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EXPLAINABILITY 2024

Forward

The First International Conference on Systems Explainability (EXPLAINABILITY 2024), held on
November 17-21, 2024 in Valencia, Spain, inaugurates a series of events dealing with models and
metrics to build a documented and provable trust for the developers and users of any kind of system.
Explainability helps to validate tracking between system design requirements and current
implementation ensuring validation of evolving properties by continuously learning and adapting the
original requirements.

Interpretability, Explainability, and Understandability are characteristics needed for any product,
system, device, government regulation, or societal law to increase their trustfulness and acceptability by
the end-users. Their role is to avoid bias and increase confidence in the systems’ output.

Explainability favors interpretability and understandability and should be considered during the
requirements, design, deployment and maintenance phases of all software, hardware, and complex
systems. To a large extent, explainability is present as a user manual, software requirements tracking
and code identification, validation/testing results, interactive interfaces, explanation of models,
guidelines for industrial robots, and in any human-driven procedural processes. Desiderata on
explainability become more complex for Artificial Intelligence (AI)-based entities/systems in terms of
'thinking' via internal mechanisms and accepting/trusting the output.

Explainability is a sought-after property of any complex 'products'. In AI-based systems, the
explanation of the behavior of models for certain critical systems is mandatory. This is a complex task,
considering that the behavior is the result of intricate development processes involving humans,
algorithms, datasets, and other artificial entities (tools).

This conference was very competitive in its selection process and very well perceived by the
international community. As such, it attracted excellent contributions and active participation from all
over the world. We were very pleased to receive a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the EXPLAINABILITY 2024
technical program committee as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and efforts to contribute to the EXPLAINABILITY
2024. We truly believe that thanks to all these efforts, the final conference program consists of top
quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the EXPLAINABILITY 2024
organizing committee for their help in handling the logistics and for their work that is making this
professional meeting a success.

We hope the EXPLAINABILITY 2024 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in system
explainability research. We also hope that Valencia provided a pleasant environment during the
conference and everyone saved some time for exploring this beautiful city

EXPLAINABILITY 2024 Steering Committee

Thomas Fehlmann, Euro Project Office AG, Zurich, Switzerland
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A Two-Dimensional Computational Model for DNA/RNA Classification

Dorota Bielińska-Wa̧ż
Department of Radiological Informatics and Statistics

Medical University of Gdańsk
80-210 Gdańsk, Poland

email: djwaz@gumed.edu.pl

Piotr Wa̧ż
Department of Nuclear Medicine

Medical University of Gdańsk
80-210 Gdańsk, Poland

email: phwaz@gumed.edu.pl

Abstract—The 2D-Dynamic Representation of DNA/RNA Se-
quences, a two-dimensional computational model introduced by
the authors, is reviewed for its application in the classification
of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
sequences. This method falls under the bioinformatics category
known as Graphical Representations of Biological Sequences. The
goal of these methods is to provide tools for the graphical and
numerical classification of the sequences.

Keywords–bioinformatics; machine learning; decision trees;
descriptors

I. INTRODUCTION

Graphical Representations of Biological Sequences consti-
tute a branch of alignment-free bioinformatics methods, focus-
ing on the graphical and numerical classification of sequences
[1] [2]. Each approach reveals different aspects of similarity,
and a comprehensive review can be found in [3].

This document presents a method introduced by the au-
thors and called 2D-Dynamic Representation of DNA/RNA
Sequences [4]–[10]. Specifically, this method is combined with
the C5.0 decision tree algorithm [10]. Details related to the
graphical representation of the sequences within this method
and the numerical characteristics of the graphs (”descriptors”)
are described in Section II.

II. METHODS AND RESULTS

Graphically, the sequences are represented by 2D-dynamic
graphs (sets of material points in a 2D space). The graphs were
obtained by following a ”walk” in the XY coordinate system,
using the basis vectors representing the specific nucleobases:
A = (-1,0), G = (1,0), C = (0,1), and T/U = (0,-1) [4] [9].
Examples of these graphs are shown in Figures 1-3.

The following descriptors of the 2D-Dynamic Representa-
tion of DNA/RNA Sequences, some of which are analogous
to dynamics, are considered:

• Coordinates (µx, µy) of the centers of mass of the
2D-dynamic graphs [4]:

µγ =
1

N

p∑
i=1

miγi, γ = x, y, N =

p∑
i=1

mi, (1)

where xi, yi are the coordinates of mass mi in the
Cartesian coordinate system for which (0, 0) is the
origin of all the sequences and N is the length of the
sequence (equal to the total mass of the graph) and p
is the number of the material points in the graph.

• Principal moments of inertia (I11, I22) of the 2D-
dynamic graphs [4].
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Figure 1. 2D-dynamic graph representing the complete genome sequence of
embecovirus (GenBank accession number FJ647223).
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Figure 2. 2D-dynamic graph representing the complete genome sequence of
deltacoronavirus (GenBank accession number KX443143.2).

The moment of inertia tensor is defined by the matrix

Î =

(
Ixx Ixy
Iyx Iyy

)
(2)

with elements

Ixy = Iyx = −
p∑

i=1

mix
µ
i y

µ
i , (3)

Ixx =

p∑
i=1

mi(y
µ
i )

2, (4)
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Figure 3. 2D-dynamic graph representing the complete genome sequence of
the SARS-CoV-2 virus (GenBank accession number MT192772).

Iyy =

p∑
i=1

mi(x
µ
i )

2, (5)

where xµ
i , yµi denote the coordinates of mass mi in

the Cartesian coordinate system with the origin at
the center of mass of the graph. Principal moments
of inertia are equal to the solutions I = I11, I22 of
equation ∣∣∣∣ Ixx − I Ixy

Ixy Iyy − I

∣∣∣∣ = 0. (6)

• Moments of the mass-density distributions [5].

The n-th moment of a discrete distribution ρE is
defined as

ME,n = cE
∑
i

ρEiE
n
i ,

E = x, y and the normalization constant

cE =

(∑
i

ρEi

)−1

.

Moments normalized to a mean value equal to zero
(M ′

E,1 = 0) are

M ′
E,n = cE

∑
i

ρEi
(Ei −ME,1)

n.

The moments for which the variance is additionally
equal to 1 (M ′′

E,2 = 1) are also considered:

M ′′
E,n = cE

∑
i

ρEi

[
(Ei −ME,1)√
ME,2 − (ME,1)2

]n
.

• Angles between the x axis and the principal axes of
inertia of the 2D-dynamic graphs [6].

One of the angles smaller than π
2 is chosen.

• Mass overlaps of the 2D-dynamic graphs [6].
• Descriptors (Dx

1 , D
x
2 , D

y
1 , D

y
2) related to a relation

between the coordinates of the center of mass and

the principal moments of inertia of the 2D-dynamic
graphs [7]:

Dγ
k =

µγ

Ikk
, k = 1, 2; γ = x, y. (7)

• Graph radius [8]:

gR =
√
µ2
x + µ2

y. (8)

• Matrix elements of the moments of inertia tensor
(Ixx, Iyy, Ixy) of the 2D-dynamic graphs [10].

2D-Dynamic Representation of DNA/RNA Sequences has
been applied for the similarity analysis of:

• histone H4 coding sequences of different species [4]–
[7];

• α-globin coding sequences of different species [4] [7];
• complete genome sequences of the Zika virus [8] [9];
• 20 most common subtypes of influenza A virus [10].

III. CONCLUSION

In summary, the 2D-Dynamic Representation of
DNA/RNA Sequences is an effective tool for both graphical
and numerical comparison of the sequences. Notably,
combining this method with the C5.0 decision tree algorithm
has yielded high mean accuracy in predicting the subtype
of the influenza A virus, with over 90% correct predictions.
This high number of correct predictions confirms the
good explainability of the considered systems. Therefore,
the method will be applied in the future to interpret our
experimental data.
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3D-Dynamic Representation of DNA/RNA Sequences: A Review

Piotr Wa̧ż
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Abstract—The research aims to develop new bioinformatics tech-
niques known in the literature as Graphical Representation Meth-
ods. This methodology allows for the calculation of numerical val-
ues describing deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA) sequences, enabling both graphical and numerical analysis
of their similarities and differences. This document provides an
overview of a bioinformatics method we introduced, referred to
as 3D-Dynamic Representation of DNA/RNA Sequences. In this
method, the sequences are represented as sets of material points
in 3D space, forming ”3D-dynamic graph”. Numerically, this
three-dimensional dynamic graph is characterized by quantities
analogous to those used in classical dynamics. The accuracy of this
approach is high, allowing to distinguish sequences that differ by
just one nucleobase. One application of this method is the char-
acterization of viral genome sequences. Specifically, combining
the 3D-Dynamic Representation of DNA/RNA Sequences with the
random forest algorithm effectively classifies subtypes of influenza
A virus strains.

Keywords–supervised learning; bioinformatics; biostatistics;
graphical methods; machine learning; random forest; Boruta
algorithm

I. INTRODUCTION

This presentation describes a computational method we
developed, known as the 3D-Dynamic Representation of
DNA/RNA Sequences [1]–[4], which generalizes our previous
2D approach [5].

This approach is part of a broader category of techniques
known as Graphical Representation Methods, which allow for
both graphical and numerical comparisons of objects. Each
method offers a unique perspective on similarity, and new
techniques are continually being developed (for reviews, see
[6]–[8]).

3D-Dynamic Representation of DNA/RNA Sequences aims
to compare the sequences by representing them as sets of
material points in 3D space, referred to as ”3D-dynamic
graphs.” The distribution of these points and the calculation
of their numerical characteristics (”descriptors”) are described
in Section II.

II. METHOD AND RESULTS

The method is based on shifts (or walks) in 3D space [1].
Nucleobases in a DNA/RNA sequence are represented by basis
vectors: adenine A=(-1,0,1), cytosine C=(0,1,1), thymine/uracil
T/U=(0,-1,1), and guanine G=(1,0,1). The walk begins at
the origin point (0,0,0). This point is shifted by a basis
vector corresponding to the first nucleobase in the sequence.
At the end of this vector, a mass m=1 is placed, which
serves as the starting point for the next shift representing
the second nucleobase. This process is repeated for each

nucleobase in the sequence. The resulting set of material
points, which represents the entire sequence, is termed a 3D-
dynamic graph (analogous to the 2D-dynamic graph used in
the 2D method). Examples of 3D-dynamic graphs representing
the complete genome sequences of embecovirus, the SARS-
CoV-2 virus, and deltacoronavirus are shown in Figure 1.
The differences between the sequences are clearly visible in
the graphs. The calculations were conducted using nucleotide
sequence data obtained from GenBank. FJ647223, MT192772,
and KX443143.2 are the accession numbers corresponding to
the sequences in this database.

-3000
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Figure 1. 3D-dynamic graphs.

We use the following descriptors (numerical characteristics
of the 3D-dynamic graphs):

• Coordinates (µx, µy, µz) of the center of mass of the
graph

µγ =

N∑
i=1

miγi

N∑
i=1

mi

, γ = x, y, z, (1)

where xi, yi, zi are the Cartesian coordinates of
mass mi with point (0, 0, 0) being the origin of the
coordinate system and N is the length of the sequence.
Since mi = 1 for all material points, the total mass
of the sequence is equal to the length of the sequence

N =
N∑
i=1

mi. The coordinates of the center of mass of

the 3D-dynamic graph can then be expressed as:

µγ =
1

N

N∑
i=1

miγi, γ = x, y, z. (2)

3Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9
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• The principal moments of inertia (I1, I2, I3) of the
graph, where the moment of inertia tensor is defined
by the matrix

Î =

(
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

)
(3)

with elements

Iaa =

N∑
i=1

mi

[
(bµi )

2 + (cµi )
2
]
, (4)

and

Iab = Iba = −
N∑
i=1

mia
µ
i b

µ
i , (5)

where {a, b, c} = {x, y, z}, a ̸= b ̸= c and the
coordinates (xµ

i , y
µ
i , z

µ
i ) of mi are determined in the

center-of-mass of the graph coordinate system. The
principal moments of inertia are equal to the solutions
I = I1, I2, I3 of the characteristic equation of Î:∣∣∣∣∣ Ixx − I Ixy Ixz

Ixy Iyy − I Iyz
Izx Izy Izz − I

∣∣∣∣∣ = 0. (6)

• Matrix elements of the moment of inertia tensor of the
graph (Ixx, Iyy, Izz, Ixy, Ixz, Iyz).

• Graph radius, defined as

gR =
√
µ2
x + µ2

y + µ2
z. (7)

• Descriptors Dγ
k ,

Dγ
k =

µγ

Ik
, k = 1, 2, 3; γ = x, y, z, (8)

that depict a relation between the coordinates of the
center of mass and the principal moments of inertia
of the graph.

• Normalized principal moments of inertia of the graph
(r1, r2, r3):

rk =

√
Ik
N

. (9)

• The values of Cik.
The relative orientation of the new and old coordinate
systems can be described by cosines of appropriately
defined angles:

Cik ≡ cos (Mi, Qk), i, k = 1, 2, 3. (10)

M1, M2 and M3 mean the planes (X,Y ), (X,Z) and
(Y,Z), respectively. Similarly, Q1, Q2, Q3 denote the
planes (Ω1,Ω2), (Ω1,Ω3), (Ω2,Ω3).

The descriptors derived from the 3D-Dynamic Represen-
tation of DNA/RNA Sequences have proven effective for the
similarity analysis of:

• histone H4 coding sequences of different species and
α-globin coding sequences of different species [1];

• β-globin genes of different species [2];
• complete genome sequences of dengue virus [3];
• 20 most common subtypes of influenza A virus [4].

Notably, it has been demonstrated that combining the 3D-
Dynamic Representation of DNA/RNA Sequences with the
random forest algorithm effectively classifies subtypes of in-
fluenza A virus strains [4]. In these studies, the following 22
descriptors were considered: the 3 coordinates of the center of
mass µ = {µγ : γ = x, y, z}; the 6 elements of the inertia ten-
sor J = {Ixx, Iyy, Izz, Ixy, Ixz, Iyz}; the 3 principal moments
of inertia I = {Ik : k = 1, 2, 3}; the graph radius gR; and the
set of 9 parameters D = {Dγ

k : k = 1, 2, 3; γ = x, y, z}. The
relevance of these descriptors was assessed using the Boruta
algorithm, which employs Breiman’s random forest concept to
compute normalized importance.

Recently, we extended the 3D-Dynamic Representation of
DNA/RNA Sequences to a four-dimensional method, apply-
ing it to the bioinformatics characterization of the SARS-
CoV-2 virus [9] and to studies on the genetic diversity of
Echinococcus multilocularis in red foxes in Poland [10]. In
particular, the distribution of clusters in the classification maps
generated using the 4D-Dynamic Representation of DNA/RNA
sequences supports the hypothesis that SARS-CoV-2 may have
originated in bats and pangolins [9].

III. CONCLUSION

In summary, 3D-Dynamic Representation of DNA/RNA
Sequences allows for both graphical and numerical compar-
isons of the sequences, with enhanced classification effec-
tiveness when combined with the random forest algorithm
[4]. It is especially important to focus on developing tools
that could be used to characterize unidentified viruses. In the
future, we plan to evaluate the explainability of the systems
under consideration using new descriptors of 3D-dynamic
graphs, such as those that describe the direction of the sum
of eigenvectors in the 3D space.
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Abstract — This paper addresses the problem of providing 
fast and accurate approximations of Shapley values for neural 
networks by embedding the approximation directly into the 
network architecture. The approach is tested on a synthetic and 
a real world dataset. The results demonstrate that integrating 
Shapley value approximations into the loss function enables 
making a trade-off between explainability and prediction 
accuracy, optimizing both aspects. This method yields accurate 
approximations while improving the model's explainability, 
making it more stable and easier to explain in practical 
applications. 

Keywords - Explainable AI; Machine Learning; Neural 
Networks; Shapley value approximation. 

I. INTRODUCTION 

 In various applications, understanding and explaining the 
behavior of neural networks is crucial for both internal 
management decision-making and meeting the requirements 
of regulators and external stakeholders. As neural networks 
are increasingly deployed in critical areas such as finance, 
healthcare, and autonomous systems, the need for 
transparency and explainability becomes paramount. 
Stakeholders need to trust that the models are making 
decisions based on relevant and understandable factors, and 
they must be able to justify these decisions to regulatory 
bodies and customers alike [1]. 
 A powerful tool for gaining insights into the relevance of 
attributes in these models is the use of Shapley values [2]. 
Originating from cooperative game theory, Shapley values 
provide a fair distribution of the total gain generated by a 
coalition of players, attributing a value to each player's 
contribution. When applied to neural networks, Shapley 
values help users understand how each input feature 
contributes to the model's prediction. They are prized for their 
desirable properties, such as fairness, efficiency, and 
consistency, making them an ideal choice for feature 
attribution. A significant challenge with Shapley values is 
that their exact evaluation is computationally expensive, with 
the complexity growing exponentially with the number of 
input features [3]. This computational burden makes them 
impractical for large-scale applications involving high-
dimensional data. To mitigate this, researchers have 
developed various approximation methods. Notably, the 
authors in [4] introduced polynomial-time approximations, 

which significantly reduce the computational load while still 
providing useful insights into feature importance. 
 This work advances this field by demonstrating that the 
approximation of Shapley values can be seamlessly 
integrated into the training process of neural networks. 
Specifically, a method is proposed where the outputs of 
interest from the neural network are extended to include these 
approximated Shapley values. This integration occurs during 
the training phase, ensuring that the model not only learns to 
make accurate predictions but also provides explanations for 
these predictions concurrently. 
 A key benefit of this integration is that it enables a direct 
trade-off between model accuracy and Shapley value 
approximation. In addition, this approach enables improved 
explainability of the model as well as the immediate 
availability of explanations.  
 By integrating Shapley value approximations during 
training, the neural network converges to a state that is 
inherently easier to explain. For instance, the network's 
responses to changes in input features become more stable. 
This smoothing effect is often a desirable property, especially 
in domains where stakeholders need to understand the 
model’s behavior in intuitive terms. It prevents scenarios 
where minor changes in input result in disproportionately 
large and unexpected changes in the output, which can be 
challenging to justify to customers and regulators [1]. An 
explainable model enhances trust and facilitates better 
decision-making. 
 Additionally, the approximated Shapley values are 
produced as a direct result of the model's predictions. This 
means that for every prediction the model makes, an 
accompanying explanation is immediately available. This 
capability is appealing in applications requiring high-
frequency predictions and where each decision needs to be 
justified on the spot.  
 The approach is particularly valuable in applications 
where the model undergoes a single training phase followed 
by numerous predictions, each requiring an explanation. This 
ensures that the model not only performs well in terms of 
predictive accuracy but also remains transparent and 
explainable throughout its operational lifecycle. By 
embedding the approximation of Shapley values into the 
training process, the approach strikes a balance between 
computational efficiency and the need for clear, 
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understandable explanations, meeting the demands of both 
operational efficiency and regulatory compliance. 
 The remainder of the paper is structured as follows: 
Section 2 discusses the related work and the inclusion of 
Shapley values into the model’s prediction is laid out in 
Section 3. Section 4 presents an analysis with the data and 
model applied. The results are discussed in section 4. Section 
5 summarizes and concludes. 

II. RELATED WORK 

 Shapley values, originating from cooperative game theory, 
have become a fundamental tool for feature attribution in 
machine learning models [2]. They offer a fair distribution of 
the total gain generated by a coalition of players, attributing 
a value to each player's contribution [3][5]. However, their 
exact computation is computationally expensive, leading to 
the development of various approximation methods [6]. This 
section reviews these methods, highlighting the limitations 
they present, and the gaps the proposed approach aims to 
address. 
 Feature-removal approaches are central to feature 
contributions in Shapley value calculations [6]. They involve 
systematically removing features and assessing the impact on 
the model's output. The primary types are: (1) Baseline 
Shapley values where missing features are replaced with 
values from a baseline sample, such as zeros, means, or 
medians. This approach is simple to implement and interpret; 
however, the choice of baseline can be arbitrary and may not 
accurately represent the data distribution [5][7]. (2) Marginal 
Shapley values calculate the marginal expectation of the 
model output by treating absent features as random variables 
following their marginal distribution. It involves evaluating 
the model with subsets of features including and excluding 
the feature of interest. It provides a more accurate estimate of 
feature importance by considering the marginal distribution 
of features. However, it is computationally more expensive 
as it requires multiple model evaluations for different subsets 
of features [7]. (3) Conditional Shapley values which define 
the game by the conditional expectation of the model output, 
where absent features are treated as following a conditional 
distribution given the observed features. It considers the 
interdependencies between features [7]. This most accurately 
accounts for the conditional dependencies between features, 
providing a realistic assessment of feature importance. 
However, it is highly complex and computationally intensive 
due to the need for estimating conditional distributions, 
which can be challenging, especially in high-dimensional 
data. 
 To address the computational challenges of exact Shapley 
value calculations, various approximation strategies have 
been developed. These strategies can be broadly categorized 
into model-agnostic approximations, which are applicable to 
any model type, and model-specific approximations, which 
are tailored to specific model structures. Model-agnostic 
approximations include methods such as interactions-based 
method for explanation (IME) [9] and KernelSHAP [5][10]. 

IME utilizes stochastic sampling to provide unbiased 
estimates of Shapley values. While broadly applicable to 
various models, it is computationally intensive. KernelSHAP 
also employs a sampling-based approach, reducing 
computational load but still requiring significant resources. 
 In contrast, model-specific approximations are tailored to 
particular model structures. TreeSHAP [7] leverages the 
inherent structure of decision trees to compute exact Shapley 
values efficiently. It offers faster and more precise 
calculations but is limited to tree-based models. Similarly, 
LinearSHAP [11] computes Shapley values exactly for linear 
models with linear time complexity. It performs well for 
linear relationships, however, is not suitable for other models. 
While approximation methods like KernelSHAP and IME 
provide useful insights with reduced computational demands, 
they suffer from high variance and are still resource intensive. 
Assumption-based methods like TreeSHAP and LinearSHAP 
offer solutions with lower computational costs but are 
restricted to specific model types.  
 Some research has focused on considering Shapley value 
approximations into the model architecture itself to balance 
accuracy and computational efficiency. For instance, 
ShapNets [12] are designed to facilitate easier estimation of 
Shapley values through specific network architectures, 
enhancing both explainability and performance. Deep 
Approximate Shapley Propagation [4] leverages uncertainty 
propagation to estimate Shapley values, providing 
deterministic results with moderate computational 
requirements. 
 The proposed approach distinguishes itself by embedding 
Shapley value approximations directly into the neural 
network training process. This integration ensures that the 
model's predictions are inherently more explainable due to 
more stable responses to input feature changes. Additionally, 
it allows for the immediate availability of explanations with 
each prediction, a crucial advantage in settings requiring 
frequent and justifiable decisions. By embedding the Shapley 
value approximation into the network architecture, the 
proposed method achieves a balance between computational 
load and the need for clear, understandable explanations. It 
also enables an explicit trade-off between model performance 
and quality of Shapley value approximations. The proposed 
integrated approach offers a novel solution that enhances 
both explainability and efficiency, meeting the demands of 
real-world applications requiring transparency and 
accountability. 

III. MODELING SHAPLEY VALUES 

Shapley values are a well-established method to 
understand the impact of an attribute on the outcome [5]. 
Consider a data set of 𝑁 attributes and a model 𝑓 mapping 
each subset 𝑆 of the attributes to real numbers (i.e., a 
prediction). The Shapley value quantifies the importance of 
attribute 𝑖 to the prediction. To determine the effect, a model 
𝑓ௌ∪{௜}

 using data 𝑥ௌ∪{௜}
 for a subset 𝑆 of features including 
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feature 𝑖 and a model 𝑓ௌ using data 𝑥ௌ without feature 𝑖. Now 
for all possible subsets 𝑆 ⊆ 𝐹\{𝑖} the impact of withholding 
feature 𝑖 is calculated. The Shapley values are calculated 
based on the weighted average of all possible differences. 

𝜙௜(𝑥ௌ) = ෍
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
ௌ⊆ி\{௜}

ൣ𝑓ௌ∪{௜}൫𝑥ௌ∪{௜}൯ − 𝑓ௌ(𝑥ௌ)൧ 

 Computing Shapley values requires the evaluation of all 
possible feature subsets, which makes it infeasible for 
common practical applications with many features to 
consider. Shapley values sampling is most frequently used to 
approximate the Shapley values [13]. Despite the 
approximation, it still requires considerable calculation time. 
The standard approach to predict outcome 𝑦 based on input 

𝑥, is to minimize the objective 𝑓 = arg min
௙

𝐸 ቂ൫𝑦 − 𝑓(𝑥)൯
ଶ

ቃ. 

This work aims to predict the Shapley values of the features 
as well, hence optimizing function 𝑔: ℝே → ℝேାଵ, 𝑔(𝑥) →

൫𝑦, 𝜙ଵ(𝑥), . . , 𝜙௡(𝑥)൯ such that we minimize: 

g = arg min
୥

E ൥൫y − g଴(x)൯
ଶ

+ λ ෍൫ϕ୧(x) − g୧(x)൯
ଶ

୒

୧ୀଵ

൩ 

 The hyperparameter 𝜆 can be used for a trade-off between 
the standard approach (𝜆=0) and a joint prediction of outcome 
𝑦 and the Shapley values 𝜙௜ (𝜆>0). The hyperparameter λ 
controls the balance between prediction accuracy and 
Shapley value approximation. At λ = 0, the model optimizes 
accuracy, while increasing λ improves explainability by 
incorporating Shapley values, albeit with some loss in 
accuracy. Higher λ values shift the focus more toward 
generating accurate Shapley values.  

IV. EXPERIMENTAL SETUP  

 As a test model, a neural network with a three-node input 
layer, a hidden layer of 16 neurons, another hidden layer of 8 
neurons and a four-neurons output layer (see Figure 1) is 
built. The output contains 𝑦௝ as well as the three Shapley 
values 𝜙ଵ൫𝑥௝൯, 𝜙ଶ൫𝑥௝൯, 𝜙ଷ൫𝑥௝൯ for 𝑥௝ = ൫𝑥଴௝ , 𝑥ଵ௝ , 𝑥ଶ௝൯. For 
the hidden layers, a leaky ReLu is used (𝛼 = 0.1). The MSE 
is optimized using the ADAM [14] optimizer. 
 The model is trained once with minimizing the MSE of 
the output of interest 𝑦௝ only and no weight on accurate 
Shapley value approximations (𝜆=0). A second model is 
trained for the joint prediction of the output of interest as well 
as the Shapley values (𝜆=1). A third model is trained with 
joint prediction of the output of interest and a very high 
weight on Shapley value approximations (𝜆=1000). A batch 
size of one was chosen for pragmatic reasons. In each forward 
pass we compute the target Shapley values of the model with 
an existing technique. In our tests we used KernelExplainer 
from the SHAP library [5]. However, this may be replaced 

with any other method. We use these values to compute the 
error for 𝜙ଵ൫𝑥௝൯, 𝜙ଶ൫𝑥௝൯, 𝜙ଷ൫𝑥௝൯. 
 For bigger 𝜆 values we expect an increase of the MSE 
based on the outcome 𝑦௝, as the introduction of the Shapley 
values leads to a biased prediction. We also expect reduced 
errors for the Shapley value approximations as 𝜆 increases. 
Furthermore, we expect simpler relations between feature 
values and their corresponding Shapley values, which are 
easier to approximate. This should be apparent when plotting 
the feature values against the targeted Shapley values (in our 
tests computed with KernelExplainer from the SHAP library 
[5].  

A.  Experiments with synthetic data  

For illustration and initial analysis, we use a synthetic 
dataset generated as follows. The target variable 𝑦௝ is created 
using the linear relationship: 

𝑦௝ =  2 ⋅ 𝑥଴௝ +
1

2
𝜖௝, 𝑗 ∈ {1, … , 1000} 

where 𝑥଴௝ is the first feature, and 𝜀௝ represents independent 
and identically distributed (i.i.d.) noise drawn uniformly from 
the interval [0, 1]. The second feature 𝑥ଵ௝ is also i.i.d. and 
uniformly distributed, generated independently from the 
same interval. The third feature 𝑥ଶ௝ is then derived from a 
non-linear transformation of 𝑥ଵ௝ and 𝑦௝ as follows: 

𝑥ଶ௝ = ൫𝑥ଵ௝ + 𝑦௝൯
ଵ
ସ, 𝑗 ∈ {1, … ,1000} 

We use 80% of the generated data as the training set and 
20% as the test set. The synthetic data was designed to exhibit 
both simple and complex relationships between the features 
( 𝑥଴௝ ,  𝑥ଵ௝ ,  𝑥ଶ௝  ) and the target variable 𝑦௝. This setup allows 
us to demonstrate the desired trade-off between prediction 

Figure 1. Architecture for the neuronal network (created 
with https://alexlenail.me/NN-SVG/index.html) 
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accuracy and the approximability of Shapley values. The 
model and training procedure are implemented as described 
above. The number of epochs was chosen based on the 
learning curves observed across all tests, ensuring that 
training did not stop prematurely due to a sudden error spike 
in any model. The resulting learning cures are shown in 
Figure 2. The model outputs A, B, C, D, represent the model 
prediction y (i.e., y=A) and the predicted Shapley values for 
the features 1, 2, 3. 

As expected, higher 𝜆 values drive down the errors for 
Shapley value predictions and increase the prediction error 
for the target A. In detail the MSE for the model 𝜆=0 is 
0.0003, while the MSE for the 𝜆=100 model is 0.001. It is 
also observed – as expected – that the partial dependency 
plots show increasingly simpler structures (see Figure 3). The 
resulting curves become more smooth and less scattered. This 
makes them easier to approximate and easier to interpret by 
humans. 

  Feature 1 Feature 2 Feature 3 

𝝀
=

0
 

SH
A

P value for y=
A

 

𝝀
=

1
 

𝝀
=

1
0

0
 

  SHAP values for y=A vs feature 

Figure 3. Shapley values of features 1,2,3 (left to right) of models 𝜆 ∈ 0,1,10 (top to bottom) 

 
Figure 2. MSE for 𝜆 ∈ {0,1,100} (left to right) models for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange). 
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 The results demonstrate the desired tendency towards 
more explainable models with higher values for 𝜆. Overall, 
the tests verify the feasibility of the proposed approach and 
demonstrate the desired effects.  

B. Experiments with real data 

 A publicly available data set from openml.org was chosen 
to verify the applicability of the approach on real data. 
Specifically, the data set named wine-quality-red was used to 
predict wine quality [15]. The network structure remained the 

same as described above, with three features for predicting 
the target. The target variable includes 6 levels of quality, and 
the learning problem is treated as a regression problem. The 
selected features are 'sulphates', 'alcohol', and 
'total_sulfur_dioxide'. Feature selection was done based on 
exploratory analysis for identifying features with non-linear 
relations to the target. This was done to give room for a trade-
off between model accuracy and simplicity of the Shapley 
value approximation. 

 
Figure 4. MSE for 𝜆 ∈ {0, 10, 1000 }(left to right) models for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange). 

  Feature Alcohol Feature Sulphates Feature Total Sulfur Dioxide 
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  SHAP values for y=A vs feature 

Figure 5. Shapley values of features 1,2,3 (left to right) of models 𝜆 ∈ 0,1,10 (top to bottom) 
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 Model and training procedure followed the procedure 
described above, with 100 training epochs. Again, the 
number of epochs was chosen based on the learning curves 
of all tests (i.e., ensuring not to stop at a sudden error spike 
for any model). The resulting learning curves are shown in 
Figure 4 The model outputs A, B, C, D, represent the model 
prediction y (i.e., y=A) and the predicted Shapley values for 
the features 'sulphates', 'alcohol', and 'total_sulfur_dioxide'. 
 The experiment with real data show the same general 
effects as the experiments with synthetic data. Specifically, 
higher λ values reduce the errors in Shapley value predictions 
but increase the prediction error for the target variable 𝑦. For 
instance, for epoch 100 the MSE the for model . 𝜆=0 is 0.460, 
while for the model with. 𝜆=10, the MSE decreases to 0.45. 
However, for . 𝜆=1000, an increase of the MSE to 0.54 can 
be observed. The learning curves for all models exhibit 
similar behavior, while the Shapley value approximation 
shows significant improvement in smoothness and 
explainability. Again, we observe that the partial dependency 
plots show increasingly simpler structures (see Figure 5). 
These findings confirm the applicability of the approach with 
real data.  

V. CONCLUSION AND FUTURE WORK 

Explaining neural networks remains a challenging task, 
often due to the complexity and non-linear nature of these 
models. Often minor changes in input data can lead to 
significantly different model outcomes, which complicates 
explaining these changes to users. It was found that training 
models with a focus on Shapley values results in more stable 
and explainable outputs. This approach enhances the 
consistency of explanations derived from Shapley values, 
making the model's behavior more predictable and 
understandable. Contrary to initial expectations, 
incorporating Shapley values into the training process did not 
lead to a significant decline in predictive performance, as 
measured by the mean squared error of the outcome of 
interest. This suggests that it is possible to maintain accuracy 
while improving explainability. 

Future work could explore adjusting batch sizes to 
balance convergence and estimation accuracy, as larger batch 
sizes, while smoothing convergence, may reduce the 
precision of Shapley value approximations. Moreover, 
increasing λ improves explainability, it may reduce 
sensitivity to rare or extreme cases. And scaling to high-
dimensional data poses challenges, suggesting more efficient 
methods for Shapley approximations should be developed. 
Additionally, expanding experiments to include more diverse 
datasets could further validate the approach and confirm its 
generalizability across different domains. 

Nevertheless, the proposed model offers the advantage of 
providing direct explanations for its predictions. This feature 
is particularly valuable for internal stakeholders, such as 
management, and external stakeholders, such as regulators, 
who often require transparent and understandable model 
explanations. 

Based on these findings, this paper recommends adopting 
our approach for AI models that have to be rarely updated but 

are frequently used for prediction tasks. This methodology 
ensures that the model not only performs well but also 
delivers reliable explanations in the form of Shapley values, 
thereby meeting the growing demand for transparency in AI 
systems. 
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Abstract—Facial Emotion Recognition (FER) is very important 

in the field of human-computer interaction and it can greatly 

help computer systems to interpret and react to human 

emotions. The analysis of facial expressions and the accurate 

recognition of their emotional content are highly desired and 

assistive in a wide spectrum of domains. In this paper, we 

present a work on the recognition of facial expressions using a 

hybrid framework that incorporates Vision Transformers 

(ViT) with Temporal Convolution Networks. The proposed 

ViT’s goal is to extract intricate facial features, whereas the 

Temporal Convolution Network component effectively 

captures temporal relationships and aims to enhance the 

accuracy of facial expression classification. In addition, the 

LIME technique was used to illustrate the decision-making 

procedure of the framework utilized. Our framework can 

achieve an accuracy of 72% on FER2023 dataset, with a strong 

emphasis on the explanatory power and generalizability of the 

model.  

Keywords-Facial Emotion Recognition; Vision Transformers 

(ViT); Explainability; Temporal Convolutional Network (TCN); 

I.  INTRODUCTION 

Emotion recognition from facial expressions forms the 
backbone of inferences about human intentions and mental 
states, making it quintessential in human communication 
[17]. As interactions with machines become increasingly 
prevalent, teaching computers to perceive human emotions 
has the potential to revolutionize human-technology 
interaction. Applications range from healthcare to marketing, 
where emotionally aware systems can respond actively, 
leading to more personalized and effective experiences. For 
instance, Facial Emotion Recognition (FER) in healthcare 
can assist with early diagnostics in mental health by 
analyzing even subtle emotional cues, offering the potential 
to identify conditions like depression and anxiety much 
earlier than traditional methods. In marketing, FER enables 
real-time emotional analysis, allowing companies to present 
tailored product offerings that align with the consumer’s 
emotional state, thereby enhancing the user experience. 

Building accurate and reliable FER systems is quite 
challenging. Emotions are dynamic and change depending 
on context, which introduces complexity for FER systems 
[19]. Additionally, the way individuals express emotions can 
vary significantly based on factors, such as age, gender, 
ethnicity, and cultural background [20]. External conditions, 
such as lighting, facial occlusions (e.g., glasses, masks), and 
head poses further complicate accurate emotion recognition 
[22]. Moreover, most existing datasets in the literature, while 
diverse, often fail to account for all these variations, resulting 
in models that struggle to generalize effectively to real-world 
scenarios. 

Given the sensitivity of the applications, the accuracy and 
robustness of FER models are paramount. For instance, 
incorrect emotion detection in healthcare could lead to 
misdiagnoses, potentially resulting in harmful treatment 
plans. In fields like customer service or security, undetected 
or poorly detected emotions can degrade user experiences or 
even lead to safety issues. As a result, high accuracy, 
generalization, and reliability are fundamental requirements 
for trustable FER systems, particularly in critical areas like 
healthcare, law enforcement, and mental health. 

Recent advancements in deep learning and particularly in 
the formulation of advanced transformer models, have 
opened new many new possibilities for improving both the 
accuracy and generalization of FER systems [18]. While 
initially designed for natural language processing, 
transformers have demonstrated their potential for image-
based tasks by capturing complex patterns and long-range 
dependencies. Unlike traditional Convolutional Neural 
Networks (CNNs), which excel at capturing local features, 
transformers leverage self-attention mechanisms, allowing 
them to focus on different parts of the face to recognize 
subtle emotional cues. This makes them well-suited for 
addressing the nuanced and dynamic nature of emotions. 
Moreover, the ability of transformers to process sequential 
and contextual data presents an opportunity to improve FER 
in environments where emotions fluctuate rapidly [21]. 

In this paper, we present a work on the recognition of 
facial expressions using a hybrid framework that 
incorporates Vision Transformers (ViT) with Temporal 
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Convolution Networks. The proposed ViT’s goal is to extract 
intricate facial features, whereas the Temporal Convolution 
Network component effectively captures temporal 
relationships and aims to enhance the accuracy of facial 
expression classification. In addition, the LIME technique 
was used to illustrate the decision-making procedure of the 
framework utilized.  

The paper is structured as follows. Section II presents 
related works. Section III presents the transformer-based 
approach to analyze facial expressions and recognize their 
emotional content. After that, Section IV presents the 
experimental study and the results collected. Section V 
presents the explainability implementation on the images. 
Finally, Section V concludes the paper and provides the 
main directions that future work will explore. 

II. RELATED WORKS 

In recent years, various methods were investigated for 
FER, and deep learning models, especially recently 
developed Vision Transformers, show great promise because 
they allow for the modeling of complex patterns in facial 
expressions [15][16].  

In the work of Chaudhari et al. [1] on the ViTFER, the 
authors implemented the face emotion recognition system 
with the help of a vision transformer. The hybrid dataset 
used by the authors comprised three datasets: FER2013, 
AffectNet, and CK+48, and is referred to as AVFER. This 
model has been a fine-tuned Vision Transformer combined 
with ResNet-18, which was compared. In order to balance 
samples between classes, data augmentation was performed. 
In particular, the Vision Transformer (ViT) models proposed 
in this work with Sharpness-Aware Minimizer reached as 
high an accuracy as 53.10% in this hybrid dataset and 
outperform ResNet-18. 

VGGNet-based Convolutional Neural Network 
architecture implemented by Khaireddin et al. [2] achieved 
best results were realized with a fine-tuning of the 
hyperparameters and the various techniques of optimization. 
Using this model, trained on FER2013, gave an accuracy of 
73.28% on FER2013, ranking it among the best single-
network results. It contains a total of 35,887 grayscale 
images in size of 48x48, labeled under seven classes of 
emotions. 

Another approach combines Deep CNN with Haar 
Cascade to capture facial features [3]. This hybrid model, 
designed for real-time emotion classification, applied pre-
processing and data augmentation techniques to optimize 
training on FER2013, achieved 70% accuracy with 
significantly reduced training time of 2098.8s. 

For ViT-based models, a ViT-CNN hybrid model 
demonstrated the strength of merging local feature extraction 
from CNNs with global attention mechanism of ViTs [4]. 
This model outperformed traditional CNNs by effectively 
capturing both local and global features, achieving 72.1% 
accuracy on FER2013. 

A more recent contribution is by Wang et al. [5], who, in 
their submission to the ABAW4 competition, propose an 
ensemble deep model, CNN-Transformer for facial affect 
recognition. By construction, the model combines strengths 

from CNNs that perform well in local spatial feature 
extraction and strengths from Transformers that capture 
long-range dependencies and global contextual information. 
Their method outperformed others with well-balanced 
performance in a wide range of tasks of facial affect 
recognition. Their validation set experimental results 
indicated that their model significantly outperformed the 
baseline, with a higher F1 score of 0.618 on the LSD task; 
therefore, this verified the effectiveness of the hybrid design. 

Li et al. [6] developed a more powerful hybrid model that 
combined CNN with a Vision Transformer in facial 
expression recognition. Their framework leverages the CNN 
part to extract multiscale local features while the Vision 
Transformer extracts global relations using the attention 
mechanism. Besides, they devised a feature integration 
method and a patch-dropping strategy to further enhance its 
efficiency and improve the accuracy of recognition. This 
approach increased the performance significantly in the 
FER2013 dataset, with an accuracy of about 71.8%, 
outperforming most models purely based on CNNs or 
Transformers. 

Wang et al. [7] focused on the Vision Transformers with 
attention mechanisms to further improve the accuracy of 
emotion recognition. The work underlined the capabilities of 
transformers to model global context and relationships in 
facial images, which thus improved results in emotion 
classification on the FER2013 dataset. Their proposed model 
attained an accuracy of 74.3%, indicating the effect of an 
attention-based architecture to capture variations in the facial 
features. 

Kollias et al. [8] present the comprehensive survey on the 
recognition of face behavior in the wild and analyze different 
models with respect to operation in unconstrained 
conditions. Their work has targeted FER challenges in 
natural conditions and gives a gradual transformation of 
interest towards transformer-based models and hybrid 
networks to minimize these challenges, specifically for 
lesser-controlled facial expression scenarios. 

Zhang et al. [9] proposed a real-time face emotion 
recognition system that combined the attention-based CNN 
and Transformer components. It was optimized to perform 
well in real time without a loss in accuracy in detecting fast-
changing emotions. Tested on FER2013, it yielded 74.6% 
accuracy. Thus, hybrid models have also been established for 
time-critical tasks to be practical. 

Zhang et al. [10] developed the attention dual graph 
convolutional network, which takes facial landmarks as 
nodes in a graph and models the relationships between them. 
This is a novel approach, which allows for more ordered 
representation of the facial features, and because of this 
reason, it allows for better performance on FER2013 with 
90.1%. In fact, their graph-based representations combined 
with attention mechanisms bring high performance to the 
model dealing with FER tasks. 

Khan et al. [11] proposed the model architecture that 
hybridized both: the ViT and CNN models. In their model, 
CNN was used for efficient feature extraction, while with the 
use of ViTs the possibility of modeling long-range 
dependencies in facial images can be brought about 
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underneath. The system achieved a recognition accuracy of 
76.8% on FER2013, illustrating the viability of hybrid 
models applied to emotion recognition tasks. 

III. METHODOLOGY  

In this section, we present the approach used for facial 
emotion recognition and detail the underlying architecture of 
the hybrid ViT and TCN model, which forms the backbone 
of this study. The design aims to improve FER accuracy by 
combining powerful feature extraction techniques with 
temporal modeling capabilities. Additionally, the LIME 
technique is employed to enhance the model's explainability, 
providing insights into its decision-making process. 

A. Hybrid framework 

We propose a fine-tuned version of customized model 
named ViTCN. It has a balanced architecture, considering 
both complexity and performance for particular challenges 
that come associated with face emotion recognition. More 
importantly, to further strengthen the model, it is based on 
explanatory technique Local Interpretable Model-agnostic 
Explanations (LIME) in analyzing and interpreting model 
prediction with a view to decision-making. To complement 
the ViT’s spatial feature extraction, a TCN was integrated to 
capture temporal relationships across sequences of facial 
features. The TCN architecture consists of eight 
convolutional layers, with one initial layer followed by seven 
convolutional layers in a loop. Each layer uses 1D 
convolutions, a kernel size of 3, and padding of 1 to process 
the sequential input data. 

1) Data Preprocessing and Augmentation 
Data preprocessing involved converting the grayscale 

images from the FER2013 dataset to RGB format and 
resizing them from 48x48 to 224x224 to match the input size 
required by the ViT model. Various data augmentation 
techniques, including random horizontal flipping, random 
cropping, color jittering, and random rotation, were 
employed to increase dataset variability and prevent 
overfitting. The transformed images were then normalized 
and converted into vectors, which were loaded into 
PyTorch’s dataloader for training, validation, and testing. 

2) Model Architecture 
To create this hybrid model required the definition of its 

two parts, the first part being ViT and the second part being 
TCN. The model uses a pre-trained Vision Transformer 
(ViTModel) from the Hugging Face model hub [12][13]. The 
pre-trained ViT base model utilizes patch size 16x16, with an 
output hidden dimension of 768. The classifier head of the 
ViT model is replaced with nn.Identify(), meaning the ViT is 
only used for feature extraction (specifically, the 
last_hidden_state is used). The output sequence, after the 
features from the ViT have been extracted, passes through a 
Temporal Convolutional Network. The network consists of 8 
convolutional layers: the first initial layer and seven 
convolutional layers arranged in a loop. Each layer of a TCN 
consists of one-dimensional convolution with a kernel size 
fixed to 3 and padding fixed to 1, Rectified Linear Unit 
(ReLU) non-linearity introducing activation function and 
dropout rate for regularization at 0.3. The output from TCN 

acts as an input to F.adaptive_avg_pool1d(x,1), which 
reduces the sequence length to 1; hence the output size 
becomes batch_size, channels. 

A linear layer (self.fc) maps the pooled TCN output to the 
number of emotion classes. The output from ViT, of shape 
(last_hidden_state, shape.(batch_size, seq_len, hidden_dim)) 
is permuted to change dimensions which is necessary for 
compatibility with the Conv1d layers in the TCN. 

3) Hyper-parameters 
First, the optimization model relies on the Adam 

optimizer, as this has adaptive learning rates and momentum, 
hence being quite suitable when dealing with sparse 
gradients in large Vision Transformers. In this regard, a 
starting learning rate of 10-4 will be selected to give moderate 
model parameter updates for stable convergence during 
training. Apart from that, weight decay with a factor of 10-4 
was used. In essence, this is an L2 regularization, one that 
penalizes large weights and hence reduces overfitting; this 
makes the model more generalized on unseen data. 

CrossEntropyLoss criterion was used to assess the 
performance of the model, which was trained with the help 
of this criterion. This loss function is quite well adapted for 
multi-class classification tasks like FER, since it computes 
the divergence between the estimated probability distribution 
and the true distribution of the target labels. By minimizing 
this loss, the model gets gradually trained to provide class 
probabilities that are close to the actual labels of emotions, 
thus increasing its accuracy. 

A ReduceLROnPlateau learning rate scheduler was 
added to the training pipeline, dynamically adjusting the 
learning rate based on the performance on the validation set. 
This ‘min’ mode scheduler would reduce the learning rates 
when there was no significant improvement of the validation 
loss. The reduction factor used here was 0.5, halving the 
current best learning are where the model’s progress started 
showing a plateau. This will prevent early reductions by 
giving the model tree epochs of stagnating validation loss 
before the learning rate is adjusted, as specified by the 
patience parameter set to 3. The minimum threshold for 
reducing the learning rate was kept at 10-6 to avoid excessive 
reduction that might impede learning. 

Early stopping was used to prevent overfitting and 
improve model efficiency. This approach monitored the 
validation loss across epochs and stopped training if any 
improvement was not witnessed during a certain window. 
Early stopping was configured to be patient for 7 epochs, 
meaning it would stop training if the validation loss did not 
improve for 7 consecutive epochs. Early stopping fired by 
their model, it reset the weights of the model back to the 
state representing the epoch with the lowest validation loss. 
The mentioned technique not only avoided overfitting but 
also economized computational resources by saving a lot of 
superfluous epochs of training. 

IV. EVALUATION STUDY 

The FER2013 dataset is used as a benchmark for 
developing and testing FER models. It contains a large, 
diverse set of labeled images across seven basic emotions, 
making it valuable for overcoming challenges arising from 
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individual and cultural variability. Despite its widespread 
use, models trained on FER2013 often fail to perform 
robustly in general scenarios, a challenge that necessitates 
further improvements in model architectures and training 
approaches. 

 

Figure 1.  Metric-graphs Results 

In Figure 1, the graphs of loss and accuracy for each 
training and validation epoch are illustrated. We can see that 
the use of parameters to deal with overfitting was necessary. 
The evaluation results are quite interesting. We assess the 
performance of the framework in terms of precision, recall 
and F1-Score which are reported in Table I. The 
performance of our model reaches a macro average precision 
of 74%, with the values of the individual metrics being 
particularly good. 

TABLE I.  PERFORMANCE RESULTS  

 
Classification Report 

precision recall f1-score 

Angry 0.64 0.67 0.65 

Disgust 0.89 0.73 0.80 

Fear 0.63 0.52 0.57 

Happy 0.91 0.89 0.90 

Sad 0.57 0.65 0.61 

Surprise 0.86 0.79 0.82 

Neutral 0.66 0.71 0.68 

Macro Avg 0.74 0.71 0.72 

Weighted Avg 0.72 0.72 0.72 

 
In addition, the confusion matrix was created, showing 

the correlations between the actual and predicted labels. The 
diagonal is identified while it is observed that the fear and 
sad labels have the highest confusion. Th confusion matrix is 
illustrated in Figure 2. The confusion matrix provides 
valuable insight into the performance of the model across 
different emotion classes. Notably, the model exhibits high 
accuracy for detecting "Happy" expressions, with a correct 
prediction rate of 89%, indicating strong performance in 
recognizing this emotion. However, the matrix also reveals 
challenges in distinguishing between certain emotions. For 
instance, the model struggles with differentiating "Fear" and 
"Sad" expressions, as it correctly identifies "Fear" only 52% 
of the time, frequently confusing it with "Sad" and 
"Surprise." Similarly, "Disgust" is often misclassified as 

"Angry" (18%), suggesting overlap in the facial features 
associated with these emotions. 

 

Figure 2.  Confusion Matrix 

This confusion is indicative of subtle similarities between 
these emotional expressions that the model may be finding 
difficult to distinguish. While emotions like "Surprise" and 
"Neutral" are predicted with relatively high accuracy (79% 
and 71%, respectively), further improvements could be made 
for classes like "Fear" and "Disgust." These results suggest 
that the model would benefit from additional training data, 
particularly for the underperforming classes, and possibly 
more refined feature extraction methods to improve its 
ability to differentiate between similar emotions. 

V. EXPLAINABILITY 

Explainability in deep learning refers to methods used in 
an attempt to interpret how models make the decisions. More 
importantly, for tasks like FER, it is desirable to ascertain 
that the model decides on the classes of emotions based on 
meaningful facial features-for example, eyes and mouth. 
Furthermore, explainability is crucial for building trust in 
FER systems, as well as for improving the model. 

LIME is an explainability technique that provides us 
insight into model decisions by perturbing parts of the input 
and observing changes in predictions [14]. This works by 
creating locally faithful explanations, enabling us to see 
which regions of the image most drive the model’s decision. 
This is particularly helpful to identify which facial features it 
relies on to classify emotions-skipping the possibility it 
learns nonsensical patterns. In this regard, the 
implementation of the LIME explanation first defines a 
prediction function, taking a batch of images, preprocesses 
them by resizing and normalizing, and then passes them 
through the model in order to compute probabilities for 
emotion classifications. This prediction function is going to 
be used by LIME when assessing how model predictions are 
affected by certain perturbations to the input image. 

The key explanation procedure starts by taking an input 
image and generating slight variations or perturbations of the 
image. These perturbed images are passed through the model 
using the prediction function. Subsequently, LIME follows 
the output response of the model to these variations and 
selects the most important regions in the image that 
contributed to the classification decision. It highlights the 
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boundaries in order to represent areas that had the strongest 
influence on the prediction. This allow us to interpret 
visually which parts of the face were of most significance 
when determining the predicted emotion. Specifically, the 
explanations generated by LIME illustrate how the model 
focuses on specific facial regions when classifying emotions 
These visualizations provide intuitive insights into the 
model’s decision-making process, highlighting the areas of 
the face that are most influential in predicting each emotion. 
The yellow-highlighted regions, produced by LIME, confirm 
that the model is correctly focusing on the most salient facial 
features typically associated with these emotions, thereby 
enhancing the interpretability of the model’s predictions. The 
following examples demonstrate the application of LIME in 
classifying various emotional expressions.  

In the example case shown in Figure 3, which illustrates 
the "Disgust" emotion, the regions of interest are primarily 
concentrated around the nose and the central part of the 
face—key areas typically involved in disgust expressions.  

 

Figure 3.  LIME Explanation for Disgust Emotion Prediction. 

The LIME output clearly highlights the wrinkling of the 
nose and the characteristic mouth shape, often frowning or 
pursed lips. These visual cues further confirm that the model 
is accurately focusing on the facial features that define 
disgust. This aligns with human perception, where attention 
is naturally drawn to the upper face, particularly the nose, 
when interpreting disgust, as this expression generally 
centers on the middle of the face. Similarly, in the case for 
the "Anger" emotion depicted in Figure 4, LIME places 
emphasis also on the regions around the forehead, eyebrows, 
and the mouth. As expected, these are the prime areas to 
consider while one identifies anger, since they have features 
like furrowed eyebrows and a tense, open mouth both of 
which are strong indicators of frustration or aggression.  

 

Figure 4.  LIME Explanation for Anger Emotion Prediction. 

Given the model's attention towards these regions, it 
convincingly demonstrates that the model has learned to pick 
out these important features, which adds more credibility to 
its prediction. Such a visual explanation also agrees with 
human intuition, since intuitively we associate furrowed 
eyebrows and tensed facial expressions with anger. 

In the example case of the "Sad" emotion in Figure 5, the 
LIME explanation places significant emphasis on the 
forehead, eyebrows, and cheeks. The model particularly 
focuses on key indicators of sadness, such as sagging 
eyebrows and a drooping mouth. Additionally, the strong 
attention to the downward gaze suggests that the model is 
effectively capturing the lowered head posture often 
associated with sadness. This alignment with typical facial 
cues reinforces that the model is accurately identifying the 
relevant features needed for emotion classification. 

 

Figure 5.  LIME Explanation for Sad Emotion Prediction. 

In Figure 6, a case is illustrated for LIME explanation 
created for a "Surprise" emotion. The LIME explanation has 
highlighted the forehead, eyes, and mouth regions in this 
image. Of course, these are important to a surprise 
expression because wide eyes and a slightly open mouth are 
common visual keys to this emotion, which the model has 
learned to focus on appropriately for the expression of 
surprise. Emphasis on the wide-eyed look and the form of 
the mouth also aligns with human perception for surprise, 
further grounding the model's prediction. 

 

 

Figure 6.  LIME Explanation for Surprise Emotion Prediction. 

These LIME visualizations not only show that the model 
is focusing on relevant and emotion-specific facial features 
but also offer an interpretable illustration for its predictions. 
The fact that the LIME highlights align with commonly 
understood human expressions adds further credibility to the 
model-that it makes decisions based on appropriate facial 
cues. 
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VI. CONCLUSIONS AND FUTURE WORK 

Facial expressions form a universal language of 
emotions, which can instantly express a wide range of 
emotional states and feelings. The accurate analysis of facial 
expressions and the precise recognition of their emotional 
content are highly desired and assistive in a wide spectrum of 
domains and applications. Although it is natural for humans 
to interpret facial expressions naturally with little or even no 
effort, the accurate and robust facial expression recognition 
by computer systems is still a great challenge. Our work 
presents a hybrid model for FER by combining both the 
Vision Transformer and Temporal Convolution Network 
models. Therefore, this work was successful at achieving 
high accuracy along with good generalization, Optimization 
in Vision Transformer was able to extract fine details of a 
face while embedding TCNs allowed it to identify temporal 
relationships within the data. In addition, the LIME 
technique was used to illustrate the decision-making 
procedure of the framework utilized. Specifically, our 
framework visualizes explanations with, which explained 
important facial regions that are responsible for emotions 
classified within the decision making of the transformer 
model. The results were very encouraging and indicate that 
the approach is efficient and accurate in analyzing facial 
expressions and recognizing their emotional content. 

Future research will focus on enhancing generalization 
by expanding both the size and diversity of the dataset. 
Additionally, advancing explanation techniques could further 
increase trust in FER systems, particularly for applications in 
healthcare and psychological diagnostics. Future directions 
could involve integrating additional explainability methods, 
such as SHAP to provide deeper insights into the model's 
decision-making processes. This combination with LIME, 
would allow for a clearer understanding of the importance of 
individual facial regions in each emotion recognition. 
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Abstract—Despite the traction gained by transformers on
time series forecasting tasks, partially based on their success in
natural language processing to learn contextual information, their
suitability in this domain has been questioned. Several works have
found significant performance problems when comparing these
models with simpler options leading some people to think trans-
formers are not as fit for time series forecasting as considered
before. However, it remains unclear if they can capture long-term
dependencies, similarly as they do with contextual information.
This study takes on that line of questioning using an explainable
artificial intelligence approach. By making use of Shapley additive
explanations, the attribution scores assigned to input features
are computed, showcasing that a transformer model optimized
for time series forecasting is unable to learn long-term time
dependencies, and mostly considers the last time steps from the
inputs. The analysis, based on interpretable knowledge based on
the computed Shapley values, is done in a multivariate forecasting
setting that resembles a complex real-world problem, proving that
the model is unsuited for the task.

Keywords-Transformers; Time Series; Deep Learning; XAI;
SHAP.

I. INTRODUCTION

Time series analysis and forecasting have a major role
in research [1] and real-world applications, such as climate
science [2], healthcare [3], biology [4], and economics [5].
As technology has progressed, new methods and algorithms
have been used to improve the models used. From statistical
and regression-based models such as autoregressive integrated
moving average (ARIMA) [6][7], the field has seen a transi-
tion to machine learning approaches, such as support vector
machines [8], nonparametric models like functional decompo-
sition [9], and nonparametric bayesian models [10].

More recently, deep learning has gained more traction over
other machine learning techniques thanks to their advantage of
being universal approximators [11][12] under the right condi-
tions. With their great versatility and representational power,
many neural network architectures have been used for time se-
ries forecasting, such as multi-layer perceptions (MLPs) [13],
convolutional neural networks (CNNs) [14], and networks
designed to solve sequential data problems like recurrent
neural networks (RNNs) [15][16] and long-short term memory
(LSTM) networks [17]. More recently, transformers [18] have
become one of the main technologies used for time series
forecasting [19]–[23] thanks to their outstanding capabilities in
modeling contextual information and handling sequence data,
particularly in natural language processes (NLP) tasks. Despite

their popularity, all deep learning models have the disadvan-
tage of being black boxes, a feature highly undesired in safety-
and business-critical applications. Even transformers, despite
the self-attention mechanism that allows them to weigh the
importance of different parts of their input sequential data to
make their forecasts, distinguishing them from other types of
neural networks, are virtually uninterpretable.

Due to the abrupt increase in the use of transformers for
time series forecasting, several works have questioned their
effectivity, with results that show how remarkably simple
linear models can, indeed, outperform them. To answer this
question, performance has been the main element examined
to the best of our knowledge, like in [24], using the metrics
mean square error (MSE) and mean absolute error (MAE) to
reason why transformers may have design flaws to tackle time
series forecasting, having been designed for natural language
processing (NPL) tasks. Although the inputs of transformers
are sequences, like in time series forecasting, one key part of
their success is their ability to extract contextual information
from the text sequences, which seems not to translate very
well to learning time dependencies.

Thanks to the revitalized interest in eXplainable AI (XAI)
motivated by the surge in using neural networks, many solu-
tions provide interpretable knowledge and explanations based
on many algorithms that exploit either external elements, with
primarily model agnostic techniques, or internal elements,
which primarily focus on the gradients that connect input
and output in these models or attention mechanism in case
of transformers. Similarly to other deep learning models,
interpretability in transformers can be tackled from those
perspectives, which may give insight into their efficacy in time
series forecasting by showing if they are learning long-term
time dependencies, or if they rather only focus on the last
instances from the inputs, leading to short-term dependencies
and discardment of the rest of the time series input.

In this work, an XAI-based methodology is proposed to
analyze what time dependencies have been learned by a
transformer-based model making use of Shapley additive ex-
planations (SHAP) [25] to compute attribution scores of the
inputs. By aggregating these scores and examining them with
respect to the time series input and output sequences, it is
possible to look into how these scores change as the model
predicts further into the future. By doing so, an analysis of
these changes offers a way to determine what kind of temporal
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patterns the models have learned, and how long back into the
past they are able to look for their predictions.

The paper is organized as follows. Section II presents a
brief overview of the state-of-the-art concerning XAI appli-
cable to transformer-based models both broadly and specific
to time series forecasting. Next, Section III introduces the
methodology used in this work. Details referring to the dataset
and the transformer model trained are provided, followed by
a description of SHAP, the implementation choice for the
computation of the Shapley values, and the framework used
to analyze them to assess the suitability of the model for the
task. Then, the results and analysis are presented in Section
IV, which conveys the findings of this work that the model
is unable to learn long-term time dependencies. Finally, V
presents the conclusions and suggests future lines of work
aimed to better examine this family of models and their
suitability for time series forecasting tasks through the lenses
of XAI.

II. STATE-OF-THE-ART ON EXPLAINABILITY OF
TRANSFORMERS

Transformers are a type of deep neural network (DNN)
characterized by using a self-attention mechanism and an
encoder-decoder architecture. Although one self-attention head
can learn which parts of the inputs are more important when
making predictions, hence holding interpretable knowledge,
they typically have many of such self-attention heads, in
addition to a very high number of parameters combined
with non-linear activation functions, and so they are initially
incomprehensible. To tackle them and attempt to explain
their inference, there are two main families of algorithms:
attribution score and attention-based methods.

In attribution-score methods, the algorithms assign a rele-
vance score to each of the inputs that were processed by the
model to reach a certain output. This provides interpretable
knowledge that exposes how high or low the contribution
of each input feature is for any output. These types of
methods rely mostly on input-output mappings, and as such are
considered "external", and in many cases are model agnostic,
meaning they can be applied to any machine learning model.

Some examples of attribution score-based methods are in-
tegrated gradients (IG) [26], layer-wise relevance propagation
(LRP) [27] or SHAP [25]. IG works by integrating the gradi-
ents of the model’s output with respect to the input features
along a path from a baseline input to the actual input. LRP
propagates the prediction backward in a neural network with
designed local propagation rules subjected to a conservation
property so that what is received by a neuron is redistributed
in equal amounts to the previous layer. SHAP calculates the
relevance scores by distributing the outcome of the model
among the input features to get the relevance scores, which
is done using Shapley values from coalitional game theory.
These methods can, usually, be applied to any deep learning
model, while others such as SHAP are model agnostic, hence
applicable to any machine learning model. Thanks to this

versatility, they have been successfully applied on numerous
occasions.

As one key aspect of the success of transformers comes
from their attention mechanism, this inbuilt attention mech-
anism can help to look into their behavior. Although still
not interpretable, analyzing where transformers focus their
attention may provide a better understanding of how they
infer. Along this line, several works take advantage of that to
build methods that throw some light on their interpretability to
provide, to a certain degree, XAI in the context of transformers
in the form of attention-based methods. These methods usually
provide visual information about which elements of the input
sequence the model has learned to pay attention to and rely
directly on the attention parameters, although the existence of
multiple attention heads complicates the process.

Attention mechanism-based methods require considering
the importance of how to properly take advantage of the
multi-head self-attention mechanism (MHSA) to get valuable
information. In [28], an updated version of LRP designed
to work with transformers and MHSA was developed. In-
stead of propagating scores backward through all layers, their
approach focuses on attention head relevance, and although
their technique has the initial goal of serving as a means to
prune unimportant attention heads, they successfully identify
different interpretable roles within the MHSA in the context
of automatic translation.

Attention rollout and attention flow are the solutions pro-
posed in [29] to quantify the information flow approximating
the attention to the inputs. First, attention rollout traces the
flow of information from input tokens to hidden embeddings
in the higher layers by propagating attention weights through
several network layers. This is done by recursively multiplying
the minimum, maximum, or mean of the attention heads of
each block with the attention of the previous blocks. Then,
attention flow treats the resultant graph as a flow network
using the attention weights as edge capacities. By doing this,
the maximum attention flow between any of the layers to
any of the input nodes can be computed with any maximum
flow algorithm, which can serve as an approximation of the
attention to input nodes. Nevertheless, the method’s speed is
prohibiting, hence rather unfeasible for evaluations at a large
scale.

Beyond attention [30], based on LRP, proposes assigning
attribution scores using the deep Taylor decomposition prin-
ciple to generate the initial scores and then propagate them
through the layers taking into consideration both attention
layers and skip connections, both integral parts of transformers
architectures. The initial scores are computed via LRP for all
attention heads and all layers by integrating the relevance score
of each attention head and its gradient with respect to the
input features. The weighted attention scores they propose to
adopt the notion of positive relevance, hence considering only
the positive values that result from the computation, and the
method was tested in the NLP model BERT [31] and a visual
transformer model.

Beyond intuition [32] is another proposal designed to ap-
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proximate the contribution of the input tokens. This solution
relies on the partial derivative of the loss function with respect
to each token in two steps. First, in the attention perception
phase, the relationships between input and output for each
attention block are unfolded, resulting in the development of
two recurrence formulas involving head-wise and token-wise
attention maps. The second step is reasoning feedback, which
applies the IG algorithm to the last attention map with a noise-
decreasing strategy to reduce the gradient self-induced noise.

Gradient self-attention maps (Grad-SAM) [33] uses a
gradient-based method applied to the attention matrices to
generate rankings for the tokens used in the layers of the
encoder and it was tested on the NLP model BERT. This
method offers another way to understand how the model
reaches an individual prediction by highlighting the inputs
that contribute to it the most, and it is based on computing
the partial derivatives of the model output with respect to the
self-attention blocks. This approach does not ignore negative
values resulting from this computation, but to avoid the accu-
mulation of negatives that may cancel the information carried
by positive values, they propose using the ReLU function to
zero out negatives.

In the context of visual transformers [34], the survey from
[35] paints a picture of the current state-of-the-art methods.
Understanding visual information has the technical advantage
of humans being able to identify patterns easily, and it is only
necessary to visualize what the models are paying attention
to, to make sense of their inference process. Traditional
attribution-score methods, such as layer-wise relevance prop-
agation [27], SHAP [25], local interpretable model-agnostic
(LIME) [36], or gradient-weighted class activation mapping
(Grad-CAM) [37] can suffice. On the other hand, since the
attention mechanism is designed to allow transformers to focus
on the relevant part of the input sequence, other methods focus
on this element, and in computer vision tasks attention can be
directly visualized just by looking into the raw attention of the
transformers, or through some function, such as Grad-SAM
[33] or beyond intuition [32].

In time series classification [38], attribution and attention
methods are the most popular strategies to assign relevance
scores to every time point in a time series. Another type
of explanation can be extracted based on subsequences by
identifying the parts of a sequence responsible for a cer-
tain classification outcome, such as PatchX [39] and data-
agnostic classification method via shapelets (DASH) [40]. The
third general type of explanation in this domain is based on
instances and relies on the complete time series to extract
reasons for the classification outcomes, such as multi-operator
temporal decision trees [41] and dual prototypical shapelet
networks [42].

In time series forecasting, [43] presents an experimental
comparison between XAI methods based on saliency maps
applied to several deep learning architectures including trans-
formers. The methods tested include IG [26], SmoothGrad
[44], DeepLIFT [45], gradient and deep SHAP [25], and
feature ablation [46], among others less up-to-date. The con-

clusions point out a general lack of high-quality interpretable
knowledge from these methods when applied to multivariate
time series data while succeeding when the time series is repre-
sented as images or univariate and propose a two-step temporal
saliency rescaling to improve the results. They hypothesize that
the main reason for this lack of quality is the combination of
temporal and feature domains. Previous studies [47] provided
comparisons between LIME, LRP, DeepLIFT, Saliency, and
SHAP for time series classification with DNNs, CNNs, and
ResNet, with SHAP performing more robustly than the rest on
ResNet. They showed a decrease in accuracy when perturbing
subsequences in univariate time series classification datasets,
which was assumed to be indicative of the alteration of parts
that were important for the models’ internal inference, and
SHAP seemed to perform better than the rest for the more
advance Resnet architecture.

III. METHODOLOGY

The methodology applied in this work is described in
this section, and it is based on the goal of analyzing if a
machine learning model, in this case a Transformer, is able
to learn time dependencies in a time series forecasting setup
using attribution scores computed with the Shapley additive
explanations method. Henceforth, it can be generalized to any
other model as long as the XAI method used to compute
the attribution scores is model agnostic, such as SHAP, or
is applicable to the model in question.

A. Data

In this work, the data comes from a collection of the
currency exchange rates of eight countries, including Australia,
British, Canada, Switzerland, China, Japan, New Zealand, and
Singapore, between 1990 and 2016, gathered daily. This data
has been used for time series analysis benchmarks of different
models, transformer-based architectures included, in works
such as [48] and [24]. The dataset has eight input features
and 7588 total time steps with a time resolution of one day.
Regarding the data splitting, a standard distribution was used,
forming subsets of 70%, 10%, and 20% of the total samples
for training, validation, and testing, respectively.

B. Transformer model

This work analyzes the transformer implementation used
in [20], [24]. The implementation details contain several
differences with respect to the actual vanilla transformer [18].
The importance of the differences becomes fundamental to
analyzing the models through XAI lenses because of a series
of technical issues and can be summarized as follows.

• Concerning the architecture, this transformer version con-
tains an additional temporal embedding that receives and
handles the information about the time marks of each
sequence element.

• For the inputs, the transformers take 3 elements in ad-
dition to the expected time series sequence. First, the
decoder takes the last Ldec pieces of the time series
input. This reduced time series acts as an enhanced "start

19Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EXPLAINABILITY 2024 : The First International Conference on Systems Explainability

                            25 / 52



sequence" token, supplying additional information for
the decoder. Then, the time marks of the time series
input on one hand, and the time marks of the enhanced
start sequence token followed by the time marks that
characterized each time step of the expected prediction
horizon on the other. These two time mark sequences
are used by the encoder and the decoder respectively,
and are treated as the other two inputs. The time mark
sequences encode information about the dates in a four-
values format. This format is a hyperparameter, and in
these experiments, the selected "hourly" encodes and
normalizes the hour of the day, the day of the week, the
day of the month, and the day of the year.

• In regards to the outputs and in connection to the training
and inference processes, the model performs a direct
multi-step prediction, hence providing the whole expected
sequence in a single step.

1) Training and performance: Regarding training, 10 mod-
els were optimized for a prediction horizon Zp = 96, chosen
from the set of values 96, 192, 336, 720 as it yielded the best
performance. Since it is a multivariate forecasting task and 10
models were trained, each model’s performance mean squared
error MSEexp is computed with (2), where y is the prediction
value, ŷ the true value, Nf the total number of features
predicted, Np the number of predictions, and the subscripts i,
j, and k are feature, prediction, and experiment, respectively
(also in (1)). Then, the aggregated MSE (MSEagg) is simply
an average of the MSEexp of the 10 models following (1).

MSEagg =

∑Nexp

k=1 MSEexpk

Nexp
(1)

MSEexp =

∑Np

j=1

∑Nf

i=1(yi,j − ŷi,j)
2

NfNp
(2)

As the loss function, the MSE is used as the standard
for regression tasks, which is averaged among the 8 output
features since the multivariate forecast of the model. The
models are trained with different seeds to get rid of possible
underperforming combinations of initialized parameters, using
the adaptive moment estimation (ADAM) optimizer with input
sequences of length Zi = 96, again yielding the best results
from the set 96, 192, 336, 720. The models were trained in an
NVIDIA RTX 3090 GPU. For the rest of the hyperparameters,
the default values from [24] were initially used, and for
this work, a random search for optimization purposes was
performed over batch size, learning rate, training epochs, and
early stopping hyperparameters, arriving at respective values
of 32, 0.0001, 10, and early stopping with patience 3.

Since the goal is to ascertain if transformers can learn time
dependencies, the best-performing model is the one chosen to
be analyzed by SHAP. Note that this work will not examine
model performance in depth as it falls out of the scope.

C. SHAP
The original kernel and deep implementations from [25],

referred to hereinafter as Kernel and Deep, were used to

examine the inner workings of transformers with the SHAP ap-
proach as computationally efficient algorithms to approximate
Shapley values, particularly so in higher dimensions. As shown
by [25], the Shapley values approximated with SHAP using
Kernel perform slightly better than those approximated with
Deep (DeepLift-based SHAP). Because of the substantially
high memory and computation requirements of Kernel, a base
test was made to compare both results and determine how
much Kernel suffers by leaving out part of the training data
as background data for the algorithm, to make an informed
decision about which algorithm to use for the analysis of the
transformers with SHAP. The L2 distance and symmetric mean
absolute percentage error (SMAPE) were used as distance
measurements. L2 serves as a standard distance measurement
between real value vectors to capture important deviations in
feature attribution, while SMAPE is a scale-independent and
commutative measurement that offers a better understanding
of the distance regardless of the small scale of the values.

With the larger amount of data manageable with the com-
putation resources used in this work for a single time step
of the prediction horizon (32 training sequences for Deep,
16 for Kernel), an L2 = 0.0036 and SMAPE = 175.48%
were reached between Deep and Kernel. With the minimum
reduction of the background data for the analysis of the whole
prediction horizon (32 training sequences for Deep, 4 for
Kernel), an L2 = 0.0046 and SMAPE = 184.38% were com-
puted instead. These are calculated for the feature attribution
of the first time step forecast. While the difference between
SMAPE error is only 4.95%, the percentage difference in
L2 ascends to 24.81%, suggesting the Kernel implementation
suffers when the background data to integrate out features
decreases. Henceforth, the choice was made to use the results
of the DeepLift-based Shapley values (DeepSHAP) for the
analysis.

For the use of the original DeepSHAP algorithm implemen-
tation [25], the critical adaptations of this algorithm to function
on the model and data used for this work were implemented
in the form of wrappers and data refactorization to meet the
requirements of the DeepExplainer interface. To achieve this,
the model is wrapped in a function that only needs the time
series input sequence so that SHAP focuses on extracting the
feature importance of this data instead of over every input
the model actually needs. This is done by making the rest
of the inputs independently accessible by the model outside
the DeepSHAP algorithm. Therefore, the time series input
sequence is used as input data for the model to calculate
the Shapley values. Regarding the rest of the inputs, the time
series sequence subset needed by the decoder is handled by
the wrapper, which already receives the whole time series
input sequence. The time marks, on the other hand, must
remain unchanged during the computation because it is not
desirable in this setting to alter the possible time dependencies
that the model might have learned and may be related to the
temporal embeddings. For this reason, this part of the inputs
is accessible by the model through external variables, but not
modified by SHAP.
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The data refactorization involves the input sequence and
the output but does not affect the process other than reshaping
the sequences so that DeepSHAP can process them. The time
series input sequences are reshaped to a format admissible by
SHAP before the algorithm is called and shaped back to the
format required by the model within the model wrapper sent
to the SHAP algorithm. Regarding the outputs, the wrapper is
configured to output a single time step within the prediction
horizon, which can be selected beforehand. Therefore, to ana-
lyze the whole prediction horizon SHAP needs to be computed
for each time step. These changes allow the extraction of the
attribution scores of the features examined in this work in a
compatible way with SHAP, while also reducing the compu-
tation requirements, which would otherwise be prohibited in
terms of memory due to the high memory use, which increases
exponentially with the dimensionality of the data. To analyze
the impact of each input feature of each time step of the
input sequence, each feature from each time step needs to be
considered as an individual input, hence the dimensionality of
the input features analyzed by SHAP is the number of input
features times the length of the input sequence. Note none
of these changes have any effect on the actual transformer
model architecture or parameters behind the wrapper, hence
the inference process performed by the transformer remains
unaltered.

D. Shapley values analysis

In the analysis, the features that significantly impact the
model outputs according to the attribution scores computed by
Shapley values are examined. These values are computed by
the SHAP algorithm using the full training set as background
data as described in [25]. The Shapley values are studied by
looking at the features with a higher accumulated impact on
the outputs from several individual time steps of the prediction
horizon. This is done by considering each feature from each
time step of the input sequence on its own and accumulating
their impact by adding the absolute values that each input
feature has for all the outputs in the chosen prediction horizon
slice. This way, it can be seen which input features and from
which input time steps have a higher impact on the model’s
outputs.

Secondly, the evolution of the attribution scores is investi-
gated throughout time steps from input and output sequences.
To look at the overall evolution of the impact of all the
input features and time steps, looking separately into specific
output features of the model allows to obtain more general
information about how the impact of input features from
different time steps varies depending on the prediction horizon.

Ultimately, the global distribution of the accumulated im-
pact from all features is studied. This is done by applying
a sum reduction over the absolute values of the impact of
all the input features over all the output features. Since the
impact from the features computed by attribution scores that
SHAP provides measures how much changes in the values
cause changes in the prediction, using sum reduction over
their absolute values will provide practical information about

the patterns learned by the model without mismanaging or
losing the SHAP values meaning. Hence, looking at the impact
that each time step of the input sequence has over each
time step of the prediction horizon yields the most global
vision. By analyzing this, it is possible to ascertain what
time dependencies the model has learned from a wider point
of view, as well as detect possible anomalies or interesting
behaviors.

IV. RESULTS AND ANALYSIS

The 10 instances of the transformer trained reached an
average performance of MSE = 0.748, with the best-
performing model chosen for the analysis with SHAP having
a performance of MSE = 0.601.

The input features with the highest impact on the model’s
output for several time steps located at the beginning and
ending parts of the prediction horizon can be seen in Figure 1.
In Figure 1a, it can be seen how the Shapley values reveal that
feature attribution is placed directly on the time steps from the
input sequence that are directly adjacent to the starting point of
the prediction horizon. This behavior of the attribution scores
replicates in the whole prediction horizon the model is trained
for (Zp = 96) except in the last time step. Note that the second
to last time step also behaves similarly, as displayed by Figure
1b, although with more evenly distributed attribution scores
across a wider range of input features from the last elements
of the input sequence. The only deviation from this pattern can
be seen in Figure 1c, which displays the attribution score for
the last time step of the prediction horizon, and where it can
be observed that 6 out of the 10 most impactful features come
from the intermediate input sequence elements instead of the
last. Nevertheless, as this does not replicate in any other time
step of Zp, it seems likely to be an outlier prediction situation.
Note that there is no evident anomaly in the input sequence
that explains this event either.

The distribution of the attribution scores across the entirety
of the input sequence is shown in Figure 2 for four time steps
across diverse lengths of the Zp. As can be seen, the model is
influenced mostly by the last elements of the input sequence
length, except in the last time step. These attribution scores,
however, present some changes after the first forecasted time
steps, especially observable in Figure 2b and Figure 2c, with
the attribution scores being slightly more evenly distributed.
For some output features, such as Feature 1 and 2, this
happens across the second half of the input sequence, while
for others, such as Feature 3 and 4, it is distributed between
the ending and the beginning of the input sequence. Despite
these changes, notice that most of the importance is still placed
in the last time steps of the input sequence, especially so if
the comparison is made between the initial, intermediate, and
ending parts of the input sequence. Moreover, as was displayed
by Figure 1c, Figure 2d shows that there is a notable anomaly
on the attribution score placement for the last forecasted time
step, where most of the impact, and across all output features,
is placed on an intermediate, single time step (48). Regardless
of the shifts in the feature importance distribution as the model

21Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EXPLAINABILITY 2024 : The First International Conference on Systems Explainability

                            27 / 52



0.0 0.2 0.4 0.6 0.8
mean(|SHAP value|) (average impact on model output magnitude)

Feature 0, seq pos 94 

Feature 1, seq pos 91 

Feature 3, seq pos 95 

Feature 2, seq pos 95 

Feature 1, seq pos 94 

Feature 1, seq pos 92 

Feature 1, seq pos 93 

Feature 5, seq pos 95 

Feature 0, seq pos 95 

Feature 1, seq pos 95 

1
2
0
3
5
6
OT
4

(a) Predicted time step Zp = 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
mean(|SHAP value|) (average impact on model output magnitude)

Feature 3, seq pos 92 

Feature 3, seq pos 94 

Feature 0, seq pos 93 

Feature 0, seq pos 94 

Feature 3, seq pos 93 

Feature 1, seq pos 95 

Feature 1, seq pos 91 

Feature 1, seq pos 94 

Feature 1, seq pos 92 

Feature 1, seq pos 93 

0
1
2
3
5
OT
6
4

(b) Predicted time step Zp = 94
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(c) Predicted time step Zp = 95

Figure 1. SHAP values of the 10 features with the highest impact for multiple
times steps of the prediction horizon. Seq. pos. indicates the time step of the
input feature, i.e. its location in the time series input sequence, while the name
of each feature is enumerated from 0 to 6 plus the OT feature. Note that OT is
one of the eight countries, named differently to be used as the default output
target for the univariate implementation.

predicts further into the future, the anomaly only happens in
the last forecasted time step, complicating the analysis of the
event unless it can be explained as an outlier in the prediction,
which is a known issue in certain domains as pointed out in
[49], [50].

The distribution of the impact from all the input features
over all the outputs, for all the time steps from both input
sequence and output prediction horizon can be seen in Figure
3. In the figure, it can be easily seen that the transformer
model is mostly only affected by the last five elements of
the input sequence. As most of the influence is placed upon
only a small fraction of the inputs, essentially the last time
steps from the input, and across the whole prediction horizon,
it can be verified that the model has not learned any long-
term time dependencies, which suggests transformers might
be fundamentally flawed in dealing with long time series
forecasting (LTSF) tasks from an XAI perspective. It can be
noted that two anomalies occur in two instances of time. One,
as previously spotted in Figure 2d, appears on the last time
step of the prediction horizon, while the other does so in the
very first, and can also be seen in more detail in Figure 2a. The
second anomaly is only in the accumulated value of the impact
of the features, which is significantly higher (about three times
bigger) with respect to its neighbors on the plot. Nevertheless,
it is not an anomaly in the general behavior. On the contrary,
the first anomaly of the predicted time steps is indeed of value
but also of behavior. Nevertheless, being the only behavioral
break of the pattern analyzed across 9216 data points of 3, it
is hardly significant enough, and seems most likely an outlier
in the prediction or the SHAP values computed.

V. CONCLUSION AND FUTURE WORK

In this work, a framework is proposed to look into the
suitability of transformers for time series forecasting using
SHAP to analyze the behavior of the model. It is found
that the transformer was not able to learn long-term time
dependencies from its training, and according to the attribution
scores computed all the impact is placed upon the last time
steps of the inputs. These findings suggest that transformers-
based models might be particularly prone to disregard most
of the time series data used for their training, hence making
them not good choices for this particular task. In consequence,
developers should be aware that transformers appear to fail
to capture the long-term dynamics of time series, and the
issue should be investigated when proposing transformer-based
models for this type of task, in addition to considering the
use of other types of models for LTSF tasks. Furthermore,
for applications where the performance of the transformer-
based model is the only feature looked for, a similar analysis
may be useful in optimizing the training, given that similar
conclusions are reached where most of the input sequence has
a very low impact on the forecasts, suggesting that decreasing
the length of the input sequence would not significantly impact
the performance.

Facing the lack of analysis of this particular issue from an
XAI perspective, experimenting further with these models in a
wider variety of time series datasets and types of models may
yield interesting findings. It can lead to better establishing
if the findings of this work are a symptom of a flaw in
transformer-based models’ design to address LTSF tasks, or if
it is just a case of a flawed model not being able to learn from a
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(a) Forecasted time step 0. Most of the input influence is placed
over the last elements of the input time series sequence.
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(b) Forecasted time step 48. The behavior is similar to Figure 1a,
but the influence is less concentrated on the last time steps.

0.050

0.025

0.000

0.025

0.050

Output feature: 0

0.005

0.000

0.005

0.010

0.015
Output feature: 4

0.10

0.05

0.00

Output feature: 1

0.04

0.02

0.00

0.02

0.04
Output feature: 5

0.050

0.025

0.000

0.025

Output feature: 2

0.00

0.02

0.04

0.06
Output feature: 6

0 20 40 60 80

0.00

0.02

0.04

Output feature: 3

0 20 40 60 80
0.02

0.00

0.02

Output feature: OT

Time step 94

0 1 2 3 4 5 6 OT

(c) Forecasted time step 94. The behavior is consistent with every
previous forecasted time step, and nearly identical to Figure 2b.
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(d) Forecasted time step 95. The behavior changes and most of the
influence is placed on the middle input features of the time series.
Note that it is the only time step where this behavior occurs.

Figure 2. Distribution of the attribution scores across all the elements of the input sequence for the forecasted time steps 0, 48, 94, and 95. Each subfigure
depicts the impact evolution across the input time steps for each of the 8 output features, which are divided into different plots, each one depicting 8 signals
representing each one of the 8 input features from the input time series
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Figure 3. Accumulated impact of all the input features aggregated by the aggregation of the absolute values of their attribution scores over all the output
features for each time step of the input sequence and of the output prediction horizon.

dataset. Furthermore, analyzing more recent transformer-based
models’ designs from this XAI perspective can lead to more
impactful and relevant findings regarding model performance
and suitability for the LTSF task. Additionally, looking more
deeply into these findings with different XAI methods might
yield a solution to exactly where the problem is with these
types of models, so they can be adapted and improved.
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Abstract— Non-small cell lung cancer is a prevalent form of 

lung cancer, with Solitary Pulmonary Nodules (SPNs) as a key 

indicator. Early detection and accurate diagnosis are critical 

for effective treatment. While Convolutional Neural Networks 

(CNNs) have been successful in diagnosing SPNs from 

Computed Tomography (CT) and Positron Emission 

Tomography (PET) imaging, they lack explainability. To 

address this, we applied DeepFCM, a multimodal approach 

that combines Fuzzy Cognitive Maps (FCMs) with CNNs, 

integrating clinical and PET imaging data to predict SPN 

malignancy. Clinical data include patient characteristics (i.e., 

gender, age, Body Mass Index, Glucose Levels) and SPN 

characteristics (diameter, Standardized Uptake Value 

(SUV)max, location, type, and margins). Predictions from the 

RGB-CNN, trained on PET images, are used as additional 

inputs for DeepFCM. Initially defined by nuclear experts using 

fuzzy sets, concept interconnections were adapted with Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA). 

DeepFCM is integrated into a Medical Decision Support 

System (MDSS) to enable data-driven predictions for NSCLC. 

To improve explainability, Gradient-weighted Class Activation 

Mapping (Grad-CAM) highlights significant image regions, 

while DeepFCM illustrates the relationships between each 

feature to NSCLC diagnosis. Natural Language Generation 

(NLG) is applied to explain the DeepFCM decision-making 

process by demonstrating each feature's impact on the 

diagnosis in human-understandable language. (Abstract) 

Keywords-Fuzzy Cognitive Maps; Non-small Cell Lung 

Cancer; Particle Swarm Optimization; Genetic Algorithm. 

I.  INTRODUCTION 

Non-Small Cell Lung Cancer (NSCLC) constitutes 
approximately 85% of all lung cancer cases globally [1]. 

NSCLC can often be presented as a Solitary Pulmonary 
Nodule (SPN) on imaging studies, necessitating further 
evaluation to determine if the nodule is benign or malignant, 
which presents challenges. Most individuals with early-stage 
lung cancer do not exhibit typical symptoms. However, once 
symptoms like cough and hemoptysis appear, many patients 
have already progressed to the middle or late stages of lung 
cancer, with metastasis occurring in some cases [2]. Deep 
Learning (DL) methodologies like CNN have been applied 
and published to detect SPN malignancies. In [3], the authors 
proposed an ensemble-based prediction model for NSCLC 
recurrence following surgical resection. The method 
integrated three neural network models, each trained 
separately on clinical data, handcrafted radiomic (HCR) 
features, and deep learning radiomic (DLR) features derived 
from CT images. The outputs of these models were 
combined using an ensemble analyzer to make the final 
prediction. Data from two institutions were utilized, 
involving standardized Computed Tomography (CT) images 
and relevant clinical features, excluding incomplete cases. 
The proposed ensemble model demonstrated superior 
accuracy using only single data types, achieving an 11.69% 
higher accuracy than the staging baseline.  In [4], the VGG19 
model was applied to classify CT and Positron Emission 
Tomography (PET) images, using the extracted features 
from VGG19 for further analysis. These outputs, along with 
additional SPN characteristics, were fed into an XGBoost 
model, which conducted the final diagnosis by merging 
imaging data and clinical features to enhance diagnostic 
precision. 402 patient cases were used with human 
annotations for internal validation and 96 histopathologically 
confirmed cases for external evaluation. The model achieved 
a 97% agreement with human experts and showed 85% 
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diagnostic accuracy on the external dataset. The most 
important predictors identified in this study were the 
Standardized Uptake Value (SUV)max value and the nodule 
diameter. Additionally, in [5], the authors explored 
multimodal learning on the «CoLlAborative multi-sources 
Radiopathomics approach for personalized Oncology in non-
small cell lung cancer» (CLARO) dataset for NSCLC, 
combining clinical data and imaging from a patient cohort to 
predict overall survival. A late fusion ensemble approach 
optimally integrated classifiers from different modalities, 
including a ResNet34 and a VGG11-BN for the imaging 
modality and a TABNET for the clinical modality, by 
solving a multiobjective optimization problem to maximize 
performance and diversity. Results indicate the proposed 
multimodal ensemble outperforms unimodal models, 
achieving 75% accuracy, 77.7% F1-score, and 84% recall. 
Furthermore, in [6], a two-stage multimodal learning 
framework was developed for diagnosing pulmonary nodules 
in PET/CT images. Pulmonary parenchyma segmentation 
was applied in the first stage with a pre-trained U-Net model. 
The second stage focused on extracting image-level and 
feature-level characteristics by utilizing a 3D Inception-
Residual Net (ResNet) with a convolutional block attention 
module and a dense-voting fusion mechanism. The model's 
performance was validated on real clinical data, achieving 
mean scores of 89.98% accuracy, 89.21% precision, 84.75% 
recall, 93.38% specificity, 86.83% F1 score, and 0.9227 area 
under the curve (AUC). In [7], a stacked 3D CNN model was 
implemented to classify SPN in PET/CT images. 113 
participants were included. Data augmentation was applied 
to increase the size of the training dataset, with random 
rotation, and by applying Gaussian noise, to differentiate the 
augmented images. Grad-CAM was applied as a post-hoc 
explainability technique to get insights from the CNN model. 
The 3D CNN attained a sensibility of 80.00%, a specificity 
of 69.23%, and an accuracy of 73.91%. Four-fold cross-
validation was performed as an evaluation method. 

In a preliminary previous work [8], DeepFCM was 
implemented in the context of a research-funded project 
named EMERALD [9] for the diagnosis of NSCLC assesing 
PET images with the diameter of the SPN and SUVmax 
variable as two only clinical features. RGB-CNN was 
constructed from scratch, and trained on PET images, where 
the CNN predictions for each image instance were included 
as an additional input concept. The FCM-weight analysis 
revealed the interconnections between various concepts, 
illustrating how they influence each other. In addition, 
DeepFCM was employed for the effective diagnosis of 
Coronary Artery Disease (CAD) with Polar map images, 
along with clinical and demographic information about the 
patients presenting the FCM-weighted analysis of concepts 
[10]  and in [11], where the results were enhanced with the 
incorporation of visual (Grad-CAM) and textual (supported 
by language models) explanations. This way, we go a step 
ahead from eXplainable Artificial Intelligence (XAI) 
methodologies towards Trustworthy AI [12]. 

This study aims to develop DeepFCM with the following 
set of clinical features, which include patient demographic 
information like gender, age, Body Mass Index (BMI), 

Glucose Level (GLU) value, and definite parameters such as 
SPN location, type, and margins, along with PET image data 
for NSCLC diagnosis. Robust XAI techniques are employed 
to facilitate understanding of the model, including Grad-
CAM, which explains the decision-making process of CNN 
results. Moreover, Natural Language Generation (NLG) 
techniques translate DeepFCM outputs into human-readable 
linguistic pieces of information, further enhancing the overall 
clarity and transparency of the model's predictions. 

The remainder of the paper is organized as follows: 
Section II presents the methods and methodology, including 
an overview of the patient data and the DeepFCM approach. 
Section III details the research results, while Section IV 
provides the concluding remarks. 

II. MATERIAL AND METHODS 

This section details the data acquisition process for PET 
data, followed by the steps of the proposed DeepFCM 
methodology. 

A. Patient Data 

The PET/CT image data was recorded in the Clinical 
Sector of the Department of Nuclear Medicine at the 
University Hospital of Patras using a hybrid PET/CT scanner 
(Discovery iQ3 sl16, General Electric Healthcare). This 
system uses three detector rings with a 15cm field of view to 
reconstruct 35 axial images at 4.25mm intervals. 3D volumes 
are acquired to represent the whole body using various bed 
positions. At the same time, the patient was in a supine 
position. Two experienced human readers (N.P., 10 years of 
experience, D.J.A., 30 years of experience) characterized the 
SPN malignancy with patient follow-up. The study's nature 
waives the requirement for obtaining patients' informed 
consent. From 2020 to 2023, more than 800 PET/CT scans 
were reviewed to identify potential participants. Patients 
without detected SPNs or with SPNs with a diameter greater 
than 30mm were excluded. 456 patients with a single SPN 
were qualified. The total benign cases were 222 and the total 
malignant cases were 234. Experts annotated CT scan slices, 
noting the finding's type, location, margins, diameter, and 
SUVmax and SPN diameter along with demographic 
information about each patient (gender, age, BMI). The 
SUVmax and diameter parameters were extracted from the 
PET scan. Each SPN finding is represented by a single 2D 
slice in which the full extent of the nodule is visible. 

B. Deep Fuzzy Cognitive Map 

In this research paper, we demonstrate the capabilities of 
our MDSS, specifically highlighting the DeepFCM method 
for diagnosing NSCLC using PET images alongside the 
clinical characteristics. The FCM-based model processed the 
values as input concepts, leveraging FCM's ability to convert 
input knowledge into system concepts with established 
causal relationships among them [13]. Expert knowledge is 
provided in the form of fuzzy sets with linguistic values 
defining the input-output interconnections among concepts. 
The linguistic values are transformed into numerical values 
to be utilized in the algorithm [14]. As interpretability 
techniques, Grad-CAM was employed to interpret CNN 
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predictions, while NLG was used to translate the DeepFCM 
outputs into human-readable explanations. Figure 1 presents 
the full methodological framework of the DeepFCM 
approach used in this study, detailing both the training 
process and the inference mechanism within the MDSS 
functionality. Following, the steps of the DeepFCM 
methodological process are analyzed. 

 

Figure 1.  DeepFCM Methodological Pipeline Framework for NSCLC 

Diagnosis Using Clinical Data and PET Imaging Data 

The clinical data includes patient demographic 
information about the patient such as gender, age, and BMI, 
GLU, as well as characteristics of the SPN such as SUVmax 
value, nodule diameter, and three SPN categorical variables 
type, location, and margins each segmented by their 
respective values. 

First, age was preprocessed with the Min-Max 
normalization technique [15] and the variables BMI, GLU, 
SUV, and diameter were divided with their maximum value 
of 70, 192, 30, and 3 accordingly to be rescaled into the 
spectrum [0,1]. The SPN categorical variables, including 
location, type, and margins, were separated into individual 
columns, with one-hot encoding process. The separated 
columns generated from categorical variables with SPN 
characteristics along with the demographic of the patient 
result in a total of twenty-three clinical characteristics. RGB-
CNN was constructed from scratch and trained with the PET 
dataset; being able to extract a prediction for each image 
instance. The RGB-CNN predictions were incorporated as an 
additional input concept alongside clinical data, collectively 
forming twenty-four distinct input concepts for the 
DeepFCM model. This model leverages both clinical values 
and CNN-derived predictions, integrating them into a 
cohesive framework that enhances interpretability and 
insight into the diagnostic process. By incorporating clinical 
and imaging data, DeepFCM generates results that are not 
only accurate but also transparent, enabling a clear 
understanding of how each concept impacts the final 
diagnosis. Through CNN’s robust feature extraction from 
imaging data, combined with the FCM’s transparent 
framework for mapping interconnections, DeepFCM delivers 
an insightful diagnostic tool that provides clinicians with a 
nuanced view of the decision-making process. This 
combined approach strengthens the system’s capacity to 
guide decisions, making DeepFCM a comprehensive and 

interpretable tool in the context of medical diagnostics [11]. 
A 10-fold cross-validation approach was implemented to 
ensure the generalizability of results by partitioning the 
dataset into 10 batches, where each batch served as the 
testing fold while the remaining nine served as the training 
folds [16].  

In this study, Particle Swarm Optimization (PSO), and 
Genetic Algorithm (GA) were incorporated into the 
DeepFCM learning process to adjust the interconnections 
among concepts and thus be in line with the provided expert 
knowledge. PSO [17] is a population-based approach with 
particles exploring the search space. PSO can be integrated 
into the FCM learning process by treating the 
interconnections (weights) between concepts as particles in 
the search space. Each particle (weight) adjusts its position 
based on its own best-known position and the best-known 
positions of its neighbors, iteratively optimizing the FCM 
weight matrix to minimize the error between predicted and 
actual outcomes. GA integrates with FCM learning by 
encoding the weights between concepts as chromosomes, 
which evolve over multiple generations. Through selection, 
crossover, and mutation, GA searches for the optimal weight 
matrix that best aligns with expert knowledge, improving the 
predictive power of the FCM model [18]. Both optimization 
methods calculate the weights (interconnections) among 
DeepFCM concepts to improve classification performance. 
Even though they perform similarly in the benchmark 
classification metrics, the GA applied for DeepFCM learning 
emerges with lower computational latency.  

Overall, the learning process creates a weight matrix to 
minimize the error function, used by DeepFCM for NSCLC 
diagnosis. For each case, DeepFCM uses the selected weight 
matrix to provide a diagnosis and at the same time to 
visualize the input-output relationships, enhancing 
transparency in the decision-making process. 

Regarding XAI techniques, Grad-CAM is used to 
interpret RGB-CNN predictions, by highlighting the most 
influential regions that signify the prediction. Grad-CAM 
implemented by Selvaraju [19] leverages the feature maps 
produced by the final convolutional layer of the CNN to 
identify the most relevant regions in the image that 
contribute to the model's prediction. By computing the 
gradients of the target class concerning these feature maps, 
Grad-CAM generates a heatmap that highlights the areas of 
the image most influential in the decision-making process, 
providing visual insights into the model’s focus [19]. In 
addition, textual explanations were generated with GPT-4, a 
pre-trained large language model, which has an Application 
Programming Interface (API) provided by OpenAI [20], as 
an NLG technique. Namely, a prompt is provided to GPT-4, 
containing the user-inputted variable values, the DeepFCM 
result, the CNN prediction, and the corresponding DeepFCM 
weight values, along with instructions about how to realize 
the structure of the requested textual explanation. This 
enables GPT-4 to generate a comprehensive natural 
explanation of the decision-making process, offering clear 
insights into how DeepFCM arrived at its diagnosis. 
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III. RESULTS 

This section presents the classification results along with 
the included XAI techniques, with the DeepFCM, generated 
interconnections, heatmap image, and NLG reasoning, to 
interpret the DeepFCM decision-making process. 
Additionally, it demonstrates the functionality of MDSS in 
classifying NSCLC diagnoses using PET and clinical data. 

A. Classification Results 

For classifying NSCLC data into two categories, benign 
and malignant, CNN models and DeepFCM were applied 
and compared with the literature state of the art for similar 
cases. Table I provides a summary of the performance 
metrics across different investigated models. Initially, the 
results of the RGB-CNN model, which was trained 
exclusively on PET image data are presented. Next, 
DeepFCM results are illustrated, following the proposed 
multimodal approach integrating clinical and imaging data 
(see section above), optimized using PSO and GA. Finally, 
the proposed models are compared against state-of-the-art 
models cited in the literature review [3]-[5]. Mean values and 
standard deviations illustrate the consistency of results for 
each model. Additionally, confidence intervals (CIs) are 
provided for the second to last model, offering insight into 
the precision and reliability of its performance estimates. 

TABLE I.  DEMONSTRATION OF RESULTS 

Accuracy Loss Sensitivity Specificity Precision 

RGB-CNN model 

83.12%±6.43% 0.3 92.26±6.18% 91.91±9.21% 91.31±5.75% 

Proposed study (DeepFCM-PSO and DeepFCM-GA) 

88.14%±3.8% 0.12 88.36±5.23% 87.29±7.48% 91.27±5.28% 

87.08%±5.96% 0.13 84.56±12.29% 85.38±6.83% 87.79±6.16% 

Literature study [3] 

73.23%±6.0% - 80.08±6.4% -  75.71±4.8% 

Literature study [4] 

85.21 (95% CI: 

83.74–86.68) 
 

81.23 (95% 

CI: 79.22–

83.24) 

95.37 (95% 

CI: 

92.99–97.75) 

 

Literature study [5] 

75%±16.2% - 84%±15.17% - - 

 
In particular, RGB-CNN achieved 83.12% accuracy, 

while DeepFCM's multimodal approach improved the 
classification accuracy, with PSO reaching 88.14% and GA 
87.08%. Incorporating additional clinical information, the 
overall performance has been enhanced. DeepFCM models 
showed smaller deviations in the calculated metrics, 
indicating consistency. State-of-the-art multimodal 
approaches attained 73.23% [3], 85.21% [4], and 75% [5] 
accuracy, highlighting the improvements achieved by the 
proposed model. 

B. MDSS illustrative  example 

We present the DeepFCM results through MDSS for 
NSCLC diagnosis using the DeepFCM-PSO model, which 
achieved the best metrics. The DeepFCM graph 
demonstrates the interconnections among concepts, Grad-
CAM provides visual CNN explanations, while GPT-4 
translates outputs into clear, understandable interpretations. 

1) MDSS Diagnosis 
Figure 2 showcases the DeepFCM diagnosis along with 

the generated DeepFCM graph, illustrating the 
interconnections between concepts. The patient refers to a 
63-year-old male patient with a BMI of 27.8, a GLU value of 
89, an SUVmax of 10.2, and an SPN diameter of 2.7 cm 
located in the right lower lobe. The type of SPN is semi-solid 
with lobulated margins.  

 

Figure 2.  MDSS screenshot: Illustrative example with DeepFCM-PSO 

Integration for NSCLC Diagnosis Using PET Imaging and Clinical Data. 

2) Grad-CAM 
Figure 3 showcases the Grad-CAM application through 

MDSS, with JET colormap to highlight impactful regions in 
red and less impactful ones in blue. The figure includes the 
cropped ROI image, the heatmap indicating key areas, and 
the overlay combining both. The CNN accurately classified 
the malignant lesion, and Grad-CAM effectively localized 
and highlighted in red the malignant SPN region, providing 
visual justification for the RGB-CNN model's prediction of 
malignancy.  
 

Figure 3.  Grad-CAM Application Integrated into MDSS as an XAI 

Technique for PET Image Analysis. 

3) Textual explanations 
In Figure 4, we present the results from the GPT-based 

textual explainer integrated within the MDSS, which offers a 
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clear and detailed analysis of the clinical factors contributing 
to the malignancy prediction. A prompt was carefully 
constructed, incorporating several key components: the CNN 
and DeepFCM predictions, the input clinical values, the 
heatmap image generated through Grad-CAM, and the 
DeepFCM-generated interconnections. This combination 
allows the explainer to highlight the most influential factors, 
while seamlessly integrating image analysis and model 
predictions. 

DeepFCM has accurately classified the SPN as 
malignant, supported by both clinical and imaging data. Key 
clinical factors such as high SUV (10.2), significant nodule 
diameter (2.7 cm), and lobulated margins play pivotal roles 
in this diagnosis. Additionally, the image analysis, including 
the original scan and Grad-CAM heatmap, reinforces the 
malignancy prediction by highlighting critical regions 
associated with increased metabolic activity and irregular 
growth patterns. The integration of clinical insights, CNN 
predictions, and visual heatmap evidence provides a 
comprehensive and explainable diagnosis for the nuclear 
doctor, ensuring consistency and clarity in the interpretation 
of the results. 

IV. CONCLUSIONS 

DeepFCM’s capabilities establish it as a fundamental tool 
for achieving accurate SPN diagnoses in PET images and 
clinical data while providing explainability of results, 
enhancing DeepFCM’s suitability to be incorporated into 
doctors’ diagnosis process. DeepFCM stands out as a 
transparent tool for effective NSCLC diagnosis by 
incorporating explainable methodologies.  

DeepFCM’s interconnections between clinical and 
imaging data, using PSO and GA, highlight key features like 
SUV, nodule diameter, and the SPN type. This alignment 
validates its accuracy in prioritizing factors influencing 
NSCLC malignancy. Its ability to reveal meaningful clinical-
imaging connections solidifies its potential as a reliable 
diagnostic tool, aiding clinicians in identifying critical 
factors for accurate NSCLC diagnosis. 

 

Figure 4.  Explanation of DeepFCM Prediction for NSCLC Analysis 

Using NLG Reasoning. 

This approach aligned with nuclear experts' assessments 
and helped non-specialists understand the model’s logic. 
Grad-CAM detected the SPN region in the PET image, 
which RGB-CNN classified as malignant. The heatmap 
highlighted key high metabolic activity areas within the 
nodule, visually explaining the model's decision. This 
validated the model’s focus on relevant regions, offering 
clinicians a clear understanding of CNN’s classification 
process, and enhancing transparency in diagnosis.The study 
has limitations, primarily due to the dataset being sourced 
from a single hospital, which affects its representativeness 
and generalizability across different regions and healthcare 
settings. This may limit the broader applicability of the 
findings. Further improvement could be achieved by 
incorporating diverse datasets to enhance model robustness 
and applicability. 

MDSS incorporating DeepFCM is a valuable tool for 
accurate SPN diagnosis in PET images and clinical data. By 
providing clear, explainable results, MDSS enhances the 
diagnostic process, making it a vital asset in clinical settings. 
This system not only improves the accuracy of diagnoses but 
also ensures that the reasoning behind each diagnosis is 
transparent and understandable, fostering trust in AI-driven 
healthcare solutions. 
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Abstract—Devising mathematical models with high accuracy,
but otherwise low interpretability as well as explainability is
no longer sufficient. This paper proposes a universal, model-
agnostic method for achieving a certain degree of explainability
of complex mathematical models including the models that are
used, for example, in computer simulations. Specifically, the
proposed method prescribes how to effectively perform Sobol’s
outer decomposition of a complex model by exploiting masking
of the model inputs by a default value. The masking can not only
divide the inputs into multiple orthogonal subspaces, but it also
determines the granularity, at which the model explainability
is studied. The outputs corresponding to every masked input
can be orthogonalized by some existing methods including, for
example, the Gram-Schmidt process. It enables readily finding
the optimum linear combining of these orthogonal outputs. It
should be noted that such a model decomposition is not intended
to improve the accuracy by ensemble modeling, but the goal is to
uncover an inherent structure and properties of complex models.

Keywords—Explainability; model-agnostic; multivariate func-
tion; orthogonal decomposition; Sobol’s decomposition.

I. INTRODUCTION

Mathematical modeling has become indispensable in many

scientific and engineering disciplines. In engineering, for ex-

ample, mathematical models are necessary for offering cred-

ible explanations about how the systems should be designed

in any particular way, or why the given system has a partic-

ular performance. The widespread adoption of mathematical

models is steadily driven by the modeling economics. Thus,

designing ever more complex engineering systems and eluci-

dating understanding of many physical and biological systems

have become much cheaper and faster when they are studied

as mathematical models rather than performing often costly

and tedious laboratory or field experiments. Mathematical

modeling allows guided searches and systematically exploring

very large spaces of domain knowledge by leveraging comput-

ing technology and algorithms. The expanding ecosystem of

mathematical models leads to much higher information gains,

and it also facilitates automated discovery of new knowledge.

Mathematical models can appear in several basic forms.

The first obvious form are mathematical expressions, which

can be manipulated using algebraic rules and calculus. It is

the only form, which guarantees reproducability. The second

form are algorithms and computer simulations represented

implicitly or explicitly by hierarchical mathematical structures.

They are mainly used for computing the outputs for given

input values. The third form are the sets of input-output data

values. The datasets can be used to infer other forms of

mathematical models with a varying degree of accuracy. Deep

learning models are particularly popular nowadays due to their

universality to fit different kinds of datasets within the same

model structure. Such a fundamental property can be attributed

to compositional sparsity of computable functions [1].

The model development and analysis often requires under-

standing how the model outputs are derived from its inputs. It

includes understanding how the input-output transformation

is affected by the model structure as well as by different

sets of model parameters. Such a task has been traditionally

referred to as sensitivity analysis [2], and it is key in providing

the model interpretability. It is generally accepted that there

is a trade-off between the model interpretability and the

model accuracy [3], although this assumption is currently

being debated. The model interpretability enables a variety of

model-related tasks such as calibrating, optimizing, selecting,

validating and simplifying the models, and making the models

more robust by reducing the model uncertainties.

The basic strategy for performing a local sensitivity analysis

of the model exploits derivatives in multiple input dimensions

[2]. The global sensitivity analysis can be obtained by expand-

ing the model outputs directly, or by expanding the model

output means or variances in terms of the input statistics

[2], [4]. The surrogate or meta models can be particularly

effective in reducing the computational costs, and providing

the faster convergence. The challenge is how to preserve the

key properties of the original model [4].

Furthermore, since the models are usually used to provide a

certain functionality within high-level applications, it may be

easier as well as sufficient to examine the model explainability

[5]. Unlike interpretability, explainability does not require

understanding a complete model structure. Instead, explain-

ability focuses on a more narrow objective of identifying,

which model inputs are more important in determining the

model outputs, This problem is also referred to as input

factors screening, or attribution problem. The most popular

methods for achieving the model explainability are model-

agnostic. They include permutation importance of features,

various dependency plots (e.g., individual conditional expec-

tation plots, and partial dependency plots), local interpretable

model-agnostic explanations (LIME) [6], and Shapley additive

explanations (SHAP) [7].
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In general, orthogonalizations can be used to improve the

convergence, and even the performance of models [8]. The

orthogonalization injects separability into the model, which

then leads to a reduced complexity and increased robustness,

since the model components have less effect on each other.

The orthogonal model components can be added or removed

without requiring to change the existing model structure. In

the literature, various orthogonalization methods of linear

and non-linear models were considered. For example, the

Gram-Schmidt process together with variable projections was

adopted in [9] to fit the data with a linear combination of

non-linear models. The Gram-Schmidt process was also used

in [10] to improve learning of deep neural networks. The

mixing of orthogonalized linear models was examined in [11]

to improve the scale and the convergence of data fitting. The

properties of orthogonalized linear regression were studied

in [12], [13]. A faster convergence of statistical parameter

estimation was obtained by exploring orthogonal statistical

moments in [14]. The methods for achieving explainability in

deep neural networks were reviewed in [15], although without

assuming any orthogonalization strategies.

The main problem with the above works is they implic-

itly assume that the model under consideration is a linear

combination of multiple sub-models. This excludes a large

number of other models, for example, the models that are

used in computer simulations, where explicit mathematical

description is often very limited. In this paper, we overcome

such a limitation by defining the model components using

multiple input projections with the model being considered,

so it does not matter how the given model is specified.

More specifically, our objective is to explore an inherent

structure of complex models by orthogonal projections of their

inputs and outputs. The proposed method obviates the need

to mathematically manipulate the model, so it is completely

model agnostic. The only requirement is that the model being

investigated is already “good enough”. The proposed method is

primarily motivated by Sobol’s decomposition of multivariate

functions [16]. The proposed method is similar to SHAP

method except that it does not require obtaining multiple

models, for example, retraining multiple machine learning

models, for different input subspaces. Moreover, both input

and output subspaces can be made orthogonal. It enables

exploiting other useful properties, and providing insights into

the dependency and importance of model inputs and outputs.

The rest of the paper is organized as follows. Section

II reviews common decomposition strategies of multivariate

functions. Section III introduces the proposed decomposition

method for explainability of complex models. Numerical ex-

ample is investigated in Section IV. Conclusion and future

work are summarized in Section V.

II. DECOMPOSITIONS OF MULTIVARIATE FUNCTIONS

Function decompositions allow uncovering their latent

structure, reducing the computational complexity by enabling

divide & conquer strategies, obtaining approximations, which

are amenable to optimizations and analysis, and most im-

portantly, they can also provide explainability. In the liter-

ature, function decomposition is also sometimes referred to

as function factorization, and function expansion, respectively,

depending on the specific objectives assumed.

Consider a multivariate vector function,

yyy = fff (xxx) = fff (x1, . . . ,xI) =







f1(xxx)
...

fO(xxx)






∈ R O, xxx ∈ R I (1)

representing a mapping between the Euclidean vector spaces,

R I 7→ R O. There are two basic function decomposition strate-

gies. In particular, the decomposition into n product-factors

can be written as,

fff (xxx) =
n

∏
i=1

fff i(sssi), sssi ⊆ {x1, . . . ,xI} (2)

whereas the decomposition into n sum-factors is defined as,

fff (xxx) =
n

∑
i=1

fff i(sssi), sssi ⊆ {x1, . . . ,xI}. (3)

These decompositions are very useful for effectively per-

forming, for example, the function marginalization and max-

imization over all except a small number of independent

input variables. Moreover, it is usually easier to express a

complicated support region, A , of the function, fff (xxx), ∀xxx ∈ A ,

using a scalar decision function, A(xxx), i.e.,

fff (xxx)A(xxx) =

{

fff (xxx), xxx ∈ A

0, xxx 6∈ A
(4)

which enforces zero function values, when the inputs are

outside the support region. Since A(xxx) is itself a multivariate

function, it can be decomposed using the same factorizations.

The multivariate Taylor expansion [17] was assumed in [4]

to obtain a polynomial expansion of stochastic functions in

multiple dimensions, i.e.,

yyy ≈
n

∑
i=1

ai |xxx − E[xxx]|i1 (5)

where E[·] denotes the expectation, and | · |1 is the absolute

value of a sum of the vector or matrix elements. The main

issue with the Taylor-based function expansion is that it is

very localized, so one has to decide about which point in the

input space the function is to be approximated.

In the literature, there are different versions of the universal

approximation theorem [18]. Specifically, this theorem claims

that certain broad classes of multivariate functions can be

approximated to an arbitrary accuracy by compounding a

sufficient number of linear transformations followed by a

dimension-wise non-linearity (activation function), i.e.

yyy ≈= · · · σσσ ◦ (AAAi,bbbi) ◦ · · ·σσσ(AAA1xxx + bbb1). (6)

The corresponding computing structure is known as a multi-

layer perceptron (MLP).

Alternatively, the Kolmogorov-Arnold theorem claims that

multivariate scalar functions defined on a unit hypercube can

34Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EXPLAINABILITY 2024 : The First International Conference on Systems Explainability

                            40 / 52



be approximated to an arbitrary accuracy by assuming the

decomposition [19],

f (xxx) =
2n

∑
i=0

Φ

(

n

∑
j=1

φi, j(x j)

)

. (7)

The caveat is that, in practice, the non-linear functions, Φ,

and, φi, j, can be very peaky, or otherwise ill-shaped. The cor-

responding computing structure is known as the Kolmogorov-

Arnold network (KAN) [20].

Another function decomposition, which will be assumed

in the following section to enable explainability of complex

models, is due to Sobol [2], [16]. It is referred to as Sobol’s

decomposition, and it is an example of the sum-factors de-

composition (3). In particular, a multivariate vector function,

fff , can be systematically expanded as,

fff (xxx) = fff 0 +
I

∑
i=1

fff i(xxxi) +
I

∑
i, j=1
i6= j

fff i, j(xxxi,xxx j) · · · +
I

∑
i=1

fff {1:I}\i(xxx)

(8)

where fff 0 is a constant vector, xxxi denotes the i-th variable of

the I-dimensional input vector, xxx, and, {1 : I}\ i, removes the

index i from the index set, {1,2, . . . , I}. Expansion (8) also

allows for symmetric component functions, i.e., the functions

that are invariant to permutations of their arguments. More

importantly, Sobol’s decomposition is not unique, however,

without any further constraints, it is exact.

There is yet another model-agnostic method for approxi-

mating multivariate functions, which turned out to be very ef-

fective in many practical scenarios involving complex models

that are expensive to evaluate. The basic idea of this method

is to approximate the model by the realization of a multi-

dimensional Gaussian process [21] assuming only a few points

where the function values are known. However, this method

is not considered in this paper.

III. ORTHOGONAL INPUT-OUTPUT DECOMPOSITIONS

Kolmogorov-Arnold decomposition (7) assumes only uni-

variate component functions, whereas Sobol’s decomposition

(8) combines component functions having different number

of variables. Assuming the latter, it can be argued that the

summands in (8) that are dependent on larger number of

input variables are more accurate approximations of the given

function, fff (xxx), then other component functions having smaller

number of variables. However, the component functions with

more variables are not only more difficult to obtain, but they

are also less interpretable.

In practice, a good trade-off between the decomposition

interpretability, complexity, and accuracy can be achieved

by assuming non-empty variable subsets, sss(i) ⊂ {x1, . . . ,xI},

i = 1, . . . ,N, such that the subsets, sss(i), fully cover all input

variables, xxx. Here, it is proposed to only consider the following

terms in decomposition (8) in order to obtain an interpretable

approximate representation of the original function, i.e., let,

fff (xxx) ≈ fff 0 +
N

∑
i=1

fff i(sss(i)) +
N

∑
i, j=1
i6= j

fff i, j(sss(i),sss( j)). (9)

The structural interpretation of decomposition (9) is obvi-

ous; it is a fully connected graph consisting of N vertices as

depicted in Figure 1. The vertices are assigned the component

functions, fff i(sss(i)), while the edges between the vertices are

assigned the pairwise component functions, fff i, j(sss(i),sss( j)).

f3(sss(3)) f2(sss(2))

f1(sss(1))

fN(sss(N))

fN−1(sss(N−1))

fi(sss(i)) f1,i(sss(1),sss(i))

f1,3(sss(1),sss(3))

f1,N−1(sss(1),sss(N−1))

Figure 1. Truncated Sobol’s decomposition of a multivariate function as an
interpretable and universal representation with good approximation accuracy.

In the sequel, we assume that the multivariate vector

function, fff , represents a complex model, M(xxx;ΩΩΩ), which is

parameterized by a set of parameters, ΩΩΩ, i.e.,

fff (xxx,ΩΩΩ) ≡ M(xxx;ΩΩΩ) ≡ MΩΩΩ(xxx). (10)

The parameters, ΩΩΩ, represent additional input dimensions of

the model. In practice, conditioning on parameters defines

a whole class of models, MΩΩΩ(xxx), so the input dimensions

are only represented by xxx. For example, the model, M, can

be a deep learning model with learnable parameters, ΩΩΩ. The

overall process of extracting the proposed model structure as

decomposition (9) is shown in Figure 2.

xxx
MΩΩΩ(〈mmm(2),xxx〉)

MΩΩΩ(〈mmm(1),xxx〉)

MΩΩΩ(〈mmm(N),xxx〉)

mmm(N)

mmm(2)

mmm(1)

o
rt

h
o

g
o

n
al

iz
at

io
n

eee(1)

eee(2)
a2

yyy

vvv(1)

vvv(2)

vvv(N) eee(N)
aN

a1

Figure 2. Model-agnostic decomposition (9) for extracting the input-output
structure of complex models, MΩΩΩ(xxx).

A. Orthogonal Inputs

It is desirable to consider the projections of model inputs

into multiple independent subspaces, since the information
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contents of a sum of independent components is then equal

to the sum of the information contents of these components.

The vector subspaces are independent, provided that they

are mutually orthogonal. Thus, assume the subsets of input

variables, sss(i), satisfying,
{

sss(i) ∩ sss( j 6=i) = /0 (disjoint)

∪i sss(i) = xxx (full coverage)
. (11)

If the model, M, is complex, and expensive to evaluate (a

typical case for deep learning models), the question arises

how to effectively find the component functions, fff i, and, fff i, j,

in decomposition (9). A possible solution is to combine the

given multi-dimensional complex model with the orthogonal

subspace projections of its inputs as shown next.

Let the input variables be arranged in a column vector, xxx.

Define the binary mask vectors, mmm(i), i = 1, . . . , I, of the same

length as xxx, i.e., mmm(i) ∈ {0,1}I . The zeros in mmm(i) indicate,

which components in xxx should be masked by setting them to

some default value, for example, to zero. Then, by slightly

abusing the notation when using the same symbol for a set

as well as for its vector representation, the orthogonal (i.e.,

mutually exclusive) variable subsets, sss(i), can be represented

as vectors,

sss(i) = 〈mmm(i),xxx〉 = (mmm(i))T · xxx =
I

∑
j=1

mmm
(i)
j xxx j (12)

where 〈·, ·〉 denotes the inner product of two vectors. The

corresponding output vectors for every masked input are,

vvvi = MΩΩΩ(〈mmm(i),xxx〉), i = 1,2, . . . ,N. (13)

B. Orthogonal Outputs

After computing the N output vectors for all N masked

inputs, it is useful to explore their structure too. In particular,

the outputs can be assumed to be deterministic vectors in

an O-dimensional vector space. In such a case, they can be

orthogonalized by the Gram-Schmidt procedure, provided that,

O ≥ N. In particular, the orthogonal vectors, eeei, are obtained

as linear projections of vectors, vvv(i), using the recurrence,

eee(i) = vvv(i) −
i−1

∑
j=1

〈vvv(i),eee( j)〉eee( j), i = 2,3, . . . ,N (14)

with the initial vector, eee(1) = vvv(1). Note that orthogonalization

(14) can be expressed as a linear transformation of vectors,

vvv(i). The caveat is that the linear transformation must be

recomputed for every new set of vectors, xxx.

In practice, often, N ≫ O, which rules out the Gram-

Schmidt procedure (more precisely, the vectors with O com-

ponents can span the subspaces in at most O dimensions). In

such a case, other orthogonalization strategies are possible that

exploit various matrix factorizations. In this paper, the vectors,

vvv(i), are decorrelated by first finding their empirical correlation

matrix, CCCvvv. The elements of CCCvvv are the average inner products.

They can be computed recursively as soon as the k-th set of

vectors, vvv(i)(k), has been obtained, i.e.,

CCC
(vvv)
i, j (k) =

k

k + 1
CCC

(vvv)
i, j (k − 1) +

1

k + 1
〈vvv(i)(k),vvv( j)(k)〉. (15)

Since the matrix, CCC(vvv), is guaranteed to be positive-definite,

it can be decomposed into a product of the square matrix,

DDD ∈ R N×N , i.e., , CCC(vvv) = DDDT DDDT , for example, using a singular

value decomposition (SVD). The matrix, DDD, can be then used

to decorrelate, i.e., orthogonalize the vectors, vvv(i)(k), as,

EEE(k) = [eee(1)(k) · · · eee(N)(k)] = VVV (k)DDD−T (k) ∈ R O×N (16)

where the vectors at instant, k, are gathered into matrices,

EEE(k), and, VVV (k), respectively.

The resulting vectors, eee(i), are orthogonal, so that,

〈eee(i),eee( j)〉 =

{

Ei, i = j

0, i 6= j
(17)

where the squared (Euclidean) length of these vectors is,

Ei = 〈eee(i),eee(i)〉 =
∥

∥

∥
eee(i)
∥

∥

∥

2

. (18)

The values, Ei, can be again computed recursively as,

Ei(k) =
k

k + 1
Ei(k − 1) +

1

k + 1

∥

∥

∥
eee(i)(k)

∥

∥

∥

2

. (19)

Recall also that, when the vectors, vvv(i), are assumed to be

random (the N ≫ O case), the inner products are computed as

empirical means (cf. eq. (15)).

Finally, the orthogonal vectors, eee(i), are linearly combined

to create the output vector, yyy, as,

yyy(k) =
N

∑
i=1

ai eee(i)(k). (20)

It is immediately obvious, why to make the vectors, vvv(i),

orthogonal. Thus, by multiplying both sides of (20) by the

vector, eee( j), and averaging, the combining coefficients can be

computed one-by-one as,

∑
k

〈eee( j)(k),yyy(k)〉 = ∑
k

N

∑
i=1

ai〈eee( j)(k),eee(i)(k)〉 = a jĒ j (21)

⇒ a j = 〈eee( j),yyy〉/E j = 〈eee( j),MΩΩΩ(xxx)〉/E j (22)

where the desired output vector, yyy = MΩΩΩ(xxx).

C. Obtaining Decomposition (9)

The procedure described so far can be readily used to obtain

the first two summands in decomposition (9), i.e., (N + 1)
functions, { fff 0, fff 1, . . . , fff N}. Even though it is possible to also

obtain, at the same time, the second-order functions, fff i, j, the

joint orthogonalization of all (N(N + 1)/2) vectors, vvv(i) =
MΩΩΩ(〈mmm(i),xxx〉), and, vvv(i, j) = MΩΩΩ(〈mmm(i, j),xxx〉), is rather cumber-

some. In order to overcome this difficulty, decomposition (9)

can be performed in two steps. In particular, after obtaining

the zero and the first-order functions, { fff 0, fff 1, . . . , fff N}, the

N(N − 1)/2 second order functions, fff i, j, are obtained in the

second step in order to approximate the left-hand side of the

expression,

fff (xxx) − fff 0 −
N

∑
i=1

fff i(sss(i)) ≈
N

∑
i, j=1
i6= j

fff i, j(sss(i),sss( j)). (23)
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This process can be continued to obtain the N(N − 1)(N −
2)/6 third-order functions, fff i, j,k, and so on. However, and

importantly, the input masks for higher-order functions are no

longer assumed to be disjoint (i.e., orthogonal), as they are

created by combining the first-order masks, mmm(i); for example,

mmm(i, j) = mmm(i) + mmm( j)

mmm(i, j,k) = mmm(i) + mmm( j) + mmm(k).
(24)

IV. NUMERICAL EXAMPLE

Machine learning is assumed as an example of a complex

model to illustrate the proposed explainability method. The

well-known MNIST dataset [22] of hand-written digits is used

with a basic MLP classifier. The training samples are gray-

scale images of (28 × 28) pixels with pixel values between

0 and 1. The MLP has two hidden layers with 30 and 20

neurons, respectively, and 10 softmax outputs. The MLP was

trained on all samples over only 10 epochs. The trained

model reached the training accuracy of 97.56%, and the

testing accuracy of 94.31%. The model was implemented

using Python class, “MLPClassifier”, from the Python module,

“sklearn.neural network”.

The goal is to decompose the trained MLP model into the

explainable structure in Figure 2. There are two key aspects

to investigate. First, we can compare the training samples

from the MNIST dataset, on which the MLP model was

trained, against the randomly generated inputs. Second, the

orthogonal masks can be compared with the masks generated

at random. In both cases, we compute the mean-square error

(MSE) between the trained MLP output, and the combined

output of the expanded model in Figure 2.

In the experiment concerning different distributions of in-

puts, in addition to training and testing samples from the

MNIST dataset, the same number of (28 × 28) independent

random inputs were generated from a uniform distribution.

The resulting MSE values are summarized in Table I, for

N = 7,14,28,56 and 112 subspace projections, respectively.

The MSE values were averaged over K input samples and N

model components as follows:

MSE0 =
1

K

K

∑
k=1

‖yyy(k)‖2

MSE1 =
1

NK

N

∑
i=1

K

∑
k=1

∥

∥

∥
vvv(i)(k) − yyy(k)

∥

∥

∥

2

min MSE1 = min
1≤i≤N

1

K

K

∑
k=1

∥

∥

∥
yyy(i)(k) − yyy(k)

∥

∥

∥

2

MSE2 =
1

K

K

∑
k=1

‖ỹyy(k) − yyy(k)‖2

(25)

where yyy = MΩΩΩ(xxx) is the output of the trained model, vvv(i) is the

output of the model using the i-th mask as its inputs, and ỹyy

denotes the overall combined output of the decomposed model.

Note also that MSE0 values are independent of N.

Examining the MSE values in Table I, it is obvious that

MSE1 values are comparable to MSE0 values, i.e., masking

TABLE I. COMPARISON of MSE VALUES

N inputs masks MSE0 MSE1 min MSE1 MSE2

7

train.
rand. 0.953 0.821 0.717 0.791

systm. 0.953 1.2085 0.912 0.767

rand.
rand. 0.416 0.432 0.336 0.275

systm. 0.418 0.892 0.466 0.253

14

train.
rand. 0.953 0.921 0.805 0.739

systm. 0.953 1.1028 0.835 0.739

rand.
rand. 0.417 0.430 0.330 0.270

systm. 0.417 0.727 0.362 0.252

28

train.
rand. 0.953 0.936 0.866 0.741

systm. 0.953 1.0348 0.844 0.751

rand.
rand. 0.417 0.442 0.322 0.258

systm. 0.416 0.584 0.279 0.233

56

train.
rand. 0.953 0.947 0.850 0.753

systm. 0.953 0.986 0.877 0.749

rand.
rand. 0.417 0.437 0.330 0.269

systm. 0.418 0.511 0.328 0.233

112

train.
rand. 0.954 0.950 0.890 0.731

systm. 0.954 0.972 0.878 0.742

rand.
rand. 0.418 0.465 0.351 0.280

systm. 0.417 0.474 0.315 0.232

the inputs can substantially reduce the classifier accuracy in

exchange for better interpretability. More importantly, combin-

ing all N outputs of the N model replicas with masked inputs

can greatly improve the accuracy. Thus, assuming not only

the first-order functions in decomposition (9) is expected to

further improve the approximation accuracy. Surprisingly, the

number of masks N considered seems to have a little effect on

the MSE. For training samples from the MNIST dataset, using

random or systematic masks make a little difference. However,

for randomly generated inputs, the original MLP model and

the expanded model have very similar MSE values.

Next, we display the correlation matrix, CCCvvv, and, the prob-

abilities, PPPi, j, that the MLP output predictions for the masked

inputs agree with the predictions obtained when the masks

are combined. We again consider four cases as in Table I.

Specifically, the probabilities, PPPi, j , are defined for the pairs

of masks, mmm(i), and, mmm( j), 1 ≤ i 6= j ≤ N, as the ratios of the

number of instances when the decisions for the two masked

inputs are the same as the decision when the two masks

are combined, i.e., for the mask, mmm(i) + mmm( j). The calculated

matrices, CCCvvv), and, PPP, are shown in Figure 3.

In Figure 3, there is an apparent line marking the main diag-

onal. All sub-figures are symmetric about the main diagonal.

Increasing N not only increases the resolution, but also the

variety of calculated values. There are clearly observable pat-

terns (the squares of various sizes and color shades) indicating

that orthogonal input subspaces might lead to similar output

decisions due to inherent cross-correlations. The probabilities

(right-column sub-figures) related to the final output decisions

appear to have visually richer patterns than the pairwise cor-

37Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EXPLAINABILITY 2024 : The First International Conference on Systems Explainability

                            43 / 52



N = 7 N = 14 N = 28

ra
n
d
.

in
p
u
ts

ra
n
d
.

m
as

k
s

(7x7) Covariances (7x7) Probabilities (14x14) Covariances (14x14) Probabilities (28x28) Covariances (28x28) Probabilities

ra
n
d
.

in
p
u
ts

sy
st

em
.

m
as

k
s

(7x7) Covariances (7x7) Probabilities (14x14) Covariances (14x14) Probabilities (28x28) Covariances (28x28) Probabilities

tr
ai

n
.

in
p
u
ts

ra
n
d
.

m
as

k
s

(7x7) Covariances (7x7) Probabilities (14x14) Covariances (14x14) Probabilities (28x28) Covariances (28x28) Probabilities

tr
ai

n
.

in
p
u
ts

sy
st

em
.

m
as

k
s

(7x7) Covariances (7x7) Probabilities (14x14) Covariances (14x14) Probabilities (28x28) Covariances (28x28) Probabilities

Figure 3. The calculated correlations CCCvvv (left columns), and the decision probabilites (defined in the text; right columns).
For comparison purposes, the units are arbitrary, and the darker colors represent smaller values.

relations (left-column sub-figures). Interestingly, the patterns

for N = 28 start emerging as being in 3D. There is a clear

difference between the models processing random inputs, and

processing the inputs, on which they were trained. This can be

exploited for detecting the out-of-sample distributions. Similar

claims can be made about systematic (orthogonal) masks vs.

random masks. In both cases, the differences become more

recognizable when N is increased.

V. CONCLUSION AND FUTURE WORK

Sobol’s decomposition of multivariate functions was

adopted to expand complex models, and to support their

input-output explainability. This was achieved by masking the

inputs, which is equivalent to projections into orthogonal sub-

spaces. The component model outputs can be orthogonalized

in order to facilitate their linear combination. The number of

components in model expansion is a trade-off between com-

putational complexity and explainability. For MLP classifier

trained on the MNIST dataset, a good value of the number of

components for (28 × 28) inputs seems to be N = 28.

The proposed method opens up many opportunities for

future research. For instance, providing explainability for com-

plex models requires that explainability is sufficiently simple,

or at least much simpler than the model to be explained. For

large number of inputs and outputs, the number of possible

orthogonal projections, and thus, the number of possible

explanations, is exponentially large. It requires to analyze

how to choose these projections for a particular explainability

objective, which can be defined, for example, as an optimiza-

tion problem. Moreover, the inputs can be averaged out from

the model instead of being masked. There are several other

methods for orthogonalizing vectors that can be considered

involving, e.g., matrix factorizations (QR, Cholesky, PCA)

and lattice reductions. There may be other strategies how to

define the components of complex models. The models with

orthogonal components can be used as complex basis functions

for generating samples with the desired properties instead

of focusing on explainability. The dependencies between the

model components that are not orthogonal can be studied as

structural causal models using statistical methods of causal

inferences. Also, the vector space of model parameters can be

orthogonalized similarly as the vector space of model inputs in

order to perform the sensitivity analysis. Considering Sobol’s

expansion itself, it is useful to investigate how additional

higher-order terms can be used to create higher-order graphs

having beyond pairwise interactions. There is also a need to

obtain the approximation bounds for Sobol’s decomposition,

which does seem to have been provided in the literature.
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Abstract—Directed graphs such as neural networks can be 

described by arrow terms linking a finite set of incoming nodes 

to some response nodes. Scott and Engeler [1] have shown that 

its powerset is a model for combinatory logic. This algebra is 

called Graph Model of Combinatory Logic. Combinatory logic 

is Turing-complete; thus, the model explains both traditional 

programming as well as neural networks such as the brain. The 

graph model would yield a performant AI-tool if used as a 

blueprint for implementing AI. A chain of thoughts would come 

for free, and explainability with it. However, its performance 

would make such a tool impractical and useless. We propose a 

combined approach for adding explainability to AI. It is the 

strategy humans use when they try to explain their ideas. First, 

we use the generative power of neural networks to produce an 

idea or solution. Next, we create a chain of thoughts that 

explains such ideas to others. AI could follow the same strategy. 

Anything generated by an AI engine can be analyzed as a 

sequence of set of arrow terms that explain the line of thinking, 

provided the AI engine had been trained properly. Improper 

training, biases, and hallucinations would become detectable. 

Since the target is known, guided search can find suitable arrow 

terms in predictable time. The architecture of this proposed 

AGI engine consists of three distinct elements: a well-trained 

artificial neural network, a deduction engine for the arrow term 

sets, and a search engine for fact checking. 

Keywords—Chain-of-Thought (CoT); Artificial General 

Intelligence (AGI); Artificial Neural Networks (ANN); 

Combinatory Logic; Quality Function Deployment (QFD). 

I.  INTRODUCTION 

A. Short History of AI and a its Philosophical Background 

In the early 20th century, there were some shocking events 
taking place in mathematical logic and natural science. Gödel 
[2], when trying to solve some of Hilbert’s 23 problems, 
detected that predicate logic, something with a long history 
dating back to the ancient Greeks, is undecidable. This insight 
gave birth to theoretical computer science, including the 
theory of computation, founded by Turing [3]. For a modern 
compilation, see Raatikainen [4]. 

Schönfinkel and Curry [5] developed Combinatory Logic 
to avoid the problems introduced when using logical 
quantifiers, and Church invented Lambda Calculus as a rival 
formalism [6]. Scott and Engeler developed the Graph Model 
[1], based on Arrow Terms, and proved that this is a model of 

combinatory logic. This means that you can combine sets of 
arrow terms to get new arrow terms, and that combinators, 
accelerators, and constructors can be used to create new 
elements of algebra. 

Graphs in the form of neural networks appeared already at 
the origins of Artificial Intelligence (AI). Its first instantiation 
in modern times was the Perceptron, a network of neurons 
postulated by Rosenblatt [7]. It later became a directed graph 
[8]. Rosenblatt was also the first who postulated concepts, 
among perception and recognition, as constituent parts of AI 
[7, p. 1]. 

Since its origins, AI has experienced difficulties; however, 
today it seems to have become mainstream as far as there are 
many AI applications that provide value for the user. In some 
areas, training an AI model is much simpler and more 
rewarding than finding and programming an algorithm. 

AI-powered visual recognition systems excel in 
recognizing and classifying objects, following the ideas 
established by Rosenblatt [7]. However, they are weak at 
recognizing temporal dependencies and unable to combine 
learnings, despite attempts to develop methods with 
sequential data and the ability to capture temporal patterns. AI 
lacks what humans use in such cases: a concept. 

Logical skills such as inference and deduction provide 
quite a challenge, as exemplified by the ARC Price challenge, 
a sort of intelligence test for AI models, proposed by Chollet 
[9]. A Large Language Model (LLM) easily summarizes texts 
or books but it still does not understand what is written in it, 
in the sense that the US National Council of English Teachers 
calls Literacy, see [10], [11].  

Regarding LLM or any other variant of Artificial Neural 
Networks (ANN), we refer to the rapidly evolving literature. 
As an entry point, Gerven & Bothe’s classification might be a 
good start [12]. Natural Neural Networks, in analogy to 
ANNs, are abbreviated by NNN. 

IBM defines Explainable Artificial Intelligence (XAI) as 
a set of processes and methods that allows human users to 
comprehend and trust the results and output created by 
machine learning algorithms [13]. This is a bold attempt to use 
statistical correlations as a basis for reasoning. From a 
theoretical perspective, this is unlikely to work, because of 
Gödel [2]; however, from an engineering prospective, it is an 
attempt to work around undecidability. Dallanoce compiled a 
list of available processes and methods for XAI [14]. 
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Artificial General Intelligence (AGI) is a type of artificial 
intelligence (AI) that falls within the lower and upper limits of 
human cognitive capabilities across a wide range of cognitive 
tasks. The creation of AGI is a primary goal of AI research 
and companies such as OpenAI and Meta, but what exactly 
AGI refers to is controversial [15]. 

B. Research Questions 

The aim of this paper is to recall prior work in logic and 
AI to understand how neural networks work. To do this, we 
investigate into the following three research questions: 

 
RQ 1: How are neural networks and especially ANNs 

linked to the graph model? 
RQ 2: Does a chain of thoughts relate to a sequence 

of arrow schemes? 
RQ 3: Can arrow schemes explain AI? 

 
The motivation for this is that we are currently 

experiencing the fourth AI hype in sixty years and that its 
acceptance in society is currently transitioning from 
admiration to rejection. Because the nature of AI is poorly 
understood not only by society but also by the AI research 
community. We believe that the graph model is an excellent 
way to understand what intelligence is, both natural and 
artificial. However, it is not an answer to how to construct 
XAI. 

C. Paper Structure 

We first explain combinatory logic (section II) and the 
motivation for building a model (section III). Then we 
compare ANNs with graphs and explain how arrow schemes 
represent what an ANN does and have an outlook on the 
architecture of intelligent systems (section IV). 

II. COMBINATORY LOGIC 

Here has been a lack of attention and consequently of 
publications on Combinatory Logic. Nevertheless, it explains 
quite a bit what artificial intelligence can do and what not.  

A. Combinatory Logic and Axiom of Choice  

Combinatorial Logic is a notation that eliminates the need 
for quantified variables in mathematical logic, and thus the 
need to explain what the meaning of existential quantifiers 
∃𝑥 ∈ 𝑀 is, see Curry [5] and [16]. Eliminating quantifiers is 
an elegant way to avoid the Axiom of Choice [17] in its 
traditional form. Combinatory Logic can be used as a 
theoretical model for computation and as design for functional 
languages (Engeler [18]); however, the original motivation for 
combinatory logic was to better understand the role of 
quantifiers in mathematical logic. 

It is based on Combinators which were introduced by 
Schönfinkel in 1920. A combinator is a higher-order function 
that uses only functional application, and earlier defined 
combinators, to define a result from its arguments. 

The combination operation is denoted as 𝑀 • 𝑁  for all 
combinatory terms 𝑀,𝑁. To make sure there are at least two 
combinatory terms, we postulate the existence of two special 
combinators 𝐒 and 𝐊.  

They are characterized by the following two properties (1) 
and (2): 

 𝐊 • 𝑃 • 𝑄 = 𝑃 (1) 

 𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (2) 

𝑃,𝑄, 𝑅 are terms in combinatory logic. The combinator 𝐊 
acts as projection, and 𝐒  is a substitution operator for 
combinatory terms. Equations (1) and (2) act like axioms in 
traditional mathematical logic. 

Like an assembly language for computers, or a Turing 
machine, the 𝐒-𝐊 terms become quite lengthy and are barely 
readable by humans, but they work fine as a foundation for 
computer science. The power of these two operators is best 
understood when we use them to define other, handier, and 
more understandable combinators.  

The identity combinator for instance is defined as 

 𝐈: = 𝐒 • 𝐊 • 𝐊 (3) 

 Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 •𝑀 • (𝐊 • 𝑀) = 𝑀 . 
Association is to the left. Moreover, 𝐒 and 𝐊 are sufficient to 
build a Turing-machine. Thus, combinatory logic is Turing-
complete. For a modern proof, consult Barendregt [19, pp. 17-
22]. 

B. Functionality by the Lambda Combinator 

Curry’s Lambda Calculus [20] is a formal language that 
can be understood as a prototype programming language. The 
𝐒 -𝐊  terms implement the lambda calculus by recursively 
defining the Lambda Combinator 𝐋𝐱  for a variable 𝑥  as 
follows: 

 

𝐋𝐱 • 𝑥 = 𝐈 
𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝐱 

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁 

(4) 

The definition holds for any term 𝐱 of combinatory logic. 
Usually, on writes suggestively 𝜆𝑥.𝑀 instead of 𝐋𝐱 • 𝑀, for 
any combinatory term 𝑀 . Lambda Terms 𝜆𝑥.𝑀  offer the 
possibility of programmatic parametrization. Note that 𝜆𝑥.𝑀 
is a combinatory term, as proofed by (4), and that this 
introduces a kind of variable in combinatory logic with a 
precisely defined binding behavior.  

The Lambda combinator allows writing programs in 
combinatory logic using a higher-level language. When a 
Lambda term gets compiled, the resulting combinatory term 
is like machine code for traditional programming languages.  

C. The Fixpoint Combinator 

Given any combinatory term 𝑍, the Fixpoint Combinator 
𝐘 generates a combinatory term 𝐘 • 𝑍, called Fixpoint of 𝑍, 
that fulfills 𝐘 • 𝑍 = 𝑍 • (𝐘 • 𝑍). This means that 𝑍  can be 
applied to its fixpoint as many times as wanted and still yields 
back the same combinatory term.  

In linear algebra, such fixpoint combinators yield an 
eigenvector solution 𝐘 • 𝑍 to some problem 𝑍.  

According to Barendregt in his textbook about Lambda 
calculus [19, p. 12], the fixpoint combinator can be written as  
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 𝐘:= 𝜆𝑓. (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) • (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) (5) 

Translating (5) into an 𝐒–𝐊  term demonstrates how 
combinatory logic works, see the authors’ paper from 2022 
[21].  

When translated into arrow terms, the fixpoint combinator 
contains loops. Fixpoint operations are related to infinite 
loops, programming constructs that never end in some normal 
form. Applying 𝐘, or any equivalent fixpoint combinator to a 
combinatory term Z, usually does not terminate. An infinite 
loop can occur, and must sometimes occur, otherwise Turing 
would be wrong and all finite state machines would reach a 
finishing state [3].  

III. THE GRAPH MODEL OF COMBINATORY LOGIC 

The graph model is a versatile model for knowledge in all 
its instantiations. It is highly recursive and Turing-complete, 
which means, it also describes conventional algorithmic 
programming. 

A. A Logic Needs a Model  

A Model for a logical structure is a set-theoretic 
construction that has the properties postulated for the logic 
and can be proved to be non-empty. Then it means that logic 
makes sense as far as it describes some structure that really 
exists. If a non-empty model exists, then the logic exists in the 
sense that it can be used to prove something about the model. 

Let ℒ be a non-empty set. Engeler [1] defined a Graph as 
the set of ordered pairs: 

 〈{𝑎1, 𝑎2, … , 𝑎𝑚}, 𝑏〉 (6) 

with 𝑎1, 𝑎2, … , 𝑎𝑚 , 𝑏 ∈ ℒ. We write {𝑎1, … , 𝑎𝑚} → 𝑏 for 
the ordered pair to make notation mnemonic, i.e., referring to 
directed graphs, and call them Arrow Terms. These terms 
describe the constituent elements of directed graphs with 
multiple origins and a single node. We extend the definition 
of arrow terms to include all formal set-theoretic objects 
recursively defined as follows: 

 
Every element of ℒ is an arrow term. 

Let 𝑎1 , … , 𝑎𝑚, 𝑏 be arrow terms.  

Then {𝑎1 ,… , 𝑎𝑚} → 𝑏 is also an arrow term. 
(7) 

The left-hand side of an arrow term is a finite set of arrow 
terms, and the right-hand side is a single arrow term. This 
definition is recursive. Elements of ℒ are also arrow terms. 
The arrow, where present, should suggest the ordering in a 
graph, not logical imply.  

B. Einstein-Notation for Arrow Terms 

To avoid the many set-theoretical parenthesis, the 
following notation, called Arrow Schemes, is applied, in 
analogy to the Einstein notation [22, p. 6]: 

• 𝑎𝑖  for a finite set of arrow terms,  𝑖  denoting some 

Choice Function selecting finitely many specific 

terms out of a set of arrow terms 𝑎. 

• 𝑎1 for a singleton set of arrow terms; i.e., 𝑎1 = {𝑎} 
where 𝑎 is an arrow term. 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎. 

(8) 

• 𝑎𝑖 + 𝑏𝑗 for the union of two observation sets 𝑎𝑖 ,𝑏𝑗. 

The application rule for 𝑀 and 𝑁 now reads: 

 𝑀 • 𝑁 = (𝑎𝑖 → 𝑏) • 𝑁 = {𝑏|∃𝑎𝑖 → 𝑏 ∈ 𝑀; 𝑎𝑖 ⊂ 𝑁} (9) 

(𝑎𝑖 → 𝑏) ⊂ 𝑀 is the subset of level 1 arrow terms in 𝑀. 
With these conventions, (𝑎𝑖 → 𝑏)𝑗  denotes a Concept, i.e., a 

non-empty finite set of arrow terms with level 1 or higher, 
together with two choice functions 𝑖, 𝑗. Each set element has 
at least one arrow. 

The choice function 𝑖 chooses specific observations 𝑎𝑖 out 
of a (larger) set of observations 𝑎 . This is what Zhong 
describes as Grounding when linking observations to real-
world objects [23]. In AI, grounding is crucial for linking AI 
engines to the real world. If 𝑎  denotes knowledge, i.e., an 
infinite set of arrow terms of any level, 𝑎𝑖 can become part of 
a concept consisting of specific arrow terms referring to some 
specific object, specified by the choice function 𝑖 . Choice 
functions therefore have the power of focusing knowledge on 
specific objects in specific areas. That makes choice functions 
interesting for intelligent systems and AI. 

There is a conjunction of choice functions, thus  𝑎𝑖,𝑗 
denotes the union of a finite number of grounded arrow 
schemes: 

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑚 =⋃𝑎𝑖,𝑘

𝑚

𝑘=1

 (10) 

There is also cascading of choice functions. Assume 𝑁 =
(𝑎𝑗 → 𝑏)

𝑘
, then: 

 
𝑀 = (((𝑎𝑗 → 𝑏)

𝑘
→ 𝑏𝑖)

𝑙
→ 𝑐) and 

𝑀 • 𝑁 = (𝑏𝑖𝑙 → 𝑐) 
(11) 

The choice function might be used for grounding an arrow 
scheme to observations.  

An arrow scheme without outer indices represents a 
potentially infinite set of arrow terms. Thus, writing 𝑎, we 
mean knowledge about an observed object. Adding an index, 
𝑎𝑗 , indicates such a grounded object together with a choice 

function 𝑗 that chooses finitely many specific observations or 
knowledge. 

While on the first glimpse, the Einstein notation seems just 
another way of denoting arrow terms, for representing such 
data in computers it means that the simple enumeration of 
finite data sets is replaced by an intelligent choice function 
providing grounding that must be computed and can be either 
programmed or guessed by an intelligent system. 

For practical applications, the choice function is an 
important part of deep learning. It means learning by 
generalization. The more choices you get on the left-hand 
side, the more knowledge you acquire. The ARC price 
competition for instance is easily solvable if we can generalize 
our choice functions good enough, to draw conclusions from 
the samples into general rules. However, generalization is not 
easily available with current AI technology. Controlling 
Combinators, see section IV.B, are a workaround. 
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C. The Graph Model of Combinatory Logic 

The algebra of observations represented as arrow terms is 
a combinatory algebra and thus a model of combinatory logic. 
The following definitions demonstrate how the graph model 
implements Curry’s combinators 𝐒 and 𝐊 fulfilling equations 
(1) and (2), following [5]. 

• 𝐈 = 𝑎1 → 𝑎 is the Identification, i.e., (𝑎1 → 𝑎) • 𝑏 = 𝑏 

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument: 

𝐊 •  𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b 

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument: 

𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c 

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1
→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐) 

(12) 

Therefore, the algebra of observations is a model of 
combinatory logic. The interested reader can find complete 
proofs in Engeler [1, p. 389].  

The Lambda Theorem from Barendregt [20] says that 
with 𝐒 and 𝐊, an abstraction operator can be constructed that 
adds algorithmic skills to knowledge represented as arrow 
schemes, following equation (4).  

As the name “graph model” suggests, arrow terms are an 
algebraic way of describing neural networks. Thus, something 
that nature uses to acquire and work with knowledge. 

Figure 1 illustrates the effect of the combination according 
to equation (9). It becomes apparent that the graph model 
describes graphs indeed, with loops. Repeatedly applying 
equation (9) leads to what we perceive as the “response of a 
neural network”. Combination of knowledge and combinators 
thus play a significant role in AI. 

𝑥1
𝑥2

𝑥 

 

𝑎1

𝑎2

𝑎𝑚

𝑎1

𝑎2

𝑎𝑚

 =   →  
 
→  

 
 =   →  

 

  •  =    

Figure 1: Neural Network become a Combinatorial Algebra  

However, Figure 1 is not only a picture of an abstract 
graph. It can also be understood as a part of an ANN – or of 
an NNN. Engeler associated neuroscience with the graph 
model in 2019, by explaining how a brain works [24]. He used 
the graph model of combinatory logic as an algebraic 
representation of NNN. 

IV. TOWARDS INTELLIGENT SYSTEMS 

Barceló et. al. has shown in 2019 that modern neural 
network architectures are Turing-complete [25]. This is also a 
property of the graph model but not of every ANN. We 
propose an architecture for intelligent systems that 
incorporates conventional algorithmic programming. 

A. How Arrow Schemes describe ANNs  

While it is obvious how an NNN is represented by arrow 
schemes, this is not equally clear for ANNs. The reason is that 
directed graphs contain loops while looping in ANNs is very 
restricted. There exist certain architectures for ANNs that 
allow for loops, within narrow limits, a typical Multi-Layered 
Perceptron (MLP) as used for LLMs does not [12].  

Consequently, an ANN has only a limited ability to 
emulate an NNN.  

Input D
ata

O
utput D

ata

Input Layer

Output Layer

Hidden Layers  

Figure 2: Multi-Layered Perceptron as an ANN 

In principle, every arrow scheme 𝑎𝑖 → 𝑏  describes one 
node in a directed but not loop-free graph. Some arrow 
schemes describe algorithmic concepts such as in equation 
(12) or as explained in equation (5). Other arrow schemes 
simply connect observations 𝑎𝑖 to some response 𝑏. General 
knowledge has many facets.  

It would be wonderful if we had the ability to look at an 
LLM and identify arrow schemes for each node. This would 
add full explainability to AI, but unfortunately, this is not the 
case. Theoretically, this is because neither combinatory terms 
nor arrow schemes have normal forms. Very often there is a 
wide variety of solutions that are equivalent but widely 
different in effectiveness. 

This makes explainability of AI difficult. The lack of 
normal forms blocks all attempts to find the one sequence of 
arrow schemes that explains what AI is doing. AI engineers 
have no other choice than trying to train their ANNs such that 
the response meets expectations but without exactly knowing 
what happens. It is comforting, however, that they share the 
same sad fate with neuroscientists. It is astonishing how long-
forgotten theoretical results such as the lack of a normal form 
in combinatory logic yield economically highly relevant 
results, nowadays, in the evolving AI ecosystem. Consult 
Lachowski [25] for a survey of the performance challenges 
that occur around combinatory logic. 

However, there is a famous saying that nothing is too 
difficult for the engineer (“Inventor of Anything”). Recent 
findings suggest that AI is capable of recognizing chains of 
thought that lead to the observation of a specific response [26]. 
This complements earlier findings that describe CoT as a 
prompting technique [27]. Thus, there exist AI architectures 
that allow to identify at least some arrow schemes that 
describe what AI does. It is not necessarily the full truth, as is 
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also not the case when humans explain their thoughts to 
colleagues. But it should be enough to persuade them. 

Having a complete sequence of arrow schemes describing 
some ANN would lead to explainable AI that even is able to 
get certified for safety-critical applications. However, there is 
a problem with hidden layers. While the Quality Function 
Deployment (QFD) method uses identifiable topics for each 
layer [28], an ANN has none; they are hidden indeed. Thus, 
much of the intermediate reasoning also remains hidden. RQ 
2 remains at least partially unanswered. If the input data and 
response only can be captured by arrow schemes, the 
intermediate steps must be guessed based on domain 
knowledge, but it is not known what exactly the AI engine 
actually did consider. AI might change behavior and create 
hazardous changes to the hidden layers; low-rank adaptation 
(LoRA) of large language models is an attempt to limit such 
change [29]. In QFD, on the contrary, intermediate stages are 
identifiable based on their topic; for example, when deploying 
customer needs, we first go to user stories and then to testable 
features. 

Another approach to better explainable AI is already well 
established: Retrieval-Augmented Generation (RAG) might 
avoid hallucinations for LLMs [30] by referencing knowledge 
databases and including them into the generation of responses. 
RAG impacts the architecture of intelligent systems by 
connecting neural networks to knowledge databases [31]. 
RAG corresponds to grounding arrow schemes using the 
choice function; RAG is indispensable for explainable AI. 

This is the motivation for looking at AI architectures. In 
some way, it must be complemented by functionality that 
controls the behavior of AI. Only with such control an AI-
engine can perform safety-critical tasks. When certifying an 
AI-engine for safety, it is no longer necessary to convert all 
nodes of an ANN into arrow schemes, but we can focus on the 
overall result. If an AI fails on such tasks, we do not have a 
white-box trace of all nodes, or arrow schemes, that have 
contributed to this failure, but we are at least as good as with 
traditional safety-preserving methods and techniques. 

B. The Architecture of Intelligent Systems 

Intelligent systems using AI are based upon Controlling 
Combinators. Controlling combinators are derived from the 
idea behind fixpoint combinators, see equation (5). A 
Controlling Operator 𝐂 acts on a controlled object 𝑋 by its 
application 𝐂 • 𝑋. Control means that knowledge represented 
by arrow schemes in 𝑋 is completely known and described.  

Accomplishing control can be formulated by (13): 

 𝐂 • 𝑋 = 𝑋 (13) 

The equation (13) is a theoretical statement, referring to a 
potentially infinite loop. For solving practical problems, 𝑋 
must be approximated by finite subterms. 

Thus, the control problem is solved by a Control Sequence 
𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ ⋯ , a series of finite subterms and the 
controlling operator 𝐂 , starting with an initial 𝑋0 and 
determined by (14): 

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 , 𝑖 ∈ ℕ (14) 

This is called Focusing. The details can be found in 
Engeler [24, p. 299]. The controlling operator 𝐂 gathers all 
faculties that may help in the solution. The inclusion operator 
in equation (14) is explained by the graph model. The control 
problem is a repeated process involving substitution, like 
finding the fixpoint of a combinator, and thus increasing the 
number of arrow schemes, and especially of choice functions, 
in the resulting focusing process.  

Controlling combinators both collect and use empirical 
data for continuous training. Such an intelligent system 
incorporates the necessary functional processes for fine-
tuning based on feedback received. 

For more details, we refer to the authors’ paper about 
solving the control problem [32]. 
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Figure 3: Self-learning Intelligent Systems based on an ANN 

The program scheme we use in Figure 3 for the controlling 
combinator depends on the Convergence Gap; the measurable 
variation between actual behavior and expectations and 
requirements regarding an AI-enabled intelligent system. 
Both come as (large) vectors and thus the Euclidean distance 
is easily computable. Expectations and correct answers might 
also come from an external knowledge database, allowing the 
intelligent system to learn autonomously. 
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Figure 4: An Intelligent System that selects the most reliable AI response. 

The architecture for RAG now extends. Instead of 
embedding the reference into response generation [31], and 
hoping it works, we set up functional processes for comparing 
LLM results with evidence from the knowledge database and 
calculate the convergence gap.  
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The convergence gap of such a system fully explains its 
behavior. Under well-defined conditions, such a system can 
be certified, even for safety critical tasks. 

It is also possible to add more than one AI engine to an 
intelligent system, compare results and go forward with the 
most reliable one. Insufficient training, biases, and 
hallucinations therefore would become detectable.  

Figure 4 shows an example of an intelligent system design 
that relies on two separate visual recognition engines 
analyzing the same scenario, one through a camera and the 
other through a Lidar. Such an architecture requires that the 
reliability of each artificial intelligence engine be known, 
under certain conditions, such as weather. In this way, the 
intelligent system can explain why it selected one or the other 
response. 

Obviously, if both AI-engines produce an identical 
response, this increases overall reliability of the response of 
the intelligent system quite a bit. 

The graph model delivers the metrics for defining 
controlling combinators by inclusion, and it also allows to 
combine knowledge and thus reliability correctly, by equation 
(9). This is discussed in another paper of the authors [33]. This 
remark should also explain why we do not use the term “Loss 
Function” that originates from Signal Theory and originally 
described the loss of fidelity in analog sound transmission. 
Since the discovery of the Fast-Fourier Transform (FFT) 
[34], one understands that A/D-convergence is not a loss, but 
an acquisition of enough knowledge to reach some threshold. 
Deep learning uses the same principles. 

V. CONCLUSIONS AND FUTURE WORK  

We therefore have shown that 
 

RQ 1: ANNs can be represented in the graph model 
of combinatory logic; 

RQ 2: CoT do not exactly relate to a sequence of 
arrow schemes, as they do not cover hidden 
layers in ANNs; 

RQ 3: Arrow schemes do not explain AI but explain 
how AI can be controlled. 

 
The graph model of combinatorial logic does not provide 

an alternative for implementing AI, but it is an excellent guide 
and theoretical foundation for what can be done with AI, for 
explaining AI, but also for learning where AI meets its limits. 

The current step forward is collecting several designs of 
intelligent systems, finding methods for measuring reliability 
and defining suitable convergence gaps. This work in progress 
of the authors will be shared with interested parties [35]; the 
authors have no institution or sponsor to help with this. 

It remains the idea that AI could be explained by searching 
for arrow schemes that provide the same responses. Since 
combinatory logic does not have normal forms, this seems 
feasible. It could be used as a validation process for AI. 
However, for now, this is a future research project. 
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