
DEPEND 2011

The Fourth International Conference on Dependability

ISBN: 978-1-61208-149-6

August 21-27, 2011

Nice/Saint Laurent du Var, France

DEPEND 2011 Editors

Pascal Lorenz, University of Haute Alsace, France

Syed Naqvi, CETIC, Belgium

                            1 / 114



DEPEND 2011

Foreword

The Fourth International Conference on Dependability (DEPEND 2011), held between August 21-27,
2011 in Nice/Saint Laurent du Var, France, continued a series of special events related to the new
challenges in dependability on critical and complex information systems

Most of critical activities in the areas of communications (telephone, Internet), energy & fluids
(electricity, gas, water), transportation (railways, airlines, road), life related (health, emergency
response, and security), manufacturing (chips, computers, cars) or financial (credit cards, on-line
transactions), or refinery& chemical systems rely on networked communication and information
systems. Moreover, there are other dedicated systems for data mining, recommenders, sensing, conflict
detection, intrusion detection, or maintenance that are complementary to and interact with the former
ones.

With large scale and complex systems, their parts expose different static and dynamic features that
interact with each others; some systems are more stabile than others, some are more scalable, while
others exhibit accurate feedback loops, or are more reliable or fault-tolerant.

Inter-system dependability and intra-system feature dependability require more attention from both
theoretical and practical aspects, such as a more formal specification of operational and non-operational
requirements, specification of synchronization mechanisms, or dependency exception handing.
Considering system and feature dependability becomes crucial for data protection and recoverability
when implementing mission critical applications and services.

Static and dynamic dependability, time-oriented, or timeless dependability, dependability perimeter,
dependability models, stability and convergence on dependable features and systems, and
dependability control and self-management are some of the key topics requiring special treatment.
Platforms and tools supporting the dependability requirements are needed.

To deal with dependability, sound methodologies, platforms, and tools are needed to allow system
adaptability. The balance dependability/adaptability may determine the life scale of a complex system
and settle the right monitoring and control mechanisms. Particular challenging issues pertaining to
context-aware, security, mobility, and ubiquity require appropriate mechanisms, methodologies,
formalisms, platforms, and tools to support adaptability.

We take here the opportunity to warmly thank all the members of the DEPEND 2011 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the DEPEND 2011. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the DEPEND 2011 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

                            2 / 114



We hope the DEPEND 2011 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of dependability.

We hope Côte d’Azur provided a pleasant environment during the conference and everyone saved some
time for exploring the Mediterranean Coast.

DEPEND 2011 Chairs

Advisory Chairs
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing, China

Industry Liaison Chairs
Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

Research/Industry Chair
Michiaki Tatsubori, IBM Research Tokyo, Japan

Special Area Chairs
Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan

Hardware dependability
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany

Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy

Security and Trust
Syed Naqvi, CETIC, Belgium

                            3 / 114



DEPEND 2011

Committee

DEPEND Advisory Chairs

Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing, China

DEPEND 2011 Industry Liaison Chairs

Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2011 Research/Industry Chair

Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2011 Special Area Chairs

Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan

Hardware dependability
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany

Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy

Security and Trust
Syed Naqvi, CETIC, Belgium

DEPEND 2011 Technical Program Committee

Afonso Araújo Neto, University of Coimbra, Portugal
José Enrique Armendáriz-Iñigo, Universidad Pública de Navarra, Spain
Yudistira Dwi Wardhana Asnar, University of Trento, Italy
Steffen Bartsch, TZI - Universität Bremen, Germany
Jorge Bernal Bernabé, University of Murcia, Spain
Andrey Brito, Universidade Federal de Campina Grande, Brazil
Antonio Casimiro Costa, University of Lisbon, Portugal
Zhe Chen, Université de Toulouse, France
Vicent Cholvi, Universitat Jaume I - Castellón, Spain
Marcello Cinque, University of Naples Federico II, Italy
Vincenzo De Florio, University of Antwerp, Belgium & IBBT, Belgium

                            4 / 114



Rubén de Juan Marín, Universidad Politécnica de Valencia, Spain
Petre Dini, Concordia University, Canada / China Space Agency Center, China
Nicola Dragoni, Technical University of Denmark - Lyngby, Denmark
Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany
Alexander Felfernig, TU - Graz, Austria
Nuno Ferreira Neves, University of Lisbon, Portugal
Francesco Flammini, Ansaldo STS, Italy
Cristina Gacek, City University London, United Kingdom
Yan Gao, Northeastern University, China
Manuel Gil Perez, University of Murcia, Spain
Karl M. Goeschka, Vienna University of Technology, Austria
Michael Grottke, University of Erlangen-Nuremberg, Germany
Nils Gruschka, NEC Laboratories Europe - Heidelberg, Germany
Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) - Trondheim, Norway
Michael Hobbs, Deakin University - Geelong, Australia
Neminath Hubballi, Indian Institute of Technology Guwahati, India
Yoshiaki Kakuda, Hiroshima City University, Japan
Seah Boon Keong, MIMOS Berhad, Malaysia
Phongphun Kijsanayothin, Naresuan University, Thailand
Marc-Olivier Killijian, LAAS-CNRS, France
Ezzat Kirmani, St. Cloud State University, USA
Dong-Seong Kim, Duke University, USA
Pankaj Kohli, D-Crypt Pte. Ltd. - Singapore, Singapore
Israel Koren, University of Massachusetts - Amherst, USA
Mani Krishna, University of Massachusetts - Amherst, USA
Inhwan Lee, Hanyang University - Seoul, Korea
Byoungcheon Lee, Joongbu University, Korea
Alex M. Li, The George Washington University, USA
Luigi Lo Iacono, Europäische Fachhochschule Rhein/Erft (EUFH) - Brühl, Germany
Paolo Lollini, Università degli Studi di Firenze, Italy
Miroslaw Malek, Humboldt-Universitaet zu Berlin, Germany
Rivalino Matias Jr ., Federal University of Uberlandia, Brazil
Manuel Mazzara, Newcastle University, UK
George Mohay, Queensland University of Technology, Australia
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong
Jun Na, Northeastern University, China
Syed Naqvi, CETIC, Belgium
Sarmistha Neogy, Jadavpur University, India
Mats Neovius, Åbo Akademi University - Turku, Finland
Hong Ong, MIMOS Berhad, Malaysia
Aljosa Pasic, ATOS Origin, Spain
Sergio Pozo Hidalgo, University of Seville, Spain
Wolfgang Pree, University of Salzburg, Austria
Thomas Quillinan, Thales Research & Technology, The Netherlands
Amir Rajabzadeh, Razi University, Iran
Wolfgang Reif, University of Augsburg, Germany

Juan Carlos Ruiz, Universidad Politécnica de Valencia, Spain

                            5 / 114



Felix Salfner, Humboldt-Universität zu Berlin, Germany
Petter Sandvik, Åbo Akademi University - Turku, Finland
Paul Sant, University of Bedfordshire, UK
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Dimitrios Serpanos, University of Patras & ISI, Greece
Komminist Sisai, Fondazione Bruno Kessler, Italy
Kuo-Feng Ssu, National Cheng Kung University - Tainan, Taiwan, Republic of China
Vladimir Stantchev, Berlin Institute of Technology, Germany
Keisuke Takemori, KDDI R&D Laboratories Inc., Japan
Oliver Theel, University Oldenburg,Germany
Kishor Trivedi, Duke University - Durham USA
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany
Ian Troxel, SEAKR Engineering, Inc., USA
Timothy Tsai, Hitachi Global Storage Technologies, USA
Marco Vallini, Politehnico di Torino, Italy
Ángel Jesús Varela Vaca, University of Sevilla, Spain
Bruno Vavala, University of Lisbon, Portugal
Szu-Chi Wang, National Ilan University, Taiwan
Hironori Washizaki, Waseda University, Japan
Claus Wonnemann, Albert-Ludwigs-Universität Freiburg, Germany
Pi Yi Yang, Wonders Information Co., Ltd, China
Hee Yong Youn, Sungkyunkwan University, Korea

                            6 / 114



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

                            7 / 114



Table of Contents

Towards Virtual Fault-based Attacks for Security Validation
Regis Leveugle, Mohamed Ben Jrad, and Paolo Maistri

1

On Time, Conflict, Weighting, and Dependency Aspects of Assessing the Trustworthiness of Digital Records
Jianqiang Ma, Habtamu Abie, Torbjorn Skramstad, and Mads Nygard

7

Specification and Verification of the Triple-Modular Redundancy Fault Tolerant System using CSP
Tan Lanfang, Tan Qingping, and Li Jianli

14

Efficient and scalable steady-state dependability verification
Diana El Rabih and Nihal Pekergin

18

A Dependable Microcontroller-based Embedded System
Amir Rajabzadeh and Mahdi Vosoughifar

24

Dependable Ordering Policies for Distributed Consistent Systems
Matei Dobrescu, Manuela Stoian, and Cosmin Leoveanu

30

Fuzzy Event Assignment for Robust Context-Aware Workflows
Hannes Wolf, Jonas Palauro, and Klaus Herrmann

37

An Automated Wrapper-based Approach to the Design of Dependable Software
Matthew Leeke and Arshad Jhumka

43

An Approach for the Reliability Analysis of Automotive Control Systems
Mikhail Glukhikh, Mikhail Moiseev, and Harald Richter

51

Methodology and Experience for Designing Safety-Related Systems in IEC 61508
Zhe Chen and Gilles Motet

57

Supporting Synthetic Data-Driven Diagnosis through Automated Fault-Injection
Patrick E. Lanigan, Thomas E. Fuhrman, and Priya Narasimhan

65

On Methods for the Formal Specification of Fault Tolerant Systems
Manuel Mazzara

72

Failure Modes and Effect Analysis of Use Cases: A Structured Approach to Engineering Fault Tolerance
Requirements
Elena Troubitsyna

82

                               1 / 2                            8 / 114



Timing Failures Caused by Resource Starvation in Virtual Machines
Sune Jakobsson

88

Video Surveillance in the Cloud: Dependability Analysis
Aleksandra Karimaa

92

Diagnostic Fusion for Dependable Vehicle Architectures
Patrick E. Lanigan, Priya Narasimhan, and Thomas E. Fuhrman

96

Downtime Analysis of Virtual Machine Live Migration
Felix Salfner, Peter Troger, and Andreas Polze

100

Powered by TCPDF (www.tcpdf.org)

                               2 / 2                            9 / 114



Towards Virtual Fault-based Attacks for Security Validation 
 

R. Leveugle, M. Ben Jrad, P. Maistri 
TIMA Laboratory 

Grenoble University (Grenoble INP, UJF, CNRS) 
46 Avenue Félix Viallet - 38031 Grenoble Cedex - FRANCE 

{Regis.Leveugle, Mohamed.Ben-Jrad, Paolo.Maistri}@imag.fr 
 
 

Abstract— Applications increasingly rely on secure embedded 
systems or "trusted hardware". ASICs (or smart cards) are 
typically used for high security but SRAM-based FPGAs are 
also appealing to implement lower-cost and flexible systems. In 
both cases, designers need a validation of the achieved level of 
security before they undergo long and costly official security 
qualification. This paper presents a methodology to accurately 
evaluate at design time the robustness level with respect to 
fault-based attacks, without resorting to costly equipments. 
Practical results are shown. The same methodology can be 
used in other contexts, for example to evaluate the robustness 
with respect to particle hits and radiations in spatial or 
aeronautics electronics although in this case, error models are 
in general easier to handle. 

Keywords— security, dependability, design time robustness 
evaluation, SRAM-based FPGAs, ASICs 

I. INTRODUCTION 
Embedded hardware-software integrated systems are 

today the heart of many products. Most application domains 
are concerned since embedded systems bring new features, 
added value and competitiveness due to innovation. In many 
cases, such systems are critical either from a safety or from a 
security point of view. In both cases, the systems must 
undergo accurate validations before they are subject to 
official qualification procedures. In this paper, we will focus 
on the validations required to guarantee the expected level of 
robustness with respect to natural or intentional (malicious) 
perturbations, with a special focus on the later i.e., so-called 
fault-based attacks. 

Due to the overwhelming costs induced by recent 
technologies, many applications cannot afford developing a 
specific integrated circuit. They therefore make use of 
programmable devices (often called FPGAs). For several 
reasons that will be detailed in the next section, FPGAs 
configured by uploading data in a volatile memory (SRAM) 
are very appealing platforms. However, their configuration 
can easily be perturbed due to the sensitivity of the SRAM to 
many perturbation sources. When critical functions such as 
for example crypto-processors are implemented in such a 
FPGA, it is therefore necessary to analyze and mitigate the 
effect of errors not only in the user logic and flip-flops but 
also in the configuration memory. 

We will demonstrate in the next sections that under 
practical attack conditions (using a laser or power glitches) a 
large number of bits can be simultaneously modified. The 

most usual error models employed to analyze the effects of 
natural perturbations (e.g., single bit-flip, or SEU) are 
therefore not adequate in such situations. Although fault 
injection techniques can be used to evaluate robustness level 
and the efficiency of some protection mechanisms [1], the 
main problem remains the injection of realistic error patterns. 

Of course, the best solution to demonstrate the robustness 
of a given design is to implement it and to put it under real 
perturbation conditions, for example in a particle accelerator 
for accelerated testing or under a laser for malicious attacks. 
However, using such equipments is not always possible due 
to their availability and to the cost such experiments induce. 
A new methodology is therefore required in order to reduce 
the global validation and qualification costs. Our proposal is 
to use fault injection campaigns as a first validation step, but 
with accurate error patterns in order to achieve a sufficient 
precision. These error patterns are first gathered during 
platform characterizations and can be re-used for several 
versions of the design, or several designs. The implemented 
analysis environment is flexible and can mimic different 
types of error sources. It only requires qualifying a single 
time the implementation target (e.g., the selected FPGA 
family) in the considered environments. Our evaluation 
environment has been implemented for Virtex II/Virtex II 
Pro devices but can be extended to other FPGAs. 

We detail in section II the global context and motivations 
for this study. Section III summarizes practical results 
obtained under various attack conditions on several 
platforms. Section IV presents how such results can be re-
used to perform accurate and low-cost security evaluations. 
Some results obtained with the new methodology are then 
shown in section V. 

II. CONTEXT AND MOTIVATIONS 
As previously mentioned, the behavior of an integrated 

system can be perturbed in several ways. Natural 
perturbations can occur for example due to ionizing 
radiations, particle hits or electromagnetic interferences. 
Malicious perturbations using for example a laser or voltage 
glitches can be used to discover secret data stored in a 
circuit. Such fault-based attacks have become one of the 
main threats for systems with high security requirements. An 
early example of fault-based attack is Lenstra's attack on 
RSA [2], taking advantage of the computations based on the 
Chinese Remainder Theorem. This attack combines fault 
injection and crypto-analysis to discover the secret key 

1

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           10 / 114



stored in a circuit. Similar attacks have been published for 
other types of cryptographic primitives, in particular DES or 
AES [3, 4]. In the case of malicious perturbations, the errors 
generated in the circuit are often much more complex than 
those generated by natural perturbations. We will therefore 
focus on malicious attacks in this paper, although the 
presented methodology can also be used in other contexts. 
We will also focus in the sequel on transient effects i.e., 
spurious modifications of some data stored in the circuit. 
Several bits can be simultaneously modified but without 
damage to the chip; restoring the erroneous data can 
therefore restart a correct computation. 

Secure systems are often implemented in ASICs i.e., 
circuits specifically manufactured for a given application. In 
the case of large production volumes, for example for Pay-
per-view television access, specific circuits allow developers 
to achieve both low cost and maximum protection. However, 
the development costs induced by recent technologies are 
quickly increasing and ASICs are no longer affordable for 
many applications. In most cases, they are replaced by 
programmable devices (often generically called FPGAs). 
Among those devices, three main categories exist. Some 
devices can be programmed only once (e.g., by fuses or 
antifuses). Once programmed, they are quite close to an 
ASIC in terms of characteristics. Their main drawbacks are a 
limited offer and quite high prices. Another device category 
makes use of non-volatile memories to store the device 
configuration. The best devices in this category use today 
Flash memory that is quite robust with respect to 
perturbations although some critical parts (e.g., control logic) 
are more sensitive. Such devices are more flexible but 
slightly less robust than devices based on fuses. Finally, the 
third category of devices makes use of volatile memory 
(SRAM) to store the configuration. These devices are less 
costly than the others and they generally exploit the most 
advanced technologies. They offer the largest device 
complexity, so the best integration level. They can easily be 
reconfigured to add new features or correct some bugs in the 
system and they often have partial reconfigurability 
capabilities that can be used to optimize the system 
implementation and behavior. Specific protections are 
available to protect the configuration against cloning (e.g., 
by encrypting it). SRAM-based FPGAs are therefore very 
appealing for many applications. However, their main 
drawback is the sensitivity of the configuration SRAM to 
natural or malicious perturbations. Errors occurring in a 
SRAM-based FPGA can therefore affect not only the user 
logic and flip-flops but also the configuration memory. In the 
first case, the problem is similar to perturbations occurring in 
an ASIC and modifies either manipulated data or the 
application control flow. Errors in the configuration memory 
are in general much more difficult to cope with since several 
effects can be induced. Manipulated data can be modified, 
but the function of the circuit can also be changed and will 
remain erroneous (although the effect is not destructive) until 
at least part of the circuit is reconfigured. In some cases, 
there may also be no effect at all because this bit has no 
active role in the application definition. Identifying the actual 
effect of errors in the configuration memory is therefore 

quite difficult, especially when multiple bits are 
simultaneously modified. Several types of design techniques 
can be used to make a given application more robust, but 
they are more limited than in the case of an ASIC design, 
since they have to be compatible with the existing features in 
the FPGA; it is for example not possible to add some sensors 
to detect a given kind of attacks. Achieving and validating a 
given security level is therefore difficult. Before using costly 
experimental equipments such as lasers, the designer must 
justify that the implemented functions are well protected 
against realistic errors. In most cases, the efficiency of the 
protection mechanisms is evaluated at design time by fault 
injections (either based on simulation or emulation) [1]. One 
of the limitations is the accuracy of the error model typically 
used during the injections, that may adequately represent 
some types of perturbations but not necessarily all types. The 
approach proposed in Section IV aims at overcoming this 
limitation. The need for specific error pattern 
characterization is first illustrated in Section III. 

III. ERROR PATTERNS WITH RESPECT TO ATTACK TYPES 

A. Results of Laser-based Attacks 
One of the most efficient means for fault-based attacks is 

today a laser. Such equipment allows the attacker to have a 
very good control on the error location, both in space and 
time. However, several types of lasers exist and they can be 
used in several manners; actual attack effects depend on 
these attack conditions. 

We will summarize here some results obtained during 
practical attack experiments, in order to illustrate the 
variability of the possible effects. 

We reported in [5] an attack campaign done on an ASIC 
manufactured in the ST HCMOS 130 nm process, with 6 
metal layers. The ASIC implemented several versions of a 
Montgomery multiplier for RSA acceleration, two of them 
with parity-based protections (Protected1 and Protected2). 
The laser was a pulsed Yag laser with a green output at 
532 nm, 6 ns impulsions and an energy tunable from 0 to 
100%, with the possibility to control the spot size. During the 
experiments, we used a large spot size and we only used the 
energy "zero" that means the lowest possible energy level, 
corresponding to some "leakage beam". As shown in 
Figure 1, this very low energy was sufficient to create many 
errors in the circuit as demonstrated by the number of alarm 
signals that were activated, each of them corresponding to a 
different subset of the logic. This is especially interesting 
because the result was obtained without any special 
preparation of the circuit. We just opened the package and 
attacked the circuit front side through the metal layers. 

Similar attacks on this circuit were attempted using a 
much more sophisticated laser [6] part of the ATLAS 
platform, the pulsed laser facility of the University of 
Bordeaux, dedicated to laser testing and analysis of 
integrated circuits. We used an ultra-short pulsed laser 
source (1 ps) with a wavelength tunable from 780 nm to 
1000 nm and microscope objectives giving adjustable spot 
sizes ranging from 1 µm to 20 µm. The available laser pulse 
energy on the attacked circuit is adjustable up to typically 

2

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           11 / 114



1 nJ. In that case, it was not possible to generate errors when 
attacking the circuit front-side. 

This case study demonstrates that (1) complex error 
patterns can be generated, far from the usual single bit-flip or 
even multiple bit-flip (MBU) models and (2) the attack 
effects strongly depend on the perturbation source. As a 
matter of fact, the most sophisticated equipment is not 
always the most efficient to be used in attack contexts. 

Experiments have then been carried out on SRAM-based 
FPGAs, especially Xilinx Virtex II devices. The reason was 
the availability of a tool called SEFEA-ProD that allowed us 
to analyze in details the configuration and data errors in these 
devices [7]. The v1000 FPGA used in the experiments was 
manufactured in a 0.15 µm CMOS process, with 8 metal 
layers. It is encapsulated Flip-Chip and was attacked 
backside through the substrate. Experiments were done on 
the ATLAS platform [8] but also with other lasers. One of 
them had a wavelength near 900 nm, a power of a few Watts 
and several focus levels corresponding to 8 µm, 20 µm, 
40 µm and 100 µm expected spot diameters [9, 10]. For the 
experiments reported in [9, 10], the die was thinned by a 
mechanical process until a residual thickness of 30 µm to 
ensure a good optical transmission of the light in the active 
layers of the device. The various experiments allowed us to 
draw some conclusions. 

First, in most cases, a medium or large number of 
configuration bits are modified even after a single shot but 
single-bit errors can also be obtained [10]. 

Second, one type of bit-flip (from 1 to 0) has a much 
higher probability than the other. This was explained by the 
structure of the memory elements [10]. 

Figure 1.  Repartition of shots with respect to the number of asserted 
detection bits in the protected Montgomery circuits. 

Third, it was shown that in spite of multiple bit flips a 
non negligible percentage of errors does not affect the basic 
functionality. This is partly due to the unused resources in 
the FPGA for a given design, but also to a redundant 
encoding of interconnection control bits in the architecture. 

Finally, the detailed analysis of the modified 
configuration bits demonstrated noticeable differences in 
terms of repartition depending on the laser energy and on the 
spot focalization. As an example, it was shown in [9] that the 
slice inputs and the Hex lines were the most sensitive 
elements in the CLB tiles (Configuration Logic Blocks), with 
70% of errors impacting such connections. However, the 
most sensitive element between these two was dependent on 
the laser spot size. With a laser spot size of 40 µm, the 
probability to modify a slice input control bit was larger than 
the probability to flip a control bit of Hex lines. With the 
8 µm spot, the trend was opposite. 

B. Attack Parameters and Adversary Model 
Results summarized in the previous section clearly show 

that it is not possible to use a simple error model to represent 
all possible attacks. An attacker can modify several 
important parameters and he will use the best values to 
achieve his goals. The robustness of a given design must 
therefore be validated taking into account a given adversary 
model based on some knowledge about the implementation 
technology, on the attack equipment that is supposed to be 
available to the attacker and on the configuration parameters 
for this equipment. 

When laser-based attacks are concerned, the main 
parameters are related to: 

- Manufacturing technology, internal architecture and 
internal topological organization of the circuit, 

- Type of laser and configuration (wavelength, energy, 
pulse duration, spot sizes), 

- Design implementation (placement in the device). 
This implies first that a real validation of the design 

robustness can only be done quite late in the design flow; the 
final placement and routing must be achieved before. 

Also, the validation cannot be done without taking into 
account realistic error patterns for the different attack 
conditions. Limiting the evaluation to a generic error model 
(such as single bit-flips or multiple bit-flips with a given 
maximum multiplicity) will not be in general realistic. On 
the other hand, single bit-flips can occur and therefore cannot 
be completely neglected. Also, when multiple errors occur in 
the configuration, all the potential combinations of erroneous 
bits are not realistic since they depend on the laser 
parameters but also on the physical organization of the 
configuration bits in the FPGA array. Making multiple 
injections in the configuration on the basis of a random 
sampling is therefore not accurate even if very large 
multiplicity values are taken into account. A more accurate 
representation of possible error patterns is therefore 
necessary to achieve significant validation campaigns based 
on fault injections. 

C. Glitch-based Attacks 
In the previous sections, we only considered laser-based 

attacks. Attacks can also be based on other types of 
perturbations, for example glitches on the power or clock 
signals. In general, the clock of a secured circuit is protected 
(e.g., by using an internal oscillator, or a digital locked loop 
in a FPGA) so we will focus here on glitches induced on the 

Protected2 version - Total number of alarms

0
100
200
300
400
500
600
700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of generated alarms

N
um

be
r o

f l
as

er
 sh

ot
s

Protected1 version - Total number of alarms

0
50

100
150
200
250
300
350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of generated alarms

N
um

be
r 

of
 la

se
r 

sh
ot

s

3

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           12 / 114



power lines that are more difficult to mitigate when FPGAs 
are used. Depending on the glitch intensity and on the 
occurrence time, the effects can be very different. As an 
example, Figure 2 [11] shows results with several intensity 
and polarity of glitches. The attack was made on a v1000 
device running an AES encryption. The glitches were 
triggered either on the rising clock edge or on the falling 
clock edge, with intensity between 5V and 80V, during the 
encryption cycles 49 to 60. As illustrated in the figure, the 
average number of bits modified in the FPGA configuration 
is very large (several hundreds in most cases) and clearly 
depends on the injection time within the clock period [11]. In 
that case, injections on the falling clock edge led to about 
twice erroneous bits. 

The need for a good adversary model, with an accurate 
representation of possible error patterns, is therefore also 
confirmed in that case. 

Figure 2.  Average number of modified configuration bits in a v1000 
device running an AES encryption for several types of power glitch attacks. 

IV. METHODOLOGY OVERVIEW 

A. Fault injection techniques 
Several approaches have been used to evaluate at design 

time the dependability level of a circuit. We will focus here 
on approaches able to inject errors in both user flip-flops and 
configuration memories for SRAM-based FPGAs. In that 
case, simulation techniques are in general not adequate 
because there are almost no simulation models available 
including the configuration memory of commercial devices. 

One approach proposed to perform fault injection 
campaigns is based on partial reconfiguration of a circuit 
prototype implemented on a SRAM-based FPGA [12-13]. 
The approach was primarily developed to inject transient 
errors in the user logic but had the potential to study the 
effect of errors in the configuration memory as well. The 
control of the reconfiguration was made by a host PC 
connected to the FPGA board. In [14], the authors proposed 
to control the partial reconfiguration by a program executed 
on an embedded processor. Such an "endo-reconfiguration" 
has the advantage to considerably reduce the number of data 
to be exchanged between the FPGA component and the host 
PC, thus accelerating the fault injection process. The 
approach is made possible by using the ICAP interface 
(Internal Configuration Access Port) provided by Xilinx for 
the Virtex FPGAs. Only SEUs (Single Event Upsets i.e., 
single bit-flips) were considered. Run-time reconfigurability 

is also used in [15] to inject faults in Look-Up Tables 
(LUTs) and in user flip-flops. An approach similar to [14] is 
presented in [16] but takes into account some multiple and 
cumulative bit errors. In addition, the environment can 
perform error propagation analyses, but restricted to specific 
fault detection or tolerance features. In [17], the FLIPPER 
platform is introduced to emulate SEU-like faults. Partial 
reconfiguration is again used but on a more complex 
platform composed of a main board and a daughter board 
with the FPGA under test. Complex dedicated hardware is 
therefore necessary. Similarly, dedicated hardware is 
required by FT-UNSHADES-C [18]. In addition, although 
this environment uses partial reconfiguration, it also requires 
implementing two copies of the system under test, one being 
used for a golden reference. The first consequence is of 
course to severely limit the complexity of the system that can 
be evaluated on a given device. The second consequence is 
that it is in general not possible to have the same placement 
and routing of the system during the evaluation and in the 
final product. Since the consequence of a given bit-flip 
strongly depends on the placement and routing of the design, 
such an approach is often too intrusive to give significant 
results. By comparison, using the ICAP interface only 
requires a small part of the device logic. With a guided 
placement and routing, it is often possible to avoid any 
change in the design implementation. 

A few other approaches have been reported. On-the-fly 
modification of the configuration bitstream of XC4000 
FPGAs, during reconfiguration, by some logic on the board 
was proposed in [19] but requires additional board-level 
modifications. The approach used in [20] focused on the 
logic used to reconfigure the FPGA component. 

In the sequel, we will give results on a platform 
developed using the ICAP interface, but the methodology 
may be adapted on other types of fault injection platforms. 

B. Virtual Fault-based Attacks on SRAM-based FPGAs 
In general, fault injection campaigns are performed on 

the basis of a given error model, most often the SEU model 
implying one bit flip at a time in a circuit. In some cases, 
multiple bit errors are considered, assuming a given 
multiplicity value and a random distribution. However, as 
previously explained, such models do not represent well 
some perturbation conditions and they are unable to 
accurately take into account the actual layout and sensitivity 
of the elements in a chip or the physical characteristics of the 
perturbation source. Such models may therefore lead to large 
errors on the robustness quantitative evaluations. 

Our goal is therefore to inject more realistic patterns, 
based on previous pre-characterization of the technological 
target. This pre-characterization can be done once for a given 
device and a given perturbation source (e.g., some particle 
flux, some electromagnetic fields or some type of laser with 
a given focus and a given energy). It can be done statically 
on the idle circuit, if possible using a device configuration 
that covers most of the possible configuration patterns for the 
CLBs and embedded memory blocks. It can also be done 
dynamically on the circuit running a given application. In the 
later case, results can be more precise with respect to this 

0

100

200

300

400

500

600

700

49 50 51 52 53 54 55 56 57 58 59 60
Clock cycle

A
ve

ra
ge

 n
um

be
r o

f m
od

ifi
ed

 b
its

Rising edge, 5V to 45V Rising edge, 45V to 80V Falling edge, 45V to 80V

4

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           13 / 114



application but can induce some bias if the analysis has 
finally to be done for a different application. 

The actual error patterns obtained during this device pre-
characterization are recorded and analyzed, e.g., with a tool 
like SEFEA-ProD [7], indicating all erroneous bits obtained 
in a bitstream after readback. Then the absolute values of the 
erroneous bits for each recorded error pattern are abstracted 
in order to obtain error coordinates that are relative to a CLB. 

The abstracted relative coordinates are stored in a 
database that is then used during the fault injection 
campaigns performed at design time using partial 
reconfiguration, without resorting again to the physical 
perturbation source. Each relative error pattern in the 
database can be relocated i.e., injected into any CLB (or 
memory block) used in the device for a given design and at 
any clock cycle during the application execution for dynamic 
robustness evaluations. Of course, this relocation is only 
possible thanks to the regularity and repeatability of a FPGA 
structure. Another advantage of this regularity, in the case of 
laser-based pre-characterizations, is that only a small 
representative part of the device has to be scanned; the 
effects induced in the whole CLB matrix can then be 
inferred. This can noticeably reduce the laser availability 
requirements for the device pre-characterization. The 
relocation process is illustrated in Figure 3. 

Figure 3.  Illustration of error pattern relocation. 

Figure 4.  Global robustness evaluation flow. 

Using the generated database, the same campaign can 
easily be run on several versions of a design in order to 
compare several implementations or several protection 
schemes. Furthermore, the consequence of any pattern 
obtained once in the device during the pre-characterization 

can be assessed at any position in the whole device and at 
any time. Let us notice that this would not be possible for 
example under a particle beam (for natural perturbations) due 
to the random distribution and the usually small number of 
events obtained during a given beam slot. A more 
comprehensive and realistic robustness analysis can thus be 
achieved at low cost with our methodology. The global flow 
is summarized in Figure 4. 

C. Virtual Fault-based Attacks on ASICs or some FPGAs 
For FPGAs with permanent or error-immune 

configurations, the same methodology can be applied but 
limited to errors in the user flip-flops. 

In the case of ASICs (or any masked circuits) the 
relocation principle presented in the previous section is in 
general not applicable. However, the same concept can be 
used for regular circuits (parallel architectures, multi-
cores …), limited to the repetitive structures. 

Another possible use concerns the evaluation of 
software-related robustness. In the case of a microprocessor 
(or DSP), for example, the pre-characterization allows 
recording possible error patterns within the processor core. It 
is then possible to use the proposed approach to evaluate off-
beam the effect on robustness of software modifications, 
provided a synthesizable model (or a very accurate 
simulation model) exists for the microprocessor. A processor 
prototype can be implemented on the FPGA and only error 
patterns in user flip-flops are injected. 

V. IMPLEMENTED FRAMEWORK AND RESULTS 
Our environment is implemented on a Virtex II-Pro 

component, using one of the embedded PowerPC processors 
to manage the fault injection campaign and the ICAP IP to 
perform the partial endo-reconfiguration. This environment 
is easily portable to other Virtex families. It allows the 
injection of any single- or multiple-bit error in the 
configuration and in the user flip-flops of the Configuration 
Logic Blocks (CLBs). The fault injection can be triggered at 
any time during the execution of an application onto the 
FPGA. The originality of the platform lies in the database we 
added to store the realistic error patterns, as presented in the 
previous section. 

The methodology has been applied in the case of the 
Leon2 microprocessor, implemented on a Virtex II Pro 
device, and running several program examples chosen to be 
representative of several application areas: Fir is a FIR filter, 
Mtmx is a matrix multiplication, Sieve is a computation of 
prime numbers with the Sieve of Eratosthenes and AES is a 
standard encryption/decryption function. The results 
illustrate the impact of realistic error patterns compared to 
the most used model in the literature i.e., single bit-flips in 
the user flip-flops. The relative error patterns were derived 
from previous experiments [9]. The database included 5435 
error patterns. Each pattern involved between 1 and 41 
erroneous configuration bits, with an average of 11.7 bits per 
pattern. A single pattern can involve bits in several LUTs 
(from 1 to 6 LUTs in the patterns used for the experiments, 
1.7 on an average). For each program, we have injected the 
relative error patterns in the CLBs used to implement the 

LUT FF

LUT FF

LUT FF

LUT FF

Recorded error pattern 
after a given perturbation

Relative reproduction of the error 
pattern in other CLBs after abstraction

Pre-charac-
terization

Design-time
evaluations

Final
qualification

Physical
perturbation

sources

Target device
(static test) Recorded

error
patterns

Classification,
robustness
indicators

Reconfiguration-based
fault injections (dynamic)

Selected
design

Abstraction
Abstract
(relative)

error patterns

SEFEA-ProD
analysis

5

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           14 / 114



Leon2 integer pipeline. We used statistical fault injection and 
the number of randomly selected injection time and location 
was chosen so that the margin of error on the classification 
results is 5% with 95% confidence. The number of injections 
performed for a given pipeline stage and a given program 
ranges from 8,000 to 160,000. The injected error patterns 
were classified, based on the system behavior after the 
injection, as "Silent" (no effect on the application results), 
"Error" (wrong result but the system is still alive and can 
perform other computations), "Failure" (wrong program 
termination, unexpected behavior, uncertain future behavior) 
or "Crash" (fully unrecoverable error and system behavior, 
until reset). The results are summarized in Table I for errors 
globally injected in the five pipeline stages. They clearly 
show that realistic error patterns lead to much more 
application failures. So an evaluation based on single bit-
flips noticeably under-estimates the failure probability and is 
not acceptable for security analyses. 

 
TABLE I.  EXPERIMENTAL RESULTS OF FAULT INJECTION CAMPAIGNS 

  Silent Error Failure Crash 

SEU FF 54.61% 11.63% 10.88% 22.89% 

Fi
r 

Error patterns 3.40% 0.98% 60.54% 35.08% 

SEU FF 52.59% 12.03% 14.55% 20.83% 

M
tm

x 

Error patterns 7.61% 0% 31.67% 60.72% 

SEU FF 47.77% 12.11% 23.46% 16.66% 

Si
ev

e 

Error patterns 4.90% 0% 40.08% 55.02% 

SEU FF 57.96% 8.52% 24.67% 8.85% 

A
E

S 

Error patterns 18.41% 0.52% 44.21% 36.85% 
 

VI. CONCLUSION 
Results shown in this paper demonstrate that classical 

fault injection campaigns based on single bit-flips noticeably 
overestimate the robustness of a design, at least for the type 
of perturbation considered here. The proposed methodology 
leads to more accurate robustness evaluations, with a 
minimum use of costly equipments since pre-
characterization is done only once for a given device and a 
given perturbation source. 

In this paper, we focused on malicious attacks because 
error patterns are in general more complex than those 
obtained under natural conditions. However, the same 
strategy can be used on the basis of a few events obtained for 
example under a particle beam, to take advantage of regular 
structures and increase the confidence in robustness. This 
approach will be used in further work to evaluate the 
efficiency of error mitigation techniques. 

REFERENCES 
[1] R. Leveugle, "Early analysis of fault-based attack effects in secure 

circuits", IEEE Transactions on Computers, vol. 56, no. 10, October 
2007, pp. 1431-1434 

[2] A. K. Lenstra, "Memo On RSA Signature Generation In The Presence 
Of Faults", private communication (available from the author), 
September 28, 1996. 

[3] R. Anderson and M. Kuhn., "Low Cost Attacks on Tamper Resistant 
Devices", 5th International Workshop on Security Protocols (IWSP), 
1997, LNCS 1361, Springer-Verlag, pp. 125-136 

[4] J. Blömer and J.-P. Seifert, "Fault based cryptanalysis of the AES", e-
Print Archive of the IACR, 2002, http://www.iacr.org/. 

[5] R. Leveugle et al., "Experimental evaluation of protections against 
laser-induced faults and consequences on fault modelling", Design, 
Automation and Test in Europe Conference (DATE), April 16-20, 
2007, pp. 1587-1592 

[6] V. Pouget, D. Wan, P. Jaulent, A. Douin, D. Lewis, and P. Fouillat, 
"Recent developments for SEE testing at the ATLAS laser facility", 
Proc. of 15th Single-Event Effects Symposium, 2006 

[7] V. Maingot, J. B. Ferron, R. Leveugle, V. Pouget, and A. Douin, 
"Configuration errors analysis in SRAM-based FPGAs: software tool 
and practical results", Microelectronics Reliability, Elsevier, vol. 47, 
no. 9-11, September-November 2007, pp. 1836-1840 

[8] V. Pouget et al., "Tools and methodology development for pulsed 
laser fault injection in SRAM-based FPGAs", 8th Latin-American 
Test Workshop (LATW), March 12-14, 2007, pp. 167-172 

[9] G. Canivet et al., "Detailed analyses of single laser shot effects in the 
configuration of a Virtex-II FPGA", 14th IEEE International On-Line 
Testing symposium, Rhodes, Greece, July 6-9, 2008, pp. 289-294 

[10] G. Canivet et al., "Characterization of effective laser spots during 
attacks in the configuration of a Virtex-II FPGA", 27th IEEE VLSI 
Test Symposium (VTS'09), May 3-7, 2009, pp. 327-332 

[11] G. Canivet, "Analyse et conception sécurisée de plates-formes 
reconfigurables", PhD thesis, Grenoble INP, Grenoble, France, 
September 2009 (in French). 

[12] L. Antoni, R. Leveugle, and B. Fehér, "Using run-time 
reconfiguration for fault injection in hardware prototypes", IEEE Int. 
Symposium on Defect and Fault Tolerance in VLSI Systems, 2000, 
pp. 405-413 

[13] L. Antoni, R. Leveugle, and B. Fehér, "Using run-time 
reconfiguration for fault injection applications", IEEE Transactions 
on Instrumentation and Measurement, vol. 52, no. 5, October 2003, 
pp. 1468-1473 

[14] L. Sterpone and M. Violante, "A new partial reconfiguration-based 
fault-injection system to evaluate SEU effects in SRAM-based 
FPGAs", IEEE Transactions on Nuclear Science, vol. 54, issue 4, part 
2, August 2007, pp. 965-970 

[15] P. Kenterlis et al., "A low-cost SEU fault emulation platform for 
SRAM-based FPGAs", 12th IEEE International On-Line Testing 
symposium, Como, Italy, July 10-12, 2006, pp. 235-241 

[16] C. Bolchini, F. Castro, and A. Miele, "A fault analysis and classifier 
framework for reliability-aware SRAM-based FPGA systems", 24th 
IEEE Int. Symposium on Defect and Fault Tolerance in VLSI 
Systems, Chicago, IL, USA, October 7-9, 2009, pp. 173-181 

[17] M. Alderighi et al., "Evaluation of single upset mitigation schemes 
for SRAM bassed FPGAs using the FLIPPER fault injection 
platform", 22nd IEEE Int. Symposium on Defect and Fault Tolerance 
in VLSI Systems, Rome, Italy, September 26-28, 2007, pp. 105-113 

[18] L. Sterpone, M. A. Aguirre, J. N. Tombs, and H. Guzmán-Miranda, 
"On the design of tunable fault tolerant circuits on SRAM-based 
FPGAs for safety critical applications", Conference on Design, 
automation and test in Europe (DATE), 2008, pp. 336-341 

[19] M. Alderighi et al., "A fault injection tool for SRAM-based FPGAs", 
9th IEEE International On-Line Testing symposium, Kos, Greece, 
July 7-9, 2003, pp. 129-133 

[20] M. Alderighi et al., "A tool for injecting  SEU-like faults into the 
configuration control mechanism of Xilinx Virtex FPGAs", 18th 
IEEE Int. Symposium on Defect and Fault Tolerance in VLSI 
Systems, November 3-5, 2003, pp. 71-78 

 

6

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           15 / 114



On Time, Conflict, Weighting and Dependency Aspects of
Assessing the Trustworthiness of Digital Records

Jianqiang Ma∗†, Habtamu Abie†, Torbjørn Skramstad∗ and Mads Nygård∗
∗ Department of Computer and Information Science

Norwegian University of Science and Technology, Trondheim, Norway
Email: {majian, torbjorn, mads}@idi.ntnu.no
† Norwegian Computing Center, Oslo, Norway
Email: {Jianqiang.Ma, Habtamu.Abie}@nr.no

Abstract—In the area of digital records management, the
reliability of a digital record’s operator varies over time, and
consequently affects the trustworthiness of the record. The
quality of the reliability of the operator is a measure of
the quality of the record’s evidential value that is, in turn,
a measure of the record’s trustworthiness. In assessing the
trustworthiness of a record using evidential value, it is essential
to combine evidence from various sources, which may be
conflicting and/or interdependent. In this paper we describe
our research on these problems, and develop a trustworthi-
ness assessment model which addresses these problems and
integrates a beta reputation system in combination with a
forgetting factor to assess the temporal aspects of the evidential
value of an operator, a weighting mechanism to detect and
avoid conflicts, and a weighted sum mechanism to combine
dependent evidence. Our results show that the integrated model
can improve the objective assessment of the trustworthiness of
digital records over time using evidential value as a measure
of trustworthiness.

Keywords-Trustworthiness Assessment, Trust, Digital Record
Management.

I. INTRODUCTION

In the area of digital records management, research on the
trustworthiness of digital records is an issue that has received
much attention mainly in two areas, Security [1], [2] and
Trustworthy Repositories [3], [4]. In our previous work [5],
we proposed a complementary method, which assesses the
trustworthiness of digital records based on their evidential
values using the Dempster-Shafer (D-S) theory of evidence
[6]. Four challenges to the assessment model have been
identified, i.e., time, conflict, weighting, and dependency
aspects. In this paper, we improve our previous model by
addressing all four aspects.

This paper describes the time aspect of the trustworthiness
assessment model using the reliability of a digital record’s
operator, since the reliability of an operator varies over
time, and, which in turn, affects the assessment result of
the trustworthiness of the digital record. Inspired by [7],
historical information about the behaviours of operators,
which can be obtained from the logs of digital repositories,
is used to evaluate their reliability. Correct or incorrect
behaviours of operators can be recognised as positive or

negative ratings of their reliability. In this way, the widely-
researched reputation system mechanism [8]–[10] can be
used here for the evaluation of operators’ reliability. In this
paper, we adopt the beta reputation system [8] to evaluate the
reliability of operators, and to create a function to map the
evaluated result to the mass function, which can later be used
in the D-S theory for the assessment of the trustworthiness
of digital records.

Many researchers have criticized the way conflicts are
handled in the D-S theory [11], [12]. When using the D-
S theory to combine evidential values of evidence around
digital records, we have paid attention to these criticisms.
We first investigate how to detect conflicts between evidence,
and then avoid those conflicts by assigning different weight-
ing, since different evidence may have different importance
to the assessment. In addition, we study the combination of
evidential values from interrelated evidence, since Demp-
ster’s rule of combination is based on independent evidence.
We use an alternative approach to combine evidential values
from dependent evidence.

As the time aspect deals with evidential values assigned to
records’ operators, and the other three aspects deal with the
combination of evidential values, these four aspects together
improve the assessment model by increasing the quality
of the evidential values assigned to the evidence, and by
improving the way they are combined.

We note that the investigation and evaluation of operators’
reliability over time is not fundamentally different from
research in the domain of reputation systems [8]. The appli-
cability to the area of trustworthiness assessment of digital
records and the integration with the D-S theory are two of the
main contributions of this paper. The third is the integration
of a conflict detection mechanism, a weighting mechanism,
and a dependent evidence combination mechanism in the D-
S theory for assessing the trustworthiness of digital records.

The rest of this paper is organised as follows. Section
II describes the related work. Section III briefly introduces
the Trustworthiness Assessment Model proposed in our
previous work. Section IV, V, VI, and VII give an account
of our research on the temporal, conflict, weighting and

7

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           16 / 114



dependency aspects of the trustworthiness assessment model,
respectively. Finally, the conclusion and future work are
presented in Section VIII.

II. RELATED WORK

Reputation systems allow users to rate on an agent that
they have had a transaction with, and use these ratings
to assess the reliability of the agent. It was first used
in online shopping websites, such as eBay, to assess the
trustworthiness of online sellers [13], and was later further
developed in the Peer-to-Peer (P2P) networks area to assess
the reliability of agents [9], [10]. An extensive survey and
overview of trust and reputation systems can be found in
[14]. Among these reputation systems, the beta reputation
system together with a forgetting factor proposed by Jøsang
[8] is capable of assessing one’s reliability at a particular
time, based on historical information. It has been adopted in
many areas [15]. In this paper, we adopt the beta reputation
system to evaluate the reliability of records’ operators in the
trustworthiness assessment model because of its “flexibility
and simplicity as well as its foundation on the theory of
statistics”. The beta reputation system was presented as a
stand-alone mechanism in [8]. By mapping the evaluation
results to the basic belief assignments (bbas), we integrate it
with the D-S theory for the assessment of the trustworthiness
of digital records.

The D-S theory of evidence has been applied in many
different areas to combine evidence from different sources
[16], [17]. One feature of the D-S theory that has received
criticisms is its way of handling conflicts [11], [12]. Many
alternatives to Dempster’s rule of combination have been
proposed. The most famous alternatives are conjunctive
[18], disjunctive [19] and Yager’s [20] combination rules.
In the area of belief conflict detection, Josselme et al. [21]
proposed a method for measuring the distance between two
bbas. Liu [22], however, argued that by only using this
distance one cannot distinguish whether two bbas are in
conflict or not. Consequently, after formally defining the
conflict between two bbas, the author proposed an approach
to analyse conflicts, which uses the mass of the combined
belief allocated to the empty set before normalisation and
the distance between betting commitments (see Section V).
Our method of detecting possible conflicts is similar to this
method. It differs from it in that our method resolves these
conflicts by assigning different weighting to the sources.

Regarding the dependency aspect of different sources,
Ferson et al. [23] have done a thorough analysis of de-
pendencies in the D-S theory and probabilistic modelling,
including copulas and Fréchet bounds. The weighted sum
operator was proposed by McClean and Scotney [16] for
the integration of distributed databases. They proved that
“the weighted sum operator is a mass function and it is
both commutative and associative”. It was later adopted by
Hong et al. [17] to combine bbas of dependent sensor data in

smart homes. They assigned equal weight to the dependent
sensors. However, this might not be true in most cases.
In this research, we integrate the weighted sum operator
into our assessment model to solve the dependency problem
by assigning different weighting to sources based on their
importance to the assessment.

III. THE TRUSTWORTHINESS ASSESSMENT MODEL

In this section, we briefly introduce the model for the
assessment of the trustworthiness of digital records in order
to improve the understanding of the aspects addressed in this
paper. For detail information about the model, readers are
referred to our previous paper [5].

In order to assess the trustworthiness of digital records,
we have identified, analysed and specified a list of evidence
that shall be stored in the metadata related to digital records
[24]. These metadata, named Evidence-Keeping Metadata
(EKM), are a subset of the Record-Keeping Metadata [25],
but limited only to the metadata, which contain evidence of
the trustworthiness or untrustworthiness of digital records.
A digital record associated with its EKM can be structured
as a tree based on a proposed record’s life-cycle model [24].

As shown in Fig. 1, the trustworthiness of a digital record
is built up of trustworthiness during different phases of the
record’s life cycle, which in turn can be categorised by the
trustworthiness of various components. Finally, the trustwor-
thiness of each component is assessed using evidence stored
in EKM. After receiving the linguistic evidential values of
EKM as well as their “trustworthiness hypotheses” (either
trustworthy or untrustworthy) from a panel of experts, the
assessment model maps them into bbas, and uses these bbas
in the D-S theory to assess the trustworthiness of a digital
record from the bottom to the top.

In [5], we have proposed this model and identified a
number of challenges that still need to be met, to wit the
temporal aspect, conflicts, dependencies, and weighted dif-
ferences among EKM. In the ensuing sections, we describe
these challenges, respectively. Note that the model uses bbas
assigned to the EKM as basic units for the assessment of
the trustworthiness of digital records. Hence, as long as the
solutions to these challenges can be mapped to bbas, it is
fairly easy to integrate the solutions into the trustworthiness
assessment model.

IV. TEMPORAL ASPECT

In this section, we describe the temporal aspect of the
trustworthiness assessment model briefly introduced above.
Inspired by [7], we studied the temporal aspect by looking
into the reliability changes of digital records’ operators over
time. Using long-term observations, the history of digital
records as well as the behaviours of records’ operators can
be logged. On the basis of that historical information, the
behavioural patterns of the operators can be learnt, which

8

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           17 / 114



Figure 1. Structure of the EKM for the assessment of the trustworthiness of a digital record [24]

provide us with the possibility to evaluate the reliability of
the operators’ operations on the records.

Good and bad behaviours of an operator P can be docu-
mented and used to learn his/her behavioural pattern. A good
behaviour means that the operation on a digital record does
not compromise the trustworthiness of the record. While
a bad behaviour means that the operation decreases the
trustworthiness of the record. Good or bad behaviours of P
can be discovered through verifications performed by one or
more other operators or by verification software. The way of
detecting good or bad behaviours in a digital library system
is outside the scope of this paper. Instead, this paper focuses
on how to learn P ’s behavioural patterns.

The reliability of P can be predicted using the numbers
of good and bad behaviours. It can further be interpreted
as the evidential value of P , because both reliability and
evidential value present the degree to which P can be used
as evidence to prove the trustworthiness of the record P
operated on. The reliability - evidential value - of P varies
along with the accumulation of the number of behaviours.
In this study, the beta reputation system [8] is adopted to
assess the reliability - evidential value - of P .

In our case, we map a good behaviour of P to a good
feedback on P , and a bad behaviour to a bad feedback.
Thus, the evidential value of P can be calculated as:

EV (P ) =
g + 1

g + b+ 2
(1)

with the restriction that g, b ≥ 0, where g is the number
of good behaviours that have been exhibited by P , and b is
the number of bad behaviours that have been exhibited by
P .

In order to integrate the evaluated evidential value of P
into the trustworthiness assessment model and combine it
with evidential values of other EKM, EV (P ) needs to be
mapped to the bbas defined in the D-S theory. In addition, a
“trustworthiness hypothesis” HP ∈ {true, false} should be
specified, where HP = true or HP = false mean that P
(presented as “Name” of operator in Fig. 1, e.g., “Name of

Creator”), as evidence, can be used to prove that P ’s higher
level node is either trustworthy or untrustworthy.

When P exhibits more good behaviours than bad be-
haviours (g > b), it shows that P tends to be reliable,
and should be used to prove that its higher level node is
trustworthy to a certain degree, thus, HP = true, and
vice versa. In the case when g = b, HP = φ, which
means that it cannot prove its higher level node is either
trustworthy or untrustworthy. When HP = false, instead
of using g+1

g+b+2 , the evidential value of P is assigned as
EV ′(P ) = 1 − g+1

g+b+2 = b+1
g+b+2 , since in this case, it

is used to present the degree of its higher level node’s
untrustworthiness.

It is obvious that both EV (P ) and EV ′(P ) are in the
interval [0.5, 1]. Since bba is in the interval [0, 1], it is
necessary to scale EV (P ) and EV ′(P ) into that interval.
Hence, the mapping rules are defined as follows:

if g > b, then HP = true and


mP (T ) = 2g+2

g+b+2

mP (T ) = 0

mP (U) = g−b
g+b+2

(2)

if g < b, then HP = false and


mP (T ) = 0

mP (T ) = 2b+2
g+b+2

mP (U) = b−g
g+b+2

(3)

if g = b, then HP = φ and


mP (T ) = 0

mP (T ) = 0

mP (U) = 1

(4)

where g, b ≥ 0 are the numbers of good or bad behaviours
of P , as defined in Equation (1).

As presented in Equation (1), the evidential value of P
changes with the accumulation of good or bad behaviours.
However, from the long-term perspective, the old behaviours
may be less relevant in the revelation of P ’s evidential value,

9

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           18 / 114



because the behavioural pattern of P might have changed.
Therefore, we introduce the forgetting factor δ proposed in
[8] into the calculation in order to reduce the impact of
the old behaviours on modelling of P ’s current behavioural
pattern. That is, exhibiting G good behaviours at an older
time t1 equals exhibiting Gδt2−t1 good behaviours at a
more recent time t2, where t2 > t1 and 0 ≤ δ ≤ 1.
When δ = 0, it forgets every old behaviours, and uses the
most recent behaviour to calculate the evidential value of P .
In other words, the old behaviours have no impact on the
calculation at all. When δ = 1, it never forgets, and the old
behaviours have the same impact as the recent behaviours
on the calculation of the evidential value of P .

In the calculation of the trustworthiness of a digital record,
users of the calculation system can assign a number between
0 and 1 as the forgetting factor, to designate how much
the old behaviours should impact the calculation. Since the
operator identity and the time of each operation on the digital
record are already documented as EKM, together with the
forgetting factor assigned by the user, they can be used
to calculate the evidential value of an operator for every
operation. Hence, even if the same operator operated on the
same digital records, his/her evidential value can be different
due to the different operation times. For example, operator
P created a digital record at time t1, and later (say after
months), migrated the record to another repository at time
t2, the evidential value of P for those two operations could
be different, because the reliability of P may be different at
time t1 and time t2. In this way, the assessed trustworthiness
of the digital record will be more accurate than using the
same evidential value of P for different operation times.

After adopting the beta reputation system as well as the
forgetting factor, the assessment method for the trustworthi-
ness of digital records that reflects the temporal aspect is as
follows.

mrecord(T ) = mcreation(T )⊕mmodification(T )⊕
mmigration(T )⊕mretrieval(T )⊕mdisposal(T )

= mOriginator(T )⊕mCreator(T )⊕mCreationAction(T )

⊕ . . .⊕mDisposalExecutor(T )⊕mDisposalAction(T )

= mEKM1(T )⊕ . . .⊕mEKMm(T )

mrecord(T ) = mEKM1
(T )⊕ . . .⊕mEKMm

(T )

mrecord(U) = mEKM1
(U)⊕ . . .⊕mEKMm

(U)

(5)

where {EKM1 . . . EKMm} stands for all the EKM
related to the digital record - nodes in Level 1 in Fig.
1. Particularly, for EKMi ∈ {EKM1 . . . EKMm}, which
stands for the reliability of the operator P at a certain time,
its bbas are calculated based on Equation (2), (3), and (4).

V. CONFLICT ASPECT

In our research, the D-S theory is used to combine
the evidential values from different EKM. However, the
way of handling conflicts in the D-S theory has received
some criticisms [11], [12]. It is defined in [22] that “a
conflict between two beliefs in D-S theory can be interpreted
qualitatively as one source strongly supports one hypothesis
and the other strongly supports another hypothesis, and the
two hypotheses are not compatible.” Here we present an
example of a conflict that may happen in the trustworthiness
assessment model. Suppose there are two experts E1 and E2

who assign evidential value for a piece of EKM, say EKM1.
E1 suggests that EKM1 is a strong evidence, which sup-
ports that its higher level node is trustworthy, hence, bba
of EKM1 assigned by E1 is m1(T ) = 0.8,m1(T ) =
0, and m1(U) = 0.2. Actually, experts assign linguistic
evidential values to EKM that will later be mapped to
numerical evidential values and further bbas of EKM by the
trustworthiness assessment model. For simplicity, we only
present the mapped bbas here. T and T are propositions
that EKM1’s higher level node is either trustworthy or
untrustworthy. U is the universal set. E2 also suggests that
EKM1 is a strong evidence, however, it supports that its
higher level node is untrustworthy, and the bba assigned
by E2 is m2(T ) = 0,m2(T ) = 0.8, and m2(U) = 0.2.
Using Dempster’s rule to combine the assignments from two
experts, the result is m12(T ) = 0.44,m12(T ) = 0.44, and
m12(U) = 0.12, which is very near to the average of the two
bbas. This is not a good way of handling conflicts, because
it hides the conflicting opinions between experts, which may
further lead to an imprecise assessment of the final results.
Thus, it is necessary to prevent conflicts occuring, and to
detect them if they do.

A. Conflict Detection

In this section, we demonstrate the method for detecting
conflicts from different sources. This method is proposed in
[22], which uses two indicators to detect conflicts between
two bbas, i.e., the combined belief allocated to the empty
set before normalisation (m⊕(φ)) and the distance between
their betting commitments.

As defined in [26], the pignistic probability function
BetPm associated to bba m on the universe is:

BetPm(ω) =
∑

A⊆U,ω∈A

1

|A|
m(A)

1−m(φ)
(6)

where |A| is the cardinality of subset A on U . The
transformation from bba m to BetPm is called the pig-
nistic transformation. It can be further extended to 2U that
BetPm(A) =

∑
ω∈ABetPm(ω). BetPm(A), referred to as

the betting commitment to A in [22], presents the total mass
value that A can carry.

10

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           19 / 114



Thus, the distance between two betting commitments to
A from two sources is considered as the maximum of the
differences between their betting commitments to all the
subsets, defined as

∆BetPm2
m1

= maxA⊆U (|BetPm1
(A)−Betm2

(A)|) (7)

While the combined belief allocated to the empty set
before normalisation (m⊕(φ)) in the D-S theory is defined
as

m⊕(φ) =
∑

B,C⊆U,B∩C=φ

m1(B)m2(C) (8)

It is discussed in [22] that the sole use of either m⊕(φ) or
∆BetPm2

m1
cannot detect the conflicts between two beliefs,

they should be used together in order to detect conflicts.
Thus, based on the definition presented above, two beliefs
m1 and m2 are defined as in conflict if and only if both
∆BetP > ε and m⊕(φ) > ε, where ε is the factor that
indicates the tolerance of conflict. The higher ε is, the more
tolerance of conflict the system is.

Let us see the two beliefs in the example above where

m1(T ) = 0.8, m1(T ) = 0, m1(U) = 0.2,

m2(T ) = 0, m2(T ) = 0.8, m2(U) = 0.2.

Using Equation (6), (7), and (8), the ∆BetPm2
m1

and
m⊕(φ) of m1 and m2 are calculated as

BetPm1(T ) = 0.9, BetPm1(T ) = 0.1, BetPm1(U) = 1,

BetPm2
(T ) = 0.1, BetPm2

(T ) = 0.9, BetPm2
(U) = 1,

∆BetPm2
m1

= 0.8, m⊕(φ) = 0.64.

Thus, if assigning ε = 0.6, the opinions from those two
experts will be recognised as in conflict, while if assigning
ε = 0.7, they will not be seen as in conflict, even though
∆BetPm2

m1
> ε.

When conflicts occur, it does not necessarily mean that
the use of D-S theory to assess the trustworthiness of digital
records is wrong, but simply that, due to the conflicts in
beliefs from difference sources, the results may be imprecise.
Thus, together with the assessment results, the assessment
model will also inform users that conflicts between different
elements have occurred during the assessment. Users can
consider this information together with the assessment result
to determine whether a digital record is trustworthy or not.

B. Conflict Avoidance

By analysing the sources of conflicts in the assessment
model, it can be found that conflicts may exist among
experts’ opinions, EKM, components, and life-cycle phases
of a digital record. For a certain piece of EKM, due to
the differences in observations or experience, experts can
have different opinions on its use as evidence, therefore,
different evidential values and trustworthiness hypotheses

may be assigned to it, which may further induce conflicts
among bbas assigned to this piece of EKM. It is also similar
for other elements in the assessment model, such as EKM,
components, and life-cycle phases.

Notice that until now, all the elements in the assessment
model have been recognised as equally important. However,
it is more realistic to assign different weighting to different
elements. For instance, some of the experts may have more
knowledge or experience than others, hence, their opinions
deserve to be considered as more important than others’. In
addition, by assigning different weighting, many conflicts
can be avoided, because beliefs from less weighted sources
will be discounted.

In the following section, we discuss the weighting differ-
ence as well as how to discount bbas in the D-S theory.

VI. WEIGHTING ASPECT

Weighting difference can be used to differentiate the im-
portance among different elements in the assessment model.
Also, as presented in the section above, it is a way to avoid
conflicts from different sources.

The discounting method in the D-S theory [6] is intro-
duced to assign weighting to elements, as shown in Equation
(9).

mdiscounting
1 (A) =

{
αm1(A) if A 6= U

αm1(U) + (1− α) if A = U
(9)

where α (0 ≤ α ≤ 1) is the weighting assigned to m1(A).
Recall the example introduced in Section V, suppose ex-

pert E1 has more knowledge and experience than expert E2,
and they are assigned with different weighting as α1 = 0.9
and α2 = 0.4, respectively. Using the discounting method
in Equation (9), new bbas of the two experts are

m′1(T ) = 0.72, m′1(T ) = 0, m′1(U) = 0.28,

m′2(T ) = 0, m′2(T ) = 0.32, m′2(U) = 0.68.

Then apply Equation (6), (7), and (8), ∆BetPm2
m1

, and
m⊕(φ) of the two bbas can be calculated as

BetP ′m1
(T ) = 0.86, BetP ′m1

(T ) = 0.14, BetP ′m1
(U) = 1,

BetP ′m2
(T ) = 0.34, BetP ′m2

(T ) = 0.66, BetP ′m2
(U) = 1,

∆BetP ′m2
m1

= 0.52, m′⊕(φ) = 0.23.

In this case, if the conflict tolerance is still set to ε =
0.6 as in Section V-A, bbas from those two experts will no
longer be recognised as in conflict, hence conflict avoided.

Another issue arising together with the use of weighting
difference is how the weighting of each element can be
assigned. In the absence of a completely objective weighting
assignment method, Wang and Wulf [27] use the Ana-
lytic Hierarchy Process (AHP) to identify the importance
of different elements. This approach can also be used in
the trustworthiness assessment model to assign different

11

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           20 / 114



weighting to different elements. However, due to limitations
of space, we will not discuss it any further here. For details
of this approach, readers can refer to [27].

After assigning different weighting to different elements,
the calculation of the trustworthiness of a digital record
(similar to Equation (5)) is

mrecord(T ) = mdiscounting
creation (T )⊕mdiscounting

modification(T )⊕
mdiscounting
migration (T )⊕mdiscounting

retrieval (T )⊕mdiscounting
disposal (T )

= mdiscounting
Originator (T )⊕mdiscounting

Creator (T )⊕mdiscounting
CreationAction(T )

⊕ . . .⊕mdiscounting
DisposalExecutor(T )⊕mdiscounting

DisposalAction(T )

= mdiscounting
EKM1

(T )⊕ . . .⊕mdiscounting
EKMm

(T )

mrecord(T ) = mdiscounting
EKM1

(T )⊕ . . .⊕mdiscounting
EKMm

(T )

mrecord(U) = mdiscounting
EKM1

(U)⊕ . . .⊕mdiscounting
EKMm

(U)

VII. DEPENDENCY ASPECT

In the trustworthiness assessment model, dependencies
may exist in some pieces of the EKM. For instance, “Name
of the Creator” and “Affiliation of the Creator” of a digital
record are interrelated. Since Dempster’s rule of combination
is based on independent evidence, it is not suitable for the
combination of evidence from interrelated EKM. Thus, an
alternative approach should be found to combine dependent
EKM in the trustworthiness assessment model.

In this work, we adopt the weighted sum operator [16]
as the alternative approach for combining dependent EKM
for its applicability. Because the output of the weighted sum
operator is still a basic belief assignment, it can be easily
integrated into the trustworthiness assessment model.

The weighted sum operator (⊕̂) is defined in Equation
(10)

m1⊕̂m2(A) =
w1

w1 + w2
m1(A) +

w2

w1 + w2
m2(A),

where w1, w2 ≥ 0. (10)

In [17], when using the weighted sum operator, all depen-
dent elements are equally weighted. While in our research,
different weighting is assigned in the combination of depen-
dent EKM. Note that the weighting here is different from
the weighting in Section VI. The weighting in Section VI
presents the importance of one element in the assessment of
the trustworthiness of a digital record, whereas the weighting
here denotes the different importance of dependent elements
in the determination of their combined result, for example,
in the assessment of the trustworthiness of a creator. In
the case where the creator creates the record on behalf of
his/her organisation, the affiliation should be recognised as
more important. Thus, in the adoption of the weighted sum
operator, the affiliation is heavily weighted, say wname =
2, waff. = 10, for instance. In another case, the creator

only creates a record for personal use, where the affiliation
is recognised as less important, and thus, is less weighted,
say wname = 10, waffiliation = 4.

To differentiate weighting for the weighted sum operator,
the AHP method as mentioned in Section VI can also be
used. In addition, users of the trustworthiness assessment
model may want to assign weighting to EKM based on their
different use.

After integrating the weighted sum operator into the
trustworthiness assessment model, the calculation of the
trustworthiness of a digital record (similar to Equation (5))
is

mrecord(T ) = mdiscounting
EKM1

(T )⊕ . . .⊕ (mEKMi⊕̂
mEKMj

(T ))discounting ⊕ . . .⊕mdiscounting
EKMm

(T )

mrecord(T ) = mdiscounting
EKM1

(T )⊕ . . .⊕ (mEKMi
⊕̂

mEKMj
(T ))discounting ⊕ . . .⊕mdiscounting

EKMm
(T )

mrecord(U) = mdiscounting
EKM1

(U)⊕ . . .⊕ (mEKMi
⊕̂

mEKMj (U))discounting ⊕ . . .⊕mdiscounting
EKMm

(U)

where EKMi and EKMj are interrelated EKM, com-
bined using the weighted sum operator.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have described the time, conflict,
weighting and dependency aspects in the assessment of
the trustworthiness of digital records. We used the beta
reputation system together with a forgetting factor to eval-
uate the reliability of records’ operators over time, which
is used as the evidential value of the operators and is
the value assigned to a basic belief assignments (bba),
which is integrated into the assessment model. Proceeding
on the basis of assigned conflict toleration, we detected
conflicts between the evidence gained from different sources
by examining two factors, the mass of the combined be-
liefs allocated to the empty set before normalisation, and
the distance between betting commitments. Discounting is
used to assign weighting differences and avoid conflicts
in Evidence-Keeping Metadata (EKM). Finally, we used
the weighted sum operator to combine dependent evidence.
Because solutions to these four problems are all based on
changes in the bbas, they are easily integrated into our model
for the assessment of the trustworthiness of digital records.

Our results show that by adopting and carefully revis-
ing the reputation systems and the Dempster-Shafer (D-S)
theory, they can be integrated in our model and improve the
objective assessment of the trustworthiness of digital records
over time.

In future work, we shall look into the verification and
validation of the trustworthiness assessment results.

12

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           21 / 114



REFERENCES

[1] H. M. Gladney, “Trustworthy 100-year digital objects: Ev-
idence after every witness is dead,” ACM Transaction on
Information System (TOIS), vol. 22, no. 3, pp. 406–436, 2004.

[2] H. M. Gladney and R. A. Lorie, “Trustworthy 100-year digital
objects: durable encoding for when it’s too late to ask,” ACM
Transaction on Information System (TOIS), vol. 23, no. 3, pp.
299–324, 2005.

[3] Center for Research Libraries, “Trustworthy repositories
audit & certification: Criteria and checklist,” Jul. 2008,
[accessed 01-Apr-2009]. [Online]. Available: http://www.crl.
edu/PDF/trac.pdf

[4] Consultative Committee for Space Data Systems, “Reference
model for an open archival information system (OAIS),”
National Aeronautics and Space Administration, Jan. 2002.

[5] J. Ma, H. Abie, T. Skramstad, and M. Nygård, “Assessment of
the trustworthiness of digital records,” in Fifth IFIP WG 11.11
International Conference on Trust Management, ser. IFIP
Advances in Information and Communication Technology
(AICT). Springer, Jun. 2011, pp. 300–311.

[6] G. Shafer, A Mathematical Theory of Evidence. Princeton
University Press, 1976.

[7] B. Alhaqbani and C. Fidge, “A time-variant medical data
trustworthiness assessment model,” in Proceedings of the 11th
international conference on e-Health networking, applica-
tions and services, 2009, pp. 130–137.

[8] A. Jøsang and R. Ismail, “The beta reputation system,” in
Proceedings of the 15th Bled Electronic Commerce Confer-
ence, vol. 160, 2002, pp. 17–19.

[9] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The
eigentrust algorithm for reputation management in p2p net-
works,” in Proceedings of the 12th International World Wide
Web Conference. ACM Press, 2003, pp. 640–651.

[10] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based
trust for peer-to-peer electronic communities,” IEEE Transac-
tion on Knowledge and Data Engineering, IEEE Transactions
on, vol. 16, no. 7, pp. 843–857, 2004.

[11] P. Smets, “Analyzing the combination of conflicting belief
functions,” Information Fusion, vol. 8, no. 4, pp. 387–412,
2007.

[12] L. A. Zadeh, “A simple view of the dempster-shafer theory
of evidence and its implication for the rule of combination,”
AI Magazine, vol. 7, no. 2, pp. 85–90, 1986.

[13] P. Resnick and R. Zeckhauser, “Trust among strangers in
internet transactions: Empirical analysis of ebay’s reputation
system,” Advances in Applied Microeconomics: A Research
Annual, vol. 11, pp. 127–157, 2002.

[14] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and
reputation systems for online service provision.” Decision
Support Systems, vol. 43, no. 2, pp. 618–644, 2007.

[15] Y. L. Sun, Z. Han, W. Yu, and K. Liu, “Attacks on trust
evaluation in distributed networks,” in Information Sciences
and Systems, 2006 40th Annual Conference on. IEEE, 2006,
pp. 1461–1466.

[16] S. McClean and B. Scotney, “Using evidence theory for the
integration of distributed databases,” International Journal of
Intelligent Systems, vol. 12, no. 10, pp. 763–776, Oct. 1997.

[17] X. Hong, C. D. Nugent, M. D. Mulvenna, S. I. McClean,
B. W. Scotney, and S. Devlin, “Evidential fusion of sensor
data for activity recognition in smart homes,” Pervasive and
Mobile Computing, vol. 5, no. 3, pp. 236–252, 2009.

[18] P. Smets, “The combination of evidence in the transferable
belief model,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, vol. 12, pp. 447–458, May 1990.

[19] D. Didler Dubois and H. Prade, “Representation and com-
bination of uncertainty with belief functions and possibility
measures,” Computational Intelligence, vol. 4, no. 3, pp. 244–
264, 1988.

[20] R. R. Yager, “On the dempster-shafer framework and new
combination rules,” Information Sciences, vol. 41, no. 2, pp.
93–137, 1987.

[21] A.-L. Jousselme, D. Grenier, and É. loi Bossé, “A new dis-
tance between two bodies of evidence,” Information Fusion,
vol. 2, no. 2, pp. 91–101, 2001.

[22] W. Liu, “Analyzing the degree of conflict among belief
functions,” Artificial Intelligence, vol. 170, no. 11, pp. 909–
924, 2006.

[23] S. Ferson, R. Nelsen, J. Hajagos, D. Berleant, J. Zhang,
W. Tucker, L. Ginzburg, and W. Oberkampf, “Dependence
in probabilistic modeling, dempster-shafer theory, and prob-
ability bounds analysis,” Albuquerque, New Mexico: Sandia
National Laboratories, pp. 1–141, 2004.

[24] J. Ma, H. Abie, T. Skramstad, and M. Nygård, “Development
and validation of requirements for evidential value for assess-
ing trustworthiness of digital records over time,” Journal of
Information, (to appear).

[25] National Archives of Australia, “Australian gov-
ernment recordkeeping metadata standard,” Tech.
Rep., Jul. 2008, [accessed 01-Apr-2009]. [Online].
Available: http://www.naa.gov.au/Images/AGRkMS Final%
20Edit 16%2007%2008 Revised tcm2-12630.pdf

[26] P. Smets, “Decision making in the tbm: the necessity of the
pignistic transformation,” International Journal of Approxi-
mate Reasoning, vol. 38, no. 2, pp. 133–147, 2005.

[27] C. Wang and W. A. Wulf, “Towards a framework for security
measurement,” in 20th NIST-NCSC National Information
Systems Security Conference, 1997, pp. 522–533.

13

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           22 / 114



 

Abstract—A case study on the application of Communicating 

Sequential Processes (CSP) to the specification and verification 

of fault tolerant systems is presented. The Triple-Modular 

Redundancy (TMR) mechanism is a classical design technique for 

tolerating hardware errors. By specifying the behavior of the 

faultless module as a CSP process, the behavior of TMR system 

suffering from hardware errors can be verified as a refinement of 

the one of the faultless module.  

 

Index Terms—TMR System; fault tolerance; verification; CSP  

I. INTRODUCTION 

Fault tolerance is generally accomplished by using 

redundancy in hardware, software or combination. There are 

three basic types of redundancy in hardware and software:  

spatial redundancy, time redundancy, and hybrid. TMR scheme 

has been one of the most popular fault tolerant mechanisms 

using spatial redundancy [1].  In TMR systems, computions are 

replicated into three modules running in parallel and their 

outputs are voted using a voter circuit. A single fault in any of 

the redundant modules will not produce an error at the output as 

the voter will select the correct result from the two working 

modules and recover the fault. There are numerous examples of 

dependable systems using the TMR technique [2].  

    Though the principle of TMR fault tolerant system is 

straightforward, evaluating system's behavior in the presence of 

faults constitutes another significant problem, especially for the 

complicated systems[8][9][10]. In other words, it was not 

possible to determine whether the behavior described in these 

requirements would provide the desired level of fault tolerance. 

Fault injection techniques  have emerged as an important method 

for evaluating fault tolerant systems. However, they cannot 

cover all fault scenarios. Therefore, they cannot guarantee that 

all fault consequence has been investigated. This motivates us 

to explore a formal verification approach that targets a complete 

validation. 

In [3], temporal logic of actions (TLA) [4] is used to specify 

and validate TMR fault tolerant system. The programs running 

on three processors are represented as transition systems. 

Physical faults in the system are modelled as a set of “fault 

actions” which perform state transformations in the same way as 

the other program actions. Assuming that errors will not occur 

on two modules synchronously, the fault tolerance property of 

TMR system can be verified as the refinement of a 

non-fault-tolerant program. 

In this paper, we propose an approach for the formal 

verification of TMR fault tolerant systems using CSP [5], which 

is a member of a class of formal methods known as process 

algebras. By specifying the property of a faultless module with a 

CSP process, we prove that TMR fault tolerance system can still 

satisfy the property in spite of hardware errors. The verification 

process can be absolutely automatic based on model checking 

support tool FDR2 [6] of CSP. 

The rest of this article is organised as follows. The next 

section briefly introduces the language of CSP used in this paper; 

Section III considers the specification for a faultless module; 

Section IV describes the TMR fault tolerance system suffering 

from hardware errors; Section V verifies the effectiveness of 

TMR mechanisms and  discusses the use of model checking tool 

FDR as an automated means of verifying the fault-tolerant 

design; Section VI concludes with some remarks on the use of 

CSP in formal verification of fault tolerant systems. 

II. THE LANGUAGE OF CSP 

CSP is a language where processes proceed from one state to 

another by engaging in (instantaneous) events [5]. A process is 

a component that encapsulates some data structures and 

algorithms for manipulating that data. It interacts with 

enviroment through synchronised message passing along 

channels, or events. The set of all events in the interface of a 

process P, written α.P, is called its alphabet.  However, the 

interface events are not as autonomous actions under the 

control of a single process but intended as synchronization 

between the participating processes. 

The language of CSP used in this paper is described in Figure 

1, which is defined by the following pseudo Backus-Naur form 

definitions. In Figure 1, c denotes an event, A is a set of events 

and b is a Boolean expression. The Skip is the process that does 

nothing but terminates successfully.  The prefix process c -> P is 

ready to perform event c and waits until the environment 

prepares well event c. Once the event c is performed, the 

subsequent behaviour of c -> P will be that of process P. In the 

Specification and Verification of the 

Triple-Modular Redundancy Fault Tolerant 

System using CSP 
Lanfang Tan, Qingping Tan, Jianli Li 

School of Computer 

National University of Defense Technology 

Changsha, China 

tlf1022@126.com, eric.tan.6508@gmail.com, ljl_003@163.com 

14

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           23 / 114



 

sequential composition P; Q, the combined process firstly 

behaves as P and then Q becomes active immediately after the 

termination of P. The internal choice P ┌┐Q waits to perform 

events that either P or Q is ready to engage in. Once an event of 

a component is performed, the subsequent behaviour is given 

by this component. Selecting either P or Q depends on its 

internal environment.  

The parallel combination P |A| Q only synchronises on events 

in A, and interleaves on all other events.  The hiding operator P 

\ A makes a given set of events in A internal, thus beyond the 

control of its environment. The prefix choice a: A-> Pa is ready to 

perform any event from set A until one is chosen. Pa is its 

subsequent behaviour, which is dependent on the chosen event 

a.  A process can be defined to allow the input on channel in of 

any item x in a set M, and the value x determines the subsequent 

behavior [5]: 

in?x:M →Q(x)≅a:in.M →Pa  

where the set  in.M={in.m| m∈ M} and Pin.m=Q(m) for every 

m ∈ M. The atomic synchronization events here are of the form 

in.m. The output prefix has the form out!x →P and this is simply 

a shorthand for out!x → P. 

The indefinite loop process P* repeats the actions of P after 

the successful termination of P. The condition operator if b then 

P else Q fi selects either P or Q according to the Boolean 

expression b.  

P :=  c -> P |  P ; P |   P ┌┐P    |

               

          P |A| P  | P \ A | a: A -> Pa |

           

          P*   |   if b then P else P  

        
 

Figure 1.  The CSP operators 

III. SPECIFICATION OF A FAULTLESS MODULE 

In this section, we want to model the faultless module as a CSP 

process that represents the general computing model. As Figure 

2 illustrates, a faultless module can be abstracted as a 

computation process, which consists of a processor and a 

memory. Assume that the program to be performed in the module 

is deterministic and sequential, consisting of data segment and 

text segment. During program executing, the processor either 

executes an instruction in text segment to change the content of 

data segment, or issues write operation to the memory.  

Therefore, the processor can be abstracted as a function d= 

funp(l), where d denotes the content of data segment and l 

denotes the next instruction to be executed. For each input 

program, the mapping function funp is determined. The write 

operations can be performed just as certain instructions are 

executed, such as store instructions. So we specify the 

behaviour that the processor needs write data d to the memory 

by an assertion NeedWrite(d), whose value is true if and only if 

the store instruction is performed. When the processor issues 

write operations defined as Output (d), the memory updates data 

segment, which is represented by a function Update(d). 

 

Processor

Faultless 

Module

In.Program
NeedWrite Memory Legends:

External channel

Internal  channel

Figure 2.  The faultless module 

As is mentioned above, we can illustrate the behaviour of the 

faultless module in the CSP language in Table I. 

 

TABLE I    SPECIFICATION FOR T HE FAULTLESS MODULE 

1 Faultless Module: = Processor | { Output(d) } | Memory \ 

{ Output(d)  } 

2 Processor: =in? Program  → 

( if (Exited(l)) then Skip else 

(if (NeedWrite(d)) then out! Output (d) else funp (l) fi.)fi. )* 

 →Processor 

3 Memory: = (in? Output(d) → Update (d)) → Memory 

The faultless module is encoded as a parallel combination 

construction, with two processes synchronizing on the event 

Output (d). The CSP process is defined by the expression on the 

right-hand-side of the definition “:=” symbol. Processor 

specifies the module initially inputs a program through channel 

in and then executes in terms of the input program. During 

executing, the Processor either exits the program and prepares 

for the next input program, or continues executing depending on 

the Boolean expression Exited(l). When Processor output d 

through channel in, Memory updates  the values of the data 

segment and then returns to its initial s tate preparing for the next 

write operation. 

IV. SPECIFICATION OF THE TMR SYSTEM 

The TMR system allows parallel execution of the three 

modules on three processors thereby providing tolerance of 

certain permanent and transient hardware faults. Suppose that 

the hardware faults only occur on processors and memories are 

protected by error correcting codes (ECC) mechanism [7]. 

The principle of the TMR system is shown in Figure 3. It works 

as follows. Once a program is input, the three processors start 

executing. When a processor needs writing data in memory, it 

issues a signal “Needwrite” to the Voter. When all signals to 

write memory arrive, the voter chooses the correct data to be 

written into memory and then sends the answer message to the 

three processors. 

We may specify the behavior of the Voter by the following 

CSP process in Table II. It is a sequential composition, where the 

process first waits the signals to write data and then choose the 

correct data. The notations of answer message are defined as 

follows: 

1) Ack !”0”: denotes the data to be written into memory if three 

processors are equal.  

2) Ack !”i”( i=1, 2,3): denotes the data to be written of 

processori  is not equal to the data of the other two 

15

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           24 / 114



 

processors. 

3) Ack !”4”:  denotes the data to be written of three processors 

are not equal to each other. Of course, this case is not 

possible unless the Voter works abnormally.  

 

Processer1

Processer2

Processer3

Voter

Needwrite1

Writedata

Ack

In.program

fault1

fault2

fault3

Memory1

Memory2Needwritt2

Needwrite3

Memory3

 Figure 3.  The TMR system 

   TABLE II    SPECIFICATION FOR T HE VOTER OF THE TMR SYSTEM 

  

1 
Voter: = (in? Needwrite1 → SKIP ||in? Needwrite2 → Skip  || 

in?Needwrite3 → SKIP); 

2 If (d1==d2 and d2==d3) then (Writedata!(d1) || Ack ! 0 )    

3 else if (d1==d2 and d2!=d3) then (Writedata!(d2) || Ack ! 3 ) 

4 else if (d1==d3 and d2!=d3) then (Writedata!(d1) || Ack ! 2 ) 

5 else if d3==d2 and d1!=d3) then (Writedata!(d3) || Ack ! 1 ) 

6 else (Ack !4) 

7  → Voter 

Similarly, the behavior of the Modules can be expressed as 

Processori and Memoryi in CSP language, which is  shown in 

Table III. The Process i is designed as a sequential composition, 

which begins with an internal choice waiting to perform events. 

If a fault occurs, the data values will be corrupt, which is 

expressed by a function Wrong (d). We can speculate that once 

a fault occurs, it will be responded by the answer message and 

then the data will be recovered, which is described as Recover(d). 

Memoryi process is similar to the Memory process of the 

faultless module. 

 

   TABLE III    SPECIFICATION FOR T HE PROCESSOR OF THE TMR SYSTEM 

1 Processori := (in?fault i  → (Wrongi (d) → SKIP)  

┌┐( in? Program → 
if (Exited(l)) then Skip else 

2 ( if (NeedWritei)  then out! Output i(d)    

3 else funp(l) fi. )
*→ SKIP)┌┐ 

4 (Ack?x →(if in?Ack.x= i then Recoveri(d) 

5 else SKIP)) 

6 →Processori  (i=1,2,3) 

7

  
Memoryi: = (In? Output(d)  → Update (d)) → Memory i 

(i=1,2,3) 

As mentioned above, the TMR system can be illustrated in 

Table IV. It is designed as a parallel combination construction 

containing two processes. The first process is that three 

processors and Voter synchronize on events “Output” and 

“Ack”. The second process describes the synchronizing 

between the first process and the three memories on event 

“Writedata”. All the events are internal to the TMR system, thus 

the hiding operator is adopted.  

 

TABLE IV     SPECIFICATION FOR THE TMR SYSTEM 

1 TMR System := (Processor1 || Processor2 || 

Processor3 

2 |{ Output1, Output2, Output3, Ack } | Voter) 

3 |{Writedata}| 

4 (Memory1 || Memory2|| Memory3 ) \ 

5 \{ Output1, Output2, Output3,WriteData, Ack } 

V. VERIFICATION OF FAULT TOLERANCE 

The verification of fault tolerance for the TMR system 

amounts to showing that the behaviour of the TMR system 

suffering from hardware faults is a refinement of the behavior of 

a faultless module, as stated in the following lemma: 

Lemma 1: Faultless Module ≦TMR System 

Proof:  One straightforward way to show the refinement 

relationship is to apply semantics preserving transformation 

upon the process definition based on the algebraic rules 

associated with CSP operators  [5]. This approach explores or 

enumerates manually all possible states of a process defined by 

parallel combination. Also, since here we target at the behavioral 

properties rather than the functional property of the process, an 

abstract version of TMR system which ignores the functional 

aspect including values, variables, and Boolean expressions can 

be obtained. Table V shows the proof for Lemma1. 

 

TABLE V   THE PROOF OF THE TMR SYSTEM 

1 TMR system= (Processi|{ NeedWritei, Ack } | Voter) |{WriteData}| 

Memory i \{ NeedWritei, Ack,WriteData } i=1,2,3                               (1)                                                                                                      

2 Fill the definitions of Processori ,Memory i and Voter in (1) 

3 Apply the following algebraic laws (2) to simply (1) 

4 P || (R; Q) = (P || R); (P|| Q)                                                                                (2) 

5  Apply the following algebraic laws (2) and (3) to simply (1)  

6 (P┌┐ Q)|| R= (P || R) ┌┐(Q|| R)                                                   (3)                       

  Assume that two faults cannot occur synchronously, (1) can be 

simplified as (4) 

8  Faultless Modulei=1, 2; Ack?x->SKIP|| (fault i? → (Wrong (d) 

→SKIP)|| Voter ;                                                                                            (4)                                                                                       

9   Assume that the Recover(d) can restore the program effectively, 

apply the following laws to simply(4) 

10      SKIP ; P=P   (a→P);Q=a→(P;Q) 

11     (4) can be simplified as following : 

12     Faultless Modulei=1,2,3 

However, it is too laborious to verify the property of the TMR 

system manually. Fortunately, the FDR model checking tool [6] 

can be used to verify the above lemma automatically. To verify 

whether the TMR system suffering from hardware fault is a 

refinement of the faultless module, the failures -divergence model 

[6] in which the possible behaviours of a process are denoted by 

a set called its failures-divergence is adopted. A process Q is a 

16

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           25 / 114



 

refinement of another process P, written as P [FD= Q, if (and only 

if) the failures-divergence set of the former is contained in the 

failures-divergence set of the latter. Firstly, the system is defined 

as a CSP process. Then, it is translated into the input language of 

FDR. A listing of the FDR2-compatible source can be found in 

the appendix. While a detailed introduction to the semantics of 

FDR is beyond the scope of this paper, the appendix specifies 

the TMR system obtained by translating the CSP process into 

the input language of FDR. 

VI. CONCLUSION AND FUTURE WORK 

This paper has shown how the FDR refinement checker for 

CSP can be used to specify and verify the fault tolerant system. 

Firstly, a faultless module that is abstracted as a computation 

model is encoded as a CSP process. Then the TMR system 

suffering from hardware errors is illustrated in CSP. By verifying 

the TMR system is a refinement of a faultless module, the fault 

tolerance property of the TMR system can be verified. Moreover, 

by the model checking tool FDR, the verification is performed 

automatically.  

The work with more similarity to ours is described in [3], but 

ours is much more general and practical.  Our work just needs to 

encode the system in CSP processes, and then the verification 

can be performed automatically by FDR.  FDR searches the state 

space of the system until it either finds an undetected error or 

exhausts the state space. This search is automatic in the sense 

that it does not require user guidance once the system has been 

modeled in CSP. On the contrary, the work in [3] validates the 

correctness of fault tolerant systems using axioms and proof 

rules. It can only be used by experts who are well-drained in 

logical reasoning and have considerable experience. Thus it is 

not practical. 

However, we only focus on the write operation between the 

processor and the memory. In order to simplify the process 

description, the read operation that the processor reads data 

from the memory is not considered. In general, it is just an early 

work. In the future, we will investigate the read operation and 

apply the method to some complicated system.  

APPENDIX 

{- The idea of this script is to prove that the TMR system is a 

refinement of the behavior of a faultless module -} 

-- Event definitions 

Output (d) =yes|no 

Tags_ack= {0, 1, 2, 3} 

NeedWrite= NeedWrite1| NeedWrite2| NeedWrite3 

Data=d1|d2|d3 

--channel declarations 

Channel Processor_in, Proceesor_in1, Proceesor_in2, 

Proceesor_in3 

channel Memory_in, Memory_in1, Memory_in2, Memory_in3: 

Output 

channel Voter_ack : Tags_ack 

channel Voter_in: NeedWrite 

channel  Voter_WriteData 

-- The specification is for the processor of the faultless module 

Processor=Processor_in? Program-> (if (NeedWrite) out! 

Output (d).yes else funp(l) fi.) ->Processor 

-- The specification is for the memory of the faultless module 

Memory = (Memory_in? Output(d).yes > Update (d)) -> Memory 

-- The specification is the faultless module 

Faultless Module= (Processor [| {| Output(d)|} |] Memory) \ {| 

Output(d) |} 

-- The specification is the Voter of the faultless module 

Voter: = (Voter_in? Needwrite1 --> SKIP || Voter_in? Needwrite2 

--> SKIP || Voter_in?Needwrite3 -> SKIP); 

if (d1==d2 and d2==d3) then (Voter_WriteData!d1 || Voter_ack ! 0 )    

else if (d1==d2 and d2! =d3) then (Writedata! d2 || Voter_ack! 3) 

else if (d1==d3 and d2! =d3) then (Writedata! d1 || Voter_ack! 2) 

else d3==d2 and d1!=d3) then (Writedata!d3 || Voter_ack ! 1 ) 

--> Voter 

-- The specification is the Processor1 of the faultless module, it is 

similar to Processor2 and Processor3 

Processori = ((in?faulti -> (Wrong (di) -> SKIP) [] In? Program-> 

(if (NeedWritei)   Out! Outputi(di)    

else funp(l) fi.  --> SKIP); 

Ack? ->(if in?ack.x= i then Recoveri(d) 

else SKIP); 

Processori (i=1,2,3) 

Memoryi= (In? Output(d)   -> Update (d)) -> Memoryi (i=1,2,3) 

-- Finally we put it all together, and hide internal communication 

TMR System = (Processor1 || Processor2|| Processor3 |{Output1, 

Output2, Output3,Ack}| Voter) |{Writedata}|(Memory1|| Memory2 

|| Memory3)\{ Output1, Output2, Output3,Ack, Writedata} 

--The  Specification of Faultless Module ≦TMR System 

assert Faultless Module [FD= TMR System 

REFERENCES 

[1] Kang  G. S. and Hagbae K., “A Time Redundancy Approach to TMR 

Failures Using Fault-State Likelihoods,” IEEE Trans. on Computers, 

vol. 43, pp. 1151-1162, Oct . 1994. 

[2] Siewiorek D.  P. and R. S.  Swarz, “Reliable Computer Systems:  

Design and Evaluation,” Digital Press, 1992. 

[3] Liu Z.M. and Joseph M., “Specification and verification of fault 

tolerance, t iming and scheduling,” ACM Trans. on Programming 

language and systems, vol. 21, pp. 46-49, Jun. 1999. 

[4] Lamport L, “The temporal logic of actions,” ACM Trans. on 

Programming language and systems, vol. 16, pp. 872-923, Nov. 

1994.  

[5] Hoare C.A.R, “Communicating Sequential Processes,” Prentice Hall, 

1985. 

[6] Formal Systems (Europe) Ltd, FDR2 User Manual, 2005. 

[7] Lin S. and Costello D. J., “Error Control Coding: Fundamentals and 

Applications”, second edition, Prentice Hall: Englewood Cliffs, 

2004.  

[8] Subhasish M. and Edward J. M.,” Word-Voter: A New Voter Design 

for triple Modular Redundant systems”, Proc. IEEE Symp. VLSI Test , 

IEEE Press, pp. 465-470, Aug. 2000. 

[9] Kang G. Shin and Hagbae Kim, “A Time Redundancy Approach to 

TMR Failures Using Fault -State Likelihoods”, IEEE Trans. on 

Computers, vol. 43, pp. 1151-1162, Oct. 1994. 

[10] Lisboa C. A. L., Schuler E. and Carro L., “Going beyond TMR for 

Protection against Multiple Faults”, IEEE Symp. Integrated Circuits 

and Systems Design, IEEE Press, pp. 80-85, Sept. 2005. 

17

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           26 / 114



Efficient and Scalable Steady-state Dependability
Verification

Diana El Rabih and Nihal Pekergin
LACL, University of Paris-Est Cŕeteil,

61 avenue Ǵeńeral de Gaulle 94010, Créteil, France
Email : delrabih@u-pec.fr, nihal.pekergin@u-pec.fr

Abstract—We have proposed to perform statistical model
checking by combining perfect sampling and statistical hypothesis
testing based on single sampling plan method in order to verify
steady-state formulas. This approach allows us to consider very
large monotone models and to verify rare event properties
efficiently. In this paper, we extend our proposed approach by
implementing different statistical methods in our verification
engine and by comparing their efficiency when we verify steady-
state dependability properties for large non monotone models.
We show that SPRT statistical method is generally more efficient
than the other statistical methods. Moreover, we show that our
statistical verification approach is efficient and scalable when we
consider large non monotone models.

Index Terms—Statistical model checking, Perfect simulation,
Dependability verification, Continuous Stochastic Logic (CSL)

I. I NTRODUCTION

Probabilistic model checking is an extension of the formal
verification methods for systems exhibiting stochastic behav-
ior. The system model is usually specified as a state transition
system, with probabilities attached to transitions, for example
Markov chains. A wide range of quantitative performance,
reliability, and dependability measures can be specified using
temporal logics such as Continuous Stochastic Logic (CSL)
defined over Continuous Time Markov Chains (CTMC) [2]
and Probabilistic Computational Tree Logic (PCTL) defined
over Discrete Time Markov Chains (DTMC) [2]. There are two
distinct approaches to perform probabilistic model checking:
the numerical model checking based on the computation of
transient-state or steady-state distributions of the underlying
Markov chain and the statistical model checking based on
statistical methods and on sampling by means of discrete event
simulation or by measurement. Statistical model checking
techniques constitute an interesting alternative to numerical
model checking techniques for large scale systems. In the last
years, different statistical model checkers have been proposed
[6][15][20] especially for properties specified by time-bounded
until formulas. In the statistical model checker MRMC [8]
statistical model checking of CSL steady-state property has
been also considered.

We have proposed in [13][14] to perform statistical proba-
bilistic model checking by combining perfect simulation and
statistical hypothesis testing based on the single sampling
plan method in order to check steady-state properties of
large Markovian models. Perfect simulation is an extension
of Monte Carlo Markov Chains (MCMC) methods allow-

ing to obtain exact steady-state samples of the underlying
Markov chain thus it avoids the burn-in time problem to
detect the steady-state. Propp and Wilson have designed
the algorithm of coupling from the past to perform per-
fect simulation [9]. A web page dedicated to this approach
is maintained by them (http://research.microsoft.com/en-
us/um/people/dbwilson/exact/). As a perfect sampler, we use
ψ2 proposed in [18], designed for the steady-state evaluation
of various monotone queueing networks [19]. This tool [18]
permits to simulate the stationary distribution or directly a cost
function or a reward of large Markov chains. The significant
advantage of perfect sampling is that it provides anunbiased
sampling of the steady-state distribution, hence the accuracy
of the verification result only belongs to the statistical testing.
In other words, we ensure the correctness of our results
considering a specified precision level. We have compared
in [10][11][12], the numerical model checker PRISM [7], the
statistical module of MRMC [8] and our statistical verification
engine when they are applied to the verification of steady-
state properties for very large models. We have shown the
efficiency and the scalability of our approach to consider very
large monotone models and to verify rare event properties
efficiently.

In this paper, we extend our proposed approach by imple-
menting in our verification engine other statistical methods
existing in the litterature and by comparing their efficiency
when we verify steady-state dependability properties. In fact,
we consider two non-monotones queueing networks, such as
network of queues with negative clients, and with coxian
phase-type servers to show the efficiency and the scalability
of our proposed approach also in the case of non monotone
models. This paper is organized as follows: Section 2 briefly
presents the temporal logic CSL, the perfect sampling and our
proposed approach for statistical verification based on perfect
sampling. We give a brief introduction of the implemented
statistical methods in Section 3. Section 4 is devoted to the
case studies. First we present the models. Next, we compare
and analyze the results of our experiments. Finally, in Section
5 we summarize the conclusions and provide the future works.

II. STATISTICAL MODEL CHECKING BY PERFECT

SAMPLING

A. Continuous stochastic logic (CSL)

CSL is a branching-time temporal logic with state and path
formulas and it is a powerful mean to state properties over

18

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           27 / 114



CTMCs. Thus it is useful to specify and to verify performance
and dependability measures as logical formulas over CTMCs
[1]. The steady-state operator (formula)ψ = S⊲⊳θ(ϕ) lets us
to analyze the long-run behaviour of the system. The steady
state formulaS⊲⊳θ(ϕ) asserts that the steady-state probability
for the set of the states satisfyingϕ meets the bound⊲⊳ θ,
whereθ is a probability threshold,⊲⊳ a comparison operator,
for example⊲⊳∈ {<,>,≤,≥}, ϕ is a state formula (a boolean
expression of state properties).

B. Perfect sampling and statistical verification

Propp and Wilson [9] have introduced the perfect/exact
sampling method, which is based on the backward coupling,
also called the coupling from the past: by coming from a
distant time−τ sufficiently far in the past, if all trajectories
(trajectories that come from all possible initial states inX
at time −τ ) are coupled in one state at time 0, then the
sampled state is exactly distributed according to the station-
ary distribution. The backward coupling provides steady-state
sample in a controlled finite number of steps, that could not be
obtained by a forward coupling scheme unless the model have
a strong stationary time, which is rare in our examples [17].
Let {Xn}n∈N be an irreducible and aperiodic discrete time
Markov chain with a finite spaceX and a transition matrix
P = pi,j . Let π denote the steady-state distribution of the
chain:π = πP . The evolution of the system can be given by
a stochastic recurrence:

Xn+1 = η(Xn, en+1) (1)

with {en} an independent and identically distributed sequence
of events (en ∈ ǫ). The transition functionη : X × ǫ → X
verifies the property thatPr(η(i, e) = j) = pi,j for every pair
of states(i, j) and each random evente. An execution of the
Markov chain is defined by an initial statex0 and an sequence
of events. The sequence of states given by Eq. 1 is called a
trajectory. Trajectories are generated with the same sequence
of events and if at timet = 0, two trajectories are in the
same state, we say that they couple. The backward coupling
is especially efficient when the underlying system is monotone.
When the system is not monotone it is shown in [3] that the
backward coupling can also be efficient. Given a partial order
� on X , an evente is said to bemonotone if it preserves the
partial ordering� on X :

∀(x, y) ∈ X x � y ⇒ η(x, e) � η(y, e) (2)

If all events are monotone, the global system is said to be
monotone. According to an order� on X , there exists a
set M� ⊂ X of extremal states (maximal and minimal
states). When a Markov chain is monotone, all trajectories
issued fromX are always bounded by trajectories issued from
M�. Thus, it is sufficient to compute trajectories issued from
M� since when they couple, global coupling also occurs. As
the size ofM� is usually drastically smaller than the size
of X , monotone perfect sampling significantly improves the
sampling time [9]. Efficiency of simulations is also improved
by functional perfect sampling [19]. The algorithm samples
a reward value, according to a user defined reward function

r : X → R; The algorithm stops when all trajectories are
in a set of states at time 0 that belongs to the same reward
value (going further in the past will inevitably couple in a
state that belong to this reward value). To combine monotone
and functional perfect sampling, the reward functionr must
be monotone, that isx � y ⇒ r(x) � r(y). As |R| is smaller
than |X |, this technique may lead to an important reduction
of the coupling time. In a property verification context, since
we focus on reward functions that correspond to properties
we want to check,R = {0, 1}. In our statistical verification
method we propose to apply functional perfect sampling, so
at time0, we test if the rewards are coupled at reward 0 or 1.
In other words, we test if it is a positive or negative sample.
Thus we associate the rewardrϕ(x) to each statex ∈ X for
a given propertyϕ: rϕ(x) = 1 if x satisfiesϕ, otherwise
rϕ(x) = 0. Note that, as the reward function is monotone,
values 0 and 1 cover contiguous zones of the state-space. Then,
an interesting phenomenon happens when the property to be
checked has a small set of positive states{x ∈ X |rϕ(x) = 1}
(ϕ corresponds to a rare property / event): coupling frequently
occurs in reward value0 and the coupling time is very short.
Moreover, if|{x ∈ X |rϕ(x) = 1}| does not depend onX (case
of saturation properties for example), then the performance of
perfect sampling algorithm will be as good for very large state-
spaces as for small ones. This intuition is validated by results
of Section 4.

The decision method tests ifϕ is satisfied (positive sample)
or not (negative sample) on each generated sample path by
counting the number of positive samples. Then it provides
decision eitherYesif the number of positive samples is greater
or equal to m (ψ is satisfied) orNo otherwise (ψ is not
satisfied). The input parameters of the algorithm are: the model
defined by a labelled CTMC,M , the propertyϕ (to be verified
on each sample), the threshold parameterθ, the indifference
region parameterδ, and α, β for the strength of statistical
hypothesis testing. In our work, we consider ergodic Markov
chainsM, hence there is a unique steady-state distribution
independent of the initial state. The satisfaction property is
assigned to the model but not to an inital state. (we check
whether the underlying modelM satisfies the steady-state
formula or not).M |= S⊲⊳θ(ϕ), if the property specified by
the steady-state operatorS is satisfied by the modelM. Note
that the verification ofS≥θ(ϕ) is the same asS<1−θ(¬ϕ) and
also is the same as¬S<θ(ϕ).

III. STATISTICAL METHODS

The statistical decision method we have used in [11][12]
when performing our statistical hypothesis testing is inspired
from the Single Sampling Plan (SSP) method. In this section
we present the different statistical methods we implement in
our statistical verification engine.

A. Current methods

a) Statistical hypothesis testing
Suppose that we have generatedn samples (simulations), and
a sampleXi is a positive sample(Xi = 1) if it satisfiesϕ and
negative(Xi = 0) otherwise.Xi is a random variable with

19

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           28 / 114



Bernoulli distribution with parameterp. Thus the probability
to obtain a positive sample isp. In practice, two thresholds,
p0 andp1 are defined in terms of the probability thresholdθ,
and the half-widthδ of the indifference region:p0 = θ + δ
andp1 = θ - δ. Then instead of testingH : p ≥ θ againstK
: p < θ, we testH0 : p ≥ p0 againstH1 : p ≤ p1. In fact,
the strength of the statistical test was determined by two error
bounds,α and β, whereα is a bound on the probability of
acceptingH1 whenH0 holds (known as a type I error, or false
negative) andβ is a bound on the probability of acceptingH0

whenH1 holds (a type II error, or false positive). There are
several methods for statistical hypothesis testing decision with
constraints on error bounds(α, β) [22][21][16]:

a.1) Single Sampling Plan (SSP): It is based on the
acceptance sampling with fixed sample size (n): if

∑n
i=1Xi ≥

m, then H0 is accepted otherwiseH1 is accepted, where
m is the acceptance threshold. The hypothesisH1 will be
accepted with probabilityF (m,n, p) and the null hypothesis
H0 will be accepted with the probability1 − F (m,n, p),
where F (m,n, p) is a binomial distribution:F (m,n, p) =∑m

i=1 C(n, i)p
i(1− p)n−i with C(n, i) is the combination of

i from n. It is required that the probability of acceptingH1

whenH0 holds is at mostα, and the probability of accepting
H0 when H1 holds is at mostβ. These constraints can be
illustrated as below:

• Pr[H1 is accepted| H0 is true] ≤ α, which implies
F (m,n, p0) ≤ α (C1)

• Pr[H0 is accepted| H1 is true] ≤ β, which implies1−
F (m,n, p1) ≤ β (C2)

The sample sizen and the acceptance thresholdm must be
chosen under these constraints and their formulas for optimal
performance are given in [22].

a.2) Sequential Single Sampling Plan (SSSP):If we use
a single sampling plan(n,m) and the sum of the firsti
observations,di=

∑i
j=1Xj , i < n, is already greater thanm,

then we can acceptH0 without making further observations.
Conversely, ifdi+n−i ≤ m, regardless of the outcome of the
remainingn− i observations we already know that the sum of
n observations will not exceedm, then we can safely accept
H1 after making onlyi observations. In the modified test
procedure, after each observation, we decide whether sufficient
information is available to accept either of the two hypotheses
or additional observations are required.

a.3) Sequential Probability Ratio Test (SPRT): This
method is based on the sequential probability ratio test
[21][22]: after making theith simulation (generating theith

sample), one computes the following quotient:

qi =

i∏

j=1

Pr[Xj = xj | p = p1]

Pr[Xj = xj | p = p0]
=
pdi

1 (1− p1)
i−di

pdi

0 (1− p0)i−di

where di denoting the number of positive samples.H0 is
accepted ifqi ≤ B, andH1 is accepted ifqi ≥ A. FindingA
andB with a given strengthα, β is non trivial, in practiceA
is chosen as (1-β)/α andB asβ/(1-α). Then a new test whose
strength is (α∗, β∗) is obtained, but such thatα∗+β∗ ≤ α+β,
meaning that eitherα∗ ≤ α or β∗ ≤ β. In practice, it is
often found that both inequalities hold. When implementing

the sequential probability ratio test, it is computationally more
practical to work with the logarithm ofqi. Then we acceptH0

if fm ≤ log β
1−α

, we acceptH1 if fm ≥ log 1−β
α

.
Note that, the sample size for a sequential test is a random

variable, meaning that the required number of observations
can vary from one use of such a test to another. Furthermore,
the expected sample size typically depends on the unknown
parameterp, so we cannot report a single value as was the case
for acceptance sampling with fixed-size samples. The expected
sample size varies with the distance ofp from the indifference
region (p1, p0). It tends to be largest whenp is close to the
center of the indifference region, and decreases the further
awayp is from the indifference region.

b) Statistical estimation
An alternative statistical solution method, based on estimation
instead of hypothesis testing [6]. This approach usesn obser-
vationsx1, ..., xn to compute an estimate ofp: p′=

∑
n

i=1
Xi

n
.

The estimate is such thatPr[|p′ − p| < δ] ≥ 1 − α (E4).
Using a result derived by Hoeffding [[21], Theorem 1], it can
be shown thatn = ⌈ 1

2δ2 log
2
α
⌉ (E5)

is sufficient to satisfy(E4). If we acceptψ as true whenp′ ≥
θ and rejectψ as false otherwise, then it follows from(E4)
that the answer is correct with probability at least 1 -α if
either s|= ψ or s 6|= ψ holds. Consequently, the verification
procedure satisfies(C1) and (C2) with β = α. As with the
solution method based on hypothesis testing, a definite answer
is always generated (there is no undecided results).

c) Confidence interval
Another alternative statistical solution method based on con-
fidence intervals has been proposed in [8]. To check whether
s |= P>θ(ϕ), an estimatep̃ of the probability p starting
in s is determined using standard discrete event simulation
techniques. Letξ be the user-specified confidence of the
result andδ

′

the maximum width of the confidence interval.
The probability of obtaining a correct answer to the model
checking problems |= P>θ(ϕ) is now guaranteed to be at
least ξ provided δ

′

≤ |θ − p̃|. In this solution method, a
slight adaptation of standard sequential confidence intervals is
exploited in which the sample size and simulation depth can
be adapted on demand. Althoughδ

′

> |θ − p̃|, this solution
method provides more accurate answers as its algorithm first
simulates until the confidence interval is tighter thanδ

′

and
then continues simulation until it reaches the definite answer
to the model checking problem. This strategy increases the
accuracy because the width of the resulting confidence interval
can be much smaller thanδ

′

. The penalty for this increased
accuracy is an increase in the simulation times thus larger
model-checking times.

B. Performance comparison of statistical methods

The estimation-based approach had been compared with the
approach based on hypothesis testing in [21], by considering
m = ⌊nθ+1⌋ andd=np′=

∑n
i=1 xi. It had been demonstrated

that p′ ≥ θ ⇐⇒ d > m. This means that the estimation-
based approach can be interpreted as a single sampling plan
(n,m). Therefore the approach proposed in [22], when using
a single sampling plan, will always be at least as efficient

20

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           29 / 114



as the estimation-based approach. In fact, it will be more
efficient because: (i) the sample size is derived using the true
underlying distribution, (ii)m is not restricted to be⌊nθ+1⌋,
and (iii) β = α can be accommodated. The last property, in
particular, is important when dealing with conjunctive and
nested probabilistic statements. The advantage of hypothesis
testing is demonstrated numerically in [21]. Note, also, that
the SPRT method often can be used to improve efficiency for
the approach based on hypothesis testing. In fact, if a single
sampling plan is used with strength(α, β) and indifference
region of half-width δ, then the sample sizen is roughly
proportional to logα and log β and inversely proportional
to δ2 [22]. Using the SPRT method instead of a single
sampling plan can reduce the expected sample size by orders
of magnitude in most cases, although the SPRT method is not
guaranteed always to be more efficient.

On the other hand, the method proposed by Sen et al. in [16]
is not more efficient than the methods proposed by Younes et
al. in [22]. In fact, Sen et al. manually selected the sample sizes
for their single sampling plans. The selected sample sizes are
not sufficient to achieve the same strength as used to produce
the results for the SPRT method reported by Younes et al.
in [22]. Finally, the confidence intervals statistical technique
requires to use confidence interval of the width< δ, whereas
under the same conditions in hypothesis testing we would have
to use the indifference region of the width less than only 2.δ.
This can cause confidence intervals algorithms to require more
samples than needed for the ones based on the hypothesis
testing.

C. Statistical model checking complexity

The time complexity of any statistical solution method for
probabilistic model checking can be understood in terms of
two main factors: the number of observations (sample size)
required to reach a decision, as well as the time required to
generate each observation that depends of perfect simulation
effort (coupling time). If an observation involves the verifica-
tion of a path formula over a sample trajectory then the time
complexity depends also of the length of trajectory prefixes
(in terms of state transitions) required to determine if a path
formula holds. The sample size depends on the method used
for verifying probabilistic statements, as well as the desired
strength(α, β) and of θ and δ. In fact, the sample size for
a single sampling plan SSP is approximately proportional to
the logarithm ofα andβ, and inversely proportional toδ2 . If
we use a sequential test SPRT, then the expected sample size
also depends on the unknown probability measurep of the set
of trajectories that satisfyϕ. Moreover, the perfect simulation
effort (coupling time) can be both model and implementation
dependent, then it can be state space dependent, but models
often have structure (monotone structure) [4] that can be
exploited by the simulator to avoid such dependence. The
length of trajectories depends on model characteristics and
the property that is being verified but may be independent
of the size of the state space. The space complexity of
statistical probabilistic model checking is generally modest. It
is needed to store the current state of a sample trajectory when

generating an observation for the verification of a probabilistic
statement, and this typically requires O(log|X |) space where
|X | is the size of state space. For systems that do not satisfy
the Markov property, it may also be needed to store additional
information to capture the execution history during simulation.

IV. EXPERIMENTAL STUDY

We now evaluate two non monotone models, taken fromΨ2

and PRISM benchmarks, on which we will base our efficiency
and scalability comparison. In fact, we verify the steady-
state formula for these two case studies using the numerical
verification approach implemented in PRISM tool and our
statistical verification approach implemented inΨ2 tool using
different statistical solution methods (Section 3), by varying
the problem size (state space size related to the maximal queue
capacity). We illustrate the statistical verification time(≈
Nsamp*coupling time) in seconds, whereNsamp is the sample
size, for these case studies as a function of the maximal queue
capacity (state space size) and we determine the memory limit
for each case when using the verification tools. Since the
considered Markovian models are ergodic (by construction),
thus the steady-state probabilities are independent of theinitial
state. Thus, the considered steady-state formula is satisfied or
not whatever the initial states.

a) Negative clients queueing network
We consider the following queueing model with both positive
and negative clients (Figure 1). The non-monotonicity of this
model (negative clients) is shown and its perfect sampling
by envelope functions is given in [3]. We have implemented
this non monotone model as aΨ2 model as explained in [3]
and we have validated the correctness of our implementation.
In fact, queueing models with negative clients, have found
applications in computer communications and manufacturing
settings. When a negative client arrives at the queue, it has
the effect of a signal, which kills ordinary (positive) clients
in the node. An example of a queueing system with both
positive and negative clients (jobs) is computer networks with
virus infection, which deletes jobs or failures, which causes
other failures and removes jobs. LetNmax to be the maximal

Fig. 1. Negative clients queueing network

capacity of each queue then the state space isO((Nmax+1)6).
Jobs arrive from exterior at the first queue with ratesλ+1
(positive clients) andλ−1 (negative clients), and exit the system
from the second queue with rateµ1 and from the sixth queue
with rateµ2. Jobs arrive also to the first queue from feedback
link with rate λ+feed and λ−feed. Jobs arrive to theith queue
where 2 ≤ i ≤ 6 with rates λ+i (positive clients) and
λ−i (negative clients). Also negative clients can arrive from

21

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           30 / 114



exterior to theith queue where2 ≤ i ≤ 6 with ratesκ−i . Letxi
denote the number of jobs currently in queuei. We define the
atomic proposition that one queue of the system is full with the
formula negsysfull= (x1 = Nmax) ∨ (x2 = Nmax) ∨ (x3 =
Nmax) ∨ (x4 = Nmax) ∨ (x5 = Nmax) ∨ (x6 = Nmax).
Based on this atomic proposition, we check the following
Steady-state formula:S≤θ (negsysfull) to check whether the
probability that the system is full in steady-state is less than
θ or not.

b) Tandem Queueing Network with coxian phase (TQN)
The TQN model (Figure 2) is taken from PRISM benchmark
that consists of anM/Cox2/1 queue sequentially composed
with an M/M/1 queue . In [11], we have implemented this
non monotone model as aΨ2 model by using non monotone
techniques (envelope function) such as defined in [3] and we
have validated the correctness of our implementation. The non-
monotonicity of this model is shown in [5][11]. We consider 4
TQN connected in series then our considered system consists
of 4 M/Cox2/1 queues. LetNmax be the maximal capacity
of each queue then the state space isO((Nmax + 1)2) for
each TQN. In each TQN, jobs arrive at the first queue with
rateλ, and exit the system from the second queue with rate
κ. If the first queue is not empty and the second queue is not
full, then jobs are routed from the first to the second queue.
In each TQN, the routing time is governed by a two-phase
Coxian distribution with parametersµ1, µ2, anda. Here,µi

is the exit rate for theith phase of the distribution, and 1
- a is the probability of skipping the second phase. Letxj
denote the number of jobs currently in queuej, andxphk

∈
{1, 2}, for 1 ≤ k ≤ 4, denote the current phase of the Coxian
distribution. We define the atomic proposition that one TQN
component of the overall system is full with the formulasys-
full = [(x1 = Nmax) ∧(x2 = Nmax) ∧ (xph1

= 2)] ∨ [(x3 =
Nmax) ∧ (x4 = Nmax) ∧ (xph2

= 2)] ∨ [(x5 = Nmax) ∧
(x6 = Nmax) ∧ (xph3

= 2)] ∨ [(x7 = Nmax) ∧ (x8 =
Nmax) ∧ (xph4

= 2)]. Based on this atomic proposition,

Fig. 2. Tandem queueing network with Coxian phase

we check the followingSteady-state formula:S≤θ (sys-full)
to check whether the probability that the system is full in
steady-state is less thanθ or not.

A. Experimental results

a) Negative clients network verification results: We
considerλ+1 =0.8, λ−1 =0.2, λ+feed=0.7, λ−feed=0.3, all service
rates will be state-independent with rateµ1 = µ2 = 1;
λ+i =0.6, λ−i =0.4 andκ−i =0.1 for 2 ≤ i ≤ 6. We give in
Table I for θ = 0.001 and ǫ = 10−4, the verification time
for the considered steady-state formulaS<θ (negsysfull) by
using PRISM Hybrid engine and Jacobi iterative method.
Also we give in the same table forθ = 0.001, δ = 10−4/2

respectively, andα = β = 10−2 the verification time for the
same steady-state formulaS<θ (negsysfull) by using statistical
verification methods implemented inΨ2 (Section 3). In fact,
for Nmax = 21 we obtain an out of memory message with
PRISM. In all of the tables we denote by:
PRISM : numerical verification time in seconds for the

steady-state formula by using PRISM hybrid engine.
outm : an out of memory message in PRISM tool.
The statistical verification time in seconds is given by

combining with statistical techniques given in Section 3:
Ψ2(SSP ) for SSP, Ψ2(SPRT ) for SPRT, Ψ2(SEst) for
statistical estimation,Ψ2(CI) for confidence interval.

Nmax |X | PRISM Ψ2(SSP )Ψ2(SPRT ) Ψ2(SEst) Ψ2(CI)

2 7.29 ∗ 102 0.04 4.1 1.3 5.5 6.8
3 4.09 ∗ 103 0.05 5.4 2.1 8.6 9.1
5 4.66 ∗ 104 0.10 9.4 4.4 15.6 21.5
7 2.62 ∗ 105 1.32 14.4 9.6 19.7 25.8
9 1.00 ∗ 106 98.67 24.2 15.3 29.3 34.9
12 4.82 ∗ 106 276.6 33.2 20.1 39.5 43.4
14 1.13 ∗ 107 9213 42.6 29.7 54.7 67.1
21 1.13 ∗ 108 outm 65.9 42.2 73.1 81.7
99 1.00 ∗ 1012 outm 98.1 53.1 126.1 155.4
999 1.00 ∗ 1018 outm 365.3 173.3 422.4 485.2
9999 1.00 ∗ 1024 outm 1315 633 1713 1929

TABLE I
NEGATIVE CLIENTS NETWORK: VERIFICATION TIME AS A FUNCTION OF

STATE SPACE SIZE|X | FORS<0.001 (negsysfull)

b) Tandem network with coxian phase (4 TQN)
verification results: For numerical application, for each
TQN in the overall system (4 TQN in series) we consider
λ = 4×Nmax, µ1 = 2, µ2 = 2, a = 0.1 andκ =4. We give
in Table II for θ = 0.001 and for ǫ = 10−4, the verification
time for the considered steady-state formulaS<θ (sys-full)
by using PRISM Hybrid engine and Jacobi iterative method.
Also we give in the same table forθ = 0.001, δ = 10−4/2
respectively,α = β = 10−2, the verification time for the
same steady-state formulaS<θ (sys-full) by using statistical
verification methods implemented inΨ2 (Section 3). In fact,
for Nmax = 10 we obtain an out of memory message with
PRISM.

Nmax |X | PRISM Ψ2(SSP )Ψ2(SPRT ) Ψ2(SEst) Ψ2(CI)

2 6.5 ∗ 103 0.4 7.1 4.22 8.5 9.8
3 6.5 ∗ 104 0.5 9.4 5.12 11.4 17.1
4 3.9 ∗ 105 1.93 17.9 8.14 20.3 22.8
5 1.6 ∗ 106 33.2 21.8 12.3 23.6 26.4
6 5.7 ∗ 106 150.6 34.3 21.3 39.6 44.2
7 1.7 ∗ 107 290.6 53.2 34.1 60.9 71.5
8 4.3 ∗ 107 476.6 78.6 57.3 98.7 117.1
9 1.0 ∗ 108 8615 265.9 153.3 329.1 371.3
10 2.1 ∗ 108 outm 386.6 233.1 422.6 492.6
99 1.0 ∗ 1016 outm 498.1 263.3 547.1 605.4
999 1.0 ∗ 1024 outm 565.3 302.1 626.3 715.2
9999 1.0 ∗ 1032 outm 1415 565.3 1826 2153

TABLE II
TQN: VERIFICATION TIME AS FUNCTION OF STATE SPACE SIZE|X | FOR

S<0.001 (sys-full)

B. Discussions

In Tables I and II, we have illustrated the statistical ver-
ification time (≈ Nsamp*coupling time) in seconds for two

22

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           31 / 114



non monotone models as a function of the maximal queue
capacity (state space size), whereNsamp is the sample size.
In fact, the sample size,Nsamp is the only factor that varies
between the different statistical solution methods, regardless
of implementation details. The sample size depends on the
method used for verifying probabilistic statements, as well as
the desired strength(α, β) andθ andδ. Note that, the coupling
time of the perfect simulation varies with the state space size,
with the implementation and with the verified property.

In Tables I and II, we show that the Single Sampling
Plan (SSP) method is at least as efficient as the statistical
estimation method and it will be more efficient since the
sample size of the SSP method is derived using the true
underlying distribution [21] (Section 3). We show also in these
tables that the Single Sampling Plan (SSP) method is more
efficient than the confidence intervals method, since the last
method requires a smaller width of the confidence interval
(Section 3). This can cause confidence intervals method to
require more samples than needed for hypothesis testing based
method (SSP method).

Moreover, we show in these tables that the Sequential Prob-
ability Ratio Test (SPRT) method is more efficient than the
Single Sampling Plan (SSP) method. In fact, the sample size
for a single sampling plan SSP is approximately proportional
to the logarithm ofα and β, and inversely proportional to
δ2 [21]. In our work, for SSP method we have determined
the sample size using the approximation formulas given in
[21]. For sequential test SPRT the expected sample size also
depends on the unknown probability measurep of the set
of trajectories that satisfy the propertyϕ. In fact, for SPRT
method the sample size is computed during the verifica-
tion process. We show in tables I and II that using SPRT
method instead of SSP method can reduce the verification
time (depending on sample size) by an order of magnitude
in most cases. Thus we show that SPRT statistical method
is generally more efficient than the other statistical methods
when performing steady state dependability verification for
very large models and we show that the hypothesis testing
based methods are generally more efficient than the estimation
and the confidence intervals based methods. We also see in
these tables that our statistical verification approach is efficient
and scalable when we consider large non monotone models
and it allows us to verify rare event properties efficiently on
these models.

Finally, in Tables I and II we have determined the memory
limit for each case when using the verification tools. There
is no memory limit when using our statistical verification
approach implemented inΨ2 tool, since the space complexity
of statistical model checking is generally modest. In fact,in
statistical model checking it is needed to store the current
state of a sample trajectory when generating an observationfor
the verification of a probabilistic statement, and this typically
requires O(log|S|) space where|S| is the size of state space.

V. CONCLUSION AND FUTURE WORKS

In this paper, we extend our proposed approach [12][13][14]
by implementing different statistical methods in our verifica-
tion engine and by comparing their efficiency when we verify

steady-state dependability properties for large non monotone
models. We show that SPRT statistical method is generally
more efficient than the other statistical methods when per-
forming steady state dependability verification for very large
models. Moreover, we show that our statistical verification
approach is efficient and scalable when we consider large non
monotone models and lets us to verify rare event properties
efficiently on these models. Also we have found that our
statistical verification approach scales better with the state
space size and it is faster than PRISM tool especially for large
models. In the future, we plan to complete our verification
results for the CSL unbounded until formulas [14].

REFERENCES

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Model-checking
continous-time markov chains.ACM Trans. Comput. Log., 1(1):162–
170, 2000.

[2] C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-checking
algorithms for continuous-time markov chains.IEEE Trans. Software
Eng., 29(6):524–541, 2003.

[3] A. Busic, J. M. Vincent, and B. Gaujal. Perfect simulationand non-
monotone (markovian) systems. InVALUETOOLS08. ACM, 2008.

[4] P. Glasserman and D. Yao.Monotone Structure in Discrete-Event
Systems. 1994.

[5] G. Gorgo. Envelope perfect sampling of 2-phases coxian service in
queueing networks. INRIA. 2010.

[6] T. Hérault, R. Lassaigne, and S. Peyronnet. Apmc 3.0: Approximate
verification of discrete and continuous time markov chains. InQEST06,
pages 129–130. IEEE Computer Society, 2006.

[7] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism:A tool
for automatic verification of probabilistic systems. InTACAS06, volume
3922 ofLNCS, pages 441–444, 2006.

[8] J. P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen.
The ins and outs of the probabilistic model checker mrmc. InQEST09,
pages 167–176. IEEE Computer Society, 2009.

[9] D. Propp and J. Wilson. Exact sampling with coupled markov chains and
applications to statistical mechanics.Random Structures and Algorithms,
9(1 and 2):223–252, 1996.

[10] D. El Rabih, G. Gorgo, N. Pekergin, and J.M. Vincent. Steady state
dependability verification for very large systems. lacl. 2010.

[11] D. El Rabih, G. Gorgo, N. Pekergin, and J.M. Vincent. Steady state
property verification: a comparison study. InVECOS10. eWic, British
Computer Society, 2010.

[12] D. El Rabih, G. Gorgo, N. Pekergin, and J.M. Vincent. Steady state
property verification for very large systems. InInternational Journal of
Critical Computer-Based Systems, IJCCBS11 (to appear), 2011.

[13] D. El Rabih and N. Pekergin. Statistical model checking for steady
state dependability verification. InDEPEND09, pages 166–169. IEEE
Computer Society, 2009.

[14] D. El Rabih and N. Pekergin. Statistical model checking using perfect
simulation. InATVA09, volume 5799 ofLNCS, pages 120–134, 2009.

[15] K. Sen, M. Viswanathan, and G. Agha. Vesta: A statistical model-
checker and analyzer for probabilistic systems. InQEST05, pages 251–
252. IEEE Computer Society, 2005.

[16] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model
checking of stochastic systems. 3576:266–280, 2005.

[17] J. M. Vincent. Perfect simulation of monotone systems for rare event
probability estimation. InWinter Simulation Conference, pages 528–537.
ACM, 2005.

[18] J. M. Vincent and J. Vienne. ψ2 a software tool for the perfect
simulation of finite queueing networks. InQEST07, pages 113–114.
IEEE Computer Society, 2007.

[19] J.M. Vincent and C. Marchand. On the exact simulation of functionals of
stationary markov chains.Linear Algebra and its Applications, 386:285–
310, 2004.

[20] H. L. S. Younes. Ymer: A statistical model checker. InCAV05, volume
3576 ofLNCS, pages 429–433, 2005.

[21] H. L. S. Younes. Error control for probabilistic model checking. In
VMCAI06, volume 3855 ofLNCS, pages 142–156, 2006.

[22] H. L. S. Younes and R. G. Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties.Inf. Comput.,
204(9):1368–1409, 2006.

23

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           32 / 114



A Dependable Microcontroller-based Embedded System 

 

 

Amir Rajabzadeh 

Department of Compute Engineering  
Razi University 

Kermanshah, Iran 

rajabzadeh@razi.ac.ir 

Mahdi Vosoughifar 

Department of Computer Engineering  
Islamic Azad University Arak Branch 

Arak, Iran 

mehdi_vosoughifar@yahoo.com

 

 
Abstract—This paper presents a method to make a dependable 

microcontroller-based system for detecting any violation from 

the program flow caused by transient faults. The method is 

based on a duplication and comparison technique and employs 

a “synchronous interrupt” in both microcontrollers to monitor 

and compare the program counters (PCs) of the 

microcontrollers. This is done by adding an interrupt service 

routine in both microcontrollers and without any modification 

of the application programs. The method has been 

experimentally evaluated using AVR ATMega-32 

microcontrollers. The results show that error detection 

coverage of the method is 100% based on the fault models. The 

error detection latency varies about 1184 cycles (74 sec) to 

128147 cycles (8 msec) and the execution time overhead of the 

method varies between 0.5% and 50% for different PC 

exchange interrupt frequencies. The hardware and software 
overheads are about 100% and less than 0.5% respectively.  

Keywords- dependable system; control flow checking method; 

concurrent error detection; microcontroller-based system; 

embedded system.              

I.  INTRODUCTION 

We are used to hearing about extended computer 
applications and explosive growth in the computation ability 
of processors. Based on usage patterns, processor cores can 
be divided into four categories [1]:  

1) Computational micros: they are 32-bit or 64-bit 
general-purpose processors, and typically deployed as the 
central processing unit of mainframes, workstations, and 
personal computers. Most commercial off-the-shelf RISC 
and CISC processors fall into this category. This group has 
accounted for less than 2% of the volume of processors 
shipped. 

2) Embedded general-purpose micros: they are 
general-purpose processors, usually 32-bit processors, 
designed for embedded systems. These are often scaled-
down versions of existing computational micros. Embedded 
general-purpose micros constituted about 8% of total 
volumes of processors shipped. 

3) Digital signal processors: they are specific-purpose 
processors with the ability to execute arithmetic operations 
efficiently. This group accounted for about 10% of the 
volume of processors shipped. 

4) Microcontrollers: they have 8-bit, 16 bit or 32-bit 
processor core with memory, I/O, and peripherals on a chip. 
Microcontrollers have been estimated to be about 80% of the 
processors shipped. 

Embedded systems are widely used in industrial control 
systems [2]. Industrial control systems usually have fairly 
low computational requirements and low memory capacity. 
This is within the domain of 8-bit and 16-bit 
microcontrollers. Small 8-bit CPUs still dominate the 
market, representing about 70% of overall processor 
shipments [1].  

These embedded systems are usually involved with some 
aspects of dependability issues and system failures can 
severely damage human life or equipments. In these systems, 
dependability is an important concern and error detection 
mechanism has a key role in designing the system. On the 
other hand, as the number of transistors per chip continues to 
grow, the error rate per chip is expected to increase [3], the 
fault occurrence rates are increasing by approximately 8% 
per chip [4]. These trends show that to ensure correct 
operation of embedded systems, they must employ 
dependability methods against transient faults. 

This paper actually presents a concurrent error detection 
method for embedded systems based on microcontrollers. 
The proposed method employs the synchronous external 
burst interrupt in duplication microcontrollers and compares 
the run time program counters of the microcontrollers in a 
service routine. The method has been experimentally 
evaluated on an AVR microcontroller-based system. The 
results show that error detection coverage of the method is 
100% based on the fault models. The error detection latency 

varies about 1184 cycles (74 sec) to 128147 cycles (8 
msec) and execution time overhead of the method varies 
between 0.5% and 50% for different PC exchange interrupt 
frequencies. The hardware and software overheads are about 
100% and less than 0.5% respectively. 

The next section depicts the related work. Section 3 
discusses the error models in this experiment. Section 4 
describes the proposed method. Section 5 gives method 
evaluation and argues over a system under test. The results 
are presented in section 6, and finally, section 7 summarizes 
and concludes the paper discussion. 

24

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           33 / 114



II. RELATED WORK 

This section describes how embedded systems based on 
microprocessor or microcontroller have been equipped to 
detect transient faults. 

To design a dependable embedded system at least two 
options are available: 

 Using Application-Specific-IC (ASIC) processors:  
such as ERC32 processor [5], LEON-FT processor 
[6] and THOR processor [7] with internal error 
detection mechanisms.  

 Using Commercial Off-The-Shelf (COTS) 
processors: such as Intel Pentium family, PowerPC 
and ARM processors, or AVR and PIC 
microcontrollers. 

Designing an embedded system with fault tolerant ASIC 
processor is a useful way of making a dependable system. 
Fault tolerant ASIC processors have many facilities for 
tolerating faults and have a high percentage of error 
detection coverage.  

Concurrent error detection or fault masking mechanisms 
in ASIC processors are often applied at VLSI, transistor, gate 
or RTL levels. Chip-level and behavioral-based mechanisms 
may be used as well. ERC32 is a 32-bit processor [5] and it 
is compatible with SPARC V7 ISA. The processor has been 
designed for embedded space flight applications. The 
hardening techniques in the VLSI level (layout hardening) 
have been applied to reach the radiation tolerance. All 
registers in integer and floating unit have been provided with 
parity bits (gate level). Program flow control has been 
implemented using embedded signature monitoring 
(behavioral-based mechanism) and master/checker 
mechanism at chip-level is supported by the processor. 
LEON-FT is a 32-bit processor [6] and it is compatible with 
SPARC V8 ISA. Internal cache memory and register file in 
the processor has been provided with error-detection in form 
of parity bits. Flip-flops are implemented using triple 
modular redundancy (TMR) and master/checker mechanism 
at chip-level is supported by the processor as well. 

Although fault tolerant ASIC processors present a good 
way of designing a dependable system, nevertheless, the use 
of commercial off-the-shelf (COTS) processors are 
phenomenally popular, because it decreases the cost 
significantly.  

COTS processors have a low or moderate percentage of 
error detection coverage, but short time-to-market [8], 
availability in the market [8], trust in products [9], low 
development, test equipment and maintainability cost [10] of 
the systems are important matters to design a low-cost 
dependable system. Meanwhile, engineers can make use of a 
wide range of facilities in available market [8], [9].  

Since COTS microcontrollers have not been designed for 
fault tolerant applications [9], [11], they require additional 
methods to enhance error detection capability in these 
systems [9]. The use of COTS processor incurs additional 
error detection mechanisms that must be employed.  

Concurrent error detection methods are extremely 
popular among dependability methods, against transient 

faults. Concurrent error detection mechanisms in COTS-
based systems have been classified as follow:  

 Structural-based mechanisms 

 Behavioral-based mechanisms  
Structural-based mechanisms are based upon hardware 
replication. For COTS-based systems, hardware replications 
can be applied at chip-level, such as master/checker [12] 
mechanism, and system-level.  

Behavioral-based mechanisms extract an abstraction 
from the application program, memory access etc., usually 
performed during “compile time”, and checking the 
abstraction during runtime. It has been indicated that more 
than 70% of all transient faults lead to deviation from the 
program’s normal instruction execution flow, i.e., Control 
Flow Errors (CFE) [13]. Control Flow Checking (CFC) 
techniques (i.e., techniques to detect CFEs) have been known 
as an effective concurrent error detection method [14]. Most 
of the CFC techniques are using signature monitoring 
technique. In this technique, at setup time, the program is 
decomposed into basic blocks of instructions and a signature 
is derived from each basic block and saved somewhere, 
during runtime the signatures based on the basic blocks will 
be regenerated and compared with the saved one. CFC 
techniques can be implemented by pure software such as 
CFCSS [15] and feature specific CFC [16], pure hardware 
such as watchdog direct processing (W-D-P) [17] and 
CFCET[9], or hybrid (combined hardware-software) such as 
TTA[18] and CIC[19].  

The workload program in CFCSS [15] is divided into 
basic blocks. The blocks in the program are assigned 
different arbitrary signatures, which are embedded into the 
program during compile time. A run-time signature is 
generated using XOR function and compared with the 
embedded signatures when instructions are executed.   

Feature specific CFC [16] is a pure software control flow 
checking technique. In this technique, the program is 
decomposed into basic blocks of instructions and partition 
blocks between them. A signature is derived from each block 
(i.e., basic block and partition block) at the compile time, 
which is the number of instructions in the block. At runtime, 
the technique uses performance monitoring in modern COTS 
processors and employs their internal counters to regenerate 
the signatures (i.e., instructions executed in each block) and 
compares them with saved ones.  

Usually, the big problem of software-based CFC is the 
weakness of detecting an error in program crash or CPU 
crash states. The above drawback of the software-based CFC 
techniques can be eliminated in hardware based approaches. 

The watchdog direct processing (W-D-P) [17] and the 
CFCET [9] techniques are pure hardware and they do not 
need any program modification.  

The W-D-P verifies the application program using a 
separate checking program executed by a watchdog 
processor (watchdog program). In this technique, each 
application program is represented by a reference control 
flow graph (i.e., sequencing nodes and destination nodes) 
and the watchdog program shadows the application program 
and contains one instruction for each node in the application 
program.  

25

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           34 / 114



The CFCET uses the internal execution tracing feature in 
modern COTS processors, which provides the ability to 
monitor the addresses of the taken branches in a program at 
run-time, and an external watchdog processor to detect any 
violation from branch address saved at compile-time.  

As these techniques control some processor pins signals 
to extract signatures, they cannot be applied to 
microcontrollers-based system.  

TTA [18] and CIC [19] are hybrid CFC techniques. The 
TTA technique decomposes the workload program into 
branch-free blocks (BFBs) and partition blocks (PBs). The 
scheme uses an external watchdog processor and combines 
five error detection mechanisms. The TTA uses three timers 
into the watchdog processors; BFB-timer, PB-timer and WL-
timer to check each BFB, PB and whole workload execution 
time respectively. The address mechanism in TTA sends the 
size of a BFB in bytes when the BFB is entered. At the same 
time, the watchdog processor reads the start address of the 
BFB from the address bus and calculates the exit address of 
the BFB. At the end of the BFB, the watchdog processor is 
signaled. An error has occurred if the calculated exit address 
is different from the observed exit address. The phase 
mechanism in TTA checks the entering and exiting of each 
BFB and PB.  

The CIC uses two external special pins, called event-
ticking pins PM0 and PM1, which can signal out when an 
instruction is committed into the processor pipeline. The 
number of instructions executed in each BFB and PB, and 
also whole workload program are counted externally by the 
watchdog processor using the processor event-ticking pins. 

This paper actually presents a concurrent error detection 
method based on HWSW-CFC technique. The proposed 
method employs the synchronous external burst interrupt in 
duplication microcontrollers and compares the run time 
program counters of the microcontrollers in a service routine. 
The main advantages of the proposed method are:  

 Instead of using high costs ASIC components, the 
method uses low cost COTS processors to perform on-
line system-level error detection 

 It can be applied to the microcontroller-based system, 
and can also be applied to the processors with pipeline 
and on-chip caches. 

 It can detect control flow errors caused by data errors. 

 No modification of the workload programs is required, 
but it needs to add an interrupt service routine.  

 Program size overhead is very low (only an interrupt 
service routine must be added) 

III. ERROR MODELS 

The basic model of errors used in this work is a violation 
of program’s normal instruction execution flow which will 
be explained in this section. These violations can be caused 
by transient or permanent faults in the memory or address 
circuits [21]. Based on these faults, five types of error 
models are defined as follows: 

Error model 1: Program Counter Error (PCE): a PCE 
occurs when a fault changes program counter bits and an 
illegal jump occurs. 

Error model 2: Branch Condition Error (BCE): a BCE 
occurs when a data fault (data register, flag register or data 
memory) causes the condition of a branch instruction is 
changed and a taken branch changes to non-taken branch or 
vice versa. 

Error model 3: Branch Insertion Error (BIE): a BIE 
occurs when one of the non-branch instructions in the 
program is changed to a branch instruction as the result of a 
fault and the branch instruction actually causes a taken 
branch. 

Error model 4: Branch Target Modification Error 
(BTME): a BTME occurs when the target address of one 
branch instruction is modified as the result of a fault and this 
instruction actually causes a taken branch. 

Error model 5: Branch Deletion Error (BDE): a BDE 
occurs when a fault causes a branch instruction of a program 
changes to a non-branch instruction. 

IV. PROPOSED METHOD 

The proposed method uses a duplication and comparison 
technique at chip level for checking the correctness of the 
program's instruction execution flow. The program flow 
checking is done using motivation of synchronous external 
interrupts in both microcontrollers and comparison the run 
time program counters of the microcontrollers in the service 
routine regularly.  

The hardware part of the method is shown in Fig. 1. It 
contains two microcontrollers that run an identical program 
with an identical external clock.  

Power on Reset: It resets both microcontrollers when 
turn power supply is on. 

Pulse Generator for Synchronization: this unit generates 
a pulse to motivate an interrupt for synchronization of the 
microcontrollers to start program execution. 

Pulse Generator for PC exchange: this unit generates 
periodic pulses to motivate interrupts periodically for 
exchanging and comparing PCs between the 
microcontrollers to check the existence of any discrepancy. 

The software part of the method is shown in Fig. 2. It 
contains two programs that run in both microcontrollers: 1) 
Synchronization Program and 2) PC Exchange Routine.  

The Synchronization Program synchronizes two 
microcontrollers' program to start. It contains a sleep 
instruction and an interrupt routine that sets PC to the 
address of the original program. This microcontroller has an 
internal power on reset that delays (for several milliseconds) 
starting the program. This delay makes the microcontrollers 
execution asynchronous, because the two microcontrollers 
do not have exactly the same delay.  

The PC Exchange Routine is regularly invoked. This 
routine sends its own PC register to another microcontroller, 
and then gets another microcontroller's PC and compares two 
PC contents (i.e., its own PC and got PC) to check the 
existence of any discrepancy. 

The assembly or C codes of workload programs can be 
used to add the extra instructions needed to implement the 
method. The pseudo code of the Synchronous Program and 
PC Exchange Routine are shown in Fig. 3. 

26

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           35 / 114



Microcontroller 1

Microcontroller 2

Power on 

Reset 
Clock

Pulse Gen.

for Sync.

Pulse Gen. for

PC Exchang

Exchange

PCs

 

Figure 1.  Hardware part of proposed method. 

Original

Program

Original

Program

Sync.

Program

PC Exchange

Routine
 

Figure 2.  Software part of proposed method. 

V. METHOD EVALUATION 

The architecture of the experimental system is shown in 
Fig. 4. 

 
ORG 0 
Initial Ports & Interrupts 
start:    sleep  /* wait until sync. interrupt is occurred*/ 

-------------------------------------------------------------------------------- 
Int_Sync_Routine(){ 
     Read PC from Stack  
     PC = Begin        /*set PC to address of  original program*/ 

     Write PC to Stack 
     reti       /*after return from interrupt, original program is  beginning*/ 

    } 

Begin: 

/* main body of the Original Program */ 

PC_Exchange_Routine(){ 
     OwnPC = Read PC from stack  
     Send OwnPC  to another micro 
     OtherPC = Get PC from another micro 
     If ( OwnPC =! OtherPC){ 
            ErrorReport() 

            }  
     reti 
     } 

Figure 3.  Pseudo codes of extra software codes 

Host Computer

Clock

Puls Gen. for

PC Exchang

Power on 

Reset 

Puls Gen.

for Sync.

Error 

Injection 

Time

Reset Command

Sync. Interrupt Command

Start Workload Execution

Error Injection Command

Error Detection Report
Error 

Detection 

Latency

Microcontroller 2

Microcontroller 1

C
o

n
tr

o
ll

er
 a

n
d

E
rr

o
r 

In
je

ct
o

r 

b
o

ar
d

USB to

RS232

Enable Command

 

Figure 4.  Software part of proposed method. 

The system consists of three parts: an AVR 
microcontrollers board, a controller and fault injector board, 
and a host computer. 

AVR microcontrollers board: the board has been 
equipped with two AVR microcontrollers that run an 
identical program, a 16 MHz clock generator for 
microcontrollers' clock pins, a monostable circuit to generate 
a pulse to invoke synchronization interrupt, and a clock 
generator with 100Hz, 1KHz and 10KHz frequencies to 
invoke PC exchange interrupts.  

Two types of programs were executed on the AVRs 
board; the workload programs and a fault injector routine.  

The workload programs: Three programs written in 
assembly language have been used in the experiment: 1) a 10 
× 10 matrix multiplication (M = A × A-1), 2) a linked list 
(List) containing 100 records, and 3) a quick sort (QSort) 
containing 100 elements. 184 copies of the Matrix program,  
124 copies of the List program, and 93 copies of the QSort 
program were consequently stored in the memory. These 
copies fill microcontrollers' flash memory (i.e., 32KB) with 
program codes. They were executed one after another in a 
loop until a fault occurs. The workload program were started 
when the system were reset.  

The fault injector routine: The fault injection method 
used in these experiments is based on the software 
implemented fault injection (SWIFI). This paper focuses on 
the transient effects called SEUs (single event upsets). 
Several reports have mentioned that the SEU is important not 
only for the circuits operating in the space, but also for the 
digital equipments operating at the ground level [20]. It is 
reported in [21] that the majority (>60%) of control flow 
errors differ from the correct ones in only a single bit (i.e., 
SEU) of an address. SEUs are responsible for the 
modification of memory cells content (registers, internal 
memory, etc.). Usually, memories are protected against 
SEUs by means of error detecting/correcting codes 
(Hamming code, CRC code, Reed-Solomon code, etc.) [20]. 
In such cases, internal registers are of much important. 
Several reports have mentioned that SEU in the PC register 
are a major source of CFEs in comparison to other internal 
registers [21]. Therefore, to generate CFEs, the bits of the 
program counter (PC) are changed, one bit for each fault. 
This is done as follows: 1) the fault injector logic activates 
the INT0 pin of the microcontrollers, 2) the interrupt service 

27

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           36 / 114



routine reads the return address from the stack, changing a 
bit of the return address and then writing it back to the stack, 
3) after returning from the interrupt service routine, the 
execution continues at an unexpected address due to the 
change of the value of the return address. To make sure 
about the coverage results, we assume that the probability 
distribution of the error occurring in PC bits (14 bits for 
16K×16bits flash memory in AVR ATmega-32) will be 
uniform. The manager program on host computer issues the 
error injection command randomly in time during the 
execution of the workload program. 

Controller and Error Injector board: the board has 
been equipped with a microcontroller and interface logic. 

The interface logic establishes communication between 
the host computer and the controller board. 

 The controller board has five main tasks: 1) waiting to 
get a start command from the host and sending a Reset 
Command to reset the AVR Microcontroller Board, 2) 
waiting for the Start Workload Execution from the AVR 
Microcontroller Board and sending the Synchronization 
Command, 3) sending the Enable Command to activate pulse 
generator for PC exchange interrupts, 4) getting an Error 
Injection Time from the host and waiting until the time 
elapses and sends a command to activate INT0 pin of the two 
microcontrollers on AVR microcontroller board when a fault 
is to be injected, and 5) initialization of a timer to record the 
coverage and latency information.  

Host Computer: The host computer contains a manager 
program and an offline data analyzer. The task of the host 
computer is to manage and control the whole experiment. 

The offline data analyzer program analyses the raw data 
collected from the experiments and extracts the results. 

VI. EXPERIMENTAL RESULTS 

This section presents the experimental results of the 
program size overhead, execution time overhead, error 
detection coverage, and error detection latency. Three 
programs written in assembly language, i.e., quick sort 
(QSort), matrix multiplication (Matrix) and linked list (List), 
have been used in this experiment. 

 Error Detection Coverage: Table 1 shows error 
detection coverage for each workload. The basic model of 
errors used in this evaluation is Program Counter Errors 
(PCE). Although, five types of errors have been modeled in 
Section III, all of them change the PC finally. The changed 
PC causes a violation of the program normal instruction 
execution flow. These violations can be caused by transient 
faults in the memory or address circuits. The error detection 
coverage is 100% based on fault model for all workloads. 
Although, it is obvious that the method can detect all PC 
errors, this method has been implemented for feasibility 
checking and to obtain other parameters. 

Program Size Overhead: The assembly (or C) codes of 
workload programs can be used to add the extra instructions 
needed to implement the method. The structure of a program 
after inserting the extra instructions is shown in Fig. 3. Three 
programs (i.e., Matrix, List, and QSort) have been used as 
workloads and the extra codes needed to implement the 
method were added to the workloads. The extra instructions 

inserted in the workload programs incur program size. As 
shown in Table 1. program size overhead is about 0.47%. 
This parameter achieved similar results for different 
workloads because several copies of each workload were 
consequently stored in the flash memory. These copies fill 
microcontrollers' flash memory (i.e., 32KB) and extra codes 
for each workload is constant (i.e., 152 bytes), therefore, the 
program size overhead is approximately constant (i.e., 
0.47%). 

Execution Time Overhead: The method uses 
synchronous external interrupts in both microcontrollers and 
compares their run time programs in a service routine. 
Interrupt handling incurs execution time. A workload is run 
in two cases, with presence and no presence of PC exchange 
interrupts, and a timer is set for measuring the relevant 
execution times. The execution time overhead based on 
different PC exchange interrupt is shown in Table 2.  As 
Table 2 shows, the percentages of execution time overhead 
in the method vary between 0.5% and 50%.  

Error Detection Latency: error detection latency is the 
average time between fault injections to error detections. A 
timer is set to work after each fault injection. After each fault 
detection, the timer is read and saved. The error detection 
latencies are shown in Table 2 .The mean latencies varied 
between 1184 and 128147 cycles for different interrupt 
frequencies. The latency values were calculated with respect 
to the processor external clock frequency which was 16 
MHz.   

Power Consumption Overhead: Two microcontrollers 
were connected together to be able to work in a duplicate 
configuration. The microcontrollers have all inputs 
connected together, but only one of them drives the outputs. 
It is reasonable to assume that a duplicate configuration can 
make duplicate of power. In this method, the total 
consumption of power is risen about 100%.  

 

TABLE I.  DETECTION COVERAGE AND PROGRAM OVERHEAD 

 
Workloads 

QSort Matrix List 

Errror Detection Coverage(%)  100% 100% 100% 

Original Program Size (bytes) 
32600 

bytes 

32482 

bytes 

32360 

bytes 

Extra Codes (bytes) 
152 

bytes 

152 

bytes 

152 

bytes 

Program Size Overhead(%)  0.47% 0.47% 0.47% 

 

TABLE II.  TIME OVERHEAD AND DETECTION LATENCY 

 
Frequencies of interrupt 

100Hz 1KHz 10KHz 

Execution Time Overhead (%) 0.5% 5% 50% 

Error Detection Latency (CLK) 
128147 

CLK 

12162 

CLK 

1184 

CLK 

Error Detection Latency (msec) 
8009 

sec 

760 

sec 

74 

sec 

28

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           37 / 114



VII. CONCLUSION AND FUTURE WORK 

A hardware-software-based control flow checking 
method for COTS-microcontroller-based applications has 
been presented and evaluated. The method is based on 
duplication of microcontrollers and employs synchronous 
burst interrupts in both microcontrollers to monitor and 
compare their program counters (PCs). An implementation 
of the method has been experimentally evaluated. The 
method has been experimentally evaluated using AVR 
ATMega-32 microcontrollers and software-based error 
injection method. The results show that error detection 
coverage of the methods are 100% based on the fault models. 
The hardware and software overheads are about 100% and 
0.5% respectively. The distinctive advantages of the 
proposed method over previous hardware-software-based 
error detection methods are the ability to apply in 
microcontrollers and the ability to detect control flow errors 
caused by data errors. For future works, we are going to add 
a system recovery mechanism after error detecting.    

REFERENCES 

[1] J. A. Fisher, P. Faraboschi, and C. Young, ”Embedded 
Computing: A VLIW Approach to Architecture, Compilers 
and Tools”,Morgan Kaufmann Publishers, ISBN: 1-55860-
766-8, 2005. 

[2] Y. He and A. Avizienis, “Assessment of the applicability of 
COTS microprocessors in high-confidence computing 
systems: a case study,” Proceedings of the international 
conference on dependable systems and networks (DSN2000), 
pp. 81–86, June 2000. 

[3] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. 
Connors, ”PLR: A Software Approach to Transient Fault 
Tolerance for Multicore Architectures”, IEEE Transaction on 
Dependable and Secure Computing, vol. 6, no. 2, pp. 135-
148, APRIL-JUNE 2009. 

[4] S. Borkar, ”Designing Reliable Systems from Unreliable 
Components: the Challenge of Transistor Variability and 
Degradation,” IEEE Micro, vol. 25, issue: 6, pp. 10-16, 
November-December 2005. 

[5] V. Stachetti , J. Gaisler, G. Goller, and C.L. Gargasson, ”32-
bit processing unit for embedded space flight applications”, 
IEEE Tranaction on Nuclear Science, 43(3), pp. 873–878, 
1996. 

[6] J. Gaisler, ”A Portable and fault-tolerant microprocessor 
based on the SPARC 8 architecture”, Proceedings of 
international conference on dependable systems and 
networks, pp. 409–415, June 2002.  

[7] S. Asserhall, T. Petersson, and P. Blomqvist, ”RAD HARD 
THOR microprocessor description”, Saab Ericsson Space, 
Document No P-TOR-NOT-0004-SE, issue 2, Jan 1999. 

[8] P. Croll and P. Nixon, ”Developing safety-critical software 
within a CASE environment,” Proceedings of the IEE 
colloquium on computer aided software engineering tools for 
real-time control, pp. 8, April 1991. 

[9] A. Rajabzadeh and S. Gh. Miremadi, ”CFCET: A hardware-
based control flow checking technique in COTS processors 
using execution tracing,” Elsevier Journal of Microelectronic 
Reliability, vol. 46, issue 5-6, pp. 959-972, May-June 2006. 

[10] P. Chevochot and I. Puaut, ”Experimental evaluation of the 
failsilent behavior of a distributed real-time run-time support 
built from COTS components,” Proceedings of the 
international conference on dependable systems and networks 
(DSN-2001), pp. 304–313, July 2001. 

[11] H. Madeira, R. R. Some, F. Moreira, D. Costa, and D. 
Rennels, ”Experimental evaluation of a COTS system for 
space applications,” Proceedings of the international 
conference on dependable systems and networks (DSN-2002), 
pp. 325–330, June 2002. 

[12] A. Rajabzadeh, S. G. Miremadi, and M. Mohandespour, 
“Experimental Evaluation of Master/Checker Architecture 
Using Power Supply- and Software-Based Fault Injection”, 
Proceedings of the 10th IEEE International On-Line Testing 
Symposium (IOLTS 2004) Madeira Island, Portugal, pp. 239-
244, July 2004. 

[13] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, 
”Low-Cost On-Line Fault Detection Using Control Flow 
Assertions,” Proceeding of the 9th IEEE International Online 
Testing Symposium (IOLTS'03), pp. 137-143, July 2003. 

[14] A. Mahmood, and E. J. McCluskey, ”Concurrent error 
detection using watchdog processors-a survey,” IEEE 
Transaction on Computers, vol. 37, issue 2, pp. 160-174, 
February 1998. 

[15] N. Oh, P. P. Shirvani, and E. J. McCluskey, ”Control-Flow 
Checking by Software Signatures”, IEEE Transactions on 
Reliability, vol. 51, no. 1, pp. 111-122, March 2002. 

[16] A. Rajabzadeh, ”Feature Specific Control Flow Checking in 
COTS-based Embedded Systems”, Third IARIA International 
Conference on Dependability (DEPEND 2010), Venice, Italy, 
pp. 58-63, July 2010. 

[17] T. Michel, R. Leveugle, and G. Saucier, ”A new approach to 
control flow checking without program modification,” 
Processding of the 21st international symposium on fault-
tolerant computing, pp. 334-341, June 1991.  

[18] S. Gh. Miremadi, J. Ohlsson, M. Rimen, and J. Karlsson, 
“Use of Time, Location and Instruction Signatures for Control 
Flow Checking”, Dependable Computing and Fault Tolerant 
System, IEEE Computer Society Press, vol. 10., ISBN 0-
8186-7803-8, 1998, pp. 201–221. 

[19] A. Rajabzadeh, S. Gh. Miremadi, and M. Mohandespour, 
”Error detection enhancement in COTS superscalar 
processors with performance monitoring features,” Journal of 
Electron Testing: Theory and Applications (JETTA), pp. 553-
567,  2004. 

[20] B. Nicolescu, R. Velazco , M. Sonza-Reorda, M. Rebaudengo 
, and M. Violante, ”A software fault tolerance method for 
safety-critical systems: effectiveness and drawbacks”, 
Proceedings of the 15th symposium on integrated circuits and 
systems design (SBCCI-02), pp. 101-106, 2002.  

[21] M. Rimen, J. Ohlsson, and J. Karlsson, ”Experimental 
evaluation of control flow errors”, Proceedings of the Pacific 
Rim international symposium on fault tolerant systems 
(PRFTS-95), pp. 238-243, December 1995. 

 

 

 

 

29

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           38 / 114



Dependable Ordering Policies for Distributed Consistent  Systems 
 
 

Matei Dobrescu, Manuela Stoian, Cosmin Leoveanu 
General IT Directorate 

Insurance Supervisory Commission 
Bucharest, Romania 

mdobrescu@csa-isc.ro 
 
 

Abstract—A distributed system can be characterized by the 
fact that the global state is distributed and that a common time 
base does not exist. A linearly ordered structure of time is not 
always adequate for distributed systems and many authors 
have adopted a generalized non-standard model of time which 
consists of vectors of clocks. The paper present an improved 
algorithm where these clock-vectors are partially ordered and 
form a lattice. By using timestamps and a simple clock update 
mechanism the structure of causality is represented in an 
isomorphic way and the causal consistency is obtained. Finally, 
is presented the implementation of this new algorithm which 
allow to compute a consistent global snapshot of a distributed 
system for replicated services, where messages may be received 
out of order. 
 

Keywords- temporal ordering; distributed systems; causal 
consistency; events structure; clock-vectors 

I. INTRODUCTION 

An asynchronous distributed system consists of several 
processes without common memory which communicate 
solely via messages with unpredictable (but non-zero) 
transmission delays. In such a system the notions of global 
time and global state play an important role but are hard to 
realize. Since in general no process in the system has an 
immediate and complete view of all process states, a process 
can only approximate the global view of an idealized 
external observer having immediate access to all processes. 

The fact that a priori no process has a consistent view of 
the global state and a common time base does not exist is 
the cause for most typical problems of distributed systems. 
Control tasks of operating systems and database systems 
like mutual exclusion, deadlock detection, and concurrency 
control are much more dificult to solve in a distributed 
environment than in a classical centralized environment. 
The great diversity of the solutions to these problems 
exemplifies many principles of distributed computing to 
cope with the absence of global state and time. To simplify 
the design and the validation of algorithms for asynchronous 
systems, one can try to simulate a synchronous distributed 
system on a given asynchronous systems, simulate global 
time (i.e., a common clock) and simulate global state (i.e., 
common memory), and then use these simulated properties 
to obtain the desired result. The first approach is realized by 
so-called synchronizers [1] which simulate clock pulses in 

such a way that a message is only generated at a clock pulse 
and will be received before the next pulse. The second 
approach does not need additional messages and the system 
remains asynchronous in the sense that messages have 
unpredictable transmission delays. This approach has been 
proposed by Lamport [2]. He shows how the use of virtual 
time implemented by logical clocks can simplify the design 
of a distributed mutual exclusion algorithm. The last 
approach was pursued by Chandy and Lamport in their 
snapshot algorithm [3], one of the fundamental paradigms of 
distributed computing. More recent approaches ([4], [5], [6], 
[7], [8], [9]) proved that to maintain the data consistency, 
the special synchronization operations are reduced to the 
minimum and are delivered using a global ordering 
algorithm. Almost all this algorithms assure a time 
complexity linear to network delays by utilizing timestamp 
estimations. 

The organization of the informational flow as a linear 
sequence of discrete events is inappropriate for 
asynchronous distributed systems, where information is 
distributed and perception is delayed. Distributed 
environments require a distributed notion of time and a 
theory of distributed time provides a natural framework for 
solving problems in distributed environments.  

While a synchronous distributed computing model 
provides processes with bounds on processing time and 
message transfer delay, which can be used to safely detect 
process crashes and allow consequently the non-crashed 
processes to progress with safe views of the system state,  
the asynchronous model is characterized by the absence of 
time bounds (this model is sometimes called time-free 
model). In these systems one can only assume an upper 
bound on the number of processes that can crash (let denote 
them by m) and consequently design protocols relying on 
the assumption that at least (n − m) processes are alive, n 
being the total number of processes. In a distributed 
environment, the main drawback is the consensus problem, 
that has no deterministic solution when even a single 
process can crash. The consensus problem can be stated as 
follows: each process proposes a value, and has to decide a 
value, unless it crashes, such that there is a single decided 
value to be proposed for assuring validity. The impossibility 
of solving consensus has motivated researchers to find 
distributed computing models, weaker than the synchronous 
models but stronger than the asynchronous models, in which 

30

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           39 / 114



consensus can be solved. In such a model we can describe 
the target in terms of distributed time, as a timeslice of 
logical simultaneity in the temporal relations expressed by a 
time model. The timed asynchronous model considers 
asynchronous processes equipped with physical clocks to 
ensure temporal ordering.  
 Resuming, one can say that the principles for temporal 
ordering in asynchronous distributed systems are: 1) Each 
machine maintains its own time; 2) There is no global 
shared clock; 3)  Each target has a list of files on which it 
depends; 4) At the target one compare the associated 
timestamps; 5)  If the target is older than some file that it 
depends on, then target is re-built. 
 A simple algorithm that respect these principles should 
ensure the following steps: 1) A time server maintains 
global notion of time; 2) Each machine periodically contacts 
time server asking for current global time; 3)  Machine 
updates local time with global time. For implementation, the 
problem to solve is to associate with each event a logical 
timestamp T such that if A⇒B then T(A) < T(B), where 
⇒means that event A precedes event B. Then, the ordering 
algorithm  keeps for  each i-th process a non-negative 
integer counter Ti, initially 0; when i-th process performs 
computation event, Ti←Ti + 1 and when i-th process sends 
a message m, it computes Ti←Ti + 1 and appends T(m) ←Ti 
to m. Finally, when i-th process receives message m, 
Ti←max{Ti, T(m)} + 1. For event A at i-th process, one 
define T(A) = Ti computed during A. A scheme for such a 
process is shown in figure 1 a. A better solution of Mattern 
is based on clock vectors [10], i.e. the i-th process keeps a 
vector Ti with n elements (see figure 1b).  Each element 
Ti[j] is a non-negative integer counter, initially 0. The 
following statements work: when i-th process performs any 
event, Ti[i] ←Ti[i]+ 1; when i-th process sends m, it also 
appends T(m) ←Ti to m; when i-th process receives m, it 
also computes Ti[j] ←max{Ti[j],T(m)[j] } for each j ≠ i; for 
event A at i-th process, define T(A) = Ti computed during A 
such that T(A) < T(B) = [ ∀ j: T(A)[j] ≤T(B)[j] ∃∨  j: 
T(A)[j] < T(B)[j]] . 

          

 
Figure 1. Ordered process using classical algorithms:  

a) Lamport; b) Mattern 

While in some sense the snapshot algorithm computes 
the best possible attainable global state approximation, 
Lamport's virtual time algorithm is not that perfect. In fact, 
by mapping the partially ordered events of a distributed 
computation onto a linearly ordered set of integers it is 
losing information. Events which may happen 
simultaneously may get diferent timestamps as if they 
happen in some definite order. For some applications (in our 
case the objective was the ordering of events in the alerts 
flow of an emergency system) this defect is noticeable. In 
this paper, we aim at improving Lamport's virtual time 
concept,  considering that a partially ordered system of 
vectors forming a lattice structure is a natural representation 
of time in a distributed system. In this non-standard model 
of time all events which are not causally related are 
considered simultaneous, thus representing causality in an 
isomorphic way without loss of information. 

 

II. EVENT STRUCTURES 
 

In an abstract setting, a process can be viewed as 
consisting of a sequence of events, where an event is an 
atomic transition of the local state which happens in no 
time. Hence, events are atomic actions which occur at 
processes. Usually, events are classified into three types: 
send events, receive events, and internal events. An internal 
event only causes a change of state. A send event causes a 
message to be sent, and a receive event causes a message to 
be received and the local state to be updated by the values of 
the message.  

Events are related: Events occurring at a particular 
process are totally ordered by their local sequence of 
occurrence, and each receive event has a corresponding send 
event. Formally, an event structure [11] is a pair (E;<), 
where E is a set of events, and „<” is a partial order on E 
called the causality relation. 

Event structures represent distributed computations in an 
abstract way. For a given computation, e < e' holds if one of 
the following conditions holds: 

1) e and e’ are events in the same process and e precedes 
e’, 

2) e is the sending event of a message and e’ the 
corresponding receive event 3) ∃e”  such that e < e” and 
e”< e’ . 

The causality relation is the smallest relation satisfying 
these conditions. 

A consistency mechanism guarantees that operations will 
appear to occur in some ordering that is consistent with 
some condition. Most of the research on this subject 
addressed strong consistency conditions like sequential 
consistency and linearizability. These conditions guarantee 
that operations appear to be executed in some sequential 
order that is consistent with the order seen at individual 
sites. Unfortunately, supporting either sequential 
consistency or linearizability requires a non-negligible cost. 
A way around this cost is to define conditions that provide 
weaker guarantees on the ordering of operations, and can be 

31

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           40 / 114



efficiently implemented. These conditions can be roughly 
classified into two categories: weak and hybrid conditions. 
Weak conditions provide very little guarantee on the relative 
ordering of events at different processes. These conditions 
admit very efficient implementations, but they are too weak 
to support conventional methods for concurrency control. 
Hybrid conditions distinguish between two types of 
operations, strong and weak. Strong operations appear to be 
executed atomically, in some sequential order that is 
consistent with the order seen at individual processes. The 
only guarantees provided for weak operations are those 
implied by their interleaving with strong operations. When 
the consistency mechanism offers hybrid conditions, one can 
define the synchronization as hybrid too. 

Let’s now consider that a model of a distributed 
consistent system (DCS) system is composed of a finite set 
of sequential processes P1, P2,…  Pn, one for each node. The 
processes interact with the application program at the same 
node using call and response events. The processes P1, 
P2,…  Pn interact through a finite set of x∈X shared objects 
via message-send and message-receive events. The process 
Pi can be also modeled as an automaton with states and a 
transition function that takes as input the current state and a 
call or message-receive event, and produces a new state, a 
set of response events and a set of message-send events. 

A history of a process describes what steps the process 
takes and times they occur; it must satisfy certain 
“consistency” conditions. An execution of a set of processes 
is a set of histories, one for each process. 

An execution of a set of processes is a set of histories, 
one for each process, together with a one-to-one 
correspondence between the messages sent by Pi to Pj and 
the messages received by Pj from process Pi. We use the 
message correspondence to define the delay of any message 
in an execution to be the real time of receipt minus the real 
time of sending. The execution is admissible if the delay of 
every message is less than d, for fixed d ≥ 0, and for every 
Pi, at any time at most one call at Pi is pending. 

Every object is assumed to have a serial specification. 
The specification defines a set of operations, which are 
ordered pairs of call and response events, and a set of 
operations sequences, which are the allowable sequences of 
operations on that object. As an example, in the case of a 
read/write object, the ordered pair of events [Readi (x), 
Returni (x,v)] forms an operation for any process Pi, object 
x, and value v, i.e. (v, (r(x,v))) as does [Writei (x,v), Acki (x)] 
(w(x,v)). 

 

A. Legal Operations in Distributed Consistent Systems 

An execution history of a DCS is a partial order 

( )HHH →= ,
)

, formally: 

U
i

ihH =  

21 oo H→  if: 

1) 21: ooP ii →∃  (in that case H→  is called a 

process-order relation 

2) ( ) ( )vxrvxw ,,,∃  such that ( ) 1, ovxw ∈ and 

( ) 2, ovxr ∈  ( in that case H→  is called a read-
from relation) 

3) 313 : ooo H→∃  and 23 oo H→  (transitivity) 

Let’s now consider a history
∧
H . Informally, an operation 

Ho∈ is legal if it does not read overwritten values, i.e.  
the legality of an operation (causal dependency) is defined 
as follows: 

Definition 1. An operation o is legal if 

( ) ':, oovxr ∃∈∀ such that: 

oo H→′  (o’ precedes o) 

( ) ovxw ′∈, (o’ is the operation that wrote v into x) 

"o∀ such that oxwooo HH ′′∉→′′→′ )(:  (there is 
no overwriting operation) 

Definition 2 A history ( )HHH →= ,
)

 is causally 
consistent if, for each process Pi  there exists a linear 

extension of H
)

 in which all operations issued by Pi are 
legal. In other words, the order of all operations of Pi 
maintains causal dependency of the operations .  

As an example let see Figure 2, where appears the model 
of an execution that is only possible in a causally consistent 
system. This shows processes Pi, Pj and Pk modifying 
concurrently different objects. The operation oi,1 updates 
object y at the same time that oj,1 updates object x. The 
second concurrent update occurs when oj,3 writes to object x 
and  ok,4 writes to object y. Pk is able to read the update of Pj 
in ok,1 but the update w(y,1) from Pi is not seen until ok,3. 
These executions are acceptable because the two objects are 
written concurrently and hence Pk makes no assumptions 
about which object will be updates first. The model in 
Figure 2 shows that the execution 2H

)
 is not serializable 

since there does not exist a linear extension of 2H
)

 in which 
all operations are legal. However, 2H

)
 is causally consistent 

as there exists, for each process Pi, a linear extension 
including all write operations plus all read operations issued 
by Pi , in which all operations are legal. 

 
Figure 2. Causal consistency executions 

 

32

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           41 / 114



The causal ordering of messages deals with the notion of 
maintaining the same causal relationship that holds among 
“message send” events with the corresponding “message 
receive” events. Events that occur at a single site are ordered 
in time in the normal way. Informally, an event a at a site s 
is ordered temporally after an event b at site t if, and only if, 
there is a sequence of messages, the first one originating 
from site t after the event b, the next message being sent 
from the destination site of the first message after the first 
message is received there, and so on, with the last message 
being received at site s before the event a. The following 
execution examples show how inconsistencies can appear if 
the system does not ensure causal synchronization. 

A conflict-free run is depicted in Figure 3. This is 
normally the case, where due to the relatively low network 
roundtrip times are small compared to user interaction 
intervals. In this example, Process 1 modified and 
unselected the object (released the lock over the object) 
before Process 2 had sent a select message: Process 2 started 
without waiting for any synchronization or 
acknowledgement messages. 

 
Figure 3. Normal execution with no conflict. 

 
In Figure 4 it is presented a case when the system does 

not provide any causal consistency mechanism. P2 received 
the deselect message from P1 and immediately selected the 
same object (message m2,1 ) before P3 received the previous 
deselect message from P1. This case may occur if packets 
travel between sites through different paths, and their 
roundtrip times vary noticeably. If P2 modifies its local copy 
before m1,3  arrives to P3, the database becomes inconsistent. 
The last occurs because there is no causal synchronization. 

 
Figure 4.  Execution with conflict and no causal synchronization. 

 
The execution diagram depicted in Figure 5 shows the 

result of applying hybrid synchronization to the previous 
example. P3 does not start a flow, it does not send any 
update message, until it receives the message sent by m1,3. 
Therefore, P2 cannot start any object processing until the 
select strong select operation is globally ordered at every 
site. 

 
Figure 5. Causal synchronization 

 
Causal consistency is attractive because not only it can 

meet the sharing needs of many applications but it can also 
be implemented efficiently. It is possible to complete send 
and receive accesses to causally consistent objects without 
synchronisation among processes (or sites) that store copies 
of the objects. This can lead to a scalable architecture 
because coordination among a large number of nodes is not 
necessary with causally consistent shared objects. Among 
these, service-oriented architectures (SOA) are typical for 
the necessity to assure a dependable global ordering.  

 

III.  AN ALGORITHM  FOR DEPENDABLE GLOBAL 

ORDERING OPERATIONS IN SOA 

 
This algorithm is an improvement of the classical 

ordering algorithms based on timestamps. As framework 
We considered a service-oriented architecture (SOA), which 
actually is a collection of services. A service is a function 
that is well-defined and does not depend on the context or 
state of other services. These services communicate with 
each other in the same way as interact processes in a 
distributed system. Services is becoming a platform for 
information interaction between applications.  

Our approach can maintain the data consistency among 
multiple service replicas while we still guarantee the loose 
coupling and location transparency characteristics among 
the service replicas. In the informational flow, consistent 
operations are classified as either strong or weak. 
Informally, flows consistency guarantees two properties:  

1) Strong operations appear to be executed in some 
sequential order. 

2) If two operations are invoked by the same process and 
one of them is strong, then they appear to be executed in the 
order they were invoked. 

Each replica of the editor holds a local copy of the entire 
memory, a local timestamp counter and an array that keeps 
conservative about the values of all other timestamp 

33

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           42 / 114



counters in the system. A weak operation is executed 
instantly on the local copy of the object. In case of writes, 
update messages are sent to all other processes, which 
update their local copies of the memory upon receiving 
these messages. Timestamps are used to enforce global 
ordering on the strong operations. Strong operations are 
timestamped with the local timestamp counter, and a 
message is sent to all processes; the initiating process then 
increments its local timestamp counter by 1. The execution 
of any strong operation is postponed until the timestamp of 
that operation is smaller than all the estimated timestamp 
counters of the system. If more than one strong operation 
can be executed together, they are executed according to 
their timestamps in increasing order. 

The algorithm guarantees that if process Pi estimates Pj 

counter as x, then the local timestamp of Pj is at least x (that 
is, the estimate is conservative). This implies that all strong 
operations ever invoked by Pj bearing timestamp smaller 
than x have arrived at Pi, and ensures that all strong 
operations are executed in the same order and that weak 
operations that were invoked later are also executed later. 

We assume a system of n processes, connected by an 
interconnection network, each maintaining a local copy of 
the entire database. Each process Pi has a local timestamp 
counter, ltsi, initially 0, and an array tsi such that tsi[j] 
contains Pi’s estimate of ltsi. Weak operations are executed 
locally and instantly. If a weak operation is a write of v to 
object x, then update messages are broadcast to all processes 
(an update message includes the new value v to object x to 
be updated). A process that receives an update message of v 
to object x, updates its copy of object x with v. For any 
strong operation (select or deselect messages), a strong-op 
message is sent to all other process; this message not only 
contains update information (path of the object to be 
selected) but also a timestamp lts. Process Pi suspends the 
execution of a strong operation with timestamp ts, until it 
knows that the counters are at least ts+1. When several 
pending strong operations may be executed, they are 
executed according to their timestamps and ids in increasing 
order. 

Executing a strong select operation at process Pi is done 
by updating the list of selected objects in the local copy. If 
object x specified in the select message is marked as already 
selected by another operation, the operation is ignored and 
no action is taken. Otherwise, object x is added to the local 
selection list. Executing a strong deselect operation at 
process Pi is done by deleting the object x specified in the 
message from the selection list. 

Process Pi increases its timestamp in each of the 
following cases: 

1) After Pi sends a strong-op message to all processes. 
2) After Pi receives a strong-op message with 

timestamp equal to ltsi and for all j, tsi[j]≥ltsi. 
3) A strong operation with ts=ltsi-1 was executed in 

Pi, and there exists k such that tsi[k]≥ltsi. 
In the last two cases, a ts-update message is sent to all 

other processes. 
Let’s now discuss how the proposed algorithm offers 

dependable solutions. A crucial issue encountered in 

distributed systems is the way each process perceives the 
state of the other processes. To that end, the proposed model 
provides each process pi with three sets denoted idlei, activei 
and uncertaini. The only thing a process pi can do with 
respect to these sets is to read the sets it is provided with; it 
cannot write them and has no access to the sets of the other 
processes. These sets, that can evolve dynamically, are 
made up of process identities. Intuitively, the fact that a 
given process pj belongs to one of the three sets provides pi 
with some hint on the current status of pj . More 
operationally, if pj∈ idlei,  pi can safely consider pj as being 
crashed. If pj∉ idlei, the state of pj is not known by pi with 
certainty: more precisely, if pj∈activei, pi is given a hint 
that it can currently consider pj as not crashed; when 
pj ∈uncertaini, pi has no information on the current state 
(crashed or active) of pj. The specification of the sets idlei, 

activei and uncertaini, 1 ≤ i ≤ n, is the following: 
S1 - Initial global consistency. Initially, the sets activei, 

idlei and uncertaini of all the processes pi are identical. 
Namely, for t = 0, ∀ i, j: statei(t) = statej(t), where state is 
active, idle and uncertain respectively.  

S2 - Internal consistency. The sets of each pi define a 
partition idlei(t) ∪ activei(t)∪ uncertaini(t) = Π, ∀ i,t. and 
any two sets in idlei(t), activei(t) and uncertaini(t) have an 
empty intersection. 

S3 Consistency of the idlei sets:  an idlei set is never 
decreasing, i.e. idlei(t) ∀  idlei(t + 1), ∀ i,t 

S4 Consistent global transitions. The sets idlei and 
uncertainj of any pair of processes pi and pj evolve 
consistently. More precisely, ∀ i, j, k, t0 we have 
(pk∈ activei (t0)) ∩ (pk ⊆ idlei (t0 + 1))⇒ ∀ t1 > t0 : pk 
∉uncertainj (t1). 

As we can see from these specifications, at any time t 
and for any pair of processes pi and pj, it is possible to have 
activei(t) = activej(t) (and similarly for the other sets). 
Operationally, this means that distinct processes can have 
different views of the current state of each other process. 
The rules [S1-S4] define a distributed computing model that 
satisfies the strong consistency property. That property 
provides the processes with a mutually consistent view on 
the possibility to detect the crash of following a given 
process. More specifically, if the crash of a process pk is 
never known by pi (because pk continuously belongs to 
uncertaini), then no process pj will detect the crash of pk 
(because pk ∈ idlej ). Conversely, if the crash of pi is known 
by pj, the other processes will also know it.  

 

IV.  THE IMPLEMENTATION OF THE APPLICATION 

 
We will present an application that uses the proposed 

ordering algorithm in a distributed system for emergency 
management. The main objective is the consistent 
synchronization of alerts. That implies to have complete 
information about the temporal dimension of alerts, 
compatibility with the alert standards and with the software 
and hardware resources running the application.  The 

34

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           43 / 114



participants in the alert process are computers acting as 
nodes in a network which communicate using standard ISO-
OSI protocols. The application is realized in Java, in order 
to be supported on a large set of hardware platforms.  

The application is composed from several classes, as 
follows: 

AlertNode – is the class for instantiation of the matricial 
logical clock of the node that contains the  function main() 
which launch the client and server execution threads.  In the 
initial state one must specify the node ID, the number of 
active nodes in the whole network and the port of the server 
which take the alert.  

AlertServerThread – is the class that implements the 
several able to receive alerts. For each connection a 
dedicated thread is created, so many clients can be 
simultaneously serviced. 

AlertProtocol – is the class that implements the 
communication  protocol between the server and the alert  
client. This class contains the function readAlert, that 
initiate the class CAPHandler, which  parses the  client alert 
in the Common Alerting Protocol (CAP) XML format. 
When the alert is received, one launch the method 
receiveAction of the matricial clock that implements the 
clock logic.  

MatrixClock – is the class that implements the matricial 
logical clock. 

AlertClientThread – is the class which allows to transmit 
alerts from client to server, only in CAP format.  

As an example, let now consider the following scenario, 
as shown in figure 6:  

 
 

Figure 6. An alert secenario 
 
The ellipses represent the network nodes, each node 

having an unique identifier. In the rectangle above the node 
appears the number of the listening port.   The arrows 
represent the direction of the transmitted alert, and the 
associated numbers represent the sequential order  for alerts 
transmission. On each node is running a software agent with 
double functionality (client and alert server). The alert is 
connection oriented, using TCP stream sockets. A socket is 
unique identified by an IP (node address) and a port (which 
directs the data to destination).   

When a node has to transmit an alert to other node, the 
server try to connect the destination node through a separate 
execution thread), but it maintains the idle state in order to 
accept other connections also.  The client is addressed by a 
command line, on the associated port. But it is noticeable 
that the client can interrogate periodically a data base were 

are registered the out of limits parameters, without a special 
command of the server, and can decide himself is another 
node must be alerted. Figure 7 shows the values of the 
timestamps at the matricial clocks, for the first steps of the 
scenario depicted in figure 6. At the end of the process the 
clocks have the value of the arrows end.  

 

 
Figure 7. Alerts flow and the matricial clocks of the nodes 

 
The main contribution of the proposed scheme is the 

correlation of alerts in emergency systems, introducing as a 
new element in the classical Lamport algorithm a matriceal 
clock which acts as a component of the advertising 
protocols structure. The efficiency of this mechanism is 
improved by adding a fault detection component of the  
timestamp assignment that verifies if each secondary vector 
of the matrix is smaller than the principal vector of the 
current node. 

The algorithm imposes to send dedicated messages for 
the matriceal clock refresh, at the same frequency as that of 
the information messages, if in a specified interval a process 
does not succed to perform a send-receive operation. 

 

V. CONCLUSIONS 

 
This paper proposed an improved global ordering 

algorithm for dependable distributed computing, that 
encompasses both the synchronous model and the 
asynchronous model. The algorithm guarantees the order of 
messages delivery to the application and respect temporal 
and causal relationships. In this aim the strong operations 
are timestamped with a local timestamp counter, and a 
message is sent to all processes. If more than one strong 
operation can be executed together, they are executed 
according to their timestamps and in increasing order. We 
have chose to focus on the distinction between performing a 
data operation locally at a process, based on its local state, 
and performing an operation that requires communication 
between processes before the control can be returned to the 

35

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           44 / 114



application. When collaboration involves communicating 
via a single or multiple flows, causal relationships among 
messages sent over the flows must be maintained to 
preserve the context in which a message is sent. 

Other contributions which derive from the conceptual 
framework can be summarized as it follows: the 
implementation and testing of a general protocol for data 
replication in a distributed architecture; a scheduler for 
operations of a collaborative process; the definition of a 
formal consistency criteria of the flows framework; the 
classification of strong and weak operations that allows the 
implementation of this consistency criteria; the definition of 
the form that a process state perceives each other’s states by 
accessing the contents of three local non-intersecting sets, 
(uncertain, active, and idle). The proposed system has been 
implemented in JAVA and tested over a set networked 
LINUX workstations, equipped with QoS capabilities 

Future work will be oriented on: strong operations’ 
generalization for different type of operations, specially 
those operations that modify the topology of a scene tree, 
i.e. addition or deletion of nodes; the implementation of a 
policy that allows to support latecomers and early leaving in 
to the distributed system; the implementation of a multicast 
protocol for supporting many users simultaneously; the 
evaluation of the benefits of the admission control policies 
with respect to the media quality of the serviced clients, the 
average latency time, and the throughput of the system.  

 

REFERENCES 
[1] C. J. Fidge, „Timestamps in Message-Passing Systems that Preserve 

Partial Ordering”. In Proceedings of 11th Australian Computer 
Science Conference, pp. 56-66, 1988 

[2] L. Lamport, “Time, Clocks, and the Ordering of Events in a 
Distributed System”, Comm. of the ACM, 21(7), pp. 558-565, 1978. 

[3] K. M. Chandy and L. Lamport, „Distributed Snapshots: Determining 
Global States of Distributed Systems”, ACM Transactions on 
Computer Systems, 3(1), pp.63-75,1985.  

[4] H. Kopetz, A. Ademaj and A. Hanzlik, „Combination of clock-state 
and clock-rate correction in fault tolerant distributed systems”, Real-
Time Systems, Vol. 33, pp.139-173, 2006  

[5] Yang, J., Q. Zhang and N. Gu (2006) A Consistency Maintenance 
Approach in Replicated Services, Proc. of the Sixth IEEE Int. Conf. 
on Computer and Information Technology, pp. 248 – 258  

[6] A. Hanzlik, „SIDERA - A Simulation Model for Time-Triggered 
Distributed Real-Time Systems”, Int. Review on Computers and 
Software (IRECOS), Vol. 1, N. 3, pp. 181-193, 2006  

[7] R. Dobrescu and M. Dobrescu, A “flows consistency” model for 
message ordering in collaborative distributed systems, 13th IFAC 
Symposium on Information Control Problems in Manufacturing, 2009  

[8] V. Cholvi, A. Fernández Anta, E. Jimenez, P. Manzano, M. Raynal. 
"A Methodological Construction of an Efficient 
Sequentially  Consistent Distributed Shared Memory". The Computer 
Journal, 53(9),  pp.1523-1534,  2010  

[9] R. Jimenez-Peris, M. Patiño-Martinez, D. Serrano, J. Milán and B. 
Kemme, „Leveraging the Scalability and Availability of Replicated 
Databases with Autonomic Capabilities”, 3rd Int. Conf. on Autonomic 
Computing and Communication Systems, 2009. 

[10] F. Mattern, “ Virtual Time and Global States of Distributed Systems”, 
Proceedings of the Parallel and Distributed Algorithms, pp.215-226, 
1989 

[11] S. Gorender, R. Macedo and M. Raynal, “A Hybrid and Adaptive 
Model for Fault-Tolerant Distributed Computing”, Proceedings of the  
Int. Conf. on Dependable Systems and Networks, pp.412-421, 2005 

36

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           45 / 114



Fuzzy Event Assignment for
Robust Context-aware Computing

Hannes Wolf, Jonas Palauro, Klaus Herrmann
Institute of Parallel and Distributed Systems, Universität Stuttgart, Germany

Email: {hannes.wol f |klaus.herrmann}@ipvs.uni-stuttgart.de, jonas@palauro.de

Abstract—User acceptance of context-aware applications relies
on unobtrusive interaction and perceived dependability of the
application. The accurate recognition and handling of high-level
context information is a key factor , to achieve both. Currently,
applications mostly work as isolated pieces of software and have
to deal individually with the high uncertainties when recognizing
and ambiguities when consuming high level context information.
We use Adaptable Pervasive Flows (APF), to overcome these
limitations and present our Fuzzy Event Assignment (FEvA)
algorithm to resolve the ambiguities when assigning context
information to the applications. Our simulation results show
assignment accuracies between 83% to 97% and an improved
performance when dealing with false positive, out-of-order and
missed context information.

I. Introduction

Context-aware applications provide users support for a
broad range of activities in everyday life. But unobtrusive
application, demand for little explicit user interaction and
context information as the main source of input, driving the ex-
ecution [1]. Throughout the paper we consider an application
that automatically documents a nurses tasks in daily patient
care without the necessity of explicit user interaction as an
example for this kind of unobtrusive support. However, the
nurse will only accept this kind application if it deals with the
uncertainties of context recognition in a robust way.

Recognizing the actions and other high-level context infor-
mation of the nurse from the environment involves reading
data from (uncertain) sensors, processing the data and compos-
ing the context information from different sources. The sensor
readings can be quantified by accuracy and precision, but
the processing amplifies the degree of uncertainty. A context
management system (CMS) [2], [3] provides the context
information to the application via a query interface or in an
event-based fashion. If the CMS also supports uncertainty
handling, it further supplies the application with the degree
of uncertainty for the requested information. The application
decides if the received context information is consumed from
the CMS so that it will no longer be available for other appli-
cations. This is necessary because the uncertain information
could be interpreted in multiple ways, leading to inconsistent
behavior of the informed applications. If the uncertainty is
too high, the application discards the context. Similarly, the
application could provide some policy, which allows the CMS
to make those decision instead, but either approach leads to
ambiguities when consumerist context.

We claim, that the perceived dependability, i.e. dependabil-
ity from a user’s point of view, of a context-aware application
is conditioned by two factors: 1) the handling of uncertainties
in context information and 2) the resolution of ambiguities
when actually consuming context.

CMS provide sophisticated methods dealing with uncer-
tainty of primary context, like location information [4] and for
high-level context information – like needed to document the
activities of the nurse – uncertain context reasoning or event
correlation can be applied [5], [6]. However there is no system
that takes the structural or contextual relation between the
different applications into account to resolve the ambiguities,
when assigning context information to the right application.

The algorithm we propose to robustly solve the assignment
builds on Adaptable Pervasive Flows (APF) or flows for
short. Flows originate from classical workflows, and were
recently proposed as a programming paradigm for pervasive
applications [7]. A flow basically consists of a number of
activities a ∈ A that with directed transitions t ∈ T , which
define a partial execution order for the activities. An activity in
a flow either represents some computational task, e.g. writing
a database record or invoking a Web Service, or it specifies a
task that a human has to perform in the real world, such as
our nurse administering medicine to a patient.

Our newly developed Fuzzy Event Assignment (FEvA) al-
gorithm supports the execution of flows, providing a robust
yet flexible dynamic assignment of context events to single
activities in the flow. FEvA determines all the activities, that
could be interested in the available context information, based
on the flows structural information and its current execution
state. FEvA coordinates a competition between the activities,
that is based on fuzzy logic, weighting the events and selecting
the most appropriate candidates. Finally, the candidates are
assigned, in such a way that a successful execution becomes
more probable. We have implemented a simulation and tested
our algorithm against false positive context information, con-
text that occurs out-of-order, and missing context. The results
show an avg. assignment accuracy of 91%.

The rest of this paper is structured as follows: In the next
Section we introduce the assumptions we make in our system
including the context model. After that, we present FEvA in
Section III. Then, we show and discuss the results of our
evaluation in Section IV. Finally we put our approach in
perspective to related work in Section V and conclude the
paper in Section VI.

37

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           46 / 114



II. Basic Assumptions andModels
First, we introduce some basic concepts of flow execution

and then introduce our context model. Following that, we
define the failure model on the context information the ap-
plication has to deal with.

Applications that run in our system are flows. At devel-
opment time, a programmer creates a flow model F of the
application (documenting the daily routine of a nurse) that acts
as a template. An instance of the flow is created at runtime,
e.g., for a specific nurse, specific day, and executed on a flow
engine. Most of the activities in this flow map to real-world
activities of the nurse. Therefore we use a CMS that provides
the flow engine with context events.

Definition 2.1 (Context Event): A situation that can be rec-
ognized in the real world is referred to as event e ∈ U, where
U denotes the universe of all events that the CMS can measure.

As the recognition relies on (uncertain) sensor readings,
processing and composition of low-level context, an event is
always uncertain. Currently, we assume that this uncertainty
solely arises from the recognition process, i.e. the nurse in the
real world always behaves correctly wrt the flow.

Events that represent semantically similar context can be-
long to a common event type, where each event belongs to at
least one.

Definition 2.2 (Event Type): An event type E ⊂ U contains
a number of individual events E B {e1, . . . , en}. A single event
can be a member of different event types.

The purpose of an event type is twofold: First, it allows
the programmer to simply select the most appropriate context
the activity should respond to. A flow F defines a function
ε : A×N→ P(U) that maps activities to a number of distinct
event types. P(U) denotes power set over the universe of
events and epsilon(a, i) yields the ith event type of activity
a and ∅ otherwise. We write ε(a) for short, when referring to
all event types of an activity. Second, the related semantics
of the grouped events allow a more accurate recognition and
classification. Events that are not contained in the expected
event type are likely out of scope. The flow engine registers
the event types ε(a) of a running activity at the CMS and
receives an event instance, that indicates which event actually
has been detected and also provides the degree of uncertainty.

Definition 2.3 (Event Instance): Let E be an event type.
An event instance IE : E → [0, 1] defines a probability
distribution function, where

∑
e∈E IE(e) = 1.

We use probability theory, but the definition could be adjusted
to incorporate other measures of uncertainty as well. This
concludes the context model when considering single activities
in the flow or single situations in the real-world. However, for
successful flow execution we have to consider a number of
event instances and their order, uncertainty and type. Therefore
we define an event sequence.

Definition 2.4 (Event Sequence): Let E B {E1, . . . , E j} be
the image set of ε for a given flow F , i.e. E contains all event
types used in F . An Event Sequence S B (I1

E , . . . , I
k
E) is an

ordered list of k event instances, where E ∈ E can be of any
type.

Given F , we call S a valid sequence if it leads to a success-
ful execution of F . While event types are easily checked, we
already showed in previous work how the uncertainty could
be decreased using the flow structure [8]. However, as we
motivated in the introduction, it remains a challenge to assign
the event instances to the right activities. Therefore, ordering
and actual occurrence of the events in the sequence are crucial.
In the following, our we present our failure model covering
three failure types.

The first failure type are false positives. The context system
sometimes notifies the application of an event that did not
occur in the real world. We define α as the percentage of
added false positive events in a sequence S . For example, let
S be a valid sequence and α = 0.05, then the size of modified
sequence S α would be |S α| ≈ |S | ∗1.05. We assume that added
event instances are uniformly distributed over the sequence,
their type is randomly picked from E and the probability
distribution of the instance is similar to the others in the
sequence i.e. they can not be distinguished from the correct
events in the sequence when inspecting the distribution.

Second, there are out-of-order events. Due to network
transmission delay in a distributed CMS, temporary sensor
failures or delay when running the situation detection operators
on low-level context, the events in a valid sequence may be
shifted. We define γ as the percentage of events that have
not been affected by a sequence shift. For example, given
γ = 85, 85% of the events have not been affected, but the
remaining 15% are shifted in time (either way) according a
normal distribution N(0, ω). The ω is chosen such that 15% of
the samples are larger than ±1. The integer part of the sample
indicates the shift and direction in the event sequence relative
to its original position in the sequence.

Finally, there are events that happened in the real world, but
the CMS simply missed them. This might be due to sensor
unavailability, a bad reading, or the removal of a reading due
to high uncertainty during the situation detection. Let δ denote
the percentage of events from a valid event sequence that have
been missed. So a value of δ = 10 results in |S δ| ≈ |S | ∗ 0.9 =

|S | ∗ (1 − δ\100). The three failure models we presented can
be combined and applied to a single event sequence, written
as S α,γ,δ.

III. Fuzzy Event Assignment

The goal of FEvA is to interpret a given a recognized
event sequence S α,γ,δ for a flow F , so that it is a valid
sequence and leads to the same execution path as the original
sequence S . FEvA tries to ”find” the original events and map
them to the right activities and, given enough evidence from
existing events, also tolerate that some events are missing.
We first introduce more details on activity states, the activity
life cycle, flow execution semantics and our extensions to
the activity state space. Then, we describe how FEvA fuzzi-
fies incoming event instances and provides them as possible
candidates for the competing activities using the candidate
selection algorithm. As the execution of an activity progresses

38

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           47 / 114



Research Group “Distributed Systems”

Universität Stuttgart, IPVS

can-complete

readyinactive

complete active

prepare

Fig. 1. Activity State Machine

it will eventually complete and the event assignment algorithm
finalizes the event assignment and resolves possible conflicts.

A. Flow Model Semantics and Activity State Extension

As mentioned in the introduction, a flow basically consists
of a directed acyclic graph G = (A,T ) with activities a ∈ A as
nodes and directed transitions between activities t ∈ T ⊂ A×A
as edges. Each transition can be annotated with a logic
condition, which depends on the received context information
of the originating activity. Furthermore, some of the activities
are mandatory, and must be completed successfully for a
successful flow execution.

While being executed, an activity a assumes four distinct
states that indicate its completion progress. These states are
in order of execution Z = {inactive, ready, active, complete}.
When an instance of F is created, all activities are in the
inactive state. Meeting all prerequisites for execution, an
activity a switches to the ready state. The flow engine then
registers its event types at the CMS. Having received the
first event, a assumes the active state. When a has received
the last event, the conditions of the outgoing transitions are
evaluated and a reaches the complete state. Following activities
may be set to the ready state, depending on the condition
evaluation results. The execution of the whole flow instance
is considered successful if no activity is currently running i.e.
in the active state and all activities that are mandatory for the
successful execution are completed. The state machine for an
activity is also depicted in Figure 1, considering only states
and transitions with continuous lines. For more details on the
formal flow model and the execution semantics refer to our
previous work [8].

We extend the activity state space for FEvA with two
additional states: Z

′

B Z ∪ {prepare,can-complete}. Further,
let ω : A → Z

′

be the function that retrieves the current
state of an activity a. If the state of the preceding activities
ax with (ax, a) ∈ T is ω(ax) ≥ ready, then a switches from
inactive to prepare. The event types of a prepared activity
are also registered at the CMS. Therefore the number of
registered event types increases and the chances of missing
an out-of-order event are reduced. If an event is recognized
out-of-order in current systems, the flow engine has not yet
registered the event types at the CMS and the event is dropped.

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

Event ContainerEvent Instance IE

a1

a2

E ∈ ε 1

E ∈ ε 2

Fig. 2. Event Container Principle

Instead, the early events can now be cached by the flow
engine until the prepared activity actually becomes ready.
Before switching from active to complete, an activity first
assumes the can-complete state. The state indicates that a has
selected candidates for all its event types but the preceding
activities have not yet reached the complete state. Waiting for
their completion, we avoid that a consumes events that are
possibly more suitable candidates for the predecessors while
a better fitting event for a might still arrive. However, the
conflict resolution mechanisms, which we will introduce later,
will occasionally bypass this rule. The extensions of the state
machine are also depicted in Figure 1 as states with dashed
borders and dashed state transitions.

B. Fuzzy Event Assignment

As mentioned earlier FEvA, consists of two algorithms, one
for event candidate selection and one for event assignment.
Both algorithms are plugged into the event container, the
component of the flow engine responsible for event caching
and dispatching. Activities that have registered their event
types at the CMS are known to the event container and stored
separately for each event type as set of competing activities
CE = {a ∈ A|(ω(a) , inactive ∧ ω(a) , complete ∧ E ∈ ε(a)}.
The event container also stores a list of event instance can-
didates for each activity denoted as candidates[a]. Whenever
the flow engine is notified about a new event instance IE , it is
stored in the event container.

The candidate selection algorithm, depicted in Algorithm 1,
computes, which event instances are added to the list of
candidates of an activity. First the algorithm computes a
fuzzified representation of IE . We utilize fuzzy sets (cf.
[9]), each representing a linguistic value, defining the fitting
quality of IE for a single event from E. The individual fuzzy
membership functions are defined as µx : [0, 1] → [0, 1]
where x ∈ {VL, L,M,H,VH} is one of the linguistic variables
”very low”, ”low”, ”medium”, ”high”, ”very high”. The
functions map the probability - or more generally the
degree of uncertainty - of a single event given by IE to a
fuzzy membership value for the respective linguistic value.
We used the same membership functions based on the
standard triangular fuzzy functions for all combinations
of activities and event types. For example, e1 ∈ IE is the
event where the nurse measures the pulse of the patient and
IE(e1) = 0.3 then µM(IE(e1)) = 0.75 and µH(IE(e1)) = 0.25.
As each event is weighted by every membership function,
we further introduce the fuzzy event weighting function
λ : [0, 1] → [0, 1]5 as concise version including all the

39

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           48 / 114



membership function results. Given e1 ∈ IE , λ(IE(e1)) yields
(µVL(IE(e1)), µL(IE(e1)), µM(IE(e1)), µH(IE(e1)), µVH(IE(e1))),
i.e. the mapping of the individual probability of the event to
the fuzzified membership in all five fuzzy sets. The candidate
selection algorithm computes the weighted event λ(IE(e)) for
all e ∈ E and sends it to each activity, that is subscribed to E
i.e. the activities in the set CE . Each activity checks if any,
and which, conditions have an at least ”high” matching with
IE . They compute this matching using their own fuzzy activity
weighting function κ : [0, 1]5 → [true, f alse], deciding if
IE is a suitable candidate event. We consider the mentioned
example of pulse measuring e1 ∈ E again. An activity will
chose IE as possible candidate if and only if the lowest
nonzero linguistic membership in λ(IE(e1)) is ”high” or
”very high” thus, µH((IE(e1) ≥ 0.5 ∨ µVH(IE(e1)) ≥ 0.0).
Given this equation is fulfilled, the result of κ(λ(IE(e1)))
yields true and IE is stored as a possible candidate[a, E] for
the activity a and the event type E. If IE becomes a new
candidate for an activity it further checks if it has the best
overall fitting of the candidates available in candidates[a, E].
We denote the best fitting event instance as Imax

E where
∀IE ∈ candidates[a, E] : µx(Imax

E (e)) ≥ µx(IE(e)) for the the
highest non-zero linguistic membership value of Imax

E . Given
that the new event instance IE = Imax

E (e) is the new best fitting
one, the algorithm issues an assignment request for IE that is
later handled by the event assignment algorithm.

Algorithm 1 Candidate Selection Algorithm
Input: CE , IE

for e ∈ E do
f uzzyWeights[e]← λ(IE(e))

end for
5: for a ∈ CE do

for e ∈ E do
if κ( f uzzyWeights[e]) then

candidates[a, E]← candidates[a, E] ∪ {IE}

end if
10: end for

Imax
E ← maxIE (candidates[a, E])

issue assignment request(Imax
E )

end for

Having eventually received incoming events for all event
types, an activity a changes its state to can-complete. But
before it can commit its execution and reach the final complete
state it must consume a single candidate event for each
type from the event container. However, this might lead to
conflicts, because a requested event instance IE could also have
been requested by another activity ao. The event assignment
algorithm is responsible for the final consumption of IE and
tries to resolve the conflicts. We omit a listing of the algorithm
due to space reasons.

First the algorithm checks, if some ao ∈ CE has also issued
an assignment request. In case,this other activity has alterna-
tive candidates available , i.e (candidates[ao, E] \ IE) , ∅, we
just select another candidate for ao and assign IE to a for

consumption. When there is no other candidate available, we
check if only one of the activities a or ao is mandatory, prefer-
ring the mandatory one for the event assignment. Given that a
now still lacks a non-requested candidate, we try to reevaluate
the rejected candidates. If some of the other requested events
for a have a fuzzy value that is very high, we relax the
candidate criteria for E and check if more candidates become
available. If this still does not yield a suitable candidate, the
activity may be completed without having assigned an event
to E. In order to do this a number of strict criteria have to be
fulfilled. First, there is a fixed maximum number of allowed
missing events per activity; in our case only one missing
event is accepted. Second, the preceding activities of a must
be complete and the succeeding activities must be in can-
complete. Third the succeeding activities must have at least
one event instance assigned with a very high fitting value.
These rules ensure that there is enough evidence available,
so we can assume that the necessary event has been missed
and complete the activity nonetheless. However, most of the
conflicts we mentioned will be resolved without using the
conflict resolution mechanisms, when more of the correct
events arrive. In the next section we assess the performance
of FEvA wrt. the failure model we introduced in Section II.

IV. Evaluation

To evaluate FEvA, we extended the existing simulation
environment, developed in previous work [8]. In the following
we present the setup of the individual experiments and the
simulation parameters and then discuss the results.

A. Simulation Setup

In order to evaluate FEvA we need a suitable set of realistic
flow models to test the algorithms in a wide range of cases.
We created the flows from so-called workflow patterns. These
patterns are common building blocks that have been identified
in a number of real-world workflows, which include a high
number of human tasks [10]. Furthermore, it has been shown
that these patterns adhere to a co-occurrence distribution,
indicating that some patterns follow others more regularly
[11]. We used this co-occurrence distribution to generate the
structure of the workflows used in our evaluations. The flows
had sizes of 20, 30, 40 and 50 activities. For each size,
we simulated 25 different flows and fed 100 different event
sequences into each flow. Therefore every data point in the
evaluation results is created from 10,000 flows executions.

The simulation is informed by two sets of parameters.
The first set consists of the two values, ground truth GT
and variance V , which are used to generate the probability
distribution for the individual event instances. The GT is the
probability that the CMS detects the correct situation that
happened in the real world. The remaining probability 1−GT
is geometrically distributed to the other events of the event
type. The V adds noise to the resulting distribution, i.e. the
probability of each event of the pdf is altered by V and the final
distribution again normalized. We simulated GT for values
from 0.4 to 1.0 in steps of 0.1 and V from 0.05 to 1.0. To show

40

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           49 / 114



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fl

ow
s 

/ 
 p

er
ce

nt
ag

e 
of

 c
or

re
ct

ly
 a

ss
ig

en
d 

ev
en

ts

Percentage of added events

avg. of correctly assigned events
v=0.2
v=0.4
v=0.5

(a) added events α

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fl

ow
s 

/ 
 p

er
ce

nt
ag

e 
of

 c
or

re
ct

ly
 a

ss
ig

en
d 

ev
en

ts

Percentage of correctly positioned events

avg. of correctly events
v=0.2
v=0.4
v=0.5

(b) moved events γ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fl

ow
s 

/ 
 p

er
ce

nt
ag

e 
of

 c
or

re
ct

ly
 a

ss
ig

en
d 

ev
en

ts

Percentage of deleted events

avg. of correctly events
v=0.2
v=0.4
v=0.5

(c) deleted events δ

Fig. 3. Simulation Results - FEvA performance

the results clearly, the figures depicted only contain the graphs
for GT = 0.5 which is FEvA’s threshold for accepting an event
(cf. Section III-B) and variances of 0.2, 0.4, 0.5 representing a
rather low, medium high and high amount of noise.

The second set defines the parameters α, γ and δ according
to our definition in Section II. For α we chose values between
5% and 100%, for γ between 100% and 65% and for δ between
0% and 30%.

B. Results

The main results of the simulation for each of the parameters
α, γ, and δ are depicted in Figure 3. The other values are set
to their default value, i.e. 100 for γ and 0 for α and δ.

The results for the added false positives are the most
surprising (c.f Figure 3(a)). While the number of correct events
assigned to the activities decreases slowly from about 94%
to 78%, the actual number of successfully completed flows
increases. This is due to the fact, that the added false positives
also take part in the assignment process and, especially in
conflict situations, may be mapped to an activity too early
and falsely, too. On the one hand this effect becomes stronger
the higher the variance is; On the other hand the decrease in
correctly assigned events also holds for the low variance but
the effect cannot be identified right away. If we recognize the
events with a high accuracy, the flow is able to deal with more
false positives, but also assigns some of these false positives
to the activities. However, for the worse context readings the
result is counter-intuitive, as more flows complete because it
is more likely that a fitting false positive exists.

When we confront FEvA with out-of-order events (c.f
Figure 3(b)), the algorithm performs very well and tolerates the
deviation. Most of the events are correctly assigned, i.e. well
over 97% and the impact of the few falsely assigned events
on the flow completion is low compared to the variance.

Considering the missed events (c.f Figure 3(c)), FEvA is
still able to assign the remaining events accurately, again
with well over 97%, but the missing events have a very
strong impact on the flow execution. While a low number of
missing events is somewhat tolerable, the amount of correctly
completed flows drops rapidly to a mere 7% when more than
a quarter of all events is missing. The difference between the
graphs also becomes smaller. This shows that the deletion
of events has a more severe impact on the correct execution

than the variance. The mechanism we introduced to tolerate
missed events somewhat helps, but there is a lot of room for
improvement.

V. RelatedWork
We have investigated two different areas on work that is

related to FEvA. We begin discussing the handling of fuzzy or
uncertain (context) information in other workflow management
systems, and continue with activity recognition systems, espe-
cially with a background in the health-care domain considering
our example application.

The integration of context information into classic work-
flows used in enterprises has first been suggested by Wieland
et al. [12] Their original approach does not consider uncer-
tainty in context information, but in the meantime the authors
provided a basic solution based on policies [13], which allows
a workflow to specify a well defined behavior when dealing
with uncertain context information and sensor failures. But
their work actually lacks an algorithm, such as FEvA is, for
matchmaking between uncertain context information and the
workflow activities. Also from the area of business process
management, Adam et al. [14], [15] proposed to use fuzzy
logic to enable soft decisions in workflows based on the input
provided to the workflow. However they did not consider
uncertainties or ambiguities in the input information.

There are plenty of workflow models based on petri-
nets (e.g. [16]), and also fuzzy petri net variants have been
proposed [17] and applied to workflows [18]. Basically all
elements of a petri net – places, markers and transitions – can
be fuzzified and integrated into a fuzzy reasoning process. On
the one hand, if we interpret an event instance as a fuzzified
marker, our approach would be somewhat similar to the fuzzy
petri nets. On the other hand the events represent external
input, which has not been considered yet.

There have been numerous studies on activity recognition
in the health-care domain. The major factors for decreasing
the uncertainty and ambiguity in the recognition results are
the selection of appropriate sensors, the available applica-
tion model as well as the ease of sensor deployment and
cost. For example, Barger et al. [19] studied a health status
monitoring application and learned behavioral patterns of
the user observing his daily activities using a number of
motion sensors. But their system lacks an application model,

41

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           50 / 114



leading to missed events and false positives and a rather low
recognition accuracy for uncommon situations. Najafi et al.
[20] have built a monitoring system for elderly people using
one acceleration sensor, and detecting position transitions and
mode of locomotion. While performing very well for single
transitions in a specific test scenario, the authors admit that for
extended periods of time the sensing quality decreases. Finally,
Biswas et al. [21] investigated different scenarios for elderly
monitoring in home and professional-care scenarios. They
used a complex and most likely expensive sensor setup for
activity recognition, tailored for a specific scenario, state of the
art recognition methods and very promising results. However
their application model informing the recognition is basic and
has been created manually. The authors specifically remark
that knowledge from domain experts should be encoded in the
recognition process. A flow is a very detailed representation
of expert application knowledge, that we used to resolve the
ambiguities when mapping the events to the activities.The
presented approaches all use sophisticated activity recogni-
tion techniques, but do not consider the kind of application
knowledge, that a flow could provide. In summary, the FEvA
approach is a unique algorithm bridging the gap between
activity recognition and context aware applications, dealing
with ambiguities when consuming the recognized events.

VI. Conclusions and FutureWork

FEvA, our new algorithm to resolve ambiguities when
consuming uncertain context information, has demonstrated its
effectiveness under the provided failure models. It achieves a
reasonable assignment when facing a large number of false
positive events and works very well when facing out-of-
order events. We were able to limit the impact of a small
number of missing events. We conclude that FEvA would be
a very useful supplement for systems and environments where
a lot of context information drives structured applications,
such as the health-care documentation scenario we mentioned.
In this scenario, FEvA significantly improves the perceived
dependability of context-aware applications, advancing their
user acceptance.

However, there is room for improving FEvA. Currently, we
aim for a better mechanism to deal with the missed events.
Furthermore, investigating the effects of different weighting
functions per activity could lead to interesting results. Finally,
it would be interesting to extend the approach not taking only
one but multiple flow into account.

VII. Acknowledgments

The work described in this paper is partially funded by the
7th Framework EU-FET Project 213339 ALLOW

References

[1] Weiser, M.: The computer for the 21st century. Scientific American
265(3) (September 1991) 94–104

[2] Kjaer, K.E.: A survey of context-aware middleware. In: SE’07:
Proceedings of the 25th conference on IASTED International Multi-
Conference, Anaheim, CA, USA, ACTA Press (aug 2007) 148–155

[3] Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing
2(4) (2007) 263–277

[4] Lange, R., Weinschrott, H., Geiger, L., Blessing, A., Dürr, F., Rothermel,
K., Schütze, H.: On a generic uncertainty model for position information.
In Rothermel, K., Fritsch, D., Blochinger, W., Dürr, F., eds.: First
Internationa Workshop on Quality of Context, QuaCon 2009. Number
5786 in LNCS, Stuttgart, Springer (June 2009) 76–87

[5] Koch, G.G., Koldehofe, B., Rothermel, K.: Cordies: expressive event
correlation in distributed systems. In: Proceedings of the Fourth ACM
International Conference on Distributed Event-Based Systems. DEBS
’10, New York, NY, USA, ACM (2010) 26–37

[6] Choudhury, T., Philipose, M., Wyatt, D., Lester, J.: Towards activity
databases: Using sensors and statistical models to summarize people’s
lives. IEEE Data Eng. Bull. 29(1) (2006) 49–58

[7] Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable
Pervasive Flows–An Emerging Technology for Pervasive Adaptation.
In: Proceedings of the 2008 Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, IEEE Computer
Society (2008) 108–113

[8] Wolf, H., Herrmann, K., Rothermel, K.: Robustness in Context-Aware
mobile computing. In: IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob’2010),
Niagara Falls, Canada (10 2010)

[9] Zadeh, L.: Fuzzy sets. Information and Control 8(3) (1965) 338–353
[10] Chiao, C., Iochpe, C., Thom, L.H., Reichert, M.: Verifying existence,

completeness and sequences of semantic process patterns in real work-
flow processes. In: Proc. of the Simpsio Brasileiro de Sistemas de
Informao. Rio de Janeiro: UNIRIO, Brazil (2008) p. 164–175.

[11] Lau, J.M., Iochpe, C., Thom, L.H., Reichert, M.: Discovery and analysis
of activity pattern co-occurrences in business process models. In: ICEIS
(3). (2009) 83–88

[12] Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-
aware workflows. In Pernici, B., Gulla, J.A., eds.: CAiSE07 Proceedings
of the Workshops and Doctoral Consortium. Volume 2., Trondheim
Norway, Tapir Acasemic Press (Juni 2007)

[13] Wieland, M., Käppeler, U.P., Levi, P., Leymann, F., Nicklas, D.: Towards
Integration of Uncertain Sensor Data into Context-aware Workflows. In
in Informatics (LNI), G.E.L.N., ed.: Tagungsband INFORMATIK 2009
Im Focus das Leben, 39. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), Lübeck, Lecture Notes in Informatics (LNI) (September 2009)

[14] Adam, O., Thomas, O., Martin, G.: Fuzzy WorkflowsEnhancing Work-
flow Management with Vagueness. In: EURO/INFORMS Istanbul 2003
Joint International Meeting. (2003) 6–10

[15] Adam, O., Thomas, O., Vanderhaeghen, D.: Fuzzy-set-based modeling
of business process cases. In: ICCBR Workshops. (August 2005) 251–
260

[16] van der Aalst, W.M., van Hee, K., Houben, G.: Modelling and
analysing workflow using a petri-net based approach. In: Proc. 2nd
Workshop on Computer-Supported Cooperative Work Petri nets and
related formalisms. (1994) pp 31–50

[17] Pedrycz, W., Gomide, F.: A generalized fuzzy petri net model. Fuzzy
Systems, IEEE Transactions on 2(4) (November 1994) 295 –301

[18] Raposo, A., Coelho, A., Magalhaes, L., Ricarte, I.: Using fuzzy petri
nets to coordinate collaborative activities. In: IFSA World Congress
and 20th NAFIPS International Conference, 2001. Joint 9th. Volume 3.
(2001) 1494 –1499 vol.3

[19] Barger, T., Brown, D., Alwan, M.: Health-status monitoring through
analysis of behavioral patterns. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 35(1) (2005) 22 – 27

[20] Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.,
Robert, P.: Ambulatory system for human motion analysis using a
kinematic sensor: monitoring of daily physical activity in the elderly.
Biomedical Engineering, IEEE Transactions on 50(6) (2003) 711 –723

[21] Biswas, J., Tolstikov, A., Jayachandran, M., Fook, V.F.S., Wai, A.A.P.,
Phua, C., Huang, W., Shue, L., Gopalakrishnan, K., Lee, J.E.: Health and
wellness monitoring through wearable and ambient sensors: exemplars
from home-based care of elderly with mild dementia. Annales des
Télécommunications 65(9-10) (2010) 505–521

42

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           51 / 114



An Automated Wrapper-based Approach to the Design of Dependable Software

Matthew Leeke
Department of Computer Science

University of Warwick
Coventry, UK, CV4 7AL
matt@dcs.warwick.ac.uk

Arshad Jhumka
Department of Computer Science

University of Warwick
Coventry, UK, CV4 7AL

arshad@dcs.warwick.ac.uk

Abstract—The design of dependable software systems invari-
ably comprises two main activities: (i) the design of depend-
ability mechanisms, and (ii) the location of dependability mech-
anisms. It has been shown that these activities are intrinsically
difficult. In this paper we propose an automated wrapper-based
methodology to circumvent the problems associated with the
design and location of dependability mechanisms. To achieve
this we replicate important variables so that they can be
used as part of standard, efficient dependability mechanisms.
These well-understood mechanisms are then deployed in all
relevant locations. To validate the proposed methodology we
apply it to three complex software systems, evaluating the
dependability enhancement and execution overhead in each
case. The results generated demonstrate that the system failure
rate of a wrapped software system can be several orders of
magnitude lower than that of an unwrapped equivalent.

Keywords-Importance, Metric, Replication, Variable, Wrappers

I. INTRODUCTION

As computer systems become pervasive, our reliance on
computer software to provide correct and timely services
is ever-increasing. To meet these demands it is important
that software be dependable [1]. It has been shown that a
dependable software must contain two types of artefact; (i)
error detection mechanisms (EDMs) and (ii) error recov-
ery mechanisms (ERMs) [2], where EDMs are commonly
known as detectors and ERMs as correctors. A detector is
a component that asserts the validity of a predicate during
execution, whilst a corrector is a component that enforces
a predicate. Examples of detectors include runtime checks
and error detection codes. Examples of correctors include
exception handlers and retry [3]. During the execution of a
dependable software, an EDM at a given location evaluates
whether the corresponding predicate holds at that location,
i.e., it attempts to detect an erroneous state. When an
erroneous state is detected, an ERM will attempt to restore
a suitable state by enforcing a predicate, i.e., it attempts to
recover from an erroneous state. Using EDMs and ERMs
it is possible to address the error propagation problem. A
failure to contain the propagation of erroneous state across
a software is known to make recovery more difficult [4].

The design of efficient EDMs [5] [6] [7] and ERMs [8] is
notoriously difficult. Three key factors associated with this
difficulty are (i) the design of the required predicate [6] [9],

(ii) the location of that predicate [10], and (iii) bugs intro-
duced by EDMs and ERMs. The problem of EDM and ERM
design is exacerbated when software engineers are lacking
in experience in software development or dependability
mechanisms [7]. One approach to overcoming this difficulty
is to reuse standard, efficient mechanisms, such as majority
voting [11], in the design dependable software. However,
techniques such as replication or N-version programming
(NVP) [11] [12] are expensive, as they work at the software
level, i.e., the whole software is replicated in some way. It
would be ideal to adapt standard, efficient mechanisms to
operate at a finer granularity in order to lessen overheads.

In this paper, we propose an automated methodology for
the design of dependable software. Our approach is based
on variable replication. This contrasts with current state-of-
the-art approaches, which operate at a software level. The
replication of software can be viewed as the replication of
every variable and code component in a software. However,
our approach focuses on replicating important variables. The
proposed methodology works as follows: A lookup table in
which variables are ranked according to their importance is
generated. Once this is obtained, we duplicate or triplicate a
subset of variables based on their importance using software
wrappers, i.e., creating shadow variables. When an important
variable is written to, the value held by the all relevant
shadow variables is updated. When an important variable is
read, its value is compared to those of its shadow variables,
with any discrepancy indicating an erroneous state. Our
approach induces a execution overhead ranging from 20%–
35%, and a memory overhead ranging from 0.5%–20%.

The advantages of our approach over current state-of-the-
art techniques are: (i) we circumvent the need to obtain
non-trivial predicates by using standard efficient predicates,
viz. majority voting (ii) we circumvent the need to know
the optimal location of a given predicate by comparing
values on all important variable reads, (iii) the efficiency
of the standard mechanisms is known a priori, obviating the
need for validation of the dependability mechanisms using
fault injection [13], (iv) the overhead is significantly less
than would be incurred by a complete software replication,
and (v) we reduce the risk of inserting new bugs through
detectors and correctors [8] [14].

A. Contributions
In this paper we make the following specific contributions:

43

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           52 / 114



• We describe an automated wrapper-based methodology
for the design of dependable software, outlining the
steps required for its application and providing insight
into the use of the metrics on which it is based.

• We experimentally evaluate the effectiveness of the
described methodology in the context of three complex
software systems, obtaining results which serve to
validate the usefulness of the metrics proposed in [15].

• We evaluate the execution overheads of the described
methodology, offering insights into the relevant trade-
offs between dependability and execution overheads.

II. RELATED WORK

Software wrapper technology has been investigated in many
fields, including computer security, software engineering,
database systems and software dependability. In the context
of computer security, software wrappers have been used
to enforce a specific security policies [16] and protect
vulnerable assets [17]. It has also been shown that security
wrappers deployed within an operating system kernel can be
used to meet application specific security requirements [18].

Software wrappers have been widely applied in the inte-
gration of legacy systems [19], where they act as connectors
which allow independent systems to interact and the recon-
ciliation of functionality [20] [21]. Examples of this can
be found in the field of database systems, where software
wrappers are used to encapsulate legacy databases [22] [23].

Software wrappers have been extensively investigated in
the context of operating system dependability [24] [25],
where emphasis is placed on wrapping device drivers and
shared libraries [26] [27]. Software wrappers have also been
used to address the more general problem of improving
dependability in commercial-off-the-shelf software [28], as
well as several more specific software dependability issues,
such as the problem of non-atomic exception handling [14].

The proposed methodology is related to [29], where wrap-
pers were used to detect contract violations in component-
based systems. In contrast, the proposed methodology com-
bines software wrappers that implement standard predi-
cates and variable replication to enhance dependability. The
variable-centric approach, facilitated by the metrics devel-
oped in [15], also differentiates the proposed methodology.

III. MODELS

In this section we present the models assumed in this paper.

A. Software model

A software system S is considered to be a set of inter-
connected modules M1 . . .Mn. A module Mk contains a
set of non-composite variables Vk, which have a domain of
values, and a sequence of actions Ak1 . . . Aki. Each action
in Ak1 . . . Aki may read or write to a subset of Vk. Software
is assumed to be grey-box, permitting source code access,
but assuming no knowledge of functionality or structure.

B. Fault model

A fault model has been shown to contain two parts: (i) a
local part, and (ii) a global part [30]. The local fault model,
called the impact model, states the type of faults likely to
occur in the system, while the global model, called the rely
specification, states the extent to which the local fault model
can occur. The rely specification constrains the occurrence
of the local model so that dependability can be imparted. For
example, a rely specification will state that “at most f of n
nodes can crash”, or “faults can occur only finitely often”.
Infinite fault occurrences can only be tolerated by infinite
redundancy, which is impossible.

In this paper we assume a transient data value fault model
[31]. Here, the local fault model is the transient data value
failure, i.e., a variable whose value is corrupted, and that this
corruption may ever occur again. The global fault model is
that we assume that any variable can be affected by transient
faults. The transient fault model is used to model hardware
faults in which bit flips occur in memory areas that causes
instantaneous changes to values held in memory. A transient
data value fault model is often assumed during dependability
analysis because it can be used to mimic more severe fault
models [31], thus making it a good base fault model.

IV. METHODOLOGY

The proposed methodology is based on the premise that
the replication of important variables can yield significant
reduction in failures without incurring significant execution
overheads. The importance of variables is based on their
implication in error propagation. The methodology is a three
step process. First, a table ranking variables according to
their importance for a given module is generated. Next, all
read and write operations to important variables, as defined
by a threshold value, are identified. Finally, such operations
are wrapped using specifically designed software wrappers.
An overview of the methodology is shown in Figure 1.
Sections IV-A-IV-C provide a description of these steps.

A. Step 1: Establishing Variable Importance

The first step is to evaluate the relative importance of each
variable within the software module to be wrapped. To
achieve this we use the metric suite in [15] to measure
importance. The importance metric is a function of two sub-
metrics, spatial and temporal impact, and system failure rate.
Spatial Impact: Given a software whose functionality is
logically distributed over a set of modules, the spatial impact
of variable v in module M for a run r, denoted as σr

v,M ,
is the number of modules corrupted in r. Thus, the spatial
impact of a variable v of module M , denoted σv,M , is:

σv,M = max{σr
v,M},∀r (1)

Thus, σv,M captures the diameter of the affected area when
variable v in module M is corrupted. The higher σv,M is,
the more difficult it is to recover from the corruption. As
the metric captures the diameter of the area affected by the
propagation of errors, low values are desirable.

44

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           53 / 114



Original Software Step 1: Establish Variable 
Importance (Section 4.A)

Step 2: Identify Important 
Actions (Section 4.B)

Step 3: Wrap Important 
Variables (Section 4.C)

Wrapped Software

Variable Importance Lookup Table Thresholded Importance Table and Important Read / Writes

Figure 1. Methodology overview

Temporal Impact: Given a software whose functionality
is logically distributed over a set of modules, the temporal
impact of variable v in module M for a run r, denoted as
τ rv,M , is the number of time units over which at least one
module remains corrupted in r. Thus, the temporal impact
of a variable v of module M , denoted τv,M is:

τv,M = max{τ rv,M},∀r (2)

Thus, τv,M captures the period that program state remains
affected when variable v in module M is corrupted. The
higher τv,M is, the likelier a failure is to occur. As the metric
captures the persistence of errors, low values are desirable.
Importance Metric: The importance metric, as instantiated
in [15], is defined for variable v in module M with variable
specific system failure rate f as:

Iv,M =
1

(1− f)2
(σv,M
σmax

+
τv,M
τmax

)1

(3)

The importance of all variables in a module can be evaluated
using Equations 1-3. In [15] fault injection was used to
estimate variable importance, though the metric can be
evaluated using alternative approaches. Note that the variable
ranking generated for each module is relative to that module,
which means that these values should not be compared on
an inter-module basis. Once this first step of the proposed
methodology has been completed, a lookup table relating
any given variable to its importance value can be generated.

B. Step 2: Identifying Important Actions
The next step is to identify all read and write actions on
important variables. As the replication of a whole software,
or indeed every variable, incurs a large overhead, we select
a subset of the most important variables for replication using
thresholds. We set two thresholds to govern the number of
duplicated and triplicated variables; λd and λt respectively.
Thresholds may be defined with respect to importance
values, though in many situations, it is reasonable to define
thresholds as a proportion of the variables in a module. For
example, to triplicate the top 10% and duplicate the top 15%
of variables, we would set λt = 0.10 and λd = 0.15. The
use of two thresholds is motivated by the desire to reduce
replication overhead and provide flexibility in the application
of the proposed methodology.

Once threshold values have been set, the variables to be
wrapped can be identified. However, before wrapping, each
possible read and write location on an important variable
must be identified. This can be achieved by several means,
including system call monitoring and memory management

Algorithm 1 Write-Wrapper: Writing a variable v
v := f(. . . )
if (rank(v) ≥ λt) then

create(v′);
create(v′′);
v, v′, v′′ := f(. . . );

else if (rank(v) ≥ λd) then
create(v′);
v, v′ := f(. . .);

end if

Algorithm 2 ReadWrapper: Reading a variable v
y := g(v, . . .);
if (rank(v) ≥ λt) then
y := g(majority(v, v′, v′′), . . . );

else if (rank(v) ≥ λd) then
y := g(random(v, v′), . . . );

end if

techniques. The only requirement is that all possible read and
write actions on important variables must be identified. In
this paper, source code analysis is used to identify important
read and write actions, as detailed in Section VI. Completing
this step will mean that variables to be wrapped have been
identified and a mechanism has been used, or is in place, to
identify read and write actions on those variables.

C. Step 3: Wrapping Important Variables

Two types of software wrapper are employed by the method-
ology; write-wrappers and read-wrappers. Pseudocode for
these wrappers is shown in Algorithms 1 and 2.
Write-Wrapper: This software wrapper is invoked when an
important variable is written. When a variable v is assigned
a value f(. . .), where f is some function, in the unwrapped
module, the ranking of the variable is checked. If the rank
of v is in the top λt, then two shadow variables, v′ and v′′,
are created. Alternatively, if the rank of v is between λt and
λd, then a shadow variable v′ is created. Then, v and all of
its shadow variables are updated with f(. . .).
Read-Wrapper: This software wrapper is invoked when an
important variable is read. When a variable y is updated
with a function g(v, . . .) in the unwrapped module, where g
is a function and variable v is to be read, the rank of v is
checked against λt. If the rank of v is greater than λt then
function g uses the majority of the v, v′, v′′. If the rank of
v is between λt and λd, then g uses v or v′.

45

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           54 / 114



V. EXPERIMENTAL SETUP

In this section we detail the experimental setup used in the
estimation of the importance metric for each target system.

A. Target Systems
7-Zip (7Z): The 7-Zip utility is a high-compression archiver
supporting a variety of encryption formats [32]. The system
is widely-used and has been developed by many different
software engineers. Most project source code is available
under the GNU Lesser General Public License.
Flightgear (FG): The FlightGear Flight Simulator project
is an open-source project that aims to develop an extensible
yet highly sophisticated flight simulator [33]. The system is
modular, contains over 220,000 lines of code and simulates
a situation where dependability is critical. All project source
code are available under the GNU General Public License.
Mp3Gain (MG): The Mp3Gain analyser is an open-source
volume normalisation software for mp3 files [34]. The
system is modular, widely-used and has been predominantly
developed by a single software engineer. All project source
code are available under the GNU General Public License.

B. Test Cases
7Z: An archiving procedure was executed in all test cases.
A set of 25 files were input to the procedure, each of which
was compressed to form an archive and then decompressed
in order to recover the original content. The temporal impact
of faults was measured with respect to the number of files
processed. For example, if a fault were injected during the
processing of file 15 and persisted until the end of a test case,
its temporal impact would be 10. To create a varied system
load, the experiments associated with each instrumented
variable were repeated for 25 distinct test cases, where each
test case involved a distinct set of 25 input files.
FG: A takeoff procedure was executed in all test cases.
The procedure executed for 2700 iterations of the main
simulation loop, where the first 500 iterations correspond
to an initialisation period and the remaining 2200 iterations
correspond to pre-injection and post-injection periods. A
control module was used to provide a consistent input vector
at each iteration of the simulation. To create a varied and
representative system load, the experiments associated with
each instrumented variable were repeated for 9 distinct
test cases; 3 aircraft masses and 3 wind speeds uniformly
distributed across 1300-2100lbs and 0-60kph respectively.
MG: A volume-level normalisation procedure was executed
in all test cases. The procedure took a set of 25 mp3 files of
varying sizes as input and normalised the volume across each
file. The temporal impact of injected faults was measured
with respect to the number of files processed. To create a
varied system load, the experiments associated with each
instrumented variable were repeated for 3 distinct test cases,
where each test case used a distinct set of 25 input files.

C. System Instrumentation, Fault Injection and Logging
Instrumented modules in each target system were chosen
randomly from modules used in the execution of the afore-
mentioned test cases. A summary of instrumented modules

Table I
SUMMARY OF INSTRUMENTED SOFTWARE MODULES

Module Target System Module Name
7Z1 7-Zip LZMADecode
7Z2 7-Zip 7zInput
7Z3 7-Zip 7zFileHandle
FG1 FightGear FGInter
FG2 FightGear FGPropulsion
FG3 FightGear FGLGear
MG1 Mp3Gain NLaunch
MG2 Mp3Gain GainAnalysis
MG3 Mp3Gain Decode

is given in Table I. The number of variables instrumented
for each module accounted for no less than 90% of the total
number of variables in that module. All code locations where
an instrumented variable could be read were instrumented
for fault injection. Those variables and locations not instru-
mented were associated with execution paths that would not
be executed under normal circumstances, e.g., test routines.

Fault injection was used to determine the spatial and
temporal impact associated with each software module [15].
The Propagation Analysis Environment was used for fault
injection and logging [35]. A golden run was created for
each test case, where a golden run is a reproducible fault-free
run of the system for a given test case, capturing information
about the state of the system during execution. Bit flip faults
were injected at each bit-position for all instrumented vari-
ables. Each injected run entailed a single bit-flip in a variable
at one of these positions, i.e. no multiple injections. For FG
each single bit-flip experiment was performed at 3 injection
times uniformly distributed across the 2200 simulation loop
iterations that followed system initialisation, i.e. 600, 1200
and 1800 control loop iterations after initialisation. For 7Z
and M3, each single bit-flip experiment was performed at
25 distinct injection times uniformly distributed across the
25 time units of each test case. The state of all modules
used in the execution of all test cases was monitored during
each fault injection experiment. The data logged during
fault injection experiments was then compared with the
corresponding golden run, with any deviations being deemed
erroneous and thus contributing to variable importance.

D. Failure Specification

7Z: A test case execution was considered a failure if the set
of archive files and recovered content files were different
from those generated by the corresponding golden run.
FG: A failure specification was established using of golden
run observation and relevant aviation information. A failed
execution was considered to fall into at least one of three
categories; speed failure, distance failure and angle failure.
A run was considered a speed failure if the aircraft failed to
reach a safe takeoff speed after first passing through critical
speed and velocity of rotation. A run was considered a
distance failure if the takeoff distance exceeds that specified
by the aircraft manufacturer, where the distance is increased
by 10 meters for every additional 200lbs over the aircraft

46

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           55 / 114



Table II
IMPORTANCE RANKING FOR 7Z1 VARIABLES

Rank Variable Importance Failure Rate
1 processedPos 0.012869318 0.009893411
2 remainLen 0.010028409 0.009865020
3 distance 0.010085227 0.004867079
4 posState 0.008380682 0.004858712
5 ttt 0.006903409 0.004851485

base-weight. A run was considered an angle failure if a pitch
rate of 4.5 degrees is exceeded before the aircraft is clear of
the runway or the aircraft stalls during climb out.
MG: A test case execution was considered a failure if the
set of normalised output files were different from those
generated by the corresponding golden run.

VI. RESULTS

The importance metric can be evaluated using many different
approaches, including static analysis and the evaluation of
data-flow. In this paper, as in [15], importance is measured
using fault injection. Fault injection is a dependability val-
idation approach, whereby the response of a system to the
insertion of faults is analysed with respect to a given oracle.
Fault injection is typically used to assess the coverage and
latency of error detection and correction mechanisms.

Using the approach outlined in Section V, the spatial
and temporal impact of each variable was estimated. This
information, and the failure rate for fault injections on each
variable, was used to evaluate the importance of all variables
according to Equation 3. Tables II-X show the importance
ranking of all, subsequently identified, important variables
for each target modules. For each variable, the Importance
column gives the value of the importance metric, whilst
Failure Rate is the proportion of fault injected execution that
caused a system failure. Note that failure rate is assessed on
a per variable basis. For example, if a variable is subject
to 100 fault injected executions and 25 of these result in a
system failure, then the it has a failure rate of 0.25.

The entries in Tables II-X give importance values for
variable identifies as important in each module. To perform
the thresholding required for this identification, we set
λd = 0.15 and λt = 0.10. This meant that, for each
software module, the top 15% of variables were to be
wrapped, with the top 10% being triplicated and the next
5% being duplicated. For example, Table II shows 15% of
the 36 variables in module 7Z, where the top three variables
were triplicated and the rest were duplicated. The chosen
threshold values were selected in order ensure that at least
one variable in each module was wrapped, though the choice
of λd and λt will typically be situation specific.

Once the importance table for each module had been
thresholded, source code analysis was used to identify read
and write actions on important variables. The implementa-
tion of our source code analyser was based on the premise
that writes and reads to important variable are the only
operation types that are deemed to be important actions.
When adopting a source code analysis approach it must be

Table III
IMPORTANCE RANKING FOR 7Z2 VARIABLES

Rank Variable Importance Failure Rate
1 numberStreams 0.757575163 0.013881579
2 highPart 0.699089580 0.015526316
3 unpack 0.453218118 0.010994318
4 sizeIndex 0.379870331 0.002755682
5 i unpack 0.248907060 0.002698864
6 attribute 0.141369792 0.018011364
7 numInStreams 0.099065565 0.002443182
8 numSubstream 0.099059922 0.002386364

Table IV
IMPORTANCE RANKING FOR 7Z3 VARIABLES

Rank Variable Importance Failure Rate
1 seekInStreamS 0.009250000 0.382360363

Table V
IMPORTANCE RANKING FOR FG1 VARIABLES

Rank Variable Importance Failure Rate
1 vTrueKts 0.056881 0.003472
2 runAltitude 0.039179 0.002778
3 vGroundSpeed 0.035471 0.208333
4 alpha 0.033359 0.004629

Table VI
IMPORTANCE RANKING FOR FG2 VARIABLES

Rank Variable Importance Failure Rate
1 currentThrust 1.047348000 0.010417000
2 hasInitEngines 1.016663000 0.003472000
3 numTanks 1.012560000 0.004630000
4 totalQuanFuel 1.011618000 0.004167000
5 firsttime 1.009914000 0.001736000
6 dt 0.506376000 0.005208000

Table VII
IMPORTANCE RANKING FOR FG3 VARIABLES

Rank Variable Importance Failure Rate
1 compressLen 0.730128000 0.013889000
2 groundSpeed 0.433243000 0.001984000
3 steerAngle 0.053254000 0.011111000

Table VIII
IMPORTANCE RANKING FOR MG1 VARIABLES

Rank Variable Importance Failure Rate
1 selfWrite 0.283413927 0.028650000
2 bitridx 0.278821206 0.012650000
3 whiChannel 0.277626178 0.008400000
4 gainA 0.160324478 0.016700000
5 curFrame 0.160096536 0.015300000
6 inf 0.160035590 0.014925000
7 cuFile 0.099405049 0.005850000

recognised that any analysis tool must work under the as-
sumption that any unidentifiable operation type could be an
action relating to any important variable. This conservative
stance ensures that the coverage of the process is maximised,
though unnecessary overheads may be incurred.

Following the identification of read and write actions on

47

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           56 / 114



Table IX
IMPORTANCE RANKING FOR MG2 VARIABLES

Rank Variable Importance Failure Rate
1 sampleWin 1.337694959 0.194400000
2 batchSample 0.988385859 0.031100000
3 curSamples 0.925373931 0.008350000
4 first 0.923418424 0.006250000

Table X
IMPORTANCE RANKING FOR MG3 VARIABLES

Rank Variable Importance Failure Rate
1 maxAmpOnly 1.131021387 0.011825000
2 dSmp 0.683939300 0.009200000
3 winCont 0.678189611 0.000800000

important variables, the software wrappers described in Sec-
tion IV-C were deployed. As the locations for read-wrapper
and write-wrapper deployment were necessarily consistent
with the code locations of important read and write actions
respectively, information generated during source code anal-
ysis was used to drive wrapper deployment.

Figures 2 and 3 show examples of read-wrapper and write-
wrapper deployments. The first line in each figure shows the
original program statement before wrapping. The second line
in each figure illustrates the use of wrappers. In Figure 2 the
dt variable is being read-wrapped, whilst Figure 3 shows
the currentThrust variable being write-wrapped. Observe
that, in both cases, it is necessary to provide the wrapping
functions with identifiers for the variable and location. This
information is generated, maintained and known only to the
wrapping software following the identification of important
read and write actions, which means that it has no discernible
impact on the execution of the target system.

To validate the effectiveness of the proposed methodology,
the fault injection experiments described in Section V were
repeated on wrapped target systems. Only one module in
any target system has its important variables wrapped at
any time. Table XI summarises the impact that the pro-
posed methodology had on the dependability of all target
modules. The Unwrapped Failure Rate column gives the
original system failure rate with respect to all fault injection
experiments, i.e., the proportion of failures of the unwrapped
system when fault injection across all variables in the given
module are considered. The Wrapped Failure Rate column
then gives the same statistic for wrapped modules.

Observe from Table XI that the system failure rate of
each module decreased in all cases, thus demonstrating the
effectiveness the methodology. Further, the decrease in sys-
tem failure rate of many modules is greater than combined
failure rates of the wrapped variables in those modules. For
example, module MG3 had an unwrapped failure rate of
0.002780830, which corresponded to 39361 failures. The
same module had a wrapped failure rate of 0.000006105,
corresponding to 86 failures. This improvement can not be
accounted for by the 1142 failures incurred by the three
wrapped variables, thus there is evidence that the error
propagation problem has been addressed. This observation is

/* tankUPD = calc + (dt * rate); */
tankUPD = calc + (readWrapper(VARID_12, LOCID_4, dt) * rate);

Figure 2. Read wrapper example deployment

/* currentThrust = Engines[i]->GetThrust();*/
currentThrust = writeWrapper(VARID_17, LOCID_8, Engines[i]->GetThrust());

Figure 3. Write wrapper example deployment

Table XI
SYSTEM FAILURE RATES ASSOCIATED WITH ALL FAULT INJECTED

EXECUTIONS OF INSTRUMENTED MODULES

Module Unwrapped Wrapped
Failure Rate Failure Rate

7Z1 0.002407940 0.000017397
7Z2 0.007082023 0.000141946
7Z3 0.000856604 0.000030189
FG1 0.004582688 0.000045475
FG2 0.002481621 0.000002047
FG3 0.001471873 0.000135395
MG1 0.004983750 0.000012083
MG2 0.007888044 0.000013426
MG3 0.002780792 0.000006076

Table XII
PEAK INCREASE IN EXECUTION TIME AND MEMORY USAGE INCURRED

BY WRAPPERS (SHOWN AS % INCREASES FOR EACH MODULE)

Module Execution Time Memory Usage
(Peak % Increase) (Peak % Increase)

7Z1 26.048% 07.55%
7Z2 31.470% 18.16%
7Z3 20.359% 00.94%
FG1 30.660% 20.63%
FG2 35.829% 03.32%
FG3 23.529% 02.03%
MG1 25.983% 05.22%
MG2 28.090% 04.93%
MG3 23.174% 00.58%

particularly relevant to limiting the propagation of erroneous
states that originate “upstream” of a target module.

Table XII summarises the overhead of the proposed
methodology on all target modules. The Execution Time
column gives the peak percentage increase in runtime when
comparing executions of the wrapped and unwrapped target
modules. The Memory Usage column gives the peak per-
centage increase in memory consumption when comparing
executions of the wrapped and unwrapped target modules.
All overheads were measured by monitoring target modules
in isolation using the Microsoft Visual Studio Profiler.

Observe from Table XII that the execution overhead of
wrapped modules varies between 20% and 35%. The worst
case absolute increase in the execution time of a module was
observed for module 7Z2, which increased by 31.470% to
approximately 28µs. There is a coarse correlation between
the increase in execution time and the number of variables in
each module, though the frequency with which each variable

48

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           57 / 114



is used is likely to impact this overhead more directly.
The increases in memory consumption are more varied
than increases in execution time, with the maximum and
minimum increases being 20.63% and 0.94% respectively.
Note that the memory usage increases shown are the peak
observed increases for each module. This means that the
increase is unlikely to be sustained beyond the execution
of a module and the relative scale of an increase may
be small. For example, the 20.63% increase in memory
consumption shown for FG1 module corresponds to an
additional overhead of less than 4KB.

VII. DISCUSSION

Inserting detection and correction mechanisms directly into
a software system is likely to result in a low overhead, due
to the fact that only a small number of variables and code
segments must be added or replicated. However, as argued
earlier, this approach necessitates the design of non-trivial
predicates, which is known to be difficult [7]. Also, it is
known that the design of correctors often introduces addi-
tional bugs into software [14]. The proposed methodology
circumvents these problems by (re)using standard efficient
detectors and correctors, though this comes at the cost of
greater overheads. We see this problem as a tradeoff; insert-
ing mechanisms directly is more difficult and error prone
but imposes less overhead, whilst our approach can reuse
simpler mechanisms at the expense of greater overheads.

The performance overheads of the proposed methodology
will vary according to the extent of variable wrapping per-
formed, i.e., according to λd and λt. Overhead comparison
with similar approaches are desirable, but generally invalid
due to difference in the extent, intention and focus of the
wrapping mechanisms. For example, the results presented in
this paper demonstrate that with λd = 0.15 and λt = 0.10,
for a single module measured in isolation, our approach
introduces a additional runtime overhead ranging from 20%-
35% and a memory overhead ranging from 0.5%-20%. In
contrast, the approach developed in [14] had a memory
overhead for the masking of a fixed-duration function (5µs)
of over 1200%. However, the component / object focus of
this approach, as opposed to the novel variable-centric focus
developed in this paper, invalidates this comparison.

Given that the software wrappers operate by updating
replicated variables during writes and choosing a majority
value during reads, our approach will work with variables of
different types whenever the notion of equality exists or can
be defined for that type. This is well-defined for integer, real
and boolean types, which were the ones mostly encountered
in the case studies presented, but there is no reason why the
notion of equality can not be defined for composite types.

To prevent bias, the target modules in this paper were se-
lected randomly. In reality, module selection could be based
on expert knowledge, an understanding of system structure
and dependability properties. For example, in systems where
a given module is known to act as a “hub”, it would be
come a candidate for wrapping. Dependability frameworks
can also be used to inform module selection [36].

The main limitation of the proposed methodology, as it
has been applied in this paper, is the need for source code
access. Although no attempt has been made to constrain
the means by which methodology steps can be met, it may
be difficult to devise an appropriate combination of means
when source code is not available. For example, the identifi-
cation of read and write actions on important variables was
performed using source code analysis. In situations where
source code is not available this is not possible, meaning
that an alternative approach must be employed. However, it
should be remembered that the intention of the methodology
is to aid in the design of dependable software during its
development, when source code is normally available.

VIII. CONCLUSION

In this paper we developed an automated wrapped-based
approach for the design of dependable software. The novelty
of the approach is in the reuse of standard efficient depend-
ability mechanisms at the level of variables, which has been
enabled by the use of software wrappers that have been built
on a dynamic error propagation metric. The use of wrappers
is justified by the fact that we do not require knowledge of
system implementation in order to apply the methodology.
The propose methodology was validated through in-depth
studies of several complex software systems, each drawn
from a different application domain. This application of
the methodology yielded promising results, with all treated
modules exhibiting significant dependability improvements.

REFERENCES

[1] J.-C. Laprie, Dependability: Basic Concepts and Terminology.
Springer-Verlag, December 1992.

[2] A. Arora and S. S. Kulkarni, “Detectors and correctors: A
theory of fault-tolerance components,” in Proceedings of the
18th IEEE International Conference on Distributed Comput-
ing Systems, May 1998, pp. 436–443.

[3] Y. M. Wang, Y. Huang, and W. K. Fuchs, “Progressive
retry for software error recovery in distributed systems,” in
Proceedings of the 23rd International Symposium on Fault
Tolerant Computing, June 1993, pp. 138–144.

[4] A. Arora and M. Gouda, “Distributed reset,” IEEE Transac-
tions on Computers, vol. 43, no. 9, pp. 1026–1038, September
1994.

[5] A. Arora and S. Kulkarni, “Designing masking fault-tolerance
via nonmasking fault-tolerance,” in Proceedings of the 14th
IEEE Symposium on Reliable Distributed Systems, June 1995,
pp. 435–450.

[6] A. Jhumka, F. Freiling, C. Fetzer, and N. Suri, “An approach
to synthesise safe systems,” International Journal of Security
and Networks, vol. 1, no. 1, pp. 62–74, September 2006.

[7] N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall,
“The use of self checks and voting in software error detec-
tion: An empirical study,” IEEE Transactions on Software
Engineering, vol. 16, no. 4, pp. 432–443, April 1990.

49

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           58 / 114



[8] H. Shah, C. Gorg, and M. J. Harrold, “Understanding ex-
ception handling: Viewpoints of novices and experts,” IEEE
Transaction on Software Engineering, vol. 36, no. 2, pp. 150–
161, March 2010.

[9] A. Arora and S. S. Kulkarni, “Component based design
of multitolerant systems,” IEEE Transactions on Software
Engineering, vol. 24, no. 1, pp. 63–78, January 1998.

[10] M. Hiller, A. Jhumka, and N. Suri, “An approach for
analysing the propagation of data errors in software,” in
Proceedings of the 31st IEEE/IFIP International Conference
on Dependable Systems and Networks, July 2001, pp. 161–
172.

[11] A. Avizienis, “The n-version approach to fault-tolerant soft-
ware,” IEEE Transaction on Software Engineering, vol. 11,
no. 12, pp. 1491–1501, December 1985.

[12] A. Avizienis and L. Chen, “On the implementation of n-
version programming for software fault tolerance during
execution,” in Proceedings of the 1st IEEE-CS Interna-
tional Computer Software Applications Conference, Novem-
ber 1977, pp. 149–155.

[13] M. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,” IEEE Computer, vol. 30, no. 4, pp.
75–82, April 1997.

[14] C. Fetzer, P. Felber, and K. Hogstedt, “Automatic detection
and masking of nonatomic exception handling,” IEEE Trans-
actions on Software Engineering, vol. 30, no. 8, pp. 547–560,
August 2004.

[15] M. Leeke and A. Jhumka, “Towards understanding the impor-
tance of variables in dependable software,” in Proceedings of
the 8th European Dependable Computing Conference, April
2010, pp. 85–94.

[16] P. Sewell and J. Vitek, “Secure composition of untrusted code:
Wrappers and causality types,” in Proceedings of the 13th
IEEE Computer Security Foundations Workshop, July 2000,
pp. 269–284.

[17] S. Cheung and K. N. Levitt, “A formal-specification based
approch for protecting the domain name system,” in Pro-
ceedings of the 30th IEEE/IFIP International Conference on
Dependable Systems and Networks, June 2000, pp. 641–651.

[18] T. Mitchem, R. Lu, and R. O’Brien, “Using kernel hypervisors
to secure applications,” in Proceedings of the 13th Annual
Confernece on Computer Security Applications, December
1997, pp. 175–181.

[19] E. Wohlstadter, S. Jackson, and P. Devanbu, “Generating
wrappers for command line programs: The cal-aggie wrap-
o-matic project,” in Proceedings of the 23rd ACM/IEEE In-
ternational Conference on Software Engineering, May 2001,
pp. 243–252.

[20] A. C. Marosi, Z. Balaton, and P. Kacsuk, “Genwrapper: A
generic wrapper for running legacy applications on desktop
grids,” in Proceedings of the 23rd International Symposium
on Parallel and Distributed Computing, May 2009, pp. 1–6.

[21] B. Spitznagel and D. Garlan, “A compositional formaliza-
tion of connector wrappers,” in Proceedings of the 25th
ACM/IEEE International Conference on Software Engineer-
ing, May 2003, pp. 374–384.

[22] A. Cleve, “Automating program conversion in database
reengineering: A wrapper-based approach,” in Proceedings of
the 10th European Conference on Software Maintenance and
Reengineering, March 2006, pp. 323–326.

[23] P. Thiran, J. Hainaut, and G. Houben, “Database wrappers
development: Towards automatic generation,” in Proceedings
of the 9th European Conference on Software Maintenance
and Reengineering, March 2005, pp. 207–216.

[24] A. K. Ghosh, M. Schmid, and F. Hill, “Wrapping windows nt
software for robustness,” in Proceedings of the 29th Annual
Symposium on Fault Tolerant Computing, June 1999, pp. 344–
347.

[25] A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make
operating systems reliable and secure?” Computer, vol. 39,
no. 5, pp. 44–51, May 2006.

[26] C. Fetzer and Z. Xiao, “An automated approach to increasing
the robustness of c libraries,” in Proceedings of the 32nd
IEEE/IFIP International Conference on Dependable Systems
and Networks, December 2002, pp. 155–164.

[27] M. Susskraut and C. Fetzer, “Robustness and security hard-
ening of costs software libraries,” in Proceedings of the 37th
IEEE/IFIP International Conference on Dependable Systems
and Networks, June 2007, pp. 61–71.

[28] F. Salles, M. Rodriguez, J.-C. Fabre, and J. Arlat, “Metaker-
nels and fault containment wrappers,” in Proceedings of the
29th International Symposium on Fault-Tolerant Computing,
November 1999, pp. 22–29.

[29] S. H. Edwards, M. Sitaraman, and B. W. Weide, “Contract-
checking wrappers for c++ classes,” IEEE Transactions on
Software Engineering, vol. 30, no. 11, pp. 794–810, Novem-
ber 2004.

[30] H. Volzer, “Verifying fault tolerance of distributed algorithms
formally - an example,” in Proceedings of the 1st Interna-
tional Conference on the Application of Concurreny to System
Design, March 1998, pp. 187–197.

[31] D. Powell, “Failure model assumptions and assumption cov-
erage,” in Proceedings of the 22nd International Symposium
on Fault-Tolerant Computing, July 1992, pp. 386–395.

[32] 7-Zip, “http://www.7-zip.org/,” February 2011.

[33] FlightGear, “http://www.flightgear.org/,” February 2011.

[34] MP3Gain, “http://mp3gain.sourceforge.net/,” February 2011.

[35] M. Hiller, A. Jhumka, and N. Suri, “Propane: An environment
for examining the propagation of errors in software,” in Pro-
ceedings of the 11th ACM SIGSOFT International Symposium
on Software Testing and Analysis, July 2002, pp. 81–85.

[36] ——, “Epic: profiling the propagation and effect of data errors
in software,” IEEE Transactions on Computers, vol. 53, no. 3,
pp. 512–530, May 2004.

50

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           59 / 114



An Approach for the Reliability Analysis of Automotive Control Systems

Mikhail Glukhikh, Mikhail Moiseev
St. Petersburg State Polytechnical University

St. Petersburg, Russia
glukhikh@mail.ru, mikhail.moiseev@gmail.com

Harald Richter
Clausthal University of Technology

Clausthal, Germany
hri@tu-clausthal.de

Abstract—In this paper, we present an approach and a
tool that automates and thereby accelerates the most time-
consuming phases of reliability engineering. In this approach,
an operational function is computed automatically from a
high-level system description by using of system components’
properties, fault types propagation rules and other auxiliary
information. The tool allows arbitrary component types, any
component couplings and failure types and covers thus manda-
tory features for a profound reliability analysis. It calculates
the mean time to failure, the mean fault number and the
components’ influence on the overall reliability as system
reliability characteristics. This tool was tested by a major
car manufacturer in an embedded electronic system of a car.
The main advantage of the developed tool is that it simplifies
reliability analysis of complex-structured systems using a novel
method for system operational state description.

Keywords-reliability analysis; automotive control system.

I. INTRODUCTION

In reliability engineering, there are two different tasks
to accomplish: the analysis of the reliability of a given
system, and the synthesis of a successor system that is more
reliable than the first one, under the boundary conditions of
the costs needed to produce it. Reliability analysis is used
iteratively many times in the process of system design. It is
thus important to evaluate the reliability parameters quickly
and accurately with minimal effort [1][2].

This paper presents a new approach and a tool for
automating the reliability analysis of complex-structured
control systems. Our approach is based on a system meta-
model, which allows to represent many classes of control
systems. As an example, the application of this approach
for automotive control systems is given in this paper.

Analyzing the reliability of car electronics becomes more
and more important because of two reasons. First, the
number of Electronic Controller Units (ECUs) that are built
into contemporary cars has already reached the amount of
100, thus reducing the mean time to failure (MTTF) by the
pure quantity of components. Second, the passengers’ safety
depends more and more exclusively on the reliability of
ECUs’ hardware and software, together with other compo-
nents such as sensors, actuators, cable trees and connectors,
power supplies, generator and battery [3][4].

Because of the used general methodology our approach
is not restricted to cars only but can also be applied to

other technical systems, such as in medicine, aerospace and
nuclear power plants, where harsh environment conditions
are prevailing or where system breakdown is unacceptable.

The rest of the paper is organized as follows: Section 2
shows state-of-the-art, Section 3 summarizes related work
in this field, Section 4 describes the main idea of our
approach, Section 5 presents its specialization for automotive
applications, Section 6 describes the used reliability analisys
methods, the tool itself is explained in Section 7, the paper
ends in Section 8 with a conclusion and an outlook to future
work.

II. STATE-OF-THE-ART

The goal of reliability engineering is to achieve either
a prescribed reliability for a planned system or a higher
reliability at lower costs. State-of-the-art to achieve this
is to change the system structure, to add more reliable
components, or to add redundancy such as standby reserve,
hot reserve, standby containers and load sharing containers.

Reliability analysis of a technical system normally needs
many iteration cycles in which the so-called survival or
reliability function is calculated multiple times, together with
other important parameters such as the MTTF, the mean
fault number and the components’ influence on the overall
reliability. These parameters allow to identify weaknesses in
the system design. The reliability function is a probabilistic
function over time that is based on the individual failure
rates of the system components. For the calculation of the
reliability function, the system has to be modelled first.
Standard models are reliability block diagrams (RBDs), as
well as fault trees (with or without Markov chains) and
event trees as alternatives [5]. Another common model is
the operational function [6] which is used by our approach.

In practice, automotive control systems are complex with
respect to their interconnect topology between components
and because of the sheer amount of parts. High-end cars
have already several thousands of cables and connectors.
Furthermore, there are different types of data paths and
power lines that couple the components together, and many
component types that have to be differentiated as well.

Typical automotive control systems can not be decom-
posed into a set of elementary serial or parallel circuits of
components. Instead, loops and crossings of links exist in

51

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           60 / 114



the interconnect topology. The system topology is thereby
considered to be a general graph.

State-of-the art in current tools is that the constructing
of reliability models is hardly automated yet. However, the
manual constructing of the models mentioned is too time-
consuming in practice because of the large size and the
high complexity of real-world system topology. We propose
an automated approach based on a configurable high-level
system description and component parametrization.

III. RELATED WORK

Beside research projects, there are several commercially
avaliable tools for the reliability analysis of complex systems
such as [11][12][13][14][15].

Usually, these tools support a comprehensive range of
analysis methods. According to [5], the most common meth-
ods are fault tree analysis (FTA), which may be preceded by
an RBD system model, and event tree analysis (ETA). FTA
can be combined with Markov chains (MC) too. The most
important features of these commercial tools are depicted in
Table 1.

Table I
RELIABILITY ANALYSIS TOOLS

Tool RBD ETA FTA MC
ITEM ToolKit + + + +
RAM Commander + + + +
Isograph FaultTree+ – + + +
PTC Relex – + + +
ReliaSoft BlockSim 7 + – + –

All tools suffer from the manual definition of the fault tree
for FTA. Already from 10 components on, the effort for fault
tree construction by hand is high because its time-complexity
grows exponentially. In some cases known from practice, a
preceded RBD with subsequent conversion into a fault tree
may simplify this task [9]. However, in complex cases, the
RBD construction complexity is already comparable with
fault tree construction complexity.

The other model used for fault tree synthesis automation
is Fault Tolerant Data Flow (FTDF) [10]. Fault tree synthesis
algorithm traverses FTDF graph finding all event combina-
tions which lead to system failure. However, this algorithm
does not support cyclic dependencies between elements and
uses exhaustive search for synthesis.

Reliability parameters are usually calculated by using the
system reliability function. There are several possibilites to
obtain the reliability function out of a previously established
fault tree or out of an operational function. These possibilites
are:

1) Selection of a minimal-cut set in the disjunctive
normal form of the boolean description of the fault
tree and subsequent use of the inclusion/exclusion
principle as described by [5][7].

2) Establishing a binary decision tree as an intermediate
data structure of the fault tree as proposed by [7][8].

3) Using a substitution form of the operational func-
tion, together with boolean-probabilistic transforma-
tion rules that are described in [6][1].

All three ways exhibit in the general case an exponential
complexity as soon as the system size increases. However,
we found out that in practice the boolean-probabilistic
method has good scalability which is why we used it in
our tool.

IV. SEMI-AUTOMATED ANALYSIS

We suggest a new approach for the semi-automatic relia-
bility analysis that consists of three major steps:

1) An abstract meta-model.
2) An application-specific configuration of the meta-

model by a so-called pattern.
3) A set of boolean-probabilistic transformations.
Our first step employs an abstract meta-model instead of

a concrete RBD, fault tree or structure graph. This meta-
model is defined by the tuple M = 〈T,G, I, F,O〉, with T
is the set of component types, G is the graph of the system
topology, I is the set of failure types each component type
can have, F is the set of failure propagation rules for every
failure type, and O is a set of rules for constructing the
operational function.

Step 2 in our approach yields a concrete description of a
given system from the meta-model, after having configured
the model with an application-specific pattern. The pattern
has to be created by hand, together with the system’s topol-
ogy. The pattern we used for automotive control systems
is given in detail in Section 5. Other control systems need
different patterns but the meta-model can remain the same.

Because of the time-consuming manual definition of a
fault tree its generation should be automated. We decided
to use an operational function for the system operability
description (see Section 6). From the operational function, a
reliability function can be derived automatically. To achieve
this, boolean-probabilistic transformations are employed.

The approach requires in detail the following 6 phases:
1) Definition of all component types, failure types, failure

propagation rules and operational function construct-
ing rules as the application-specific pattern.

2) Construction of the graph of the system topology.
3) Definition of all failure rates.
4) Derivation of the operational function.
5) Conversion of the operational function into the relia-

bility function.
6) Computation of the MTTF, the mean fault number and

the components influence on the overall reliability.
The first phase must be performed once by hand for each
application-specific pattern. Furtherfore, for any given sys-
tem, phases 2-3 also have to be performed manually once.

52

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           61 / 114



Phases 4-6 are computed automatically. These are the steps
that are repeated multiple times for reliability engineering
which is why we automated their execution.

V. PATTERN FOR AUTOMOTIVE APPLICATIONS

Modern cars may contain the following assistance systems
for driver and infotainment: motor management, electronic
stabilization (ESP) with or without active steering, adaptive
cruise control (ACC), speed control, distance control, rear
vision, night vision, lane keeping, lane changing, parking,
navigation etc. These systems can be analysed by the sub-
sequently described pattern.

A. System elements

There were the following element types defined by us:
1) Electronic Controller Units (ECUs).
2) Active and passive gateways and connection lines that

provide for data propagation.
3) Power supply generators, batteries, power lines, con-

nectors and fuses that provide for power propagation.
4) Sensors and actuators.

B. System Topology

In this pattern, the system topology is defined via two
subgraphs, one for the data paths and one for the power
lines of the system. Both graphs have the same instances of
component types.

C. Failure Types

The automotive pattern defined by us contains the follow-
ing failure types:

1) Internal Error. This type is valid for ECUs, active and
passive gateways and data paths. In case of an internal
error, the component does not perform its function. It
outputs therefore no data or even wrong data.

2) Silence Error. This type is again valid for ECUs,
active and passive gateways and data paths. In case of
silence error, the component outputs no data although
it should. However, it does not output wrong data.

3) Babbling Error. This type is valid for ECUs and active
gateways. In case of babbling error, the component
continuously outputs data although it should not. Most
or all data are wrong.

4) Short Circuit Error. This type is valid for power
supplies, power lines, generator, battery, fuses and data
paths.

D. Failure Propagation Rules

Some failure types can propagate through the system.
Their propagation characteristics are predefined in the au-
tomotive pattern as:

1) The babbling error propagates through data paths and
passive gateways. It can not propagate through ECUs
and active gateways.

2) The short circuit error propagates through power lines
and data paths. It does not propagate through fuses.

3) The internal error and the silence error can not prop-
agate.

E. System Operational Function

In the following, it is assumed that all tasks of the control
system can represented by a set of functions. Then, the
system operational function is the boolean AND of all
these functions. This means that the system function Fsys
is defined by the functions of its components, according to
Fsys =

∧
Fi. Every function Fi in turn relies on the well-

functioning of one or several ECUs. Finally, each ECU needs
a power supply and may need input data from other ECUs.

VI. RELIABILITY ANALYSIS METHODS

A. Operational Function

The system operational function is a boolean expression,
that represents the operational states of its individual com-
ponents. In this function a ”1” denotes an operable state. For
the calculation of the operational function, let us consider a
system comprising of n elements – Cj , j ∈ 1, 2, . . . , n.

Let Xj be the boolean variable that indicates whether the
element Cj of the system is operational. Then, the system
operational function is constructed by the means of the basic
rules O, the component types T (∀Cj : ∃!Ti ∈ T : Cj ∈ Ti –
Cj of type Ti) and the component connection graphs G for
power and data lines. Also the operational functions Fi of
the individual components are constructed by G, as well as
by the failure types I and the failure propagation rules F .
Additionally, it has to be taken into account that there are
dependencies between components, and as a consequence,
a linear system of equation has to be set-up and solved (the
unknown variables in this system are the Xj). Every Fi in
turn is determined by its corresponding ECU type Ti. Fi
is ”1” if there is at least one operable component Cj of
type Ti: Fi =

∨
∀j:Cj∈Ti

Xj , Xj = xjX
power
j Xdata

j . In this
equation, the used variables have the following meaning:
• xj – is operable state of element Cj .
• Xpower

j depends on the power supplies that are con-
nected to Cj by power lines and fuses. The analysis
of the power supplies must take into account that short
circuits can propagate.

• Xdata
j is ”1” if input is available from all necessary

providers. Let Ck be a data provider for component
Cj then Xdata

j contains the component XkPk,j , where
Pk,j is the operable function of the data paths. In addi-
tion, Pk,j must consider babbling errors that propagate
through data lines and passive gateways.

Subsequently, the equation system of all Xj has to be
set-up. In the left part of each equation is a Xj according
to Xj = F(X1, ..., Xn). However, Xj can also be an
independent variable of F on the right side of the equation.

53

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           62 / 114



The system of equations is therefore solved by exclusion-
of-unknowns method which means that Xj in F is replaced
by ”1” (correctness of this action is proven). An example of
this process is given in Section 7.

B. Reliability Function

The reliability function has independent stochastic vari-
ables that denote probabilistic failure events of components.
For the computation of the reliability function out of the
operational function, a boolean-probabilistic method [6][1]
is used. This method includes the following two steps:

1) Conversion of the operational function into an equiv-
alent form called ”substitution form”.

2) Conversion of the substitution form to the reliability
function by applying boolean to probabilistic transfor-
mation rules according to [6][1].

1) Substitution Form: The substitution form of the oper-
ational function Fsys is the boolean sum of the orthogonal
and repetition-free summands that are concatenated with
AND/NOT only. To explain that, let us consider the con-
junctive form (which is not normalized) of the operational
function Fsys =

∧
Fi, where Fi =

∨
∀j:Cj∈Ti

Xj . This
form is converted into the disjunctive normal form by
applying the distributivity law. After that, each summand
is made orthogonal to every other such that the boolean
multiplication of any summand pair yields ”0”. After that,
the orthogonal disjunctive normal form is augmented by the
property that every xk occurs only once in a summand.
This is achieved by successively factoring out all xk in each
summand that occurs more than once. Finally, all xk have
to be concatenated with AND and NOT operators only. This
is accomplished by applying de Morgan rules. For example,
Fsys = x1 · x2 · x3 is a repetition-free form with AND/NOT.
This example is also considered to have orthogonal sum-
mands because it consists only of one summand.

For the computation of the reliability function, that sub-
stitution form of Fsys is used because it allows boolean to
probabilistic transformations. However, the described proce-
dure to obtain the substitution form is too time-consuming
in practice which is why we use a shortcut to obtain it. This
shortcut is called Cutting Algorithm [6].

2) Cutting Algorithm: The goal of the Cutting Algorithm
is to reduce in every step the number of arguments xk of
the operational function Fsys by one. The general form of
the cutting algorithm is:

f(x1, x2, ..., xi, ..., xn) =
= xif(x1, x2, ..., xi−1, 0, xi+1..., xn) +

+xif(x1, x2, ..., xi−1, 1, xi+1..., xn), (1)

Every reduction step is applied to that argument which
occurs most often in Fsys. This argument is factored out
according to (1).

For example, Fsys = x1x4 +x2x5 +x1x3x5 is a boolean
function of 5 independent variables x1 to x5 comprising of
3 summands from which x1 and x5 are the most frequent
ones. The algorithm factors out x1 in the first step according
to: Fsys = x1x2x5 +x1(x4 +x3x5 +x2x5). Now, x5 is the
most frequent variable, etc. The algorithm stops after one
more step in which x5 have also been factored out, yielding
the result: Fsys = x1x2x5 + x1x5x4 + x1x5(x2 + x3 + x4).

Finally, AND/OR is replaced by AND and NOT giving:
Fsys = x1x2x5 + x1x5x4 + x1x5x2 · x3 · x4. This is the
desired substitution form of Fsys, i.e. of the operational
function. Each summand is orthogonal to every other, and
each xk occurs only once in every summand.

As one can see, factoring out is achieved at the expense of
doubling the number of summands. If N is the number of
arguments in Fsys, then the algorithm terminates at most
after N steps. Therefore, after N steps, the number of
summands can be grown by a factor of 2N . In order to
make the cutting algorithm usable, some optimizations have
to be introduced additionally.

3) Optimization: Two kinds of optimizations are used to
reduce the execution time and memory requirements of the
cutting algorithm. These two optimization types are:

1) Simplification of the operational function by boolean
algebra rules.

2) Idenfifying independent segments in the system model.
The boolean simplifications have to be employed in every
step of the algorithm, while the identifying of independent
segments happens only once.

Independent segments are parts of the system which
have an own power supply or parts of the system who
have regions with local data traffic only. Each segment
corresponds to independent part of the operational function.
Independent parts can be obtained formally by the following
procedure:

1) Find in Fsys boolean expressions that occur more than
once.

2) Exclude from them those expressions who have the
same arguments xi also in other expressions of Fsys.

3) Replace the remaining expressions by substituting
them with new functions yi.

4) Treat yi as new independent argument in Fsys.
For example: f = (x1+x2x3+x4x5x6)(x1x2+x3+x4x5x6)
can be converted into f = (x1 +x2x3 + y)(x1x2 +x3 + y),
with y = x4x5x6 as new function.

The result of the optimization is that in a system of 100
components, for example, segment splitting reduces time
and space complexity by a factor of 5-10, and function
simplifying accelerates by an other factor of 3-5, resulting
in a cycle time that is 15-50 times quicker than before.

4) Boolean to Probabilistic Transformation: For the sub-
sequent computation of the reliability function, two more
phases have to be accomplished. These phases are:

54

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           63 / 114



1) Replacement of all variables xk and boolean operators
by stochastic variables pk and probabilistic operators.

2) Replacement of all pk with e−λkt, where λk is the
failure rate of component Ck and t is the independent
variable, i.e. argument of the reliability function.

For the replacement of boolean variables and boolean oper-
ators, all ANDs in the substitution form of the operational
function are replaced by the multiplication of probabilities,
all boolean ORs are replaced by the addition of probabilities,
and all boolean NOTs are replaced by the 1 − P operator,
where P is the probability that an event occurs.

These rules are based on the addition and multiplication
rules for independent events. Finally, every stochastic vari-
able pk is replaced by e−λkt thus obtaining the reliability
function R(t). For example, f = x1x2 + x1 is transformed
first into P = (1 − p1)p2 + p1, and then into R(t) =
(1− e−λ1t)e−λ2t + e−λ1t.

Out of the reliability function, the MTTF, the mean
fault number MFN in the interval [Tmin, Tmax] and the
components influence CIk on the system reliability are
automatically computed by the following formulas:

MTTF =
∫ ∞

0

tR(t)dt (2)

MFN =
(R(Tmin)−R(Tmax))(Tmax − Tmin)∫ Tmax

Tmin
R(t)dt

(3)

CIk(t) = R∗k(t)−R(t) (4)

R∗k(t) is the reliability function of the system under the
assumption that Ck is 100% reliable, i.e. xk = 1. So, for
the computation of CIk(t), R(t) has to be computed twice,
one time with Ck in the system, the other time without.
Furthermore, all CIk(t) are calculated at the time point T
of MTTF and are subsequently normalized to [0, 1].

VII. RELIABILITY ANALYZER TOOL

The reliability analyzer tool implements the meta-model
with the automotive pattern. All pattern data can be conve-
niently entered, extended or modified. This is accomplished
by means of several menus based on tabs for defining pattern
values, as well as by a graph editor, by a component type
editor and by other features. All patterns are stored in XML
format. Analysis results can be displayed by a chart viewer.
The components influence CIk on the system reliability is
color-coded in the viewer in order to inform the users eyes
quickly.

Let us consider as an example Figure 1 which contains 4
ECUs (E1 - E4), 2 batteries (A and B), one active gateway
(G), one passive gateway (P ) and 2 fuses (U1 and U2).

The elements E1 and E2 are of type T1, E3 and E4 are of
type T2. The system operational function is Fsys = F1, F1 =
X1 +X2, where Xi is the operational function of element
Ei. The elements E1 and E3 have no input data from other

Figure 1. Example of an automotive control system

elements. Element E2, however, uses data from elements of
type T2, Element E4 uses data from other elements of type
T1. Under the assumption that all data paths are absolutely
reliable, the operational functions of these elements are:

X1 = E1 · (A · U1),

X2 = E2 · (A+B · U2)(X3 +X4 ·G · P ),

X3 = E3 ·B,

X4 = E4 ·B · (X1 +X2) ·G · P.

This equation system is solved first for the unknowns X2

and X3 by applying the mentioned exclusion-of-unknowns
method:

X2 = E2 · (A+ U2) ·B · (E3 + E4 · P ·G),

X4 = E4 ·B(E1 ·A ·U1 +E2(A+U2)B(E3 +E4 ·P ·G)).

From that, the system operational function is achieved
which is afterwards converted into substitution form, and
then into the reliability function. All other reliability pa-
rameters are computed out of the latter. The result of the
example is shown in Figure 2. The chosen example was
simple but it showed the main points. The analysis of larger
systems is accomplished accordingly. Our tool was tested
with real-world automotive control systems, that were given
to us by one of the leading car manufacturers. It has helped
to compare various alternative control system architectures
and to select the one with the needed reliability.

The current implementation of the tool can analyze sys-
tems of up to several hundreds of components on a PC with
AMD Athlon CPU with 2,4 GHz and 256 MB of RAM. We
measured the following computation times for systems of
different sizes (Table II).

The tool has some overhead compared to commercial
tools because of the automated construction of the system

55

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           64 / 114



Figure 2. MTTF and the reliability function

Table II
ANALYSIS TIME

Number of components 10 20 30 50 100
Analysis time, sec 1 3 11 57 292

operational function and the automatic conversion of the
operational function into the reliability function. However,
this overhead can be neglected.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach and tool for re-
liability engineering. Our approach is based on a meta-model
that allows to many classes class of systems by configuring
the model with so-called patterns. The pattern for automotive
applications are given by us. It was implemented in our
reliability analyzer tool. The tool was used by a large car
manufacturer to improve the control system of a automobile.
The approach constructs semi-automatically the operational
function of the system under test by using information about
the system’s structure. Our tool computes the operational
function, performs an automatic conversion to the reliability
function and determines the mean time to failure, the mean
fault number and the components’ influence on the overall
reliability as reliability parameters.

In the future, we will extend the tool to further accelerate
the design cycle for reliability engineering by automating the
synthesis of redundant systems. Furthermore, we will extend
our approach and tool to other application areas outside of
automotive control systems.

REFERENCES

[1] G.N. Tcherkesov, Hardware-software systems reliability.
St. Petersburg: Piter, 2005.

[2] M. Rausand and A. Hoyland, System Reliability Theory.
Models, Statistical Methods and Applications. Hoboken,
NJ: John Wiley & Sons, Inc., 2004.

[3] R. Bosch, Automotive Electrics and Automotive Electronics,
Completely Revised and Extended. Hoboken, NJ: John
Wiley & Sons, Inc., 2007.

[4] T. Denton, Automobile Electrical and Electronic Systems.
Burlington, MA: Elsevier, 2004.

[5] C. Ericson, Fault Tree Analysis – a History. Proceed-
ings of the 17th International Systems Safety Conferencem,
1999, pp. 1-9. http://www.fault-tree.net/papers/ericson-fta-
history.pdf. – Retrieved 2011-06-04.

[6] I.F. Ryabinin, Reliability and safety of structural-complex
systems. St. Petersburg: Polytechnika, 2000.

[7] J.D. Andrews, An Analysis Strategy for Large Fault Trees.
Proceedings of the 21st International System Safety Confer-
ence, August 2003, pp. 375-386.

[8] L.M. Bartlett, Progression of the binary decision diagram
conversion methods. Proceedings of 21st International
System Safety Conference, August 2003, pp. 116-125.

[9] ReliaSoft Corporation. Comparison of RBD and Fault
Tree Simulation. HotWire Issue 44 (October 2004).
http://www.weibull.com/hotwire/issue44/ relbasics44.html. –
Retrieved 2011-06-04.

[10] M. McKelvin, G. Eirea and C. Pinello et al., A Formal Ap-
proach to Fault Tree Synthesis for the Analysis of Distributed
Fault Tolerant Systems. Proceedings of the 5th ACM
international conference on Embedded software, ACM Press.,
2005, pp. 237-246.

[11] Isograph. Isograph Reliability Analysis Software.
http://www.isograph-software.com. – Retrieved 2011-06-04.

[12] ITEM. Reliability Software from ITEM.
http://www.itemsoftware.com. – Retrieved 2011-06-04.

[13] ALD. Advanced Logistics Development.
http://www.aldservice.com. – Retrieved 2011-06-04.

[14] PTC. The Product Development Company.
http://www.ptc.com. – Retrieved 2011-06-04.

[15] Reliasoft. Reliability Software. http://www.reliasoft.com. –
Retrieved 2011-06-04.

56

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           65 / 114



Methodology and Experience for Designing Safety-Related Systems in IEC 61508

Zhe Chen
College of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics
29 Yudao Street, 210016 Nanjing, China

Email: zhechen@nuaa.edu.cn

Gilles Motet
LAAS-CNRS, INSA

Université de Toulouse
135 Avenue de Rangueil, 31077 Toulouse, France

Email: gilles.motet@insa-toulouse.fr

Abstract—The international standard IEC 61508 provides a
generic process for electrical, electronic, or programmable elec-
tronic (E/E/PE) safety-related systems (SRS) to achieve an ac-
ceptable level of functional safety. This paper first proposes the
concept of functional validity of SRS, based on our observation
on two important problems that occur in industrial practice,
i.e., the rightness of overall and allocated safety requirements
and the lack of technical methodologies for validating SRS.
Functional validity means whether the safety functions realized
by SRS can really prevent accidents and recover the system
from hazardous states, provided the expected safety integrity
level is reached. Then this paper proposes a generic technical
methodology to achieve the functional validity of SRS, and
summarizes industrial experiences in designing functionally
valid SRS. A concrete example is used to illustrate the proposed
methodology.

Keywords-safety-related system; IEC 61508; functional va-
lidity; verification; model checking; formal method; SPIN

I. SAFETY-RELATED SYSTEMS AND FUNCTIONAL
VALIDITY

The international standard IEC 61508 [1][2][3] provides
a generic process for electrical, electronic, or programmable
electronic (E/E/PE) safety-related systems to achieve an
acceptable level of functional safety. The principles of IEC
61508 have been recognized as fundamental to modern
safety management [2], thus have gained a widespread
acceptance and been used in practice in many countries and
industry sectors [4].

Like other safety standards (e.g., DO-178B [5]), IEC
61508 gives recommendations on best practices such as
planning, documentation, verification, safety assessment,
rather than concrete technical solutions. Thus, it is a generic
standard for the safety management throughout the life-
cycle, rather than a system development standard. More
sector-specific and application-specific standards can be de-
rived based on the standard, such as IEC 61511 for process
industry [6], IEC 62061 for machinery industry, IEC 61513
for nuclear plants, EN 50126 for European railway, and ISO
26262 for automotive safety.

As shown in Fig. 1, the first premise of the standard is
that there is an equipment intended to provide a function,
and a system which controls it. The equipment is called
an Equipment Under Control (EUC). The Control System

(CS) may be integrated with or remote from the EUC.
A fundamental tenet of the standard is that, even if the
EUC and the CS are reliable, they are not necessarily safe.
This is true for numerous systems implementing hazardous
specification. They may pose risks of misdirected energy
which result in accidents.

The second premise is that Safety-Related Systems (SRS)
are provided to implement the expected safety requirements,
which are specified to reduce the risks and achieve functional
safety for the EUC. The SRS may be placed within or
separated from the CS. In principle, their separation is
preferred.

EUC

Control
System

Safety-Related
System

Figure 1. The Architecture of Systems with SRS

An SRS may comprise subsystems such as sensors, logic
controllers, communication channels connected to the CS,
and actuators. Usually, an SRS may receive two types of
input: the values of safety-related variables monitored by its
sensors, and the messages sent by the CS. Then the SRS
executes computation to decide whether the system is in a
safe state. According to the result, it may actualize safety
functions through two types of output: directly sending
commands to its actuators, or sending a message to the CS.

Let us consider two important problems that occur in
industrial practice.

The first one questions the rightness of overall and
allocated safety requirements. According to IEC 61508,
safety requirements consist of two parts, safety functions and
associated safety integrity levels (SIL). The two elements
are of the same importance in practice, because the safety
functions determine the maximum theoretically possible risk
reduction [7]. However, the standard focuses more on the
realization of integrity requirements rather than function
requirements. As a result, the standard indicates only that

57

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           66 / 114



the product is of a given reliable integrity, but not that it
implements the right safety requirements.

Second, the standard does not prescribe exactly how the
verification of safety functions of an SRS could technically
be done. On one hand, the standard calls for avoiding faults
in the design phase, since the ALARP principle (As Low As
Reasonably Practicable) is adopted for determining tolera-
bility of risk. Indeed, systematic faults are often introduced
during the specification and design phases. Unlike random
hardware failures, the likelihood of systematic failures can-
not easily be estimated. On the other hand, the standard only
recommends a process and a list of techniques and measures
during the design phase to avoid the introduction of system-
atic faults, such as computer-aided design, formal methods
(e.g., temporal logic), assertion programming, recovery (see
parts 2, 3 of [1]). The detailed use of these techniques is
left to the designer.

As a result, the problem of functional validity arises.
Functional validity means whether the safety functions
realized by SRS can really prevent accidents and recover
the system from hazardous states, provided the expected
safety integrity level is reached. People are searching for a
generic technical methodology to achieve functional validity.

In fact, with the introduction of SRS, it becomes much
harder to ensure the safety of the overall system, due to
complex interactions and the resulting huge state space.
Unlike the case of a single CS, human is no longer ca-
pable to analyze manually and clearly the behaviors of the
overall system. Therefore, we shall expect a computer-aided
method.

This paper proposes such a generic technical methodology
(or a framework) for designing functionally valid SRS. To
the best of our knowledge, we are the first to consider
the technical solution to functional validity of SRS in the
literature. We focus on the systems that operate on demand
(i.e., discrete event). The methodology is based on computer-
aided design in association with automated verification tools
(e.g., SPIN). In Section II, we present a concrete example
illustrating the application of the proposed methodology,
which is formally discussed in Section III. We discuss
related work in Section IV, then conclude in Section V.

II. EXAMPLE: CHEMICAL REACTOR

As an example, consider an accident occurred in a batch
chemical reactor in England [8][9]. Figure 2 shows the
design of the system. The computer, which served as a
control system, controlled the flow of catalyst into the
reactor and the flow of water for cooling off the reaction,
by manipulating the valves. Additionally, the computer re-
ceived sensor inputs indicating the status of the system. The
designers were told that if an abnormal signal occurred in
the plant, they were to leave all controlled variables as they
were and to sound an alarm.

On one occasion, the control system received an abnormal
signal indicating a low oil level in a gearbox, and reacted
as the functional requirements specified, that is, sounded an
alarm and maintained all the variables with their present
condition. Unfortunately, a catalyst had just been added into
the reactor, but the control system had not yet opened the
flow of cooling water. As a result, the reactor overheated,
the relief valve lifted and the contents of the reactor were
discharged into the atmosphere.

We believe that an SRS could be used to avoid the
accident. Figure 3 shows the role of the SRS in the overall
system. It receives signals from additional sensors, and
communicates with the CS. The key issue is how to specify
and design the SRS and prove its functional validity, i.e.,
the SRS is really efficient in the hazardous context. We
illustrate a methodology based on computer-aided design in
association with the SPIN model checker.

The SPIN (Simple Promela INterpreter) model checker
is an automated tool for verifying the correctness of asyn-
chronous distributed software models [10][11]. Systems and
correctness properties to be verified are both described
in Promela (Process Meta Language). SPIN also supports
Linear Temporal Logic (LTL) formulas, which are converted
into never claims written in Promela for verification. Besides
a checker, SPIN can also operate as a simulator by executing
the model following one possible execution trace.

We will illustrate two main steps of the methodology:
modeling the CS, and modeling the SRS.

Modeling Control Systems. The first step is to analyze
the behaviors of the CS by modeling it using Promela.
Listing 1 shows the model. The CS scans the status of the
reactor, and then manipulates the valves according to the
status.

Listing 1. The Promela Program for Reactor Control System
1 # d e f i n e sa ( ( abnorm && ! c a t a ) | | ( abnorm && c a t a && w a t e r ) )
2 # d e f i n e f con s t a t u s == n o c a t a | | s t a t u s == e n c a t a
3 mtype = {abnormal , noca t a , e n c a t a , nowater , e n w a t e r } ;
4 mtype s t a t u s = n o c a t a ; /∗ s t a t u s o f t h e r e a c t o r ∗ /
5 bool c a t a = f a l s e ; /∗ whe ther c a t a l y s t f l o w i s open ∗ /
6 bool w a t e r = f a l s e ; /∗ whe ther wa ter f l o w i s open ∗ /
7 bool abnorm = f a l s e ; /∗ whe ther abnormal s i g n a l occured ∗ /
8
9 /∗ random s i m u l a t i o n o f s c a n n i n g t h e s t a t u s ∗ /

10 i n l i n e s can ( ) {
11 i f
12 : : t rue −> s t a t u s = abnormal ;
13 : : c a t a == f a l s e −> s t a t u s = n o c a t a ;
14 : : c a t a == t rue −> s t a t u s = e n c a t a ;
15 : : w a t e r == f a l s e −> s t a t u s = nowa te r ;
16 : : w a t e r == t rue −> s t a t u s = e n w a t e r ;
17 f i ;
18 }
19
20 /∗ p o s s i b l e a c t i o n s o f t h e s y s t e m ∗ /
21 i n l i n e o p e n c a t a ( ) { c a t a = t rue ; p r i n t f ( ” open c a t a −> ” ) ; }
22 i n l i n e c l o s e c a t a ( ) { c a t a = f a l s e ; p r i n t f ( ” c l o s e c a t a −> ” ) ;}
23 i n l i n e openwa te r ( ) {w a t e r = t rue ; p r i n t f ( ” open w a t e r −> ” ) ;}
24 i n l i n e c l o s e w a t e r ( ) {w a t e r = f a l s e ; p r i n t f ( ” c l o s e w a t e r −>” ) ;}
25 i n l i n e a l a rm ( ) { abnorm = t rue ; p r i n t f ( ” a l a rm −> ” ) ; }
26 i n l i n e en d i ng ( ) { p r i n t f ( ” en d i ng −> ” ) ; }
27
28 a c t i v e proctype c o n t r o l s y s t e m ( ) {
29 /∗ I n i t i a l a c t i o n s o m i t t e d ∗ /

58

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           67 / 114



Gearbox

Catalyst

Reactor Cooling
Water

Control
System

Figure 2. Reactor Control System

Gearbox

Catalyst

Reactor Cooling
Water

Control
System

Safety-Related
System

Figure 3. Reactor Control System with SRS

30 do
31 : : s can ( ) ;
32 i f
33 : : s t a t u s == abnormal −> a la rm ( ) ; goto END;
34 : : e l s e −> i f
35 : : s t a t u s == n o c a t a && c a t a == f a l s e−>o p e n c a t a ( ) ;
36 : : s t a t u s == e n c a t a && c a t a == t rue −>c l o s e c a t a ( ) ;
37 : : s t a t u s == nowa te r && w a t e r == f a l s e−>openwa te r ( ) ;
38 : : s t a t u s == e n w a t e r && w a t e r == t rue −>c l o s e w a t e r ( ) ;
39 : : e l s e −> sk ip ;
40 f i ;
41 f i ;
42 od ;
43 END: en d in g ( ) ;
44 a s s e r t ( s a ) ;
45 }

Lines 1-2 define macros for specifying correctness prop-
erties.

Lines 3-7 define the variables. Note that status denotes
the detection of events (e.g., abnormal signal, no catalyst or
enough catalyst in the reactor), and controls the flow of the
computation, while the other three variables save the state
information. Note that abnormal signal may be caused by
several events. For example, low oil level is one of these
events.

Lines 10-18 simulate the input events to the CS. In the
verification mode, SPIN can only treat closed system without
users’ input. Therefore, the status of reactor is generated
in a random manner, i.e., the if statement (lines 11-17)
chooses randomly one of the alternative statements whose
condition holds. Note that this matches exactly what happens
in practice, since the status of the reactor is determined
nondeterministically by the reaction and the environment,
not the user.

Lines 21-26 define the primitive actions of the CS. To
obtain an efficient model for verification, the real codes for
manipulating physic equipments are replaced by printf
statements, which could be used for observing the execution
traces of the CS.

Lines 28-45 specify the model of the CS. The non-critical
codes (irrelevant to the concerned property, e.g., the code for
initiation) are omitted or simplified to produce an efficient
model. In line 44, we check whether the system satisfies
the safety assertion sa (cf. line 1), which means when an

abnormal signal occurs, either the flow of catalyst must be
closed, or the flow of water must be also open if the flow of
catalyst is open. The violation of this assertion may result
in the mentioned accident.

In order to see whether the model describes exactly
the behaviors of the CS, we run the model through the
simulation mode of SPIN. One of the outputs is as follows.

1 $ s p i n r e a c t o r . pml # Linux command
2 open c a t a −> a la rm −> en d i ng −>
3 s p i n : l i n e 44 ” r e a c t o r . pml ” , E r r o r : a s s e r t i o n v i o l a t e d

The execution trace shows that the alarm is sounded after
opening the flow of catalyst, then the safety assertion is
violated. This trace characterizes exactly what happened in
the accident. It is worth noting that, due to the uncertainty
of the value of status (cf. lines 11-17), the assertion may
be satisfied in another run. This is the reason why the plant
had functioned well before the accident. As a result, in the
simulation mode, it is very possible that an existing fault
will not be detected after numerous runs.

To systematically check all the state space, we use the
verification mode, which needs correctness properties spec-
ifying hazard-free situation.

One possibility is to use assertions, such as what we did
in line 44. Note that an assertion can only check the state
at a single position in the execution (i.e., line 44), not the
remainder positions. The SPIN checks the assertion in the
verification mode as follows.

1 $ s p i n −a r e a c t o r . pml
2 $ gcc pan . c
3 $ . / a . o u t
4 S t a t e−v e c t o r 16 byte , d e p t h r e a c h e d 12 , e r r o r s : 1
5 21 s t a t e s , s t o r e d
6 0 s t a t e s , matched
7 21 t r a n s i t i o n s (= s t o r e d +matched )

After examing 21 states, SPIN detected the unsafe state. We
can simulate the counterexample by tracing simulation.

1 $ s p i n −t r e a c t o r . pml
2 open c a t a −> a la rm −> en d i ng −>
3 s p i n : l i n e 44 ” r e a c t o r . pml ” , E r r o r : a s s e r t i o n v i o l a t e d

The result shows that the unsafe state can really be reached.

59

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           68 / 114



Another alternative for specifying correctness property
is LTL formula. For this example, the formula is φ

def=
G(cata→ Fwater), where G means globally and F means
future [12]. It means whenever the flow of catalyst is opened,
the system will have the chance to open the flow of water
in the future. Of course, this is based on a reasonable
assumption that the status will eventually be nowater when
there is not enough water in the reactor (i.e., there is a
reliable sensor). This assumption is expressed by the fairness
condition GF!fcon. The SPIN checks the LTL formula in
the verification mode as follows ([] denotes G, <> denotes
F).

1 $ s p i n −a −f ’ ! [ ] ( c a t a −> <>w a t e r )&&[]<>!fcon ’ r e a c t o r . pml
2 $ gcc pan . c
3 $ . / a . o u t −A −a # d i s a b l e a s s e r t i o n , check s t u t t e r−

i n v a r i a n t
4 S t a t e−v e c t o r 20 byte , d e p t h r e a c h e d 29 , e r r o r s : 1
5 23 s t a t e s , s t o r e d
6 1 s t a t e s , matched
7 24 t r a n s i t i o n s (= s t o r e d +matched )

After examing 23 states, SPIN detected the unsafe state. We
can simulate the counterexample by tracing simulation.

1 $ s p i n −t r e a c t o r . pml
2 open c a t a −> a la rm −> en d i ng −>
3 s p i n : t r a i l ends a f t e r 30 s t e p s

Since we have already known that the CS may cause a haz-
ardous state, we must make sure that the specified properties
can detect the hazardous state, or else the properties are
not right. Then we introduce an SRS to control potential
hazardous executions.

Modeling Safety-Related Systems. The second step is
to construct the model of the SRS. We reuse the established
model of the CS, and derive an accurate model describing
the behaviors of the SRS. Listing 2 shows the models.
The model of the SRS receives messages sent by the CS,
computes whether the system is safe, and sends a message
back to the CS.

Listing 2. Reactor Control System with SRS in Promela
1 # d e f i n e sa ( ( abnorm && ! c a t a ) | | ( abnorm && c a t a && w a t e r ) )
2 # d e f i n e f con s t a t u s == n o c a t a | | s t a t u s == e n c a t a
3 mtype = {abnormal , noca t a , e n c a t a , nowater , e n w a t e r } ;
4 mtype s t a t u s = n o c a t a ; /∗ s t a t u s o f t h e r e a c t o r ∗ /
5 bool c a t a = f a l s e ; /∗ whe ther c a t a l y s t f l o w i s open ∗ /
6 bool w a t e r = f a l s e ; /∗ whe ther wa ter f l o w i s open ∗ /
7 bool abnorm = f a l s e ; /∗ whe ther abnormal s i g n a l occured ∗ /
8
9 /∗ d e f i n e s a f e t y−r e l a t e d v a r i a b l e s , messages s t r u c t u r e ∗ /

10 t y p e d e f SRV { bool w at e r ; }
11 t y p e d e f MSG { bool w at e r ; bool abnorm ; bool r e s ; }
12 chan ch = [ 0 ] of { MSG } ; /∗ message c h a n n e l ∗ /
13
14 /∗ random s i m u l a t i o n o f s c a n n i n g t h e s t a t u s ∗ /
15 i n l i n e s can ( ) {
16 i f
17 : : t rue −> s t a t u s = abnormal ;
18 : : c a t a == f a l s e −> s t a t u s = n o c a t a ;
19 : : c a t a == t rue −> s t a t u s = e n c a t a ;
20 : : w a t e r == f a l s e −> s t a t u s = nowa te r ;
21 : : w a t e r == t rue −> s t a t u s = e n w a t e r ;
22 f i ;
23 }
24

25 /∗ p o s s i b l e a c t i o n s o f t h e s y s t e m ∗ /
26 i n l i n e o p e n c a t a ( ) { c a t a = t rue ; p r i n t f ( ” open c a t a −> ” ) ;}
27 i n l i n e c l o s e c a t a ( ) { c a t a = f a l s e ; p r i n t f ( ” c l o s e c a t a−> ” ) ;}
28 i n l i n e openwa te r ( )
29 { w a t e r = t rue ; c s 2 s r s ( ) ; p r i n t f ( ” open w a t e r −> ” ) ; }
30 i n l i n e c l o s e w a t e r ( )
31 { w a t e r = f a l s e ; c s 2 s r s ( ) ; p r i n t f ( ” c l o s e w a t e r −> ” ) ;}
32 i n l i n e a l a rm ( ) {abnorm= t rue ; c s 2 s r s ( ) ; p r i n t f ( ” a l a rm −>” ) ;}
33 i n l i n e en d i ng ( ) { p r i n t f ( ” en d i ng −> ” ) ; }
34 i n l i n e c s e p r o ( )
35 { p r i n t f ( ” e r r o r p r o c e s s i n g ( ” ) ;
36 p r i n t f ( ” w a t e r opened ” ) ;
37 w a t e r = t rue ;
38 p r i n t f ( ” ) −> ” ) ; }
39
40 /∗ communica t ion be tween CS and SRS ∗ /
41 i n l i n e c s 2 s r s ( ) {
42 i f
43 : : abnorm == t rue −> msg . abnorm = t rue ;
44 : : abnorm == f a l s e −> msg . abnorm = f a l s e ;
45 f i ;
46 i f
47 : : w a t e r == t rue −> msg . w a t e r = t rue ;
48 : : w a t e r == f a l s e −> msg . w a t e r = f a l s e ;
49 f i ;
50 msg . r e s = t rue ;
51 ch ! msg ;
52 ch ? msg ;
53 i f
54 : : msg . r e s == f a l s e −> c s e p r o ( ) ;
55 : : e l s e −> sk ip ;
56 f i ;
57 }
58
59 a c t i v e proctype c o n t r o l s y s t e m ( ) {
60 /∗ I n i t i a l a c t i o n s o m i t t e d ∗ /
61 MSG msg ;
62 do
63 : : s can ( ) ;
64 i f
65 : : s t a t u s == abnormal −> a la rm ( ) ; goto END;
66 : : e l s e −> i f
67 : : s t a t u s == n o c a t a && c a t a == f a l s e −>o p e n c a t a ( ) ;
68 : : s t a t u s == e n c a t a && c a t a == t rue −>c l o s e c a t a ( ) ;
69 : : s t a t u s == nowa te r && w a t e r == f a l s e −>openwa te r ( ) ;
70 : : s t a t u s == e n w a t e r && w a t e r == t rue −>c l o s e w a t e r ( ) ;
71 : : e l s e −> sk ip ;
72 f i ;
73 f i ;
74 od ;
75 END: en d in g ( ) ;
76 a s s e r t ( s a ) ;
77 }
78
79 /∗∗∗∗∗∗ The S a f e t y−r e l a t e d Sys tem ∗∗∗∗∗∗ /
80 /∗ random s i m u l a t i o n o f s c a n n i n g t h e v a l u e s o f v a r i a b l e s ∗ /
81 i n l i n e s r s s c a n ( ) {
82 i f
83 : : s r v . w a t e r = t rue ;
84 : : s r v . w a t e r = f a l s e ;
85 f i ;
86 }
87
88 /∗ compute whe ther t h e s y s t e m i s s a f e ∗ /
89 i n l i n e s r s c o m p u t e ( ) {
90 i f
91 : : msg . abnorm == t rue && msg . w a t e r == f a l s e −>
92 msg . r e s = f a l s e ;
93 : : msg . abnorm == t rue && s r v . w a t e r == f a l s e −>
94 msg . r e s = f a l s e ;
95 : : e l s e −> msg . r e s = t rue ;
96 f i
97 }
98
99 a c t i v e proctype s r s ( ) {

100 /∗ I n i t i a l a c t i o n s o m i t t e d ∗ /
101 MSG msg ;
102 SRV s r v ;
103 do
104 : : t rue −>

60

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           69 / 114



105 e n d s r s : ch ? msg ;
106 s r s s c a n ( ) ;
107 s r s c o m p u t e ( ) ;
108 ch ! msg ;
109 od ;
110 }

Lines 10-11 define the inputs to the SRS. The type SRV
defines a set of safety-related variables, whose values could
be obtained from additional sensors outside the CS and
managed by the SRS. For this example, SRV monitors only
whether the water flow is open. The type MSG defines the
structure of the messages communicated between the CS
and the SRS. Line 12 defines a rendezvous channel for the
message.

In lines 28-32, for each primitive action that modifies
the values of the variables monitored by the SRS, the
communication between the CS and the SRS is inserted.
The communication module (lines 41-57) reads information
needed, and sends a message to the SRS, then receives a
response. The module analyzes the result in the returned
message. If it indicates an unsafe state, the system calls the
error processing module to recover from the hazardous state.

The error processing module (lines 34-38) uses the infor-
mation in the returned message to decide the actions. The
process could change the values of certain variables (e.g.,
line 37) after manipulating physic equipments (e.g., in line
36, printf statement abstracts the action of opening the
valve). Note that more information could be contained in the
returned message in more complex systems (i.e., not only
a boolean result), in order to provide sufficient information
for the error processing module to analyze the current state.

Lines 99-110 define the model of the SRS. It waits
for the message sent by the CS, then scans the values
of the safety-related variables (lines 81-86), and computes
whether the system is safe using the message and the safety-
related variables (lines 89-97). Finally the SRS sends a
response to the CS. Note that the computation in srs_scan
and srs_compute could be different in various systems.
Embedded C code could be used to implement more com-
plex functions. Anyway, we use the same methodology and
framework.

In order to see whether the model characterizes exactly
the behaviors of the SRS, we run the model through the
simulation mode of SPIN. One of the outputs is as follows.

1 open c a t a −> e r r o r p r o c e s s i n g ( w a t e r opened ) −> a la rm −>
en d i ng −>

The execution trace shows that the safety assertion is not
violated, which is exactly what we expect to avoid the
mentioned accident.

Then we check the assertion in the verification mode, and
no error is found.

1 S t a t e−v e c t o r 40 byte , d e p t h r e a c h e d 208 , e r r o r s : 0
2 409 s t a t e s , s t o r e d
3 57 s t a t e s , matched
4 466 t r a n s i t i o n s (= s t o r e d +matched )

We may also check the LTL formula in the verification
mode.

1 S t a t e−v e c t o r 44 byte , d e p t h r e a c h e d 401 , e r r o r s : 0
2 707 s t a t e s , s t o r e d (979 v i s i t e d )
3 658 s t a t e s , matched
4 1637 t r a n s i t i o n s (= v i s i t e d +matched )

Zero errors mean that the assertion holds and the LTL
property always holds in the execution, i.e., no unsafe
state could be reached. Therefore, we conclude that the
established model of the SRS can successfully avoid the
accident, i.e., a “functionally valid” SRS. Note that, if we
use another computation in srs_compute, the SRS may
be not functionally valid (e.g., always let msg._res be
true). That is the reason why we need such a methodology
to ensure functional validity.

It is worth noting that the combination of the CS and the
SRS has 707 states and 1637 transitions (more complex the
overall system, larger the state space). Human is not able to
analyze the correctness of such a complicated system. As
a result, computer-aided design may be the only choice for
developing functionally valid SRS.

III. METHODOLOGY FOR DESIGNING FUNCTIONALLY
VALID SRS

In this section, we propose the generic methodology for
designing functionally valid safety-related systems. As we
mentioned, the state space of the overall system including
the CS and the SRS is much larger than the one of a
single CS or a single SRS. As a result, manual analysis
and design of the SRS are never trustworthy and always
error-prone. This methodology uses computer-aided design
in association with automated verification tools, thus can
improve our confidence on the functional validity of the
design of SRS.

We try to list exhaustively all the key issues that we know
in the designing process, in order to guide the practice.
Due to the wide application of the standard and SRS, the
reader may encounter different situation in various projects
and industry sectors. Therefore, some necessary adaptations
should be made in detail for a specific project.

Generally, there are three steps for developing a function-
ally valid SRS: modeling the CS, modeling the SRS and
implementing the SRS. This paper focuses on the first two
steps (i.e., the design process) which lead to a functionally
valid design of the SRS, although it is worth noting that
faults may be also introduced in the implementation process.

Modeling Control Systems. The first step is to construct
the model of the CS. The results of this step are a Promela
program for the CS and the correctness properties. We list
some key issues as follows.

(1) The first task is to derive accurate and efficient
abstraction of the behaviors of the CS. The criteria for
judging the quality of the model are mainly accuracy and
efficiency. Accuracy means that the model behaves exactly

61

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           70 / 114



like the real CS, while efficiency means that the model is
smart enough, e.g., the program should use as few variables,
statements and memory as possible. Some typical issues are
the following ones:

(a) Define variables, both for computation and checking.
Some variables are used for computation, that is, implement-
ing control flow, behaviors and semantics of the system.
Some variables are used for representing the state of the
system, so they do not contribute to the functionality of the
system. They are only used in the correctness properties to
check the property of the indicated state.

It is worth noting that the size of variables must be
carefully defined. The principle is “as small as possible”.
The model checker will produce a huge state space, of which
each state contains all the defined variables. As a result,
the restriction from int to byte will save considerable
memory when checking.

(b) Simulate the random inputs to the CS. In the verifica-
tion mode, the Promela model is a closed system. In other
words, it cannot receive users’ inputs. As a result, we must
generate the inputs in the program.

The best way is to generate the inputs randomly, i.e.,
nondeterministically choose one member from the set of all
possible values. The advantage of this method is that it can
simulate the uncertainty of the inputs, that is, we do not
know when a specific input will occur. For example, consider
the sensors’ signal which is determined by the environment.

(c) Simplify reasonably the computation of the CS. Due
to the size and complexity of the real system, an automated
model checker may not even be able to produce the result in
an acceptable instant. Obviously, the huge size contributes
to a huge number of states, and the complexity contributes
to a huge number of transitions. As a result, the size of the
state space may be much larger than the memory, then the
model checker will fail to accomplish the verification.

One solution is to provide a more coarse abstraction of
the CS. That is, we omit some non-critical computations,
e.g., the initiation of the system. Furthermore, some manip-
ulations of physical equipments can be expressed with only
a printf statement, which does not increase the size of
the state space.

Another solution is to decompose the system into several
parts, and check these parts one by one. When checking one
single part, we make the assumption that the other parts are
correct. It is worth noting that the decomposition is relevant
to the properties to check. That is, we must put all the
functions relevant to a certain property into the same part,
when checking the property.

(d) Use embedded C codes if necessary. Due to the com-
plexity of embedded C codes and the lack of syntax check-
ing, they are mainly used for automated model extraction
in SPIN. However, the strong expressive power of C code
is anyway a tempting feature. Thus the recommendation is
made only “if necessary”.

(e) Simplify or eliminate the codes for controlling equip-
ments. Usually we assume that the codes for implementing
primitive manipulations are correct, e.g., opening the flow
of water.

(2) The second task is to derive correctness properties,
i.e., assertions and LTL formulas.

(a) Assertions are used to check the property at a specific
position in the program. Obviously, the expressive power is
limited. Thus, if we want to check a property over all the
state space, we must use LTL formulas.

(b) LTL formulas are used to check all the states in
the system. Obviously, LTL formulas are more powerful.
However, it is also worth noting that LTL formulas can
considerably largen the state space. Thus we suggest to use
them only when assertions are not able to express a property.

(3) Some Experiences.
(a) Check the exactitude of the established model, by

using simulation mode. The printf statement can be used
to output information about the state of the CS. Simulating
the model for sufficient many times can show whether the
model works as expected. Note that the criteria “sufficient
many times” is due to the uncertainty of the inputs.

(b) Check the exactitude of the correctness properties, by
using verification mode. If we aim at creating or modifying
an SRS for identified risks, we must make sure that the
correctness properties can detect the error caused by the
identified risks.

Modeling Safety-Related Systems. The second task is
to construct the model of the SRS. The results of this
step are a Promela program for the SRS and the codes for
communication and error processing in the modified model
of the CS. We list some key issues as follows.

(1) The premise is that we have the model of the CS
and reuse it, e.g., the results of the last step.

(2) The first task is to derive accurate and efficient
abstraction of the behaviors of the SRS. Some typical
issues are the following ones:

(a) Define the scope of input and output of the SRS. There
are two types of input: the message sent by the CS and the
values of safety-related variables sent by the sensors. The
SRS may use only one of the two types, or both of them.
There are two types of output: the message sent to the CS
and the direct manipulation of the equipment. Also, the SRS
may use only one of the two types, or both of them.

(b) Define safety-related variables. A safety-related vari-
able, which saves a value sent by sensors, is used to collect
additional information which is beyond the scope of the CS,
or to collect a specific piece of information in the scope
of the CS for increasing the reliability of the information.
Note that more safety-related variables means higher cost of
implementation.

(c) Choose the type of communication between the CS
and the SRS. The SPIN model checker supports two types of
communications: rendezvous and buffered communication.

62

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           71 / 114



In order to process the demand from the CS to the SRS as
soon as possible, and also provide information from the SRS
to the CS to decide the next action, we usually choose the
rendezvous communication.

(d) Define the structure of message. This depends on the
information needed by the CS and the SRS. The values of
the variables monitored by the SRS should be sent from
the CS to the SRS. The message should also contain all
the necessary information needed by the CS to deal with
risks. In the simplest case, it is a Boolean result, indicating
the system is safe or not. However, generally, the CS need
more information to determine why the system is not safe,
then it can activate corresponding error processing functions.

(e) Define message channels. Usually, one channel is
enough for the communication between the CS and the SRS.

(f) Simulate the scanning of the values of safety-related
variables. It is similar to the case “simulate the random
inputs to the CS”. The random simulation express exactly
the fact that the values are nondeterministically decided by
the environment.

(g) Simplify reasonably the computation of the SRS.
(Similar to the case of the CS.)

(h) Use embedded C code if necessary. (Similar to the
case of the CS.)

(3) The second task is to define the position for the
communication between the CS and the SRS. Gener-
ally, the usual location is between the assignment of key
variables monitored by the SRS and the manipulation of
physical equipment. Therefore, the SRS can check whether
the system will be safe if the next manipulation is executed.
If no, the SRS can send a message to activate the error
processing functions.

(4) The third task is to define the function of error
processing. This step is different for different projects,
because it is based on the requirements of a specific system.
In fact, the correctness of error processing also plays an
important role in the correctness of the overall system and
the functional validity of the SRS.

(5) Some Experiences.
(a) Check the exactitude of the established model, by

using simulation mode. (Similar to the case of the CS.)
(b) Check the exactitude of the correctness properties,

by using verification mode. We must make sure that the
overall system (including the CS and the SRS) is safe, i.e.,
satisfies the specified correctness properties. If we aim at
creating or modifying an SRS for identified risks, we must
make sure that the overall system can avoid the previously
detected errors, since the SRS component and additional
error processing functions have been added.

If errors are detected, we must check the design of the
SRS, and also the exactitude of the correctness properties
(because they may specify a semantics different from what
we expect).

Implement the SRS. We implement the SRS using the

established model and computation. Note that faults may
also occur at this step. Since numerous guidelines exist in
industrial sectors to handle this issue, the discussion on
reliable implementation is beyond the scope of this paper.

IV. RELATED WORK

The use of formal methods and model checking for
ensuring safety or proving the absence of certain hazards
is not new in the literature.

For example, Eriksson [13] showed how formal verifi-
cation can be used in a retrospective safety case through
an example taken from railway signalling. This approach
can be used to demonstrate the safety of the safety-critical
systems in operation which were developed according to
old practises that would be regarded as unacceptable today.
In this application of formal methods, several particular
problems were discussed, such as uncertainty about the
original requirements and the required safety level of the
various system functions.

The ForMoSA project [14] developed an integrated ap-
proach for safety analysis of critical embedded systems. The
approach brings together the best of engineering practice,
formal methods and mathematics: traditional safety analysis,
temporal logics and verification, and statistics and optimiza-
tion. These three orthogonal techniques cover three different
aspects of safety: fault tolerance, functional correctness and
quantitative analysis.

However, these works in the literature only focus on how
to ensuring safety, rather than the functional validity of
SRS in IEC 61508. Note that one key idea of the standard
is the separation of the CS and the SRS. Thus ensuring
the functional validity of SRS is different from the safety
issues of a single control system which are discussed in the
literature. Therefore, we are the first to consider the technical
solution to functional validity of SRS in the literature.

Furthermore, our related papers [15][16] proposed the
theory of formal control systems, based on the traditional
automata theory. A formal control system consists of two
automata. The controlled automaton is monitored by the
controlling automaton to satisfy the given specification. The
theory can be considered as the theoretical foundation of
the SRS. The interested reader is referred to [15][16], since
the theoretical aspect is beyond the scope of this industrial
practice-oriented paper.

V. CONCLUSION

This paper first proposed the concept of functional validity
of SRS, based on our observation on two important problems
that occur in industrial practice, i.e., the rightness of overall
and allocated safety requirements and the lack of technical
methodologies for validating SRS.

Then this paper proposed a generic technical methodology
(or a framework) which is based on computer-aided design

63

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           72 / 114



in association with automated verification tools, for design-
ing functionally valid SRS. To the best of our knowledge, we
are the first to consider the technical solution to functional
validity of SRS in the literature.

The case study provided a customized demonstration of
applying the methodology. The same methodology may
be used for other situations by taking into account only
some necessary adaptations, since it is a generic modeling
approach for designing functionally valid SRS.

There are also some limitations of the proposed approach.
First, the approach cannot completely eliminate design de-
fects. This is due to the fact that it is not possible to identify
all the safety requirements and correctness properties before
verification. As a solution, we may use some sophisticated
methodologies discussed in the literature to analyze hazards
and their probabilities, e.g. fault tree analysis. Second, the
modeling process is generally manual. We may consider
how to automate the modeling process to decrease the time
required for validation. Third, like other model checking
techniques, the state explosion problem is also a challenge
for scaling up the approach. One possible solution is to
improve the model checking algorithm to reduce the state
space [17]. Another possible solution is to develop optimized
and customized model checker for verifying SRS.

ACKNOWLEDGMENT

This work was supported by the China Postdoctoral
Science Foundation and the National Natural Science Foun-
dation of China (60703033 and 61033002). The authors
are grateful to the anonymous referees for their detailed
comments and helpful suggestions.

REFERENCES

[1] IEC, IEC 61508, Functional Safety of Electrical/Electron-
ic/Programmable Electronic Safety-Related Systems. Inter-
national Electrotechnical Commission, 1999.

[2] F. Redmill, “IEC 61508 - principles and use in the manage-
ment of safety,” Computing & Control Engineering Journal,
vol. 9, no. 5, pp. 205–213, 1998.

[3] S. Brown, “Overview of IEC 61508 - design of electrical/-
electronic/programmable electronic safety-related systems,”
Computing & Control Engineering Journal, vol. 11, no. 1,
pp. 6–12, 2000.

[4] R. Faller, “Project experience with IEC 61508 and its conse-
quences,” Safety Science, vol. 42, no. 5, pp. 405–422, 2004.

[5] D. S. Herrmann, Software Safety and Reliability: Techniques,
Approaches, and Standards of Key Industrial Sectors. IEEE
Computer Society, 2000.

[6] H. Gall, “Functional safety IEC 61508 / IEC 61511 the
impact to certification and the user,” in Proceedings of the
6th ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA 2008). IEEE, 2008, pp. 1027–
1031.

[7] D. Fowler and P. Bennett, “IEC 61508 - a suitable bases for
the certification of safety-critical transport-infrastructure sys-
tems??” in Proceedings of the 19th International Conference
on Computer Safety, Reliability and Security (SAFECOMP
2000), ser. Lecture Notes in Computer Science, F. Koornneef
and M. van der Meulen, Eds., vol. 1943. Springer, 2000,
pp. 250–263.

[8] T. Kletz, “Human problems with computer control,” Plant/-
Operations Progress, vol. 1, no. 4, 1982.

[9] N. Leveson, Safeware: System Safety and Computers.
Addison-Wesley, Reading, MA, 1995.

[10] G. J. Holzmann, “The model checker SPIN,” IEEE Transac-
tions on Software Engineering, vol. 23, no. 5, pp. 279–295,
1997.

[11] G. J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. The MIT Press, 2000.

[13] L. henrik Eriksson, “Using formal methods in a retrospec-
tive safety case,” in Proceedings of the 23rd International
Conference on Computer Safety, Reliability and Security
(SAFECOMP 2004), ser. Lecture Notes in Computer Science,
vol. 3219. Springer, 2004, pp. 31–44.

[14] F. Ortmeier, A. Thums, G. Schellhorn, and W. Reif, “Com-
bining formal methods and safety analysis - the formosa
approach,” in Integration of Software Specification Techniques
for Applications in Engineering, ser. Lecture Notes in Com-
puter Science, vol. 3147. Springer, 2004, pp. 474–493.

[15] Z. Chen and G. Motet, “Towards better support for the
evolution of safety requirements via the model monitoring
approach,” in Proceedings of the 32nd International Confer-
ence on Software Engineering (ICSE 2010). ACM, 2010,
pp. 219–222.

[16] Z. Chen and G. Motet, “System safety requirements as control
structures,” in Proceedings of the 33rd Annual IEEE In-
ternational Computer Software and Applications Conference
(COMPSAC 2009). IEEE Computer Society, 2009, pp. 324–
331.

[17] Z. Chen and G. Motet, “Nevertrace claims for model check-
ing,” in Proceedings of the 17th International SPIN Workshop
on Model Checking of Software (SPIN 2010), ser. Lecture
Notes in Computer Science, vol. 6349. Springer, 2010, pp.
162–179.

64

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           73 / 114



Supporting Synthetic Data-Driven Diagnosis through Automated Fault-Injection

Patrick E. Lanigan, Priya Narasimhan
Carnegie Mellon University

Electrical & Computer Engineering
planigan@ece.cmu.edu, priya@cs.cmu.edu

Thomas E. Fuhrman
General Motors Research & Development

Electrical & Controls Integration Lab
thomas.e.fuhrman@gm.com

Abstract

Given the lack of empirical data available from automo-
tive serial-communication networks, an automated fault-
injection environment can be used to create synthetic
datasets for training and testing data-driven diagnosis al-
gorithms. We use commercial fault-injection hardware with
custom software to implement such an environment. A
small pilot study using injected physical-layer faults shows
promise in producing identifiable error-patterns.

1 Introduction

The automotive industry has become steadily more reliant
on software-intensive distributed systems to implement ad-
vanced vehicle features. In fact, it has been estimated [7]
that “up to 90% of all innovations are driven by electron-
ics and software”. It is further estimated [7] that 50-70%
of an ECU’s development costs come from software, with
some vehicles having up to 70 ECUs. Overall, electronics
and software can account for up to 40% of a vehicle’s cost
[7]. When problems in software-based systems are uncov-
ered after a vehicle has gone to production, recall costs can
rival development costs. For example, 2004 saw the recall
of 680,000 Mercedes-Benz E-Class vehicles due to issues
with the electronic brake-by-wire system [23].

A growing trend is toward features that assist the driver
in maintaining safe control of the vehicle under a variety of
conditions. Previously, such assistance has been provided
passively in the form of information or warnings. These
features are now being given increasing amounts of author-
ity to control the vehicle’s motion by actively supplement-
ing the driver’s inputs. The long term trend is towards fully
autonomous operation [16, 21].

Because these systems are critical to ensuring the safe
operation of the vehicle, they must be designed to toler-
ate faults and provide high levels of dependability. Typi-
cally, a systematic safety analysis is conducted during the
design phase, to evaluate both the severity and likelihood

of the consequences of possible faults. Formal verification
methods are used to analyze system dependability. Fault-
injection can play a complementary role in this analysis by
providing an empirical way to study the system’s depend-
ability in the presence of faults and to analyze the system’s
fault-handling capabilities with respect to a particular fault
model. This can aid in fault-removal and fault-forecasting
[2]. The upcoming ISO 26262 standard for functional safety
in automotive electronics highly recommends that fault-
injection be included as part of the dependability analysis
of critical systems [10].

Despite extensive design processes, emergent behavior
will still appear at runtime in dependable automotive sys-
tems. Such behavior occurs due to unforeseen interactions
and complexity between independently designed compo-
nents. These interactions are not readily apparent to the sys-
tem designers, and might not be captured by system models.
Therefore, diagnostic approaches that rely solely on system
models are unlikely to provide a satisfactory diagnosis when
presented with emergent behavior. A data-driven diagnos-
tic approach that analyzes system metrics as well as system
models has the potential to provide a more accurate diag-
nostic output [12].

In order to support the development of data-driven di-
agnostic approaches, we built an automated fault-injection
environment for FlexRay [6]. This environment combines
off-the-shelf fault-injection hardware with custom software
to allow a large number of highly repeatable experiments to
be coordinated from a centralized host. It also enables data-
logging from each node in the cluster, as opposed to relying
on a single monitoring point.

We performed a pilot study to validate this fault-injection
environment and to determine whether it is feasible to dis-
tinguish faults based on their manifestations. The results
of this study show that faults do no necessarily manifest
symmetrically in a linear bus topology. Furthermore, those
manifestations produce identifiable error patterns.

1

65

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           74 / 114



2 Synthetic Data-Driven Diagnosis

The analytic techniques used for data-driven diagnosis vary
[3, 4, 8, 11], but commonly require a large dataset for al-
gorithm training and testing. This data typically comes
in the form of metrics that are derived from various in-
strumentation points. These instrumentation points exist at
the system-level as well as the component-level. Examples
of potential instrumentation points are the status indicators
exposed by the FlexRay Controller-Host Interface (CHI)
(see section 3.2), hooks inserted into software components,
and Operating System (OS) metrics such as context-switch
rates. The data can then be analyzed to infer a correlation
between the metrics and the system health. Ideally, this cor-
relation leads to some actionable diagnostic output.

Usually, such metrics are gathered from deployed sys-
tems. This is problematic in automotive systems, because
real-world failure data is scarce. The most advanced de-
pendable automotive systems exist only as research pro-
totypes, and therefore have not seen wide enough deploy-
ment to generate useful failure metrics. For the few systems
that have been deployed, Original Equipment Manufactur-
ers (OEMs) are understandably reluctant to release failure
data for public scrutiny.

Therefore, we propose leveraging fault-injection to build
a synthetic data-driven approach. Fault-injection is already
recommended to be used in the dependability analysis of
critical systems [10], so the impact on existing development
processes should be minimal. Even so, there are many re-
search challenges involved in developing such an approach.
We discuss these research challenges elsewhere [12], but
the entire endeavor rests on a few key propositions.

Proposition 1 The errors induced by faults form identifi-
able patterns.

Proposition 2 The error patterns corresponding to faults
are evident in, and can be derived from, system metrics.

Proposition 3 The error patterns derived from system met-
rics allow faults to be distinguished by type, persistence,
etc.

The remainder of this paper describes a study with dual
purposes. The primary purpose is to determine whether our
fault-injection environment is suitable for studying Propo-
sitions 1–3. The secondary purpose is to determine whether
the propositions themselves have any credibility. The ex-
perimental apparatus (i.e., fault-injection environment) and
process are described in Section 3. We specify the param-
eters of the pilot study in Section 4. Section 5 discusses
the results of the study. A brief overview of related work is
contained in Section 7. Section 8 concludes this paper.

3 An Automated Fault-Injection Environ-
ment for FlexRay

In order to study Propositions 1–3 — and, indeed, any
propositions — the fault injection environment should pro-
vide repeatability, controllability and observability. We
also require automation in order to allow unattended op-
eration for extended periods of time.

Controllability. The experimenter should be able to define
experimental parameters accurately, with respect to
time (e.g., fault activation-trigger and duration), space
(e.g., fault location) and value (e.g., fault type).

Repeatability. Experiments run under similar conditions
with similar parameters should produce similar results.

Observability. The effect(s) — or lack thereof — of a fault
should be readily apparent. We do not assume that
faults manifest symmetrically across nodes. Therefore,
observations (i.e., snapshots of instrumented data)
must be made at each node and compared with respect
to the time, space and value domains. In FlexRay,
the space domain corresponds to the node identifier
(ID); the time domain corresponds to the local view
of global time (denoted by the current macrotick and
cycle counter); and the value domain corresponds to
the measured data itself.

Automation. While a manual fault-injection process [13]
can be useful for rapid-prototyping applications, such
a process becomes unwieldy when a large number of
experiments are required. In order to develop a robust
dataset for training and testing different diagnosis al-
gorithms, we need to experiment with a wide range
of faults. Experiments also need to be repeated many
times in order to allow for statistically significant anal-
ysis.

These goals are achieved through a rigorous process that
is enabled by off-the-shelf hardware (see Section 3.1) and
implemented by custom software (see Section 3.2).

3.1 Hardware Architecture

The fault-injection environment is based on a cluster of
(6) Elektrobit EB 61201 prototyping nodes that commu-
nicate with each other over a linear FlexRay communica-
tion bus. The prototyping nodes feature MFR4310 FlexRay
controllers. The TTXDisturbance node, by TTTech, pro-
vides fault-injection capabilities at the FlexRay physical-
layer and protocol-layer. An Amrel ePower PDS8202 pro-
grammable power-supply provides (8) independent DC out-

1Formerly known as DECOMSYS NODE MPC5200

2

66

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           75 / 114



Node 1 Node 2 Node 3 Node 4 Node 6 Node 7Log FI

Ethernet
switch

DIO
interface

tr
ig

ge
r_

in
tr

ig
ge

r_
ou

t

FlexRay (Primary) FlexRay (Secondary)

DC power

RS-232
RS-232

USB

sy
nc

[1
]

sync[2]
sync[3]

sync[4]

sync[6]
sync[7]

Figure 1. The hardware architecture of the
fault-injection environment.

puts that allow each node to be power-cycled programmati-
cally.

The placement of the TTXDisturbance node corresponds
to the location of injected physical-layer faults. For exam-
ple, in the current topology, the bus lines can be short cir-
cuited or broken between the fourth and fifth prototyping
nodes (see Figure 1).

A Windows-based personal computer (PC) communi-
cates directly with the prototyping nodes using an Ether-
net backchannel. The PC also controls the power supply
and TTXDisturbance node via RS-232 connections. Finally,
a National Instruments USB-6008 Data Acquisition (DAQ)
unit connected to the PC provides digital and analog I/O
interfaces for triggers and signals. Figure 1 shows the hard-
ware architecture in detail.

3.2 Experimental Process

The high-level experimental process is fairly straightfor-
ward.

Step 1 Power-cycle each prototyping node to reset its in-
ternal state.

Step 2 As the the prototyping nodes boot and synchronize,
begin logging observations.

Step 3 Once all of the prototyping nodes have synchro-
nized, delay for a specified time to allow for steady-state
observations (i.e., the pre-fault delay).

Step 4 Wait for a repeatable trigger before activating a
fault of some duration and type.

DC Power
Supply

PC

Disturbance 
Node

Prototyping 
Nodes

ye
s

yes

turn outputs 
on

turn outputs 
off

start signal 
power on

boot and 
synchronize signal sync Execute 

application

all sync 
recv'd

begin 
logging

signal 
dist.

execute
disturbance

signal 
host

end 
logging

signal 
power off

all loops 
complete

stop

no

no

pre-fault 
logging

post-fault 
logging

Figure 2. The fault-injection process requires
coordinating actions across disparate com-
ponents.

Step 5 When the fault has passed, allow additional time to
log observations as any lingering fault-effects pass (i.e., the
post-fault delay).

Step 6 Return to Step 1 and repeat the process, if required.

A custom control-application that runs on the PC imple-
ments the configuration, coordination, and data-collection
functionality that this process requires.

3.2.1 Configuration

The pre-fault delay (from Step 3); fault duration, type
and trigger (from Step 4); and post-fault delay (from
Step 5) are set in a configuration file that is uploaded to the
TTXDisturbance node by the PC over RS-232. This configu-
ration file is known as a disturbance scenario, and specifies
the faulty behavior that is applied during the fault-injection
process.

The number of times that a particular disturbance sce-
nario is repeated is defined by the reps parameter, which is
provided as an input to the control application.

3.2.2 Coordination

Implementing this high-level process involves many steps
taken by disparate components without any common com-
munication channel. The PC provides the “glue” required
to coordinate these steps (see Figure 2).

The PC commands the power supply to turn on its out-
puts, which causes the prototyping nodes to boot and syn-
chronize. The fault should not be injected until all of
the prototyping nodes have synchronized (i.e., reached a

3

67

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           76 / 114



steady-state). The TTXDisturbance node does not provide
a way to wait until all nodes achieve synchronization, so
the prototyping nodes each send a sync signal through the
DAQ to the PC. Once the PC has received all of the sync
signals, it sends a signal through the DAQ to trigger the
TTXDisturbance node, which begins running the configured
disturbance scenario. The PC then waits until it receives
signal from the TTXDisturbance node that the disturbance
scenario has terminated. After receiving the signal, the PC
commands the power supply to turn off its outputs. If the
configured number of iterations has been completed, then
the PC ends the process. Otherwise, the process is repeated.

3.2.3 Data Collection

The PC provides centralized data-collection functionality
for observations made by the prototyping nodes. Each pro-
totyping node is assigned to a dedicated port on the PC
that listens for incoming data using User Datagram Proto-
col (UDP). All of the data that the PC receives is tagged
with the source node ID and experiment ID and then logged
for offline analysis.

4 Pilot Study Specification

For this pilot study, the prototyping nodes were loaded with
a simple application. Note that the purpose of this applica-
tion was not to provide realistic application-level behavior.
Rather, it was only used to stimulate bus traffic. Each node
transmitted a message counter and a node IDs using two
frames in the static segment and a single (arbitrated) frame
in the dynamic segment. These frames were received by all
controllers but not read by the application. The OS task-
schedule and FlexRay communication-schedule were con-
figured to execute synchronously with a 2ms period. The
nodes were connected in a linear topology, as shown in Fig-
ure 1. Each node in the network was configured as a sync-
node with respect to the FlexRay protocol.

4.1 Instrumentation

The FlexRay specification defines various data structures
that indicate the status of the communication protocol. Such
data structures provide metrics that can be used to detect er-
ror patterns. They are accessed though the FlexRay CHI,
which is accomplished on the MFR4310 controller by read-
ing and writing 16-bit memory-mapped registers.

A custom instrumentation-component runs on each
EB 6120 node and makes observations by reading a sub-
set of the CHI registers at the beginning of each task period
(e.g., once every 2ms). Observations are buffered in volatile
memory on the node. The instrumentation component pe-

riodically empties the buffer by sending all of the stored
observations to the PC using the Ethernet backchannel.

For this study, we observed 4 discrete error-indicators
during each experiment: Boundary Violations (BVs),
Syntax Errors (SERRs), Content Errors (CERRs) and Valid
Frames (VFs). The indicators themselves were aggregated
over the entire communication cycle. Observations were
made at the beginning of each communication cycle by
reading error indicators from the FlexRay CHI.

4.2 Disturbance Scenarios

The consisted of 5 disturbance scenarios, each of which
was repeated 100 times. For this study, we choose to fo-
cus on a small set of physical-layer faults. Each scenario
was associated with a different fault-type, which was acti-
vated for 500ms. No fault was activated during the none
scenario, which provided a baseline case. The break sce-
nario caused a physical separation of the Bus Plus (BP) and
Bus Minus (BM) lines. The noise scenario injected dif-
ferential white noise onto the bus. The short vcc and
short gnd scenarios short-circuited the BP line to ground
and supply voltage, respectively. Observations from each
node were logged for 1s prior to activation and 5s following
deactivation of the disturbance.

5 Results

Recall that the instrumentation component records an ob-
servation once every 2ms. Therefore, 500 observations are
expected during the pre-fault period (1000 ms); 250 obser-
vations are expected while the fault is active (500 ms); and
2500 observations are expected during the post-fault period
(5000 ms). For this study, we are not interested in observa-
tions made during the synchronization phase. In total, each
experiment is expected to produce 3250 total observations.
Note that because each observation accumulates indicators
over an entire cycle, you can have multiple indicators set in
a single observation (i.e., the sum of the observed indicators
may be greater than the total number of observations).

none (baseline) As expected, no error indicators were
observed during the baseline scenario.

break The break scenario resulted in SERRs, CERRs
and BVs at each node, with some variation across nodes
(see fig. 3). The break scenario was further distinguished
by being the only scenario to result in CERRs (see fig. 4).

noise A roughly equal number of BVs and SERRs were
observed during the noise scenario, along with a corre-
sponding drop in VFs (see fig. 5).

4

68

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           77 / 114



Node 1 Node 2 Node 3 Node 4 Node 6 Node 7

SyntaxError
ContentError
BViolation
ValidFrame
Total

m
ea

n 
ob

se
rv

at
io

ns
 (

n=
10

0)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Observed Indicators (break)

Figure 3. The break scenario resulted in
SERRs, CERRs and BVs at each node, with
some variation across nodes.

short Short circuits resulted in a drop in valid frames,
compared to the total number of observations (see fig. 6).
Between three and four syntax errors were also observed
consistently during each short circuit. There was no mea-
surable difference in the effects of shorting to ground vs.
shorting to supply voltage.

6 Discussion

In order to look for potential error patterns, we simply com-
pared the average number of times a particular indicator is
observed for each scenario. Thus, we can deduce the fol-
lowing preliminary error patterns:

break: many content errors and boundary violations with
comparatively few syntax errors

noise: equal number of syntax errors and boundary vio-
lations with a corresponding drop in valid frames

short vcc: lack of valid frames with comparatively few
syntax errors

short gnd: lack of valid frames with comparatively few
syntax errors

The fault-injection process itself showed good controlla-
bility and repeatability. It was trivial to specify the experi-
mental parameters accurately. Given consistent parameters,
the process produced consistent results.

none break noise short_vcc short_gnd

Node 1
Node 2
Node 3
Node 4
Node 6
Node 7

Disturbance

m
ea

n 
ob

se
rv

at
io

ns
 (

n=
10

0)

0
50

0
10

00
15

00

Observed Content Error Indicators

Figure 4. Content Errors (CERRs) were only
observed during the break scenario.

7 Related Work

A useful overview of general fault injection techniques is
available in [9]. Here, we focus on fault injection techniques
that specifically target the automotive domain, with an em-
phasis on diagnosis.

Fault-injection experiments using heavy-ion fault injec-
tion have shown fail-silence violations [20] and error prop-
agation [1] in Time-Triggered Protocol/Class-C (TTP/C).
Fault-injection experiments using hardware models have
show that transient faults in the CAN Communication Con-
troller (CC) and Communication Network Interface (CNI)
can result in masquerade failures, where a faulty node “im-
personates” a non-faulty node [17]. Within the context of
diagnosis, this result can be viewed as a false-positive on the
non-faulty node as well as a false-negative on the true faulty
node. Experiments performed using modeled FlexRay con-
trollers have highlighted instances of error propagation in
FlexRay bus and star topologies [5].

The online diagnosis algorithms developed by [22] were
extended to discriminate healthy nodes from unhealthy
nodes in time-triggered automotive systems [18]. A proto-
type implementation of the protocol was built using TTP/C
controllers and analyzed via physical fault injection [19].

Out-of-Norm Assertions (ONAs) are introduced as a way
to correlate fault effects in the three dimensions of value,
time and space . The ONA mechanism underlies a frame-
work for diagnosing failures in time-triggered networks
[14]. A prototype implementation of the framework us-
ing TTP/C controllers instruments the frame status field of
the controller, which is similar to the information available
from the FlexRay CHI. The TTPDisturbance node was used

5

69

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           78 / 114



Node 1 Node 2 Node 3 Node 4 Node 6 Node 7

SyntaxError
ContentError
BViolation
ValidFrame
Total

m
ea

n 
ob

se
rv

at
io

ns
 (

n=
10

0)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Observed Indicators (noise)

Figure 5. The noise scenario produced a
roughly equal number of BVs and SERRs
with a corresponding drop in VFs.

along with Electromagnetic Interference (EMI) injection to
evaluate the effectiveness of this diagnostic framework as
applied to connector faults TTP/C [15].

8 Conclusion

These preliminary results suggest that (1) errors do not
manifest uniformly across nodes and (2) identifiable error
patterns may exist. However, these results cannot be gen-
eralized beyond this small study. These patterns are likely
to change, perhaps drastically, depending on many factors
such as network topology, communication schedule, node
configuration, etc. Furthermore, other disturbances that
we did not include in this pilot might show similar pat-
terns, making them difficult to distinguish from each other.
Clearly, more advanced analysis will be required for more
robust fault models.

References

[1] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin. Eval-
uation of fault handling of the time-triggered architecture
with bus and star topology. In Proceedings, 2003 Interna-
tional Conference on Dependable Systems and Networks,
DSN ’03, pages 123–132, Los Alamitos, CA, USA, June
2003. IEEE Computer Society.

[2] J. Arlat, M. Aquera, L. Amat, Y. Crouzet, J.-C. Fabre,
J.-C. Laprie, E. Martins, and D. Powell. Fault injection
for dependability validation: A methodology and some ap-
plications. IEEE Transactions on Software Engineering,
16(2):166–182, February 1990.

Node 1 Node 2 Node 3 Node 4 Node 6 Node 7

SyntaxError
ContentError
BViolation
ValidFrame
Total

m
ea

n 
ob

se
rv

at
io

ns
 (

n=
10

0)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Observed Indicators (short_vcc)

Figure 6. Both short-circuit scenarios pro-
duced similar drops in valid frames.

[3] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson.
Lightweight, high-resolution monitoring for troubleshoot-
ing production systems. In Proceedings, 8th USENIX Sym-
posium on Operating Systems Design and Implementation,
OSDI ’08, pages 103–116, Berkeley, CA, USA, December
2008. USENIX Association.

[4] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, indexing, clustering, and retrieving
system history. ACM SIGOPS Operating Systems Review,
39(5):105–118, December 2005.

[5] M. Dehbashi, V. Lari, S. G. Miremadi, and M. Shokrollah-
Shirazi. Fault effects in flexray-based networks with hybrid
topology. In Proceedings, 3rd International Conference on
Availability, Reliability and Security, ARES ’08, pages 491–
496, Los Alamitos, CA, USA, March 2008. IEEE Computer
Society.

[6] FlexRay Consortium. FlexRay Communications System
Protocol Specification, December 2005.

[7] H.-G. Frischkorn. Automotive software – the silent revolu-
tion. Automotive Software Workshop, San Diego, CA, Jan
2004.

[8] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Verti-
cal profiling: Understanding the behavior of object-oriented
applications. In Proceedings, 19th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOSPLA ’04, pages 251–269,
New York, NY, USA, October 2004. ACM.

[9] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection
techniques and tools. Computer, 30(4):75–82, April 1997.

[10] ISO/DIS 26262: Road vehicles – Functional safety, vol-
ume 4–6. International Organization for Standardization,
Geneva, Switzerland, 2009.

[11] S. Kavulya, R. Gandhi, and P. Narasimhan. Gumshoe: Di-
agnosing performance problems in replicated file-systems.
In Proceedings, 2008 IEEE Symposium on Reliable Dis-

6

70

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           79 / 114



tributed Systems, SRDS ’08, pages 137–146, Los Alamitos,
CA, USA, October 2008. IEEE Computer Society.

[12] P. E. Lanigan and P. Narasimhan. Holistic data-
driven diagnosis for dependable automotive sys-
tems. Appeared in NIST/NSF/USCAR Workshop
on Developing Dependable and Secure Automotive
Cyber-Physical Systems from Components, March
2011. Available at http://varma.ece.cmu.edu/Auto-CPS-
2011/Papers/index.html.

[13] P. E. Lanigan, P. Narasimhan, and T. E. Fuhrman. Expe-
riences with a CANoe-based fault injection framework for
AUTOSAR. In Proceedings, 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN
’10, pages 569—574, Los Alamitos, CA, USA, June 2010.
IEEE Computer Society.

[14] P. Peti and R. Obermaisser. A diagnostic framework for in-
tegrated time-triggered architectures. In Proceedings, 9th
IEEE International Symposium on Object Oriented Real-
Time Distributed Computing, ISORC ’06, page 11pp, Los
Alamitos, CA, USA, April 2006. IEEE Computer Society.

[15] P. Peti, R. Obermaisser, and H. Paulitsch. Investigating con-
nector faults in the time-triggered architecture. In Proceed-
ings, 11th IEEE Conference on Emerging Technologies and
Factory Automation, ETFA ’06, pages 887–896, Piscataway,
NJ, USA, September 2006. IEEE.

[16] J. D. Rupp and A. G. King. Autonomous driving – a prac-
tical roadmap. SAE Technical Paper Series 2010-01-2335,
SAE International, Warrendale, PA, USA, October 2010.

[17] H. Salmani and S. G. Miremadi. Contribution of controller
area networks controllers to masquerade failures. In Pro-
ceedings, 11th Pacific Rim International Symposium on De-
pendable Computing, PRDC ’05, page 5, Los Alamitos, CA,
USA, December 2005. IEEE Computer Society.

[18] M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis
and recovery: On the choice and impact of tuning parame-
ters. IEEE Transactions on Dependable and Secure Com-
puting, 4(4):295–312, October-November 2007.

[19] M. Serafini, N. Suri, J. Vinter, A. Ademaj, W. Brandstäter,
F. Tagliabò, and J. Koch. A tunable add-on diagnostic
protocol for time-triggered systems. In Proceedings, 2007
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN ’07, pages 164–174, Los Alami-
tos, CA, USA, June 2007. IEEE Computer Society.

[20] H. Sivencrona, P. Johannessen, and J. Torin. Protocol mem-
bership in dependable distributed communication systems –
a question of brittleness. SAE Technical Paper Series 2993-
01-0108, SAE International, Warrendale, PA, USA, March
2003.

[21] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bit-
tner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali,
C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M.
Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajku-
mar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider,
A. Stentz, W. R. Whittaker, Z. Wolkowicki, J. Ziglar,
H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou,
V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and
D. Ferguson. Autonomous driving in urban environments:

Boss and the urban challenge. Journal of Field Robotics,
25(8):425–466, July 2008.

[22] C. J. Walter, P. Lincoln, and N. Suri. Formally verified on-
line diagnosis. IEEE Transactions on Software Engineering,
23(11):684–721, November 1997.

[23] D. Wilson. Ray of hope for auto industry.
Electronic Business, Nov 2006. Available at
http://www.edn.com/article/CA6385672.html.

Acronyms

BM Bus Minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BP Bus Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BV Boundary Violation. . . . . . . . . . . . . . . . . . . . . . .4

CC Communication Controller . . . . . . . . . . . . . . . . 5

CERR Content Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHI Controller-Host Interface . . . . . . . . . . . . . . . . . .2

CNI Communication Network Interface . . . . . . . . . 5

DAQ Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 3

EMI Electromagnetic Interference . . . . . . . . . . . . . . 6

ID identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

OEM Original Equipment Manufacturer . . . . . . . . . 2

ONA Out-of-Norm Assertion . . . . . . . . . . . . . . . . . . . 5

OS Operating System . . . . . . . . . . . . . . . . . . . . . . . . 2

PC personal computer . . . . . . . . . . . . . . . . . . . . . . . . 3

SERR Syntax Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

TTP/C Time-Triggered Protocol/Class-C . . . . . . . . . . 5

UDP User Datagram Protocol . . . . . . . . . . . . . . . . . . 4

VF Valid Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

7

71

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           80 / 114



On Methods for the Formal Specification
of Fault Tolerant Systems

Manuel Mazzara
School of Computing Science, Newcastle University, UK

Manuel.Mazzara@newcastle.ac.uk

Abstract—This paper introduces different views for under-
standing problems and faults with the goal of defining a method
for the formal specification of systems. The idea of Layered
Fault Tolerant Specification (LFTS) is proposed to make the
method extensible to fault tolerant systems. The principle is
layering the specification in different levels, the first one for the
normal behavior and the others for theabnormal. The abnormal
behavior is described in terms of an Error Injector (EI), which
represents a model of the erroneous interference coming from
the environment. This structure has been inspired by the notion
of idealized fault tolerant component but the combination of
LFTS and EI using Rely/Guarantee reasoning to describe their
interaction can be considered as a novel contribution. The
progress toward this method and this way to organize fault
tolerant specifications has been made experimenting on case
studies and an example is presented.

Keywords-Formal Methods; Layered Fault Tolerant Specifi-
cation; Problem Frames; Rely/Guarantee.

I. I NTRODUCTION

There is a long tradition of approaching Requirements
Engineering (RE) by means of formal or semi-formal tech-
niques. Although ”fuzzy” human skills are involved in the
process of elicitation, analysis and specification - as in
any other human field - still methodology and formalisms
can play an important role [19]. However, the main RE
problem has always been communication. A definition of
communication teaches us that [9]:

“Human communication is a process during which
source individuals initiate messages using con-
ventionalized symbols, nonverbal signs, and con-
textual cues to express meanings by transmitting
information in such a way that the receiving party
constructs similar or parallel understanding or par-
ties toward whom the messages are directed.”

The first thing we have realized in building dependable
software is that it is necessary to build dependable com-
munication between parties that use different languages and
vocabulary. In the above definition you can easily find the
words”similar or parallel understanding are constructed by
the receiving parties”, but for building dependable systems
matching expectations (and specification) it is not enough
to build asimilar or parallel understandingssince we want
a more precise mapping between intentions and actions.

Formal methods in system specification look to be an
approachable solution.

Object Oriented Design [6] and Component Computing
[26] are just well known examples of how some rigor and
discipline can improve the final quality of software artifacts
besides the human communication factor. The success of
languages like Java or C# could be interpreted in this
sense, as natural target languages for this way of structuring
thinking and design. It is also true - and it is worth reminding
it - that in many cases it has been the language and the
available tools on the market that forced designers to adopt
object orientation principles, for example, and not vice versa.
This is the clear confirmation that it is always a combination
of conceptual and software tools together that create the right
environment for the success of a discipline.

Semi-formal notations like UML [10] helped in creating a
language that can be understood by both specialists and non
specialists, providing different views of the system that can
be negotiated between different stakeholders with different
backgrounds. The power (and thus the limitation of UML)
is the absence of a formal semantics (many attempts can be
found in the literature anyway) and the strong commitment
on a way of reasoning and structuring problems which is
clearly the one disciplined by object orientation. Many other
formal/mathematical notations existed for a long time for
specifying and verifying systems like process algebras (a
short history by Jos Baeten in [3]) or specification languages
like Z (early description in [2]) and B [1]. The Vienna
Development Method (VDM) is maybe one of the first
attempts to establish a Formal Method for the development
of computer systems [5]. A survey on these (and others)
formalisms can be found in [22]. All these notations are very
specific and can be understood only by specialists. The point
about all these formalisms is that they are indeed notations,
formal or semi-formal. Behind each of them there is a way
of structuring thinking that does not offer complete freedom
and thus forces designers to adhere to some discipline. But
still they are not methods in the proper sense, they are indeed
languages.

Contributions of the paper

The goal of this paper is providing a different view for
interpreting problems and faults. The overall result will be

72

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           81 / 114



the definition of a method for the specification of systems
that do not run in isolation but in the real, physical world. In
[20], we mainly defined a draft of this approach contributing
with an understanding of what a method is and an analysis
of the desiderata. We then presented our method and its
application to a Train System example. We realized that few
points were still at a draft stage and their explanation still
obscure in some paragraphs. In this paper we will provide
more details instead and a different example. The main
contributions of this work can be considered:

1) A perspective for describing problems in term of static
view and dynamic view and and a discussion on how
to combine them

2) A perspective to describe faults in terms of an Error
Injector representing a model of faults (and consequent
introduction of fault tolerant behavior)

3) The organization of the specification in terms of layers
of Rely Guarantee conditions (LFTS)

4) The experimentation on a small automotive case study
In particular, in Section 2, problems are described in terms

of static view (based on Problem Frames) and dynamic
view (built on top of rely/guarantee conditions). Section
3 introduces faults and the idea of Layered Fault Tolerant
Specification (LFTS) which is then applied in section 4 on
a very simple example. Section 5 draws conclusions on top
of what has been shown in the paper.

II. A N ANGLE TO SEE PROBLEMS

Our work in this paper focuses especially on [17] where
the original idea of a formal method for the specification
of systems running in the physical world originated. That
paper was full of interesting ideas but still was lacking
of a method in the sense we described in [20] and [21].
Few case studies have been analyzed according to this
philosophy in [7] but still a complete method has not
been reached. For this reason we think now that a more
structured approach is urgent in this area. Thus, the goal
of the present work is improving our understanding of
those ideas and incrementing that contribution putting it
in an homogeneous and uniform way and describing a
method featuring the properties we introduced in [20], with
particular attention to fault tolerance. In Figure 1, we report
a graphical synthesis of the Descartes method presented in
[24]. This work presents a method as consisting of a partially
ordered set of actions which need to be performed and then
discharged within a specific causal relationship. The success
of one action determines the following ones. Furthermore,
the method has to be repeatable, possibly by non experts or
specialists.

At the moment we have had some progress in this
direction but we still need more work toward a method for
the specification of fault tolerant systems. The basic idea
behind [17] was to specify a system not in isolation but
considering the environment in which it is going to run and

Figure 1. The method of science

deriving the final specification from a wider system where
assumptions have been understood and formalized as layers
of rely conditions. Here the difference between assumptions
and requirements is crucial, especially when considering the
proper fault tolerance aspects. We could briefly summarize
this philosophy as follows:

• Not specifying the digital system in isolation
• Deriving the specification starting from a wider system

in which physical phenomena are measurable
• Assumptions about the physical components can be

recorded as layers of rely-conditions (starting with
stronger assumptions and then weakening when faults
are considered)

Sometimes, we have found useful, in the presentation of
these concepts, to use Figure 2. This figure allows us to show
how a computer system can be seen from a different angle,
as not consisting of functions performing tasks in isolation
but as relationships (interfaces/contracts) in a wider world
including both the machine and the physical (measurable) re-
ality. As we will see later, this philosophy has been inspired
by Michael Jackson’s approach to software requirements
analysis typically called Problem Frames approach [14].
The Silicon Package is the software running on the hosting
machine. It should be clear that the machine itself can neither
acquire information on the reality around nor modify it.
The machine can only operate trough sensors and actuators.
To better understand this point, we like to use a similar
metaphor about humans where it is easier to realize that
our brain/mind system (our Silicon Package?) cannot acquire
information about the world but it can only do that through
eyes, ears and so on (our sensors). In the same way it cannot
modify the world if not through our arms, voice, etc (our
actuators). So, as we start describing problems in the real
world in terms of what we perceive and what we do (and
not about our brain functioning) it makes sense to adopt
a similar philosophy for computer systems consisting of
sensors and actuators. Around the Silicon Package you can
see a red circle representing the problem world and green
small spheres representing the assumptions that need to be

73

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           82 / 114



made regarding it. The arrows and their directions represent
the fact that we want to derive the specification of the silicon
package starting from the wider system. The way in which
we record these assumptions is a topic for the following
sections.

Figure 2. Silicon Package, Problem World and Assumptions

The method, its Steps and its Views

In [20], we analyzed the method introduced in [17]
according to the properties described in [24]. To do that,
we recognized three macroscopic steps:

1) Define boundaries of the systems
2) Expose and record assumptions
3) Derive the specification

Our idea is not committing to a single language/notation
- we want a formal method, not a formal language - so we
will define a general high level approach following these
guidelines and we will suggestreference toolsto cope with
these steps. It is worth noting that these are only reference
tools that aresuggestedto the designers because of a wider
experience regarding them from our side. A formal notation
can be the final product of the method but it still needs to be
not confused with the method itself. In Figure 3, these steps
are presented and it is shown how different tools could fit
the method at different stages. We call these notations the
plug-ins since they can be plugged into the steps.

Figure 3. Steps and Reference Tools

Figure 3 is a generic representation of the method where
we want to emphasize the different steps, which were not
clearly defined in [17]. The reader will understand that thisis
still a simplification of the process. We use the word ”steps”

instead of ”phases” since we do not want to suggest a sort
of linear process, which is not always applicable, especially
when coping with fault tolerance (as we will discuss later).
We imagine, in the general case, many iterations between
the different steps. The idea of the method is to ground
the view of the silicon package in the external physical
world. This is the problem world where assumptions about
the physical componentsoutsidethe computer itself have to
be recorded. Only after this can we derive the specification
for the software that will runinside the computer. A more
precise formalization of the method and the features it has to
exhibit is one of the main contributions of [20]. The reader
is probably realizing that what we are obtaining here is a
method exploiting two different perspectives during the three
steps.

• a static viewdefining the boundaries of the system and
representing the relationships between phenomena and
domains in it. Our reference tools here are Problem
Diagrams [14].

• a dynamic viewrepresenting the interactions between
different processes in the system and able to record the
assumptions. Our mathematical reference tools here are
rely/guarantee conditions [16], [15], which regard the
execution of concurrently executing (and interfering)
processes.

Furthermore we need an approach to consider faulty
behavior. This will be described later in the related section.
The idea behind having two different views is that different
people (or stakeholders) could possibly be interested onlyin
single aspects of the specification and be able to understand
only one of the possible projections. In this way you can
approach the specification without a full understanding of
every single aspect.

Static View

Michael Jackson is well known for having pioneered,
in the seventies (with Jean-Dominique Warnier and Ken
Orr) the technique for structuring programming basing on
correspondences between data stream structure and program
structure [12]. Jackson’s ideas acquired then the acronym
JSP (Jackson Structured Programming). In his following
contribution [13], Jackson extended the scope to systems.
Jackson System Development (JSD) already contained some
of the ideas that made object-oriented program design fa-
mous.

In this section, we describe our reference tool for repre-
senting the relationships between phenomena and domains
of the system we want to specify using Problem Diagrams
[14]. Context Diagrams and Problem Diagrams are the
graphical notations introduced by Michael Jackson (in the
time frame 1995/2001) in his Problem Frames (PF) approach
to software requirements analysis. This approach consistsof
a set of concepts for gathering requirements and creating
specifications of software systems. As previously explained,

74

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           83 / 114



the new philosophy behind PF is that user requirements are
here seen as being about relationships in the operational
context and not functions that the software system must
perform. It is someway a change of perspective with respect
to other requirements analysis techniques.

The entire PF software specification goal is modifying the
world (the problem environment) through the creation of a
dedicated machine, which will be then put into operation
in this world. The machine will then operate bringing the
desired effects. The overall philosophy is that the problem
is located in the world and the solution in the machine. The
most important difference with respect to other requirements
methodologies is the emphasis on describing the environ-
ment and not the machine or its interfaces. Let us consider,
for example, the Use Case approach [4]. What is done here
is specifying the interface, the focus is on the interaction
user-machine. With PF we are pushing our attention beyond
the machine interface, we are looking into the real world.
The problem is there and it is worth starting there. The
first two points of the ideas taken from [17] (not specifying
the digital system in isolation and deriving the specification
starting from a wider system in which physical phenomena
are measurable) can be indeed tracked back, with some
further evolution, to [14]. In this work, we are using PF
to develop a method for specification of systems, i.e., a
description of the machine behavior. But, before doing that,
we need to start understanding the problem.

Context Diagrams

The modeling activity of a system should start using this
kind of diagram in the PF philosophy. By means of it we
are able to identify the boundaries of the system, where a
system is intended as the machine to be designed (software
+ hardware) and its domains with their connections (in terms
of shared phenomena). It is part of what we call a static view
of the system.

Context Diagrams contain an explicit and graphical rep-
resentation of:

• the machine to be built
• the problem domains that are relevant to the problem
• the interface (where the Machine and the application

domain interact)

A domain here is considered to be a part of the world we
are interested in (phenomena, people, events). A domain in-
terface is where domains communicate. It does not represent
data flow or messages but shared phenomena (existing in
both domains). Figure 4 shows a simple scenario. The lines
represent domain interfaces, i.e., where domains overlap and
share phenomena.

Problem Diagrams

The basic tool for describing a problem is a Problem
Diagram, which can be considered a refinement of a Context
Diagrams. This should be the 2nd step of the modeling

Figure 4. Context Diagram

process. A problem diagram shows the requirements on the
system, its domains, and their connections. It is still part
of a static view of the system but better represents the
assumptions about the system and its environment. They
are basic tools to describe problems. To the information
contained in context diagrams they add:

• dotted oval for requirements
• dotted lines for requirements references
Figure 5 shows a scenario where the Silicon Package is in

charge of monitoring the patients conditions. We believe that
the first step of the specification method (define boundaries
of the systems) can be accomplished by means of this tools.
Thus we use Problem Diagrams as a reference tool for our
research but still, as said, not constraining it to a specific
notation or language.

Figure 5. Problem Diagram

Dynamic View

Problem Diagrams taken from the PF approach are a
notation that forces us to think about the problem in the
physical world instead of focusing immediately on the
solution. We believe that they represent an effective tool
to define the precise boundaries of the specification we are
working on. Summarizing they represent:

1) the machine
2) the problem domains
3) the domain interfaces
4) the requirements to bring about certain effects in the

problem domains
5) references in the requirements to phenomena in the

problem domains
Once the domains of the context we are working on, their

phenomena and the relative overlap have been understood,

75

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           84 / 114



it will be necessary to focus on the ”border” between the
Silicon Package and the real world. It is necessary to distin-
guish between assumptions and requirements and we need
a tool to record assumptions. Our system will be composed
of interacting parts and each of these parts will also interact
with the world. The world itself has to be understood in
term of assumptions about normal/abnormal behavior and a
model of fault need to be considered. For all these reason we
introduce the concept ofdynamic view, which represents the
interactions between processes in the system and between
the system and the world. To record our assumption (as we
will see layers of assumption for fault tolerance) we use a
mathematical reference tool, i.e., rely/guarantee conditions
[16], [15], which regard the execution of concurrently exe-
cuting processes. R/G conditions are a powerful abstraction
for reasoning about interference and they originated in the
Hoare logic idea of preconditions and postconditions [11].
The purpose is providing a set of logical rules for reasoning
about the correctness of programs. We will explain the
idea through examples, for more details please consider the
literature. As the reader will realize in this section, rely
conditions can be used to record assumptions in the overall
context of the proposed method. However, as stated in [23],
when they show too much complication this might be a
warning indicating a messy interface.

Preconditions and Postcondition

To understand the power of the R/G reasoning it is
necessary to realize how preconditions and postconditions
can help in specifying a software program when interference
does not play its role. What we have to describe (by means
of logical formulas) when following this approach is:

1) the input domain and the output range of the program
2) the precondition, i.e., the predicate that we expect to

be true at the beginning of the execution
3) the postcondition, i.e., the predicate that will be true at

the end of the execution provided that the precondition
holds

Preconditions and postconditions represent a sort of con-
tracts between parties: provided that you (the environment,
the user, another system) can ensure the validity of a certain
condition, the implementation will surely modify the statein
such a way that another known condition holds. There is no
probability here, it is just logic: if this holds that will hold.
And the input-output relation is regulated by a predicate that
any implementation has to satisfy.

We show the example of a very simple program, the
specification of which in the natural language may be:“Find
the smallest element in a set of natural numbers”.

This very simple natural language sentence tells us that
the smallest element has to be found ina set of natural
numbers. So the output of our program has necessarily to
be a natural number. The input domain and the output range
of the program are then easy to describe:

I/O : P(N) → N

Now, you expect your input to be a set of natural numbers,
but to be able to compute the min such a set has to be non
empty since the min is not defined for empty sets. So the
preconditions that has to hold will be:

P (S) : S 6= ∅

Provided that the input is a set of natural numbersand
it is not empty, the implementation will be able to compute
the min element, which is the one satisfying the following:

Q(S, r) : r ∈ S ∧ (∀e ∈ S)(r ≤ e)

Given this set of rules, the input-output relation is given
by the following predicate that needs to be satisfied by any
implementationf :

∀S ∈ P(N)(P (S) ⇒ f(S) ∈ N ∧ Q(S, f(S)))

Interference

The example just shown summarizes the power (and the
limitations) of this kind of abstractions. To better understand
the limitations consider Figure 6 where interference and
global state are depicted. The two processes alternate their
execution and access the state. The global state can consist
of shared variables or can be a queue of messages if message
passing is the paradigm adopted. This figure shows exactly
the situations described in [16], quoting precisely that work:

As soon as the possibility of other programs
(processes) running in parallel is admitted, there
is a danger of ”interference.” Of more interest
are the places where it is required to permit
parallel processes to cooperate by changing and
referencing the same variables. It is then necessary
to show that the interference assumptions of the
parallel processes coexist.

Another quote from [8] says:

The essence of concurrency is interference:
shared-variable programs must be designed so as
to tolerate state changes; communication-based
concurrency shifts the interference to that from
messages. One possible way of specifying inter-
ference is to use rely/guarantee-conditions.

In case we consider interfering processes, we need to
accept that the environment can alter the global state. How-
ever,the idea behind R/G is that we impose these changes to
be constrained. Any state change made by the environment
(other concurrent processes with respect to the one we are
considering) can be assumed to satisfy a condition called R
(rely) and the process under analysis can change its state
only in such a way that observations by other processes will

76

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           85 / 114



consist of pairs of states satisfying a condition G (guarantee).
Thus, the processrelying on the fact that a given condition
holds canguaranteeanother specific condition. An example
is now presented.

Figure 6. Interference trough global state

Greatest Common Divisor

Consider the two following simple pieces of code, the co-
operation of which calculates the Greatest Common Divisor:

P1: P2:
while(a<>b){ while(a<>b){
if(a > b) if(b > a)
a := a-b; b := b-a;

} }

P1 is in charge of decrementinga and P2 of decrementing
b. Whena = b will evaluate to true it means that one is the
Greatest Common Divisor fora andb. The specification of
the interactions is as follows:

R1 : (a = a) ∧ (a ≥ b ⇒ b = b) ∧ (GCD(a, b) = GCD(a, b))
G1 : (b = b) ∧ (a ≤ b ⇒ a = a) ∧ (GCD(a, b) = GCD(a, b))
R2 = G1

G2 = R1

Here the valuesa andb are used instead ofa andb when we
want to distinguish between the values before the execution
and the values after. P1 relies on the fact that P2 is not
changing the value ofa and a ≥ b means no decrements
for b have been performed. Furthermore the CGD did not
change. Specular situation is for the guarantee condition.
Obviously, what is a guarantee for P1 becomes a rely for
P2 and vice versa.

Need for Extension (of Jackson’s Diagrams)?

The objective of a PF analysis is the decomposition of
a problem into a set of subproblems, where each of these
matches a problem frame. A problem frame is a problem
pattern, i.e the description of a simple and generic problem

for which the solution is already known. There are four main
patterns plus some variations:

• required behavior (the behavior of a part of the physical
world has to be controlled)

• commanded behavior (the behavior of a part of the
physical world has to be controlled in accordance with
commands issued by an operator)

• information display (a part of the physical world states
and behavior is continuously needed)

• simple workpieces (a tool is needed for a user to
create/edit a class of text or graphic objects so that
they can be copied, printed...)

Our perception is that, when describing the behavior of
interfering processes - especially when faults are considered
as a special case of interference (see next section) - the
diagrams and the patterns provided are not powerful enough.
We need further refinement steps filling the gap between the
static and the dynamic view to complete the specification
process. Now we briefly describe these ideas that needs
further work and can be considered an open issue.

Interface Diagram

In a 3rd step of the modeling process, we want to represent
an external, static view of the system. We need a further
refinement of the Problem Diagram able to identify the op-
erations of the system and its domains, and the input/output
data of these operations (with their types). The relationship
of these with the requirements identified in the Problem
Diagram has to be represented at this stage.

Process Diagram

In a 4th step of the modeling process, the whole system is
represented as a sequential process and each of its domains
as a sequential process. Concurrency within the system or
within its domains is modeled by representing these as
two or more subcomponents plus their rely and guarantee
conditions. This is an external, dynamic view of the system
and its domains.

III. A N ANGLE TO SEE FAULTS

Testing can never guarantee that software is correct.
Nevertheless, for specific software features - especially the
ones involving human actions and interactions - rigorous
testing still remains the best choice to build the desired
software. We know very little about human behavior, there
are few works trying to categorize, for example, human
errors in such a way that we can design system that can
prevent bad consequences [25] but this goes far beyond the
scope of this work. Here we want to focus on the goal of
deploying highly reliable software in terms of aspects that
can be quantified (measured), for example the functional
input/output relation (or input/output plus interference, as
we have seen). In this case, formal methods and languages
provide some support. The previous sections discussed how

77

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           86 / 114



to derive a specification of a system looking at the physical
world in which it is going to run. No mention has been made
of fault tolerance and abnormal situations which deviate
from the basic specification. The reader will soon realize
that the method we have defined does not directly deal
with these issues but it does not prevent fault tolerance
from playing a role. The three steps simply represent what
you have to follow to specify a system and they do not
depend on what you are actually specifying. This allows us
to introduce more considerations and to apply the idea to a
wider class of systems. Usually, in the formal specification
of sequential programs, widening the precondition leads
to make a system more robust. The same can be done
weakening rely conditions. For example, if eliminating a
precondition the system can still satisfy the requirementsthis
means we are in presence of a more robust system. In this
paper we will follow this approach presenting the notion of
Layered Fault Tolerant Specification (LFTS) and examining
the idea of fault as interference [8], i.e., a different angle to
perceive system faults. Quoting [8]:

The essence of this section is to argue that faults
can be viewed as interference in the same way that
concurrent processes bring about changes beyond
the control of the process whose specification and
design are being considered.

The idea of Layered Fault Tolerant Specification (LFTS)
is now presented in combination with the approach quoted
above making use of rely/guarantee reasoning. The principle
is layering the specification, for the sake of clarity, in (at
least) two different levels, the first one for thenormal
behaviorand the others (if more than one) for theabnormal.
This approach originated from the notion of idealized fault
tolerant component [18] but the combination of LFTS and
rely guarantee reasoning can be considered one of the main
contributions of this work.

Fault Model

First, when specifying concurrent (interfering) processes,
we need to define which kind of abnormal situations we
are considering. We basically need to define a Fault Model,
i.e., what can go wrong and what cannot. Our specification
will then take into account that the software will run in
an environment when specific things can behave in an
”abnormal” way. There are three main abnormal situations
in which we can incur, they can be considered in both the
shared variables and message passing paradigm:

• Deleting state update: “lost messages”
• Duplicating state update: “duplicated messages”
• Additional state update (malicious): “fake messages

created”

The first one means that a message (or the update of a
shared variable) has been lost, i.e., its effect will not be taken
into account as if it never happened. The second one regards

a situation in which a message has been intentionally sent
once (or a variable update has been done once) but the actual
result is that it has been sent (or performed) twice because
of a faulty interference. The last case is the malicious one,
i.e., it has to be done intentionally (by a human, it cannot
happen only because of hardware, middleware or software
malfunctioning). In this case a fake message (or update) is
created from scratch containing unwanted information.

Our model of fault is represented by a so-calledError
Injector (EI). The way in which we use the word here is
different with respect to other literature where Fault Injector
or similar are discussed. Here we only mean a model of
the erroneous behavior of the environment. This behavior
will be limited depending on the number of abnormal cases
we intend to consider and the EI will always play its role
respecting the RG rules we will provide. In the example we
will show in the following we are only considering the first
of the three cases, i.e., the Fault Injector is only operating
through lost messages.

A contribution of this work is the organization of the spec-
ification in terms of layers of Rely/Guarantee conditions. In
order to do this we introduce the idea of EI as a model of
the environment and we need to describe how the EI will
behave and how we can limit it. Here a process will rely on
a specific faulty behavior and, given that, will guarantee the
ability to handle these situations. More in detail:

• Rely: the Error Injector (environment) interferes with
the process (changing the global state) respecting his
G (superset of the program’s R) — for example, only
“lost messages” can be handled (next example)

• Guarantee: The process provided this kind of (re-
stricted) interference is able to handle excep-
tional/abnormal (low frequency) situations

All the possibilities of faults in the system are described
in these terms and the specification is organized according
to the LFTS principle we are going to describe.

LFTS: how to organize a clear specification

The main motto for LFTS is: ”Do not put all in the
normal mode”. From the expressiveness point of view, a
monolithic specification can include all the aspects, faulty
and non faulty of a system in the same way as it is not
necessary to organize a program in functions, procedures
or classes. The matter here is pragmatics, we believe that
following the LFTS principles a specification can be more
understandable for all the stakeholders involved.

The specification has to be separated in (at least) two
layers, one for theNormal Modeand one (or more) for the
Abnormal Mode. More specifically:

• Normal mode: an operation usually runs in normal
mode respecting his “interface” with the world deter-
mined by P/Q

78

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           87 / 114



• Fault interference: in “low” frequency cases the abnor-
mal mode is “activated” (exception handler, forward
recovery)

Figure 7 shows the organization of a process (dashed
rectangles) in a main part and arecovery handlerpart where
both interact through the global state with other processes
and the Error Injector (represented by a devil here).

Figure 7. Error Injector

It is worth noting the limitations of this way of operating.
Self error detection and self recovery cannot be addressed
by this model since EI is a representation of the environment
external to the process itself. So faulty behavior due to
internal malfunctioning is not what we want to represent
here.

Example of Specification of Interference

For a better understanding of how we can exploit this
idea of treating faults as extraordinary interference witha
low frequency, we introduce a very simple example. First
we consider an even simpler example without interference,
then we introduce interference to investigate the differences
and how we cope with them.

Increments without Interference:Let us consider the
following piece of code:

C(n):
n’ := n;
while (n’>0){

n’ := n’-1;
count ++

}
return count;

C is a very simple program, which decrements its in-
put while reaching zero. While decrementing the input it
increments a counter with the effect that, at the end, the
counter will obviously reach the original value of the input.
The specification of C in terms of pre and postconditions is
given as follows:

I/O : N → N

The input (n) and the output (count) are natural numbers.
The precondition that has to hold is:

P (count) : count = 0

since we expect the counter to be zero at the beginning.
Provided that the input is a natural numberand the counter
is zero, the execution will satisfy the following:

Q(n, count) : count = n ∧ n = 0

Without any interference, the specification of C only
requires that the input-output relation satisfy the predicate:

∀a ∈ N(P (a) ⇒ C(a) ∈ N ∧ Q(a,C(a)))

Increments with Faulty Interference:Let us consider the
same piece of code:

C(n):
n’:= n;
while (n’>0){

n’ := n’-1;
count ++

}
return count;

but running in an environment where the following EI is
also running:

EI(n’):
if (n’>0){

n’ := n’+1;
}

The role of this EI here is to model the deletion of state
updates as in the first of the three cases discussed above. The
specification of C as expressed so far is too simple to be able
to manage this kind of situations. Even if we are not handling
malicious updates, the basic formulation we provided so
far needs to be properly incremented because without any
changes the desired implication cannot be satisfied:

∀a ∈ N(P (a) 6⇒ C(a) ∈ N ∧ Q(a,C(a)))

What we have to do is restructure the implementation and
to pass from pre and postconditions to rely/guarantee in the
specification. Let us consider the following modification:

C(n):
n’:= n;
while (n’>0){

if n’+ count = n then {
n’ := n’-1;
count ++

} else {
n’ := n-count-1

}
}
return count;

As the reader will understand what we have done is simply
add a recovery handler and a recovery mode based on the

79

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           88 / 114



evaluation of the conditionn + count = n which is able
to flag the presence of an unwanted interference (a deletion
of an increment). The recovery block is able to cope with
abnormal situations provided that faults are restricted in
behavior (and that it is known in advance). Thus, provided
that a restricted interference happens the program is still
able to satisfy the postcondition (and the specification). The
normal mode here is the simple code:

n’ := n’-1;
count ++

while the recovery handler is

n’ := n-count-1

and, as represented in Figure 7, C is running in an
environment which is shared with EI. The specification we
want in this case is different from the previous one and it
is expressed, in terms of R/G conditions, as follows:

RC : (n = n) ∧ (count = count) ∧ (n′ > n′)

GC : n′ = n − count − 1

RI = true

GI = n′ > n′

It is worth noting that there is no rely condition (to
be precise there is one always true) for the Error Injector,
indeed it would not be reasonable to expect that the
processes we are specifying would behave in a way so
as to satisfy the needs of a fault model. Instead, EI is
guaranteeing that it will only incrementn′ - it is the case
of having only state update deletion (an increment deletes
a decrement) as pointed out previously. Decided the EI
behavior limitation (and thus decided the fault model) we
can design our specification. From the EI specification
C can rely on the fact thatn and count will be never
modified while n’ will be only modified in a specific
way (incremented). Now, with the addition of a layer
in the program and in the specification we are still able
to guarantee an (extended) desired behavior by means
of the GC condition, which says thatn’ will always be
consistent with the value ofcount preserving the invariant
n′ = n − count − 1, i.e., the summation ofn’ and count
will always be equal ton − 1. This will ensure that the
postconditioncount = n ∧ n = 0 will hold at the end like
in the case without interference. This simple example shows
how the LFTS principles can provide a clear specification
(with respect to a monolithic one) ensuring, at the same
time, that a desired postcondition holds.

IV. T HE AUTOMOTIVE EXAMPLE

The progress toward this way of layering specifications
has been made by experimenting few case studies. For
example, the one presented in [20] showed the power of the
LFTS principle when applied to train systems. Instead, we

now consider a simplified automotive case study. The Cruise
Control is a system able to automatically control the rate of
motion of a motor vehicle. The driver sets the speed and the
system will take over the throttle of the car to maintain the
same speed. One of the requirements of the cruise control
is to be switched off when an error in the engine speed
sensor is detected. This has to be taken into account in the
specification. We use the CrCt to show how the idea of LFTS
can be applied in (semi)realistic systems (simplificationsof
real system for the sake of experimenting with new ideas but
still not mere toy examples). Let us consider the following
ideal piece of CrCt code:

while (target <> current){
delta := smooth(target, current);
result := set_eng(delta);

}

The car speed is acquired insmooth(target,
current) and then a delta is calculated for the car
to have a smooth acceleration (smoothness has to be
determined by experience). The specification of this code in
term of P,Q,R,G is the following (it is expressed in natural
language since we are not giving a mathematical model of
the car here):

• P: target has to be in a given range
• Q: delta is zero and the driver has been comfortable

with the acceleration
• R: the engine is adjusted (smoothly) according to delta
• G: the absolute value of delta is decreasing

The requirement mentioned above is not taken into ac-
count in this ideal piece of code, so in case the speed
acquisition goes wrong the guarantee will not hold and
the absolute value of delta will not be decreased. Indeed,
following the LFTS principle we should organize it in
two layers: a normal mode and an abnormal one (speed
acquisition goes wrong):

while (target <> current){
delta := smooth(target, current);
result := set_eng(delta);
if result <> OK then

switch_off
}

This means adding a weaker layer of conditions for the
“abnormal case” being still able to guarantee “something”.
If speed acquisition goes wrong we do not want to force
the engine following the delta since it would imply asking
for more power when, for example, the car speed is actually
decreasing (maybe an accident is happening or it is just out
of fuel). Switching the engine off we avoid an expensive
engine damage.

80

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           89 / 114



V. CONCLUDING REMARKS AND FUTURE WORK

In this work, we provided a different view for interpreting
problems and faults and we worked toward an improvement
of the ideas presented in [17]. Our goal was to start an
investigation leading to a method for the formal specification
of systems that do not run in isolation but in the real,
physical world. To accomplish the goal we passed trough
a non trivial number of steps including the discussion in
[20] of the concept of method itself (computer science has
a proliferation of languages but very few methods). Then we
presented how we intend to proceed to represent the static
and the dynamic view of the problem. A section is dedicated
to faults and the following to a case study.

Of course this work is not exhaustive and many aspects
need more investigation. Especially the possibility of having
Jackson’s diagrams extensions working as a bridge between
the static and the dynamic view in the way we described
them. Although a small example of static and dynamic
views is presented in this paper and a way to combine
them idealized, more work is needed in combining them
in a coherent and readable notation. Jackson’ diagrams
extensions are only one of the possible solutions anyway.
Indeed another point we have just sketched here but that
needs more work is about the the plug-ins and how to
permit the practical use of different tools/notation. More
investigation regarding the case studies is also needed.

ACKNOWLEDGMENTS

This work has been funded by the EU FP7 DEPLOY
Project (http://www.deploy-project.eu/).

REFERENCES

[1] J.-R. Abrial. The B-book: assigning programs to meanings.
Cambridge University Press, New York, NY, USA, 1996.

[2] J.-R. Abrial, S. Schuman, and B. Meyer.A Specification
Language. Cambridge University Press, New York, NY, USA,
1980.

[3] J. C. M. Baeten. A brief history of process algebra.Theor.
Comput. Sci., 335(2-3):131–146, 2005.

[4] K. Bittner. Use Case Modeling. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[5] D. Bjorner and C. Jones, editors.The Vienna Development
Method: The Meta-Language, volume 61 ofLecture Notes in
Computer Science. Springer, 1978.

[6] G. Booch. Object-Oriented Analysis and Design with Appli-
cations (3rd Edition). Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

[7] J. Coleman and C. Jones. Examples of how to determine the
specifications of control systems. In A. R. M. Butler, C. Jones
and E. Troubitsyna, editors,Proceedings of the Workshop
on Rigorous Engineering of Fault-Tolerant Systems (REFT
2005), pages 114–132, 2005.

[8] P. Collette and C. Jones. Enhancing the tractability of
rely/guarantee specifications in the development of interfering
operations. InProof, Language, and Interaction, pages 277–
308, 2000.

[9] M. DeFleur, P. Kearney, and T. Plax. Mastering communica-
tion in contemporary america. 1993.

[10] M. Fowler. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Third Edition. Addison-Wesley
Professional, 2003.

[11] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Communication of the ACM, 26(1):53–56, 1983.

[12] M. Jackson.Principles of Program Design. Academic Press,
Inc., Orlando, FL, USA, 1975.

[13] M. Jackson.System Development. Prentice-Hall, 1983.

[14] M. Jackson. Problem frames: analyzing and structuring
software development problems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[15] C. Jones. Specification and design of (parallel) programs. In
IFIP Congress, pages 321–332, 1983.

[16] C. Jones. Tentative steps toward a development method for
interfering programs. ACM Trans. Program. Lang. Syst.,
5(4):596–619, 1983.

[17] C. Jones, I. Hayes, and M. Jackson. Deriving specifications
for systems that are connected to the physical world. In
Formal Methods and Hybrid Real-Time Systems, pages 364–
390, 2007.

[18] P. Lee and T. Anderson.Fault Tolerance: Principles and
Practice. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1990.

[19] M. Mannion and B. Keepence. Smart requirements.SIGSOFT
Softw. Eng. Notes, 1995.

[20] M. Mazzara. Deriving specifications of dependable systems:
toward a method. InProceedings of the 12th European
Workshop on Dependable Computing (EWDC 2009), 2009.

[21] M. Mazzara. Different perspectives for reasoning about
problems and faults. Technical Report CS-TR No. 1151,
School of Computing Science, University of Newcastle, April
2009.

[22] M. Mazzara and A. Bhattacharyya. On modelling and analysis
of dynamic reconfiguration of dependable real-time systems.
In DEPEND, International Conference on Dependability,
2010.

[23] G. Plotkin, C. Stirling, and M. Tofte, editors.Proof, Lan-
guage, and Interaction, Essays in Honour of Robin Milner.
The MIT Press, 2000.

[24] L. L. t. R. Descartes.Discourse on Method and Meditations.
New York: The Liberal Arts Press, 1960.

[25] J. Reason.Human Error. Cambridge University Press, 1990.

[26] C. Szyperski.Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Professional, 1997.

81

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           90 / 114



 

 

Failure Modes and Effect Analysis of Use Cases: A Structured Approach to 
Engineering Fault Tolerance Requirements 

 
 

Elena Troubitsyna 
Åbo Akademi University, Department of Computer Science  

Joukhaisenkatu 3-5A, 20520, Turku, Finland 
Elena.Troubitsyna@abo.fi 

 
 
Abstract— Fault tolerance – an ability of a system to cope 
with errors – is an important characteristic of dependable 
systems. However, software development approaches 
traditionally give precedence to modelling nominal system 
behaviour over modelling system behaviour in presence of 
faults. This leads to ad-hoc and error prone implementation 
of fault tolerance mechanisms. In this paper, we propose a 
systematic approach to elicitation and modelling of fault 
tolerance-related requirements. Our approach is based on 
using Failure Modes and Effect Analysis (FMEA) that is 
used to identify faults, their detection and error recovery. 
We rely on use-case modelling to structure system behaviour 
and propose to conduct FMEA of each individual use case. 
Our approach facilitates elicitation and structuring of fault 
tolerance behaviour. It enables an integrated modelling of 
nominal and abnormal system behaviour from early 
development phases.  
Keywords - use cases; failure modes and effect analysis 
(FMEA); fault tolerance; requirements  

I. INTRODUCTION 
 

The model-driven approaches to software development 
[1] usually represent system functionality in term of use 
cases. Use cases [2] describe system behaviour at 
different levels of abstraction. At the highest level of 
abstraction they depict the services that the system 
provides to its users. At the lower layers of abstraction, 
they describe functions of system components. Use-case 
modelling facilitates structuring complex requirements 
and serves as a basis for validating system design at the 
later stages of the development.  

Traditionally modelling focuses on describing nominal 
system functionality. Yet, there are also many abnormal 
(exceptional) situations that arise during system 
execution.  System dependability [3] can be jeopardized if 
such abnormal situations are not handled in a proper way, 
i.e., if fault tolerance mechanisms are implemented 
incorrectly. Although fault tolerance mechanisms 
constitute a significant part of software, they are often 
introduced at the implementation stage and in a rather ad-
hoc fashion.  

In this paper we propose an approach to conducing 
failure modes and effect analysis (FMEA) [4] over the use 
cases. FMEA is a widely used inductive safety analysis 
technique. We demonstrate how to apply FMEA to 
represent abnormal situations in use case execution. Our 
approach allows the designers systematically explore 
exceptional situations, identify their causes and error 
recovery strategy. We propose the patterns for conducting 
FMEA at different levels of abstraction and demonstrate 
how to incorporate the results of such an analysis into use 
case representation. The requirements obtained while 
conducting FMEA are systematically captured in the use 
case system model. 

It is widely accepted that building in dependability and 
in particular, fault tolerance, early in the development 
process is more cost-effective and results in more robust 
design [3,4].  Our approach facilitates early consideration 
of fault tolerance in the design process. It allows the 
designers to uncover the additional requirements, which 
are needed to ensure fault tolerance. Moreover, it makes 
the process of requirements engineering more structured 
and hence improves requirements traceability.  

The proposed approach is illustrated by a case study – 
modelling and analysis of an autonomous robot. 
 

II. MODELING FAULT-TOLERANT SYSTEMS 
 
The main goal of introducing fault tolerance is to design a 
system in such a way that faults of components do not 
result in a system failure [3,5,6].  A fault manifests itself as 
error – an incorrect system state [3,10]. Nowadays the 
main part of fault tolerance mechanisms are software 
implemented, i.e., software should detect errors and initiate 
error recovery. Error recovery is an attempt to restore a 
fault-free system state or at least preclude system failure. 
There are two types of error recovery: dynamic and fail-
safe recovery. In the former case, upon detection of error 
software executes certain actions to restore a fault-free 
system states and then resumes normal system functioning 
without stopping the system. In contrast, fail-safe error 

82

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           91 / 114



 

 

recovery brings the system into a safe but non-operational 
state, i.e., executes system shut-down.  

Initially the system is assumed to be fault free. Upon 
successful initialization, the system enters an automatic 
operating mode. While no error is detected, the system 
executes the normal control functions. Upon detection of an 
error software tries to execute error recovery and resumes 
normal function.  If error is deemed to be fatal then 
software ceases its function and notifies the operator about 
it (e.g., by raising an alarm).   

Use case modelling is a widely used technique for 
discovering and representing behavioural requirements of 
software-intensive systems [2]. A use case describes, 
without revealing the system implementation details, the 
system responsibilities and interactions with its 
environment while providing the requested services. A use 
case represents a distinct unit of interaction between an 
environment (human or machine) called an actor and the 
system. In general, the actors can be thought of as different 
stake holders that request the services to pursue their goals. 
Each use case describes a certain functionality to be 
designed. It can also include another use cases.  Usually a 
use case contains several scenarios – the main scenario 
describing successful execution – and an alternative one 
describing various deviations. 

There are ongoing debates on the principles of use case 
modelling.  For instance, Fowler advices against breaking 
use cases into sub- use cases [7]. We argue that this 
approach is unsuitable for development of large-scale 
industrial systems. In this paper we adopt refinement-
based approach to use case modelling. Namely, we 
propose to build the use case model gradually in a top-
down manner.  

Our initial model describes system functionality in 
terms of services delivered by the system in response to 
the service requests. The service requests are generated by 
the system environment represented by a certain actor. 
While designing a service, we should provide means for 
tolerating faults of various natures. In general, an 
execution of each service can fail. Hence each use case 
should contain means for fault tolerance. We propose to 
supplement each use case with an auxiliary use case 
defining a fault tolerance mechanism, which should be 
activated if an execution of the main use case fails. The 
initial use case diagram describes the basic use cases and 
supplements each of them with the auxiliary use cases to 
model error recovery. Observe that the auxiliary use cases 
confine all possible alternative actions to be undertaken 
for error recovery. In Fig. 1 we propose a general pattern 
for use-case modelling of a fault-tolerant system at the 
abstract level. 
 
 
 
 

 

 
Figure1. Use case diagram of fault-tolerant system 

 
Often at the abstract level of modelling the requirements 
describing the fault tolerance mechanism are yet to be 
discovered. However, even an abstract representation of 
them in the use case diagram shown in Fig. 1 enforces 
early consideration of fault tolerance aspect and facilitates 
elicitation of the requirements related to fault tolerance. 

Usually a service provided by a system is a 
composition of certain subservices. In the use case 
modelling this can be depicted by decomposing the 
abstract use cases and refining the overall use case model.   
On the one hand, the refined use case diagram introduces 
the lower-layer use cases and defines relationships 
between the use cases on the higher and the lower layers. 
Such relationships are depicted via the stereotype 
<<include>>, since an execution of the upper-layer 
use case involves the execution of several lower-layer use 
cases. On the other hand, the refined use-case diagram 
specifies more precisely the fault tolerance mechanisms, 
which should be introduced to provide error recovery at 
each level of abstraction. Eventually we arrive at the use 
case diagram of the form presented in Fig. 2. 

 

 
Figure 2.  General pattern for final use case diagram  

 
Observe that the use case diagram has the layered 

structure. The first layer encompasses the use cases 
describing functionality of the system from the 
environment perspective. They define the services, which 
the environment expects from the system. Each 
refinement step introduces the lower layers, which contain 
the use cases whose execution is required to provide the 
use cases at the upper layers. The decomposition is 
rendered via the <<include>> stereotype. The fault 
tolerance mechanisms are related with the corresponding 

Environment 

Service1 

Recover Service1  

Service2 

Recover Service2 

<<extend>> 

<<extend>> 

Operation1 

Recover Operation1 

Operation2 

Recover Operation2 

<<extend>> 

<<extend>> 

<<include>> 

<<include>> 

<<include>> 

Abstract specification 
(uppermost layer) First refinement step 

(Lower decomposition layer) 
  

   

... 

. 

. 

Environment 

Service1 RecoverService1 

ServiceN 
RecoverServiceN 

... 

<<extend>> 

<<extends>> 

83

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           92 / 114



 

 

use cases via the <<extend>> stereotype, as we 
discussed previously.  

The occurrence of errors might prevent accomplishing 
the actor’s goals. While designing a system it is important 
to ensure that each service request is acknowledged either 
by the successful result or by a meaningful error message. 
An error message might also contain the information that 
gives the actor a recommendation on how to achieve the 
desired goal by the other means. 

In Fig. 3 we show the general template of use case 
description of a service as well as error handling use case. 
The general template can be applied to describe use cases 
at all levels of abstractions. It is easy to observe that fault 
tolerance mechanism has a hierarchical structure – failure 
of lower layer use cases are handled from higher-level 
recovery use cases.  

It is easy to observe that completeness of fault 
tolerance requirements directly depends on whether our 
analysis of possible failures modes of use cases is 
exhaustive. To facilitate the analysis of possible failure 
modes of use cases, we propose to use Failure Mode and 
Effect Analysis (FMEA) [4]. It is a well-known inductive 
technique for eliciting failure modes of system 
components. Next we demonstrate how to apply this 
technique to facilitate discovery of failure modes of use 
cases.  

 
Description of use case Operation_Name 
Precondition When use case can be executed 
Postcondition Normal result 

   Exceptional result 
Includes       Lower layer use cases 
Normal sequence of events: 

1. Check input parameters. If check fail execute use case 
Recover_Operation 

2. Steps of use case. If a step includes invocation of lower layer use 
case then check the response. If check succeeds then proceed. 
Otherwise invoke use case Recover_Operation 

Description of use case Recover_Operation 
Precondition Failed input parameters or included use case execution 
Postcondition Handling error      
Extends:       Operation_Name 
Sequence of events: 

1.Check invocation parameters. In case of input parameters failure, 
generate corresponding error and abort execution 
2.In case of included use case failure apply appropriate recovery 
actions, e.g., retry, rollback, abort, reconfiguration. If recovery fails, 
generate corresponding error. Ensure that recovery actions are 
specified for each possible error. 
 

Figure 3. Template of detailed use case description 
 

III. INTEGRATING FMEA AND USE CASES 
  

FMEA [4] is an inductive analysis method, which allows 
us to systematically study the causes of components 
faults, their effects and means to cope with these faults.  
FMEA is used to assess the effects of each failure mode 
of a component on the various functions of the system as 

well as to identify the failure modes significantly affecting 
dependability of the system. FMEA step-by-step selects 
the individual components of the system, identifies 
possible causes of each failure mode, assesses 
consequences and suggests remedial actions.  The results 
of FMEA are usually represented in the tabular form that 
contains the following fields: component name, failure 
mode, possible cause, local effect, system effect, 
detection, and remedial action.  

In this paper we propose to use FMEA to derive 
possible failure outcomes of each use case execution. To 
facilitate FMEA of use cases we introduce taxonomy of 
possible failure modes of use cases and outline 
corresponding detection procedures and remedial actions. 
Below we present the corresponding FMEA tables for the 
typical failure modes. 
 

Use case Use case name (uppermost layer) 
Failure mode Incorrect input parameters 

Possible cause Human or computational error 

Local effects Use case cannot be executed 
System effect Failure to execute requested service   

Detection Check value of input parameters before 
starting to execute use case 

Remedial action Abort service execution, return error 
message to environment  

This failure mode represents an attempt to invoke a 
service with the incorrect input parameters. It is an 
unrecoverable error. While describing a use case, we 
should ensure that the returned erroneous service response 
identifies the causes of the failure.  

 
Use case Use case name (lower layer) 

Failure mode Incorrect input parameters 
Possible cause Computational error 

Local effects Use case cannot be executed 
System effect Failure to execute requested subservice   

Detection Check value of input parameters before 
starting to execute use case 

Remedial action 
Abort use case execution, suspend 
service provision,  return error message 
to the service requester 

 
This failure mode represents a failure to execute lower 

layer use case due to incorrect input parameters. Usually 
occurrence of such a failure would correspond to 
receiving an exception [8]. As an error recovery, the 
service requester should diagnose the cause of failure 
either by re-computing the input parameters or by 
propagating the exception further in the use case 
hierarchy. 

 
 
   

84

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           93 / 114



 

 

Use case Use case name (uppermost layer) 

Failure mode Incorrect service provision (wrong 
postcondition) 

Possible cause 
Computational error or unrecoverable 
error of subservices, or physical 
component failure 

Local effects Incorrect provision of service 
System effect Service is executed incorrectly   

Detection Check postcondition, generate error 
message, implement logging 

Remedial action Abort service execution, return error 
message to environment, halt system  

 
The failure mode described above analyses an occurrence 
of a failure while executing a service. The failure might 
be caused by a failure of a lower layer use case or by a 
computational error at a higher level of abstraction.  The 
diagnostic of such a failure aims at identifying its causes 
and deciding on the appropriate error recovery strategy. 

The use case describing a similar type of failure of 
lower layer use case can be defined in the same way. In 
case the failure is transient, the error recovery by retry 
would possibly bring the system back to the normal state. 
In case the failure cannot be recovered, the error message 
is propagate to the upper layers of hierarchy. 

The use case below describes service omission error. It 
is detected by the missed deadline. The failure mode of 
the use case on the lower layer is defined in the similar 
way. 
 

Use case Use case name (uppermost layer) 
Failure mode No response 

Possible cause 
Computational error or failure of lower 
layer use cases or communication 
failure 

Local effects Use case is not executed 

System effect No response on service requests within 
the deadline 

Detection Timeout 

Remedial action 
Execute system diagnostics. If no error  
is detected then resume normal 
operation otherwise halt system  

 
Let us demonstrate the application of the proposed 

method to structure and model requirements of an 
autonomic robot.  

IV. CASE STUDY  
 

We illustrate use-case modelling of a fault-tolerant system 
by an example – an autonomic robot. The robot should 
move on a surface, i.e., in XY- directions and grab the 
objects located at certain positions. Via a radio-link a 
human operator sends the robot commands to move from 
one position to another, grab and release objects. The 
robot works autonomously. Such kind of robots are used 

in the environments that are hazardous for humans, e.g., 
to perform rescue operations. Since faults might prevent 
the robot from executing the requested service (that might 
lead to a failure of the rescue operation), the system has 
strict fault tolerance requirements. 
 The service-level use case model of the robot shown in 
Fig. 4 is very simple. It has two main use cases – move to 
the target coordinates and grab/release – and two auxiliary 
use cases to implement error recovery.   

 
Figure 4. Service-level use-case model of the robot 

 
Let us demonstrate how FMEA of the services-level use 
cases facilitates elicitation of fault tolerance requirements.  
 

Use case Move 
Failure mode No response 

Possible 
cause 

- Communication failure  
- Lack of mechanism to detect timeout of 
lower layer use cases  
- Computational error (non-termination) 

Local effects Use case is not executed 

System effect No response on service requests within the 
deadline 

Detection Timeout 

Remedial 
action 

- Retry execution of the use case. If 
execution succeeds then resume normal 
operation.  
- To diagnose communication failure send 
ping request. If no response then halt the 
system. 
- To ensure that execution terminates, set 
deadlines for execution of each lower layer 
use case. 
- To ensure termination guarantee 
termination of error recovery and proper 
handling of exceptions. 

 
The example of FMEA allows us to identify important 
requirements, such as introduce timers, ensure 
termination of error recovery and additional functionality 
required to implement diagnostics of communication 
failure.  Moreover, the system design should also ensure 
that upon completing each service, the success or failure 
of the execution is checked.    

The service-level use case diagram is further refined to 
model the details of use-case implementation as shown in 
Fig. 5.  Each service is decomposed into the lower layer 
use cases, which should be executed to implement it.  

Operator 

Move 

Recover  Move 

Recover  Grab//Release 

Grab/Release 

<<extend>> 

<<extend>> 

85

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           94 / 114



 

 

 

 
Figure 5. Refinement of use-case diagram of the robot 

 
The diagram is created according to the pattern proposed 
in Fig. 2. The main use cases are decomposed into the 
lower layer use cases, which should be executed to 
implement them. At this refinement step, a more detailed 
description of error recovery can be given as well. We add 
the details of the possible causes of faults, detection and 
error recovery into our FMEA analysis.  This allows us to 
arrive at the detailed description of use cases. Below we 
present a detailed description of the Move use case, 
which contains description of the possible errors and 
corresponding error recovery procedures derived from 
FMEA results.  
  The precondition might fail, if the operator inputs 
wrong parameters. In the use case Recover Move we 
model the notification of the operator and shut down.  The 
execution of Move essentially consists of executing the 
included lower-layer use cases Move to X position, 
Rotate Wheels and Move to Y position. The recovery 
from failures is done by executing Recover Move with 
the parameters corresponding to the names of the failed 
use case. 

At the final refinement step the details of executing the 
lowest-layer use cases and failure modes of the 
components, involved in the execution become available. 
This allows us to establish the exact causes of failures of 
the lowest-layer use cases and precisely define the 
required remedial action precisely.  We omit presenting 
the detailed description of the lower layer use cases. The 
use case diagram obtained at the final step adheres to the 
pattern presented in Fig. 4. The detailed description of 
functional requirements and the requirements related to 
fault tolerance are obtained at this stage.  

In this section we have illustrated the evolution of use-
case model of a fault-tolerant system. We emphasized 
reasoning about fault tolerance at each refinement step.  

In general the proposed approach can be seen as a 
generalization of Randell’s recovery  block  approach [6]  

 

 
 
and its translation into use-case modelling. Indeed, a 
recovery block describes how the operator can achieve a 
desired goal in the normal as well as erroneous situations. 
The recovery block has a flat structure, i.e., the operations 
required to achieve the desired goal reside on the same 
level of abstraction. Complexity of modern systems 
requires an encapsulation of the low-level operations and 
hence, imposes the hierarchical style of system 
structuring. In our approach we generalized the recovery 
block mechanism by introducing the hierarchy of use 
cases defining how the desired goal can be achieved.  
 

Operator 

Move 

Recover  Move 

 X Move 

Y Move 

Recover  X Move 

Recover Y Move 

Open  arm 

Close arm  

Grab/release 

<<extend>> <<extend>> 

<<extend>> 

<<extend>> 

<<extend>> 

<<include>> 
<<include>> 

<<include>> 

... 

Recover Open 

Recover Close 

. 

. 
Rotate wheels Recover   Rotate 

<<extend>> 

Use case Move 
Brief description This use case defines system 
reaction on the operator’s command “move to XY 
coordinate”.  It includes activating motor, rotating 
wheels, reading positioning sensors, reporting success 
or failure of the execution 
Includes use cases “X Move”, “Y Move”, “Rotate 
Wheels” 
Extends use case “Recover Move” 
Preconditions Operator requests service Move to X,Y 
position, the system is fault free 
Postconditions The robot reaches the requested 
position before the deadline and success is reported. 
Otherwise failure is reported   
Normal sequence of events  
1. Verify that X,Y are valid coordinates. If the 
verification fails then A_Failure1 in recovery 
sequence, else calculate the distance along the X 
direction and Y direction.  
2. Execute the use cases “Move to X position” 
3. If the execution of the use cases “Move to X 
position”, failed then A_Failure 2 in recovery 
sequence, else proceed to execution of the use cases 
“Rotate Wheels” 
4. Execute “Rotate Wheels”. If execution of “Rotate 
Wheels” failed then A_Failure 3 otherwise proceed to 
execution of “Move to Y position” 
5. If the use case “Move to Y position” failed then 
A_Failure 4 in recovery sequence, else if execution of 
the use case succeeded then report the success of  the 
service execution  
5. … 
Recovery sequence of events  
A_ Failure1: Execute the use case “Recover Move” 
with the parameter “incorrect input parameters”. Shut- 
down the system. Notify the operator 
A_Failure2: If the use case “Move to X position” has 
failed then execute the use case “Recover Aspirate” 
with the parameter “Move to X position”.  If the use 
case “Move to Y position” has failed then execute the 
use case “Recover Aspirate” with the parameter 
“Move to Y position”.   
… 

86

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           95 / 114



 

 

V. CONCLUSIONS 
 

In this paper we demonstrated how to structure 
complex requirements by FMEA and refinement of use 
cases. We propose a pattern for use-case model of fault-
tolerant systems and demonstrated how to structure the 
description of use cases to capture the fault tolerance 
aspect. The pattern aims at enforcing early consideration 
of fault tolerance in the design process. It allows the 
designers to uncover the additional requirements, which 
are needed to ensure fault tolerance. Moreover, the 
proposed pattern makes the process of requirements 
engineering more structured and hence improves 
requirements traceability.  
 Among the pioneering works on addressing 
dependability in UML modelling is research by Alexander 
on misuse cases [1]. He proposed to consider use cases 
with hostile intent to facilitate discovery of dependability-
related requirements. While the developers of safety- and 
security-critical systems are familiar with misuse-case 
modelling, the developers of non-critical systems 
traditionally rely on use-case modelling. Often safety or 
security implications are unknown in the beginning of the 
system development and uncovered later in the 
development process. As a result, the development of a 
critical system is conducted in a traditional style. Our 
approach aims at addressing this problem by enabling 
dependability consideration in the traditional UML 
modelling. 

Alenby and Kelly [9] studied use-case modelling as a 
tool for discovering safety-related requirements. Our 
approach is similar to their work, since the new 
requirements can be discovered as well. However, our 
main focus was to study how to systematically capture 
requirements by conducting FMEA.  

Kelly and Weawer [10] proposed an extension of goal 
structuring notation (GSN) to support safety argument. 
They demonstrated how GSN can facilitate safety 
assurance via structuring safety case. Our approach 
employs the similar idea of decomposing the high-level 
goals into the low-level sub-goals. However, we focused 
on the development process rather than on description of 
safety cases.   

Jurjens focused on algebraic formalization of various 
UML artefacts to reason about safety [11]. However, his 
work leaves aside the problem of capturing dependability-
related requirements in the development process.  

Use cases have been formalized as contracts by Back 
et al. [12]. However, this work does not consider 
dependability aspects.  
 Hassan et al. [13] proposed a methodology that enables 
architectural-level analysis of safety using a combination 
of safety techniques. Our approach provides a support for 
early development stages and hence can be considered as 
complementary to [13]. The opposite approach – deriving 

FMEA from UML models has been explored by David et 
al [14]. The similar issues have been studied by Mazzara 
is the problem frames [15].  The use of FMEA at different 
stages of UML-based development has been explored by 
Hecht et al [16] and Wentao [17]. 

In our future work we are planning to explore further 
various fault tolerance mechanisms and their modelling in 
UML. 

REFERENCES 
 
[1] I. Alexander. Misuse cases: Use Cases with Hostile Intent. 

IEEE Software, vol.20 (1), pp. 58-66, 2003.  
[2] G. Booch, J. Rumbaugh, and I. Jacobson. “The Unifying 

Modeling Language User Guide”. Addison-Wesley, 1999. 
[3] J.-C. Laprie. Dependability: Basic Concepts and 

Terminology. Springer-Verlag, Vienna, 1991. 
[4] N. Storey. Safety-critical computer systems. Addison-

Wesley, 1996. 
[5] T. Anderson and P.A. Lee. Fault Tolerance: Principles and 

Practice.  Dependable Computing and Fault-Tolerant 
Systems, Vol 3. Springer Verlag; 1990. 

[6] B. Randell and J. Xu, The Evolution of the Recovery Block 
Concept. In M. Lyu (ed.) Software Fault Tolerance. Wiley 
1994.   

[7] M.Fowler. UML Distilled: A brief Guide to the Standard 
Object Modelling Language. Addison-Wesley, 2004.  

[8] F. Cristian. Exception Handling. In T. Anderson (ed.): 
Dependability of Resilient Computers. BSP Professional 
Books, 1989.   

[9] K. Allenby, T. P. Kelly. Deriving Safety Requirements 
using Scenarios. In Proc. of the 5th IEEE International 
Symposium on Requirements Engineering (RE'01), 
Toronto, Canada, pp.228-235, 2001.  

[10] T. Kelly and R. Weaver. The goal Structuring Notation – A 
Safety Argument Notation. In Proc. of The Dependable 
Systems and Networks 2004 Workshop on Assurance 
Cases, July 2004. 

[11] J. Jürjens. Developing safety-critical systems with UML. In 
Proc. of UML’2003. Lecture Notes in Computer Science, 
San Francisco, USA, October 2003, pp.360 – 372. 

[12] R.-J. Back, L. Petre and I. Porres. Analysing UML Use 
Cases as Contracts. In Proceedings of UML'99. Fort 
Collins, Colorado, USA, October 1999. Lecture Notes in 
Computer Science 1723, pp. 518-533, Springer-Verlag. 

[13] A.Hassan, K. Goseva-Popstojanova, K and  H. Ammar. 
UML based severity analysis methodology. In Proc. of 
Reliability and Maintainability Symposium. Computer 
Press, 2005 

[14] P. David, V. Idasiak & F. Kratz. Towards a better 
interaction between design and dependability analysis: 
FMEA derived from UML/SysML models. In Proc of 
ESREL 2008 and 17th SRA-EUROPE, Spain, 2008. 

[15] M. Mazzara, Deriving Specifications of Dependable 
Systems: toward a method. CS-TR 1152 –Technical report 
Newcastle University, May 2009. 

[16] H.Hecht, X.An and M.Hecht. Computer-Aided Software 
FMEA. In Proc. of RAMS 2004, Computer Press, 2004. 

[17] W.Wentao and Z.Hong. FMEA for UML-Based Software. 
In Proc. of World Congress on Software Engineering, 
Computer Press, 2009. 

87

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           96 / 114



 

Timing Failures Caused by Resource Starvation in Virtual Machines 

Sune Jakobsson 

NTNU, ITEM 

Trondheim, Norway 

e-mail: sune.jakobsson@telenor.com 

 

 
Abstract—This paper discusses cascading effects of resource 

starvation in virtual machines, and how that affects end-user 

experiences in certain cases. The paper presents the occurring 

issues on an N-tier server system, and the way the starvation 

causes unexpected delays in a service for an end-user. The 

initial observations were on unexpected communication delays, 

and by using a simplified test system, this behaviour can be 

confirmed. The delays can traced back to memory 

management in the individual servers, causing the timing 

failures. 

Keywords- Java virtual machines; garbage collection; 

application servers; resource starvation. 

I.  INTRODUCTION 

This paper addresses cascading effects of resource 
starvation, in particular where a server side system is built 
using multiple tiers, and they call each other in a serial 
fashion to a depth of N. This effect is observed by end-users 
intermittently, where their service fails once, and by 
reloading their browser or application the service is restored. 
The definition of timing failures is from [3] and is defined 
as: “The time of arrival or the duration of the information 
delivered at the service interface (i.e., the timing of service 
delivery) deviates from implementing the system function.” 
A Cascading Effect is an unforeseen chain of events due to 
an act affecting a system [9]. 

 A typical service would consist of a client running in a 
terminal, accessing a server frontend exposed on the internet. 
The underlying system is often a multi-tier system consisting 
of one or more application servers and one or more 
databases. The frontend, does load balancing, and then 
passes the request to a HTTP server, which in turn forwards 
the request to a Servlet container. The Servlet processes the 
requests, and in turn will contact other servers on the 
Internet, databases, etc. Once all the information is returned 
the Servlet builds the response page to the requesting user, 
and the information is returned.  

Each server uses a dynamic amount of memory for their 
task, and with modern programming languages the memory 
is allocated when needed and freed when the virtual machine 
is running low on the free memory pool, or is idle and 
decides to clean up its memory pool [6]. This process is 
referred to as garbage collection, and there are many 
strategies for this mechanism [7]. If one observes the amount 
of free memory on a virtual machine over time, the 
waveform is an inverse saw tooth form with a maximum 
value matching the total amount of free memory, and the 

minimum values when the garbage collection mechanism is 
run.  

 

Figure 1.  A server system. 

Fig. 1 shows how a mobile client interacts with an 
application server, marked “A”, and how this server in turn 
interacts with the other servers, the blue dotted line is the 
path used when checking the availability. The figure also 
gives an indication on how the servers are deployed, but they 
might belong to different administrative domains on different 
networks. Fig. 2 is a sequence diagram, showing how the 
HTTP invocations in the test system are chained together, 
when they are called form each server to the next server, 
starting from server A, until they reach the depth of N 
servers, where the result is returned. It is assumed that the 
servers are instances of application servers like Tomcat [5]. 

 

II. MEMORY ALLOCATION 

Applications need memory for their task and the 
communication requires buffers to store data. When new 
objects are allocated they are taken from the memory pool. 
When the available memory runs low, a garbage collector 
inspects and frees objects that are no longer in use, and if one 
observes the available free memory on a typical virtual 
machine this shows an inverse staircase pattern. Fig. 3 shows 
a set of available free-memory patterns, showing how they 
are allocated and garbage collected over time. The amount of 

88

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           97 / 114



 

 

free memory available is collected from the JVM, using 
system calls on each application server. The figures are 
normalized, so that they can be compared, and the x-axis 
shows a cycle time of approximately 9 minutes for the 
servers in blue and brown, whereas one of the servers shown 
in purple has a cycle time of 23 minutes.  The frequencies of 
the cycles depend on the load of each individual virtual 
machine. The load impacts the memory usage, and when 
observing the graphs they show a frequency modulated 
inverse saw tooth shape. 

Figure 2.  Cascaded HTTP invocations. 

From a dependability point of view, the interesting point 

in time is when the garbage collection is running and hence 

the requests for free memory are stalled. Since the 

frequency this occurs at does not happened at regular 

intervals, and one single run of garbage collection does not 

impact the overall service execution time. The cascading 

effect occurs when multiple garbage collectors run right 

after each other effectively stalling the ability to reserve 

resources in the virtual machines involved. This condition is 

a late timing failure as shown in Fig. 8 in [3]. For each 

virtual machine the probability that the garbage collector 

runs is px. If we number the probabilities p1 to pn the 

interesting scenario occurs when multiple garbage collectors 

run after each other in a close sequence, effectively stalling 

the response back to the end-user. For all garbage collectors 

to run the probability is the product of the individual 

probability, and for all but one, the probability is sum of the 

individual probabilities but one, and so on. Given that the 

number N is small, one can construct a formula and find the 

N with the biggest likelihood for performance failure. 

III. A TEST SYSTEM 

To model a real service that would exercise as many 
parts as possible of an N-tier system, a simple test system has 
been programmed, which uses the involved virtual machines, 
and invokes each other into N levels with using a fixed 
amount of memory in each level. This test system therefore 
mimics the behaviour of a hypothetical service including a 
number of servers interacting, communicating over the 
Internet to provide a composite service. The core issue of 

application availability is trying to establish a method that 
ensures that the individual nodes are able to communicate, 
and that their application servers are functional and 
available, when they interact as shown in Fig. 2. A typical 
service would run in an application, and retrieve 
miscellaneous data from other servers connected to the 
internet, like group information, location, and maps.  

 

 

Figure 3.  Plotted set of free memory samples (normalized). 

Each node communicates with the next node defined by a 
data object consisting of a fixed list of URL’s that is passed 
between all servers. As part of the local logging process of 
each node they also collect the amount of free memory 
available in the virtual machine, and the data object also 
contains timestamps for later correlation of the results. The 
list is continually passed around at fixed intervals (30 
seconds), and when there are delays or processing issues this 
impacts the amount of free available memory. This logged 
data on each node can then be post-analyzed and the real 
cause can be determined, for the failure of the hypothetical 
service. The interesting part here is the strong correlation on 
how many buffers are occupied due to delays or errors in the 
transmission between the participating nodes. When there 
are HTTP messages that are not acknowledged, they use up 
the common memory of the system, and this can be 
measured with the available free memory. The amount of 
free memory can be obtained directly from a Java virtual 
machine if the application is implemented in the Java 
programming language or from the operations system when 
other programming languages are used. The elegance of this 
approach is that the measurements are non-intrusive to the 
application, and eliminates other hooks into the 
communication channel or their respective drivers. 

 

IV. OPERATION 

Each node, when invoked, obtains a time reference and 
the amount of free memory, and when the communication is 
done with the next node, these values are written to the 
standard output file of the application server. At the sending 

89

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           98 / 114



 

end there is a standalone program issuing the requests at 
fixed intervals as shown in Fig. 1, from server marked “A”. 

If the transmitted URL list makes it all the way to the 
destination the sender receives an acknowledgment in the 
form of HTTP status (200) OK, but there are plenty of 
observations where the list is delayed or its acknowledgment 
is delayed, but not lost. If the list is lost that is an obvious 
case, and also indicated in the HTTP status from the 
underlying TCP implementation in the operating system, but 
there is a group of cases where the list is not lost and makes 
it all the way to the last node, and the acknowledgment is 
returned, and all seems fine, yet the time seen from the 
initiating node is unacceptable long, and we have a case of 
timing failure. The term “unacceptable long” varies from 
case to case, but if a human does the interaction a delay for a 
second on a response from a service might be unacceptable.  
 

Figure 4.  Time between timing failures. 

By post-processing the log files from each node, more 
details about the cause can be obtained. The graph in Fig. 4 
shows the time between failures for a period of a month, 
where only a few other errors occurs, where the data object 
fails on its route, and in this period only timing failures 
occurred. The steps on the x-axis are 3000 seconds each. The 
number samples with timing failures is 212 out of totally 
80624 data objects dispatched. In this period there are also 
15 cases of halt failures in the data set. The shape of the 
graph indicates that it resembles a Poisson distribution, with 
a λ of approximately 0.955. This fits well with the 
assumption that the events occur continuously and 
independently at a constant average rate.  

V. STATE OF THE ART 

In closed and well monitored systems, with probes and 

other means of surveillance there are many commercial 

available solutions to detect timing failures and other 

failures and faults. However when it comes to distributed 

systems across different domains where there is no common 

administration, there is little material available. Several 

authors have studied causes of catastrophic failures in Web 

Applications [8] and the failures impacts on operation and 

how the failure has impacted the companies’ respective 

brand. Porter defines a system called X-Trace [1], to collect 

trace data to figure out what went wrong in an Internet scale 

system. This is done by adding extensions to HTTP headers 

in the requests, in order to be able to trace or locate them 

afterwards. His approach has some scaling issues, and also 

requires insertion of monitoring nodes or additional SW on 

the servers.  

In the approach we propose, one would add the proposed 

minimalistic test application on each node one has control 

over and call the other nodes with some dummy data, in 

order to decide if the communication and the application 

servers are indeed available. 

VI. CONCLUSION 

This paper showed the cascading effect of the individual 

memory allocation processes, and how they do affect the 

performance and availability for a service using multiple 

serves loosely connected over the Internet. The data 

collected also supports the assumption that the occurrence 

of timing failures occur continuously and independently at a 

constant rate. This paper outlines one of the issues observed 

on practical data collected in my research work, and will be 

further validated and modelled in my thesis work. 

ACKNOWLEDGMENT 

I would like to thank Professors Rolv Bræk and Bjarne 
Helvik at Department of Telecommunication at NTNU, for 
their advice and guidance in my research work.  

REFERENCES 

 
[1] G. Porter, “Improving Distributed Application Reliability with End-

to-End Datapath Tracing”, PhD  at Electrical Engineering and 
Computer Sciences, University of California at Berkeley Technical 
Report No. UCB/EECS-2008-68 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
68.html  (last seen Jul. 2011) 

[2] W. G. Bouricius, W. C. Carter and P. R. Schneider, “Reliability 
Modelling Techniques for Self-Repairing Computer Systems” 
Proceedings 24th National Conference ACM, 1969. 

[3] A. Avižienis , J. Laprie, B.  Randell, and C. Landwehr, “Basic 
Concepts and Taxonomy of Dependable and Secure Computing,” 
IEEE Trans. Dependable and Secure Computing, vol. 1,no. 1,pp. 11-
33, Jan.-Mar. 2004. 

[4] J. Engel: “Programming for the Java Virtual Machine”, Addison-
Wesley, 1999. ISBN 0-201-30972-6 

[5] Tomcat application server. http://tomcat.apache.org/ (last seen Jul. 
2011) 

[6] Java virtual machine.  http://java.sun.com/javase/ (last seen Jul. 2011) 

[7] R. Jones, “The Garbage Collection Page”,  
http://www.cs.kent.ac.uk/people/staff/rej/gc.html (last seen Jul. 2011) 

[8] S. Pertet and P. Narasimhan, “Causes of Failure in Web Applications 
(CMU-PDL-05-109)”. Parallel Data Laboratory. Paper 48. 
http://repository.cmu.edu./pdl/48 (last seen 2011) 

[9] Cascading effect: http://en.wikipedia.org/wiki/Cascade_effect (last 
seen 2011) 

Article in conference proceedings: 

[10] S. Jakobsson, “A Token Based Approach Detecting Downtime in 
Distributed Application Servers or Network Elements”, Networked 
Services and Applications - Engineering, Control and Management, 
16th EUNICE/IFIP WG 6.6 Workshop, EUNICE 2010, Trondheim, 
Norway, June 28-30, 2010. ISBN 978-3-642-13970-3 Proceedings, 
pp. 209-216 

90

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                           99 / 114



 

91

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         100 / 114



Video Surveillance in the Cloud: Dependability Analysis

Aleksandra Karimaa
Turku Centre for Computer Science, Teleste Corp.

Turku, Finland
alkari@utu.fi

Abstract—Cloud  computing  with  storage  virtualization  and 
new service-oriented architecture brings a new perspective to 
the aspect of dependability of video surveillance solutions and 
other  safety-critical  applications.  The  existing  research  is 
focused mainly on security challenges of cloud applications in 
general.  The  area  of  safety-critical  systems  is  relatively 
unexplored especially beyond aspects of  system security.  We 
believe the overview of system dependability shall be done to 
cover  other  dependability  attributes.  It  shall  bring  new 
arguments for expansion of video surveillance systems towards 
cloud  technology,  global  resources  distribution  and 
virtualization.  The  article  reviews  the  main  drivers  towards 
surveillance  in  cloud  technology.  We  research  the 
dependability characteristics in context of transition of video 
surveillance architecture towards cloud solutions. Finally, we 
propose the areas of focus for system development and design.

Keywords-surveillance; cloud; dependability

 INTRODUCTION AND MOTIVATION

The main motivations driving video surveillance towards 
cloud computing is the scalability of computing and storage 
resources which provide; cost effective scalability, flexibility 
of resource management and improve system performance.

The  transition  of  video  surveillance  towards  cloud 
solutions can be seen rather as a continuous process than a 
disruptive  innovation.  There  are  multiple  factors  which 
indicate that the development towards a cloud solution is a 
natural  evolution  for  the  development  of  surveillance 
systems. 

The architecture of video surveillance systems develops 
towards a model that includes dumb clients and a core of 
servers  -  it  is  identical  with the architectural  principles of 
cloud  computing.  Moreover,  the  systems  themselves  are 
becoming more  often  distributed,  creating the  structure  of 
multiple local  sites connected in mesh-like structures.  The 
connectivity  between  single  locations  is  based  upon  IP 
(Internet Protocol). Additionally, there are ongoing processes 
of  standardization  for  architectural  solutions  and  external 
interfaces (refer to ONVIF [1], PSIA [2], and Web Services 
architecture  standardization  by  W3C  [3]).  In  the  case  of 
surveillance  systems,  the  process  is  driven  by  the 
requirement for multi-vendor integration with open and well 
defined  interface  environment  enabling  a  cloud-based 
architectural  solution.  An  open  and  standardized 
environment  motivates  the  development  of  other  value-
added features (such as quality or security) which can then 
be  offered  as  a  product  differentiator  driving  market 
maturity.   Addressing  the  current  weak  points  of 
dependability should have a positive impact on a number of 

cloud-based  safety-critical  systems.  Finally,  typical  video 
surveillance systems have high demands for massive storage 
requirements  (recording  of  video  streams)  and  high-
performance  computing  (coding  the  streams  and  system 
intelligence)  which  are  major  advantages  of  cloud  and 
virtualization technologies.

However,  system  transition  towards  cloud  solutions  is 
not without its challenges. In order to benefit from a cloud-
based system, there is certain amount of system and software 
development  required.  The  systems  should  be  able  to 
accommodate automated mechanisms available in the cloud 
infrastructure,  utilize advantages  of  cloud architecture  and 
also handle cloud architecture limitations. A good example is 
the  video  format  conversions  requirement  which 
accommodates available service models (cost of storage at 
data centre and the cost of network transmission).  Another 
example includes extension of system failover mechanisms 
to accommodate virtual machine failover availability.

One of the problems with this transition towards a cloud-
based system might be the flexibility of the offering. A cloud 
service offering may be focused on supporting the scenario 
where the video transmission happens from the cloud to the 
user whereas in surveillance system the video is transmitted 
from  the  user  or  camera  towards  the  cloud  (for  storage 
purposes).

This  article  reviews  the  transition  alternatives  from  a 
traditional  to  a  cloud-based  surveillance  system.  An 
overview  of  dependability  objectives  for  a  surveillance 
system  is  also  described.  Next,  the  objectives  of 
dependability objectives: availability, security, reliability and 
maintainability  are  analyzed.  The  article  is  closed  by  a 
discussion chapter containing a short summary of the topic 
for the transition process.

TRANSITION ALTERNATIVES

The  process  of  transition  of  a  surveillance  solution 
towards  a  cloud-based  system  is  expected  to  be  quite 
complex,  this  is  due  to  security  concerns  of  cloud-based 
systems and the immaturity of the current market offering of 
cloud services.  Therefore,  it  is expected that the transition 
will be gradual and some of scenarios will be more attractive 
than others. 

Hardware  virtualization  provides  an  interesting 
alternative for being a first step for the transition to cloud 
technologies.  It  changes  traditional  relationship  between 
software and hardware – software is no longer dependent on 
hardware  location.  One  application  can  run  in  multiple 
locations  and  many  applications  can  share  the  same 
hardware.  Hardware  virtualization  increases  resource 

92

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         101 / 114



utilization  and  efficiency,  as  well  as  lowers  capital 
investment and maintenance cost. Some level  of hardware 
virtualization  is  well  presented  even  for  popular  desktop 
environments. More advanced options can be introduced by 
Private  Clouds  and  Public  Cloud  as  part  of  IaaS 
(Infrastructure as a Service) services. 

Private  Enterprise  Clouds  are  an  especially  attractive 
scenario  as  they  offer  cost  efficiency  while  maintaining 
traditional  level  of  security.  A Private Cloud is  a  pool  of 
resources  available  for  sharing  within  a  given  private  or 
enterprise entity. In the simplest form, it is dedicated storage 
or computation hardware with a virtualization layer allowing 
for the management of multiple virtual units under the same 
physical unit.  Private clouds offer effective resource sharing 
which provides cost efficient and a scalable alternative for 
dedicated  recording  hardware.  In  a  situation  where  the 
recoding  hardware  represents  a  significant  part  of 
surveillance deployment cost, this solution may offer a cost 
effective solution. Private Clouds offer advantages, such as 
reliability,  performance  and  without  (typical  for  cloud 
environments)  concerns,  such  as  level  of  security, 
management  of  hosting  (especially  sharing  multiple 
customer  installations  on  the  same  physical  resources). 
Additionally, a Private Cloud scenario might be encouraged 
from a business perspective to provide an adaptation period 
for  familiarization  with  cloud  technology  tools  and 
processes.  Another  argument  towards  Private  cloud 
computing  being  first  step  of  the  transition  to  cloud 
computing  is  the  cost  of  software  adaptation  which  is 
relatively  low.  The  basic  level  of  such  adaptation  should 
ensure that  the system is able to accommodate  distributed 
nature of system storage. 

However, the scalability of the Private Cloud might be 
limited in comparison to Public Cloud..

The choice between Public and Private Cloud computing 
should  be  evaluated  separately  for  each  part  of  the 
surveillance  system.  Typically,  security-critical  resources 
such as user  access  database,  incident video recordings or 
audio  information  will  not  be  placed  in  a  Public  cloud. 
However, public camera video recordings or computational 
resources could be subjects of “full cloud conversion” under 
public domains. 

DEPENDABILITY ANALYSIS FOR SURVEILLANCE TRANSITION TOWARDS  
CLOUD 

The  dependability  is  one  of  main  properties 
characterizing the system, next to functionality, performance 
and cost [4]. 

There  are  multiple  definitions  of  dependability. 
Dependability of a system can be described by the ability to 
deliver  a  service  that  can  be  trusted  and  where  potential 
service failures not frequent [4]. ISO definition is focused on 
availability.  IEC  definition  of  dependability  combines 
availability  with  reliability.  In  case  of  safety-critical 
applications,  the  safety  and  security  attributes,  especially 
confidentiality  and  integrity  shall  be  addressed  where 
evaluating  system  dependability.  Additionally,  the  system 
maintainability  shall  be  analyzed  providing  complete 
overview of dependability of the systems based on a cloud 
design.  Summarizing,  the  following  attributes  of 

dependability  shall  be  analyzed  for  video  surveillance 
systems:  availability,  reliability,  security  (confidentiality, 
integrity) and maintainability.

A. Availability 

Availability  of  surveillance  system  is  focused  on 
ensuring service continuity by providing access to the system 
and  its  resources.  Availability  and  disaster  recovery  is  an 
essential value of all security-critical systems. Lack of access 
to  system resources  and  inability to  react,  investigate  and 
record  the  incidents  are  probably  the  largest  risks  for 
surveillance system dependability. 

High-end distributed video surveillance systems support 
high-  availability  is  already  implemented  providing 
availability near 99.999 % (five nines availability) of system 
uptime.  The  mechanisms  to  ensure  this  high  level  of 
availability  include:  keep  alive  communication,  automatic 
failover  for  backup  devices,  software  and  hardware 
watchdogs, life cycle management and resource management 
programs, failover, redundancy and reliability support in the 
architecture,  but  also  services  offering  (to  provide  fast 
reaction times in case of system problems).

Cloud solutions  can offer  improvement  for  availability 
especially for two types of systems: local small installations 
and geographically distributed systems. In the case of local, 
one-box type installations, the offering of cloud services can 
be used to introduce redundancy mechanisms and disaster 
recovery tools – before not available for this class of system. 
It  is  worth  to  underline  that  in  case  of  these  local  small 
systems improved availability and virtual accessibility opens 
new  business  opportunities,  for  example  outsourcing  of 
business  processes  which might  be a  major  advantage  for 
small  businesses.  In  case  of  distributed  systems  where 
topology consists of multiple interconnected entities clouds 
improves availability in a cost efficient way by introducing 
common redundancy and backup resources and tools. Also, 
the distributed nature of the cloud itself improves availability 
– a system hosted in single location is more vulnerable. 

A  cloud-based  offering  provides  improved  system 
redundancy  and  a  new range  of  failover  mechanisms,  for 
example; the IaaS model disaster recovery service providing 
a  cost  competitive  alternative  to  an  internal  system (both 
software and hardware) with built-in solutions traditionally 
relying  on  watchdog-like  applications.  The  process  of 
migration  of  a  surveillance  system  is  likely  to  require 
development to accommodate cloud internal mechanisms for 
failover  and  availability  and  to  build-in  failover  and 
redundancy mechanisms between hardware and software. 

The definition of availability can be extended further to 
guarantee access to system resources that are provided only 
for entitled users (unauthorized access is denied). A Cloud 
provider’s knowledge, awareness and best practices greatly 
contribute  to  the  level  the  availability  by  providing 
protection of the system infrastructure against low level DoS 
attacks  whilst  providing  tools  and  services  to  protect  the 
resources from being unavailable or corrupted. 

Despite the fact that a level of resource availability will 
be guaranteed by an IaaS cloud service provider (example 
for Denial of Service attacks) the development related to the 
improvement of system availability is one of the major tasks 
for surveillance transition toward cloud computing. There is 

93

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         102 / 114



a significant amount of system development required for the 
improvement  of  the  authentication,  authorization  and 
accounting  (AAA) mechanisms  as  traditionally,  these  rely 
partially on high security level of physical access.  Special 
attention  shall  be  paid  to  improving  identity  verification 
which,  originally  being  part  of  accounting  now  plays  a 
critical  role  in  security  mechanisms  applied  for 
communication between the cloud and the rest of the system.

B. Security 

Security of a cloud solution is of major concern in the 
context of a safety-critical system, mainly due to the fact of 
virtualization;  the  data  no  longer  resides  on  dedicated 
hardware on location that is easy to identify. System security 
vulnerabilities,  such  as  weak  passwords,  inefficient  virus 
protection, unauthorized use of access devices or too flexible 
access  rights  exist  and  should  be  addressed  in  both 
traditional and cloud environments.

Security is not defined as single attribute of dependability 
by Avižienis et al. [4] but it  as composite notion of other 
dependability attributes. Similar approach has been described 
by  Krutz  and  Vines  [6]  where  security  is  the  concurrent 
existence of confidentiality, and integrity when availability is 
ensured. 

Confidentiality  guarantees  the  absence  of  unauthorized 
disclosure  of  system  resources  and  other  relevant 
information.  Confidentiality  is  traditionally  provided  by 
elements,  such  as:  network  security  protocols,  network 
authentication  services  and  data  encryption  protocols. 
Confidentiality  in  a  cloud  system  is  focused  on  the 
confidentiality of transferred data with use of these elements. 
This means that in the case of a safety-critical system based 
on cloud architecture there should be a clear security policy 
in  place,  defining  the  exchange  of  data.  It  should  define 
entities authorized for access  and exchange;  the data itself 
shall  be categorized as  confidential,  sensitive,  private,  and 
public  to  specify  the  level  of  protection  to  be  applied. 
Confidentiality  of  safety-critical  systems  based  on  cloud 
computing  shall  be  focused  on  addressing  authorization 
(including  identity  establishment),  access  control,  rights 
managements,  and  encryption  requirements  (mechanisms 
and  architectural  solutions).  Identity  establishment  and 
management play an important role as being a critical part of 
process of securing the communication channels between a 
system  and  the  cloud  infrastructure.  Cloud-based  safety- 
critical systems shall have at least two factor authentication 
where type 1 authentication is “something you know” (such 
as password), type 2 is “something you have” (such as smart 
card) and type 3 is “something you are“(such as fingerprint). 
The above suggest  the popularity of bio-identification will 
increase  and  is  being  demanded  by  the  safety-critical 
application  market.  Additionally,  cloud-based  surveillance 
systems  shall  introduce  a  public  key  infrastructure  and 
encryption  key  management  whilst  implementing  digital 
certifications  and  all  related  issues  such  as:  handling 
certificate  revocations  lists,  key  management,  distribution, 
revocation,  recovery,  renewal,  and  destruction.  Additional 
mechanisms  can  be  applied  to  secure  system-to-cloud 
communication  channels,  including  layered  security, 
segmentation of virtual local area networks and applications, 
clustering of DNS (Domain Name System) servers for fault 
tolerance, load balancing and firewalls.

Integrity  defines  the  absence  of  improper  system 
alterations. The cloud system should ensure the integrity of 
data during transfer and storage. The system should be able 
to  detect  and/or  correct  data  errors  and  alterations  whilst 
identifying  the  origin  of  the  data  and  its  accuracy.  The 
integrity of the provided solution shall rely on access control 
and rights management. It shall be stressed that the integrity 
of the data shall be secured ‘end-to-end’ including the means 
of  data  export.  The  subject  of  data  integrity  is  extremely 
important  in  the  case  of  video  surveillance  solutions 
providing  evidence  export,  reporting  and  auditing 
functionalities.

Video  surveillance  systems,  especially  the  ones  with 
focus on production and delivery of evidence, usually have 
data integrity mechanisms implemented: they include RAID 
(Redundant  Array  of  Independent  Disks)  technologies (to 
maintain the integrity on the hardware level), file checksums, 
etc.  Data  integrity  on  the  physical  level  can  be  easily 
maintained by cloud technology and it  is  typically part  of 
cloud  service  offering.  Higher  level  of  cloud  service 
offerings,  such  as  PaaS  (Platform  as  a  Service)  or  SaaS 
(Software as a Service) can also offer file level integrity tools 
even  for  exported  material.  It  offers  great  advantages  in 
terms of flexibility.  Different  integrity mechanisms can be 
provided for different surveillance system owners taking into 
account  their  different  needs  and  legal  considerations, 
without  any  internal  development  required,  including: 
firewall  services,  communication  security  management 
services and intrusion detection services.

C. Reliability

Reliability is focused on service continuity by defining 
the mechanisms of fault prevention, tolerance (avoidance) to 
deliver  trusted  service  and  removal  (reducing)  and  fault 
consequence forecasting to define and meet required system 
dependability specifications. 

A  Cloud  offering  provides  improved  reliability  in  the 
form of services and infrastructure. Reliability oriented cloud 
services  include  for  example;  automatic  backup  and 
redundancy  services,  incident  response  services  and  safe 
failover  mechanisms.  These  services  can  provide  the 
required reliability level without a large investment in capital 
and  human  resources,  for  example;  incident  response 
services  typically  provide  analysis  of  event  notification, 
response,  escalation  procedures,  post-event  follow up  and 
incident response management (including for example risk 
mitigation planning).  This type  of service offering is  very 
important for large scale applications; the scalability of the 
offering also provides cost efficiency for small installations 
where similar services were not previously available.

Automatic backup and redundancy services are provided 
by the architecture of cloud infrastructure and its distributed 
nature. It eliminates the need of expensive backup hardware, 
software  and  locations  providing  resources  (such  as  SAN 
storage  areas  or  computational  resources)  on  demand. 
Koslovsi  et  al.  [5]  provides  an  overview  of  reliability 
advantages  brought  by  cloud  infrastructure  virtualization 
which  enables  transparent  and  customized  reliability 
provisioning. 

It should be underlined that in order to utilize reliability 
improvements  available  in  cloud  technologies  the  system 
should  meet  specific  requirements,  which  include  secure 

94

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         103 / 114



access  from  remote  locations  and  towards  cloud,  truly 
distributed architecture where the available mechanisms are 
independent from location,  discipline in traffic monitoring, 
management  and  other  security  mechanisms  and  also 
associate processes to be in place.

D. Maintainability 

Maintainability is the ability to undergo, modifications, 
and repairs without the need to disable access to the system. 
The advantage of the transition of video surveillance systems 
to the cloud depends in great on the service or infrastructure 
provider. The providers of the cloud infrastructure shall be 
carefully evaluated for their ability to maintain the agreed 
terms through service lifecycle starting from adoption phase. 
However,  the  current  cloud  offering  is  mature  enough  to 
provide full range of services assisting the system customer 
from early phases of the system planning, through phase of 
deployment,  maintenance  and  ending  on  systems  disposal 
services (for example to guarantee correct disposal of system 
information). It is a considerable improvement compared to 
traditional  systems  where  quite  often  the  availability  of 
resources to deploy surveillance systems project depends on 
maintenance demands for the existing installation. Therefore, 
the transition to cloud opens new opportunities in terms of 
business models for companies providing such systems.

CONCLUSIONS

The transition of video surveillance into a cloud service 
can offer great advantages on system dependability only if 
the challenges  of  the  transition are  known and  addressed. 
Cloud technologies offer different service models of cloud – 
IaaS  (Infrastructure  as  a  Service),  PaaS  (Platform  as  a 
Service)  or  SaaS  (Software  as  a  Service).  The  cloud 

infrastructure of the IaaS-based model seems to be the most 
suitable  for  the  first  step  of  the  transition  of  video 
surveillance  by  providing  advantages  of  hardware 
virtualization,  cost  scalability  and  performance.  The 
transition shall be a continuous process. The plan of gradual 
transition into cloud computing shall be investigated for each 
system- external system functionalities such as video content 
analysis modules could be a good candidate for the first step 
of such transition.

ACKNOWLEDGMENT

The author gratefully acknowledges the contribution of 
Pete Ward. It should be stressed that the views in this paper 
are authors own and do not necessarily represent the views 
of Teleste.

REFERENCES

[1] ONVIF, www.onvif.org, visited 14.7.2011

[2] Physical  Security  Interoperability  Alliance  PSIA, 
www.psiaalliance.org, visited 14.7.2011

[3] World  Wide  Web  Consortium  W3C,  http://www.w3.org,  visited 
14.7.2011

[4] A. Avižienis, J. C. Laprie, B. Randell, “Dependability and its threats: 
a  taxonomy,”  IFIP  International  Federation  for  Information 
Processing, vol. 154/2004, pp. 91–120.

[5] G. Koslovsi,  Wai-Leong Yeow, C. Westphal,  Tram Truong Huu, J. 
Montagnat,  and  P.Vicat-Blanc,  “Reliability  Support  in  Virtual 
Infrastructures,” Proc. IEEE 2nd Internat.Conf. on Cloud Computing 
Technology and Science (cloudCom) IEEE Press, Dec. 2010, pp. 49-
58, doi: 10.1109/CloudCom.2010.23.

[6] R.  L.  Krutz  and  R.  D.  Vines,  “Cloud  Security:  a  comprehensive 
Guide  to  Secure  Cloud  Computing,”  Wiley  Publishing,  Inc., 
Indianapolis, 2010, ISBN: 978-0-470-58987-8. 

95

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         104 / 114



Diagnostic Fusion for Dependable Vehicle Architectures

Patrick E. Lanigan, Priya Narasimhan
Carnegie Mellon University

Electrical & Computer Engineering
planigan@ece.cmu.edu, priya@cs.cmu.edu

Thomas E. Fuhrman
General Motors Research & Development

Electrical & Controls Integration Lab
thomas.e.fuhrman@gm.com

Abstract – Despite extensive design processes, emergent
and anomalous behavior can still appear at runtime in
dependable automotive systems. This occurs due to the
existence of unexpected interactions and unidentified
dependencies between independently-developed com-
ponents. Therefore, system-level mechanisms must be
provided to quickly diagnose such behavior and deter-
mine an appropriate corrective action. DIAGNOSTIC
FUSION describes a holistic process for synthesizing
data across design stages and component boundaries in
order to provide an actionable diagnosis.

Keywords – diagnosis; dependable computing; automo-
tive; data fusion

1 Introduction

A growing trend in the automotive industry is toward fea-
tures that assist the driver in maintaining safe control of the
vehicle under a variety of conditions. Previously, such as-
sistance has been provided passively in the form of infor-
mation or warnings. These features are now being given
increasing amounts of authority to control the vehicle’s mo-
tion by actively supplementing the driver’s inputs. The long
term trend is towards fully autonomous operation [17, 19].

This trend has largely been enabled by advances in
software-intensive distributed systems. Because these are
safety-critical systems, they must be designed to tolerate
faults and provide high levels of dependability. Typically,
a systematic safety analysis is conducted during the de-
sign phase to evaluate both the severity and likelihood of
the consequences of possible faults. Formal verification
methods are used to analyze system dependability. The up-
coming ISO 26262 standard for functional safety in auto-
motive electronics recommends that fault-injection also be
included as part of the dependability analysis of critical sys-
tems [10].

Despite these extensive design processes, emergent and
anomalous behavior can still appear at runtime in de-
pendable automotive systems. This occurs due to unex-

pected interactions and unidentified dependencies between
independently-designed components. These interactions
are not readily apparent to the system designers and might
not be captured by system models. Therefore, system-level
mechanisms must be provided to quickly diagnose such be-
havior and determine an appropriate corrective action at
runtime. Diagnostic approaches that operate strictly at the
component or subsystem level and rely mainly on functional
models may not provide a satisfactory diagnosis. A holistic
approach that analyzes empirical metrics as well as func-
tional models, and then synthesize the information across
component and subsystem boundaries is needed.

2 Diagnostic Fusion

Sensor fusion is a well-known technique for combining
multiple sources of sensor information, and then correlating
that information to get a composite view of the state of the
environment being sensed, as well as the state of health of
the sensors being fused. Sensor fusion does not itself come
up with new sensing technologies, but combines the exist-
ing sensing technologies at the system level. By analogy,
diagnostic fusion does not define new diagnosis algorithms
or methodologies, but finds ways to combine existing diag-
nosis algorithms and methodologies at the system level to
satisfy the goals, requirements, and constraints of the sys-
tem.

Diagnostic fusion is parameterized by the instrumenta-
tion that it uses to collect data (see Section 2.1) and the
algorithms that it uses to extract and combine information
from the collected data (see Section 2.2). Defining these pa-
rameters involves navigating the tradeoff space discussed in
Section 3.

2.1 Instrumentation

Instrumentation refers to a source of data from which in-
formation can ultimately be obtained through analysis. The
holistic approach that we propose for diagnostic fusion is
unique in that it instruments the design process as well as

96

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         105 / 114



the developed system. The data obtained through design-
time instrumentation ultimately drives the instantiation of
run-time instrumentation (see Section 3.1).

Design-time instrumentation points are derived from the
artifacts produced at each stage of the design process. Such
artifacts include design documents, models and empirical
data. For example, Failure Mode and Effects Analysis
(FMEA) documents provide information that can be used to
develop fault signatures. Fault Tree Analysis (FTA) docu-
ments can contain information that characterizes dependen-
cies and interactions between system components. Compo-
nent and system models (e.g., MATLAB/Simulink models)
can be used to identify potential run-time instrumentation
points. Fault models, functional requirements, and safety
specifications can be used to derive the level of detail that
an actionable diagnosis is required to provide. Empirical
data from fault-injection processes and vehicle prototypes
can provide information on normal versus abnormal system
behavior.

At run-time, there are numerous discrete instrumenta-
tion points that can provide diagnostic data. These in-
strumentation points can provide black-box, white-box or
gray-box views and exist at the system-level as well as
the component-level. Examples of potential run-time in-
strumentation points are the error indicators provided by
the communication controller, hooks inserted into software
components [13], and Operating System (OS) metrics such
as context-switch rates. Another approach demonstrates the
extent to which diagnosis is possible using only passive
monitoring in FlexRay-based networks [2]. Several aspects
of the FlexRay protocol that can be used to aid diagnosis un-
der such restrictions, such as syntactic failures in the value
domain (e.g., Cyclic Redundancy Check (CRC), header val-
ues), semantic failures in the value domain (e.g., application
specific plausibility checks) and failures in the time domain
(e.g., early, late or missing messages).

2.2 Algorithms

By combining and analyzing the trends of data at the
component-level, subsystem-level and system-level, the di-
agnostic fusion module can detect escalating anomalous be-
havior in the system, localize the source of the problem
and provide an actionable diagnosis. This approach in-
volves employing data analysis through machine-learning
and data-mining techniques on the generated error logs and
the instrumented data that is extracted out of the system and
its components. The diagnostic fusion process will need to
correlate time-stamped data across multiple Electronic Con-
trol Units (ECUs) and subsystems, not only to localize the
source of a failure, but also to examine possible propagation
paths that can lead to additional, related failures.

Failure diagnosis approaches in enterprise systems typ-

ically localize anomalous system behavior through statisti-
cal analysis of time-series data [6, 8, 9, 11, 14] or through
control-flow and data-flow analysis [1, 3, 5, 7, 12]. How-
ever, the failure diagnosis approaches developed for enter-
prise systems might not be directly applicable to automotive
systems because automotive systems have limited process-
ing and storage capacity and might not support the level of
instrumentation and processing needed by the enterprise ap-
proach. Automotive systems also generally require a higher
degree of accuracy and lower diagnosis latencies than enter-
prise systems due to the safety-critical and interactive nature
of chassis and powertrain subsystems.

For example, peer comparison is a valuable tool for
anomaly-detection, especially in enterprise environments
with fluctuating workloads. However, peer comparison is
less effective with correlated failures, which occur when a
fault originates in one node and then propagates to other
nodes in the system. Emergent behavior is likely to arise
from correlated failures between components with uniden-
tified dependencies. Peer comparison also requires a cer-
tain level of homogeneity to exist between the compared
peers, whereas automotive distributed systems are largely
heterogenous.

The classic formulation of system diagnosis is the
Preperata-Metze-Chien (PMC) model [16]. Under the PMC
model, components test each other according to predeter-
mined assignments. The set of test results (called the syn-
drome) can then be collected and analyzed to determine the
health of each component. Subsequent work extended the
PMC model by addressing limitations that made it imprac-
tical for application in real fault-tolerant systems; an exten-
sive survey of such work is available [4]. System-diagnosis
algorithms developed for automotive systems leverage lo-
cal status-indicators provided to produce a global view of
the network’s health [15, 18]. This is accomplished by dis-
seminating and aggregating diagnostic information via di-
agnostic messages, and then performing analysis on the ag-
gregated data.

3 Diagnostic Requirements and Tradeoffs

Developing a run-time instantiation of the diagnostic fusion
process will require navigating a complex tradeoff space,
which is comprised of the relationships between coverage,
latency, accuracy, and cost requirements.

• The diagnostic latency is the time between the activa-
tion of a fault and the output of an actionable diagnosis.

• Safety process standards define coverage as the per-
centage of possible errors that can actually be detected
by a system. In functional safety standards such as
ISO26262 [10], the required coverage will vary with

97

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         106 / 114



Automotive Safety Integrity Level (ASIL). For exam-
ple, an ASIL D system may require 99% coverage of
all memory errors, while an ASIL C system may re-
quire only 90% coverage.

• Diagnostic accuracy is the probability that any given
diagnosis is correct, and can be expressed in terms of
false-positive and false-negative rates.

• Diagnosis will impose some overhead, or cost, on the
system. The cost can also be expressed in economic
terms if additional resources are required to compen-
sate for or implement diagnostic functions.

Some very simple examples serve to illustrate the trade-
off space. Clearly, a highly accurate diagnosis might take
longer to produce, increasing latency. If you need low la-
tency, you might have to allow for a reduction in accu-
racy. On the other hand, in some instances, the latency
could be decreased by adding resources, thereby raising the
cost. High coverage might require more resources or instru-
mentation, which would also increase the cost of diagnosis.
The diagnostic fusion process could cover a large space of
faults with reduced accuracy, or a small space of faults with
greater accuracy, especially when trying to discriminate be-
tween fault types.

3.1 Diagnosis Advisor

Manually balancing these tradeoffs can be a significant
challenge for system designers. Therefore, we further pro-
pose a Diagnosis Advisor (DA) that characterizes the sys-
tem at design-time and develops set of parameters that are
used to instantiate the diagnostic fusion process at run-time.
Artifacts from each stage of the design process are provided
as inputs to the DA. Such inputs could include fault mod-
els, FMEA documents, dependability requirements, feature
specifications, or functional models. The DA analyzes these
inputs, and provides the system designer with a set of pa-
rameters that can be used by the diagnostic fusion process
to fulfill the diagnostic requirements of the system.

The analysis performed by the DA is aimed at determin-
ing an appropriate set of parameters for instantiating the di-
agnostic fusion process at run-time. The DA does not de-
velop new algorithms by itself. Rather, it aids the system
designer in choosing from a set of existing algorithms that
can later be combined by the diagnostic fusion process at
run-time. The DA performs its analysis at design-time, and
so can be a centralized tool. However, the DA could output
either a centralized or distributed configuration for the diag-
nostic fusion module, depending on the system’s diagnostic
and dependability requirements.

4 Research Questions and Challenges

This work seeks to address three key research questions.

Research Question 1 Given specific input requirements
relating to cost, dependability and performance, how can
a configuration of instrumentation-sources and analysis-
algorithms be synthesized, which can diagnose emergent
behavior effectively and within the latency required for an
actionable response?

Research Question 2 What is the coverage of the diagnos-
tic configuration output by the DA, and how do we handle
cases when such a configuration is impossible due to the
constraints imposed on the system?

Research Question 3 What is the trade-off space of the
cost (i.e., the overhead of increased instrumentation) vs. the
accuracy of fault-localization?

There are challenges related to each of the following as-
pects: holistic, data-driven and diagnosis. For instance, di-
agnostic fusion aims to extract data from every phase of the
development cycle. However, it is even more important to
extract the right data. Moreover, this data comes at the ex-
pense of human overhead (e.g., development hours) as well
as system and communication overhead. This overhead will
need to be minimized, as well as balanced with the benefits
provided by diagnostic fusion. Appropriate analytic tech-
niques will then need to be developed, applied and evalu-
ated in order to provide actionable diagnostic output. Fi-
nally, the the dependability of the DA and its outputs must
be analyzed.

Potential sources of data have to be identified, even
though it is not clear what instrumentation points will be
available in future automotive architectures. Each poten-
tial instrumentation point will then need to be characterized
with respect to the utility it provides and the overhead it
imposes. Moreover, the relationships between instrumenta-
tion points have to be studied. For example, if some sources
of instrumentation are redundant or synergistic, can they be
correlated as a sanity check? On the other hand, can sources
of instrumentation that are disjoint or independent be lever-
aged to provide a more complete picture of the vehicle’s
health?

Identifying algorithms that can detect specific kinds of
failures based on the instrumentation available to them is a
key issue. Once these algorithms have been identified, they
will need to be implemented in a resource-constrained en-
vironment. For algorithms developed in enterprise environ-
ments, this could be a significant challenge. Just as with
instrumentation points, the utility provided and overhead
imposted by the algorithms will also need to be character-
ized. Further, the diagnostic accuracy and granularity (e.g.,

98

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         107 / 114



component-level, subsystem-level, etc.) provided by vari-
ous combinations of algorithms and instrumentation should
be shown experimentally as well as analytically.

5 Summary

Despite extensive design processes, emergent behavior
can still appear at runtime in dependable automotive sys-
tems. The holistic approach used in diagnostic fusion can
address this problem in two ways. First, by synthesizing
data across design phases, dependencies and interactions
that could have otherwise been undetected can be identified.
Second, by coherently characterizing the expected behavior
of the system, diagnostic fusion will provide a more robust
means of detecting and diagnosing emergent behavior as it
occurs.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In Proceedings, 19th ACM Sym-
posium on Operating Systems Principles, SOSP ’03, pages
74–89, New York, NY, USA, October 2003. ACM.

[2] E. Armengaud and A. Steininger. Pushing the limits of on-
line diagnosis in flexray-based networks. In Proceedings,
2006 IEEE International Workshop on Factory Communi-
cation Systems, WFCS ’06, pages 44–53, Piscataway, NJ,
USA, June 2006. IEEE.

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. ACM
SIGCOMM Computer Communication Review, 37(4):13–
24, August 2007.

[4] M. Barborak, M. Malek, and A. Dahbura. The consensus
problem in fault-tolerant computing. ACM Computing Sur-
veys, 25(2):171–220, June 1993.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling. In
Proceedings, 6th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI ’04, pages 259–
272, Berkeley, CA, USA, December 2004. USENIX Asso-
ciation.

[6] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson.
Lightweight, high-resolution monitoring for troubleshoot-
ing production systems. In Proceedings, 8th USENIX Sym-
posium on Operating Systems Design and Implementation,
OSDI ’08, pages 103–116, Berkeley, CA, USA, December
2008. USENIX Association.

[7] R. P. J. C. Bose and S. H. Srinivasan. Data mining ap-
proaches to software fault diagnosis. In Proceedings, 15th
International Workshop on Research Issues in Data En-
gineering: Stream Data Mining and Applications, RIDE-
SDMA 2005, pages 45–52, Los Alamitos, CA, USA, April
2005. IEEE Computer Society.

[8] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, indexing, clustering, and retrieving
system history. ACM SIGOPS Operating Systems Review,
39(5):105–118, December 2005.

[9] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Verti-
cal profiling: Understanding the behavior of object-oriented
applications. In Proceedings, 19th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOSPLA ’04, pages 251–269,
New York, NY, USA, October 2004. ACM.

[10] ISO/DIS 26262: Road vehicles – Functional safety, vol-
ume 4–6. International Organization for Standardization,
Geneva, Switzerland, 2009.

[11] S. Kavulya, R. Gandhi, and P. Narasimhan. Gumshoe: Di-
agnosing performance problems in replicated file-systems.
In Proceedings, 2008 IEEE Symposium on Reliable Dis-
tributed Systems, SRDS ’08, pages 137–146, Los Alamitos,
CA, USA, October 2008. IEEE Computer Society.

[12] E. Kiciman and A. Fox. Detecting application-level fail-
ures in component-based internet services. IEEE Transac-
tions on Neural Networks: Special Issue on Adaptive Learn-
ing Systems in Communication Networks, 16(5):1027–1041,
September 2005.

[13] P. E. Lanigan, P. Narasimhan, and T. E. Fuhrman. Expe-
riences with a CANoe-based fault injection framework for
AUTOSAR. In Proceedings, 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN
’10, pages 569—574, Los Alamitos, CA, USA, June 2010.
IEEE Computer Society.

[14] S. Pertet, R. Gandhi, and P. Narasimhan. Fingerpointing cor-
related failures in replicated systems. In Proceedings, 2nd
USENIX Workshop on Tackling Computer Systems Problems
with Machine Learning Techniques, SysML ’07, pages 9:1–
9:6, Berkeley, CA, USA, April 2007. USENIX Association.

[15] P. Peti, R. Obermaisser, and H. Kopetz. Out-of-norm asser-
tions. In Proceedings, 11th IEEE Real Time and Embedded
Technology and Applications Symposium, RTAS ’05, pages
280–291, Los Alamitos, CA, USA, March 2005. IEEE Com-
puter Society.

[16] F. P. Preperata, G. Metze, and R. T. Chien. On the con-
nection asssignment problem of diagnosable systems. IEEE
Transactions on Electronic Computers, EC-16(6):848–854,
December 1967.

[17] J. D. Rupp and A. G. King. Autonomous driving – a prac-
tical roadmap. SAE Technical Paper Series 2010-01-2335,
SAE International, Warrendale, PA, USA, October 2010.

[18] M. Serafini, N. Suri, J. Vinter, A. Ademaj, W. Brandstäter,
F. Tagliabò, and J. Koch. A tunable add-on diagnostic
protocol for time-triggered systems. In Proceedings, 2007
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN ’07, pages 164–174, Los Alami-
tos, CA, USA, June 2007. IEEE Computer Society.

[19] C. Urmson et al. Autonomous driving in urban environ-
ments: Boss and the urban challenge. Journal of Field
Robotics, 25(8):425–466, July 2008.

99

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         108 / 114



Downtime Analysis of Virtual Machine Live Migration

Felix Salfner
Department of Computer Science

Humboldt-Universität zu Berlin, Germany
salfner@informatik.hu-berlin.de

Peter Tröger, Andreas Polze
Operating Systems and Middleware Group

Hasso-Plattner-Institute at University Potsdam, Germany
{peter.troeger,andreas.polze}@hpi.uni-potsdam.de

Abstract—Virtual machine environments like VMware, XEN,
KVM, and Hyper-V support live migration of guest operating
systems, which is used in data centers to provide uninterrupted
service during maintenance or to move computation away from
failure-prone hosts. The duration of migration, as well as the
virtual machine downtime during this process are essential
when assessing if service availability agreements might be
violated.

We present the result of an experimental study that analyzed
virtual machine live migration downtime and duration. We
show that total migration time as well as downtime are
dominated by specific memory utilization patterns inside the
virtualized guest. We experienced that downtime involved by
live migration can vary by a factor of more than 23, which
can have significant impact on service availability.

Keywords-virtual machine, live migration, downtime

I. INTRODUCTION

Virtualization as a concept for isolation and multiprogram-
ming has been known since the late 60’s [1]. Today, many
virtualization products for commodity server and desktop
environments exist. Most platforms support live migration,
which allows to move a running virtual machine (VM) to
a new physical host with minimal service interruption. This
renders live migration a very attractive tool for various sce-
narios in dependable computing. Currently the predominant
use of live migration is in data centers or compute clouds
where VMs can be moved across physical hosts for load
balancing, server consolidation or maintenance. In all these
cases knowing the downtime involved by moving the VM
is essential when service availability guarantees have to be
fulfilled: the time of service interruption must not exceed
the clients retry intervals.

A second area where live migration is used is proactive
fault management. VMs are moved away from a physical
node that has been predicted to show a failure in the near
future (see, e.g., [2]). In addition to the downtime involved
in moving the VM, the total duration of migration is an
important characteristic. This is because the entire migration
has to have finished before the failure occurs.

However, the majority of existing work that builds on live
migration of VMs simply assumes some fixed (in many cases
arbitrary) duration of the live migration and the downtime
involved by it. According to the experiments presented in
this paper, such an assumed value has to be chosen very

carefully since migration time as well as downtime can vary
by an order of magnitude or more, depending on the memory
workload. It is the goal of this paper to systematically
investigate the factors determining the time needed for VM
live migration.

II. VIRTUAL MACHINE LIVE MIGRATION

Within the different existing virtualization frameworks
with live migration support, the basic principle is that the
virtualization cluster management actively moves a virtual-
ized system while it is still executing and is still changing
the hardware’s and software’s state. Today’s products realize
this by a delta-copying approach where modified memory
regions are incrementally transferred until a lower threshold
for data to be moved is reached. In the subsequent phase in
which the VM is stopped, the remaining resources are copied
and reconfigured and the VM is resumed on the destination
host. This leads to the two characteristics investigated in this
paper:

• migration time is the time from start of the live migra-
tion process until the virtualization framework notifies
that the source host can be deactivated.

• downtime or blackout time is the phase during migration
when there is a user-perceptible service unavailability.

The most difficult procedure in live migration is the trans-
fer of main memory state. As live migration environments
typically share storage within the migration cluster, swapped
out memory pages do not have to be considered. Read-only
pages from the working set (such as code pages) need to be
migrated only once, whereas data pages could be modified
again after their initial transfer. Transfer of writable memory
can happen theoretically in three phases [3]: In the initial
push phase, in which the source machine’s actively used
set of pages is copied to the destination host in rounds. In
the subsequent stop-and-copy phase, in which the source
VM is suspended, remaining memory regions are transfered,
and the VM is resumed again on the destination host. The
length of this phase is the VM downtime. The last step is the
pull phase, where the VM running on the destination host
might access memory regions that are still not migrated,
which are then pulled from the source host. The end of the
pull phase marks the end of the migration time. The time
of transition from one phase to the next is controlled by

100

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         109 / 114



adaptive algorithms that take into account various aspects
such as the number of dirty memory pages, etc. Most live
migration products combine the first two phases in a so-
called pre-copy approach.

III. EXPERIMENT DESIGN AND LOAD MODEL

Live migration duration is influenced by load factors from
inside the VM and from the underlying physical host. For
our investigations we assumed a typical (and recommended)
setup where applications only run in VMs and there are no
applications running on the physical host directly (except for
the hypervisor).

Experiments carried out prior to the ones presented here
have shown no impact on migration time and downtime
when running multiple VMs on one physical host. Results
shown here have therefore been measured with just one VM
per physical host. We assumed a model of VM operation
without over-commitment, which is a VM configuration
where the sum of virtual memory of all VMs on a host
does not exceed the amount of physical memory.

The focus of this work is on application-specific effects
on live migration. Since in most scenarios the migration net-
work is not a controllable parameter we did not investigate
effects of the migration network on migration performance.
Additional tests investigating network usage showed that
the migration frameworks handle network capacity issues
carefully so that this assumption appears valid.

The goal of our experiments are to investigate the effects
of the following factors on migration time as well as down-
time: CPU load, configured memory size of the VM, utilized
amount of memory, and memory modification pattern for
two different virtualization products.

A. Load Generators

In order to be able to analyze the effects of each factor
and its combinations we used three different load generators
- one for CPU load and two for memory load.

The CPU load generator was based on burnP6 and
cpulimit generating a controllable CPU utilization in the
running VM.

The locked pages generator is used for analysis of static
memory allocation that cannot be swapped out. This is
achieved by allocating a given amount of memory, writing
random data to it and locking it in physical memory using
the according system call.

In order to investigate the effect of modifying memory
pages while the VM is migrated, we programmed a dirty
pages generator, simulating memory write access of appli-
cations running in the VM. It implements a cyclic memory
modification pattern by continuously writing pre-computed
random data to locked memory locations. This pattern is
motivated by server applications, which modify memory
regions based on incoming requests. These modifications
can be expected to have comparable characteristics for the

Table I
INVESTIGATED PARAMETERS

HYPERVISOR The virtualization framework used
VMSIZE Amount of main memory statically config-

ured for the VM
LOAD CPU utilization of the virtualized operating

system
WSET Working set, the sum of utilized memory
PERIOD The period for one memory modification

cycle
BPC Blocks per cycle. Number of modified blocks

per cycle
FILL Filling degree. The average percentage of a

memory block being actively modified

majority of requests, e.g., by always reading some data,
storing logging information, and returning the result.

A list of all parameters investigated in our experiments is
provided by Table I.

B. Technical Setup and Issues

All tests were performed on two Fujitsu Primergy RX300
S5 machines with a shared iSCSI drive, the migration
was performed for a VM running Linux 2.6.26-2 (64 bit).
All VMs were configured to have one virtual CPU and
a varying amount of (virtualized) physical RAM. In all
cases, the virtualization guest tools / drivers were installed.
Native operating system swapping was activated, but not
aggressively in use due to the explicit limitation of the
allocated amount of memory.

We conducted all experiments with the two hypervisors
VMware and Xen. Experiments for VMware were performed
with ESX 4.0.0, using the vCenter server software for
migration coordination. High availability features were de-
activated. Experiments for Xen were performed with Citrix
XenServer 5.6 (Xen core 3.4.2). Both Xen hosts were
configured to form a pool, the test scripts were executed
in the dom0 partition of the pool master.

Total migration time was measured by capturing the
runtime of the product command-line tool that triggers a
migration. Downtime was measured by a high-speed ping
(50 ms) from another host, since the virtualization products
do not expose this performance metric by themselves. The
downtime is expressed as the number of lost Ping messages
multiplied by the ping interval.

Live migration, similar to every performance-critical soft-
ware feature, is influenced by a manifold of hardware /
software factors. We are aware of the fact that new product
versions, node and networking hardware as well as special
optimization switches can lead to better or worse results.
Nevertheless, the point of our investigations is to identify
major impact factors when using live migration for depend-
ability purposes.

101

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         110 / 114



IV. SINGLE VARIABLE EXPERIMENTS

Since the number of parameters (also called factors)
is too large for an investigation of all combinations of
factors with each factor tested at multiple levels, we first
aimed at reducing the set of factors. In order to do so, we
investigated each parameter individually. As will be shown
in this section, this analysis helped to eliminate the two
parameters LOAD and FILL.

In order to investigate a single factor we set all but the
investigated parameters to fixed values and measured both
downtime and total migration time at various levels of the
investigated parameter.

A. VMSIZE

We investigated the influence of the configured VM main
memory with different settings for both products. Specif-
ically, we have investigated idle VMs with VMSIZE set
to 512MB, 1GB, 2GB, 4GB and 8GB RAM. The virtual
machines were idle, so no load generator was used. While
VMware showed a nearly constant migration time, Xen had
a linearly growing migration time with increasing VMSIZE.

B. LOAD

For the investigation of the influence of CPU load on
migration time, we performed at least 10 migrations per
CPU utilization degree, ranging from 0% to 100% artificial
CPU load in steps of size ten using the CPU load generator.
Results showed almost no impact with a 95% confidence
interval of not more than -/+ 1s for all load values.

Both products also showed a constant (significantly
smaller) downtime in all constellations, with a 95% con-
fidence interval of not more than +/- 10% of the average
downtime.

The results suggest that both virtualization frameworks
reserve enough CPU time for their own management (mi-
gration) purposes. Live migration scenarios seem to only
depend on non-CPU utilization factors. We could hence
safely drop CPU load as an influencing factor in subsequent
experiments.

C. WSET

Using the locked pages generator, we varied the size of
the working set from zero to 90% of the virtual memory
available to the VM. Results show that VMware downtime
as well as migration time depend on WSET. Xen also shows
dependency on WSET so that the effects of WSET are
analyzed further in Section V.

D. FILL

In order to rely on the trap and page table mechanisms
of the operating system, all VM migration approaches copy
memory content in pages. Hence an entire page has to be
migrated even when only a fraction of a page is written.
We tested this assumption by “filling” pages to a varying

degree using the dirty page generator. As expected, both
virtualization toolkits showed no effect on downtime or
migration time.

E. PERIOD and BPC

The parameters PERIOD and BPC determine how fre-
quently memory pages are modified. In order to assess how
total migration time and downtime are affected by them we
conducted a series of experiments where we varied PERIOD
for a number of settings for BPC using the dirty page
generator. Results show that both downtime and migration
time are strongly affected by the two parameters. To check
for stochastic variability, we determined 95% confidence
intervals, which never exceeded 5% of the average value.
However, the influence of PERIOD and BPC are complex
and will be further investigated in Section V.

To better understand the complex behavior we performed
a source code analysis of Xen and had personal commu-
nication with VMware representatives. The behavior seems
to be mainly related to the rate-adaptive migration control.
The relevant aspect here is the dirty page diff set, the
fraction of pages that are scheduled to be copied in each next
round of the pre-copy phase. Both virtualization products
obviously identify ”hot pages” in this set and shift such
pages more aggressively to the stop-and-copy phase because
for hot pages a block transfer in the stop-and-copy phase
is potentially more effective (depending on “hotness” of
the page, network link speed and other factors). Akoush et
al. [4] made similar investigations in their live migration
performance analysis.

F. Summary

Summing up these experiments, we observe that live
migration duration as well as downtime can depend heavily
on the investigated factors. On the other hand we saw that
CPU load as well as the degree to which memory pages are
filled do not influence migration performance significantly
which allows us to exclude them from further investigations.

In order to deal with the mutual non-trivial dependencies
seen in this section we subsequently devised experiments
that investigate all combinations of factors, as will be
presented in the next section.

V. MULTI PARAMETER EXPERIMENTS

From the experiments shown in the previous section we
were able to conclude that the factors LOAD and FILL can
be omitted from further analysis.

A second reduction in the number of factors can be
achieved by leveraging on the fact that BPC (blocks per
cycle) and PERIOD (duration of one cycle) can be combined
into one factor RATE = BPC

PERIOD , which denotes the
number of blocks that are modified per millisecond.

We have hence reduced the number of factors to the
following three parameters: VMSIZE, WSET, and RATE.

102

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         111 / 114



RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=2048MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=4096MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=6144MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=8192MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=2048MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=4096MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=6144MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=8192MB

Figure 1. Mean downtime for Xen plotted over WSET and RATE for VMSIZE=4096 (left) and VMSIZE=8192 (right)

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=2048MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=4096MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=6144MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=8192MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=2048MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=4096MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=6144MB

RATE [1/s]

0

50000

100000

150000

200000

W
SET [M

B]

200

400

600

800

1000
1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=8192MB

Figure 2. Mean migration time for Xen plotted over WSET and RATE for VMSIZE=4096 (left) and VMSIZE=8192 (right)

We performed experiments according to a full factorial
design, meaning that all possible combinations of parameter
levels have been measured in the experiment. More specifi-
cally, for Xen we investigated a total number of 528 param-
eter combinations (treatments), each with 20 measurements
resulting in an overall number of 10560 migrations. In each
experiment we measured migration time and downtime as
response variables. In case of the VMware hypervisor, we
performed experiments for 352 combinations resulting in
7040 migrations.

In the following we will discuss results for each virtual-
ization framework separately.

A. Analysis of XenServer

As we have three factors (plus a response variable) we
cannot present the entire results in one plot. Since VMSIZE
has the least number of levels, we decided to plot the mean
response, i.e. mean migration time or downtime, over WSET
and RATE for fixed values of VMSIZE (see Figures 1 and 2).
Comparing the two figures, we can see that downtime shows
a very different behavior in comparison to migration time,
although the first is part of the latter.

Downtime (Figure 1) in general increases with increasing
WSET and increasing RATE. This is not surprising as
an increased usage of memory (more pages written at an

increasing rate) requires more memory to be transferred in
the stop-and-copy phase. We can also conclude from the
figure that WSET seems to have a linear effect on downtime,
regardless of the values of VMSIZE and RATE.

Turning to total migration time (Figure 2) we observe
that the mean migration time is more irregular. It came
as a little surprise to us that for RATE levels ”above the
jump” total migration time decreases with increasing RATE.
In order to check that this behavior really occurs we have
carried out separate experiments specifically targeted to this
question with the same consistent result. The behavior can
be explained by the documented stop conditions for the pre-
copy phase in these products. The precopy phase of Xen
stops (1) when a sufficiently small amount of memory is
left on the source or (2) if an upper limit for the transferred
data was reached or (3) if the time taken becomes too
long (measured by the number of pre-copy rounds) [4].
Hence if the modification rate grows beyond a certain value
close to the link speed, the algorithm will end the pre-copy
phase earlier resulting in the observed behavior of constant
downtime and decreasing overall migration time.

One peculiarity in Figures 1 and 2 is the abrupt change
at a RATE level around 30,000 1

s . In order to analyze this
further, we conducted additional “zoom-in” experiments that
investigated a sub-range of values for RATE at greater level

103

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         112 / 114



RATE [1/s]

26000
28000

30000
32000

34000
36000

W
SET [M

B]

200

400

600

800
1000

1200

blackout tim
e [s]

0

5

10

Xen blackout time, vmsize=4096MB

RATE [1/s]

26000
28000

30000
32000

34000
36000

W
SET [M

B]

200

400

600

800
1000

1200

m
igration tim

e [s]

0

50

100

150

200

250

Xen migration time, vmsize=4096MB

Figure 3. Mean downtime (left) and migration time (right) for Xen with
additional WSET and RATE levels in the ”zoom-in area”, VMSIZE=4096

of detail (see Figure 3). As it can be seen from the plot,
the change is not as abrupt as might have been concluded
from Figures 1 and 2 and only appears to be abrupt due
to the scale of the plot and due to a lack of intermediate
measurement points.

The effect of VMSIZE can be observed by comparing the
two plots in Figure 2. It can be seen that VMSIZE has a
non-trivial effect on migration time: since the shapes look
very different at different levels of VMSIZE, the effect does
not appear to be linear, except for the case where RATE
equals zero. There is no effect of WSET if RATE is zero.

The plots in Figures 1 to 3 show times averaged over all 20
measurements. In order to assess the variability in the data,
we report the ratio of maximum to minimum values as well
as standard deviations for the data in Table II. Specifically,
two ratios and two standard deviations are reported: the ratio
of the maximum treatment mean to the minimum treatment
mean and the ratio of the maximum to the minimum values
across all measurements. Regarding standard deviations we
report the largest standard deviation computed within each
treatment as well as the standard deviation for the overall
data set. In addition, the table reports the mean time averaged
across all measurements.

The table quantifies what has also been observable from
the plots: Both migration time as well as downtime vary
tremendously depending on the three investigated parame-
ters.

B. Analysis of VMware

Due to space limitations we report results for VMWare
only for VMSIZE equal to 4GB (see Figure 4). This is no
severe limitation as the behavior is very similar for other
values of VMSIZE.

As can easily be observed the behavior differs signif-
icantly from the one of Xen, which emphasizes that the
choice of the hypervisor product can have significant impact
on availability. The main reason for the different behavior
seems to be the different rate-adaptive algorithms employed
in the two virtualization products.

Variability of the data for VMware is also listed in Ta-
ble II. Regarding the max:min ratio of downtime computed

RATE [1/s]

0

50000

100000

150000
200000

W
SET [M

B]

200

400

600

800

m
igration tim

e [s]

0

10

20

30

40

50

VMware migration time, vmsize=4096MB

RATE [1/s]

0

50000

100000

150000
200000

W
SET [M

B]

200

400

600

800

blackout tim
e [s]

0

2

4

6

8

10

VMware blackout time, vmsize=4096MB

Figure 4. Mean migration time (top) and downtime (bottom) for VMware
plotted over WSET and RATE, VMSIZE=4096

from treatment means we have observed a ratio of 16.27.
This shows that due to different memory load the maximum
mean downtime can be 16.27 times as large as the minimum
mean downtime. If we instead consider the maximum and
minimum value observed across all experiments, the factor
even goes up to 23.83! The conclusion from this observation
is that if service downtime is critical for meeting availability
goals, a realistic assessment of availability can only be
achieved if the maximum downtime for the application-
specific memory load is used.

VI. RELATED WORK

In the area of dependable computing, VM live migra-
tion has primarily been used as a tool. Two examples are
proactive fault tolerance [2] and the approach to resource
allocation proposed in [5].

A second group of related work deals with various aspects
of implementing VM live migration. Hines and Gopalan [6]
discuss the modification of Xen for post-copy live migra-
tion. Sapuntzakis et al. [7] introduced several optimization
approaches for VM live migration, among which ballooning
is best-known, which forces the VM to swap out as much
memory as possible.

This work, however, is somewhere in between using
live migration as a tool and investigating aspects of its
implementation: We have focused on the factors determining
downtime and migration time from an application’s perspec-
tive. A work that is closer related to ours is [3], which

104

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

                         113 / 114



Table II
DATA VARIABILITY

Hypervisor / Guest time Mean time [s] Max:Min Ratio Standard Deviation
Mean Overall Treatment Max [s] Overall [s]

XenServer / CentOS migration 89.73 9.01 9.10 6.32 39.08
downtime 7.69 3.17 3.46 0.62 2.94

VMware / Linux migration 30.93 2.24 2.96 7.72 7.51
downtime 3.10 16.27 23.83 0.50 1.80

investigates the effect of the size of the writable working
set. The migration times reported are much smaller than the
ones reported here. This is probably due to the fact that
the workloads used in their experiments do not result in
significant memory load.

VII. CONCLUSION

With growing capacity of commodity server hardware and
increased consolidation efforts, virtualization has become a
standard approach for data center operation - not only on
the mainframe and for UNIX systems, but also in the world
of Intel servers. Live migration of virtual server workloads
can be employed to implement workload-driven system
management as well as mechanism to free server hardware
that is due for maintenance and repair. However, in order to
give guarantees on application availability or responsiveness
as well as for proactive fault management, solid estimations
either about the total duration of live migration or the length
of service downtime are mandatory.

In this paper, we have reported about our research on
major factors that influence migration time and migration-
induced downtime. Our measurements are based on two
representative virtualization products, namely VMware ESX
4.0.0 and Citrix XenServer 5.6. By carrying out a wide range
of experiments, our analysis shows that performance of live
migration can vary significantly depending on the memory
load and memory access patterns of the guest system.

The results can be used, e.g., to investigate the appli-
cability of VM live migration in the context of proactive
fault management: If VMs are to be migrated away from
failure-prone hosts the failure prediction algorithm needs to
predict failures further in the future than the total duration
of migration. Our results also help to assess if service avail-
ability assertions are violated by the downtime introduced
by live migration of a VM running the service. Even if the
absolute numbers may be different for future versions of the
virtualization products our results highlight that application-
specific investigations are crucial to assess the feasibility of
live migration in a particular scenario.

A second area where our results are useful is to help to im-
prove live migration features of virtualization products. For
example, the observation that Xen migration time depends
on the size of virtual RAM configured might be an indicator
how live migration can be improved futher, or might even
stimulate new ideas for VM live migration.

Future work will involve investigation of other virtual-
ization approaches (e.g., KVM and Microsoft Hyper-V).
We will also focus on the relationship between the load
generators used in this work and real-world applications.

VIII. ACKNOWLEDGMENTS

We would like to thank Matthias Richly from Hasso
Plattner Institute for the realization and management of the
experimentation environment. All hardware resources were
made available by the HPI FutureSOC lab infrastructure.

REFERENCES

[1] R. P. Goldberg, “Survey of Virtual Machine Research,” IEEE
Computer, vol. 7, no. 6, pp. 34–45, 6 1974.

[2] C. Engelmann, G. R. Vallée, T. Naughton, and S. L. Scott,
“Proactive Fault Tolerance Using Preemptive Migration,” in
Proceedings of 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, PDP,
2009. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 252–257.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in Proceedings of Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation,
NSDI, 2005. Berkeley, CA, USA: USENIX Association, 2005,
pp. 273–286.

[4] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper,
“Predicting the Performance of Virtual Machine Migration,”
Modeling, Analysis, and Simulation of Computer Systems,
International Symposium on, vol. 0, pp. 37–46, 2010.

[5] S. Fu, “Failure-aware resource management for high-
availability computing clusters with distributed virtual ma-
chines,” Journal of Parallel and Distributed Computing,
vol. 70, no. 4, pp. 384–393, 2010.

[6] M. R. Hines and K. Gopalan, “Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-
ballooning,” in Proceedings of 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments,
Washington, DC, USA, ser. VEE ’09. New York, NY, USA:
ACM, 2009, pp. 51–60, washington, DC, USA.

[7] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum, “Optimizing the migration of virtual
computers,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 377–
390, 2002.

105

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6

Powered by TCPDF (www.tcpdf.org)

                         114 / 114

http://www.tcpdf.org

