Luis, Argentina
Luis Gomes, Universidade Nova de Lisboa, Portugal
Yuriy Gorbachev, Geolink Technologies LLC, Russia
George A. Gravvanis, Democritus University of Thrace, Greece
Rajiv Gupta, University of California - Riverside, USA
Fikret Gurgen, Bogazici University - Istanbul, Turkey
Hani Hamdan, École Supérieure d’Électricité (SUPÉLEC), France
Said Jabbour, CRIL - CNRS | University of Artois, France
Nawaz Khan, Middlesex University London, UK
Cornel Klein, Siemens AG - Munich, Germany
Stano Krajci, Safarik University - Kosice, Slovakia
Isaac Lera, University of the Balearic Islands, Spain
Tsung-Chih Lin, Feng-Chia University, Taichung, Taiwan
Glenn R. Luecke, Iowa State University, USA
Reza Madankan, University of Texas MD Anderson Cancer Center, USA
Elisa Marengo, Free University of Bozen-Bolzano, Italy
Roderick Melnik, Wilfrid Laurier University, Canada
Rob Miller, University College London, UK
Julian Molina, University of Malaga, Spain
Susana Muñoz Hernández, Universidad Politécnica de Madrid, Spain
Adam Naumowicz, University of Bialystok, Poland
Gianina Alina Negoita, Iowa State University, USA
Cecilia E. Nugraheni, Parahyangan Catholic University - Bandung, Indonesia
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Javier Panadero, Universitat Autònoma de Barcelona, Spain
Juan Jose Pardo, University of Castilla-la Mancha, Spain
Vangelis Paschos, LAMSADE - University Paris-Dauphine, France
Mario Pavone, University of Catania, Italy
Mikhail Peretyat'kin, Institute of mathematics and mathematical modeling, Kazakhstan
Alexandre Pinto, ISG - Royal Holloway University of London, UK / Instituto Superior da Maia, Portugal
Enrico Pontelli, New Mexico State University, USA
Corrado Priami, CoSBi & University of Trento, Italy
Marcus Randall, Bond University, Australia
Dolores Rexachs, University Autonoma of Barcelona (UAB), Spain
Morris Riedel, University of Iceland, Iceland / Juelich Supercomputing Centre, Germany
Ricardo Rocha, University of Porto, Portugal
Lakhdar Saïs , CRIL - CNRS, University of Artois, France
Guido Sciavicco, University of Murcia, Spain
Evgenia Smirni, College of William and Mary - Williamsburg, USA
Patrick Siarry, Université de Paris 12, France
Hooman Tahayori, Ryerson University, Canada
James Tan, SIM University, Singapore
Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria
Miroslav Velev, Aries Design Automation, USA
Chao-Tung Yang, Tunghai University, Taiwan
Marek Zaremba, Universite du Quebec en Outaouais - Gatineau, Canada
Naijun Zhan, Institute of Software/Chinese Academy of Sciences - Beijing, China

 5 / 33

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 33

Table of Contents

A Perceptron-Based Task Predictor for Multi-Core Processor Architectures
Jongbok Lee

1

Implementing the Type System for a Typed Javascript and its IDE
Lorenzo Bettini, Jens von Pilgrim, and Mark-Oliver Reiser

6

Logical Characterization and Complexity of Weighted Branching Preorders and Distances
Louise Foshammer, Kim Guldstrand Larsen, Radu Mardare, and Bingtian Xue

12

Towards an Astrophysical-oriented Computational multi-Architectural Framework
Dzmitry Razmyslovich, Guillermo Marcus, and Reinhard Manner

19

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 33

A Perceptron-Based Task Predictor

for Multi-Core Processor Architectures

Jongbok Lee

Dept. of Information and Communications Engineering
Hansung University

Seoul, Republic of Korea
Email: jblee@hansung.ac.kr

Abstract—In order to increase the performance of multi-core
system processors, the task predictor which speculativelyfetches
and allocates tasks to each core should be highly accurate. In
this paper, a perceptron-based task predictor is proposed for the
multi-core processor architectures. Using SPEC 2000 benchmarks
as input, the trace-driven simulation has been performed for
the dual-core to octa-core processors employing perceptron-based
task predictor extensively. Its performance is compared with the
architecture which utilizes the conventional two-level adaptive
task predictor.

Keywords–multi-core processor, perceptron

I. I NTRODUCTION

Currently, multi-core processors are widely used for the
high performance of the computer system, such as smart
phones, tablet PCs, notebook computers, and desk top comput-
ers, etc [1]–[6]. By utilizing a task predictor, a program ispar-
titioned into speculative multiple tasks which are assigned to
the processing core units. Hence, the task predictor shouldbe
very accurate in order to effectively take advantage of a multi-
core processor architecture. Recently, neural networks such
as perceptrons are widely used in the digital systems, which
can take advantage of learning. In this paper, a perceptron-
based task predictor for multi-core processor is proposed.
The SPEC2000 integer benchmark programs are used for
estimating the performance of multi-core processors using
perceptrons. The result is compared with the performance of
the multi-core processor with the conventional scheme.

This paper is organized as follows. In the Section 2,
the perceptron-based task predictor will be discussed. The
simulation environment will be described in the Section 3. In
the Section 4, the simulation results will be analyzed. Finally,
the Section 5 concludes our paper.

II. RELATED STUDIES

Perceptron is the neural network capable of learning by
producing outputs combined with the inputs and the associated
weight values. In the past studies, it has been adopted for
predicting branches in the computer systems [7]–[9]. Figure 1
describes the graphic model of a perceptron. A perceptron is
represented by weight vectors, which are composed of positive
or negative integers. The output is the dot product of the weight
vectorw0..N and the input vectorx0..N. The first elementx0

is always set to 1 to serve as a bias input.

Figure 1. The perceptron.

y = w0 +

n∑

i=1

xiwi (1)

Therefore, before adapting to the previous branch results,the
biased weightw0 always enables the perceptron to be biased
in the initial stage. The output of a perceptron is represented
as (1). The input to a perceptron is bipolar, which means
that the branch is not taken ifxi is -1, and taken ifxi is
1. When the output is negative, the branch is predicted as not
taken; When the output is positive, it is predicted as taken.
When a branch is met, the branch address is used to generate
an index between 0 and N-1 to access the perceptron table.
After obtaining the weight vectorP0..N by fetching theith
perceptron, the dot product of the weight vector and the global
history register is generated to output y. The direction of the
next branch is predicted upon the sign of the output. When the
actual direction of the branch is available, the result is used to
update the weight value of the vector P. Then, the vector P is
recorded to theith entry of the perceptron table.

After the perceptron output y has been computed, the
following algorithm is used to train the perceptron. Let t be-1
if the branch was not taken, or 1 if it was taken, and let be the
threshold, a parameter to the training algorithm used to decide
when enough training has been done. Since t andxi are always
either -1 or 1, this algorithm increments theith weight when
the branch outcome agrees withxi, and decrements when it
disagrees.

III. T HE PERCEPTRON-BASED TASK PREDICTOR

The task prediction of multi-core processors using percep-
trons can be implemented in the similar mechanism as the
branches are predicted. Figure 3 illustrates the mechanism

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 33

Figure 2. The perceptron algorithm

of the perceptron-based predictor. The predictor records the
finite length of task history results to the task history register
and accesses the weight vector table to make a prediction. A
temporary task history register is utilized, and at the beginning
of each multiple task prediction, the contents of the task history
register is transferred to the temporary task history register.
In order to predict multiple tasks, the task’s starting address

Figure 3. The perceptron-based task predictor

is hashed by the k-bits of history register which is used to
index the weight vector table and to predict theith task. The
i + 1th task is predicted on the assumption that the first task
prediction is correct. For this purpose, the rightmost 1-bit of
the temporary task history register is updated and multiplied to
an indexed weight vector to make thei+1th task prediction. In
this way, two tasks can be predicted per cycle. Later, when the
task outcomes are known, the task history register is updated
according to the results. Similarly, to predict thei + 2th task,
the rightmost 2 bits of the temporary task history register is
updated based on the first and the second task predictions.

IV. T HE SIMULATION ENVIRONMENT

A. The multi-core processor architecture
Figure 4 shows the multi-core processor with N cores. Each

core is an out-of-order superscalar processor which can execute

instructions in a task [10]. In addition, it has a L1 instruction

Figure 4. The multicore processor

cache and a L1 data cache. For the cache coherency of the L1
data cache, MESI protocol is utilized. If the data in the L1
data cache associated with a core is over-written by another
core, it is invalidated. The L2 cache is shared among the cores,
which is connected with the main memory.

The superscalar processor core is allocated with tasks
which consist of a number of instructions. The fetched instruc-
tions in the task are decoded, renamed, executed, and written
back. When all the instructions in the task are retired and
becomes empty, new instructions of task are fetched. If the
task is mispredicted, the fetch is aborted, and all the remained
instructions in the task are squashed. Since the instructions
are renamed, the instructions can be issued and executed out-
of-order as long as there is no true-dependency. Although the
instructions can be retired out-of-order, the instructions are
inserted into the reorder buffer and committed in-order as to
preserve the original program order.

The detailed architecture configurations and cache parame-
ters for each core are listed in Table I. The number of simulated
cores are 1, 2, 4, and 8. Each core is assigned with the
maximum of two tasks respectively. Since the small task size
cannot take the benefit of the instruction level parallelism, the
task sizes are set to 4, 8, and 16. The functional unit of each

TABLE I. ARCHITECTURE CONFIGURATION FOR EACH CORE.

Item Value

number of cores 1,2,4,8
number of tasks per core 1,2

task length 4,8,16
fetch,issue,retire rate 2,4,8

functional integer ALU 2,4,8
unit load/store 1,2,4

L1-instruction 64 KB, 2-way set assoc.,
cache 16 B block,

10 cycles miss penalty
L1-data 64 KB, 2-way set assoc.,
cache 32 B block

10 cycles miss penalty
task address cache 2K entry

task predictor two-level adaptive 14-bit global history
perceptron 8-bit global history,

4096 Pattern History Table

core consists of a number of ALUs, load/store units according
to each configuration. For the memory disambiguation, load-
store and store-store pairs are inhibited from the speculative

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 33

execution when the effective addresses are matched, within
or among the cores. The L1 instruction cache and L1 data
cache for each core is 64 KB, and it is designed as 2-
way set associative. This is because the data cache hit ratio
can be degraded by using MESI protocol among multiple
cores. For the reference, tasks are predicted using the two-
level adaptive prediction scheme. The two-level adaptive task
predictor is similar to the two-level adaptive branch prediction
scheme where the branch address simply corresponds to the
task starting address [11] [12]. In correspondence with the
perceptron-based task predictor, the two-level adaptive task
predictor employs a 14-bits of global history register and
16,384 items for the pattern history table. For the perceptron-
based task predictor, the length of task history register is8-
bits, and the number of pattern history table is set to 4096.
The threshold value for the perceptron learning is shown as 2,
whereTN is the length of the task history register. For both
predictors, the task address cache has the size of 2048 entries.
Since we do not model the main memory, the hit ratio of L2
cache is assumed to be as 100 %.

θ = 2× TN + 14 (2)

B. The multi-core processor simulator
Figure 5 depicts how the developed simulator works

[13]. Initialize function initializes all the associated variables,
andGrouping, Create Window, andFetch One Instr function
fetches new instructions to fill core tasks every cycle. The

Analysis

Initialize

Grouping(N)

Create_Window(N)

Fetch_One_Instr(N)

Get_Node(N)

Rename(N)

Insert(N)

Grouping(1)

Create_Window(1)

Fetch_One_Instr(1)

Get_Node(1)

Rename(1)

Insert(1)

Issue(N)

Mem_Process(N)

Mark_Node(N)

Delete_Node(N)

Issue(1)

Mem_Process(1)

Mark_Node(1)

Delete_Node(1)

Figure 5. The flow chart of the multi-core processor simulator

instruction fetched byGet Node function is renamed atRe-
name function by receiving timestamps. After the instruction
is renamed, it is inserted into a core task byInsert function.
At the Issue function, the instruction in the core task can
be retired so long as the corresponding functional unit is
available and its time stamp is less than or equal to the current
cycle. For implementing the multi-core simulation,Grouping
function fills instructions of n-core tasks, andIssue function
deletes instructions according to their timestamps. This process
is repeated until all the fetched instructions in the core tasks
are deleted to become empty. Then, the core tasks are filled

again with instructions byGrouping function. Since the cycle
is incremented for each process, the core which spends the
longest cycles determines the global cycle. If the total number
of executed instruction is divided by the number of global
cycles spent, then Instruction per Cycle (IPC) can be obtained.
The eight SPEC 2000 integer benchmark programs that is used
for the input arebzip2, crafty, gap, gcc, gzip, mcf, parser, and
twolf as shown in Table II. The programs are compiled by

TABLE II. SPEC 2000 BENCHMARK PROGRAMS

benchmark description

bzip2 compression
crafty chess game
gap group theory interpreter
gcc C programming language compiler
gzip compression
mcf optimization of combination
parser word processor
twolf placement and global routing

SimpleScalar cross C compiler to obtain executables under
Linux 3.3.4 [14]. The execution files are again run with
SimpleScalar to obtain 100 million MIPS IV instruction traces,
which are used as input for the multi-core processors. The task-
level parallelism is mapped onto each core, and the trace-driven
simulation is performed to get performance [15].

V. THE SIMULATION RESULTS

Figure 6 presents the simulation results of running SPEC
2000 integer programs on the three different task lengths for
the single-core, dual-core, quad-core, and octa-core processors.
The performance results obtained by the two-level adaptive
task predictor and the perceptron-based task predictor are
compared in parallel. Figure 6a and 6b are the result of
the multi-core processors with the maximum task length of
four. Across the number of different cores,bzip2 and mcf
scores the highest performance owing to the relatively high
parallelism and the low cache miss rates. However,gcc results
in the lowest performance due to the severe losses from the
low instruction and data cache hit rates. For the dual-core
processors, the two-level adaptive task predictor brings the
geometrical mean of 2.60 IPC, whereas the perceptron-based
task predictor results in 2.63 IPC. For the octa-core processors,
the two-level adaptive task predictor and the perceptron-based
predictor results in 7.64 IPC and 7.73 IPC, respectively. With
the perceptron-based task predictor, the performance is 1.7
times enhanced as the number of cores doubles. Therefore,
when the performance of the octa-core processor is compared
with the single-core, it is 5.4 times higher. With the maximum
task length of four, the perceptron-based task predictor per-
forms 1.1 % higher than the two-level adaptive task predictor.

Figure 6c and 6d show the results with the maximum
task length of eight. Still,bzip2 and gcc show the best
and the poorest performance, respectively. For the quad-core
processor, the two-level adaptive task predictor brings 7.53
IPC, whereas the perceptron-based task predictor scores 7.75
IPC. The respective performance for the octa-core processor
are 12.3 IPC and 12.5 IPC. With the task length of eight, the
octa-core processor brings 5.3 times higher performance than
the single-core processor, which is slightly lower than thetask
length of four. However, the task length of eight performs 1.6
times better than the task length of four. Hence, the proposed

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 33

scheme scores higher performance than the two-level adaptive
scheme by 2.8 %.

Finally, Figure 6e and 6f present the comparison result
when the maximum task length is sixteen.Parser outperforms
bzip2 by the enlargement of the task length, whereasgcc still
maintains low performance. For the dual-core processors, the
two-level adaptive task predictor brings 6.5 IPC, whereas the
perceptron-based task predictor results in 6.9 IPC. For the
quad-cores, the respective values are 11.24 IPC and 11.67 IPC.
And for the octa-cores, they are increased to 17.8 IPC and 18.3
IPC, respectively. With the perceptron, the performance has
increased 1.8 times higher as the single-core goes to the dual-
core processor. However, it is slightly decreased to 1.6 times
when the quad-cores go to the octa-cores. The octa-core results
in the 4.9 times higher performance than the single-core with
the maximum task length of sixteen. Although the increase rate
has been slowed down, the maximum task length of sixteen
gives 1.5 times and 2.4 times higher performances than the
maximum task length of eight and four, respectively. When
the maximum task length is sixteen, the perceptron-based task
predictor prevails the two-level adaptive task predictor by 5.1
%.

VI. CONCLUSIONS

In this paper, a perceptron-based task predictor for multi-
core processors has been proposed. The single-core to octa-
core processors using perceptron with different task lengths
have been simulated. As the result shows, the performance of
multi-core processors with the perceptron-based task predictor
scores higher performance than the two-level adaptive task
predictor. When the task lengths are 4, 8, and 16, the respective
performance increase over the two-level adaptive scheme are
1.1 %, 2.8 %, and 5.1 %.

For the future research, we will apply the perceptron-based
task predictor to the asymmetric multi-core processor to further
improve the efficiency, as well as expanding our scope to the
multi-core embedded and multi-core digital signal processor
architectures.

ACKNOWLEDGMENT

The author would like to thank Hansung University for the
financial support of this research.

REFERENCES

[1] D. E. Culler and J. P. Singh, Parallel Computer Architecture. Morgan
Kauffmann Publishers Inc., Aug. 1998.

[2] T. Ungerer, B. Robic, and J. Silk, “Multithreaded Processors,” The
Computer Journal, vol. 45, no. 3, 2002.

[3] S. W. Keckler, K. Olukotun, and H. P. Hofsee, Multicore Processors
and Systems. Springer, 2009.

[4] M. Monchiero, “How to simulate 1000 cores,” ACM SIGARCH Com-
puter Architecture News archive, vol. 37, no. 2, May 2009, pp. 10–19.

[5] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood,and F. T.
Chong, “Multi-execution : Multicore caching for data-similar execu-
tions,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 164–173.

[6] D. Genbrugge and L. Eckhout, “Chip multiprocessor design space
exploration through statistical simulation,” IEEE Transactions on Com-
puters, vol. 58, no. 12, Dec. 2009, pp. 1668–1681.

[7] D. A. Jimenez and C. Lin, “Neural methods for dynamic branch
prediction,” ACM Transactions on Computer Systems, vol. 40, no. 2,
Mar 1999, pp. 24–36.

[8] ——, “Dynamic branch prediction with perceptrons,” in High Perfor-
mance Computer Architecture, Jun 2001, pp. 197–206.

[9] D. A. Jimenez, “Fast path-based neural branch prediction,” in Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, Dec 2003, pp. 243–252.

[10] T. N. Vijaykumar and G. S. Sohi, “Task selection for a multiscalar
processor,” in 31st International Symposium on Microarchitecture, Dec
1998, pp. 81–92.

[11] T.-Y. Yeh and Y. Patt, “Alternative Implementations ofTwo-Level
Adaptive Branch Prediction,” in Proceedings of the 19th International
Symposium on Computer Architecture, May. 1992, pp. 124–134.

[12] J. Gummaraju and M. Franklin, “Branch prediction in multi-threaded
processors,” in Parallel Architectures and Compilation Techniques, Oct
2000, pp. 179–188.

[13] J. Lee, “The study of statistical simulation for multicore processor
architectures,” in The Sixth International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmarking, Mar 2015,
pp. 27–30.

[14] T. Austin, E. Larson, and D. Ernest, “SimpleScalar : An Infrastructure
for Computer System Modeling,” Computer, vol. 35, no. 2, Feb. 2002,
pp. 59–67.

[15] A.Rico, A. Duran, F. Cabarcas, A. Ramirex, and M. Valero, “Trace-
driven simulation of multithreaded applications,” in ISPASS, Apr 2011,
pp. 87–96.

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 33

 0

 2

 4

 6

 8

 10

 12

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(a) two-level adaptive, maximum task length of 4

 0

 2

 4

 6

 8

 10

 12

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(b) perceptron, maximum task length of 4

 0

 5

 10

 15

 20

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(c) two-level adaptive, maximum task length of 8

 0

 5

 10

 15

 20

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(d) perceptron, maximum task length of 8

 0

 5

 10

 15

 20

 25

 30

 35

 40

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(e) two-level adaptive, maximum task length of 16

 0

 5

 10

 15

 20

 25

 30

 35

 40

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(f) perceptron, maximum task length of 16

Figure 6. Performance results of the two-level adaptive andthe perceptron-based task predictor

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 33

Implementing the Type System for a Typed Javascript and its IDE

Lorenzo Bettini

Dip. Statistica, Informatica, Applicazioni
Università di Firenze, Italy

Email: bettini@disia.unifi.it

Jens von Pilgrim, Mark-Oliver Reiser

NumberFour AG,
Berlin, Germany

Email: {jens.von.pilgrim,mark-oliver.reiser}@numberfour.eu

Abstract—Implementing a programming language with IDE tool-
ing features poses several challenges even when using language
workbenches like Xtext that provides Eclipse integration. A
complex type system with powerful type inference mechanisms
requires focusing carefully on performance issues that might
undermine the effective usability of the IDE: the editor must
be responsive even when type inference takes place in the
background, otherwise the programmer will experience too many
lags. In this paper, we will present a real-world case study:
N4JS, a JavaScript dialect with a full-featured Java-like static
type system (including generics) and present some evaluation
results. We will concentrate on techniques to make the type
system implementation of N4JS integrate efficiently with Eclipse.
For the implementation of such a type system we use Xsemantics,
a DSL for writing type systems, reduction rules and in general
relation rules for languages implemented in Xtext. Xsemantics
uses a syntax that resembles formal type system specifications,
so that the implementation of formally defined type rules can be
implemented easier and more directly than in Java.

Keywords–DSL; Type System; Implementation; Eclipse.

I. INTRODUCTION

Xtext [1] is a popular Eclipse framework for the devel-
opment of Domain-Specific Languages (DSLs) and their In-
tegrated Development Environments (IDEs). The type system
and interpreter for a language implemented in Xtext are usually
implemented in Java. While this works for languages with a
simple type system, it becomes a problem for an advanced type
system. Since the latter is often formalized, a DSL enabling the
implementation of a type system similar to the formalization
would be useful. Besides functional aspects, implementing a
complex type system with powerful type inference mechanisms
poses several challenges due to performance issues. At the
same time, modern statically-typed languages tend to reduce
the verbosity of the syntax with respect to types by imple-
menting type inference systems that relieve the programmer
from the burden of declaring types when these can be inferred
from the context. In order to be able to cope with these high
demands on both type inference and performance, efficiently
implemented type systems are required.

In [2], Xsemantics [3] was introduced. Xsemantics is a
DSL for writing rules for languages implemented in Xtext, e.g.,
the type system, the operational semantics and the subtyping.
Given the type system specification, Xsemantics generates Java
code that can be used in the Xtext implementation. Xsemantics
specifications have a declarative flavor that resembles formal
systems, while keeping the Java-like shape. This makes it
usable both by formal theory people and by Java programmers.
Xsemantics has improved a lot in order to make it usable

for modern full-featured languages and real-world performance
requirements. The new and advanced features of Xsemantics
are presented in [4].

In this paper, we present the implementation in Xsemantics
of the type system of N4JS, a version of JavaScript imple-
mented with Xtext, with powerful type inference mechanisms
(including Java-like generics). The implementation of the type
system of N4JS focuses both on the performance of the type
system and on its integration in the Eclipse IDE. This is the
first real-world example of the applicability of Xsemantics for
a complex type system with involved type inference.

The paper is structured as follows. We provide a small in-
troduction to Xtext and Xsemantics in Section II. In Section III,
we present our main case study: the implementation of the
type system of N4JS with Xsemantics, with some performance
benchmarks related to the type system. Section IV concludes
the paper and discusses some related works.

II. XTEXT AND XSEMANTICS

In this section, we will briefly recall the main features of
Xtext and Xsemantics.

Xtext [1] is a language workbench and it deals not only
with the compiler mechanisms but also with Eclipse-based
tooling: Xtext generates the Eclipse editor for the language
that we are implementing with syntax highlighting, background
parsing with error markers, outline view and code completion.
In the following we describe the two complementary mech-
anisms of Xtext that the programmer has to implement for
the type checking. Xsemantics aims at generating code for
both mechanisms. Scoping is the mechanism for binding the
symbols (i.e., references). Xtext supports the customization of
binding with the abstract concept of scope, i.e., all declarations
that are available (visible) in the current context of a reference.
The programmer provides a ScopeProvider to customize
the scoping. In Java-like languages the scoping will have to
deal with types and inheritance relations, thus, it is strictly
connected with the type system. All the other checks that
do not deal with symbol resolutions, have to be implemented
through a validator. In a Java-like language most validation
checks typically consist in checking that the program is correct
with respect to types. The validation takes place in background
while the user is writing in the editor, so that an immediate
feedback is available.

A system definition in Xsemantics is a set of judgments
(formally, assertions about the properties of programs) and a
set of rules (formally, implications between judgments). Rules
have a conclusion and a set of premises. Rules can act on any

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 33

judgments {
type |- Expression expression : output Type

error "cannot type " + expression
subtype |- Type left <: Type right

error left + " is not a subtype of " + right
}

Figure 1. Judgment definitions in Xsemantics.

Java object. Typically, rules act on the objects representing the
Abstract Syntax Tree (AST). Starting from the definitions of
judgments and rules, Xsemantics generates Java code that can
be used in a language implemented in Xtext for scoping and
validation.

An Xsemantics judgment consists of a name, a judgment
symbol (which can be chosen from some predefined symbols)
and the parameters of the judgment. Parameters are separated
by relation symbols (which can be chosen from some prede-
fined symbols). Two judgments must differ for the judgment
symbol or for at least one relation symbol. The parameters can
be either input parameters (using the same syntax for param-
eter declarations as in Java) or output parameters (using the
keyword output followed by the Java type). For example, the
judgment definitions for an hypothetical Java-like language are
shown in Figure 1: the judgment type takes an Expression
as input parameter and provides a Type as output parameter.
The judgment subtype does not have output parameters, thus
its output result is implicitly boolean. Judgment definitions can
include error specifications which are useful for generating
informative error information.

Rules implement judgments. Each rule consists of a name,
a rule conclusion and the premises of the rule. The conclusion
consists of the name of the environment of the rule, a judgment
symbol and the parameters of the rules, which are separated
by relation symbols. To enable better IDE tooling and a
more “programming”-like style, Xsemantics rules are written
in the opposite direction of standard deduction rules, i.e.,
the conclusion comes before the premises (similar to other
frameworks like [5], [6]).

The elements that make a rule belong to a specific judgment
are the judgment symbol and the relation symbols that separate
the parameters. Moreover, the types of the parameters of a
rule must be Java subtypes of the corresponding types of
the judgment. Two rules belonging to the same judgment
must differ for at least one input parameter’s type. This is a
sketched example of a rule, for a Java-like method invocation
expression, of the judgment type shown in Figure 1:

rule MyRule
G |- MethodSelection exp : Type type

from {
// premises
type = ... // assignment to output parameter

}

The rule environment (in formal systems it is usually
denoted by Γ and, in the example it is named G) is useful
for passing additional arguments to rules (e.g., contextual
information, bindings for specific keywords, like this in a Java-
like language). An empty environment can be passed using the
keyword empty. The environment can be accessed with the
predefined function env.

Xsemantics uses Xbase [7] to provide a rich Java-like
syntax for defining rules. Xbase is a reusable expression
language that integrates tightly with Java, its type system

and Eclipse Java Development Tools (JDT). The syntax of
Xbase is similar to Java with less “syntactic noise” and
some advanced linguistic constructs. Xbase provides extension
methods, a syntactic sugar mechanism: instead of passing the
first argument inside the parentheses of a method invocation,
the method can be called with the first argument as its receiver.
Xbase also provides lambda expressions, which have the shape
[param1, param2, ... | body]. Xbase’s lambda
expressions together with extension methods allow to easily
write statements and expressions which are not only more
readable than in Java, but they are also very close to formal
specifications.

The premises of a rule, which are specified in a from
block, can be any Xbase expression, or a rule invocation.
The premises of an Xsemantics rule are considered to be in
logical and relation and are verified in the same order they
are specified in the block. If one needs premises in logical
or relation, the operator or must be used to separate blocks
of premises. If a rule does not require any premise, we can
use a special kind of rule, called axiom, which only has the
conclusion. In the premises, one can assign values to the output
parameters. When another rule is invoked, upon return, the
output arguments will have the values assigned in the invoked
rule. If one of the premises fails, then the whole rule will
fail, and in turn the stack of rule invocations will fail. In
particular, if the premise is a boolean expression, it will fail
if the expression evaluates to false. If the premise is a rule
invocation, it will fail if the invoked rule fails. An explicit
failure can be triggered using the keyword fail. At runtime,
upon rule invocation, the generated Java system will select the
most appropriate rule according to the runtime types of the
passed arguments. Note that, besides this strategy for selecting
a specific rules, Xsemantics itself does not implement, neither
it defines, any other strategy.

Besides judgments and rules, one can write auxiliary
functions. In type systems, such functions are typically used as
a support for writing rules in a more compact form, delegating
some tasks to such functions. Predicates can be seen as a
special form of auxiliary functions. In an Xsemantics system,
we can specify some special rules, checkrule, which do not
belong to any judgment. They are used by Xsemantics to
generate a Java validator for the Xtext language. A checkrule
has a name, a single parameter (which is the AST object to
be validated) and the premises (but no rule environment). The
syntax of the premises of a checkrule is the same as in the
standard rules. In an Xsemantics system, fields can be defined,
which will be available to all the rules, checkrules and auxiliary
functions, just like Java fields in a class are available to all
methods of the class. This makes it easier to reuse external
Java utility classes from an Xsemantics system. This is useful
when some mechanisms are easier to implement in Java than
in Xsemantics. Custom error information can be specified on
judgments, rules and auxiliary functions. This can be used for
providing useful error information. Moreover, when using the
explicit failure keyword fail, a custom error information can
be specified as well. This use of fail is useful together with or
blocks to provide more information about the error. Moreover,
in or blocks, the implicit variable previousFailure is
available. This allows us to build informative error messages
as shown in Section III-B.

In a language implemented with Xtext, types are used in

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 33

many places by the framework, e.g., in the scope provider,
in the validator and in the content assist. For the above
reasons, the results of type computations should be cached to
improve the performance of the compiler and, most of all, the
responsiveness of the Eclipse editor. However, caching usually
introduces a few levels of complexity in implementations, and,
in the context of an IDE that performs background parsing and
checking, we also need to keep track of changes that should
invalidate the cached values. Xsemantics provides automatic
caching mechanisms that can be enabled in a system specifi-
cation. The cached values will be automatically discarded as
soon as the contents of the program changes.

A. Related Work
Xsemantics can be considered the successor of Xtypes [8].

With this respect, Xsemantics provides a much richer syntax
for rules that can access any existing Java library. In Xseman-
tics, a system can extend an existing one (adding and overrid-
ing rules). However, these extensibility and compositionality
features are not as powerful as the ones of other frameworks
such as, e.g., [9], [10], [11].

There are other tools for implementing DSLs and IDE
tooling (see [12], [13] for a wider comparison). Spoofax [10],
another language workbench which targets Eclipse, relies on
Stratego [14] for rule-based specifications. Xtext Type System
(XTS) [15] is a DSL for specifying type systems for DSLs built
with Xtext. The main difference with respect to Xsemantics is
that XTS aims at expression based languages, not at general
purpose languages. EriLex [16] supports specifying syntax,
type rules, and dynamic semantics but no IDE tooling.

An Xsemantics specification can access any Java type,
not only the ones representing the AST. Thus, Xsemantics
might also be used to validate any model, independently from
Xtext itself, and possibly be used also with other language
frameworks like EMFText [17]. Other approaches, such as,
e.g., [11], [16], [18], [19], [20], [21], [22], instead require the
programmer to use the framework also for defining the syntax
of the language.

The importance of targeting IDE tooling was recognized
also in older frameworks, such as Synthesizer [23] and Cen-
taur [18] (the latter was using several formalisms [24], [25],
[26]). Finally, we just mention other tools for the implementa-
tion of DSLs that are different from Xtext and Xsemantics for
the main goal and programming context, such as, [20], [21],
[22], [27], [28], [29], [30], [31].

III. CASE STUDY

In this section we will describe our real-world case study:
the implementation of the type system for a JavaScript dialect
with a full-featured static type system implemented with Xse-
mantics. We will also describe some performance benchmarks
related to the type system and draw some evaluations.

A. N4JS—Typed JavaScript
We have used Xsemantics to implement the type system

of a real-world language called N4JS. N4JS is a super set
of JavaScript also known as ECMAScript with modules and
classes as proposed in [32]. Most importantly N4JS adds a
full-featured static type system on top of JavaScript, similar to
TypeScript [33] or Dart [34]. N4JS is still under development,
but it is already being used internally at NumberFour AG.

function f (A p) {
var pNotNull = p || {name: "default", age: 42};
...

}

Figure 2. Typical usage of union types in N4JS

class A {
f (union{B,C} p) {

if (p instanceof B) { f B(p) }
else { f C(p) }

}
}

Figure 3. Union types used for emulated method overloading in N4JS

Moreover, it will be made available as an open source project
in the near future.

Roughly speaking, N4JS’ type system could be described
as a combination of the type systems provided by Java,
TypeScript and Dart. Besides primitive types, already present
in ECMAScript, it provides declared types such as classes
and interfaces, also supporting default methods (i.e., mixins),
and combined types such as union types [35]. N4JS supports
generics similar to Java or TypeScript, that is, it supports
generic types and generic methods (which are supported by
TypeScript but not by Dart) including wildcards, requiring
the notion of existential types (see [36]). The syntax of type
expressions is similar to Java’s type expressions as far as
possible.

Union types are an important feature in typed
ECMAScript-related languages. For example, logical operators
do not return a single boolean value in ECMAScript. This
is often used in JavaScript programs in order to avoid null
checks as demonstrated in Figure 2. The type of pNotNull
is to be inferred as the union type of A and the object literal
with a property “name” of type string and a property
“age” of type number. Union types can also be used as
a technique to emulate method overloading, which is not
directly supported by ECMAScript, as shown in Figure 3.

Functions are first-class citizens in the ECMAScript lan-
guage, which is reflected by the notion of function types
in N4JS. In combination with generic methods, function ex-
pressions and type inference, this becomes a convenient and
powerful feature, as shown in Figure 4. Note that the method
call requires a lot of type inference capabilities: firstly, the type
variable T has to be substituted correctly with A; secondly, the
signature of the function expression has to be inferred from the
formal parameter’s type, taking the type variable substitution
into account.

In Figure 5, we show the N4JS Eclipse editor in action.
Note that the type system correctly inferred the type of the
invoked method and instantiated the type parameter according

function <T> exists(Array<T> list,
{function(T p):boolean} predicate) : boolean { ... }

function existsJohn (Array<A> list): boolean {
return exists (list ,

function(p) { return p.name == "John" }
) ;

}

Figure 4. Generic method call with function expression and type inference

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 33

Figure 5. The N4JS editor and its type inference in action.

rule subtypeRefUnionOther
G|- UnionTypeExpression U <: TypeRef S

from {
U.typeRefs.forall[T | G |- T <: S]

}

rule subtypeRefOtherUnion
G|- TypeRef S <: UnionTypeExpression U

from {
U.typeRefs.exists[T | G |- S <: T]

}

Figure 6. N4JS union types implemented with Xsemantics.

to the argument passed to the generic method create.

B. Type System
The Xsemantics based type system is not only used for

validation purposes, but also for implementing the scoping (see
Section II), e.g., in order to find the correct method in case
of overridden methods. The whole type system of N4JS is
modeled by means of Xsemantics judgments, implemented by
approximately 30 axioms and 80 rules. Since type inference
rules can be implemented almost 1:1 with Xsemantics, many
rules are simple adaptations of rules described in the afore-
mentioned papers. For example, the subtype relation for union
types is implemented with the rules shown in Figure 6. Note
that we use many Xbase features, e.g., lambda expressions and
extension methods (described in Section II).

In the implementation of the N4JS type system in Xse-
mantics we made a heavy use of the rule environment. We are
using it not only to pass contextual information to the rules,
but also to store basic types that have to be globally available
to all the rules of the type system (e.g., boolean, integer, etc.).
This way, we can safely make the assumption that such type
instances are singletons in our type system, and can be checked
using the standard Java object equality. To make the type
system more readable, we implemented some static methods
in a separate Java class RuleEnvironmentExtensions,
and we imported such methods as extension methods in the
Xsemantics system:

import static extension RuleEnvironmentExtensions.*

These methods are used to easily access global type instances
from the rule environment, as it is shown, for example, in the
rule of Figure 7.

rule typeUnaryExpression
G |- UnaryExpression e: TypeRef T

from {
switch (e.op) {

case UnaryOperator.DELETE: T= G.booleanTypeRef()
case UnaryOperator.VOID: T= G.undefinedTypeRef()
case UnaryOperator.TYPEOF: T= G.stringTypeRef()
case UnaryOperator.NOT: T= G.booleanTypeRef()
default: // INC, DEC, POS, NEG, INV

T = G.numberTypeRef()
}

}

Figure 7. Typing of unary expression.

rule typeConditionalExpression
G |- ConditionalExpression expr : TypeRef T

from {
G |- expr.trueExpression : var TypeRef left
G |- expr.falseExpression : var TypeRef right
T = G.createUnionType(left, right)

}

Figure 8. Typing of conditional expression.

Other examples are shown in Figure 8 and 9. In particular,
these examples also show how Xsemantics rules are close to
the formal specifications. We believe they are also easy to read
and thus to maintain.

Since the type system of N4JS is quite involved, creating
useful and informative error messages is crucial to make the
language usable, especially in the IDE. We have 3 main levels
of error messages in the implementation: 1) default error
messages defined on judgment declaration, 2) custom error
messages using fail, 3) customized error messages due to failed
nested judgments using previousFailure (described in
Section II). Custom error messages are important especially
when checking subtyping relations. For example, consider
checking something like A<string> <: A<number>. The
declared types are identical (i.e., A), so the type arguments
have to be checked. If we would not catch and change
the error message produced by the nested subtype checks
string <: number and number <: string, then the
error message would be very confusing for the user, because
it only refers to the type arguments. In cases where the type
arguments are explicitly given, this might be rather obvious,
but that is not the case when the type arguments are only
defined through type variable bindings or can change due to
considering the upper/lower bound. Some examples of error
messages due to subtyping are shown in Figure 10.

C. Performance
N4JS is used to develop large scale ECMAScript ap-

plications. For this purpose, N4JS comes with a compiler,
performing all validations and eventually transpiling the code
to plain ECMAScript. We have implemented a test suite in

rule typeArrayLiteral
G |- ArrayLiteral al : TypeRef T

from {
val elementTypes = al.elements.map[

elem |
G |- elem : var TypeRef elementType;
elementType;

]

T = G.arrayType.createTypeRef(G.createUnionType(elementTypes))
}

Figure 9. Typing of array literal expression.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 33

Figure 10. The N4JS IDE and error reporting.

// Scenario 1: function expression
function f ({function (C): A} func) { ... };
f (function (C p): A { return p.getA() || new A(); }) // typed
f (function (p) { return p.getA() || new A(); }) // inferred

// Scenario 2: generic method call
function <T> g (T p): T { ... }
var s1 = <string>g(""); // typed
var s2 = g(""); // inferred

// Scenario 3: variable declarations and references
var number y1 = 1; // typed
var number y2 = y1; ...
var x1 = 1; // inferred
var x2 = x1; var x3 = x2; ...

Figure 11. Scenario snippets used in performance tests

order to measure the performance of the type system. Since
we want to be able to measure the effect on performance
of specific constructs, we use synthetic tests with configured
scenarios. In spite of being artifical, these scenarios mimic
typical situations in Javascript programming. There are several
constructs and features which are performance critical, as they
require a lot of type inference (which means a lot of rules are
to be called). We want to discuss three scenarios in detail,
Figure 11 summarizes the important code snippets used in
these scenarios.

Function Expression: Although it is possible to specify the
types of the formal parameters and the return type of functions,
this is very inconvenient for function expressions. The function
definition f (Figure 11) is called in the lines below the
definition. Function f takes a function as argument, which
itself requires a parameter of type C and returns an A element.
Both calls (below the definition) use function expressions. The
first call uses a fully typed function expression, while the
second one relies on type inference. Generic Method Calls:
As in Java, it is possible to explicitly specify type arguments
in a call of a generic function. Similar to type expressions,
it is more convenient to let the type system infer the type
arguments, which actually is a typical constraint resolution
problem. The generic function g (Figure 11) is called one time
with explicitly specified type argument, and one time without
type arguments. Variable Declarations: The type of a variable
can either be explicitly declared, or it is inferred from the
type of the expression used in an assignment. This scenario

TABLE I. PERFORMANCE MEASUREMENTS (RUNTIME IN MS)

Scenario without caching with caching
size typed inferred typed inferred

Function Expressions
250 875 865 772 804
500 1,860 1,797 1,608 1,676

1000 4,046 3,993 3,106 3,222
2000 9,252 9,544 8,143 8,204

Generic Method Calls
250 219 273 223 280
500 566 644 548 654

1000 1,570 1,751 1,935 1,703
2000 6,143 6,436 6,146 6,427

Variable Declarations
50 19 580 18 39

100 27 3,848 26 102
200 44 31,143 36 252

demonstrates why caching is so important: without caching,
the type of x1 would be inferred three times. Of course, this
is not the case if the type of the variable is declared explicitly.

Table I shows some performance measurements, using the
described scenarios to set up larger tests. That is, test files are
generated with 250 or more usages of function expressions,
or with up to 200 variables initialized following the pattern
described above. In all cases, we run the tests with and without
caching enabled. Also, for all scenarios we used two variants:
with and without declared types. We measure the time required
to execute the JUnit tests.

There are several conclusions, which could be drawn from
the measurement results. First of all, caching is only worth in
some cases, but these cases can make all the difference. The
first two scenarios do not gain much from caching, actually
the overhead for managing the cache even slightly decreases
performance in case of generic methods calls. In many cases,
types are to be computed only once. In our example, the types
of the type arguments in the method call are only used for
that particular call. Thus, caching the arguments there does not
make any sense. Things are different for variable declarations.
As described above, caching the type of a variable, which
is used many times, makes a lot of sense. Increasing the
performance by the factor of more than 100 is not only about
speeding up the system a little bit—it is about making it work
at all for larger programs. Even if all types are declared, type
inference is still required in order to ensure that the inferred
type is compatible with the declared type. This is why in
some cases the fully typed scenario is even slower than the
scenario which uses only inferred types. While in some cases
(scenario 1 and 3) the performance increases linearly with
the size, this is not true for scenario 2, the generic method
call. This demonstrates a general problem with interpreting
absolute performance measurements: it is very hard to pinpoint
the exact location in case of performance problems, as many
parts, such as the parser, the scoping system and the type
system are involved. Therefore, we concentrate on relative
performance between slightly modified versions of the type
system implementation (while leaving all other subsystems
unchanged).

Summarizing, we learned that different scenarios must be
taken into account when working on performance optimization,

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 33

in order to make the right decision about whether using caching
or not. Surely, when type information is reused in other parts of
the program over and over again, like in the variable scenario,
caching optimization is crucial. Combining the type system
with control flow analysis, leading to effect systems, may make
caching dispensable in many cases. Further investigation in this
direction is ongoing work.

IV. CONCLUSIONS

In this paper, we presented the implementation in Xseman-
tics of the type system of N4JS, a statically typed JavaScript,
with powerful type inference mechanisms, focusing both on
the performance of the type system and on its integration in
the Eclipse IDE. The N4JS case study proved that Xsemantics
is mature and powerful enough to implement a complex type
system of a real-world language.

Thanks to Xtext, Xsemantics offers a rich Eclipse tooling,
including the debugger for Xsemantics rule definitions. These
features are extremely important for the effective usability of
Xsemantics, especially in complex type systems like N4JS’
one. With respect to manual implementations of type systems
in Java, Xsemantics specifications are more compact and closer
to formal systems. We also refer to [37] for a wider discussion
about the importance of having a DSL for type systems in
language frameworks. In particular, Xsemantics integration
with Java allows the developers to incrementally migrate
existing type systems implemented in Java to Xsemantics [38].

ACKNOWLEDGMENT

The first author was partially supported by itemis Schweiz,
MIUR (proj. CINA), Ateneo/CSP (proj. SALT), and ICT
COST Action IC1201 BETTY. We also want to thank Se-
bastian Zarnekow, Jörg Reichert and the colleagues at Num-
berFour, in particular Jakub Siberski and Torsten Krämer, for
feedback and for implementing N4JS with us.

REFERENCES
[1] L. Bettini, Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing, 2013.
[2] ——, “Implementing Java-like languages in Xtext with Xsemantics,” in

OOPS (SAC). ACM, 2013, pp. 1559–1564.
[3] ——, “Xsemantics,” http://xsemantics.sf.net, 2016, ac-

cessed: 2016-01-07.
[4] ——, “Implementing Type Systems for the IDE with Xsemantics,”

Journal of Logical and Algebraic Methods in Programming, 2016, to
Appear.

[5] E. Visser et al, “A Language Designer’s Workbench: A One-Stop-Shop
for Implementation and Verification of Language Designs,” in Onward!
ACM, 2014, pp. 95–111.

[6] V. A. Vergu, P. Neron, and E. Visser, “DynSem: A DSL for Dynamic
Semantics Specification,” in RTA, ser. LIPIcs, vol. 36. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 365–378.

[7] S. Efftinge et al, “Xbase: Implementing Domain-Specific Languages for
Java,” in GPCE. ACM, 2012, pp. 112–121.

[8] L. Bettini, “A DSL for Writing Type Systems for Xtext Languages,” in
PPPJ. ACM, 2011, pp. 31–40.

[9] T. Ekman and G. Hedin, “The JastAdd system – modular extensible
compiler construction,” Science of Computer Programming, vol. 69,
no. 1-3, 2007, pp. 14 – 26.

[10] L. C. L. Kats and E. Visser, “The Spoofax language workbench. Rules
for declarative specification of languages and IDEs,” in OOPSLA.
ACM, 2010, pp. 444–463.

[11] E. Vacchi and W. Cazzola, “Neverlang: A Framework for Feature-
Oriented Language Development,” Computer Languages, Systems &
Structures, vol. 43, no. 3, 2015, pp. 1–40.

[12] M. Voelter et al, DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages, 2013.

[13] M. Pfeiffer and J. Pichler, “A comparison of tool support for textual
domain-specific languages,” in Proc. DSM, 2008, pp. 1–7.

[14] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/
XT 0.17. A language and toolset for program transformation,” Science
of Computer Programming, vol. 72, no. 1–2, 2008, pp. 52–70.

[15] M. Voelter, “Xtext/TS - A Typesystem Framework for Xtext,” 2011.
[16] H. Xu, “EriLex: An Embedded Domain Specific Language Generator,”

in TOOLS, ser. LNCS, vol. 6141. Springer, 2010, pp. 192–212.
[17] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende,

“Derivation and Refinement of Textual Syntax for Models,” in ECMDA-
FA, ser. LNCS, vol. 5562. Springer, 2009, pp. 114–129.

[18] P. Borras et al, “CENTAUR: the system,” in Software Engineering
Symposium on Practical Software Development Environments, ser.
SIGPLAN. ACM, 1988, vol. 24, no. 2, pp. 14–24.

[19] M. Fowler, “A Language Workbench in Action - MPS,”
http://martinfowler.com/articles/mpsAgree.html,
2008, accessed: 2016-01-07.

[20] M. G. J. V. D. Brand, J. Heering, P. Klint, and P. A. Olivier, “Compiling
language definitions: the ASF+SDF compiler,” ACM TOPLAS, vol. 24,
no. 4, 2002, pp. 334–368.

[21] A. Dijkstra and S. D. Swierstra, “Ruler: Programming Type Rules,” in
FLOPS, ser. LNCS, vol. 3945. Springer, 2006, pp. 30–46.

[22] M. Felleisen, R. B. Findler, and M. Flatt, Semantics Engineering with
PLT Redex. The MIT Press, 2009.

[23] T. Reps and T. Teitelbaum, “The Synthesizer Generator,” in Software
Engineering Symposium on Practical Software Development Environ-
ments. ACM, 1984, pp. 42–48.

[24] G. Kahn, B. Lang, B. Melese, and E. Morcos, “Metal: A formalism to
specify formalisms,” Science of Computer Programming, vol. 3, no. 2,
1983, pp. 151–188.

[25] E. Morcos-Chounet and A. Conchon, “PPML: A general formalism to
specify prettyprinting,” in IFIP Congress, 1986, pp. 583–590.

[26] T. Despeyroux, “Typol: a formalism to implement natural semantics,”
INRIA, Tech. Rep. 94, Mar. 1988.

[27] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implement-
ing Domain-Specific Languages,” in ICSR. IEEE, 1998, pp. 143–153.

[28] M. Bravenboer, R. de Groot, and E. Visser, “MetaBorg in Action:
Examples of Domain-Specific Language Embedding and Assimilation
Using Stratego/XT,” in GTTSE, ser. LNCS, vol. 4143. Springer, 2006,
pp. 297–311.

[29] H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for com-
positional development of domain specific languages,” STTT, vol. 12,
no. 5, 2010, pp. 353–372.

[30] T. Clark, P. Sammut, and J. Willans, Superlanguages, Developing
Languages and Applications with XMF, 1st ed. Ceteva, 2008.

[31] L. Renggli, M. Denker, and O. Nierstrasz, “Language Boxes: Bending
the Host Language with Modular Language Changes,” in SLE, ser.
LNCS, vol. 5969. Springer, 2009, pp. 274–293.

[32] “Draft ECMAScript Language Specification,” ISO/IEC, Working Draft
ECMA-262, 6th Edition, Apr. 2014.

[33] A. Hejlsberg and S. Lucco, TypeScript Language Specification, 1st ed.,
Microsoft, Apr. 2014.

[34] Dart Team, Dart Programming Language Specification, 1st ed., Mar.
2014.

[35] A. Igarashi and H. Nagira, “Union types for object-oriented program-
ming,” Journal of Object Technology, vol. 6, no. 2, 2007, pp. 47–68.

[36] N. Cameron, E. Ernst, and S. Drossopoulou, “Towards an Existential
Types Model for Java Wildcards,” in Formal Techniques for Java-like
Programs (FTfJP), July 2007, pp. 1–17.

[37] L. Bettini, D. Stoll, M. Völter, and S. Colameo, “Approaches and Tools
for Implementing Type Systems in Xtext,” in SLE, ser. LNCS, vol. 7745.
Springer, 2012, pp. 392–412.

[38] A. Heiduk and S. Skatulla, “From Spaghetti to Xsemantics - Practi-
cal experiences migrating typesystems for 12 languages,” XtextCon,
http://xtextcon.org, 2015.

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 33

Weighted Branching Preorders and Distances:
Logical Characterization and Complexity

Louise Foshammer∗, Kim Guldstrand Larsen∗, Radu Mardare∗ and Bingtian Xue∗
∗Department of Computer Science, Aalborg University, Denmark

Email: {foshammer,kgl,mardare,bingt}@cs.aau.dk

Abstract—We investigate branching bisimulation for weighted
transition systems. It is known that branching bisimulation
is characterized by computational tree logic without the next
operator in the non-deterministic case. We demonstrate that the
weighted version of this logic characterizes a weighted version
of branching bisimulation, for which the decidability is NP-
complete. This leads us to investigating two fragments of this logic
allowing only upper bounds and either existential or universal
quantification. The resulting existential and universal simulation
relations are decidable in polynomial time. We consider distance-
based analogues of weighted branching bisimulation and exis-
tential simulation and characterize these using fragments of the
aforementioned logic.

Keywords–Weighted transition systems; Weighted computational
tree logic; Characterization; Weighted branching bisimulation.

I. INTRODUCTION

Classical process algebras, such as CCS, CSP and ACP
[1]–[3] provide formalisms for describing the behavior of
concurrent and interacting systems essential in terms of la-
beled transition systems. To capture the semantic equality of
processes several behavioral preorders and equivalences have
been considered, including the by now classical notion of
bisimulation equivalence introduced by Milner [4] and Park
[5]. Alongside the development of behavioral equivalences, an
overall quest has been identification of corresponding temporal
or modal logics, in the sense that the behavioral equivalence
between two processes is in complete agreement with equality
between the sets of logical properties they satisfy [6], [7].

Another important issue has been identification of behav-
ioral preorders and equivalences that permit internal activities
of processes to be abstracted away. The original notion of
observational equivalence by Milner [1] serve this precise
purpose, as does the later notion of branching bisimulation
introduced by Weijland and Van Glabbeck [8]. Branching
bisimulation equivalence has the remarkable additional prop-
erty of being completely characterized by several different and
natural modal logics, one of which is computational tree logic
(CTL) without the next operator [9].

Whereas labeled transition systems suffice for describing
the reactive and functional behavior of processes, they lack
information about quantitative and non-functional aspects such
as time or resource consumption. This has motivated the
introduction and study of weighted transition systems, where
transitions are labeled with quantities [10], [11], e.g., real,
rational or integer values, allowing for the modeling of con-
sumption or production of resources.

In this paper, we revisit weighted transition systems to
identify useful behavioral relationships that are sensitive to
quantities while permitting abstraction from internal activities.

As a motivational example consider the following processes s
and t both ending in the inactive process 0:

s→5 0 and t→3 t
′ →2 0

Assuming that the states s, t, t′ have the same atomic proposi-
tions, the intermediate state t′ may be considered unobservable,
and consequently s and t may be considered behaviorally
equivalent as they end up in 0 with the same overall weight. To
capture this situation in more generality, we extend in various
ways the idea of branching bisimulation and simulation with
weights. Aiming at extending [9], we consider a weighted
version of CTL [12] without the next operator with the purpose
of identifying interesting fragments and the various weighted
versions of branching bisimulation and simulation they charac-
terize. We allow for the systems to have reals as their weights,
but the logic can only have rationals in the parameters, it is
notable that we are, however, still able to capture the entire
behavior of the systems. The study of those fragments are of
importance because their weighted simulations are decidable in
polynomial time (in contract to the NP-complete decidability
of the full logic) while the logics can still specify interesting
properties. This is essential for developing efficient tools.

Finally, we consider weighted branching bisimulation dis-
tances. Consider that the process s has a slightly perturbed
weighted transition, e.g., s →5+ε 0. Then, s and t are ex-
pected no longer to be weighted branching bisimilar. However,
following the recent trends in replacing equivalences with
metrics, and boolean answers with quantities [13]–[16], we
shall introduce and logically characterize notions of weighted
branching distance such that the distance between s and t will
decrease for decreasing values of ε.

The structure of this paper will be as follows; in Section II,
we introduce the preliminaries, Sections III-V each introduce
a weighted branching (bi)simulation variant, identify a charac-
terizing fragment of WCTL (without next) and determine its
complexity. Section VI introduces distances and finally Section
VII concludes the paper and describes future work.

II. PRELIMINARIES

A weighted Kripke structure (WKS) is a straightforward
extension of Kripke structures, where weights, in the form of
non-negative reals, are added to each transition.
Definition 1 (Weighted Kripke Structure). A weighted Kripke
structure is a tuple K = (S,AP,V,→) , where S is a set of
states, AP is a set of atomic propositions, V : S → P(AP)
is a mapping from states to sets of atomic propositions and
→⊆ S × R≥0 × S is a labeled transition relation. ?

For simplicity, transitions are denoted by s→w s
′ instead

of (s, w, s′) ∈→.

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 33

We say that a WKS K = (S,AP,V,→) is finite, if S and →
are finite; non-blocking, if for all states s ∈ S there is at least
one transition (s, w, s′) ∈→ that starts in s and rational if all
weights on transitions belong to Q≥0.
Example 1. In Figure 1(a), we show the WKS K =
(S,AP,V,→) , where S = {s1, s11, s12}, AP = {p, q},
→ is defined as s1 →3 s1, s1 →5 s11, s

1 →2 s12 and
V(s1) = {p},V(s11) = {q} and V(s12) = {q}.
Note that K is finite and rational, since it has a finite number
of states, a finite number of transitions and all weights are
rational. It is, however, not non-blocking, since there are no
transitions from either of the states s11 and s12. �

To specify properties of WKSs, we introduce a weighted
extension of CTL (WCTL), where intervals are introduced on
the next and the until operators.
Definition 2 (Syntax of WCTL). Let AP be a set of atomic
propositions. The syntax of WCTL is given by

φ ::= p | ¬φ | φ1 ∧ φ2 | EXIφ | AXIφ

| E(φ1UIφ2) | A(φ1UIφ2),

where p ∈ AP and I = [l, u], where l, u ∈ Q≥0, l ≤ u. ?

Note that I can be any type of interval and that we allow
that l = u, such that the interval can be a single point.
The semantics of WCTL are given by the satisfiability relation,
defined inductively for an arbitrary non-blocking WKS K =
(S,AP,V,→) and an arbitrary state s ∈ S, as follows

• K, s |= p iff p ∈ V(s),
• K, s |= ¬φ iff s 6|= φ

• K, s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2,
• K, s |= EXIφ iff there exists s→w s

′, such that w ∈
I and s′ |= φ,

• K, s |= AXIφ iff for all s →w s′ such that w ∈ I ,
s′ |= φ,

• K, s |= E(φ1UIφ2) iff there exists a trace
s →w1

s1 →w2
· · · →wk

sk →wk+1
· · · , such that

there exists a state sk such that sk |= φ2, for all i <
k, si |= φ1 and

∑k
i=1 wi ∈ I ,

• K, s |= A(φ1UIφ2) iff for all traces
s →w1

s1 →w2
· · · →wk

sk →wk+1
· · · , there exists

a state sk such that sk |= φ2, for all i < k, si |= φ1
and

∑k
i=1 wi ∈ I .

We use the other Boolean operators with their usual semantics.
Consider the following example.
Example 2. Return to the WKS K = (S,AP,V,→) in
Figure 1(a). The state s1 satisfies, among others, the following
formulae: AX[1,3)p and E(pU[4,9]q), but not for instance
A(pU[0,7]q), because of the self-loop. �

A well-known way of comparing WKSs is with weighted
bisimulation [4], [5], which is defined in a way that ensures
complete matching of behavior where transitions are matched
one-to-one. Weighted bisimulation is completely characterized
by WCTL as proven by [17].
Note that in the models, we allow weights to be reals, while
in the logic, we only allow rationals. We describe the models
as general as possible, but as the logic has to be countable, we
will have to restrict ourselves to rationals. The logic is however

still able to encompass the behavior of the model, since we
can approximate the reals by rationals.

III. WCTL WITHOUT NEXT

Let us now look at a fragment of WCTL for which we have
removed the next operator. As discussed in the introduction
we do not wish to reason about single transition steps in
our models, which explains the need to remove the next
operator. With the remaining operators we are able to reason
about a bound of the cost of arriving at some behavior, while
preserving behavior along the way.
Definition 3 (Syntax of WCTL−X). Let AP be a set of
propositions. The syntax of WCTL−X is given by

φ ::= p | ¬φ | φ1 ∧ φ2 | A(φ1UIφ2) | E(φ1UIφ2),

where p ∈ AP and I = [l, u], where l, u ∈ Q≥0. ?

The semantics of WCTL−X is given by the same satisfia-
bility relation as for WCTL.
We will now introduce a notion of weighted branching bisimu-
lation and observe that the bisimulation and the logic induces
the same relation on finite WKSs. We allow for a weighted
transition to be matched by a sequence of transitions with
identical accumulated weight, behavior is preserved in each
intermediate state and the end behavior is the same.
Definition 4. Given a WKS K = (S,AP,V,→) a weighted
branching bisimulation (WBB) is a relation R ⊆ S × S, such
that whenever (s, t) ∈ R
• V(s) = V(t)
• for all s→w s

′ there exists t→v1 t1 →v2 · · · →vk tk,
such that

∑k
i=1 vi = w, (s′, tk) ∈ R and for all i < k,

(s, ti) ∈ R
• for all t →v t

′ there exists s →w1 s1 →w2 · · · →wk

sk, such that
∑k
i=1 wi = v, (t′, sk) ∈ R and for all

i < k, (t, si) ∈ R
If there exists a weighted branching bisimulation relating

s and t, we say that s and t are weighted branching bisimilar
and denote it by s ≈I t. The relation ≈I will henceforth be
referred to as weighted branching bisimilarity (WBB). ?

The following theorem shows that WCTL−X characterizes
WKS up to WBB.
Theorem 1. Let K = (S,AP,V,→) be a finite WKS. Then
for all s, t ∈ S

s ≈I t iff [∀φ ∈WCTL−X s |= φ⇔ t |= φ].

Proof. (⇒) Suppose s ≈I t and s |= φ. Induction on the
structure of φ.
The case φ = E(φ1UIφ2): By definition s |= φ iff
there exists s →w1 s1 →w2 · · · →wk

sk → · · · s.t.
sk |= φ2, ∀i < k, si |= φ1 and

∑k
i=1 wi ∈ I . As s ≈I t,

we have that for every step si →wi+1
si+1 there exists

ti →vi+1
1

ti1 →vi+1
2
· · · →vi+1

hi+1
ti+1 such that ti+1 ≈I si+1,

∀j < hi+1, tij ≈I si and
∑hi+1

j=1 v
i+1
j = wi+1. By induction,

each state tij |= φ1 for j < k, the final state tk |= φ2 and∑k
i=1

∑hi

j=1 v
i
j =

∑k
i=1 wi so by definition, t |= φ.

The case φ = A(φ1UIφ2): If t 6→ trivially t |= φ.
Otherwise choose a trace π1 = t →v1 t1 →v2 · · · . For

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 33

s1 {p}

3

s11

{q}

s12

{q}

5 2

(a)

s2 {p}

s21

{q}

s22

{p}
3

2

2

3

(b)

s3

{p}
s31

{p}

s32

{q}

2

32

(c)

s4

{p}

s41

{p}

s42

{p}

s43

{q}

s44

{q}

1

2

2

1

3

2

(d)

s5

{p}
s51

{p}

s52

{q}

s53

{p}
1

1

11

1

(e)

Figure 1. Five WKSs. The following relations are true s1 ≈I s
2, s3 6≈I s

4, s3 ≤E s5, s4 6≤E s3, s3 ≤A s5, s4 ≈0
I s3 and s3 ≈1

I s4.

each step ti →vi+1
ti+1 by relation, we have that there exist

si →wi
1
si1 →wi

2
· · · →wi

ki
si+1, such that ti+1 ≈I s

i+1,

for all j < ki ti ≈I s
i
j and

∑ki

j=1 w
i
j = vi+1. We therefore

know that there exists a trace π2 = s→w0
1
s01 →w0

2
· · · →w0

k0

s1 →w1
1
· · · →wh−1

kh−1
sh →wh

1
· · · such that for all i, we

have ti ≈I s
i, for all j < ki ti ≈I s

i
j and

∑ki

j=1 w
i
j = vi+1.

Since s |= A(φ1UIφ2), we know that for π2 there must exist
some sh such that sh |= φ2, for all i < h and all j, we have
sij |= φ1 and

∑h−1
i=0

∑ki

j=1 w
i
j ∈ I . By construction of π2 this

means that for π1 there must exist a th such that th |= φ2, for
all i < h ti |= φ1 and

∑h
i=1 vi =

∑h−1
i=0

∑ki

j=1 w
i
j ∈ I . By

definition t |= A(φ1UIφ2).

(⇐) Define (s, t) ∈ R iff [∀φ ∈WCTL−X
s |= φ⇔ t |= φ]. We show that R is a WBB.
Suppose s →w s′ and let πi = t →vi1

ti1 →vi2
· · · →vi

ki
tiki

such that
∑ki

j=1 v
i
j = w be traces out of t of weight equal

to w. Without loss of generality we can skip all traces with
zero-cycles, which means that since the Kripke structure is
finite there is only a finite number of traces πi of weight w,
i = 1, . . . , n. Assume that none of these traces match s→w s

′,
which means that for each trace πi either (s′, tiki) /∈ R or there
exist a j < ki such that (s, tij) /∈ R. For each trace πi such
that (s′, tiki) /∈ R, i = 1, . . . , k, k ≤ n, there exists a formula
ψi such that s′ |= ψi and tiki 6|= ψi and for each trace πi such
that (s, tij) /∈ R, i = k + 1, . . . , n, there exists a formula φi
such that s |= φi and tij 6|= φi.
For a decreasing series of rationals uj such that limj→∞ uj =
w and an increasing series of rationals yj such that
limj→∞ yj = w, we can create a series of formulae φj =

E
(∧

i∈[1,k] φiU[yj ,uj]

∧
i∈[k,n] ψi

)
for which s |=

∧
j φ

j , but
t 6|=

∧
j φ

j , contradicting (s, t) ∈ R. �

Consider a couple of examples of the use of this theorem.
Example 3. Consider Figure 1(a) and 1(b). Let us verify that
s1 and s2 are WBB. Transition s1 →3 s1 and s2 →3 s22
have to match each other, which means, we have to prove
that also s1 ≈I s

2
2. This is trivially proved, since s1 and s22

are the same except for the transition s1 →5 s11, which is
matched by s22 →3 s

2
2 →2 s

2
1, since s11 ≈I s

1
2 ≈I s

2
1 trivially.

Transitions s1 →2 s12 and s2 →2 s21 match each other and
transition s1 →5 s

1
1 is matched by s2 →3 s

2
2 →2 s

2
1, as we

know s1 ≈I s
2
2.

We therefore know that any formula that is satisfied by either
s1 or s2 is also satisfied by the other. �

Example 4. Consider Figure 1(c) and 1(d). We see that s3 and
s4 are not weighted branching bisimilar, since the transition
s4 →1 s

4
1 cannot be matched from s3. This means, we can

find a distinguishing formula between these two states. We
see that for φ = A(pU[2,5]q), s3 |= φ, but s4 6|= φ, since there
is a trace s4 →1 s

4
1 →2 s

4
2 →3 s

4
4 for which the accumulated

weight is 6 before it reaches a state that satisfies q. �
We can prove that WBB is a maximal fixed point of a

suitable function FI defined as follows.
Definition 5. Given a WKS K = (S,AP,V,→) , define a
function FI : 2S×S → 2S×S such that given a relation R ⊆
S × S then (s, t) ∈ FI(R) if and only if

• V(s) = V(t)
• for all s →w s′ there exists t →v1 t1 →v2 · · · →vk

tk, such that
∑k
i=1 vi = w, (s′, tk) ∈ R and for all

i < k, (s, ti) ∈ R
• for all t →v t

′ there exists s →w1
s1 →w2

· · · →wk

sk, such that
∑k
i=1 wi = v, (t′, sk) ∈ R and for all

i < k, (t, si) ∈ R ?

The function FI takes in a relation R that identifies pairs
of states believed to be bisimilar and removes all pairs that fail
to be bisimilar in one step, when assuming that the states of
R are bisimilar. This means that the resulting relation is not
necessarily a bisimulation relation, since the assumption can
be wrong. When starting from the assumption that all states are
bisimilar, however, and applying FI until stability, i.e. finding
a maximal fixed point, we are sure to have WBB.

We now determine the complexity of deciding WBB.
Theorem 2. Deciding WBB on finite rational WKSs is NP-
hard.
Proof. We use the integer knapsack problem, which is well-
known to be NP-complete [18], and show that it is polynomial
time reducible to the problem of deciding WBB.
In the integer knapsack problem, we are given a finite set E of
elements which each have a value vi ∈ Z≥0 and a weight wi ∈
Z≥0. We are further given positive integers p and c. Is there
an assignment of positive integers ai such that

∑
i aivi ≥ p

and
∑
i aiwi ≤ c? The integer knapsack problem is still NP-

complete if for all i vi = wi, so we want to assign positive
integers ai such that

∑
i aiwi = c. Let us assume that we have

a set E = {e1, . . . , en} of elements with weights (and values)
{w1, . . . , wn}, and our capacity is c.
The reduction generates two WKSs, as seen in Figure 2, such
that K1 = (S,AP,V,→), where S = {s}, AP = ∅, V(s) = ∅
and→= {(s, w1, s), . . . , (s, wn, s)} and K2 = (S,AP,V,→),
where S = {t, t′}, AP = ∅, V(t) = V(t′) = ∅ and →=

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 21 / 33

s

w1

wn

t

w1

wn

t′

w1

wn

c

Figure 2. Two WKSs K1 and K2 that are generated by reduction.

{(t, w1, t), . . . , (t, wn, t), (t
′, w1, t

′), . . . , (t′, wn, t
′), (t, c, t′)}.

We demonstrate that there is a solution to the integer knapsack
problem if and only if the two states s and t are WBB.

(⇒) Suppose there exists a set of integers {k1, . . . , kn}
such that

∑
kiwi = c. If we ignore the transition t→c t

′ the
three states s, t and t′ are WBB. Hence the only reason why
s and t should not be WBB is if s cannot match the transition
t →c t

′. But since, there exists a set {k1, . . . , kn} such that∑
kiwi = c, s can do a series of transitions accordingly and

match transition t→c t
′.

(⇐) Suppose the transition t →c t
′ can be matched by

s →w1
s →w2

· · · →wk
s such that

∑
wi = c, note that

each →wi
can be repeated as many times as necessary. This

is equivalent to the existence of a set {k1, . . . , kn} such that∑
kiwi = c providing a solution to the integer knapsack

problem. �

We have demonstrated that deciding WBB is at least NP-
hard, now let us prove that the problem is contained in NP.
We will need the following theorem, which is a reformulated
instance of a theorem proved by Nykänen and Ukkonen [19].
Theorem 3. Given a WKS K = (S,AP,V,→) , s, t ∈ S and
a target cost k. The problem of deciding whether there exists
a trace in K from s to t of cost exactly k is NP-complete.
Theorem 4. Deciding WBB on a finite rational WKSs is
contained in NP.
Proof. WBB is the maximal fixed point of FI, so we apply FI
repeatedly on S×S until the set of bisimilar states stabilizes.
Each time FkI (S × S) 6= F

k−1
I (S × S), meaning at least one

pair of states has been removed, we will apply FI once more.
This can be done a maximum of n = |S| times, before the
resulting set is empty. In each iteration, we have to check for
both state in each pair of bisimilar states if every transition
is matched. This means that for each state s we will for each
other state t (if (s, t) ∈ F iI) check each transition s →w s′

and see if it can be matched by a trace from t as required.
This means that we will try to find a path of cost w from t to
each of the states t′, where (s′, t′) ∈ F iI . This means applying
Theorem 3 at most n times for each transition s →w s′ for
each t. Since the problem can be solved by applying an NP-
complete problem a polynomial number of times the problem
is in NP. �

By Theorem 2 and Theorem 4, we have the following
result.
Theorem 5. Deciding WBB on a finite rational WKSs is NP-
complete.

IV. WCTL WITHOUT NEXT, UNIVERSALITY AND LOWER
BOUNDS

Using the entire WCTL without the next operator leads to
a definition of a bisimulation relation that is NP-complete. We
therefore limit ourselves further, to see if we can find a relation

which is decidable in polynomial time, while still preserving
interesting properties in the logic. We limit ourselves to a
fragment of WCTL called EWCTL≤−X in which we only
concentrate on upper bounds and the existential operator, while
still leaving out the next operator. This will enable us to
reason about a maximal bound on the cost of arriving to some
behavior, while preserving original behavior on the way.
Definition 6 (Syntax of EWCTL≤−X). Let AP be a set of
atomic propositions. The syntax of EWCTL≤−X is given by

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | E(φ1U≤uφ2),

where p ∈ AP and u ∈ Q≥0. ?

The semantics of EWCTL≤−X is given by the same sat-
isfiability relation as the semantics for WCTL, since we can
substitute any upper bound ≤ u with an interval [0, u].
Let us now develop a notion of branching simulation, such
that the simulation and the logic induces the same relation on
finite WKSs. We define the simulation from the same idea as
before, but now demand the cost of the matching trace to be
lower than the cost of the transition.
Definition 7. Given a WKS K = (S,AP,V,→) an existential
bounded simulation (EBS) is a relation R ⊆ S × S, such that
whenever (s, t) ∈ R
• V(s) = V(t),
• for all s→w s

′ there exists t→v1 t1 →v2 · · · →vk tk
such that

∑k
i=1 vi ≤ w, (s′, tk) ∈ R and ∀i < k,

(s, ti) ∈ R.

If there exists an existential bounded simulation relating
s and t, we say that s and t are existential bounded similar
and denote it by s ≤E t. The relation ≤E will henceforth be
referred to as existential bounded similarity (EBS). ?

The following theorem shows that indeed EWCTL≤−X and
EBS induce the same relation on finite WKSs. The proof of
the following theorem is as the proof of Theorem 1.
Theorem 6. Let K = (S,AP,V,→) be a finite WKS. Then
for all s, t ∈ S

s ≤E t iff [∀φ ∈ EWCTL≤−Xs |= φ⇒ t |= φ].

Consider two examples of the use of this theorem.
Example 5. Consider Figure 1(c) and 1(e). We can verify that
s3 and s5 are EBS. Transition s3 →2 s

3
2 can be matched by

s5 →1 s
5
2, since clearly s32 ≤E s52. Transition s3 →2 s

3
1 can

be matched by s5 →1 s51 if s31 ≤E s51. We only have one
transition s31 →3 s

3
2 which can be matched by s51 →1 s

5
3 →1 s

5
2

if s31 ≤E s
5
3. There is the same transition s31 →3 s

3
2 which can

be matched by s53 →1 s
5
2. �

Example 6. Consider Figure 1(c) and 1(d), s4 and s3 are not
EBS, since the transition s4 →1 s41 can only be matched
from s3 by doing nothing. Then, we need s41 ≤E s3, but the
transition s41 →1 s

4
3 cannot be matched from s3. This means,

we can find a distinguishing formula, such that s4 |= φ, but
s3 6|= φ. We choose φ = E(pU≤1E(pU≤1q)) to exemplify
this. �

To compute EBS, we need to compute the maximal fixed
point over a suitable function, defined in the canonical way. We
can now find all simulating states as ≤E= FME (S×S) for some

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 22 / 33

natural number M . This gives us a way of computing ≤E by
simply computing the non-increasing sequence F0

E(S × S) ⊇
F1

E(S × S) ⊇ F2
E(S × S) ⊇ · · · until it stabilizes.

Let us sketch an algorithm based upon this principle.
Algorithm 1. In a WKS K = (S,AP,V,→) let n be the
number of states and m the number of transitions. We compute
≤E iteratively as described. The algorithm will stop after at
most n2 iterations, since we will remove at least one pair for
each iteration, starting from F0

E(S × S) = S × S.
Let FnE (S × S) be given. For each state s let Kns be the
projection of K to the set {t | (s, t) ∈ FnE (S × S)}. In Kns ,
we may by classic algorithm in O(n3) compute the shortest
path between all pairs of states. We write t→n,s

w t′ if w is the
length of the shortest such path between t and t′.
We can now calculate our next iteration; for each (s, t) ∈
FnE (S × S), for each s →w s′, we check whether there
exists a t′ such that t →s,n

v t′ and t′ →v′ t′′ where
v + v′ ≤ w and (s′, t′′) ∈ FnE (S × S). If there exist such
t′ then (s, t) ∈ Fn+1

E (S×S) otherwise (s, t) /∈ Fn+1
E (S×S).

The check can be performed in O(n2). Thus, overall, ≤E can
be computed in O(n2 · (n ·n3 +m ·n ·n2)) ≤ O(n7). We can
assume m ≤ n2, since we are only interested in the cheapest
transition between two states, so if two or more exist we will
disregard everyone but the cheapest.

V. WCTL WITHOUT NEXT, EXISTENTIALITY AND LOWER
BOUNDS

We have now established a relation for a fragment of
WCTL with upper bounds and only the existential quantifier
over paths, but we would like to be able to reason about
the universal quantifier, which will allow us to model safety
properties, e.g., cost-bounded liveness properties. Let us look
at a fragment with this quantifier instead.
Definition 8 (Syntax of AWCTL≤−X). Let AP be a set of
atomic propositions. The syntax of AWCTL≤−X is given by

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | A(φ1U≤uφ2),

where p ∈ AP and u ∈ Q≥0. ?

The semantics of AWCTL≤−X is given by the same sat-
isfiability relation as the semantics for WCTL, since we can
substitute any upper bound ≤ u with an interval [0, u].
Let us now develop a notion of weighted branching simulation,
such that whatever relation is induced by the simulation is also
induced by the logic. The idea of the simulation is basically
the same as for EBS except the simulating state has to have a
trace that is more expensive than the transition it matches.
Definition 9. Given a WKS K = (S,AP,V,→) a universal
bounded simulation (UBS) is a relation R ⊆ S × S, such that
whenever (s, t) ∈ R

• V(s) = V(t),
• for all s→w s

′ there exists t→v1 t1 →v2 · · · →vk tk
such that

∑k
i=1 vi ≥ w, (s′, tk) ∈ R and ∀i < k,

(s, ti) ∈ R.

If there exists a universal bounded simulation relating s and
t, we say that s and t are universal bounded similar and denote
it by s ≤A t. The relation ≤A will henceforth be referred to
as universal bounded similarity (UBS). ?

s ∅

s1 {p}

3

t ∅

t1

∅ t2

{p}

3 2

2

Figure 3. A WKS K. The states s and t are not universally bounded similar,
but every formula that t satisfies is also satisfied by s.

The following theorem shows that we can go from UBS
to a relation induced by AWCTL≤−X on finite WKSs. The
structure of the proof is as the proof for Theorem 1.
Theorem 7. Let K = (S,AP,V,→) be a finite WKS. Then
for all s, t ∈ S

if s ≤A t then [∀φ ∈ AWCTL≤−Xt |= φ⇒ s |= φ].

Note that we cannot go from a logic induced relation to our
simulation. This is clear from the following counterexample.
Example 7. Consider the WKS K in Figure 3. We will prove
that [∀φ ∈ AWCTL≤−X if t |= φ then s |= φ, but s 6≤A t].
Look at all possible traces from s and t;

πs = s→3 s1

πt1 = t→2 t2

πt2 = t→3 t1 →2 t2.

We prove that s 6≤A t. If s ≤A t the transition s →3 s1 has
to be matched from t, this can only be done by πt2, since πt1
has too low a cost. Then either s1 ≤A t1 or both s ≤A t1
and s1 ≤A t2. The first case is impossible since the atomic
propositions are different and the second is impossible, since
t1 does not have a transition of enough cost to match s→3 s1.
Now, we prove that [∀φ ∈ AWCTL≤−X if t |= φ then s |= φ].
Induction on the structure of φ.
The case t |= A(φ1U≤uφ2): Split in cases u < 3 and u ≥ 3.
If u < 3 then t |= A(φ1U≤uφ2) only if t |= φ2. By induction
s |= φ2 and therefore s |= A(φ1U≤uφ2).
If u ≥ 3 then t |= A(φ1U≤uφ2) if either t |= φ2 or (t |= φ1,
t1 |= φ1 ∧ φ2 and t2 |= φ2). In the first case by induction
s |= φ2, hence s |= A(φ1U≤uφ2). In the second case by
induction s |= φ1 and since s1 ≤A t2 by Theorem 7 s1 |= φ2,
therefore s |= A(φ1U≤uφ2). �

Consider an example of how we can use Theorem 7.
Example 8. Consider Figure 1(c) and 1(e). We show that s3
and s5 are UBS. Transition s3 →2 s32 can be matched by
s5 →1 s

5
1 →1 s

5
3 →1 s

5
2, if s3 ≤E s51 and s3 ≤E s53. Let us

prove that s3 ≤E s
5
3. Transition s3 →2 s

3
2 can be matched by

s53 →1 s
5
3 →1 s

5
3 →1 s

5
2. Transition s3 →2 s

3
1 can be matched

by s53 →1 s53 →1 s53 →1 s53. Let us prove that s3 ≤E s51.
Transition s3 →2 s

3
2 can be matched by s51 →1 s

5
3 →1 s

5
3 →1

s52, since s3 ≤E s53. Transition s3 →2 s
3
1 can be matched by

s51 →1 s
5
3 →1 s

5
3 →1 s

5
3, since s3 ≤E s

5
3. Let us return to the

main problem s3 ≤E s
5. We only need to prove that transition

s3 →2 s
3
1 can be matched. We can match with s5 →1 s

5
1 →1

s53 →1 s
5
3. Therefore s3 and s5 satisfy the same formulae. �

As before, we can define a suitable function FA in the
canonical way such that the UBS is a maximal fixed point
over this function. Again, we can find all simulating states
as ≤A= FMA (S × S) for some natural number M . This again
gives us a way of computing ≤A by simply computing the non-
increasing sequence F0

A(S×S) ⊇ F1
A(S×S) ⊇ F2

A(S×S) ⊇

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 23 / 33

· · · until it stabilizes. To find ≤A, we can use Algorithm 1,
only we have to find the longest path between states instead
of the shortest.

VI. DISTANCES

Since the notion of simulation and bisimulation is rather
restrictive, we turn our attention to distances between systems.
When working with weighted systems, it can often be bene-
ficial to describe how well one system approximates another
instead of only reasoning about systems that are behaviorally
equivalent, since miniscule differences in weight will render
two systems not equivalent. The distances are based upon the
idea of two systems being the same to a certain degree, but
deviating by a percentage ε. To compare behavior for a system
at distance ε from another system, we introduce an ε-expansion
of formulae, which is defined in the following recursive way.
Definition 10 (ε-expansion). The recursive ε-expansion of for-
mulae is given for an arbitrary ε ∈ Q≥0 by the following

• If φ = x then φε = x, where x is a literal
• If φ = φ1 ∧ φ2 then φε = φε1 ∧ φε2
• If φ = E(φ1UIφ2) then φε = E(φε1UIεφ

ε
2)

• If φ = A(φ1UIφ2) then φε = A(φε1UIεφ
ε
2),

where Iε is defined as Iε = [l, u]ε = [l(1− ε), u(1 + ε)]. ?

Consider an ε-relation that takes WBB as a starting point.
Definition 11. Given a WKS K = (S,AP,V,→) and an ε ∈
R≥0 define a relation Rε ⊆ S×S such that whenever (s, t) ∈
Rε then

• V(s) = V(t)
• for all s→w s

′ there exists t→v1 t1 →v2 · · · →vk tk,
such that

∑k
i=1 vi ∈ [w(1−ε), w(1+ε)], (s′, tk) ∈ Rε

and for all i < k, (s, ti) ∈ Rε

If s and t are in this relation, we denote it by s ≈εI t. ?

We can now define a weighted branching distance.
Definition 12. Given a WKS K = (S,AP,V,→) and a rela-
tion Rε as described in Definition 11, the weighted branching
distance (WBD) between two states s, t ∈ S is given by

dI(s, t) = infε{(s, t) ∈ Rε} ?

Let us restrict WCTL−X to only encompass the existential
quantifier, which also leads to the removal of negation on
formulae, and thereby get the following logic.
Definition 13 (Syntax of EWCTL−X). Let AP be a set of
atomic propositions. The syntax of EWCTL−X is given by

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | E(φ1UIφ2),

where p ∈ AP and I = [l, u], where l, u ∈ Q≥0. ?

The semantics of EWCTL−X is given by the same satisfi-
ability relation as the semantics for WCTL−X .
We prove that with the ε-expansion of formulae in EWCTL−X ,
we can characterize the properties of WKSs up to WBD.
Theorem 8. Let K = (S,AP,V,→) be a finite WKS. Then
for all s, t ∈ S

s ≈εI t iff ∀ε′ ∈ Q≥0, ε ≤ ε′

[∀φ ∈ EWCTL−Xs |= φ⇒ t |= φε
′
].

Proof. (⇒) Suppose s ≈εI t. Induction on the structure of φ.
The case φ = E(φ1UIφ2): Suppose s |= φ. By definition
s |= φ iff there exists s →w1 s1 →w2 · · · →wk

sk → · · · ,
such that sk |= φ2, ∀i < k, si |= φ1 and

∑k
i=1 wi ∈ I . As

s ≈εI t, we have that for every step si →wi+1
si+1 there exists

ti →vi1
ti1 →vi2

· · · →vihi

ti+1 such that ti+1 ≈εI si+1, ∀j <

hi+1, tij ≈εI si and
∑hi+1

j=1 v
i+1
j ∈ [wi+1(1− ε), wi+1(1 + ε)].

By induction, each state tij |= φε
′

1 , the state tk |= φε
′

2

and
∑k
i=1

∑hi

j=1 v
i
j ∈ [

∑k
i=1 wi(1 − ε),

∑k
i=1 wi(1 + ε)] ⊆

[
∑k
i=1 wi(1− ε′),

∑k
i=1 wi(1 + ε′)] so by definition t |= φε

′
.

The case φ = A(φ1UIφ2): Suppose s |= φ. If t 6→ then
trivially t |= φε

′
. Otherwise suppose t →v1 t1 →v2 · · · . As

s ≈wbb t, we have that for every step ti →vi+1 ti+1 there exists
si →wi+1

1
si1 →wi+1

2
· · · →wi+1

ki
si+1 such that si+1 ≈wbb

ti+1, ∀j < ki, sij ≈wbb ti and vi+1 ∈ [
∑ki

j=1 w
i
j(1 −

ε),
∑ki

j=1 w
i
j(1 + ε)] ⊆ [

∑ki

j=1 w
i
j(1 − ε′),

∑ki

j=1 w
i
j(1 + ε′)].

Since s |= A(φ1UIφ2), by definition for all s →w1
s1 →w2

· · · →wk
sk → · · · exists sk |= φ2, such that ∀j < k, sj |= φ1

and
∑k
j=1 wj ∈ I . Therefore there exists an h such that

sk ≈I th and ∀i < h,∃j < k, ti ≈I sj and
∑h
i=1 vi ∈

[
∑k
i=1

∑ki

j=1 w
i
j(1−ε),

∑k−1
i=0

∑ki
j=1 w

i
j(1+ε)]. By induction,

for all t→v1 t1 →v2 · · · →vh th → · · · , there exists th, such
that th |= φε

′

2 , ∀i < h, ti |= φε
′

1 and
∑h
i=1 vi ∈ Iε

′
so by

definition t |= φε
′
.

(⇐) Define (s, t) ∈ R iff [∀φ ∈ EWCTL−X if s |=
φ then t |= φε]. We show that R is a WBD.
Suppose s →w s′ and let πi = t →vi1

ti1 →vi2
· · · →viki

tiki

such that
∑ki

j=1 v
i
j ∈ [w(1− ε), w(1 + ε)] be traces from t of

weight within [w(1− ε), w(1+ ε)]. Without loss of generality,
we can skip traces with zero-cycles, which means that since
the WKS is finite there is a finite number of traces πi of weight
within [w(1−ε), w(1+ε)], i = 1, . . . , n. Assume none of these
traces match s →w s′, which means that for each πi either
(s′, tiki) /∈ R or there exists a j < ki such that (s, tij) /∈ R.
For each πi such that (s′, tiki) /∈ R, i = 1, . . . , k, k ≤ n, there
exists a formula ψi such that s′ |= ψi and tiki 6|= ψεi and for
each πi such that (s, tij) /∈ R, i = k + 1, . . . , n, there exists a
formula φi such that s |= φi and tij 6|= φεi .
This means that for a decreasing series of rationals uj such
that limj→∞ uj = w and an increasing series of rationals
yj such that limj→∞ yj = w, we can create a series of
formulae φj = E

(∧
i∈[1,k] φiU[yj ,uj]

∧
i∈[k,n] ψi

)
for which

s |=
∧
j φ

j , but t 6|=
∧
j(φ

j)ε contradicting (s, t) ∈ R. �

Consider the following example, illustrating the use of The-
orem 8, and the rational of letting the distance be asymmetric.
Example 9. Consider Figure 1(c) and 1(d). In Example 4 we
showed that s3 and s4 was not WBB. When looking at the
distance between them, we see that d(s3, s4) = 0, as s4 can
exactly match s3. Notice, however, that d(s4, s3) = 1. We
trivially match s4 →2 s42 →3 s44 with s3 →2 s31 →3 s32.
Transition s4 →1 s

4
1 has to be matched with a transition of

weight within [1(1 − 1), 1(1 + 1)] = [0, 2], which is done
by matching with no transition from s3 (cost 0). We have to
show that s41 ≈1

I s
3. The only transition that we cannot trivially

match is s41 →1 s
4
3, which has to be matched by a transition

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 24 / 33

of weight within [0, 2], it can be matched by s3 →2 s
3
2.

This means that whichever formulae in the logic that s3
satisfies is also satisfied by s4, but the formulae satisfied by s4
are only guaranteed to be satisfied by s3 in their ε-extensions.
For instance s4 satisfies E(pU[0,1]E(pU[0,1]q)), but s3 does
not. It does however satisfy the ε-extension of the formula
E(pU[0,2]E(pU[0,2]q)). �

Consider EBS as our starting point to define an ε-relation.
Definition 14. Given a WKS K = (S,AP,V,→) and an ε ∈
R≥0 define a relation Rε ⊆ S×S such that whenever (s, t) ∈
Rε then

• V(s) = V(t)
• for all s→w s

′ there exists t→v1 t1 →v2 · · · →vk tk,
such that

∑k
i=1 vi ≤ w(1 + ε), (s′, tk) ∈ Rε and for

all i < k, (s, ti) ∈ Rε

If s and t are in this relation, we denote it by s ≤εE t. ?

We can now define an existential bounded distance.
Definition 15. Given a WKS K = (S,AP,V,→) and a
relation Rε as described in Definition 14, the existential
bounded distance (EBD) between states s, t ∈ S is given by

d≤(s, t) = infε{(s, t) ∈ Rε} ?

Let us return to the logic EWCTL≤−X and prove that with
ε-expansions the logic characterizes EBD. The proof of the
theorem has the same structure as the proof of Theorem 8.
Theorem 9. Let K = (S,AP,V,→) be a finite WKS. Then
for all s, t ∈ S

s ≤εE t iff ∀ε′ ∈ Q≥0, ε ≤ ε′

[∀φ ∈ EWCTL≤−Xs |= φ⇒ t |= φε
′
].

It should be noted that neither WBD nor EBD are
(hemi)metrics as is usually the case, which stems from the
relativism in the definition of the distances. Future work should
include a classification of these.

VII. CONCLUSION AND FUTURE WORK

We have extended the idea of branching bisimulation with
weights in three distinct ways, relating to different fragments
of WCTL. We initially removed the next operator from the
logic, to allow for systems to be related even though they
performed specific behavior with different number of transi-
tions. The weighted branching bisimulation relation that was
characterized by this logic, turned out to be NP-complete,
which prompted us to look into other fragments of the logic.
We proved that for fragments allowing only upper bounds and
either the existential or the universal quantifier we could decide
the resulting simulation relations in polynomial time.
We furthermore expanded these concepts into distance-like
relations. The distances build upon the ideas of the different
relations and were also characterized by fragments of WCTL,
when we introduced a relative expansion on formulae. Even
if the distances are not (hemi)metrics, they can however be
meaningfully interpreted as relative distances.

Notably, this work demonstrates that the real-valued
weights in the models can be described by only involving
rational parameters in the logics. The approximation of reals
by rationals are enough to describe this more general behavior.

This research opens a few promising future work direc-
tions. On one hand, designing a simulation relation which
characterizes the same relations as the logic with the universal
quantifier is problematic and whether such a relation can be
defined at all is an open problem. On the other hand, the
distance-like relations inspired by our semantics fail to satisfy
the triangle inequality. The characterization of such relations
is a promising research direction. Furthermore, computability
and complexity results related to these distances are open.

REFERENCES
[1] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes

in Computer Science. Springer, 1980, vol. 92.
[2] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,

vol. 21, no. 8, pp. 666–677, 1978.
[3] J. A. Bergstra and J. W. Klop, “Algebra of communicating processes

with abstraction,” Theor. Comput. Sci., vol. 37, pp. 77–121, 1985.
[4] R. Milner, Communication and concurrency. Prentice hall New York

etc., 1989, vol. 84.
[5] D. Park, “Concurrency and automata on infinite sequences,” in The-

oretical Computer Science, ser. Lecture Notes in Computer Science,
P. Deussen, Ed. Springer Berlin Heidelberg, 1981, vol. 104, pp. 167–
183.

[6] M. Hennessy and R. Milner, “Algebraic laws for nondeterminism and
concurrency,” J. ACM, vol. 32, no. 1, pp. 137–161, Jan. 1985.

[7] M. Browne, E. Clarke, and O. Grmberg, “Characterizing finite kripke
structures in propositional temporal logic,” Theoretical Computer Sci-
ence, vol. 59, no. 1, pp. 115 – 131, 1988.

[8] R. J. van Glabbeek and W. P. Weijland, “Branching time and abstraction
in bisimulation semantics,” J. ACM, vol. 43, no. 3, pp. 555–600, 1996.

[9] R. De Nicola and F. Vaandrager, “Three logics for branching bisimula-
tion,” J. ACM, vol. 42, no. 2, pp. 458–487, Mar. 1995.

[10] K. G. Larsen and R. Mardare, “Complete proof systems for weighted
modal logic,” Theor. Comput. Sci., vol. 546, pp. 164–175, 2014.

[11] K. G. Larsen, R. Mardare, and B. Xue, “Decidability and expressiveness
of recursive weighted logic,” in Perspectives of System Informatics - 9th
International Ershov Informatics Conference, PSI 2014, St. Petersburg,
Russia, June 24-27, 2014. Revised Selected Papers, 2014, pp. 216–231.

[12] P. Buchholz and P. Kemper, “Model checking for a class of weighted
automata,” Discrete Event Dynamic Systems, vol. 20, no. 1, pp. 103–
137, 2010.

[13] C. Thrane, U. Fahrenberg, and K. G. Larsen, “Quantitative analysis
of weighted transition systems,” The Journal of Logic and Algebraic
Programming, vol. 79, no. 7, pp. 689 – 703, 2010, the 20th Nordic
Workshop on Programming Theory (NWPT 2008).

[14] K. G. Larsen, U. Fahrenberg, and C. R. Thrane, “Metrics for weighted
transition systems: Axiomatization and complexity,” Theor. Comput.
Sci., vol. 412, no. 28, pp. 3358–3369, 2011.

[15] U. Fahrenberg, C. Thrane, and K. G. Larsen, “Distances for
weighted transition systems: Games and properties,” arXiv preprint
arXiv:1107.1205, 2011.

[16] L. de Alfaro, M. Faella, and M. Stoelinga, “Linear and branching system
metrics,” IEEE Trans. Software Eng., vol. 35, no. 2, pp. 258–273, 2009.

[17] U. Fahrenberg, K. G. Larsen, and C. Thrane, “A quantitative charac-
terization of weighted kripke structures in temporal logic,” Computing
and Informatics, vol. 29, no. 6+, pp. 1311–1324, 2012.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[19] M. Nykänen and E. Ukkonen, “The exact path length problem,” J.
Algorithms, vol. 42, no. 1, pp. 41–53, Jan. 2002.

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 25 / 33

Towards an Astrophysical-oriented Computational multi-Architectural Framework

Dzmitry Razmyslovich∗, Reinhard Männer†
Institute for Computer Engineering (ZITI),

University of Heidelberg,
Mannheim, Germany

Email: ∗dzmitry.razmyslovich@ziti.uni-heidelberg.de,
†reinhard.maenner@ziti.uni-heidelberg.de

Guillermo Marcus
NVIDIA Corporation,

Berlin, Germany
Email: gmarcus@nvidia.com

Abstract—In this exploratory paper, we present a framework
for simplifying software development in the astrophysical sim-
ulations branch - Astrophysical-oriented Computational multi-
Architectural Framework (ACAF). The ACAF is designed to
provide a user with the set of objects and functions covering some
aspects of application development for astrophysical problems.
The target data to be processed with the ACAF is a set of states
of a particle system. Being designed as a C++ framework, the
ACAF decreases the expertise needs required to implement such
programs preserving the extension flexibility and the possibility
to use the existing libraries. The ACAF abstracts the accelerating
device itself, the usage of it, the data distribution and usage. Also,
the ACAF incorporates the different kernel implementations into
a single object.

Keywords–Astrophysics; Heterogeneous; Framework; Cluster;
GPGPU.

I. INTRODUCTION

Astrophysical simulation tasks have usually high com-
putational density, therefore it’s common to use hardware
accelerators for solving them [1]. Also, the astrophysical
simulations have a huge amount of data to calculate, which
makes it reasonable to use computer clusters. But the data
dependencies of the simulation algorithms limit the usage
of big clusters because of high data communication rate.
Therefore, the astrophysical simulations tasks are normally
solved using heterogeneous clusters [2][3][4]. According to
TOP500, the top-rated heterogeneous clusters use Graphics
Processing Units (GPU) or Field Programmable Gate Arrays
(FPGA) as computational accelerators.

The most important computational astrophysical problems
include N-Body simulations, Smoothed Particle Hydrodynam-
ics (SPH), Particle-Mesh and Radiative Transfer. All of them
are usually approximated for the calculation purposes with
respective particle physics problems. Where particle physics is
a branch of physics which deals with existence and interactions
of particles, that refer to some matter or radiation. Therefore,
computational astrophysics data represents a collection of
particles - a particle system. Each particle contains a number of
parameters like position in 3D space, speed, direction, mass,
etc. A collection of certain values for all parameters of all
particles is named a state of a particle system. While the
computational tasks embrace numerical solving of a number
of equations, which evaluate the state of a particle system [5].

Developing astrophysical simulation applications for het-
erogeneous clusters without usage of specialized frameworks
and libraries requires the following knowledge:

• knowledge of astrophysics, since the problem consists
of simulating the astrophysical objects;

• knowledge of network programming for cluster utiliz-
ing;

• knowledge of parallel programming and hardware
accelerators programming including usage of specific
interfaces and languages;

• knowledge of micro-electronics for designing FPGA
boards.

This means much time and expertise for astrophysicists,
what restricts the scientists to perform calculation experiments
easily on clusters and distracts them from the main goal.
So the aim of our research is to simplify software devel-
opment for astrophysical simulations implementation re-
ducing programming knowledge requirement. The solution
we suggest is the ACAF. ACAF stands for Astrophysical-
oriented Computational multi-Architectural Framework. The
ACAF is a toolkit for development of astrophysical simulation
applications. The target data to be processed with the ACAF is
a set of states of a particle system. In this exploratory paper,
we present the current state of art and the results of some
experiments with the ACAF.

Technically, developing of a distributed multi-architectural
application could be divided into a set of the following aspects:

• balance loading;
• data communication between nodes;
• data communication between the devices inside of

each node;
• computational interfaces for different architectures;
• programming languages for different interfaces (like

Open Multi-Processing (OpenMP) for Central Pro-
cessing Unit (CPU); Open Computing Language
(OpenCL), Compute Unified Device Architecture
(CUDA), Open Accelerators (OpenACC) for GPU
and Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) for FPGAs).

All these aspects should be taken into account in order to
develop an application and all of them should be examined
for the current system in order to reach high computational
performance. Hence, it makes sense to have the ACAF, which
facilitates astrophysical research by providing a user with a set
of objects and functions fulfilling the following requirements:

• the structure of an object and the semantics of a func-
tion should be plain and similar to the objects often
used by scientists in other programming environments
and in theoretical problem descriptions;

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 26 / 33

• the objects and functions should cover most of pro-
gramming aspects mentioned above;

• in the same time, there should be a possibility to
extend the tools in use as well as to provide the
alternative implementations of existing tools;

• finally, it would be an additional advantage to pre-
serve a possibility to reuse the existing computational
libraries, when it makes sense.

The rest of the paper is divided into 4 sections. The Section
II highlights the currently existing standards, frameworks and
languages for the software development targeted heterogeneous
systems. The Section III consists of 3 subsections, each of
them presenting some design motivations and solutions we
have used to reach the goal. In the Section IV, the usage
example of the current framework implementation is given.
Finally, the Section V concludes the paper with an outlook to
the most important advantages of the ACAF.

II. CURRENT STATE OF ART

This section covers mostly used and important frameworks,
libraries, languages and standards, which can optimize or
simplify development of the specific astrophysical cluster
applications.

A. Standards

• OpenMP [6] is a standard Application Program-
ming Interface (API) for shared-memory program-
ming, which enables easy and efficient CPU utilization
on a single node using compiler directives. The latest
version 4.0 includes the compiler directives for hard-
ware accelerators, which were previously presented in
another branch OpenACC [7]. OpenMP API model
definitely reduces the requirements in parallel pro-
gramming skills abstracting the numerous function
calls in easy-readable pragmas. Still, it doesn’t hide
a lot of implementation details, which are out-of-
interests for scientific programmers: device data allo-
cation, data transferring, runtime synchronization, etc.
Also, API doesn’t cover at all any kind of network
communications and is designed solely for a single
node.

• Message Passing Interface (MPI) [8] is a standardized
message-passing system designed to function on a
wide variety of parallel computers. MPI is widely
used on many computer clusters for parallel compu-
tations on several machines. MPI can also be used
for parallel computations on a single node by running
multiple instances of the program. Using the extension
MVAPICH2 [9], it is also possible to integrate CUDA-
enabled GPU data movement transparently into MPI
calls.

• CUDA [10] stands for Compute Unified Device Archi-
tecture and is a parallel computing platform and API
model created by Nvidia and is only used for Nvidia
GPUs. CUDA enables a user to utilize Nvidia GPUs
for general-purpose computations on a single node.

• OpenCL [11] is an open standard for general purpose
parallel programming across different heterogeneous

processing platforms: CPUs, GPUs and others. Choos-
ing OpenCL, a user can utilize some hardware accel-
erators on a single node.

• SyCL [11] is a new C++ single-source heterogeneous
programming model for OpenCL. SyCL benefits from
C++11 features like lambda functions and templates.
SyCL provides a high level programming abstraction
for OpenCL 1.2.

B. Frameworks and Languages
• Cactus [12] is an open-source modular environment,

which enables parallel computation across different ar-
chitectures due to its modularity. As separate modules,
Cactus code also provides CUDA and MPI utilization.
Additionally, there is an extension of Cactus code -
CaCUDA, which is able to utilize Nvidia GPUs across
cluster nodes by converting CaCUDA source code into
CUDA kernels. No other hardware accelerators are
supported so far. As of 2015, CaCUDA looks like to
be not developed any more.

• Charm++ [13] is a message-driven parallel language
implemented as a C++ library. The usual Charm++
program consists of a set of objects called “chares”.
A chare is an atomic function, which performs some
calculations. Charm++ library is responsible for dis-
tributing chares between the processing units and es-
tablishes the communication between them. Charm++
provides also an additional library - Charm++ GPU
Manager, which enables the user to utilize GPU di-
rectly from Charm++. In order to run some code on
GPU, a user should define a work request for GPU
Manager providing CUDA kernel, input and output
arguments to be transferred to GPU. GPU Manager
ensures the overlapping of transfers and executions
on GPU and runs GPU kernel asynchronously.

• Chapel [14] is a parallel programming language.
Chapel provides a user with a high-level parallel pro-
gramming model which supports data parallelism, task
parallelism and nested parallelism. Chapel is a very
powerful language, which enables the user to write
the parallel programs with several lines of code. While
being designed as a new standalone language, Chapel
has limited possibilities for extending the functionality
- since Chapel is an open source project, everybody
can have the source code and change Low Level
Virtual Machine (LLVM) grammar for having new
commands. But this means, even reusing the existing
computational libraries could be only done with new
language features.

• Flash Code [15][16] is a modular Fortran90 frame-
work, which uses MPI to distribute the calculations
over the cluster nodes. The Flash system has no built-
in support for any hardware accelerators and relies on
the particular modules to optimize the calculations as
much as possible. A module in the Flash system is
some atomic algorithmic routine performing mathe-
matical evaluation of the particle system. This means
that a module can be implemented using any accel-
erating techniques and libraries, but anyway requires
the proficiency in parallel programming (hardware ac-
celerators utilization; MPI usage; data distribution and

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 27 / 33

synchronization using MPI and hardware accelerators,
etc). The Flash system is deployed with a big number
of modules.

• Swarm [17] is a CUDA library for parallel n-body
integrations with focus on simulations of planetary
systems. The Swarm framework targets single ma-
chines with Nvidia GPUs as hardware accelerators.
The framework provides a user with a possibility to
extend the calculations algorithm, but the final system
isn’t scalable and cannot utilize the power of a cluster.
It is designed to solve some specific problems.

• AMUSE [18] is Python framework designed to couple
existing libraries for performing astrophysical simula-
tions involving different physical domains and scales.
The framework uses MPI to involve cluster nodes.
While the utilization of any hardware accelerators
should be a part of libraries coupled in a particular
configuration.

• The Enzo [19] project is a community-developed
adaptive mesh refinement simulation code. The code
is modular and can be extended by users. Enzo doesn’t
support network communication. Still, it contains sev-
eral modules developed to utilize Nvidia GPUs using
CUDA.

• Some other languages, which aren’t that widely used:
Julia [20] language, X10 [21] language, Fortress lan-
guage [22]. All these languages were initially designed
for CPU clusters. Some of them provide ports or
extensions for hardware accelerators, which usually
have no abstraction for the accelerator memory space
communications.

• And other widely used domain-specific libraries: WaL-
Berla [23], RooFit [24], MLFit [25].

III. ACAF DESIGN AND STRUCTURE

The design of the ACAF should be both user-friendly for
astrophysicists and easily extendable for computer scientists.
Therefore, we’ve designed the ACAF basing on 3 concepts:

1) The computational concept describes the principal
algorithm used for calculating. In other words, the
computational concept is a mathematical, physical
and astrophysical background of the problem solution
and the environment necessary to execute the solu-
tion of the problem on some particular device. This
concept bases on a set of efficient high-parallel multi-
architectural algorithms. So that each function in the
space of user tools has an efficient implementation
for each architecture and device in use. And all
implementations for the same function can work
together on different platforms.

2) The communication concept describes data trans-
fers and synchronization points between computing
units or storages. The concept lies in efficient data-
distribution mechanisms, which warranty presence of
the necessary data in the required memory space and
in the required order. This means that the commu-
nication concept is responsible for transferring data
from one memory space to another and transforming
it according to the user-defined, architecture-defined
or device-defined rules.

3) The data concept describes logical and physical
representation of the data used in a solution, as well
as distribution of this data between different storages.
This concept lies both in a set of data-structures
providing an efficient way of managing the data of
the astrophysical objects; and a set of functions for
manipulating these structures.

Design of the computational concept is a technical problem
lying in the space of a properly implemented set of pro-
gramming interfaces to access the necessary functions on the
necessary platforms.

While the design of the data concept and the commu-
nication concept can be coupled into a special distributed
database. Here and further, we understand under the database
its basic definition: a database is an organized collection of
data. This database should provide the user with an interface
for managing data. Besides, it should manipulate the data
according to the requirements and properties of computational
units and algorithms. Hence, the database should fulfill the
following requirements:

• operating with a set of structures efficient for repre-
senting astrophysical data: tuples, trees (oct-trees, k-d
trees), arrays;

• operating with huge amount of data;
• the native support of hardware accelerators like GPUs

and FPGAs;
• the data should be efficiently distributed between both

cluster nodes and the calculating devices inside of
each node;

• the database should be programmatically scalable: a
user should be able to extend the number of features
in use - architectures; devices; data-structures; data
manipulation schemes and functions; communication
protocols;

• the database should store the data according to the
function, device and platform requirements.

This means that this special database can be seen as a
partitioned global address space (PGAS), which is already
addressed in several existing solutions like Chapel and X10.
But in our approach, we incorporate into the database not only
partitioning of the address space, also other properties specified
above.

Hence in this work, we address only the communication
and data concepts - the design and implementation of a
distributed database. The computational concept is designed
to contain only the algorithms and functions, necessary to
present the capabilities of the database.

A. Database Design
The target data for the ACAF database is a set of states of

some particle system. According to the definition of a particle
system (see Section I), there is no need for our database
to store various data of various types. All parameters of a
particle are some physical properties of it. So in computer
representation, the parameters are usually either integer, float
or double (integral) values. Hence in our database, these
types of data are only considered. A state of some particle
system can be represented in some computer memory space

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 28 / 33

as an array of structures, where members of a structure are
particle parameters, e.g., integral data types. Therefore, the
ACAF database is only targeted to store arrays of integral data
elements.

As soon as a particle system usually includes some millions
of particles, it’s common and necessary to use computer
clusters and accelerators to simulate its states. So the aim of
the ACAF is to simplify implementing the simulations tasks
targeted to be run on heterogeneous computer clusters utiliz-
ing as much computational power as possible. The efficient
utilization of any computational device (e.g., processing unit)
becomes possible only when all the parameters necessary for
computation reside in the cheapest memory space in terms
of access latency. The efficient use of low-level memory
spaces (processing registers and near by caches of a unit)
is a part of both compiler implementation and the operating
system scheduler. While the programmer’s task is to ensure
the presence of data in the nearest high-level memory space
(usually device Random-access memory (RAM)). Moreover,
it’s necessary to store data in high-level memory spaces in the
format acceptable with computational algorithms. Hence, raw
arrays are preserved in our database. This provides the direct
access to the parameters of a particle.

The ability of the ACAF database to distribute data between
cluster nodes and devices enables the scalability of data
amount. So the amount of data to be processed is only limited
to the mutual storage capabilities of cluster nodes and devices.

Distributing data between cluster nodes and devices im-
plies division and synchronization of data according to the
implementation of the computational concept particular to a
certain problem. While data synchronization in heterogeneous
computer clusters context implies interoperability of different
programming technologies used on different computational
devices. Since the ACAF database is targeted to utilize GPUs,
CPUs, FPGAs and a network, the technologies we’ve used
include: threads and OpenCL for CPUs; OpenCL and CUDA
for GPUs; OpenCL for FPGAs; MPI for a network.

Interoperability of the technologies mentioned above means
the following functionality of the ACAF database: copying
and/or converting of memory buffers from one technology to
another; synchronizing the memory buffer content distributed
between different technologies.

B. Database Implementation
The suggested database is implemented as a part of the

framework - the ACAF. The implementation is done in C++
language and is organized as a collection of classes. Some of
them are template classes. We concentrate on the key classes
used in the ACAF in this section. The current framework im-
plementation is targeted to be built and executed on machines
running Unix operating system.

1) Device: A device instance represents some computa-
tional device, which can be used for simulation calculations
on the current node. A device instance is always described
by some architecture instance, the vendor name, the vendor
identifier, the device name, the device identifier and a set of
technology instances. The format and type of the identifiers are
always architecture-dependent. All device instances are cre-
ated automatically by ACAF during framework initialization
according to the devices found in the operating system. No
manual instantiation of a device class is possible.

2) Architecture: Architecture class is an interface class
for any device type supported by ACAF. The instance of
each ancestor architecture type is a singleton in any ACAF
process. This instance provides the functionality to identify all
computational devices of the desired type in the current cluster
node. The predefined architecture ancestor types are:

• CPUArchitecture - identifies all CPU devices pre-
sented in the current node by parsing /proc/cpuinfo
file;

• GPUArchitecture - identifies all GPU devices pre-
sented in the current node by scanning all Periph-
eral Component Interconnect (PCI) devices of Video
Graphics Array (VGA) type.

3) Technology: Technology class is an interface class for
describing some programming technology, which can be used
for some devices presented in the current node. The instance
of each ancestor technology type is a singleton in any ACAF
process. The ancestor class describes how to utilize a device
for computational purposes: which devices are supported;
which programming language (if any) should be used; how to
set the parameters before executing the code; which storage
class should be used for storing buffers; etc. Assigning the
correct set of technology instances for each device is also
done automatically during the initialization of ACAF. The
predefined technology ancestor types are:

• pthreadTechonology - includes the functionality to run
native functions in several threads using Unix pthreads
library;

• OpenCLTechnology - includes the functionality to run
OpenCL kernels on the supported devices;

• CUDATechnology - includes the functionality to run
precompiled CUDA kernels on Nvidia devices.

4) Network: Network class is an interface class for describ-
ing some network protocol to utilize network-based computer
clusters. The instance of a network type is a singleton in any
ACAF process. The ancestor class describes:

• the topology of the current process instances dis-
tributed over the network;

• the communication protocol between the processes of
different cluster nodes (implemented as a storage class
type);

• the synchronization mechanisms between nodes.

The selection of the particular ancestor network type is
done according to the configuration provided by the user.
ACAF predefines only one network ancestor type: MPINet-
work which includes the functionality to utilize MPI library.

5) Context: The context instance is a set of devices and
the programming technologies to be utilized for executing the
simulation.

6) Database: The database instance is a part of context,
which manages the data used in the scope of the parent context.
The database object has a set of storage instances and a set
of content instances. The database instance is the main user
interface to manipulate the data: to list all available storages
in the system; to create new distributed content instances; to
list the existing content instances.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 29 / 33

7) Storage: The storage class is the interface for al-
locating/reading/writing/synchronizing data in the associated
memory space. The storage classes implemented in ACAF are
divided into the following categories:

• RAMStorage serves the functionality to operate with
on-board RAM of the current node. This object is a
singleton for a database.

• DeviceStorage serves the functionality to operate with
some built-in device high-level memory (usually de-
vice RAM), like GPU or FPGA. For example, CUDA
storage or OpenCL storage are typical device storage
instances. Usually, the implementation of a particular
device storage type is technology-dependent. There-
fore, any device storage is instantiated by the tech-
nology instance used in the current context for the
particular device.

• FileStorage serves the functionality to operate with the
files, available in the current operating system.

• NetworkStorage serves the functionality to operate
with the remote content. The network storage imple-
mentation is network-dependent. The network storage
instances are created automatically by the ACAF dur-
ing the initialization according to the network ancestor
class currently used.

Each storage instance has a collection of buffers, which
are physical or abstract regions in some memory space. A
storage instance doesn’t reflect the logical organization of the
data and only operates with its representation in the memory
(some sequence of bytes).

8) Content: The content class is the interface for logical
organization of the data stored in the storage instances of the
database. An instance of the content class reflects the particular
representation of data in some memory buffer. Additionally, the
ancestor content classes provide the user with some data ma-
nipulation functions, like initializing, dumping, synchronizing
data. The ACAF predefines the following content types:

• Array class is a template class, which represents a dis-
tributed array with elements of the template type: each
calculation device in the context comprises some part
of the array. The parts are completely independent. A
typical example of an array is masses of particles.

• SyncedArray class is a template class, which repre-
sents a synchronized distributed array with elements
of the template type: each calculation device in the
context comprises the full array, but owns only some
part of it. This means that the device should mod-
ify only its own part, while the rest array will be
synchronized time-to-time according to the algorithm.
A typical example of a synced array is positions of
particles.

9) Kernel: A kernel represents some atomic function,
which is run on the computational devices of the context.
Each kernel instance contains a collection of its implemen-
tations, where each kernel implementation represents some
binary-coded technology-dependent executable function. The
instances of the kernel class are created by the user according
to the computational algorithm.

10)Extending the ACAF: The user has an opportunity to
extend the functionality of the ACAF by implementing the
other ancestor classes of the following entities:

• Architecture - to support other device types;
• Technology - to support other programming technolo-

gies;
• Network - to support other network protocols;
• Content - to support other logical data organizations.

IV. USAGE EXAMPLE

A running example of ACAF usage is represented with
several parts: the configuration, the mathematical algorithm
implementation and the environmental host code. The provided
example represents the code necessary for running distributed
NBody simulation on a cluster using MPI for network commu-
nication, pthread technology for CPU code and OpenCL tech-
nology for GPU code. Any changes in the resource utilization
can be made by modifying the configuration file without any
need to recompile the program.

A. Configuration File
A configuration file contains the network protocol, the

context specification and possible distribution descriptions (see
Figure 1).

Figure 1. The configuration example.

The current configuration file consists of 2 sections:

• The first section specifies which devices and nodes
should be used for running the calculation (parameters
network and context). Particularly, the example file
above specifies that the calculation is going to be
distributed over the network with a help of MPI
interface and that on each node of the network all
CPUs are going to be utilized by pthread technology
and all GPUs are going to be utilized by OpenCL
technology. An additional flag skip identifies that
all devices unsupported by the specified technologies
should be skipped.

• The second section specifies the distribution of the
data inside of a single node. The user can specify
as many different distributions as it’s necessary using
the distinct names. In our example, we have a single
distribution with the name default.

B. Algorithm Code (OpenCL and pthread)
According to the technologies specified in the configuration

file and the host code initialization routine, the mathematical
algorithm should be implemented for one or several tech-
nologies. In our example, the algorithm is implemented for
OpenCL (see Figure 2) and pthread (see Figure 3) tech-
nologies, using respectively OpenCL C language and C++

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 30 / 33

language. The code of OpenCL implementation is represented
as a separate file, while pthread implementation code is a part
of the environmental host code and passed to ACAF as a
pointer to the function.

Figure 2. The OpenCL algorithm example.

Figure 3. The pthread algorithm example.

C. Environmental Host Code
Finally, the environmental host code represents the main

function with initialization instructions, content creations, ker-
nel instantiations and kernel running calls written in C++
programming language with the usage of the classes described
in Section III-B (see Figure 4).

V. CONCLUSION AND FUTURE WORK

In this exploratory paper, we presented the current
state of art and some results for the Astrophysical-oriented
Computational multi-Architectural Framework. The ACAF is
targeted to simplify the software development for astrophysical
simulations implementation by providing a user with the set
of objects and functions covering some aspects of application
developing.

In the current work, we focused on the communication and
the data concepts of software development problem designing
the special distributed database. The database is aimed to
process particle systems with float and/or double (integral)
parameters. The database aims to store data in high-level

Figure 4. The main function example.

memory spaces in the format acceptable with computational
algorithms.

The current database implementation utilizes pthreads,
OpenCL and CUDA technologies to run the calculation on
CPU and GPU devices and MPI interface to distribute and
exchange data over the network. The implementation uses 2
types of content: array and synced array. Extending of the
database functionality can be easily done by implementing the
certain program interfaces.

We can conclude that the current ACAF implementation
facilitates the development of network-enabled heterogeneous
NBody force simulation program. With the help of ACAF, the
user is able to write an application without the expertise neither
in the network programming nor in the parallel programming

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 31 / 33

of some devices (CPU, GPU). ACAF requires the user to do
the following tasks:

• Write a configuration file, which specifies the devices
and nodes to be used and defines the distribution of
the data.

• Implement the mathematical, physical part of the
program.

• Write some environmental code, which does the ini-
tialization, data definition, data initialization, kernel
instantiation and defines the main particle system
evaluation loop.

We performed the comparison tests of the ACAF-based
implementation of the Nbody forces simulation (see Section
IV) against the bare OpenCL/MPI implementation. The Figure
5 represents the percent overhead of the execution time of
the ACAF-based implementation to the execution time of the
bare implementation scaled over the particles number in the
example system. According to this chart, we see, that the time
overhead of using ACAF drops to less than 1 percent for the
bigger particle systems, which equivalents to 97 seconds for
the case of 327680 particles.

Figure 5. The ACAF-based implementation to bare implementation
comparison chart.

The tests were carried out on the following test platform:
the 7-nodes cluster with 4 processing nodes, each of them
has the NVIDIA GeForce GTX 285 GPU with 2GB of RAM,
the Intel Xeon E5504 CPU and 6GB of RAM. The nodes run
Linux OS. For each test the calculation was equally distributed
over all 4 processing nodes. The calculation was performed
only on the GPUs using OpenCL and the positions of the
particles were synchronized after each iteration using MPI.

In comparison with the other approaches mentioned in
Section II-B, the following advantages of our approach can
be mentioned:

1) ACAF is designed as a C++ framework in the first
place. This implies that a lot of different other exist-
ing libraries and tools can be reused when necessary.
So the user has a choice either to reimplement the
algorithm using the framework tools or reuse the
existing solution.

2) ACAF is designed to be domain specific for astro-
physical (particle) problems, therefore it can have
lighter structures as the generic tools.

3) ACAF abstracts the device itself and the usage of the
device as well. This allows to create one’s own usage
schemas (Technologies) as well as extend the devices
supported (by implementing Architecture interface).

4) ACAF abstracts the data distribution and usage, while
providing still the flexibility for the user to implement
other Storage classes and other Content classes. The
Storage classes can also represent files, which ab-
stracts input-output operations in the same manner.

5) ACAF incorporates the different kernel implementa-
tion into one object. And the object “knows” where
and how to execute the code.

While the current implementation of the ACAF has the
following limitations:

1) ACAF requires the usage of the extended C lan-
guages, like OpenCL and CUDA for utilizing GPUs.

2) The user should be aware that the computational
code will be run simultaneously on different data and
therefore the code should be reentrant.

3) ACAF provides only arrays as the content objects.

In the future, it’s necessary to improve ACAF by extending
it with the following features:

• Implement tree-structure content, which can be di-
rectly utilized for advanced SPH and NBody simu-
lations.

• Implement the support of astrophysical-native file for-
mats: Hierarchical Data Format version 5 (HDF5),
Flexible Image Transport System (FITS), etc.

• Move ACAF implementation forward by introducing
the domain specific language, which will eliminate the
separate implementations for each technology.

• Implement partially synchronized arrays, enabling so
even bigger data ranges.

REFERENCES

[1] R. Spurzem et al., “Accelerating astrophysical particle
simulations with programmable hardware (FPGA and GPU),”
Computer Science - Research and Development, vol. 23,
no. 3-4, May 2009, pp. 231–239. [Online]. Available:
http://www.springerlink.com/index/10.1007/s00450-009-0081-9

[2] N. Nakasato, G. Ogiya, Y. Miki, M. Mori, and K. Nomoto.
Astrophysical Particle Simulations on Heterogeneous CPU-GPU
Systems. [Online]. Available: http://arxiv.org/abs/1206.1199 [retrieved:
Feb., 2016]

[3] R. Spurzem et al., “Astrophysical particle simulations with large custom
GPU clusters on three continents,” Computer Science - Research and
Development, vol. 26, no. 3-4, Apr. 2011, pp. 145–151. [Online]. Avail-
able: http://www.springerlink.com/index/10.1007/s00450-011-0173-1

[4] T. Hamada and K. Nitadori, “190 TFlops Astrophysical N-body Sim-
ulation on a Cluster of GPUs,” in 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, no. November. IEEE, Nov. 2010, pp. 1–9.

[5] S. Braibant, G. Giacomelli, and M. Spurio, Particles and fundamental
interactions: an introduction to particle physics, 2nd ed. Springer,
2011.

[6] L. Dagum and R. Menon, “Openmp: An industry-standard api
for shared-memory programming,” IEEE Comput. Sci. Eng.,
vol. 5, no. 1, Jan. 1998, pp. 46–55. [Online]. Available:
http://dx.doi.org/10.1109/99.660313

[7] OpenACC. [Online]. Available: http://www.openacc.org/ [retrieved:
Feb., 2016]

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 32 / 33

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI (2Nd Ed.): Portable
Parallel Programming with the Message-passing Interface. Cambridge,
MA, USA: MIT Press, 1999.

[9] H. Wang et al., “MVAPICH2-GPU: optimized gpu to gpu
communication for infiniband clusters,” Computer Science - Research
and Development, vol. 26, no. 3-4, 2011, pp. 257–266. [Online].
Available: http://dx.doi.org/10.1007/s00450-011-0171-3

[10] Nvidia CUDA. [Online]. Available:
http://www.nvidia.com/object/cuda home new.html [retrieved: Feb.,
2016]

[11] Khronos Group. [Online]. Available: http://www.khronos.org [retrieved:
Feb., 2016]

[12] T. Goodale et al., “The Cactus framework and toolkit:
Design and applications,” in Vector and Parallel Processing –
VECPAR’2002, 5th International Conference, Lecture Notes in
Computer Science. Berlin: Springer, 2003, pp. 197–227. [Online].
Available: http://edoc.mpg.de/3341

[13] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R.
Quinn, “Scaling hierarchical n-body simulations on gpu clusters.”
in SC. IEEE, 2010, pp. 1–11. [Online]. Available: http://dblp.uni-
trier.de/db/conf/sc/sc2010.html

[14] B. L. Chamberlain, “Chapel (cray inc. hpcs language).”
in Encyclopedia of Parallel Computing, D. A. Padua, Ed.
Springer, 2011, pp. 249–256. [Online]. Available: http://dblp.uni-
trier.de/db/reference/parallel/parallel2011.html

[15] A. Dubey et al., “The software development process of flash,
a multiphysics simulation code.” in SE-CSE@ICSE, J. Carver,
Ed. IEEE, 2013, pp. 1–8. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icse/secse2013.html

[16] B. Fryxell et al., “FLASH: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes,” Astrophys.
J. Supp., vol. 131, Nov. 2000, pp. 273–334. [Online]. Available:
http://dx.doi.org/10.1086/317361

[17] S. Dindar et al., “Swarm-NG: a cuda library for parallel n-
body integrations with focus on simulations of planetary systems,”
CoRR, vol. abs/1208.1157, 2012, pp. 6–18. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr1208.html

[18] S. P. Zwart, “The astronomical multipurpose software environment and
the ecology of star clusters.” in CCGRID. IEEE Computer
Society, 2013, p. 202. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ccgrid/ccgrid2013.html

[19] The Enzo project. [Online]. Available: http://enzo-project.org/
[retrieved: Feb., 2016]

[20] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” CoRR, vol. abs/1411.1607,
2014, p. 517. [Online]. Available: http://arxiv.org/abs/1411.1607

[21] P. Charles et al., “X10: An object-oriented approach to non-uniform
cluster computing,” SIGPLAN Not., vol. 40, no. 10, Oct. 2005, pp. 519–
538. [Online]. Available: http://doi.acm.org/10.1145/1103845.1094852

[22] Fortress project. [Online]. Available: http://projectfortress.java.net
[retrieved: Feb., 2016]

[23] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, “WaLBerla:
HPC software design for computational engineering simulations,”
Journal of Computational Science, vol. 2, no. 2, May 2011, pp. 105–
112. [Online]. Available: http://dx.doi.org/10.1016/j.jocs.2011.01.004

[24] I. Antcheva et al., “ROOT — a c++ framework for
petabyte data storage, statistical analysis and visualization,”
Computer Physics Communications, vol. 180, no. 12, 2009,
pp. 2499 – 2512, 40 YEARS OF CPC: A celebratory
issue focused on quality software for high performance,
grid and novel computing architectures. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010465509002550

[25] A. Lazzaro, S. Jarp, J. Leduc, A. Nowak, and L. Valsan, “Report
on the parallelization of the MLfit benchmark using OpenMP and
MPI,” CERN, Geneva, Tech. Rep. CERN-OPEN-2014-030, Jul 2012.
[Online]. Available: https://cds.cern.ch/record/1696947

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 33 / 33

http://www.tcpdf.org

