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GREEN 2023

Forward

The Eighth International Conference on Green Communications, Computing and Technologies
(GREEN 2023), held on September 25-29, 2023, continues the series of events focusing on current
solutions, stringent requirements for further development, and evaluations of potential directions. The
event targets are bringing together academia, research institutes, and industries working towards green
solutions.

Expected economic, environmental and society wellbeing impact of green computing and
communications technologies led to important research and solutions achievements in recent years.
Environmental sustainability, high-energy efficiency, diversity of energy sources, renewable energy
resources contributed to new paradigms and technologies for green computing and communication.

Economic metrics and social acceptability are still under scrutiny, despite the fact that many
solutions, technologies and products are available. Deployment at large scale and a long term evaluation
of benefits are under way in different areas where dedicated solutions are applied.

We take here the opportunity to warmly thank all the members of the GREEN 2023 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to GREEN 2023. We truly believe that, thanks to
all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the GREEN 2023 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that GREEN 2023 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of green
communications, computing and technologies. We also hope that Porto provided a pleasant
environment during the conference and everyone saved some time to enjoy the historic charm of the
city.
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Abstract—Cloud computing has rapidly become the dominant
platform for businesses across various sectors. However, many
companies find it challenging to effectively control costs, often
resulting in suboptimal resource allocation and unnecessary
overspending. Moreover, the expansion of cloud computing has
spurred a surge in electricity consumption, causing a correspond-
ing rise in greenhouse gas emissions. This paper aims to reduce
both the cost associated with Virtual Machines (VMs) in the cloud
and the carbon footprint generated by cloud computing activities.
To tackle this issue, we analyze the 2019 Azure cloud trace,
which incorporates data from more than 2.6 million VMs and
historical records of grid emissions intensity from the California
ISO Northern Region. We also devise a machine learning model
to predict costs based on core and memory size and formulate
a waste metric that captured over 90% of the wastage in cloud
workloads. In addition, we propose a cost reduction algorithm
that helps to save nearly 4 million dollars. Furthermore, we
developed a carbon awareness algorithm that could substantially
reduce the carbon emissions of VMs by 51%.

Index Terms—cloud computing, Microsoft Azure, virtual ma-
chines, cost reduction, carbon reduction, workload analysis

I. INTRODUCTION

Cloud computing has experienced significant growth in re-
cent years, driven by the growing demand for cloud computing
infrastructure. According to a report by FMI [1], the global
VM market is expected to grow at a Compound Annual
Growth Rate (CAGR) of 20.3% between 2023 and 2033. The
market was valued at US $5,174.3 million in 2022 and is
expected to reach US $26,042.8 million by 2033.

As cloud computing continues gaining momentum, orga-
nizations increasingly rely on cloud-based infrastructure to
support their computing needs. However, cloud costs can
spiral out of control if not managed properly, with VM usage
significantly contributing to cloud costs. The report by Flexera
[2] has indicated that enterprises wasting over 30% of their
cloud spending, with wasted spending totaling $14.1 billion
annually. As a result, reducing cloud expenditure has become
a top priority for organizations using the cloud.

To address this issue, we investigate the problem of reduc-
ing costs and carbon emissions of cloud computing. To our
knowledge, only a few works have attempted to reduce costs
using real VM workloads, such as [3]–[5]. Furthermore, most
of the works on energy-efficient management systems for VMs
in the cloud proposed various migration algorithms [12] [13].
Our study deviates from existing literature and instead looks

at carbon reduction through VM scheduling. Specifically, we
make the following contributions.

Real-world workload analysis. To understand the waste
problem, we analyze the characteristics of approximately 2.7
million VMs in the Azure Public Dataset [14] to verify the
existence of waste in cloud computing. Our workload analysis
shows that the average utilization rate of all VMs is only
15.59%. Moreover, we observe a consistent pattern that as
the VM requests more resources (such as memory and cores),
its average utilization rate tends to decrease.

VM Cost Prediction Model. As the dataset does not
indicate cost per VM, our study utilizes a linear regression
algorithm to estimate the cost of each VM using their spe-
cific characteristics. The algorithm considers various factors,
including public pricing models by Microsoft [15], how many
gigabytes of memory the VM has, and the number of cores
the VM has. By accurately predicting the cost of each VM,
our algorithm reveals the estimated cost of each VM.

Waste Quantification. Building on top of the proposed cost
prediction model, we further propose a metric to quantify the
waste of each VM. In this study, we quantify the waste of each
VM by considering the total cost and resource utilization. This
metric provides users with a clear understanding of the extent
of waste in the cloud infrastructure and enables them to prior-
itize cost optimization efforts. Our waste quantification offers
key insights into users of the cloud and our analysis confirms
that many users waste significant cloud resources, leading to
unnecessary costs. This finding highlights the importance of
cost optimization for VMs in cloud computing environments.

Cost Reduction Algorithm. Our study proposes an ef-
fective solution for reducing the cost of cloud computing.
Using the established waste metrics, we find VMs with high
wastage frequently possess larger cores that are underutilized.
Therefore, our proposed strategy involves downgrading VMs
by reducing their core size until it reaches the minimum core
size or the utilization surpasses 100%. By implementing this
approach, users can effectively reduce costs without compro-
mising performance. The results from our simulations confirm
that we have achieved cost savings of up to 17%.

Carbon Reduction Algorithm. Our research introduces an
innovative carbon reduction algorithm that aims to maximize
the efficiency of cloud computing while minimizing carbon
emissions. To achieve this, we utilize the Carbon Intensity
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Data provided by WattTime [17] to assess the relative carbon
reductions achievable by each VM during its operation. This
data measures the emission rate of electricity generators on
the local grid at a specific time, represented in units of total
pounds of emissions per megawatt-hour. The dataset we utilize
contains carbon intensity levels for California ISO (CAISO)
region in July, recorded at 5-minute intervals. Leveraging this
information, our carbon reduction algorithm makes predictions
about the carbon intensity expected in the next 24 hours.
It then strategically assigns VMs to a time window where
they can contribute to carbon emissions reduction effectively.
By adopting this approach, users can actively minimize their
carbon footprint without compromising the quality of service.

The rest of the paper is organized as follows. Section II
discusses related work, and Section III presents a thorough
analysis of the workload. The cost reduction algorithms are
presented in Section IV, and Section V presents the carbon
reduction algorithm. Section VI provides an in-depth discus-
sion of the experimental results obtained. Finally, Section
VII presents the conclusions drawn from this research and
potential future work.

II. RELATED WORK

Several studies have investigated cost reduction for VMs in
the cloud, offering valuable insights into optimizing resource
allocation and managing costs. For instance, Flexera’s State
of the Cloud 2022 report [2] highlighted the increasing usage
of cloud services and provided recommendations for cost
management from a company’s perspective. Others such as
Cortez et al. [3] explored resource management and proposed
a workload prediction model that can leverage machine learn-
ing techniques to enhance resource allocation in large cloud
platforms. Similarly, Hadary et al. [6] developed a system
that employed machine learning algorithms to automate VM
allocation for large-scale cloud deployments. However, these
studies did not address cost reduction from the user’s stand-
point.

In the realm of published literature focusing on carbon
reduction strategies, several approaches have been explored,
primarily centered around individual or multiple data cen-
ters. Notable examples include [7] and [8]. However, some
researchers, as demonstrated by [9], have taken into considera-
tion distributed data centers with varying carbon footprints and
power usage effectiveness. Meanwhile, Beloglazov and Buyya
[10] have evaluated heuristics aimed at dynamically reallo-
cating VMs to minimize energy consumption. Furthermore,
several other studies have examined alternative methodologies,
such as migration algorithms that may pose challenges for
users rather than enterprises [11] [12].

In contrast, our study analyzes the specific workloads of
individual users and presents a comprehensive solution tailored
to their needs. We introduce a program that automatically
leverages historical data, utilization rates, and other factors to
recommend the most cost-effective VM for a given workload.
By directly addressing user requirements, our solution bridges
the gap in existing research and offers a practical approach to

cost reduction. We also propose a program that suggests users
to reschedule work when possible to improve environmental
sustainability. Users can significantly enhance their cost and
carbon management practices, achieving substantial cost re-
ductions without compromising performance or quality. The
unique focus of our paper on individual users sets it apart
from previous studies, making it a valuable contribution to
the cloud computing cost and carbon reduction field.

III. WORKLOAD ANALYSIS

In this section, we characterize the workload of Azure VMs.
Exploring their characteristics and focusing on which intrinsic
aspects of application and function will help enable numerous
platform optimizations.

A. Microsoft Azure Workload

Dataset. In this paper, we utilize the Azure Public Dataset
Version 2 [13], a cloud trace generated in 2019 from the
Microsoft Azure platform. The dataset includes detailed in-
formation of approximately 2.7 million VMs created by over
6,600 users in July 2019, such as the timestamp in seconds
when the VM is first created (starting at 0), the timestamp
in seconds when the VM is deleted, VM size in terms of
maximum core and memory (GBs), the average and maximum
CPU utilization, as well as the string IDs of users.

B. Cost Analysis

Tools. While the Azure Public Dataset Version 2 [13]
provided relevant information concerning VM characteristics,
it excluded essential information regarding the price of each
VM, which is essential for calculating the cost of each VM.
To solve this problem, we utilize third-party tools such as the
pricing calculator offered by Azure Microsoft [14], Orange
[15], and SciKit Learn [16] to develop a cost prediction model.

Figure 1. Data used to calculate cost

Pricing Calculator. To analyze the cost of all VMs, we first
need to find the pricing of each VM. The pricing calculator
offered by Azure Microsoft [14] calculates the prices of each

2Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-097-1
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VM based on numerous factors. We set the VMs to be in
the region of the East US, Windows operating system, OS-
only type, standard tier, and memory-optimized category for
730 hours. In choosing instances, we picked instances that
matched the core and memory with the lowest temporary
storage. However, not every VM reported on the Azure Public
dataset Version 2 was provided on the pricing calculator. As
seen in Figure 1, there were instances of core and memory
pairs that were not provided on the pricing calculator. The
cost in the figure was measured in cost per hour.

Figure 2. First few row of our training dataset

Linear Regression. We use the linear regression tool from
Sckikit Learn [16] to solve this problem. In addition to the
data shown in Figure 1, we included other data from the
pricing calculator in order to train our our model. The first
few rows of our training dataset can be seen in Figure 2.
We chose linear regression because the variables, namely core
size and memory space, exhibit a linear relationship. Hence,
linear regression is more suitable for capturing this linear
association, as opposed to quadratic or alternative regression
models. Through our linear regression model, we obtain the
coefficient of determination R2 as 0.98566, signaling the
accuracy of our prediction model. Our model is determined
through the following equation:

price = 0.01530 + 0.00055× core+ 0.014222×mem

Where 0.01530 represents the intercept, 0.00055 constitutes
the slope for the core variable, and 0.014222 forms the slope
for the memory variable.

Additionally, compared to other machine learning tech-
niques, linear regression handles overfitting relatively well
using different procedures such as reduction techniques, reg-
ularization, and cross validation. While comparing our linear
regression results to other machine learning techniques, we
found the linear regression results to be more accurate.

Finally, with the price of VMs of different core sizes and
memory space combinations, we are able to calculate the cost
of each VM based on runtime using the following equation:

cost = price× (
runtime

3600
)

The VM cost is calculated as the product of the VM’s price,
which depends on its core size and memory space, and the
duration in hours. The runtime is calculated by subtracting the
deletion timestamp from the creation timestamp. To convert
this duration into hours, we divided the result by 3600, as
there are 3600 seconds in an hour.

C. Utilization Analysis

Figure 3. Utilization of VMs

Figure 4. Percent wasted for VMs

User Analysis. Many Azure users created more than one
VM. Based on different users, some VMs averaged with low
core and memory count, while other VMs averaged with
higher core and memory count. Although we observe that
some users can efficiently utilize cloud resources, a large group
of users also seem to be managing their resources ineffectively.
We will refer to the first group of users as the “experienced”
users and the second group as the “inexperienced users.”

Experienced users all utilized VMs in an indistinguishable
manner. Most importantly, their VMs consisted of low core

3Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-097-1
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and memory count (often two cores and two GB). Their VMs
ran for a short time rather than the entire 30 days analyzed
in the dataset. Their experience was also evident in their high
utilization rates, which signified that these experienced users
were using their VM for a limited time before deleting it
immediately. Inexperienced users utilized VMs in opposition
to experienced users. Their VMs consisted of high core and
memory count (many of which used the maximum 64 cores
and 70 GB).

Additionally, these VMs had a duration averaging 30 days
with extremely low utilization rates, sometimes running below
1%. The characteristics of the VMs created by inexperienced
users portray the typical scenario of creating a VM and
forgetting to shut it down when it is no longer needed.
Consequently, these VMs cause significant waste.

VM Analysis. The distribution chart depicted in Figure 3
illustrates a negative exponential curve. Analyzing the chart
more in-depth reveals that more than half (55%) of VMs had
a utilization rate below 10%. The largest bar indicates about
24% of VMs being utilized at below 2%. More significantly,
24% of VMs had a utilization rate of less than 2%. The
analysis shows cause for concern since most VMs show
wasteful spending, and many of these VMs are generated by
inexperienced users. The trends in Figure 3 correlate with the
trends depicted in Figure 4. The percentage wasted for VMs
was calculated through a cost over waste ratio. The data in
Figure 4 acknowledges that 51% of VMs wasted more than
90% of their expenses. Moreover, 25% of VMs drained more
than 97.5% of costs. Note that 5% of VMs had zero percent
wasted due to their time of use being zero seconds. Overall the
two trends detailed in Figures 3 and 4 emphasize the potential
for a significant cost reduction, which this paper seeks to
contribute.

D. Waste Analysis

The waste of cloud expenditure is calculated using the
formula below:

waste =
cost× (100− util)

100

According to our calculations, the combined cost of all VMs
exceeds $23 million, with an estimated waste of over $20
million. These figures highlight that customers are squandering
approximately 90% of their VM resources. The disparity
between waste and cost emphasizes the urgency to reduce
cloud cost and waste.

IV. COST REDUCTION ALGORITHMS

Recall Section III. C, inexperienced users utilize large
VMs at lower utilization rates, leading to some of the most
significant waste in the cloud. Inspired by this observation,
we propose two cost reduction algorithms that are referred to
as aggressive downgrading approach and passive downgrading
approach.

Downgrading a VM involves reducing its core size to
the smallest possible core. Instead of considering memory

space, we prioritize core size when downgrading VMs since
utilization issues usually relate to core size rather than memory
space. The aggressive approach focuses on downgrading VMs
based on cores and the lowest memory, while the passive
approach considers downgrading VMs based on the core with
the highest memory.

Figure 5. A list of VM core/memory combination

A. Sample Cases and Approaches

The two approaches are illustrated in Figure 5 through the
pathways on the left and right sides of the table, respectively.
In the first approach, which is more aggressive, the downgrad-
ing is performed based on the cores with the lowest memory.
Let us consider an example where we attempt to downgrade a
VM with a core size of 30 and 70 GB of memory. Following
the “aggressive” approach (indicated by the red arrows on the
left), the VM is downgraded to the core level with the smallest
memory space.

On the other hand, the second approach adopts a passive
strategy by downgrading based on the cores with the highest
memory. If we were to apply the “passive” approach to
downgrade a VM with a core size of 30 and 70 GB of
memory, it would follow the pathway depicted on the right
side of Figure 5, indicated by the blue arrows, resulting in a
downgrade to the core level with the largest memory space.

B. Threshold Selection

It would be highly inefficient to downgrade every VM
in the trace. To identify VMs eligible for downgrading, we
established a criterion that selected VMs must have exceeded
a 10% waste threshold, as indicated by the distribution chart
shown in Figure 4.

Considering the limitations imposed by maximum utiliza-
tion, average utilization, and core sizes, our proposed ap-
proaches necessitate VM utilization to fall within a range
of 0% to 33%-50%. Let us assume a VM with 8 cores is
downgraded to 4 cores. To calculate the new utilization, we
divide the two core sizes, resulting in a quotient of 2, and
multiply it by the old utilization rate. Since the maximum
utilization possible for all VMs is 100%, the theoretical
maximum utilization can only reach 50%. Similarly, if we

4Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-097-1
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Algorithm 1 Aggressive Downgrading
Require: percentWasted ≥ 10

while canDowngrade and core >= 2 do
if core = 2 then

newMaxUtil = 2/2×maxUtil
newUtil = 2/2× util
core = 2
mem = 2

else
newMaxUtil = oldCore/newCore×maxUtil
newUtil = oldCore/newCore× util
if newMaxUtil < 100 then

maxUtil = newMaxUtil
util = newUtil

else
canDowngrade = false

end if
end if
if newMaxUtil > 100 or newUtil > 100 then

core = coreLevel
mem = memLevel

end if
end while

Algorithm 2 Passive Downgrading
Require:

percentWasted ≥ 10
core ≥ 2 and mem ≥ 8
while canDowngrade and core >= 2 do

if core = 2 then
newMaxUtil = 2/2×maxUtil
newUtil = 2/2× util
core = 2
mem = 8

else
newMaxUtil = oldCore/newCore×maxUtil
newUtil = oldCore/newCore× util
if newMaxUtil < 100 then

maxUtil = newMaxUtil
util = newUtil

else
canDowngrade = false

end if
end if
if newMaxUtil > 100 or newUtil > 100 then

core = coreLevel
mem = memLevel

end if
end while

consider a VM with 24 cores downgraded to the next level, 8
cores, following the same principle, the maximum utilization
can only be 33.3%. These restrictions significantly contribute
to the efficiency of targeting and downgrading VMs.

When the VM initiates the downgrade process, it computes
and assigns the new maximum utilization, average utilization,
memory, and cores to their respective variables. If either the
maximum or average utilization surpasses 100%, the down-
grade process is halted since utilization cannot exceed 100%.
Likewise, if the VM reaches the minimum downgrade level
with a core size of 2, the downgrade process is also concluded.

V. CARBON REDUCTION ALGORITHM

VMs consume massive amounts of energy, often from
fossil fuel-based sources, thus leading to significant carbon
emissions. This section presents a carbon reduction algorithm
that identifies proper VMs and reschedules them to a low-
carbon window to reduce their carbon footprint.

A. Carbon Intensity

Carbon intensity is the measurement of emissions generated
relative to the energy consumed. In this paper, we use the
Marginal Operating Emissions Rate (MOER), a widely used
metric, to measure the carbon intensity in units of pounds of
emissions per megawatt-hour. MOER measures the emissions
rate of electricity generators on a certain grid at a certain time.
Low MOER indicates that electricity is more environmentally
friendly and vice versa. The Azure trace [13] was created
with data from July 2019. Consequently, we utilized the
corresponding MOER dataset from CAISO North during July
2019 as our carbon intensity data.

Figure 6. Forecasted and actual MOER from July 2-5, 2019

As illustrated by the blue line in Figure 6, MOER values
in the CAISO North region vary greatly, but typically surges
during the day when electricity demand is higher. This in-
creased energy consumption by businesses and households
often prompts grids to deploy additional generators, including
those with higher emissions, to meet the heightened demand.
Conversely, demand and MOER tend to decrease during the
night, enabling a shift towards more sustainable electricity
generation. This variability in MOER arises from the interplay
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of numerous external factors that shape the dynamics of the
electricity grid, which include weather and the makeup of
generators within the grid (renewable or non-renewable).

B. Carbon Intensity Forecasting

Forecasting MOER allows workloads to be delayed until
times of low MOER to reduce carbon emissions. Our fore-
casting algorithm uses a robust prediction methodology. Our
methodology operates under the assumption that the MOER
levels observed today will persist unchanged into tomorrow.
Alternative forecasting models, such as the moving average
approach, were also evaluated and tested. Nonetheless, due
to challenges posed by data availability, the moving average
model encountered limitations in precisely anticipating MOER
levels.

The subsequent component of the algorithm centers on
optimizing carbon reduction. This is achieved by identifying
the interval with the lowest MOER level averages over the next
24 hours to execute the workload. Operational activities are
postponed and rescheduled until the interval mentioned above.
As shown in Figure 6, workloads during the high MOER times
are shifted to times of lower MOER levels, thereby reducing
carbon emissions.

There are three types of workloads in the Azure Pub-
lic Dataset “Delay-sensitive,” “Delay-insensitive,” and “Un-
known.” As their names suggest, delay-sensitive workloads
are time-sensitive, delay-insensitive workloads are not, and
unknown workloads do not specify whether it is time-sensitive.
Because users did not mark unknown type workloads as
delay-sensitive, we assumed they could be postponed. For our
simulation, we ran both “Delay-insensitive” and “Unknown”
type workloads through the optimization algorithm as they
were more amenable to rescheduling and could tolerate delays.

Algorithm 3 Carbon Reduction
Require: RunTime > 0
AverageMOER = Average MOER in Window
Window ← Start T ime to EndT ime
for

(
1Day

5minutes

)
do

Shift Window By 5 Minutes
NewAverage← Average of Modified Window
if NewAverageMOER < AverageMOER then

AverageMOER← NewAverageMOER
BestWindow ←Window

end if
end for
Reschedule Task to BestWindow
Savings = DefaultEmission−AverageMOER

PercentSavings = 100×
(

Savings
DefaultEmission

)
Our carbon reduction program, found as Algorithm 3,

works by identifying the length of the window and shifting
it until it finds the best duration with the lowest MOER
levels. The workload depicted in Figure 6 shows the results
of optimization. The program matched the window length to

the corresponding MOER levels. It then shifts the window
and calculates the new average; if the new average is lower
than the past lowest average, the new average is set as the
lowest average, and the best window is set to that duration.
The window shifts every 5 minutes to match the MOER data
that only provides data in five minute intervals. The program
then loops 720 times, the number of 5 minute intervals in a
day, to find the lowest average and the corresponding window.
Then, it calculates the percent saving after optimization.

VI. EXPERIMENTAL RESULTS

In this section, we will discuss the experimental results from
the simulations on the cost and carbon reduction programs.

A. Cost Reduction Results

We ran our simulations on the entirety of the 2019 Azure
cloud trace [13]. First, we calculated the total cost of over 2.6
million VMs in the trace, resulting in a total of $23,144,128.53
before downgrading. Then, we ran two simulations to com-
pare user savings using the two cost reduction algorithms
presented in Section IV. After downgrading, the cost savings
were astonishing. Through our first downgrading approach,
1,975,282 VMs were aggressively downgraded and saved users
a total of almost $4 million or 17% in savings. Through our
second downgrading approach, 730,436 VMs were passively
downgraded and saved users a total of about $950,000 or 4%
in savings.

B. Carbon Reduction Results

We ran the carbon reduction simulation on both“Delay-
insensitive” workloads and “Unknown” type workloads. In
the“Delay-insensitive” group, we observed savings ranging
from 0 to 8%, with mean savings around 0.2%. In the
“Unknown” group of workloads, the average savings was 55%.
Percent savings overall averaged 51%. The drastic difference
in outcomes is explained by the differences in run time
each group has. “Delay-insensitive” workloads run for long
durations, with an average of 26 days and peaks around
30. These lengthy workloads are too substantial to generate
significant savings through optimization, as they are too large
to accommodate the dips of MOER. Meanwhile, the average
run time of “Unknown” type workloads is only approximately
four and a half hours, making them more susceptible to
generating sizeable savings during optimization.

VII. CONCLUSION AND FUTURE WORK

This paper analyzed the Azure workload of over 2.6 million
VMs. We developed two cost reduction algorithms and a car-
bon reduction algorithm. The experimental results have shown
that our proposed algorithms can help reduce costs of up to
17% of cost by efficiently choosing core size and memory
space and reducing on average 51% of carbon emissions by
rescheduling workloads to a low carbon time. In the future,
we would like to explore the relationship between cost savings
and carbon reduction.

Our proposals faces a few limitations. While the cost
reduction algorithm is limited by sheer number of VMs in
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the dataset, the carbon reduction algorithm is limited by the
challenge of accurately predicting MOER due to its complex
nature influenced by various external factors. Our algorithm
adopts a simplified approach, primarily relying on historical
MOER data to extrapolate future levels. This simplification
enhances computational efficiency and operational feasibility
but sacrifices precision by disregarding the intricate dynamics
underlying MOER fluctuations. This can be addressed in future
work by developing a more sophisticated algorithm incorpo-
rating external factors to achieve more precise forecasting of
MOER levels.

Our study was conducted with the assumption that we can
change VM size and run time whenever it is needed. However,
this does not reflect the real world scenarios 100% of the time.
Thus although our solution aims to tackle memory space issues
through the duo use of the aggressive and passive algorithm,
real world applications of the cost reduction algorithm could
still be constrained by VM availability and memory space; a
VM may still be reduced to a level where the program does
not have enough memory to run. Additionally, both the cost
and carbon reduction algorithms would need user consent to
downgrade their VMs, as some users may require a specific
VM size without changes, or other users may not be able to
reschedule their VM workloads.

Overall, we believe inexperienced users mentioned in Sec-
tion III. C would benefit the most from our cost reduction
program. Users with workloads that can be rescheduled would
save the most carbon reductions. Both the cost and carbon
reduction algorithms are recommended to be implemented
in real cloud providers such Microsoft Azure, Amazon Web
Services (AWS), Alibaba etc.
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Abstract—The widespread adoption of Artificial Intelligence
(AI) models, such as ChatGPT, has resulted in a significant
increase in energy consumption and carbon emissions associ-
ated with their training and inference. However, research on
sustainable AI is still nascent. This paper aims to explore
efficient approaches that can reduce the carbon footprint of
AI models without compromising performance. Through an
extensive analysis of four distinct categories of AI models (text to
text summary, image classification, text to image, and image to
text) across various sizes, our findings challenge the prevailing
notion that larger AI models consistently outperform smaller
ones. In specific AI tasks, we observe that small models can
achieve comparable performance while significantly reducing
carbon emissions. Moreover, we propose a carbon-aware solution
that strategically directs computationally intensive AI tasks to
regions with low carbon intensity, which can effectively reduce the
environmental impact without compromising model quality. Our
experimental results demonstrate a significant carbon savings
while maintaining the desired performance levels.

Index Terms—AI; Energy Efficiency; Carbon Emission.

I. INTRODUCTION

The emergence of ChatGPT and GPT-4 has led to a remark-
able surge in the popularity of AI. Within just two months,
ChatGPT alone has attracted over 100 million users, showcas-
ing the immense potential of AI models to revolutionize our
daily lives and work. However, this surge in popularity has also
resulted in a significant increase in energy consumption and
carbon emissions attributed to AI. Unfortunately, the environ-
mental consequences of AI models have not received sufficient
attention, and efforts to mitigate their carbon footprint are still
in the nascent stages of research.

One way to reduce the carbon emissions of AI is to
use smaller and less energy-intensive models when possible.
However, since it is commonly assumed that larger AI models
consistently outperform smaller ones, smaller models are less
preferred in practice.

In this study, we conduct a comprehensive analysis on 11 AI
models spanning four different domains: text-to-text summary,
image classification, text-to-image generation, and image-to-
text generation. The analyzed text to text summary mod-
els include “t5-one-line-summary” and “t5-base-finetuned-
summarize-news” [1]. For image classification models, we ex-
amine “Google-vit-base-patch16-224” [2], “Google-vit-base-
patch16-384” [2], “Microsoft-cvt-13” [3], and “Microsoft-
resnet-50” [4]. Regarding text-to-image generation models, we
investigate “stable-diffusion-v1-4”, “stable-diffsion-v1-5, and
“stabilityai/stable-diffusion-2-1” [5]. We also analyze two im-
age to text generation models (“trocr-base-printed” and “trocr-

Fig. 1. Graph of carbon intensities for different locations

large-printed” [6]). Our experiments have demonstrated that
resource efficient models can achieve comparable or superior
performance in tasks such as image classification and image-
to-text generation. Meanwhile, we observe that less power-
hungry models can lead to a remarkable reduction in energy
consumption, potentially up to 69%.

However, the same principle does not apply to text-to-
text summarization and text-to-image generation models. In
these cases, larger models (e.g., stable-diffusion-2-1) tend to
generate higher quality images than smaller models such as
stable-diffusion-v1-4. To balance the need for maintaining
model quality while minimizing carbon emissions, we propose
a carbon-aware solution. This solution strategically directs
computationally intensive AI tasks to regions with lower
carbon intensity in electricity production, thereby mitigating
environmental impact without compromising the quality of
the models. Figure 1 [7] illustrates the substantial variations
in carbon intensity among different regions. For instance, the
carbon intensity of Mumbai is approximately 23 times higher
(670 gCO2eq) than that in Toronto (29 gCO2eq). This implies
that deploying identical AI models in Toronto instead of
Mumbai could potentially reduce carbon emissions by 95.67%.

This paper makes the following contributions:

• We quantitatively evaluate the energy consumption and
carbon emission of 11 AI models.

• We reveal that using smaller models in image classifica-
tion and image-to-text generation tasks can significantly
reduce carbon footprint without compromising model
quality.

• We propose a carbon-aware approach to mitigate the
carbon emissions associated with AI tasks requiring large
models, while ensuring no compromise on model quality.
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The subsequent sections of this paper are structured as
follows. Section II discusses related work, and Section III
presents the detailed information about the AI models we eval-
uate. The methodologies for model quality evaluation, carbon
emission measurement and carbon-aware model deployment
are presented in Section IV. Section V presents experimental
results and Section VI concludes this study.

II. RELATED WORK

In recent years, the environmental impact of AI has garnered
increasing attention, despite its status as a relatively young
field. Numerous studies and reports have been published to
better understand the significant environmental impact of AI
training and inference.

Amodei et al. revealed that the computing demand for
training AI models have increased 300,000 times in recent
years [8]. The environmental impact of large AI models
was highlighted by MIT Technology Review [10], stating
that training a single AI model can emit 626,000 pounds
of carbon dioxide, equivalent to the lifetime emissions of
five average American cars [13]. However, few works have
proposed ways to reduce the amount of carbon emissions
generated by AI models. In [12], Schwartz et al. pointed
out that traditional AI research (a.k.a. Red AI) focused on
improving accuracy through the use of massive computational
power while disregarding the cost and environmental impact.
Red AI is not sustainable because the relationship between
model performance and model complexity is understood to
be logarithmic, meaning an exponentially larger model is
required to gain a linear increase in performance [9]. For
example, Mahajan et al. [11] reported that object detection
accuracy increases linearly as the number of training examples
increases exponentially. The opposite approach is Green AI,
which emphasizes the importance of developing AI research
that considers the computational cost and resource utilization
[12]. According to Wu C. et al. [14], a deliberate and respon-
sible approach is necessary when developing AI technologies,
taking into account the environmental impact of innovations.

Although previous studies offered different approaches
to enhance AI efficiency and decrease its carbon footprint
through technological advancements, they generally over-
looked the quantification of carbon emissions associated with
distinct AI models. In contrast, our research takes a novel
standpoint by quantitatively measuring the carbon emissions
of 11 AI models. The results of our study demonstrate that
using smaller AI models can be an effective and easily imple-
mentable strategy to reduce carbon emissions in AI systems.
In situations where larger models are necessary for optimal
performance, we propose an innovative carbon-aware solution,
which can reduce carbon emissions by deploying AI models
in regions with low carbon intensity.

III. AI MODELS

In this section, we describe the specific AI models we used
for each of the four categories discussed earlier.

A. Text to Text Summary Models

Text-To-Text Transfer Transformer (a.k.a. T5) model was
trained on up to 770 million parameters. The model takes
a text as its parameter and can achieve four tasks: Trans-
lation, Corpus of Linguistic Acceptability, Semantic Textual
Similarity Benchmark, and Summary. We evaluate two T5
models and focus on their summary functionality. The “t5-one-
line-summary” [1] model was trained additionally on 370,000
research papers and can generate one line summary based on
the abstract of the papers. It is conservatively estimated that
the model has been downloaded 466,000 times a month from
the Huggingface downloading data. The “t5-base-finetuned-
summarize-news” [1] model was trained on news articles and
the summarized versions of corresponding news articles. The
model takes a small piece of news articles and can generate
a brief summary of the article. The model is conservatively
estimated to have 267,000 downloads a month.

B. Text to Image Generation Models

Stable Diffusion is a text-to-image generation AI model
developed by Stability AI. It employs a technique where
Gaussian noise is added to an image then removed in a
manner that generates images corresponding to a given text or
image prompt. We evaluate three different versions of Stable
Diffusion models available on Huggingface: “stable-diffusion-
v1-4”, “stable-diffsion-v1-5, and “stabilityai/stable-diffusion-
2-1” [5].

C. Image Classification Models

Image classification models aim to accurately classify the
contents of different images. We evaluate four popular im-
age classification models published on Huggingface. Both
the “google-vit-base-patch16-224” model and the “google-vit-
base-patch16-384” [2] model are derived from Vision Trans-
former (ViT). The “google-vit-base-patch16-224” model was
trained using 224x224 resolution images while the “google-
vit-base-patch16-384” model was trained on 384x384 reso-
lution images. The “microsoft-cvt-13” [3] is an image clas-
sification model that adds convolutional neural networks to
the ViT architecture. This model aims to help reduce the
effects of distortions on the accuracy of ViT-based models. The
“microsoft-resnet-50” model is a deep convolutional neural
network that does not use Transformers to classify images.
Instead, it explores the concept of using residual learning to
train deeper models [4].

D. Image To Text Models

The image-to-text models use both image and text Trans-
formers to recognize the words inside an image and print
them out. Li et al. [6] pioneered the development of the
“Transformer-based Optical Character Recognition” (TrOCR)
model. To optimize its performance, these models have been
fine-tuned using the Scanned Receipts OCR and Information
Extraction (SROIE) dataset. We evaluate two TrOCR models
presented by Microsoft in our study. The “trocr-base-printed”
model is an encoder-decoder model which uses an image and
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text Transformer to scan an image with text in it and prints a
string of the word/phrase in the image. This is the base sized
model for the Microsoft trocr-image-to-text models [6]. The
“trocr-large-printed” model is the large sized model for the
microsoft trocr-image-to-text models [6].

IV. METHODOLOGY

In this section, we describe our methodology for evaluating
the quality of different AI models, measuring the energy usage
and carbon emission of each AI model, and carbon aware
deployment in the cloud.

A. Model Quality Evaluation

While reducing the carbon footprint of AI models is es-
sential, it should not come at the expense of significantly
compromising the quality of these models. Therefore, we
carefully evaluate the quality of each AI model and only
opt for smaller models when they can match or surpass the
capabilities of larger models.

Specifically, the accuracy of each image classification model
is evaluated by obtaining a random subset of 100 images from
the CIFAR-10 dataset, which consists a set of 32x32 images
that are labeled with one of the 10 categories: “airplane”,
“automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”,
“ship”, or “truck”. Please refer to Figure 2 and Table 1 for the
output of different models on a sample image of an automobile
from CIFAR-10.

Fig. 2. Sample image of an “automobile” from the CIFAR-10 dataset

TABLE I
SAMPLE-IMAGE CLASSIFICATION MODEL OUTPUTS

Model Output
Google-vit-base-patch16-384 moving van
Google-vit-base-patch16-224 sports car

Microsoft-cvt-13 beach wagon
Microsoft-resnet-50 cassette player

The accuracy of the small and large image to text models
are evaluated by whether or not the model outputs the correct
word in the image. We use 20 images downloaded from the
internet with words in the image and finding the percentage
of correct outputs of the 20 test images.

Assessing the quality of Text to Text Summary and Image
Generation models can be challenging due to subjectivity,
leading to varying ratings from different individuals. When
comparing the outputs of three models prompted with “a photo
of a beautiful desert landscape at night” (see Figure 3), it
is evident that all three Stable Diffusion models successfully
generated a desert landscape. However, the “stable-diffusion-
v1-5” model (small) failed to produce a nighttime image and

displayed several odd streaks of yellow throughout the image.
Additionally, the resolution of the image generated by the
“stable-diffusion-2-1” model (large) was significantly higher
(768x768) than the other two images (512x512). In general,
larger models for Text to Text Summary and Image Generation
tend to produce higher quality outputs compared to smaller
models.

Fig. 3. Images generated by CompVis/stable-diffusion-v1-4, runwayml/stable-
diffusion-v1-5, and stabilityai/stable-diffusion-2-1 from left to right

B. Energy Usage and Carbon Emission Measurement

As AI models continue to gain widespread use across
various sectors and industries, their environmental impact has
grown significantly. Therefore, it is important to quantitatively
measure both the energy used and the carbon emissions
produced by training and deploying AI models. We leverage
CodeCarbon [15] as a valuable tool for monitoring carbon
emissions associated with various AI models. CodeCarbon
provides a user-friendly API that facilitates the tracking of
energy consumption and carbon emissions of different AI
models. CodeCarbon enables us to monitor the power usage
of underlying hardware components, such as GPUs and CPUs,
at regular time intervals. In our study, we express carbon
emissions in kilograms of CO2-equivalent per kilowatt-hour,
and the power consumption is measured using the default
sampling rate of 15 seconds.

C. Carbon Aware AI Deployment

When large models provide superior performance than
smaller models, we propose to reduce their carbon footprint
by deploying large AI models in regions with low carbon
intensity. The carbon intensity of the consumed electricity is
determined by taking into account the emissions from various
energy sources used for electricity generation, encompassing
both fossil fuels and renewables. The carbon intensity consid-
ers fossil fuels such as coal, petroleum, and natural gas, each
linked to specific carbon intensities, signifying the amount
of carbon dioxide released per kilowatt-hour of electricity
produced. On the other hand, renewable or low-carbon fuels
like solar power, hydroelectricity, biomass, and geothermal are
also factored in.

Table II presents the Grid Carbon Intensity data provided
by Google in grams of CO2 equivalent per kilowatt-hour
(gCO2eq/kWh) for various cloud regions/locations [7]. The
carbon intensity values indicate the amount of carbon dioxide
equivalent emissions produced per unit of electricity consumed
in each region. Lower carbon intensity values suggest that the
electricity generation in those regions is more environmentally
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friendly and emits fewer greenhouse gases. Looking at the
data, we can observe that Toronto, Paris, Finland, Madrid,
Oregon, London, and Belgium have relatively low carbon
intensities. These regions appear to have a strong focus
on renewable energy sources or nuclear power, resulting in
significantly reduced carbon emissions. On the other hand,
Mumbai, Sydney, Melbourne, Salt Lake City, South Carolina,
and Warsaw have relatively high carbon intensities. These
regions might be relying heavily on fossil fuels for electricity
generation, leading to higher emissions.

TABLE II
GRID CARBON INTENSITY FOR DIFFERENT REGIONS

Cloud Region/Location Grid Carbon Intensity(gCO2eq/kWh)
Taiwan 456

Hong Kong 360
Tokyo 464

Mumbai 670
Singapore 372

Sydney 598
Melbourne 521

Warsaw 576
Finland 127
Madrid 121

Belgium 110
London 172

Paris 59
Toronto 29

São Paulo 129
Iowa 394

South Carolina 434
North Virginia 309

Dallas 296
Oregon 60

Los Angeles 190
Salt Lake City 448

Las Vegas 365

In our experiments, we measure the energy consumption in
kilowatt-hours (kWh) and the run time in seconds for each
model. Then, using the carbon intensity data, we estimate the
carbon emissions in various regions. The variation in carbon
emissions across regions is multiplied by the actual usage of
the AI models, allowing us to assess the potential CO2 savings.

V. EXPERIMENTAL RESULTS

In this section, we will present experimental results and the
cloud platform that we use to deploy these AI models. Specif-
ically, Subsection A discusses the cloud deployment details.
Subsections B and C present the carbon reduction results of
replacing larger models with small models. Subsections D and
E illustrate the penitential carbon savings when deploying AI
models on low carbon regions.

A. Cloud Deployment

In our experiments, all AI models are assessed using the
A10 GPU within the Lambda Cloud [16], which provides
us with instant access to cloud GPUs at highly competitive
prices. The Lambda Cloud follows a pay-by-the-second billing
model, ensuring that users are charged only for the actual

time their instances are utilized. Furthermore, Lambda cloud
pre-installs popular machine learning frameworks like Tensor-
Flow, PyTorch, CUDA, and cuDNN, enabling us to promptly
deploy models without any installation hassles. Additionally,
the Lambda cloud supports deployment in multiple regions,
each with varying carbon intensity levels. This feature allowed
us to examine the efficacy of our proposed carbon-aware AI
deployment approach.

B. Image Classification Models

We evaluate four image classification models, includ-
ing “Google-vit-base-patch16-224” [2], “Google-vit-base-
patch16-384” [2], “Microsoft-cvt-13” [3], and “Microsoft-
resnet-50” [4]. The accuracy and energy consumption of all
four models are presented in Table III, from which we can ob-
serve that two Google-vit models perform significantly better
than the other two image classification models. However, they
also consume significantly more energy. Surprisingly, even
though the ”Google-vit-base-patch16-224” model uses 69%
less electricity than the larger ”Google-vit-base-patch16-384”
model, it achieves a higher accuracy level. This finding sug-
gests that utilizing the ”Google-vit-base-patch16-224” model
not only leads to better model quality but also generates less
than one-third of the carbon emissions produced when using
the ”Google-vit-base-patch16-384” model.

TABLE III
IMAGE CLASSIFICATION MODEL ACCURACY AND ENERGY USAGE

Model Accuracy Energy Consumption (kWh)
Google-vit-base-patch16-384 61% 0.1229
Google-vit-base-patch16-224 68% 0.0381

Microsoft-cvt-13 49% 0.0122
Microsoft-resnet-50 39% 0.0062

C. Image to Text Models

We analyze two image to text generation models, namely
“trocr-base-printed” and “trocr-large-printed”. Both models
exhibit nearly identical accuracy levels, with 96.59% for the
large model and 96.37% for the base model [6]. However, our
experiments reveal a significant disparity in energy consump-
tion and processing time between the two models. Specifically,
the base model outperform the large model in terms of energy
efficiency and processing speed. For instance, when converting
the image shown in Figure 4 to text, the large model takes 17.6
seconds and consumes 0.000585 kWh of energy, whereas the
same task is accomplished by the base model in only 14.4
seconds, consuming just 0.000403 kWh of energy. Similarly,
Figure 5’s image conversion is 18% faster and result in
22% energy savings when using the base model with no
compromise on output quality.

These findings challenge the prevailing notion that larger
models are inherently superior to smaller ones. In cases where
both models achieve comparable accuracy, opting for the
smaller model proves to be more efficient. Larger models
not only demand more energy for running and training but
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also take longer to process data. As such, the superiority of
larger models is not universal, and in certain scenarios, smaller
models can perform equally well, offering the additional
advantages of reduced energy consumption and processing
time.

Fig. 4. Image with the text “Education” used to test the Text-to-Text Models

Fig. 5. Image with the text “Advantage” used to test the Text-to-Text Models

D. Carbon-Aware Deployment of Stable Diffusion Models

We evaluate three popular Stable Diffusion models in-
cluding “stable-diffusion-v1-4”, “stable-diffsion-v1-5, and
“stabilityai/stable-diffusion-2-1” [5]. As previously discussed
in Section III and illustrated in Figure 6, images generated by
the large “stabilityai/stable-diffusion-2-1” model have much
higher quality than the other two smaller models. Nevertheless,
the “stabilityai/stable-diffusion-2-1” model consumes 4 times
more energy than the other two smaller models, as illustrated
in Table IV.

Fig. 6. An image of flying pigs generated by different Stable Diffusion models

TABLE IV
STABLE DIFFUSION MODEL ENERGY CONSUMPTION

Model Energy Consumption (kWh)
stabilityai/stable-diffusion-2-1 0.01438

runwayml/stable-diffusion-v1-5 0.00321
CompVis/stable-diffusion-v1-4 0.00323

We leverage a carbon-aware solution to balance the need
for maintaining model quality while minimizing carbon emis-
sions. This solution uses the high quality “stabilityai/stable-
diffusion-2-1” model but strategically deploys it to regions
with lower carbon intensity, thereby mitigating environmental
impact without compromising the quality of models.

This approach works because we now can easily deploy AI
models at different regions using cloud computing. For exam-
ple, deploying the “stabilityai/stable-diffusion-2-1” model at
the “us-west4” region (based in Salt Lake City) results in a
carbon intensity of approximately 448. In contrast, the “us-
west1” region (based in Oregon) has a much lower carbon
intensity of 60. The notable difference in carbon intensity
is attributed to Oregon’s utilization of renewable electricity
sources, such as Hydro Power and Wind Power [17], while
“us-west3”, where Salt Lake City is located, relies significantly
on fossil fuels like natural gas and coal to generate electricity
[18].

To demonstrate the impact of carbon aware deployment
in the cloud on carbon emissions, we conduct experiments
with Stable Diffusion and estimated the carbon emissions
for both “us-west3” and “us-west1.” Although the energy
consumption of individual requests might not seem substantial,
considering Stable Diffusion models serve 10 million daily
users worldwide, the accumulated energy and carbon savings
become noteworthy. Assuming each user generates one image,
we are looking at 10 million images being produced daily.
Our experimental results indicate that this process would
consume approximately 14,380 kWh of electricity per day.
If the “stabilityai/stable-diffusion-2-1” model were to gen-
erate all its images using ”us-west3,” it would produce 6.4
million gCO2eq of greenhouse gases. On the other hand, if
deployed on ”us-west1,” it would emit only about 860 thou-
sand gCO2eq. By making environmentally conscious decisions
about where the model is deployed, we manage to reduce
carbon emissions by an impressive 86.6%.

E. Carbon-Aware Deployment for Summary Models

In this experiment, we evaluate two Text-To-Text Trans-
fer ransformer summary models: “t5-one-line-summary” and
“t5-base-finetuned-summarize-news” [1]. It is evident that
the large “t5-base-finetuned-summarize-news” model gener-
ally provides higher quality summary than the small “t5-one-
line-summary” model. Similarly, we can reduce its carbon
footprint by deploying the large model in regions with low
carbon intensity.

It is worth noting that the carbon-aware deployment ap-
proach can also benefit small AI models. Table V presents the
carbon emissions of both small and large models when de-
ployed in different regions. By choosing Oregon over Dallas as
the deployment location for the “t5-one-line-summary” model,
a single request can save 0.084 grams of CO2, amounting to
an 80% reduction. With an estimated usage of 466,000 times
a month, the carbon aware deployment approach could save at
least 39,144 grams of CO2. Similarly, the “t5-base-finetuned-
summarize-news” model could save a total of 106,533 grams
of CO2.

Since carbon intensity varies throughout the day due to
electricity demand, computational tasks could switch between
different cloud locations to optimize carbon savings.
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TABLE V
ESTIMATED CO2 EMISSION IN DIFFERENT CARBON INTENSITY REGION

Region “one-line-summary” “finetuned-summarize-news”
Taiwan 0.162 0.771

Hong Kong 0.128 0.608
Tokyo 0.165 0.784

Mumbai 0.238 1.13
Singapore 0.132 0.629

Sydney 0.213 1.01
Melbourne 0.185 0.881

Warsaw 0.205 0.973
Finland 0.045 0.215
Madrid 0.043 0.204

Belgium 0.039 0.186
London 0.061 0.291

Paris 0.021 0.010
Toronto 0.010 0.049

São Paulo 0.046 0.218
Iowa 0.140 0.666

South Carolina 0.154 0.733
North Virginia 0.110 0.522

Dallas 0.105 0.500
Oregon 0.021 0.101

Los Angeles 0.068 0.321
Salt Lake City 0.159 0.757

Las Vegas 0.130 0.617

VI. CONCLUSIONS AND FUTURE WORK

The growing adoption of AI models has led to a notable rise
in energy consumption and carbon emissions associated with
their training and inference processes. Despite this concern,
research on sustainable AI is still in its early stages. This
study aims to investigate efficient approaches that can diminish
the carbon footprint of AI models without sacrificing their
performance.

We propose two methods to mitigate CO2 emissions while
utilizing AI models. Firstly, by employing more energy-
efficient models where feasible, we showcase instances where
smaller AI models, consuming less energy, could deliver com-
parable or even superior performance to larger, more energy-
intensive counterparts. Secondly, we advocate for a carbon-
aware deployment of AI models. The geographical location
where AI models are executed significantly influences their
carbon intensity, as the carbon emissions generated during
electricity production depend on the carbon intensity of the lo-
cal energy grid. Adopting low carbon-intensity cloud services
for running AI models can substantially reduce the carbon
footprint of AI applications. This approach is applicable to
both AI training and inference, thereby reducing the carbon
emissions associated with electricity consumption. By imple-
menting these carbon-reduction strategies, we can harness the
power of AI for societal benefits while ensuring AI’s carbon
emissions remain sustainable. Our findings indicate that the
utilization of smaller models can potentially reduce energy
usage by up to 69% in specific scenarios, and the second
method aligns AI’s carbon footprint with the carbon intensity
of the least carbon-intense cloud computing server.

Despite our paper’s valuable contributions, we acknowledge
certain limitations. The accuracy and energy usage measure-

ments of AI models may not be entirely precise due to a
relatively small sample size. To enhance our research, con-
ducting in-depth experiments with a larger dataset could more
accurately determine the models’ accuracies. Moreover, future
work should focus on quantifying the quality of both image
generation models and summary models, enabling a more
comprehensive comparison of their accuracies and energy
usage. Another limitation pertains to the carbon intensity
data, which is based on average values and may not account
for real-time fluctuations. Carbon emissions during electricity
production can vary due to several factors. To minimize carbon
emissions more effectively, AI models might need to dy-
namically adapt to different cloud regions. Therefore, further
investigation is necessary to further improve this approach.

Large computing organizations might see a more pro-
nounced reduction in CO2 emission since they have more
resources to optimize cloud usage and a wider range of AI
models to choose from, but these solutions can be effective
even on a small scale.

In conclusion, our study emphasizes the urgency of ad-
dressing the environmental impact of AI and presents viable
strategies for reducing carbon emissions of employing AI mod-
els without compromising model quality. Embracing energy-
efficient models and adopting carbon-aware deployment prac-
tices will contribute to a more sustainable and environmentally
friendly integration of AI technology into our society.
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Université de Haute Alsace
Mulhouse, France

djafar.ould-abdeslam@uha.fr

Abstract—As machine learning becomes increasingly perva-
sive, its resource demands and financial implications escalate,
necessitating energy and cost optimisations to meet stakeholder
demands. Quality metrics for predictive machine learning models
are abundant, but efficiency metrics remain rare. We propose a
framework for efficiency metrics, that enables the comparison
of distinct efficiency types. A quality-focused efficiency metric is
introduced that considers resource consumption, computational
effort, and runtime in addition to prediction quality. The metric
has been successfully tested for usability, plausibility, and com-
pensation for dataset size and host performance. This framework
enables informed decisions to be made about the use and design
of machine learning in an environmentally responsible and cost-
effective manner.

Index Terms—machine learning; nlp; efficiency; metric; soft-
ware performance; automl.

I. INTRODUCTION

Decades ago, the primary motivation behind the pursuit of
computational efficiency was the limited computing power
available at the time. Computing resources had to be used
judiciously to overcome the constraints imposed by hardware
limitations. The advent of powerful computing resources,
particularly in the field of Machine Learning (ML), has shifted
the focus to achieving superior prediction quality, relegating
efficiency to a secondary concern. As ML continues to evolve,
the future landscape of human-computer interaction will be
profoundly influenced by the widespread adoption of Large
Language Models (LLMs) [1]. This shift is also driven by
the integration of ML into heterogeneous computing environ-
ments, such as edge computing on resource-limited hardware.
From a green computing and sustainability perspective, the
use of resource-intensive solutions such as transformer-based
word embeddings or LLMs may not always be financially or
environmentally viable [2]. As a result, there is a growing de-
mand for efficiency, especially for the widespread application
of ML. The objective of this publication is to contribute to the
improvement of efficiency in ML by introducing robust metrics
for measuring the efficiency of machine learning models.

ML research has focused on improving model quality, for
which a number of metrics are available. Research on effective
ML lacks standardised and comprehensive efficiency metrics.
To ensure reproducibility and facilitate result comparison, best
practices in ML research typically include detailed descrip-

tions of experiments, encompassing datasets, preprocessing
steps, machine learning techniques, hyper-parameters, and
hardware setups [3]. The absence of a dataset-agnostic proce-
dures and missing ’Golden Standard’ datasets pose challenges
in achieving true repeatability and fair comparisons in Natural
Language Processing (NLP) [4]. Furthermore, evaluating the
impact of novelties in ML process steps, such as improved
preprocessing, on prediction quality is a complicated task, as
the other ML steps may be influential.

The delicate balance between complexity and outcome is
often overlooked in research efforts to utilise all available
resources to reduce time-to-solution. Evaluating time and
space complexity becomes subordinated to finding the best
model or process. Numrich stated [5]: “Increasing productivity
by minimising the total-time-to solution is a somewhat ill-
defined statement of the problem. We propose an alternative
statement: at each moment in time, use the resources available
in an optimal way to accomplish a mission within imposed
constraints.” It becomes essential to establish metrics that
address the efficiency concerns alongside prediction quality
in the context of ML research.

We present a proposal to fill the existing gap by introducing
novel metrics for measuring the efficiency of machine learning
models. By incorporating resource consumption, computa-
tional effort, and runtime considerations into our efficiency
metrics, we aim to provide a holistic perspective on the
true efficiency of ML models. We demonstrate the process
of defining a quality focused efficiency metric (Figure 1)
and present the Quality COmpact (QCO) Efficiency Metric
(Equations 4 & 5). We recognise the importance of dataset-
agnostic evaluation and propose solutions to address this
challenge and demonstrate the advantages of our metric for
evaluating hyperparameter tuning. Our goal is to empower
researchers and practitioners to make informed decisions that
prioritise both prediction quality and efficiency, thus advancing
the field of ML towards sustainable, green, and economically
feasible solutions.

The structure of the paper is as follows: Section 2 (State of
the Art) covers the research on efficiency types and metrics
in ML. In Section 3 the efficiency metric is presented by
elaborating on its objectives, followed by the theoretical foun-
dations of efficiency dimensions and concepts, and finally the
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definition of the efficiency metrics. In the subsequent Section
4, the metric for quality-focused efficiency is defined, adhering
to a specified protocol. The score equations for QCOF are
presented, accompanied by a brief explanation of its usage.
The Evaluation Section 5 uses two experiments to assess the
performance of the metric. The results obtained are discussed
in detail in Section 6, leading to the presentation of the
conclusion (Section 7).

II. STATE OF THE ART

This section begins with approaches that deal with computa-
tional cost as a method. The goal of predicting computational
cost incorporate with the prediction of financial cost. Then,
approaches to resource effectiveness are considered. Their goal
is to find algorithms that work in most cost-effective way.
Finally, general approaches to efficiency metrics are examined.

Computational Cost or efficiency is based on the com-
putational effort. Most statistical ML algorithms can be ad-
dressed and their time complexity or space requirements can
be calculated. For example, the time complexity of gradient
descent is O(ndk), where d is the number of features and n
is the number of rows. In the context of transformer-based
approaches, the number of operations for multi-head attention
can be calculated as n2d+nd2, where n is the sequence length
and d is the depth [6]. Translating these statistical calculations
into real training times is challenging due to numerous opti-
misations of modern CPUs and GPUs that change the type
of computation and the number of operations [7][8][9]. The
approach presented here defines work and duration dimensions
based on actual measurements.

Computational Cost for Deep Learning is specific to deep
learning, as it relies on complex neural network architectures,
which makes direct computation of complexity difficult. Sev-
eral approaches attempt to predict complexity, such as the
proposal by Li et al. [10], which introduces two classes of
prediction models for distributed SGD. The use of profiling
information in this approach is similar to the method presented
here, but with limited validity for deep learning optimised with
distributed SGD.

Resource Efficiency is important for deep learning, where
hardware requirements differ from those of statistical machine
learning and are constantly evolving. Research aims to adapt
deep learning to specific hardware. Yang et al. [11] developed
a method to bridge this gap, focusing on computing the
model locally near the sensor. In HPC, research such as
Performance Metrics based on computational action (Num-
rich [5]) optimises the use of hardware. Resource efficiency
focuses primarily on the optimal hardware usage of specific
algorithms, ignoring algorithm complexity or runtime. The
efficiency definition presented here addresses this aspect to
provide comprehensive statements about the entire ML task.

Efficiency Comparison plays a role in the evaluation of
novel approaches. For instance, Thomson et al. [12] present
an optimisation for machine learning-based compilers that
focuses on process speedup while overlooking the impact on
resource consumption. Fischer et al. [13] propose a framework

Fig. 1. Development of Quality Focused Efficiency Metric.

for evaluating the energy efficiency of ML without consid-
ering prediction performance. Kumar, Goyal & Varma [14]
develop ML with a small footprint and compares efficiency
based on model size, prediction quality, prediction time and
prediction energy. Discussions of the novel approach primarily
revolve around individual measurements, lacking an overall
efficiency comparison. In contrast, Huang et al. [15] discusses
the selection of an object detection architecture in terms of
efficiency, defining it as a speed/memory/accuracy trade-off
and evaluating it through two-dimensional trade-off curves.
The proposed efficiency metric would provide a balanced and
meaningful score for evaluating [14] and [15].

Efficiency metrics were ’invented’ for HPC research, which
deals with highly scaled hardware systems and highly spe-
cialised applications, making efficiency statements easier to
derive and crucial. The difficulties have been recognised
and discussed from an early stage [16] - to philosophical
considerations [17]. Numrich of Cray Research developed an
approach based on physical laws [18] [5], which inspired the
proposed metric based on dimensions reflecting components
of a physical law.

III. EFFICIENCY METRIC PROPOSAL

This proposal encompasses two integral parts: the devel-
opment of abstract efficiency metrics and the definition of the
quality-focused efficiency metric. We introduce the objectives,
limitations, and use cases of efficiency in ML, and establish
basic efficiency types based on trade-off relationships. Draw-
ing inspiration from the laws of physics, we define efficiency
using efficiency dimensions for quality, work, space, load, and
duration of the ML procedure, with each dimension compris-
ing measurements of the ML process. We outline two types of
metrics, namely the efficiency vector, which provides insight
into the raw strengths and weaknesses of the ML process in
terms of efficiency, and the focused efficiency scores, which
are designed for ease of interpretation. To enhance the signif-
icance of scores, a defined procedure is employed to adjust
dimensional weights and perform sophisticated measurement
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TABLE I
LIMITATIONS OF QUALITY COMPACT (QCO) METRIC

Aspect Valid Range or Category Balanced

Dataset Labelled Text Samples, Size <256 MB Yes1

ML-Task Text Classification, NLP-Tasks4 No2

Classifiers All ML Techniques No3

Host-setup Non-HPC, Non-GPU, RAM <128GB Yes1

Training Duration 48h Yes1

Calculation Amount 63P FLOPS, 800M Minor Page Faults Yes1

(1) Compensation, e.g., efficiency remains consistent regardless of dataset
size. (2) Scores from different tasks are not comparable. (3) Provides

comparable efficiency scores per ML technique. (4) untested

smoothing. As an example, we outline the metric equation
for quality-focused efficiency and propose a metric definition
protocol to achieve metric validity. This protocol is applied
to define the quality-focused efficiency metric, including the
definition of the equation for score calculation, appropriate
measurement selection, smoothing of measurement values, and
dimension weight development.

A. Objectives & Limitations

An objective of this approach is to enable its applicability
to all ML techniques. Measurements should be available for
common host setups. The efficiency should be balance effects
of different host setups. Additional requirements need to be
derived from use cases. Certain measurements depend on ML
task characteristics, such as dataset size, or runtime conditions,
such as duration (see Table I). Valid measurement ranges may
be enforced by smoothing techniques.

The application of the ML process involves objectives and
constraints. The following use cases have specific efficiency
requirements.

1) Effects of changes in the ML process: The effects of
different techniques, such as preprocessing techniques,
need to be measured [19].

2) Select ML technique by efficiency: Identify the ML
technique that achieves high classification quality while
minimising the use of computational resources. [11].

3) ML technique for limited resources or private data: Se-
lect a Whitebox ML technique suitable for local model
training [20].

4) Parameter optimisation: Effectiveness as a cost function
in the optimisation of hyperparameters or setups [21].

5) Performance comparison: Compare the performance of
an ML technique on different host setups to evaluate ML
efficiency [22].

6) Predicting computational costs: Predicting the cost by
predicting computational effectiveness of an ML tech-
nique in a production setup [23].

B. Dimensions

The concepts of efficiency in the use cases are different, but
are defined on the basis of similar components. All concepts

consider the trade-off between the performance of the model
and the resources consumed during training or inference. The
key components under consideration for the efficiency metrics
are:

Accuracy or Performance. The efficiency of the machine
learning model is correlated with its accuracy or performance.
Standard metrics such as accuracy, precision, recall, F1-Score,
or Area Under the ROC curve (AUROC) can be used to
measure this, depending on the specific task.

Resource Utilisation. Efficiency should take into consider-
ation the resources consumed during the training or inference
process. This includes computational resources like CPU,
GPU, or memory usage. Efficient models should minimising
resource utilisation.

Relative Resource Utilisation. The load imposed on the host
by the machine learning process provides a means of measur-
ing the relative utilisation of hardware resources. A higher load
indicates a more efficient use of available resources, as fewer
resources are left unused.

Computational Effort. Efficiency is affected by the complex-
ity of the ML process, or the amount of computation needed
to train the model or compute a result for inference. Efficiency
is improved when the computational effort is minimised.

Training Duration. The definition of efficiency can include
the time to train the machine learning model. Faster training
times can be beneficial, especially in scenarios where models
need to be trained frequently or where time constraints exist.

Inference Latency. For models deployed in real-time or
interactive applications, the time taken to make predictions
or perform inference is critical. Low inference latency or fast
response times can be important efficiency metrics in such
cases.

In the context of cost-effectiveness in machine learning
research, different dimensions or base units are considered.
The need to define base units, such as distance and power,
which can be used to define efficiency, has been discussed by
Numrich [24]. This approach uses abstract dimensions, which
provides adaptation through flexible adaption. The proposed
efficiency metric uses the following efficiency dimensions, with
a description of valid measurements:
Quality. (Or Performance) The machine learning model

should achieve the desired level of accuracy as a perfor-
mance indicator for addressing the given task or problem.
Measurement can be conducted using appropriate evalu-
ation metrics tailored to the specific task, including accu-
racy, precision, recall, F1-Score, or AUROC. Preferably
scores that compensate unbalanced dataset [6].

Work. (Or Computational Effort, Computational Complexity)
The number of computational operations, such as matrix
multiplications, gradient computations, data transforma-
tions as well as the usage of computational-cache (e.g.,
CPU L1-Cache). The theoretical amount of work can
be calculated by applying the theory of computational
complexity. The real workload differs due to optimisation
at the software and hardware level. [7]–[9]. The measure-
ment shall count generated and processed compute steps,
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optionally data transfers through memory and network.
Computational steps can be counted direct (floating point
operations or instructions) [6] or indirect by measuring
side-effects of computation, e.g., memory management
activity.

Load. (Or Relative Resource Consumption) Relative host
usage reflects the degree to which all available resources
on the host are being used. This includes relative usage
of compute units (CPU and GPU cores), and relative
memory usage. It also includes information about load
related memory management events such as major page
faults.

Space. (Or Absolute Resource Consumption, Space Complex-
ity) The amount of data resources, such as memory
and storage, needed by the machine learning process.
Space usage of memory is measured by resource usage on
the host system. This includes main memory usage and
allocation such as virtual memory allocation, resident set
size, working set size or stack size.

Duration. (Or Time Requirements) Time-related measure-
ments, such as training time or inference latency and
include time to complete the ML procedure or time spent
on processing units.

Other non-dimension specific measures include the character-
istics of the dataset, such as information about the number of
samples and the size of the dataset. For special purpose met-
rics, sample attributes such as number of sentences, number
of words and linguistic text attributes can be obtained.

C. Efficiency

Efficiency (Cost-Effectiveness) refers to achieving a high
level of performance or accuracy while optimising the utili-
sation of resources and minimising associated costs. It aims
to strike a balance between the effectiveness (performance)
of the model and the costs or resources required to achieve
that effectiveness. This approach covers three concepts of cost-
effectiveness:

Solution Efficiency. Efficiency as the balance solution
achievement and cost. Solutions are focuses like quality,
costs include efforts done and resources consumed. Every
aspect is provided by one or multiple efficiency dimen-
sions. Solution efficiency with quality focus describes
how much computational effort was used to achieve
the prediction quality. This reflects the efficiency of
the model, i.e., the algorithm and its implementation.
Efficiency increases by doing less work in less time
and achieving higher prediction quality. Other focuses is
achieving low latency of ML inference.

Resource Efficiency. Efficiency as the degree to which re-
sources are used. Resource efficiency is the capability
of the ML procedure to use all available resources. It
increases by adapting to host setup by using more existing
resources. Important for designing hardware for specific
ML Techniques and adapting ML algorithms to specific
hardware [25]

TABLE II
INSTANTIATION PROTOCOL

Step Objective

1 Select Efficiency Metric
2 Define Validity Requirements
3 Setup and Conduct Experiment
4 Define Dimensions
5 Analyse measurements
6 Assign measurements to Dimensions
7 Define Validity Ranges
8 Normalisation of Measurement-Values
9 Determine Dimensional Weights

10 Define Score compensation factor
11 Define Score Equation

TABLE III
VALIDITY REQUIREMENTS

Aspect Count Variables Optional

Dataset >=2 Size, Sample Count Sample Length,
Language

Vectorization >=2 Algorithm Dictionary Size,
Model Size

Classifier >=4 Algorithm,
Classifier Tech. Hyperparameters

Host-Setup >=2 Hardware Conf.,
Operating System Software Version

Synthetic Efficiency. Efficiency as a tool for measuring spe-
cial aspects of performance to analyse specific attributes,
such as text quality indicators [26] or performance com-
parisons [27].

Efficiency rules are defined based on the efficiency objectives:

1 Solution Efficiency
1.1 The more quality is achieved in less time, work and

effort, the higher the ML quality efficiency.
1.2 The less time it takes to achieve more quality, the higher

the ML-Speed-Efficiency.
1.3 The less work required for more quality, the higher the

ML-Work-Efficiency.
2 Resource efficiency

2.1 The more load is used for more quality, less duration,
less work, the higher the ML resource efficiency.

3 Synthetic efficiency
3.1 The less computational work is necessary per data

chunk the higher the ML model efficiency.
Beside the efficiency objectives, two diametral requirements

on handling of the ML efficiency results are encountered:
Interpretability and Usability. The more information a metric
provides, the greater the need for interpretation. This approach
provides metrics at two levels of complexity. (i) Efficiency
is determined as a single scalar by the at-a-glance metric
(compact metric score) while supporting weights for each
dimension. (ii) The efficiency vector metric represents unin-
terpreted values per dimension.
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D. Compact Efficiency Metrics

Efficiency in the field of ML shows variability depending
on the specific application. Metrics are proposed for specific
purposes and categorised according to their level of complex-
ity. The group of compact metrics uses a subset of dimensions
that contribute to the calculation of an efficiency score, which
is determined with respect to the dominant dimension. The
compact efficiency (CO) metric is defined in Definition 1.

Definition 1: It exists a compact efficiency score CO of
a ML procedure M for focused dimensions F with a focus
weight α and unfocused dimensions U (1); based on efficiency
dimensions (D) quality q, work w, space s, load l and duration
d with specific dimension weights β defined by (2).

[F ]CO(M) = (F × α)× U (1)
[F ]CO(M) = (qM × βq)× (wM × βw)× (sM × βs)

× (lM × βl)× (dM × βd)× ψ (2)

where D = {r ∈ R | r > 1} and {q, w, s, l, d ∈ D}
F ⊆ D and U = D\F
ψ = Score-Compensation

Quality Focused COmpact Efficiency Metric (QCO). A
compact metric to reflect quality-focused efficiency. A score
describes the best solution with a predefined high relevance
of the quality dimension and low relevance of the work
and duration dimensions. Relevant dimensions: Quality, Work,
Space, Duration. Dominant dimension: Quality.

The QCO-score for an ML process M is derived from (1)
& (2) for the Quality-Focus, as stated by (3). The quality
dimension is represent by q, which measures the quality or
performance of the machine learning model. w represents
the dimension of computational effort, which quantifies the
computational operations or effort required for the machine
learning tasks. The resource consumption dimension s mea-
sures the amount of system resources required during the
execution of the model. d represents the dimension of duration,
which measures the time or duration required to train the
model. The weight per dimension β is employed to adjust the
importance of dimensions, while α represents the additional
weight of the focus dimension, both derived from expert
knowledge of the use case. The compensation factor ψ is
introduced to optimise the readability of the score, where
1 > ψ ≥ 0.1. The dominance of quality q is reflected in
the numerator, so efficiency is defined as the quotient of
quality divided by work w, space s and duration d (terms
in the denominator). The dimensions are intended to increase
in importance with a growth proportional to their current size,
so the weights β of the dimensions and the focus weight α
are treated as exponents with the respective dimension as the
base.

TABLE IV
HOST-SETUPS

No. Type CPU-Model Clock Threads RAM

1 Virtualised AMD Ryzen 7 5800U 1,9 8 16
2 BareMetal Intel Core i5-6200U 2,3 4 8
3 BareMetal Intel Core i7-7700 3,6 16 32
4 Virtualised Intel Xeon Gold 6230 2,1 4 8
5 Virtualised AMD EPYC 7742 2,2 16 16

[Clock in GHz, RAM in GB.]
OS: Linux, Language: Python3,

Libraries: Scikit-learn [28], DistilBERT [29], torch [30], pandas [31].

QCO(M) =
qα∗βq

(wβw + sβs + dβd)
∗ ψ

(3)

Resource Focused Compact Efficiency Metric (RCO). Com-
pact metric to reflect resource-oriented efficiency. A score
describes the best solution with a predefined high relevance
of the relative load usage and a low relevance of the quality
dimension. Relevant dimensions: Load, Quality, Work, Dura-
tion. Dominant dimension: Load.
Inference Focused Compact Efficiency Metric (ICO). Com-
pact metric to reflect resource-oriented efficiency. A score
describes the best solution with a predefined high relevance
of duration, low relevance of the quality dimension and
lowest relevance of work. Relevant dimensions: Quality, Work,
Duration. Dominant dimension: Duration.
Algorithmic Focused Compact Efficiency Metric (ACO).
Compact metric to reflect resource-oriented efficiency. A score
describes the best solution with predefined high relevance
of work and duration, low relevance of duration, quality,
and dataset dimension. Relevant dimensions: Quality, Work,
Duration, Dataset. Dominant dimension: Work.

E. Efficiency Vector Metric (EV)

The CO metrics condense efficiency information into a
score. To provide information of the dimension specific per-
formance the EV metric reveals the dimension scores of the
CO metric. The EV is available per CO as a vector, to describe
the efficiency in the vector space of the specific CO. For QCO
the QEV is represented by a vector in a Quality-Work-Space-
Duration space.

IV. COMPACT METRIC INSTANTIATION

In order to use the proposed efficiency metric, the abstract
definitions need to be instantiated into explicit definitions by
empirical method (Table II). This requires conducting an ML
experiment that maps a specific use case and involves the
collection of measurements. The instantiation of the metrics
thus depends on the parameters of the experiment. The validity
of the metric instantiation is positively correlated with the size
of the use case, such as the number of datasets.

The instantiation stages for a CO-Metric are as follows: The
experiment is designed, deployed and measurements captured.
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Fig. 2. Pearson Correlation Coefficients of empirical Measurement Values.

TABLE V
MEASUREMENTS

Type DIM IMP TRANS DEP

F1-Score Quality 10 None
Bal.-Acc. Quality 10 None
FLOPS Work[CPU] 10 Log 63P Data
MinorPF Work[CPU] 5 Log 800M Data
RSS (avg) Space[Mem] 10 Log 128G Time
CPU Time [ns] Duration 10 Log 172T
Data Size - 10 Log 256M

The formulas for the dimensions are defined and measured
values are assigned (Table VI). Validity ranges are specified
and the measured values are smoothed accordingly (Table VI).
The determination of the dimensional weights and the score
compensation factor ψ completes the Metric Equation (4).

For reasons of compactness, the instantiation is restricted to
QCO metric.

A. The QCO-Metric Instance

The dimensions and the QCO score are instantiated accord-
ing to the protocol given in Table II.

Use Case 1 requires efficiency as quality per work, space,
and time. The QCO-Score is applicable. Experiment 1 has
been set up based on Use Case 1 to instantiate a Quality

TABLE VI
QCO INSTANCES

Dimension QCOF QCOP (*)

Quality (F1 + BACC) / 2 (F1 + BACC) / 2
Work FLOPS / Dataset[kB] Minor PF / Dataset[kB]
Space aRSS/s[MB] * Duration[s] aRSS[MB] * Duration[s]
Duration Time on CPU [ns] Time on CPU [ns]

(*) FLOPS-Measurement was not available on all hosts.

Fig. 3. Spread and Skewness per Dimension after logarithmic smoothing.

Focused Metric. The required validity for different datasets and
ML procedures results in the empirical variance requirements
presented in Table III. To gain comparison validity among
host-setups, four different computing environments were set
up (No. 1-4 as shown in Table IV).

Two datasets were selected, a spam classification [32] and
am movie review classification [33]. Vectorization was done
using the classical TF-IDF algorithm as wells as by word em-
bedding based on BERT. The classifiers chosen were Support
Vector Machines, Naı̈ve Bayes (NB), Gradient Descent (GD)
and Random Forest (RF). In addition, a transformer-based
ML procedure (DistilBERT-Setup) was performed. In the
DistilBERT-Setup, the model was fine-tuned on the datasets
and used for vectorization and classification.

The measurements were provided by a set of Linux tools:
• time. Basic process measurement (CPU, Memory).
• pidstat. Advanced process measurement (CPU, Mem-

ory, IO-Usage).
• perf. Performance counter capture. (CPU, Memory).
Quality scores were computed separately from the ML

procedure. Measurements were grouped for resource domain,
e.g., memory consumption or computational work on CPU.
The groups were filtered by correlation, the heatmap (Fig-
ure IV) shows Pearson Correlation Coefficients for selected
measurements. perf was not supported on all host setups
due to missing performance counters and conflicts with power
saving methods. Two sets of measurements has to be set up
which results in two QCO flavors: F loating Point Operation
(QCOF ) based and Minor Page F ault (QCOF ) based. The
selected measurements are listed in Table V.

Range definition is necessary for normalisation. Valid ranges
for this QCO-Instance are listed in Table I. Normalisation
is necessary as different units and types of data are used
in calculation. Performing monotonic data transformation on
dimensions values lead to a range between 0 to 2. The
transformation range is based on the maximum values per
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QCOF (M) =
((F1+BACC

2
)6)

(log63P FLOPS/DS[kB] + log128GRSS[MB] ∗ log864MD[s] + log172T TOC[ns]
∗ 10

(4)

QCOF (M) =
((F1+BACC

2
)6)

(log800M MPF/DS[kB] + log128GRSS[MB] ∗ log864MD[s] + log172T TOC[ns]
∗ 10

(5)

where F1 = F1-Score, BACC = Balanced Accuracy Score,
FLOPS = Floating Point Ops., MPF = Minor Page Faults,

DS = Dataset-Size, RSS = Resident Set Size,
D = Duration, TOC = Time on CPU

dimension. The valid ranges are thus not related to mea-
surement ranges. The definition of valid measurement ranges
(Table I) enables data transformations on measurement values.
After transformation values are in an closed scale with minor
decreased distribution (Figure 3).

The dimension-equations are defined by interpreting the
dependencies of the measurements (Table V). Especially the
dependency on duration and data size has been considered.

The dimension weight is used to adjust the importance of the
focused metrics. The importance of quality is based on domain
knowledge: Quality is about two times more important than
work, space, and duration which delivers βQ = 6. Readability
compensation ψ is set to 10.

QCO for is defined for each measure set, which results in
4 and 5

B. QCO Metric Usage

1) Select QCO type according to available measurements.
If CPU-Performance-Counters are available QCOF, oth-
erwise QCOP. Respect expected validity ranges (Table I.

2) Perform training on a dataset subset while capturing
measurements according Table VI.

3) Calculate efficiency by equations 4 5.

C. QCO Score Calculation

The Quality-Focused Score is calculated for FLOPS-based-
score as QCOF (4) and QCOP for Page-Fault-based score
(5).

V. EVALUATION

The usability, plausibility and balance of the proposed
metric is assessed in a comprehensive evaluation.

A. Experiments

In Experiment 2, binary classification tasks were performed
by different vectorization and classifier technologies. Two
datasets are selected for Experiment 2, both with moderate
text length; SMS Spam Classification (25.000 samples)[32]

and Movie Survey Classification (7.805 samples) [33]. The
experiments were run on host 1 (Table IV) in two virtual
hosts with different virtualisation technologies. The results of
experiment 2 are shown in Table VII. To compare the QCOF
and QCOP metrics in Experiment 2, two set of QCO had to
be created as some FLOPS measurement were not available
(QCO1 & QCO2∗).

In Experiment 3, the metric was further evaluated by apply-
ing it to an optimisation problem similar to Use Case 4. The
objective was hyper-parameter optimisation with efficiency
as the cost function. The ML process involved fine-tuning a
transformer model (DistilBERT [29]), word embedding and
text classification. The experiment aimed to find the most
efficient value for the Maximum Sequence Length (MSL) for
the SMS spam detection task [32], which was run on Host 5
(IV).

B. Usability

Experiment 2 shows surprising results that can be explained
by runtime conditions such as schedulers, competing pro-
cesses and caching techniques. The experiment is not de-
signed to make general statements about specific combinations
of vectorization or classification methods. Consequently, the
following statements apply only to this experiment, which
does not preclude testing the usefulness of the efficiency
metric. The word embedding method is on average superior
to the TFIDF in terms of quality, but there are classifiers
(NB, GD) that can compensate for the quality disadvantage
and in some cases achieve the highest efficiency. This is
due to the low workload. The transformer method requires
significantly more work. It achieves high quality, but also takes
the longest time. The Random Forest (RF) classifier has a low
efficiency because it requires a lot of computation and time to
achieve good quality. The Support Vector Machine (only linear
kernel) classifier benefits most from the word embeddings
and therefore achieves good efficiency. When comparing the
combinations in terms of the time to work ratio (WO-Focus),
the worst ratio (1.28) is found for IMDB/TFIDF/SVM and
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TABLE VII
QCO EVALUATION RESULTS

EVMetric QCO Metrics Rankings
DAT VECT CLF DUR QUA TIME SPA WOP WOF QCOP QCOF EXP1 QCO1P EXP2 QCO2P QCO2F

SMS TFIDF NB 00:00:34 0,968 0,407 0,260 1,043 0,691 1,260 1,726 1 1 1 1 1
SMS TFIDF GD 00:02:36 0,972 0,583 0,371 1,043 0,631 1,190 1,678 2 2 2 2 2
IMDB TFIDF GD 00:00:19 0,885 0,339 0,222 0,616 0,610 1,145 1,153 3 3 3 3 3
SMS DIST-T DIST-T 00:01:34 0,982 0,525 0,384 1,249 1,099 6 4
SMS BERT SVM 00:11:29 0,972 0,755 0,510 1,143 1,465 1,018 0,852 4 5 5 4 4
IMDB DIST-T DIST-T 02:38:32 0,982 1,058 0,795 1,058 0,970 5 6
SMS BERT GD 02:04:00 0,978 1,030 0,696 1,140 1,637 0,956 0,752 8 7 4 5 6
IMDB DISTIL DISTIL 11:31:52 0,978 1,228 0,923 1,136 0,848 7 8
IMDB TFIDF NB 00:01:18 0,845 0,504 0,330 0,618 0,581 0,766 0,797 9 9 6 6 5
SMS BERT NB 01:58:30 0,932 1,024 0,692 1,141 1,638 0,715 0,563 11 10 8 7 8
SMS DISTIL DISTIL 01:39:58 0,983 1,005 0,750 1,845 0,697 12 11
SMS BERT RF 01:09:50 0,916 0,963 0,651 1,140 1,639 0,660 0,516 10 12 7 8 9
IMDB TFIDF RF 00:00:58 0,809 0,469 0,309 0,617 0,646 0,604 0,586 15 13 9 9 7
SMS TFIDF RF 00:03:02 0,787 0,601 0,376 1,043 0,931 0,335 0,363 16 14 12 10 10
IMDB TFIDF SVM 00:20:20 0,714 0,821 0,554 0,638 0,812 0,223 0,194 13 15 11 11 11
SMS TFIDF SVM 00:00:35 0,652 0,409 0,264 1,048 1,092 0,117 0,113 14 16 10 12 12

Cloumns: Dataset, Vectorizer, Classifier, Duration, Quality, Time, Space, WOF = Work (FLOPS), WOP = Work (Minor Page Faults), QCO Metrics,
Rankings by Domain EXP erts, or QCO, SMS = SMS Spam Dataset[32], IDB = IMDB Dataset[33], BERT = BERT word embedding, DIST-T = finetuned

DistilBERT word embedding (PyTorch) & classification, DISTIL = finetuned DistilBERT word embedding (TensorFlow + keras) & classification, GD =
Gradient Descent, SVM = Support Vector Machine, NB = Naı̈ve Bayes

the best for SMS/TFIDF/NB with 0.39. This leads to the
conclusion that the measurement of time does not reflect the
amount of work.

In Experiment 3, both QCOF and QCOP were success-
fully computed (see Table VIII). The most efficient MSL
configuration consisted of 512 tokens, resulting in a high
classification quality and moderate duration. On the other
hand, the configuration with 126 tokens showed an increased
workload and duration. The fastest result was obtained with
an MSL of 256 tokens.

C. Plausibility

QCO was successfully generated for all ML methods in
Experiment 2. A comparative assessment of QCO based on
expert rankings is used for evaluation. Domain experts ranked
the dimensions, listed in Table VII Column Rank-EXP. Com-
paring expert and QCO rankings, a minimal deviation from the
expert rank was observed for high quality ML methods, but
the deviation increased with decreasing quality. This variance
can be attributed to the expert’s specific weighting of quality
relevance, which is particularly evident in the DistilBERT
setups.

D. Balance & Compensation

QCO achieved a balance of aspects through compensation
(Table I). The results of Experiment 2 showed no anomalies
for different datasets; even ML processes with large datasets
achieved high efficiency. Moreover, significant differences
in speed and computational complexity were observed for
comparable efficiency, suggesting a balance in these aspects.
Due to the small number of hosts available for evaluation, the
balance on host setups could not be verified.

TABLE VIII
EFFIENCY OF DISTILBERT

Measurements Dimensions Scores
SL Duration F1 Q W S T QCOF QCOP

128 09:08:50 0,76 0,64 3,02 0,45 0,78 0,159 0,164
256 00:27:02 0,78 0,64 2,86 0,45 0,71 0,171 0,172
512 00:50:13 0,78 0,65 2,94 0,47 0,72 0,183 0,174

Text Classification Efficiency with DistilBERT with different maximum
Sequence Length (SL). Smoothed Dimensions: Quality, Work, Space and
T ime. Efficiency Scores Quality Focused based on FLOPS (QCOF ) and

Minor Page Faults (QCOP )

VI. DISCUSSION

This study proposes an efficiency metrics framework for
machine learning techniques that addresses different aspects of
cost-effectiveness, resource utilisation and model performance.
The approach is intended to be adaptable and applicable to a
variety of ML techniques and host setups. The objectives of
the efficiency metric framework have been defined to address
different real-world scenarios and use cases. The proposed
efficiency metrics provides information for identifying the
optimal ML technique and hyperparameters, selecting ML
techniques for limited resources or private data, compar-
ing classification performance across different host setups,
and estimating computational costs. The metric framework
introduces several dimensions that collectively capture the
efficiency of ML techniques to achieve these goals. These
dimensions include quality, work, load, space and duration,
each of which contributes to the overall efficiency score. The
dimensions are designed to measure different aspects of ML
performance and resource utilisation, allowing for a compre-
hensive evaluation. One of the key advantages of the proposed
framework is its adaptability to different ML techniques and
tasks. The dimensions and metrics can be adjusted based on
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specific use cases and requirements, ensuring relevance and
accuracy in different contexts. This adaptability makes the
metric framework suitable for a wide range of applications,
from small-scale experiments to large-scale production sys-
tems.

The efficiency metrics introduced in the framework, such
as QCO, FCO, ICO and ACO, provide different perspectives
on efficiency. These compact metrics provide a clear, at-a-
glance view of efficiency, making it easier for researchers and
practitioners to evaluate and compare different ML techniques.
In addition, the Efficiency Vector (EV ) metric provides de-
tailed information about the performance of ML techniques on
individual dimensions, providing insights for further analysis
and improvement.

The process of instantiating the efficiency metrics requires
empirical investigation to ensure that the metric definitions
are concrete and applicable to specific ML experiments. The
validity of metric instantiation is emphasised, and the size of
the experiment plays an important role in achieving reliable
results. By conducting experiments on different datasets and
host setups, the metric instantiation gains credibility and
comparability.

Overall, the proposed efficiency metrics framework offers a
promising approach for quantifying and comparing the cost-
effectiveness of machine learning methods. By providing a
comprehensive view of efficiency across multiple dimensions,
it enables researchers and practitioners to make informed deci-
sions regarding ML techniques, resource allocation, and model
performance optimisation. The adaptability and applicability
of the metrics in different contexts make them a valuable tool
for advancing the field of ML and facilitating the development
of efficient and effective ML models.

VII. CONCLUSION AND FUTURE WORK

The successful calculation and evaluation of efficiency
scores will pave the way for further achievements in the effi-
ciency of machine learning research. By introducing complex
dimensions that take into account measurement correlations,
such as FLOPS to data volume or memory usage to duration
time, we were able to potentially balance the metric and
achieve a compensation of dataset size and host-setup.

When evaluating the QCO dimensions, we encountered a
limitation due to insufficient samples. However, the FLOPS-
based instance showed consistency and our attempt to use
a small page fault measure to support the work dimension
showed partial success. To gain further insight into efficiency
correlations, future work could focus on dimensions that
incorporate ML-specific attributes, such as model size.

It should be noted that the validation methods of the
proposed metric currently rely on peer opinion. While this
provides valuable insights, we recognise the importance of
statistical validation to increase the credibility and robustness
of the metric.

The efficiency of machine learning methods is undoubtedly
influenced by expert opinion and the relevance of quality to
the specific application. However, we need to be aware of

the potential exponential increase in complexity if quality is
used as the only guiding principle for development. Striking a
balance between different efficiency dimensions is crucial to
ensure a practical and rational approach to optimising machine
learning processes.

Further research and statistical validation will contribute
to the refinement and wider adoption of these efficiency
metrics, ultimately advancing the field of ML and facilitating
the development of efficient and effective machine learning
models.
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