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ICAS 2014

Foreword

The Tenth International Conference on Autonomic and Autonomous Systems (ICAS
2014), held between April 20 - 24, 2014 in Chamonix, France, was a multi-track event covering
related topics on theory and practice on systems automation, autonomous systems and
autonomic computing.

The main tracks referred to the general concepts of systems automation, and
methodologies and techniques for designing, implementing and deploying autonomous
systems. The next tracks developed around design and deployment of context-aware networks,
services and applications, and the design and management of self-behavioral networks and
services. We also considered monitoring, control, and management of autonomous self-aware
and context-aware systems and topics dedicated to specific autonomous entities, namely,
satellite systems, nomadic code systems, mobile networks, and robots. It has been recognized
that modeling (in all forms this activity is known) is the fundamental for autonomous
subsystems, as both managed and management entities must communicate and understand
each other. Small-scale and large-scale virtualization and model-driven architecture, as well as
management challenges in such architectures are considered. Autonomic features and
autonomy requires a fundamental theory behind and solid control mechanisms. These topics
gave credit to specific advanced practical and theoretical aspects that allow subsystem to
expose complex behavior. We aimed to expose specific advancements on theory and tool in
supporting advanced autonomous systems. Domain case studies (policy, mobility, survivability,
privacy, etc.) and specific technology (wireless, wireline, optical, e-commerce, banking, etc.)
case studies were targeted. A special track on mobile environments was indented to cover
examples and aspects from mobile systems, networks, codes, and robotics.

Pervasive services and mobile computing are emerging as the next computing paradigm
in which infrastructure and services are seamlessly available anywhere, anytime, and in any
format. This move to a mobile and pervasive environment raises new opportunities and
demands on the underlying systems. In particular, they need to be adaptive, self-adaptive, and
context-aware.

Adaptive and self-management context-aware systems are difficult to create, they must
be able to understand context information and dynamically change their behavior at runtime
according to the context. Context information can include the user location, his preferences, his
activities, the environmental conditions and the availability of computing and communication
resources. Dynamic reconfiguration of the context-aware systems can generate inconsistencies
as well as integrity problems, and combinatorial explosion of possible variants of these systems
with a high degree of variability can introduce great complexity.

Traditionally, user interface design is a knowledge-intensive task complying with specific
domains, yet being user friendly. Besides operational requirements, design recommendations
refer to standards of the application domain or corporate guidelines.

Commonly, there is a set of general user interface guidelines; the challenge is due to a
need for cross-team expertise. Required knowledge differs from one application domain to
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another, and the core knowledge is subject to constant changes and to individual perception
and skills.

Passive approaches allow designers to initiate the search for information in a
knowledge-database to make accessible the design information for designers during the design
process. Active approaches, e.g., constraints and critics, have been also developed and tested.
These mechanisms deliver information (critics) or restrict the design space (constraints)
actively, according to the rules and guidelines. Active and passive approaches are usually
combined to capture a useful user interface design.

We take here the opportunity to warmly thank all the members of the ICAS 2014
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to ICAS
2014. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ICAS 2014 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that ICAS 2014 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the fields of
autonomic and autonomous systems.

We are convinced that the participants found the event useful and communications very
open. We also hope the attendees enjoyed the charm of Chamonix, France.

ICAS 2014 Chairs:
Michael Bauer, The University of Western Ontario - London, Canada
Radu Calinescu, University of York, UK
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Mark J. Balas, Embry-Riddle Aeronautical University, USA
Alex Galis, University College London, UK
Antonio Liotta, Eindhoven University of Technology, The Netherlands
Jacques Malenfant, Université Pierre et Marie Curie, France
Mark Perry, University of New England in Armidale, Australia
Wendy Powley, Queen's University - Kingston, Canada
Nikola Serbedzija, Fraunhofer FOKUS, Germany

                             3 / 58



ICAS 2014

Committee

ICAS Advisory Chairs

Michael Bauer, The University of Western Ontario - London, Canada
Radu Calinescu, University of York, UK
Michael Grottke, University of Erlangen-Nuremberg, Germany
Bruno Dillenseger, Orange Labs, France
Mark J. Balas, Embry-Riddle Aeronautical University, USA
Alex Galis, University College London, UK
Antonio Liotta, Eindhoven University of Technology, The Netherlands
Jacques Malenfant, Université Pierre et Marie Curie, France
Mark Perry, University of New England in Armidale, Australia
Wendy Powley, Queen's University - Kingston, Canada
Nikola Serbedzija, Fraunhofer FOKUS, Germany

ICAS 2014 Technical Program Committee

Jemal H. Abawajy, Deakin University, Australia
Sameh Abdel-Naby, University College Dublin, Ireland
António Abelha, Universidade do Minho - Braga, Portugal
Nouara Achour, USTHB University, Algeria
Carl Adams, University of Portsmouth, UK
Javier Alonso, Duke University, USA
Razvan Andonie, Central Washington University - Ellensburg, USA
Richard Anthony, University of Greenwich, UK
Eva Ibarrola Armendariz, Escuela Técnica Superior de Ingeniería de Bilbao, Spain
Ismailcem Budak Arpinar, University of Georgia - Athens, USA
Tsz-Chiu Au, Ulsan National Institute of Science and Technology (UNIST), Korea
Roger Azevedo, McGill University, Canada
Mark J. Balas, University of Wyoming - Laramie, USA
Michael Bauer, The University of Western Ontario -London, Canada
Matthias Becker, University Hannover, Germany
Janusz Bedkowski, Institute of Mathematical Machines / Warsaw University of Technology, Poland
Julita Bermejo-Alonso, Universidad Politécnica de Madrid, Spain
Karsten Berns, University of Kaiserslautern, Germany
Daniel Berrar, Tokyo Institute of Technology, Japan
Philippe Besnard, IRIT - CNRS /Universite Paul Sabatier - Toulouse, France
Ateet Bhalla, Oriental Institute of Science & Technology - Bhopal, India
Karsten Böhm, Fachhochschule Kufstein, Austria
Fabienne Boyer, University of Grenoble I, France
Stainam Brandao, COPPE/Federal University of Rio de Janeiro, Brazil
Ruth Breu, University of Innsbruck, Austria
Daniela Briola, University of Genova, Italy
David W Bustard, University of Ulster, UK

                             4 / 58



Radu Calinescu, University of York, UK
Paolo Campegiani, University of Roma Tor Vergata, Italy
Sara Casolari, Università di Modena e Reggio Emilia, Italy
Fernando Cerdan, Universidad Politecnica de Cartagena, Spain
Michal Certicky, Comenius University - Bratislava, Slovakia
Lei Chen, Sam Houston State University, USA
Stéphanie Combettes, Université Paul Sabatier, IRIT, France
Peng Dai, Google Inc., USA
Carlos Roberto de Oliveira Junior, Instituto Federal do Rio de Janeiro, Brazil
Noel de Palma, University Joseph Fourier, France
Marina De Vos, University of Bath, UK
Sotirios Ch. Diamantas, University of Nebraska, Omaha, USA
M. Bernardine Dias, Carnegie Mellon University, USA
Tadashi Dohi, Hiroshima University, Japan
Changyu Dong, University of Strathclyde, UK
Thach-Thao Duong, Griffith University / NICTA, Australia
Larbi Esmahi, Athabasca University, Canada
Thaddeus Eze, University of Greenwich - London, UK
Ziny Flikop, Scientist, USA
Naoki Fukuta, Shizuoka University, Japan
Alex Galis, University College London, UK
Rodrigo Garcia Carmona, Universidad Politecnica de Madrid (DIT-UPM), Spain
Fabio Gasparetti, Roma Tre University, Italy
Joseph Giampapa, Carnegie Mellon University, USA
Andrzej M. Goscinski, Deakin University - Geelong, Australia
Dominic Greenwood, Whitestein, Switzerland
William Grosky, University of Michigan - Dearborn, USA
Michael Grottke, University of Erlangen-Nuremberg, Germany
Jordi Guitart, Universitat Politècnica de Catalunya - Barcelona Tech (UPC), Spain
Odd Erik Gundersen, Verdande Technology, Norway
Mustapha Hamerlain, CDTA, Algeria
Ronny Hartanto, German Research Center for Artificial Intelligence (DFKI GmbH), Germany
Takako Hashimoto, Chiba University of Commerce, Japan
Koen Hindriks, Delft University of Technology, Netherlands
Gerold Hoelzl, Johannes Kepler University, Austria
Wladyslaw Homenda, Warsaw University of Technology, Poland
Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France
Tim Hussein, University of Duisburg-Essen, Germany
Yoshiro Imai, Kagawa University, Japan
Luis Iribarne, University of Almeria, Spain
Yiming Ji, University of South Carolina - Beaufort, USA
Richard Jiang, Northumbria University, UK
Yanguo Jing, London Metropolitan University, UK
María José Ibáñez, RIAM I+L Lab (GNOSS), Spain
Hamed Ketabdar, Deutsche Telekom Laboratories / TU Berlin, Germany
Fernando Koch, IBM Research Lab, Brazil
Boris Kovalerchuk, Central Washington University - Ellensburg, USA
Satoshi Kurihara, University of Osaka, Japan

                             5 / 58



Helge Langseth, NTNU, Norway
Jingpeng Li, The University of Nottingham - Ningbo, China
Fidel Liberal Malaina, University of the Basque Country, Spain
Antonio Liotta, Eindhoven University of Technology, The Netherlands
Hai-Bin Liu, China Aerospace Engineering Consultation Center, China
Angela Locoro, University of Genova, Italy
Noel Lopes, Polytechnic of Guarda, Portugal
Hanan Lutfiyya, The University of Western Ontario - London, Canada
Prabhat Mahanti, University of New Brunswick, Canada
Sayyed Majid Esmailifar, Sharif University of Technology -Tehran, Iran
Jacques Malenfant, Université Pierre et Marie Curie, France
Elisa Marengo, Università degli Studi di Torino, Italy
Mauricio Marin, Universidad de Santiago and Yahoo! Labs Santiago, Chile
Goreti Marreiros, Polytechnic of Porto, Portugal
Rajat Mehrotra, Mississippi State University - Starkville, USA
Yasser F. O. Mohammad, Assiut University, Egypt / Kyoto University, Japan
Thierry Monteil, LAAS-CNRS, INSA de Toulouse, Toulouse, France
José Moreira, University of Aveiro, Portugal
Masayuki Murata, Osaka University, Japan
Adnan Abou Nabout, University of Wuppertal, Germany
José Neves, Universidade do Minho - Braga, Portugal
John O'Donovan, University of California, Santa Barbara, USA
Andreas Oberweis, Karlsruhe Institute of Technology (KIT), Germany
Svetlana Obraztsova, National Technical University of Athens, Greece
Jonice Oliveira, Federal University of Rio de Janeiro, Brazil
Rafael Oliveira Vasconcelos, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil
Michael O'Mahony, University College Dublin, Ireland
Jose Oscar Fajardo, University of the Basque Country, Spain
David Ostrowski, Ford Motor Company / University of Michigan - Dearborn, USA
Maurice Pagnucco, University of New South Wales, Australia
Umberto Panniello, Politecnico di Bari, Italy
Nandan Parameswaran, University of New South Wales - Sydney, Australia
Luis Paulo Reis, University of Minho, Portugal
Loris Penserini, European Commission, Belgium
Mark Perry, University of New England in Armidale, Australia
Steve Phelps, University of Essex, UK
Maria Silvia Pini, University of Padova, Italy
Agostino Poggi, Università degli Studi di Parma, Italy
Wendy Powley, Queen's University - Kingston, Canada
Francesco Quaglia, Sapienza Università di Roma, Italy
Kanagasabai Rajaraman, Institute for Infocomm Research, Singapore
Alejandro Ramirez-Serrano, University of Calgary - Alberta, Canada
Martin Randles, Liverpool John Moores University, UK
Marek Reformat, University of Alberta, Canada
Paolo Romano, INESC-ID Lisbon, Portugal
Rosaldo Rossetti, University of Porto, Portugal
Lakhdar Sais, Université Lille Nord de France, France
Ricardo Sanz, Universidad Politecnica de Madrid, Spain

                             6 / 58



Munehiko Sasajima, Osaka University, Japan
Mariano Saura, Polytechnic University of Cartagena, Spain
Christoph Schommer, University Luxemburg, Luxemburg
Paulo Jorge Sequeira Gonçalves, Polytechnic Institute of Castelo Branco, Portugal
Nikola Serbedzija, Fraunhofer FOKUS, Germany
Mohamed Shehab, University of North Carolina at Charlotte, USA
Maxim Shevertalov, Drexel University, USA
Arnab Sinha, INRIA, France
Flavio Soares Correa da Silva, University of Sao Paulo, Brazil
Nisheeth Srivastava, University of California, USA
Edward Stehle, Drexel University, USA
Claudius Stern, Opsolution GmbH, Germany
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Charalampos Tampitsikas, Università della Svizzera Italiana (University of Lugano), Switzerland
Lijun (Leo) Tang, Microsoft Corporation - Bellevue, USA
Yuqing Tang, Carnegie Mellon University, USA
Patricia Tedesco, Federal University of Pernambuco, Brazil
Ingo J. Timm, Universität Trier, Germany
Manachai Toahchoodee, The University of the Thai Chamber of Commerce, Bangkok, Thailand
Irina Topalova, Technical University of Sofia, Bulgaria
José Manuel Torres, University Fernando Pessoa - Porto, Portugal
Davide Tosi, Università dell'Insubria – Como, Italy
Trung Kien Tran, Institute of Artificial Intelligence - University of Ulm, Germany
Raquel Trillo Lado, University of Zaragoza, Spain
Egon L. van den Broek, University of Twente, Enschede, Karakter University Center, Radboud University
Medical Center Nijmegen, Nijmegen, The Netherlands
Cristián Varas, NIC Chile Research Labs, Chile
Stavros Vassos, Sapienza University of Rome, Italy
Phan Cong Vinh, NTT University, Vietnam
Vladimir Vlassov, KTH Royal Institute of Technology, Sweden
Stefanos Vrochidis, Centre for Research and Technology Hellas - Thermi-Thessaloniki, Greece
Thomas Walsh, Massachusetts Institute of Technology, USA
Bozena Wozna-Szczesniak, Jan Dlugosz University, Institute of Mathematics and Computer Science –
Czestochowa, Poland
Nanjian Wu, Chinese Academy of Sciences, China
Reuven Yagel, Ben-Gurion University, Israel
Jinfeng Yi, Michigan State University, USA
Constantin-Bala Zamfirescu, "Lucian Blaga" University of Sibiu, Romania
Andrzej Zbrzezny, Jan Dlugosz University in Czestochowa, Poland
Chenyi Zhang, Simon Fraser University, Canada
Dieter Zöbel, University Koblenz-Landau, Germany
Albert Zomaya, University of Sydney, Australia

                             7 / 58



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

                             8 / 58



Table of Contents

MetaMAc, or What Do I Do Now? A Strategic Perspective on Autonomy Beyond Anomalies and Goals
Don Perlis and Michael Cox

1

Unmanned Aerial Vehicles & Service-Oriented Architecture: LARISSA and Knowledge Based Framework’s
First Study
Emerson Marconato, Douglas Rodrigues, Arthur Chaves, Rajiv Ramdhany, Kalinka Branco, and Geoff Coulson

5

A Fault Tolerance Approach Based on Reinforcement Learning in the Context of Autonomic Opportunistic Grids
Alcilene Dalilia de Sousa and Luciano Reis Coutinho

11

Using Performance Modelling for Autonomic Resource Allocation Strategies Analysis
Mehdi Sliem, Nabila Salmi, and Malika Ioualalen

18

Operation of Accumulator-Bank Serving Agent System Using Machine Learning
Agnes Werner-Stark, Tibor Dulai, and Katalin M. Hangos

25

Resource Aware Workload Management for Autonomic Database Management Systems
Wendy Powley, Patrick Martin, Natalie Gruska, Paul Bird, and David Kalmuk

31

Policy for Distributed Self-Organizing Infrastructure Management in Cloud Datacenters
Daniela Loreti and Anna Ciampolini

37

Experiments with NetLogo for Distributed Channel Assignment in Dense WLAN Networks
Vangelis Gazis, Konstantinos Sasloglou, Andreas Merentitis, and Kostas Mathioudakis

44

Powered by TCPDF (www.tcpdf.org)

                               1 / 1                             9 / 58



MetaMAc, or What Do I Do Now? 
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Abstract—In recent years, there has been strong interest in both 
reasoning about goal-identification and selection and 
metacognitive handling of anomalous situations. These two 
concerns are usually framed in terms of making agents more 
autonomous and flexible in dynamic and complex domains. 
Here, we wish to argue that there is a natural unifying 
perspective that includes both concerns and that may point the 
way to a yet more powerful kind of autonomy. 

Keywords—high-level autonomy; rational anomaly handling; 
goal reasoning; anomaly handling; monitoring, control, and 
management of autonomous self-aware systems 

I.  INTRODUCTION 
An agent often has routine activities in which it is forming 

and/or following plans in pursuit of existing goals. And there 
are also situations in which it has to stop and ask itself: what 
do I do now? One major example of the latter is that of 
anomaly-handling: something seems out of the ordinary, 
contrary to expectation, and might indicate the need to do a 
form of error-correction. This has been the focus of much 
recent work, for instance Meta-AQUA [6], the Metacognitive 
Loop [2] and other similar efforts. Another example is goal-
driven autonomy, in which an agent may autonomously alter 
or add to its goals if circumstances so warrant [1,8]. 

We wish to call attention to a level of processing at which 
an agent considers quite generally what to do: select from 
among several existing goals, form a plan to achieve an 
existing goal, continue with a current plan-in-action, alter 
such a plan, identify a new goal, abandon a plan or a goal, 
adopt new subgoals in response to unexpected events, explore 
opportunities for possible goals or other benefits, do a reality-
check of beliefs and expectations, learn for learning’s sake, 
and so on. This could perhaps be called the executive level of 
processing (borrowing that phrase from cognitive 
psychology), although that terminology already is in use in 
various cognitive architectures and so might not be the best 
choice. Instead, let us call this reasoning at the strategic level. 

In what follows, we sketch some concepts related to the 
idea of such a processing level, argue that it usefully 
generalizes more traditional goal-reasoning and anomaly-
handling, and outline what might be fruitful approaches to the 
strategic level. Section II simply states our hypothesis, and 
gives a key example; sections III –V describe existing work 
on rational anomaly-handling, goal-driven autonomy, and 
how they interact; VI discusses temporal issues, and VII 
presents conclusions. 

II. METAMAC 
We postulate a metacognitive monitoring activity 

(MetaMAc) that runs in parallel with an agent’s normal 
routine activity of planning-acting in pursuit of already-
identified goals. MetaMAc will be aware of such routine 
activities that are underway, and also of their aims and 
expectations, and of how (at least some) events are actually 
unfolding (which may or may not be as expected). As such 
MetaMAc represents the deliberate, conscious “self as 
process” monitoring and considering itself [3]. As MetaMAc 
processes this real-time information, it also asks itself over 
and over: What should I do now? What choices are there? Is 
there anything that would be better to do instead of (or in 
addition to) what I am doing? MetaMAc would normally run 
in the background, unless something pops into prominence in 
virtue of a certain salience or threshold that is reached.  

We hypothesize that a MetaMac-enabled system would 
reveal considerable advantages over the same system without 
that enhancement. This could show up in many ways, but 
most especially in fewer errors over the long run. 

Here is an example that illustrates various aspects of our 
idea:  

A meeting is occurring, but participants are finding it 
hard to hear one another. One automated participant, X, 
identifies the problem as background noise coming from the 
hallway. X gets up and closes the door. Why? Because the 
closed door effectively blocks the hallway noise.  

1Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5
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How does X come to be able to do this? While it may seem 
trivial, there are in fact a number of specific capabilities 
involved here, that illustrate our thesis: 

1. X can identify a new problem on its own. This in itself 
is non-trivial; typically a human presents a problem to an 
automated system. 

2. X can reason about causal relationships; but where 
does the causal info come from? (see item 4 below) 

3. X can form new goals (problem solution ideas) on its 
own; but often there are multiple relevant goals, so how are 
they distinguished so as to pick the "best" ones (whatever that 
may mean)? Notice this, aside from closing the door, X could 
move closer to the speaker, ask the speaker to raise the 
volume, tape the mouths of the passersby, etc. So cost/benefit 
analysis is important. 

4. X can and does pick up new information on a 
"knowledge is power" basis, independent of a specific 
immediate need. That is how X learned (long ago) that sound 
does not travel well through a closed door. But this presents 
complications as well: how does X decide when and what and 
how much to learn about "things in general?” There is an 
endless supply of such things, and X could easily become 
permanently absorbed in learning one narrow theme, or 
learning tiny random bits of distinct themes. Some sort of 
overall principles are needed here, perhaps in part guided by 
a concern to identify causal links.  

III. RATIONAL ANOMALY HANDLING 

No matter how complete an agent’s knowledge base is or 
how good the agent is engineered, eventually mistakes or 
anomalies occur. In the face of surprise, an agent should be 
able to manage to adapt and do something reasonable. We call 
this capability rational anomaly-handling (RAH). RAH is 
characterized by the following features [10]: 

(i) We have expectations as to how things will be. 
(ii)  We compare expectation to observation and thereby 

note indications that an expectation has been violated. 
(iii) We assess what we know that might explain this 

violation.  
(iv) We decide what response, if any, to guide into place. 
(v)  We revise/create expectations as needed. 
For the most part, artificial intelligence (AI) seems to be 

missing this key ingredient. After many decades of very 
fruitful work in machine learning, automated reasoning, 
planning, vision, natural language, and so on, we still do not 
have systems that come anywhere close to human-level 
performance of a general sort.  

IV. GOAL-DRIVEN AUTONOMY 
The idea of a goal tends to be conceptualized in two quite 

distinct ways in AI: as an end-state to be achieved, and as a 

kind of action to perform. In ordinary language, we conflate 
these, as in “I want to go to the beach,” when we (presumably) 
mean “I want to be at the beach,” which is a state-goal. Yet 
we also have maintenance goals, such as “keeping the room 
picked up” which presumably means vigilantly acting on any 
upcoming needs to do a picking-up action. In addition, there 
are intentions that are goal-like but perhaps not best described 
as goals. For instance, we can seek knowledge, in the belief 
that knowledge is a good thing to have; but no particular piece 
of knowledge can be identified as the goal here. Another is 
that of identifying what to do, if not particular goal is at hand; 
here the goal could be characterized as find a goal, but that 
begs the question in a way. Possible goals abound, all the time, 
so selecting one – if not at random – is a highly unspecified 
task, and could perhaps be driven by some agent-oriented 
measure of utility or interest. 

The model we advocate - called goal-driven autonomy 
(GDA) [4] - casts agents as independent actors that can 
recognize problems on their own and act accordingly. 
Furthermore in this goal-reasoning model, goals are dynamic 
and malleable and as such arise in three cases: (1) goals can 
be subject to transformation and abandonment (2) they can 
arise from subgoaling on unsatisfied preconditions or in 
response to impasses during problem-solving and planning; 
and (3) they can be generated from scratch during 
interpretation. 

For our purposes here, the most important of the above 
three cases is the third one. The idea is that given a problem 
in the world, an autonomous cognitive system must 
distinguish between perturbations that require a change in 
plans for the old goal and those that require a new goal 
altogether. What is missing in the planning and agent 
communities is a recognition that autonomy is not just 
planning, acting and perceiving. It also must incorporate a 
first-class reasoning mechanism that interprets and 
comprehends the world as plans are executed. It is this 
comprehension process that not only perceives actions and 
events in the world, but can recognize threats to current plans, 
goals, and intentions. We claim that a balanced integration 
between planning and comprehension leads to agents that are 
more sensitive to surprise in the environment and more 
flexible in their responses. 

V. RAH AND GDA 
RAH and GDA are closely related. RAH can lead to the 

conclusion that goals need to be altered or invented, for 
instance to avoid a repeat of a past anomalous situation (such 
as something identified as having prevented a goal from being 
achieved). This would then lead to invocation of a GDA 
process. And GDA in its own right can lead to the uncovering 

2Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5
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of anomalies, such as goals not being met (which can trigger 
the application of RAH). 

One way to envision this is in terms of the A-distance [7] 
which assesses alterations in time-series data that exceed a 
given threshold. This is a crucial kind of hedging-factor. For 
any given set of expectations will almost certainly fail to be 
fully identical to observed events. Tiny variations are the 
norm, and one cannot possibly attend to all of them (nor 
would it make sense to do so if it were possible). Yet how can 
suitable thresholds be determined, when context means 
everything? In some contexts, a small variation in color or 
noise-level may be insignificant, and in others may flag major 
problems or opportunities. 

We think that learning is a promising approach here: an 
agent can learn, for a given context in which it may be 
operating (or planning to operate in), which are the important 
things to attend to. This can be partly at the explicit symbolic 
level (e.g., a teacher can tell the agent some items to watch 
for and some to ignore) and partly subsymbolic (experience 
can provide ranges of “normalcy” that the agent trains into its 
routines). While A-distance was developed largely for the 
latter situation, with continuous real-valued data, recent work 
has shown that it also is effective for discrete symbolic data 
[5]. 

Now, we doubt A-distance alone will be enough to cover 
all the cases that we envision for MetaMAc. For instance, 
another agent might simply tell our agent that something is 
important. That is unlikely to cross an A-distance threshold, 
since conversations may go on all the time, with words 
flowing rapidly back and forth. It would presumably require 
a rather high-level reasoning process to understand language 
sufficiently well to distinguish in a general principled way 
between, say, “such matters are unimportant” and “don’t ever 
assume that such matters are unimportant.”  

The strategic level of MetaMAc then will likely require 
fairly sophisticated knowledge representation and reasoning 
(KRR) techniques; requiring reasoning about natural-
language processing and the world more generally will at 
times be essential. Reference [9] gives compelling examples 
(although it is not focused on high-level strategic reasoning); 
see also [2] where three KRR criteria are given that flexible 
system should satisfy. 

Thus, we suggest that the strategic level intended for 
MetaMAc involves an organizer of cognition that integrates 
activities and seeks to improve their effectiveness. But it also 
can involve entirely new concerns, such as the fortuitous 
discovery of a new homeostatic equilibrium in which things 
“work well” in totally unsuspected ways. This latter would 
not be an existing goal, nor one arrived at as something to 
achieve, but rather stumbled on and then perhaps adopted as 

a maintenance goal. The field of developmental (aka 
epigenetic) robotics would seem to fall into this category. 

VI. TIME AND OTHER REALITIES 

All processing takes time; and this applies to MetaMac as 
well. An issue immediately arises: how can MetaMac keep 
up with real-world changes (in its associated agent and in the 
world more generally)? A truly autonomous or autonomic 
system will not have the luxury of a human-in-the-loop, or of 
other activity being interrupted so that repairs can be made at 
leisure [11]. However, a special-purpose real-time logic is 
available [2], that was designed for such situations. Indeed, 
one of our aims in this research is to combine active logic 
with the ideas of MetaMac.  

Indeed, the MetaMac idea is in effect a combination of 
two approaches that we have been exploring and 
implementing in recent years, namely the RAH and GDA 
themes. See [4,10] for details.  

VII. CONCLUSION 
In this paper, we suggest that an underlying research issue 

exists of considerable potential for enhanced autonomy: how 
to design an agent with an effective and general-purpose 
“what do I do now” capacity. This capacity bears on many 
cognitive processes and seems crucial for high-level 
reasoning in complex ever-changing environments. 
Researchers have at times studied aspects of what we 
describe under the MetaMAc banner in terms of 
metacognition (e.g., RAH). Other researchers have examined 
some of these issues in terms of goal reasoning and goal-
driven autonomy. It may be the case that we are all speaking 
of the same process. 
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Abstract—Embedded systems are computer systems that are part of a
larger system, which generally provide real-time monitoring and control.
They execute a predefined set of tasks on behalf of a real-time application,
and may have special requirements based on the application domain
they support. For instance, these systems are considered safety-critical
embedded systems when failure may result in loss of life or high-value
assets. UAVs (Unmanned Aerial Vehicles) constitute a typical application
of a complex critical embedded system. One concept that can result
in radically different solutions in UAVs is the use of Service-Oriented
Architecture (SOA) based on standard reference model architecture.
The increasing use of SOA in critical applications demands dependable
and cost-effective techniques to ensure high security. In this paper we
developed different kind of services for avionics with different parameters
(security, reliability and performance) to provide use of SOA in a less
critical part in the whole systems. Both LARISSA (Layered Architecture
Model Interconnection Systems in UAV) and KBF (Knowledge Based
Framework for Dynamically Changing Applications) presented in this
paper can give more intelligence to UAVs and provide a new way of
segregating the UAV mission from the vehicle itself. Some services were
developed and a performance evaluation was conducted showing the
benefits in choosing some determined services.

Keywords—Critical embedded systems, UAVs, SOA, Web services, per-
formance.

I. INTRODUCTION

Embedded systems are computer systems that are part of a larger
system. These systems provide, in most cases, real-time monitoring
and control. They are considered safety-critical when possible failure
may result in loss of life or high-value assets [1][2][3][4]. Both
hardware and software in embedded systems have become increas-
ingly complex. Multicore and multiprocessor systems have become
common, which has further increased the complexity of software [5].
Moreover, both can be seen in homes and in business environments
where they have been used for the control or management informa-
tion.

UAV is a typical application of a critical embedded system. The
term UAV was adopted by FAA (Federal Aviation Administration)
and by the international academic community to describe a system
that includes not only the aircraft, but also all the associated elements
such as payload, ground control station and communication links
[6]. UAVs have been widely used in precision agriculture, national
security and environmental monitoring. Several papers have been
published in this area, demonstrating the feasibility of using such
vehicles as important tools for performing precision agriculture and
environmental monitoring [7][8].

There are different types of UAVs that have different capabilities.
Some aircraft can fly autonomously, following a pre-programed flight

path (based on a grid or a sequence of waypoints) [7], while others
can fly receiving commands from ground stations operated by pilots.
The aircraft’s size can range from micro to large, and the ground
control station can be implemented on smartphones, tablets, laptops
or networks of workstations (distributed control stations). Thus, the
aircraft may vary not only in size, but also in shape and type of
propulsion performance. The ground station interface can vary from a
joystick to a tangible user interface (for example, a table with tangible
augmented reality). The performance of the communication links and
the payload type are also very important to fulfil the mission intended
for the system. Specialized literature says that UAVs will become
popular and will be part of airspace in the next 10 years, performing
different missions, from agricultural border inspections to automatic
cargo transport [9][10][11].

The UAVs’ heterogeneity and constraints and the distinct nature
of their interactions are challenges for their successful integration
into architecture for a shared exploitation of UASs. The heterogeneity
prevalent in UAVs in terms of services for avionics and architecture
is particularly relevant to elaboration of multi-application missions.
This heterogeneity in UAV services is often manifested as character-
istics, such as reliability, security, and performance. Different service
implementations typically offer different guarantees in terms of these
characteristics and in terms of associated costs. The initial choice of
a particular avionics service implementation can therefore become
sub-optimal as long new applications/services are deployed, needing
a careful selection of services to fulfil particular performance and
operational guarantees and, subsequently, to avoid compromising the
mission.

In the same way, architectures that enable the organization and
more specific definition of the components of these embedded sys-
tems (UAVs) ease the development of hardware and software that
compose them, allowing these vehicles be more easily inserted and
incorporated in a non-segregate airspace. Therefore, the main goal
of this preliminary research is propose a new architecture to UASs
and investigate the degree of heterogeneity present in UAVs in terms
of services, proposing architectural abstractions for the integration of
these service variants. In particular, we explored the notion of Service-
Oriented Architecture (SOA) in the context of UAVs as safety-
critical embedded systems for the composition of services to fulfil the
specified application performance and the dependability guarantees.

The rest of this paper is organized as follows. In Section II, we
describe the related works in the field of SOA and Reference Model
Architecture in embedded and safety-critical embedded systems.
Section III shows the concepts of Reference Model Architecture
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and the new trends using SOA in this kind of system. Section
IV presents KBF (Knowledge Based Framework for Dynamically
Changing Applications) and its functioning. Section V shows a case
study of default, secure, and reliable services, and then analyses the
results. Finally, Section VI presents our conclusions regarding this
work, as well some future prospects for this research.

II. RELATED WORK

This section presents a review of Reference Model Architecture
and SOA (Service-Oriented Architecture) in embedded systems and
critical embedded systems. The Reference Model Architecture found
in the literature can be classified in Federated (traditional architec-
tures) and Non-Federated (non-conventional architectures).

NIST (National Institute of Standards and Technologies) provides
a reference model for UAVs [12]. In this particular pattern, the
reference model was proposed to specify military rules, practices
and controls in a comprehensible and intuitive way for a human
commander. The proposed architecture approach is different from that
required in our project, focusing on a lower level of abstraction, which
the layers specify what components found in a UAV system should
do. Then the authors introduced a hardware/software embedded
architecture especially designed to operate as a UAV’s payload and
mission controller. The hardware architecture is built as a set of
embedded microprocessors connected by a LAN (Local Area Net-
work). Over this hardware infrastructure is implemented a software
layer that allows each module to support multiple applications. Every
application can create and sign services and these services can be
dynamically discovered and consumed as in Internet domain.

The work proposed by Pastor et al. [13] is based on architecture
of hardware and software designed to operate the mission controller
and the payload in mini/micro UAVs. According to the authors, the
innovation is the use of a distributed hardware architecture which
is easily scalable by the use of LAN architecture-based software
subscription services, communication abstraction layer and execution
flow based on mission planning. Still according to the authors, the
high level of modularity offered by a LAN provides flexibility for
coupling the microprocessor type most appropriate to use the module,
given its functional requirements.

Olson et al. [14] proposed another architecture model. This is
Phase III of the project named MCAP (Manned/Unmanned Common
Architecture Program), used by the U.S. Army in UAVs such as
FCS (Future Combat Systems) and C4ISR (Command, Control,
Communications, Computers, Intelligence, Surveillance and Recon-
naissance). Phase III of MCAP architecture is based on electronics
and commercial off the shelf (COTS) and open standards interfaces.
The objective of the development of the model was define and
develop an architecture capable of supporting a amount of UAVs
in the U.S. Army platforms, demonstrating the performance of the
resulting system in a laboratory environment. The development of
this model relied on the study of three classes of UAS: Unmanned
Combat Armed Rotorcraft (UCAR), an unmanned combat helicopter;
Class IV Medium Altitude Long Endurance (MALE); and Extended
Range/Multi-Purpose (ERMP), with two aircrafts: Fire Scout and
Shadow 200.

The project presented by Neto et al. [15] is a modular embedded
architecture, consisting of three levels: embedded systems, communi-
cation link, and inertial navigation system. The project’s purposes are
design and build a platform for research and development of UAV

with autonomous behaviour. The proposed architecture consists of
modular embedded electronics and communication protocols based
on the OSI model.

Prisaznuk [16] proposed IMA, an integrated model of avionics
that is used as architecture for conventional aircraft. IMA was initially
proposed to be used in commercial and military aviation. It is set
around the concept of high computational processing power and
OS modules that allows independent processing of the application
processing software. The modules share hardware resources and are
allocated in offices, which have well-defined interfaces with the
aircraft.

According to Watkins and Walter [17], it is possible differentiate
IMA (Integrated Modular Avionics) architecture from the federated
architecture (conventional). The authors state that the IMA archi-
tectures provide sharing of processors when processing information,
communications and I/O. The resource row is divided for use of
multiple avionics functions. The avionics functions served by IMA
can be from different companies and their criticality is still guar-
anteed due to the robust partitioning mechanisms that are inherent
in the architecture. In contrast, federated avionics architectures im-
plement independent collections of dedicated computing resources
(CPU, communications and I/O) for each avionics function normally
contained in Line Replaceable Units (LRUs) or Line Replaceable
Modules (LRMs). According to [18], other characteristics of IMA
are the use of open standards and provision of a single data bus to
interconnect the major aircraft systems.

Advantages of IMA compared to federated architecture are the
economy of space, weight and power consumption, due a single unit
performs various functions. Another advantage is the consolidation
of hardware; it has several applications running on fewer processors
[18].

Many complex embedded systems are coupled to a high-level
information system. SOA can provide the integration of low-level em-
bedded system services and high-level information system services.
This integration is still an incomplete work, despite the many related
works found in literature [19]-[25]. In practice, the use of SOA in
embedded systems can provide a lot of benefits, such as decoupling
configuration from environment, improvement of reusability and
maintainability, higher level of abstraction and interoperability, more
interactive interface between devices and information systems, and
easy use of resource-hungry services provided by more powerful
internet servers.

Using SOA and a reference model architecture is possible to get
new improvements in critical embedded system. It is possible to take
the advantages of the flexibility and can facilitate the modularization
of the system components. It is also considered that the adoption and
maintenance of standardized interfaces for UAVs can protect clients’
investment in the development of new systems.

III. LARISSA: LAYERED ARCHITECTURE MODEL

INTERCONNECTION SYSTEMS IN UAV

Architecture is a structure that identifies, defines, and organizes
components. The relationship and the principles of design of compo-
nents, functions and interface established between subsystems can
also be defined by architecture. Moreover, a reference model for
architecture is an architecture which the entities, relationships and
information units involved in the interactions between and within the
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subsystems and the components are defined and modelled. In short,
it is a model that incorporates the basic purpose and the idea of the
system and can be considered as a reference for various purposes.
The term architecture model used in this study reflects exactly that
last statement: it incorporates the basic goal and ideas of the system.

The increasing use of UAVs should cause them to become increas-
ingly common. In this scenario, the techniques proposed in this work
will facilitate the development of automated applications for UAVs,
allowing these vehicles be more easily inserted and incorporated into
the airspace, contributing to their spread.

In order to propose a broader understanding of the component
parts of a UAV system, we propose a layered model, which can be
subdivided as needed. Figure 1 illustrates the model named LARISSA
(Layered Architecture Model Interconnection Systems in UAV).

In LARISSA model, the components of a UAV may be divided
into aerial segment and ground segment. The aerial segment is
hierarchically composed of: (i) physical layer, (ii) distributed RTOS
(Real Time Operating System) layer, (iii) system abstraction layer, (iv)
monitoring and control layer, (v) navigation & services layer, and (vi)
mission layer. The ground segment is divided into: (i) physical layer
and (ii) ground station layer.
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Fig. 1: LARISSA – The proposed reference model architecture.

The separation into layers allows the system to be divided into
subsystems that can have different implementations and assists the
separation of parts that compose a complex critical embedded system
in different levels of criticality. Thus, the advantages offered by
the service-oriented architecture can be applied in sections of low
criticality, making the development of these sections simpler and more
flexible.

These layers can be represented by models, which are intended to
serve as guides for development of UAV systems, specifying how it
will interconnect the various components, such as sensors, control

circuits, GPS, payload, sensors, communication with the ground
control station, and others.

In information technology, a layered architecture is used to define
the specific responsibilities of each layer and the interconnection
among them. Based on an architectural model, the hardware manu-
facturer or the software designer can develop their products knowing
exactly which layer will interact in UAVs, which are the input and
output parameters, and what type of connection must be used.

According to Tanenbaum [26], certain principles must be applied
to define the layers: a layer must be created where there is need
for other level of abstraction; each layer must perform a well-
defined function, which should be chosen aiming the definition of
standard protocols; layer limits must be chosen to reduce the flow of
information transported among the interfaces; the number of layers
should be large enough, so that different functions do not need be
placed unnecessarily in the same layer, and small enough, so that
the architecture does not become difficult to control. Architecture to
be considered complete should define what each layer can perform,
specifying services and protocols that are used in each one.

Moreover, the papers related to UAVs in the literature show
UAVs implemented using traditional approaches [27][10][11]. On the
other hand, there are roadmaps published periodically by military
organizations (e.g., United States Air Force) illustrating the progress
expected for UAVs, and they mentioned that in the future they may
adopt an open, standardized, and scalable architecture, allowing the
fast addition of modular functionality.

Each layer is composed of sub-layers, which are described in the
next subsections. The navigation & services and mission sub-layers
will be described in details because they are very important to the
development of the framework proposed in Section IV.

A. Aerial Segment’s Physical

The aerial segment’s physical layer is the aircraft’s hardware
layer, which is decomposed in the structure, avionics, energy, and
auxiliary systems sub-layer. Each sub-layer may be subdivided into
more specific sub-layers.

B. Distributed RTOS

The distributed RTOS layer describes a set of API used by the
real-time operating system embedded in the aircraft, used as input to
or an output of the RTOS. In the driver sub-layer are the hardware
drivers APIs, and in the network sub-layer are the network APIs.

C. System Abstraction

The system abstraction layer’s function is defining a set of hard-
ware for use in the upper layers. The IPC (Inter-Process Communi-
cation) sub-layer is responsible for the abstraction of communication
among processes, and the I/O sub-layer controls the operation of input
and output devices.

D. Monitoring & Control

The monitoring & control layer is responsible for monitoring the
aircraft’s actions, as well its control.

It is divided into the flight control sub-layer, emergency handling
sub-layer, redundancy handling sub-layer, airworthiness awareness
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sub-layer, and energy management sub-layer. The flight control sub-
layer responds to basic commands being executed by the aircraft, by
the automatic take-off and also by the automatic landing. On the other
hand, the emergency handling sub-layer is responsible for events that
are not planned, such as battery consumption, making it impossible to
accomplish the mission. The redundancy handling sub-layer manages
duplicated subsystems in the aircraft that were installed to increase
the reliance. The airworthiness awareness sub-layer is responsible
for sensors and embedded detectors in aircraft, which purpose is to
obtain information like those a human being has the capability to
identify, such as smoke on board. The energy management sub-layer
is responsible for the monitoring of energy levels consumed by the
aircraft.

E. Navigation & Services

The navigation & services layer, illustrated in Figure 2, consists of
the air traffic coordination, flight path control, geo political awareness,
and server sub-layers. This layer is responsible for the aircraft’s
navigation, sending signals that perform the required path to accom-
plish the mission. The air traffic coordination sub-layer responds to
traffic in the airspace in which the aircraft is operating. The flight
path control sub-layer guides the aircraft’s navigation to achieve the
waypoints or the grid coordinates defined by the mission. The geo
political awareness sub-layer is responsible for the virtual threshold
that the aircraft must operate. The server sub-layer contains non-
priority services that help navigation and mission accomplishment.
These services can be based on WWW (World Wide Web) or DTM
(Data Transfer Mechanism).
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Fig. 2: Navigation & services layer.

F. Mission

The mission layer, illustrated in Figure 3, is divided into SSI
(Smart Sensor Interface), Automatic Control, and raw control sub-
layers.
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Fig. 3: Mission layer.

The SSI sub-layer is responsible for accessing the MOSA (Mis-
sion Oriented Sensor Array) [28] and performing the entire checking,
allowing discovering whether the aircraft met all the attributes to
accomplish the defined mission. The automatic control sub-layer
is responsible for accepting the mission data (uploading), sending
the collected data (downloading), and starting, stopping, resuming
or performing part of the mission (start/stop/resume/step). The raw
control sub-layer is simply responsible for sending data that does not

need a proper treatment. With this layer, we ensure that data reaches
a pre-set destination.

This layer is the last one from the aerial segment. The ground
segment’s layers are described in the next subsections.

G. Ground Segment’s Physical

The ground segment’s physical layer resembles, in some aspects,
the air segment’s physical layer. The division into sub-layers is
presented as follows: electronics, energy, and auxiliary systems.

H. Ground Station

The ground station layer has control and monitoring, moving map,
payload control, and video conference sub-layers.

The control and monitoring sub-layer receives information in the
form of aircraft telemetry and can also issue commands to guide the
aircraft. The moving map sub-layer is responsible for the exchange
of maps ability, submitting new maps to the aircraft when the initial
mission is changed. The payload control sub-layer sends signals to
aircraft in order to control the movement and operation of sensors,
cameras and radars. The video conference sub-layer is responsible for
exchange sound and image with other control stations.

IV. KNOWLEDGE BASED FRAMEWORK FOR DYNAMICALLY

CHANGING APPLICATIONS (KBF)

To make possible the development of KBF, this paper considers
critical embedded systems can be divided into sections of low and
high criticality, based on LARISSA.

KBF was proposed in [29] and [30] and is currently under
development. It extends the capability of a SOA broker’s service
discovery, adding knowledge about the application domain. Thus,
KBF will use context and monitoring information to select or compose
dynamically the best service to perform a specific mission. This
selection or composition will be based on a set of usage rules and
selection criteria, such as reliability, security, and performance. KBF
is illustrated in Figure 4 and can be seen in detail in [9].

KBF uses a knowledge database to store all information and
selection criteria defined by the user and by the application. Another
key issue is the assembly of reconfigurable matrix, a data structure
that correlates the chosen service, its functionality and the selection
criteria to mission procedures. This matrix can be: static, semi-static
and dynamic, depending on its composition and system operation [9].
Using all available information in the reconfigurable matrix, KBF can
either choose or compose the best service to run a mission defined
by the user.

V. CASE STUDY: FAST, RELIABLE, AND SECURE WEB SERVICES

IN UAVS

The definition and specification of basic services that KBF can use
were done, including their features and input/output parameters. These
services were implemented using the Java programming language.
These services use UAV’s basic information (e.g., maximum cruise
altitude, cruise speed).

In these experiments, we implemented the services listed in Figure
5. Those services were then replicated, adding reliability through WS-
ReliableMessaging (WS-RM) specification [31], which is responsible
for guaranteeing that messages are really delivered. Then those
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Fig. 4: Knowledge Based Framework for Dynamically Changing
Applications (KBF)

services were replicated once again, but this time we added security
through WS-Security specification [32], which is responsible for
applying cryptography and digital signature to SOAP messages. So
there are three different versions of the initial services: one secure,
one reliable and a plain version, i.e., without additional parameters.
All of these were hosted in and provided by an Apache Tomcat server
running on a remote machine.

Fig. 5: Basic services implemented in KBF.

On the client side, we implemented an application that makes
several calls to those services. The amount of calls varies from one
experiment to other. In these experiments, client and server were in
different machines at the same local network.

In each experiment, the clients were run several times and the
Round Trip Time (RTT) was measured in each repetition. In the end
of the experiment, the average RTT was done, as well the standard
deviation and confidence interval (95%) in each case for the different
versions and then, finally, the results were compared.

In order to compare the performance in terms of RTT of the
different versions, we realized an experiment in which a client
machine runs a sequence of service requests, and the RTT was
measured for different sequence sizes, i.e., for different amounts of
services. The results were obtained through 30 repetitions of each
experiment.

As shown in Figure 6, for each experiment (different amount
of services), the plain version achieved the best performance when
compared to the other two versions. Since it has no additional
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Fig. 6: Average RTT of different amount of services, for different
versions.

parameters, it has fewer operations to be executed; therefore it takes
less time to be executed.

In the first experiment, with 1 service, both the reliable and the
secure versions achieved a similar RTT. Since the secure version uses
cryptography and digital signature, it would be usual to think it might
have the highest RTT. However, for a single service, the WS-RM
exchanges 4 more messages than the other two versions. That is three
more times messages in a single services call, and since access to the
network is a slow operation, it causes a higher impact on the RTT,
making it similar to the impact caused by security operations such as
cryptography and digital signature.

In the next experiment, with 5 services, the average RTT increased
for all three versions. However, now there is a difference between the
secure and reliable version’s RTT, because the 4 extra messages of the
WS-RM resulted in less than 3 times more messages. Therefore the
impact caused by the cryptography and digital signature operations
is now greater than the one caused by extra usage of network.

The experiment with 19 services evaluates the behaviour of an
application used in a real life situation. As shown in Figure 6,
the plain version achieved the best performance, followed by the
reliable version in second, and the secure version achieved the highest
RTT. Besides, the difference between the reliable and secure versions
is greater now than before. Since there are more messages being
exchanged, the impact caused by the WS-RM is even smaller.

This pattern can also be observed in the last experiment, with
100 services. The impact of the extra messages sent by the WS-RM
specification is even smaller, making the reliable version’s RTT more
far to the secure version and closer to the plain version.

VI. CONCLUSIONS

UAVs are complex systems that perform complex missions.
Large UAVs systems are distributed in dozens of different processor
systems. The Reference model architecture aims to standardize the
various parts that makes up a system. This kind of architecture brings
benefits to systems like UAVs, primarily for being safety critical and
complex systems. In this sense, LARISSA meets the existing needs.

This paper also introduced the use of SOA in critical embedded
systems, providing dynamic behaviour and flexibility to this class of
systems. However, the issue of choosing the parts of the system that
can be implemented with this technology, without compromising its
safety-critical nature, is not a trivial task.

Different types of services, based on avionics, and the effects
on performance when using them were also presented. The results
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showed that by applying security and reliability to these services, a
considerable overhead is generated, and so this might cause problems
on applications that are exclusively dependent on real time perfor-
mance. However, considering UAVs, there are occasions in which
the real time performance is not the main requirement. Therefore it
is possible to use these resources, but it is designer’s responsibility
to decide where and when to make services secure and/or reliable,
and also to decide the level of security required for the mission being
developed.

The architecture and the framework presented, backed up by the
tests results, allow the use of SOA in the sections of low criticality
of safety-critical embedded systems, specially UAVs, leading to a
breakthrough in the development of this class of systems, making it
easier and more feasible to create, reuse and maintain safety-critical
embedded systems.
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Abstract — Fault tolerance is a longstanding problem. Two 

basic solutions are replication and checkpointing, both with 

their pros and cons. In this paper, we put forward an approach 

to balance replication and checkpointing in order to provide 

fault tolerance in opportunistic grid computing systems.  We 

try to retain the benefits of both techniques, while avoiding 

their downsides. The approach combines reinforcement 

learning with the MAPE-K architecture for autonomic 

computing. To validate our proposal, we have performed 

experiments based simulation using the Autonomic Grid 

Simulator Tool (AGST). We report promising results. We 

show that the proposed approach is able to learn suitable 

switching thresholds between checkpointing and replication. 

The suitability is verified by comparing the average completion 

time and the success rate of applications of our proposal 
against the values from other approaches in the literature. 

Keywords - fault tolerance; grid computing; opportunistic
grids; autonomic computing; reinforcement learning. 

I. INTRODUCTION 

Achieving a high processing rate by dividing 
computational tasks among several geographically 
distributed machines is, in essence, the core idea behind the 
computational model called Grid Computing [9]. In this 
context, it was introduced the concept of opportunistic grids 
that, potentially, gather thousands of resources, services and 
applications to provide greater computational power at a 
lower cost [12]. On the one hand, this type of computational 
grid promotes the use of non-dedicated resources, such as 
desktop workstations situated in different administrative 
domains, by using their idle processing power. On the other 
hand, there is the challenge of providing services in a 
dynamic execution environment, where heterogeneous nodes 
can enter and leave the grid at any time. In this case, it is 
important to be able of effectively monitoring the grid 
composition in order to detect and react to these events in a 
timely manner. 

Grid computing encompasses various technical 
challenges. One of them, especially in the context of 
opportunistic grids, is how to provide fault tolerance in an 
inherently dynamical environment, an environment in which 
computing nodes are heterogeneous and can become 
unavailable at any time. Fault tolerance is the ability of a 
system to continue to work even in the presence of faults [7]. 
We say that a fault has occurred when one of system 

components fails or malfunction, leading to a behavior not in 
accordance with the system specifications. Concerned with 
this problem, researchers have been seeking for solutions. 
Among these, we found some approaches based on the idea 
of autonomic computing. Broadly, the idea of autonomic 
computing consists in modeling and building computing 
systems that have the ability of self-management and self-
adaptation to unpredictable changes [6][8][10]. Applied to 
the problem of fault tolerance in opportunistic grids, 
autonomic computing has given rise to approaches where the 
grid middleware tries to automatically adjust parameters or 
to dynamically combine traditional fault tolerance techniques 
such as checkpointing and replication [2][15][16][18]. 

In general, these autonomic approaches provide 
important gains w.r.t. the traditional fault tolerance 
techniques. Despite these gains, there are some 
opportunities for improvement. In this paper, we focus on
the following issue regarding the approach presented in [15]
[16] (and based on [2]). When should we switch from 
checkpointing to replication, and vice-versa, given the 
current workload of an opportunistic grid system?  Viana 
[15] fixes a threshold below which the grid performs
replication and above which it performs checkpoint. Our 
hypothesis is that this threshold can vary, and that this 
variation is beneficial to the fault tolerance strategy of the 
grid system. It can lead to fewer delays in the execution 
time of the application due to fault tolerance concerns. 

To test this hypothesis, we put forward an adaptive 
approach to the problem of balancing checkpointing and 
replication in the context of opportunistic grids. Our 
approach is based on the use of reinforcement learning. 
Reinforcement learning is a paradigm of machine learning 
based on trial-and-error and delayed reward [1][13]. A 
typical reinforcement learning problem consists in finding a 
policy (a decision function) that maps environmental states 
to actions. Such a policy is optimal when it can be used to 
guide our behavior through the environment in such a way 
that we obtain maximum cumulative reward over time. In the 
case of the problem of balancing checkpointing and 
replication, we want an optimal (or near optimal) policy that 
help us to decide, directly or indirectly, when it is the right 
time to switch from checkpointing to replication, and vice-
versa. By choosing reinforcement learning we are following 
the path of several researchers in the areas of Grid, Cloud 
and Autonomic Computing [3][4][14][17][19].  
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The paper is organized as follows. In Section II, we 
further discuss the concepts of grid and autonomic 
computing, and briefly present AGST, the Autonomic Grid 
Simulation Tool we have used in our experiments. In Section 
III, we characterize the need and challenge of fault tolerance 
in grid computing environments, and report on the state of 
the art. In Section IV, we present the basic ideas of 
reinforcement learning and related algorithms. In Section V, 
we describe our approach to the problem of fault tolerance in 
opportunistic grid which merges ideas from autonomic 
computing and reinforcement learning. Section VI reports 
some experimental results we have obtained when 
evaluating the approach. Finally, in Section VII, we draw 
our conclusion and discuss future work.  

II. GRID AND AUTONOMIC COMPUTING 

Grid computing is a particular ideal case of distributed 
and parallel computing [9].  It seeks to extend the potential 
of computer networks to enable the sharing, selection and 
aggregation of geographically distributed and possibly 
heterogeneous computing resources (e.g., processors, data 
and applications) in a pervasive and transparent way. The 
idea is that individual users (client applications) can access 
computing resources as needed with a minimum knowledge 
of localization, underlying technologies of hardware and 
software, etc.  

A. Opportunistic Grids 

Opportunistic grids are grid computing systems that 
promote the dynamical integration of non dedicated 
workstations, possibly distributed along several 
administrative domains (e.g., organizations, academic 
laboratories, home PCs, etc.), by using their idle computing 
time to the execution of parallel applications [12]. This 
way, opportunistic grids are highly heterogeneous and 
dynamic. They aggregate regular personal computers, with 
their particular hardware and software configurations, to 
execute distributed application in large scale. And these 
machines can enter and leave the grid at different times, 
using network connections with different capabilities with 
regard to properties such as bandwidth, error rate and 
communication latency. 

From the point of view of the user, the grid computing 
system should be viewed as a single integrated resource and 
should still be easy to use. These are some of the challenges 
that an opportunistic grid middleware face. The grid 
middleware is a software layer between the operating 
systems running on the computing nodes and the user 
applications submitted to the grid. The focus of an 
opportunistic grid middleware is not the integration of 
dedicated computer clusters [11], or to provide 
supercomputing resources, but to promote a better use of 
existing computing resources and the execution of 
computationally intensive parallel applications.  

B. Autonomic Computing 

Autonomic computing, as a research field, aims at 
developing computational systems able to manage 

themselves with minimal human intervention [6][8][10]. 

The term autonomic comes from biology and is inspired 
from the human nervous system. Like the nervous system, 

an autonomic computing system must possess some 

characteristics or properties such as self-awareness, self-

configuration, self-protection, self-optimization and self-

healing, among others [6]. In sum, these characteristics 

relate autonomic computing to the design of complex 

systems; systems that need constant adjustments to various 

dynamical circumstances, as is the case of opportunistic 

grid systems. 

Figure 1. Architecture of an Autonomic Element [8]. 

In general, an autonomic computing system is conceived 

as one or more autonomic elements composed of an 

autonomic manager associated to a managed element (see 

Figure 1). The managed element represents a resource or 

device (computer, printers, databases, etc.) composing a 

computing system. The autonomic manager is an active 

component that encapsulates a managed element to turn it 

into an autonomic element. The internal working of an 
autonomic manager is organized in cycles, each one divided 

in four distinct phases: monitoring, in which data is 

collected by means of sensors; analysis, in which possible 

needs and problems are detected; planning, in which 

strategies are drawn to make necessary changes and 

adaptations; and execution, in which the planned strategies 

are effectively implemented. This general architecture is 

known as the MAPE-K model. 

C. Autonomic Grid Simulator Tool 

In our research, we have used the Autonomic Grid 

Simulator Tool (AGST)[15], a tool that allows the modeling 

and simulation of autonomic approaches to self-

management problems in the context of Opportunistic Grids 

[5]. AGST is based on the MAPE-K model, providing 

support for all phases of the autonomic manager execution 

cycle. By using AGST, one can simulate autonomic 

approaches based on two types of dynamic adaptation: 

parametric and compositional. Parametric adaptation 

consists in the continual modification of variables that 

determine the behavior of algorithms used by the grid 

middleware. And compositional adaptation is the exchange 

of algorithms or components of the grid middleware, 

enabling the adoption of new strategies to handle new 

situations and to react to changes in the grid environment. 
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III. FAULT TOLERANCE

In opportunistic grid systems, and distributed systems in

general, it is important to have mechanisms that allow the 

system to continue functioning despite the presence of 

faults [7]. Faults occur every time the system behavior does 

not comply with its intended operation due to some failure or 

malfunctioning of one or more of its components. What 

happens after a fault determines the degree of fault 

tolerance of the system. At one extreme, we have full fault

tolerant systems in which fault does not decrease their 

quality of service. At other, there are zero fault tolerant 

systems in which any fault causes total system breakdown. 

Between these extremes, we found systems that present a 

graceful degradation characterized by a reduction in the 

quality of their operations proportional to the severity of the 

fault. Given that failures are inevitable in dynamic and 

heterogeneous systems, and that the cost of zero fault 

tolerance can be very high, fault tolerance becomes a 

characteristic of paramount importance. 

A. Basic Techniques 

A basic source of faults in opportunistic grid systems is 

the loss of running tasks due to problems on a grid node. 

These can be caused by many factors, among them the 

computer be turned off by its owner. In general, this is the 

kind of fault tolerance we deal in our work, and that will be 

considered in the remainder of the paper. 

Ultimately, the less sophisticated way to deal with the 

fact that nodes may become unavailable is to detect the node 

failure and restart, in another available node, the tasks that 

were running on it. To avoid this restart, the researchers 

have devised two basic techniques: replication and 
checkpointing [7]. Replication consists in executing several 

replicas of the same task in different nodes at the same time. 

On the one hand, with several replicas, the change of having 

to restart a task due to a node failure is minimized. On the 

other hand, the grid middleware has to manage and 

synchronize several running replicas that consume 

computational resources and leave less space for scheduling 

new incoming tasks. Looking for a better use of resources, 

checkpointing is a technique that promotes fault tolerance 

by periodically saving the state of the running tasks so that 

they can be resumed on a different machine in the case of a 
node failure. However, the downside of this technique is the 

time overhead imposed upon the tasks that need to be 

constantly interrupted by the grid middleware to record their 

running states. 

Replication and checkpointing have pros and cons 

depending on different conditions of the grid environment. 

If there are plenty of computing nodes in comparison to 

number of tasks to be run, then replication is a better option 

than checkpointing. But, to the extent that the number of 

available computing nodes decreases, replication becomes 

less and less attractive until we reach a point where 

checkpointing becomes a better option than replication. 
With these pros and cons in mind, in the last few years, 

some researchers have proposed adaptive fault tolerance 

mechanisms that try to autonomically balance the use of 

replication and checkpointing depending on the current grid 

condition [2][15][18].  

B. State of the Art 

Wu et al. [18] propose a mechanism based on the 

number of times a task is resumed due to node failures. 

Initially, for each new task, the grid middleware performs 

checkpointing. If a node failure occurs, the task is restarted 

from the last saved state in the same computing node. It is 

considered that it was only a transient fault and that the 

restarting on the same node is sufficient to solve the 
problem. If a second fault occurs, it is considered that 

probably the node in which the task is running is not stable 

and, therefore, the task is restarted from the last checkpoint 

on another node. If the task fails a third time, it is 

considered that the grid environment has a high fault rate 

and, therefore, the middleware starts multiple replicas of the 

task to be executed simultaneously.  

Chtepen et al. [2] present heuristics for the adaptive use 

of checkpointing, replication and a combination of them. 

The goal is to improve resource utilization and reduce the 

execution time of tasks. In the case of checkpointing, one 
heuristics consists in increasing or decreasing the interval 

between checkpoints for each task according to the mean 

time between failures (MTBF) of the computing nodes. 

Regarding replication, another heuristics is to limit the use 

of replication according to the system workload (grid 

occupancy). A third heuristics is to dynamically switch from 

checkpointing to replication, and vice-versa, based on 

workload (if occupancy is high use checkpointing, 

otherwise use replication).  

Based on the work by Chtepen et al. [2] and the MAPE-

K model, Viana et al. [15][16] propose an autonomic fault 

tolerance mechanism for opportunistic grids. The basic idea 
is to make each computing node a managed element 

controlled by an autonomic manager. Thus, the autonomic 

manager continually adjusts the parameters of the fault 

tolerance technique currently in use for each node of the 

grid. It also makes a structural reconfiguration, replacing the 

fault tolerance technique in use by another one, when the 

system workload reaches a given fixed threshold.  

Despite being adaptive (by combining replication and 

checkpointing taking into account the current state of the 

grid environment), these state of art mechanisms still 

depend upon certain parameters that need to be adjusted 

empirically by the system administrator. One example is the 

fixed threshold to switch between checkpointing and 

replication found in [15]. Another limitation perceived is 

that [2] and [15] rely only on a measure of grid occupancy 

to switch between checkpointing and replication. As can be 

seen in the work [18] other factors such as rate mean time 
between failures (MTBF) can also have a decisive influence 

in this decision. 
Motivated by these shortcomings, we put forward an 

extension of the work by Viana et al. [15]. Our proposal, 
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presented in Section V, is inspired by some studies that use 

Reinforcement Learning for resource allocation in 

computing grids, such as [3][4][14][17][19].

IV. REINFORCEMENT LEARNING

Reinforcement learning is a Machine Learning paradigm 

[1][13] that addresses the issue of how an agent (i.e., an 
autonomous entity that perceive and act in an environment) 

can interactively learn the right policy to achieve a given 

purpose (see Figure 2).  

Figure 2. The agent-environment interaction [13]. 

A. Markov Decision Process 

Formally, the problem faced by the agent in a 

reinforcement learning scenario is rendered as a Markov 

Decision Process (MDP)[13]. A MDP is characterized by a 
finite set of environmental states S; a finite set of possible 

actions A; a state transition function 𝑇: 𝑆 × 𝐴 → Pr(𝑆) that 

gives, for each state and action pair, a probability 

distribution over the set of states (where 𝑇(𝑠, 𝑎 (𝑠′ ) is the
probability of the environment transit to state 𝑠′ when the 

agent perform action a in state s); and a (expected) reward 

function 𝑅: 𝑆 × 𝐴 → ℝ that maps each state and action pair 

to a real value representing the (expected) immediate reward 

after performing action a in state s. In this setting, the 

functions T and R abstract the dynamics of the environment 

and are not necessarily known to the agent. 

To solve a MDP is to come up with an optimal 

policy  𝜋: 𝑆 → 𝐴 , i.e., a decision function that maps each 

possible state to an action in such a way to produce, over 

time, the greatest possible cumulative reward to the agent. 

B. Temporal Difference Learning
In general, reinforcement learning algorithms are based 

on estimating value functions that characterize optimal 

policies. One of these functions maps state action 

pairs  𝑠, 𝑎  to real values Q 𝑠, 𝑎  that are estimations of the 

cumulative reward that the agent is expected to receive in 

the long run if it performs the action a in the state s.  

Two popular algorithms for learning Q value functions 
are Q-learning and SARSA [13]. Both are Temporal 

Difference Learning (TD Learning) algorithms. This means 

that they work by using the difference between the current 

and previous estimates to incrementally update Q values. 

Specifically, the update rule in SARSA is 𝑄 𝑠, 𝑎 ←
𝑄 𝑠, 𝑎 +  𝛼[𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]; and in Q-learning is 

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 +  𝛼 𝑟 + 𝛾 maxa′ 𝑄(𝑠′, 𝑎′)  − 𝑄 𝑠, 𝑎 ; 

where 𝛼 is a step size parameter, 𝛾 is the discount factor for 

future rewards, 𝑟 = 𝑅(𝑠, 𝑎) and 𝑠′  the observed next state 

when the action a was performed in the current state s. 

The basic difference between Q-learning and SARSA 

lies in the action used to update the Q values. In Q-learning 
the update is done with the optimal action obtained from a 

greedy choice. Regarding SARSA, it is used the next action 

obtained when the agent follows the policy derived from the 

current Q values. In practice, this difference is reflected in 

the optimality and in the safeness of the learned policy. Q-

learning tends to find policies with expected cumulative 

rewards higher than SARSA. However the polices found by 

SARSA are safer than those by Q-learning, in the sense of 

obtaining less negative rewards when the agent deviates 

from the policy to explore new possibilities.  

V. PROPOSED APPROACH 

As discussed in Section III, recent autonomic 

mechanisms for fault tolerance in grid systems have used 

heuristic rules that require empirical adjustments of some 

parameters. Discovering these parameters is not always an 

easy task. Thus, we propose a fault tolerance approach that 

extends the work by Viana et al. [15][16] by using 

Reinforcement Learning to automatically adjust the 

threshold used to switch between checkpointing and 

replication. Instead of relying only in the occupancy level of 

the grid, the idea is to make this switching also dependent 

on the amount and reliability of the computing nodes 

composing the grid system. 

A. Adaptive Switching Threshold 

The autonomic fault tolerance mechanism in [15], based 

on [2], deals with two levels of adaptation: parametric and 

structural adaptation. Regarding parametric adaptation, 

some parameters such as number of replicas or frequency of 
checkpointing are dynamically adjusted depending on the 

grid statistics (e.g., MTBF and grid workload). With respect 

to structural adaptation, what occurs is the switching 

between checkpointing and replication based on the current 

grid occupancy. 

We retain these basic ideas from [15]. However, we add 

to the parametric adaptation a further item: the switching 

threshold between checkpointing and replication (measured 

in terms of grid occupancy percentage). To do this 

parametric adaption, we develop an approach in which the 

autonomic manager learns by reinforcement how to 

increment or decrement the switching threshold in order to 
minimize the execution time of successfully completed 

applications. In this way, the grid middleware initially 

adopts a switching policy reflecting the threshold proposed 

in [15]. Over time, to the extent that applications complete, 

the middleware try to increment or decrement the threshold 

guided by the amount of delayed or restarted applications. 

At the end, the switching threshold is modified to a value 

below or above the default value reflecting the particular 
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characteristic of the grid environment (e.g., MTBF, grid 

workload and number of computing nodes).  

Figure 3. Proposed approach. 

In Figure 3, we depict the proposed approach. It is an 

adaptation of the MAPE-K model shown in Figure 1. The 

managed elements are the nodes of an opportunistic grid. 

The autonomic manager, in addition to dealing with the 

parametric and structural adaptations laid down in [15], is 

supposed to record and update the policy for changing the 

switching threshold. This policy is represented as a Q-table, 

a table that holds a Q value function. During the analysis 

phase, the Q-table is updated given the current state and 
reinforcement coming from the grid environment. The 

update is performed by using the SARSA algorithm (here 

we have opted for the safeness at the expense of optimality). 

In the planning phase, the policy coded in the Q-table is 

used to update the switching threshold and to decide if a 

structural adaptation (change to checkpointing or 

replication) is needed or not. 

B. Markov Decision Process 

In sum, the problem of adapting the switching threshold, 

formalized as a MDP, consists in: states 𝑠 ∈ { threshold 

values in terms of grid occupancy percentage }; actions 𝑎 ∈ 

{ increment, decrement, maintain }; state transition function 

𝑇(𝑠, 𝑎)  is deterministic and previously known since 

increment and decrement assume their mathematical 

meaning of addition and subtraction, and maintain means 
leave the threshold value unaltered; immediate reward 

function 𝑅(𝑠, 𝑎)  is unknown, but delayed negative reward 

values are calculated from the amount of delayed and 

restarted tasks (i.e., for each autonomic cycle, the number of 

delayed and restarted tasks is counted and aggregated as a 

negative reward; it is used a weighted sum in which a restart 

is 10  times worse than a delayed task).  

VI. EVALUATION OF THE APPROACH

To evaluate the proposed approach, we have conducted 

several simulation experiments using AGST (Section II-c). 
To put into perspective the results obtained we compare our 

approach with the traditional techniques of checkpointing, 

replication, and the autonomic approach reported in [15].  

A. Scenarios 

Here, we consider two basic scenarios: 1 ─ many

resources, many faults, 100 applications; and 2 ─ few 

resources, many faults, 200 applications.  

In the first scenario, we created a simulation model with 

1400 computing nodes; in the second, 700 nodes.  In both, 

the nodes were interconnected by a network of 100 Mbps. 

The medium processing power was equivalent to a Pentium 

IV 1.6 GHz (1,858 MIPS, based on the TSCP 5 

benchmark); to simulate heterogeneity, this medium varies 

according to a uniform distribution U (938; 2,779) MIPS, 

where the processing power of the faster machine is 
approximately three times greater than the processing power 

of the slower machine. Regarding the faults, AGST was 

configured to generate synthetic failures with an exponential 

distribution with MTBF equal to 500 seconds. The duration 

of failure (downtime) was determined by an exponential 

distribution with variable mean, whose minimum and 

maximum values were respectively 300 and 600 seconds 

(faults with fast recovery, typical of opportunistic grids 

environments where frequent failures are due to restarting of 

machines by the users, or electrical current fluctuations, 

instead of long terms failures such as hardware failures). At 
last, concerning the grid workload, the applications consist 

in bag-of-tasks applications with three tasks each, resulting 

in a total of 300 tasks in the first scenario and 600 tasks in 

the second. These applications were generated with a 

variation in size (in terms of millions of instructions) 

according to a uniform distribution U (53,510; 321,062) MI 

(considering the medium processing power of 1,858 MIPS, 

each application would take approximately from 8 to 48 

hours to complete). All these settings are similar to the 

settings found in [15] to easy the comparison.  

B. Simulations 

By combining the four fault tolerance strategies 

(checkpointing, replication, autonomic [15] and our 

approach denoted in the sequel as RLearning) and the two 

scenarios we reach at eight different simulations. In the 

simulation involving checkpointing, the technique was 

configured to perform the checkpoint of the tasks on a fixed 

interval of 30 minutes. With regard to replication, it was 

configured to statically create three replicas for each task. 

The autonomic approach was configured as described in

[15]. Specifically, the threshold adopted for switching 

between checkpoint and replication is 30% (i.e., when the 

grid workload is < 30% use replication, otherwise use 

checkpointing).  Finally, the RLearning approach follows 

the same configurations of the autonomic approach, with the 

difference that the switching threshold is variable. 

All the eight different simulations were repeated 40 

times, resulting in a total of 320 experiments. The metrics 

used to compare the fault tolerance strategies were the 
average completion time (in hours) and the success rate of 

the applications (percentage of application that concluded 

execution without restarting). 
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C. Results 

The simulation results are shown in Figures 4 and 5. 

Figure 4. Scenario 1 ─ 1,400 nodes, 300 tasks and many faults.

Analyzing Figure 4, it is possible to notice that when 
there plenty of resources the best strategy is to use 

replication only. It leads to the smallest average completion 

time (30.56) with 100% of successfully completed 

applications. The worst is checkpointing only. In between 

these extremes we have the autonomic and the RLearning 

approaches. They both approximate the results of replication 

only by using replication when there are many idle nodes. 

As applications are submitted and replicas are created, the 

grid occupancy begins to increase, forcing a switch to 

checkpointing when the workload reaches the predefined 

threshold value. This explains why the autonomic and 

RLearning approaches are beaten by replication in a 
scenario with many resources and few applications.  

When we focus on the autonomic and the RLearning 

approaches, we see that RLearning was a better 

approximation to replication than the autonomic approach 

was. We attribute this difference to the fact that the 

RLearning dynamically changes the switching threshold 

between checkpointing and replication. Broadly, the 

RLearning approach tries other threshold values; if these 

values do not produce negative rewards, then they became 

adopted by the system. Thus, the tendency is the threshold 

to converge to a higher value that prevents the system to 
incur in an earlier than needed use of checkpointing.  

Analyzing Figure 5, we observe how the fault tolerance 

strategies fare when the amount of resources decreased and 

the number of application increase. In this case, the 

checkpointing only remains as the worst approach. 

However, replication only is not the best approach if we 

deem the loss of running tasks as an undesirable event. In 

comparison to checkpointing and the autonomic approach, 

replication has lost 5% of the running applications (this loss 

occurs when all replicas are killed due to node failures). 

Looking specifically to the autonomic versus the 
RLearning, we realize that the RLearning approach pursue 

the average completion time of the replication only strategy 

(which is the lowest of all approaches), while trying to avoid 

application loss. In our experiments this loss was less than 

0,03%, a small value compared to the 5% obtained by 

replication. In this way, we judge that the RLearning 

approach arrived at a good tradeoff between average 

completion time and application successful completion, 

w.r.t. the other approaches. 

Figure 5. Scenario 2 ─ 700 nodes, 600 tasks and many faults.

Finally, we call the reader's attention to the fact that we

have performed other simulation experiments than these that 

were reported. We have varied number of resources, 

applications and fault rates. In general, the results have 

shown that we obtain better levels of adaptation to the greed 

characteristics by using the RLearning over the autonomic 

approach.  

VII. CONCLUSION AND FUTURE WORK

In this paper, we have dealt with the problem of

providing fault tolerance in opportunistic grid environment, 

by balancing the use of checkpointing and replication. 

Building upon the state of art, we have proposed the use of 

the MAPE-K model together with reinforcement learning as 

a viable approach to decide the exact point when 

checkpointing should be used instead of replication, and 

vice-versa. Our reinforcement learning approach was 

evaluated by means of simulation models developed by 

using AGST. The obtained results have corroborated our 

initial hypothesis that the switching threshold between 

checkpointing and replication should not be a fixed value, 

but may dependent on the amount of resources per 

applications and the reliability of the computing nodes 

composing the grid system. 

Fault tolerance is a challenging problem. Currently, we 

are exploring the aspects of convergence versus continual 

policy modification lying at the heart of our approach. For 
this we are performing further experimental evaluation by 

means of simulation. As future work we plan to extend the 

approach to deal with other parameters discussed in [15]. 

For example, we can try to learn the number of replicas, or 

the interval between checkpoints. Finally, at long run, we 

also plan to experiment the approach in a real grid 

middleware. In this regard, we are thinking about the 

InteGrade middleware [12]. 
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Abstract—Distributed resource allocation in data centers has
gained a lot of attention from the research community in the
last few years, especially in fields like cloud computing and
multitier systems. It is usually expected that these systems
deliver some performance guarantees to users’ Service Level
Agreements (SLAs). Therefore, data center servers may need to
be dynamically redeployed to optimize some performance metrics
so that to meet the promised SLAs. Moreover, the total profit of
a system depends on its ability to reduce a data center’s energy
cost through the resources utilization optimization. The main
challenge of resource allocation is then to find the minimum
amount of resources that an application needs to meet the
desired Quality of Service (QoS). In this direction, autonomic
computing appears to be one of the most popular concepts
to achieve these goals by means of self optimization. These
properties provide a system with a dynamic optimization of its
own resources use, and enable it to autonomously adapt itself
to its environmental changes. However, such autonomic resource
allocation strategies may result in a loss of performance or even
service degradation under some conditions. Furthermore, it is
interesting to predict the behaviour and the efficiency of those
strategies, before applying a new resource allocation, to forecast
the most appropriate configuration and ensure the effectiveness of
the autonomic manager. Thus, we propose in this paper a general
insight of performance modelling of resource allocation strategies
using the modelling of an autonomic resource allocation server
as an example. The modelling is based on stochastic Petri net
models (SPN). We consider in our modelling dynamic allocation
strategies, based on workload intensity and user mixes. Finally,
we illustrate the effectiveness of our modelling through a set of
experimental results.

Keywords–Autonomic computing; data center; performance
modelling; resource allocation

I. INTRODUCTION

Todays data centers are becoming increasingly large and
complex, hosting a variety of business-critical applications
with a set of QoS requirements, such as those for web hosting
or e-commerce sites. The increasing demand for computing
resources in a shared infrastructure creates the challenge of
dynamic on-demand resource provisioning and allocation in
response to variable workloads [1].

Data centers need then to have more flexible execution
environments, allowing resources sharing between its differ-
ent applications in order to meet performances requirements
of those applications. In a cloud computing application for
instance, the main objective is to maximize profits by an
efficient use of resources, such as meeting the clients SLAs
and reducing the energy cost of the data centre, by an efficient
use of resources. Furthermore, modern Internet applications

are implemented on multi-tier architectures, increasing the
application’s complexity. Each tier provides a defined service
to the next tier and uses services from the previous tier. The
resource allocation problem for multi-tiers applications is then
harder than that for single tier applications: tiers may not be
homogeneous and a performance bottleneck in one tier may
decrease the overall profit.

The key-challenge of resources allocation is then, to pro-
vide enough resources to an application to meet its perfor-
mance goals while avoiding an over-provisioning that could
increase the energy cost and reduce the efficiency for other
concurrent hosting (i.e., less resources for next applications).
Due to these economic benefits, the resource provisioning
optimization has been the subject of much investigations [2].

Some approaches focused on static allocation strategies that
consider a fixed set of applications and resources, but these
approaches have shown their weak efficiency because of the
changing workload mixes. Other approaches are based on peak
demand but suffer too from a lack of efficiency and a non
cost-effectiveness due to their poor resource utilization during
off-peak periods. In contrast, autonomic resource management
may lead to efficient resource utilization and fast response in
the presence of changing workloads.

In cloud applications, autonomic resource allocation pro-
vides application environments with self-configuration and
self-optimization capabilities according to their environmental
changes. The system can then be enforced through scale-
up/down (i.e., adding/removing resources to individual Virtual
Machines (VM)), scale-out/in (i.e., adding/removing VMs to
an application environment), and migration (i.e., moving VMs
over the physical infrastructure). This will directly impact both
applications performances and the providers operation cost.

To achieve those autonomic computing features, IBM sug-
gested a reference model for autonomic control loops, which
is sometimes called the MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge) loop [3]. The architecture dissects the
loop into four parts that share knowledge:

• The monitor function provides mechanisms that col-
lect, aggregate, filter and report details (such as met-
rics and topologies) collected from a managed re-
source.

• The analyze function correlates and models complex
situations (for example, time-series forecasting and
queuing models). The provided mechanisms allow the
autonomic manager to learn about the Information
Technology (IT) environment and help in predicting
future situations.
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• The plan function provides mechanisms that construct
actions needed to achieve goals and objectives. The
plan mechanism uses policy information to guide its
work.

• The execute function provides launches the execution
of a plan and controls it with considerations for
dynamic updates.

Even if self-optimization may appear as an attractive way
to enforce resource allocation process, reaching the goal of
system improvement varies from an autonomic system to
another, depending on the autonomic manager architecture and
its implemented features. The targeted function to improve
and the resource allocation process are also determinant cri-
teria in building an efficient autonomic system. Furthermore,
autonomic features are costly: they make systems more and
more complex and need considerably more resources than
other systems. So, attempting to improve a system with au-
tonomic features may lead to some undesired configuration,
with the introduction of new bugs or the loss of some vital
settings, or else the degradation of the resulted configuration
performances.

Hence, it is important to ensure that the chosen alloca-
tion strategy offer the desired performances under different
circumstances while designing the system. This requires to
predict and measure performances of an autonomic manager
and its possible impact on the current system, before applying
a solution or a reconfiguration. The main goal is to know how
long the decision making process will take and how much
the system’s performances will be improved. The autonomic
resource allocation has also to be compared with static resource
allocation according to the application case. In this direc-
tion, formal methods are strong tools for system performance
prediction based on modelling. Mathematical models, such
as Petri nets [4] are well suitable for modelling distributed
systems and fit the autonomic computing process with the
system operation.

We attempt, in this paper, to define a general modelling
of autonomic resource allocation using Stochastic Petri Nets
(SPN). This modelling is presented through a simple typical
example of an autonomic resource allocation system. We
consider for our modelling a dynamic allocation strategy,
based on workload mixes analysis, applied by an autonomic
server. Some static allocation strategies are defined, each
one assigning a fixed amount of resources to user requests.
The system will work initially with a predefined strategy,
while the autonomic manager analyzes continuously workload
mixes. The autonomic manager will, then, reconfigure the
system to move to a more appropriate strategy, whenever there
are pending user requests while other requests hold several
resources. So, according to the analysis of the monitored
data, the autonomic manager redistributes fairly the existent
resources.

The paper is organized as follows: Section II discusses
related work. Then, Section III presents our general modelling
and the experimental results. Finally, Section IV concludes the
paper and gives future work.

II. RELATED WORK

Significant attention has been given to the topic of dis-
tributed resource allocation in the last few years. The main

studied issue is the cost, efficiency and the generated profits
of the used methods, especially when client Service Level
Agreements (SLAs) must be satisfied. Several work have
then been proposed to use autonomic computing, while using
predictive models. We provide, in the following, the most
relevant prior work.

As Clouds are complex, large-scale, and heterogeneous
distributed systems, resource allocation is one of the main
topics of interest studied in the last few years in the context of
cloud computing. Thus, Ghanbari et al.’s, results [2] provide
valuable insights on the performance of alternative resource
allocation strategies and job scheduling disciplines for a cloud
computing infrastructure. The service level agreement is based
on a response time distribution, which is more relevant than the
mean response time with respect to performance requirements
of interactive applications. The authors developed an efficient
and effective algorithm to determine the allocation strategy
that results in a smallest number of required servers. They
have also developed a novel scheduling discipline, called
probability dependent priority, which is superior to First Come
First Served (FCFS) and head-of-the-line priority in terms of
requiring the smallest number of servers. The authors consider
in their work the case of two job classes.

In the same direction, Buyya et al. [5] identifies open issues
in autonomic resource provisioning and presents innovative
management techniques for supporting Software as a Service
(SaaS) applications hosted on Clouds. The authors present
a conceptual architecture and early results highlighting the
benefits of Clouds autonomic management. They presented the
first steps towards an autonomic Cloud platform able to handle
many of the above problems. Such a platform will be able to
dynamically supply applications with Cloud resources in such
a way that Quality of Service user expectations are met with
an amount of resources that optimizes the energy consumption
required to run the application.

In [6], an SLA-based resource allocation problem for multi-
tier applications in the field of cloud computing is considered
by Goudarzi and Pedram. An upper bound is provided on
the total profit and an algorithm based on force-directed
search is proposed to solve the problem. Processing, memory
requirements and communication resources are considered as
three dimensions in which optimization is performed. In [1],
the purpose was to demonstrate the advantage of ”adaptive”
models, relative to ”static” models in optimization. Hu et
al. investigated model based optimization of a private cloud
where applications are clustered across a known homogeneous
set of physical machines. They modified resource sharing
of applications, to minimize SLA violations. The focus was
only on response time, considering that multiple service level
objectives will not change the approach, but just the complexity
of solving the optimization problem. The main contribution of
this work was using dynamically tracking models (for each
application) within the global optimization loop. These models
update themselves at runtime in order to adapt to environment
perturbations, not captured in initial model specification.

Workload variation and its resource consumption is also
an important point to study for the resource management,
in this direction, Litoiu [7] investigates performance analysis
techniques to be used by the autonomic manager. The work-
load complexity was studied, and algorithms were proposed
for computing performance metrics bounds for distributed
transactional systems under asymptotic and non-asymptotic
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conditions, with saturated and non-saturated resources respec-
tively. The proposed technique makes use of linear and non-
linear programming models and their performance evaluation.
Workloads are characterized by their intensity representing the
total number of users in the system, and workload mixes,
which depict the number of users in each service class.

Finally, some authors investigate the use of mathematical
and performance modelling or optimization approaches to
improve the resource allocation. Bennani and Menasce [8]
addressed the resource allocation problem in autonomic data
centers. The presented solution is based on the use of analytic
queuing network models combined with combinatorial search
techniques. The authors have shown how analytic performance
models can be used in an efficient manner, to design controllers
that dynamically switch servers from one application environ-
ment to another as needed.

In [9], Xu et al. propose a two-level resource management
system to dynamically allocate resources to individual virtual
containers. It uses local controllers at the virtual-container level
and a global controller at the resource-pool level. An important
advantage of this two-level control architecture is that it
allows independent controller designs for separately optimizing
applications performances and the resources use. Autonomic
resource allocation is realized through the interaction of the
local and global controllers. A novelty of the local controller
designs is their use of fuzzy logic-based approaches to effi-
ciently and robustly deal with the complexity and uncertainties
of dynamically changing workloads and resource usage. The
global controller determines the resource allocation based on
a proposed profit model, with the goal of maximizing the total
profit of the data center.

Regarding these proposals, we notice that most of them use
formal modelling for an autonomic online optimization, but
only few work focused on the efficiency of those autonomic
components and performance modelling and prediction of a
whole autonomic system in the context of resource allocation.

We introduce, then, in this paper, a general performance
modelling and analysis approach for the autonomic resource
allocation problem. The main idea is to model the complete
autonomic system behaviour including resource management
and allocation and the autonomic loop. A system configuration
is seen as a distribution of system resources for user requests
and their availability. We illustrate then our modelling method-
ology through a simple typical example of an autonomic server
and a series of experimental results.

III. AN AUTONOMIC RESOURCE ALLOCATION PLATFORM

To explain our modelling approach, we choose a typical
example of an autonomic resource allocation system, based
on a simple monitoring process. We first, in this section,
define the architecture of our example, then we give its general
functionalities which have to be considered in our modelling.
After that,we explain our modelling methodology through the
presentation of our model based on Stochastic Petri Nets
(SPN) [10].

A. System architecture

Our system consists of an autonomic server with a set
of resources and an allocation strategy for those resources
based on a monitoring process. The monitoring process aims

to determine the amount of resources to allocate to the next
user requests.

The main managed element in an autonomic resource allo-
cation system is the resource. A resource may be any element
used or invoked during the processing of a user request: it
may be a server, a processor cycle, a memory space, a used
device, a network bandwidth, an available component, and so
on. An allocation strategy defines the amount of resources
to allocate to a new requests: it could be a static allocation
approach considering a fixed set of resources or a dynamic
one adapting the resource management strategy according to
the system’s state and the user SLAs.

The autonomic loop aim at self-optimize system per-
formances through self-configurations, by switching between
allocation strategies relatively to the changing workload. We
take for our example a simple self-optimization technique
based on the current workload mixes, a continuous monitoring
of processing services is done by the autonomic manager, the
autonomic loop is, then, triggered periodically to analyze the
monitored data, the analysis and plan phases determine the
most present service’s class in the system and choose the most
appropriate strategy for this current class for the next requests.
Finally, the act phase switches from the current strategy to the
new one and reset the autonomic loop periodicity.

B. System features to model

To show how we operate to model an autonomic system,
we take generic concepts of an autonomic resource allocation
system. However, to have a reliable trustworthy model with
accurate results, some key concepts have to appear in our
modelling :

a) System’s resources and allocation strategies: We
need, in our modelling, to represent the system resources, their
states and their distribution over the time and their allocation
mode. A resource may be a server, a processor cycle, a memory
space, a network bandwidth, and so on. A system configuration
is then seen as a state where resources are allocated to different
user requests according to a predefined strategy.

For instance, the system may reach or approach a saturation
state, becoming unefficient to process new requests; it may also
be in a an unoptimized state not satisfying a required SLA,
even if the available resources are sufficient. It may also give
the expected processing performance while producing a high
consumption cost. All these drawbacks or failures depend on
the allocation strategy and its efficiency to optimally distribute
the system’s resources.

b) Classes of service: As presented in [7], the system
performance and the saturation state do not depend only on
the workload intensity (number of users in the system), but
also on the workload mixes that represent the users number
of each service class. Classifying user requests into different
classes allows us to separate them according to a set of
specificities that may affect differently the system behaviour
and its performances. In fact, a request which needs a database
access in a multi-tier system do not have the same impact
on the system’s performance as a request invoking only an
application process in the same system. In our work, we
consider different service classes classified according to the
needed number of identical resources (i.e., several CPUs or
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Figure 1: Key concepts to appear in the model

more memory space): each class requires a given number of
resources. This consideration comes from the fact that a job
holding a set of resources ends more quickly than if it had
only one resource. Contrariwise, allocating more than needed
resources to a client will waste additional resources for the
same job performances while increasing costs and reducing
concurrency processing for other jobs. Hence, resource provi-
sioning and the resulting system configuration vary according
to the workload mixes in the system.

c) Self-optimization strategy: As explained before, an
allocation strategy have to be defined according to the work-
load mixes. Modelling static and autonomic self-optimization
approaches will allow to compare the efficiency and incon-
veniences of each resource management manner for each
system configuration. Hence, for an autonomic approach, it is
important to represent the system and its autonomic loop in the
same model, this allows to measure autonomic features impact
on the system while measuring the system performance itself.
Grouping the system functioning and the autonomic loop in
the same model is also more appropriate to make tests under
different cases: different system configurations can then be
used to test the autonomic loop influence; the system’s state
and its evolution over time being visible directly in the model.

C. Modelling our autonomic architecture

1) Used formalism: Stochastic Petri Nets: Stochastic Petri
Nets (SPN) [4] are a stochastic temporal extension of Petri
Nets, widely used for performance analysis of complex sys-
tems. Our choice of this formalism is first motivated by the
fact that we need a state based model to be able to evaluate
performance indices related to system configurations (number
of requests in some part of the system, mean usage time of
some resource, etc.). Petri Nets are state based models, which
are well known for being able to model complex systems
with concurrency and conflicts, and the stochastic extension
allows to do a performance analysis based on a Markov chain-
like state space graph. This is in contrast to other perfor-
mance formalisms like Queuing networks or process algebras
models where conflicts cannot be modelled. Moreover, as our
methodology is incremental, we need to compose sub-models
to connect multi-tier sub-models, or servers sub-models. In this
direction, Petri Nets are compositional models and interaction
between Petri nets representing different parts of a system may
be easily defined as transitions or places, which are merged
when interacting sub-models are composed. So, we define an
SPN in the following.

Definition 1 (Stochastic Petri Net). A Stochastic Petri Net is
a couple N = (N ′; θ) where:

• N ′ = (P, T, Pre, Post, Inh, Pri) is a Petri Net

where P is a set of places, T a set of timed tran-
sitions with a stochastic firing delay, Pre, Post, Inh
are respectively the precondition, postcondition and
inhibition functions relating transitions to places, and
Pri the transition priority function.

• θ : T × Bag(P ) → R
+ where θ(t,M) is the firing

rate of t in M, i.e, the parameter of its exponential
law, where θ(t) represents:

◦ The weight of t if Pri(t) > 0 (t is immediate).
◦ The firing rate of t if Pri(t) = 0 (t is

timed): the enabling duration before the firing
of t(c,M) follows an exponential probability
distribution with mean θ(t).

2) System’s modelling: Regarding to the system features
given before, we follow the principles below to model the
autonomic resource allocation system:

• We first model the requests arrival, a request being any
kind of a client service invocation, applied to different
data center applications.

• We then represent system resources, where we abstract
the kind of resources as for requests.

• Resources are allocated to requests according to an al-
location strategy. As in our system, different strategies
are considered, this requires to model each strategy.
However, only one strategy have to be applied at one
time.

• After the allocation of the required resources to a
request, the service processing in progress is modelled,
as well as the different service classes to represent
resources consumption and the obtained performances

• Finally, as our example is based on an autonomic
system, we need to model each phase of the auto-
nomic loop: the continuous monitoring of processing
services, the autonomic loop triggering, the analysis
and plan phases, which chooses the most appropriate
strategy for the next requests, and the act phase which
switches from the current strategy to the new one.

The modelling methodology explained above is depicted in
Figure 1, giving the skeleton of a general resource allocation
autonomic system model. This figure shows the key concepts
that should be considered when modelling the system. Each
part of the system is then replaced with the appropriate sub-
model according to the real system to analyze. The merging
of the obtained sub-models gives the whole model of the
autonomic system. We give next the proposed sub-models for
an autonomic server.

Figure 2: The request submitting sub-model
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Figure 3: The resource allocation strategies sub-model

a) The request submitting sub-model: The request is
modelled with a place named Requests, marked with a
number of tokens corresponding to a possible number of
user requests. The system processes a request (represented
by a token) and answers the user, then the token is put
back into the Requests place to model a new request arrival
and keep the testing possibility of the whole system. The
transition NewReq is used to model the arrival and queueing
of the request in the system (see figure 2). This transition is
characterized with a firing rate modelling the arrival request
rate.

b) The resource allocation strategies sub-model: Each
allocation strategy is modelled by a place. We consider in
our model, three strategies: the first one for allocating one
resource to new requests, modelled by a place named Strat−1;
the second one for allocating two resources modelled by a
place named Strat − 2; and the last one for allocating three
resources, represented by a place named Strat−3. This model
is shown in Figure 3.

c) Servers sub-model: The model of servers is com-
posed of two parts:

• The server requests queue part: It is modelled by a
first place, named Queue, connected to the Requests
place. The requests are sorted into different classes to
represent different execution processing times, giving
a number of places equal to the number of service
classes: we associate a place for each request class
to model resource allocation to requests of the corre-
sponding class.

• The servers parts: each server of the system is
modelled by a place, named Server, containing the
server’s resources (see Figure 4). The request process-
ing is modelled by three transitions and three places
for each service class: The transitions are named
Begin−Cli− 1, Begin−Cli− 2, Begin−Cli− 3,
representing the processing beginning for each current
allocation strategy; The places, named Cl1i−1−exe,
Cli−2−exe, Cli−3−exe model the different request
execution states. Three other transitions, named End−

Figure 4: The server sub-model

Figure 5: Global system model

Cli − 1, End − Cli − 2, End − Cli − 3, are used
to model the request processing end (see Figure 4).
The Begin − Cli − s transitions are linked to the
Server, Queue, C1i − exe and Strat − i places.
The End − Cli − s transition consumes resource
tokens from the Cli − s − exe place, and puts them
back in the Server place, and by the way, puts back
the request to the Requests place. This server sub-
model represents a request processing according to a
predefined execution time, given by the firing rates
associated to the Begin − Cli − s transition. These
rates are fixed before analyzing the model, according
to the system under test. As many user classes are
defined in our model, this sub-model is duplicated
for each user class with a slight modification of
the required resources number to consume to get
the best performances. Different processing rates are
associated to their corresponding transitions, to show
a better processing time when using more resources.
Hence, only one beginning transition can be fired at
one time in the same service class, according to the
current strategy.

d) The autonomic loop sub-model: The MAPE-K loop
in our modelling is composed of five parts:

• The first part models the monitoring phase of the auto-
nomic loop. As in our example, the self-optimization
is based on the amount of requests in each service
class, we model the monitoring by a place named,
endRequests − Class − i, for each service class,
each of these places is connected to End − Cli − s
places belonging to the corresponding service class
(see Figure 5).

• Unlike the monitoring phase, which is performed
continuously, other phases of the autonomic loop are,
in our example, triggered periodically. In Figure 5, a
place, named periodicity, models the periodicity of
the autonomic loop by its number of tokens. A token
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is taken periodically by the newRequest transition.
The place named loopallowed contains the token
that will represent the progression of the MAPE-K
loop execution through the model and ensure that is
executed once at a time.

• The analyze phase sub-model aims to empty all mon-
itoring places, to reset them for the next period while
computing which service class is the most frequent
in the system in the last period. Hence, a place,
named analyse, models the beginning of the phase.
A transition, named comparing, takes a token from
each monitoring place until some of them become
empty, the one −moreR and three −moreR tran-
sitions are then used to continue the same process
for the remaining monitoring places containing tokens.
Moreover, inhibitor arcs are used to guide the analyze
phase towards the appropriate transitions, when some
monitoring places are empty. Once only one place
is containing tokens, OneMore, EmptP lace1 or
ThreeMore, emptP lace2 places are used to reset
the corresponding place to an empty state. Finally,
transitions goToP lan1 and goToP lan2 guide the
autonomic loop to the associated reconfiguration plan.
The transition goToP lan3 is fired when both service
classes get the same number of requests in the last
period (see figure 5).

• The plan phase sub-model is consisting of a set of
places whose number is equal to the number of service
classes. Each place represents the most appearing class
in the last period (Plan1, Plan3). Moreover, other
places have to be added to the plan, to consider
all equality cases between the class requests: in our
example, the Plan2 place models the equality case
between the two service classes of our system (see
Figure 5).

• Finally, the last part of the MAPE-K loop to model
is the act phase. We model it by a set of transitions
representing all combinations between the current
applied strategy and the current computed plan. The
new strategy, indeed, have to be chosen based on these
two parameters, for instance, if the current strategy
allocates three tokens (resources) to user requests
while these requests belong to the first service class,
the current strategy is then considered as non-cost-
efficient, as it allows two more resources for the same
service performance. A unique transition may be then
fired, switching the strategy to the more appropriate
place strat−1. The same process is repeated for each
combination by a particular transition act− i. A place
loop− ended is reached after the firing of one of the
act transitions; the transition loop−allowed reset, then
the loop periodicity and puts back the loop progression
token to it initial place (loopallowed).

Figure 5 shows the general model of the autonomic server. The
obtained model can be tested using different number of classes
and periodicities for each test, to get more accurate results or
to identify the best requests classification. In the next section,
we analyze the obtained SPN and try to predict the modelled
server behaviour under different configurations.

TABLE I: TRANSITION RATES OF CLASSES OF SER-
VICE

Config Transition Rate value
1 Begin-Cl1-strat 1.00
1 Begin-Cl2-1 0.33
1 Begin-Cl2-2 0.66
1 Begin-Cl2-3 1.00

D. Experimental results

The final model presented in Section III was analyzed using
the GreatSPN package [10], on an Ubuntu linux 12.4 LTS
workstation with 4 GB of RAM.

For performance analysis, we used various configurations
of the system, obtained by varying the initial markings of
the requests number, the available resources and the loop
periodicity when using dynamic strategy. The model used in
our experiments contains two service classes: the first one
needs one resource from the server’s place, while the second
one uses three resources. We performed our tests under each
of the three static allocation strategies and a dynamic strategy
using the autonomic loop.

Table I shows the transitions rates, depending on the
number of consumed resources. Only the second service class
transitions are affected by the available resources. Transitions
not appearing in this table have rate 1 (i.e., faster than all other
transitions, rates being given in the same unit).

To compute performances, we vary the number of requests
and available resources under each configuration. The Great-
SPN tool [10] computes the state space and its steady-state
probabilities. We study the evolution of several metrics from
obtained steady-state probabilities. To evaluate the efficiency
of a configuration, we interested in the following metrics:

• The response time for a user request, being of the first
or second class.

• The throughput of processed requests.

• The relationship between response time and resource
consumption.

We first analyze the SPN for a fixed number of requests (10 in
our example), with varying the resources number of the server
(1 to 40). Figure 6 shows that the mean response time of the
static strategies is unchanged under increasing the number of
available resources, while dynamic resource allocation slightly
improves it taking advantage from the powerful autonomic
system. However, the response time of the autonomic strategy
remains worse than static ones that allocate more resources.

Figure 6 depicts the throughput of processed requests.
Static strategy allocating one resource gives the best through-
put, but is exceeded by other static strategies allocating more
resources from a certain threshold of available resources. The
autonomic resource allocation gives the worse throughput,
which is partly due to the autonomic loop processing searching
the best strategy. The results can be improved using a separated
server for the autonomic manager. The efficiency of a given
strategy in our case depends, though, more on its ability to
reduce the final system’s cost.

We were also interested in evaluating the total resource
consumption of the system. The results shown in Figure 6 show
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Figure 6: Experimental results depending on available resources

that the dynamic resource allocation gets the best ratio between
the response time and the resource consumption metric, but it
is also due to a less number of processed requests, as it is
shown in Figure 6.

We can conclude that, with these different analysis results,
an autonomic allocation strategy gives a better relationship
between the response time and the resource consumption,
and so less final user cost. It allows, though, to process less
requests, which may make the system less effective. The most
efficient strategy to use for a particular system, depends then,
on the different costs related to each metric and the required
expected quality of service.

IV. CONCLUSION AND FUTURE WORK

This paper addresses a general modelling of resource
allocation strategies for an autonomic server using SPN. The
objective is to show, through the chosen example, how we
can gradually build a formal model for a resource allocation
autonomic system, to be able to analyze it and think about its
performances and efficiency. For this purpose, we have studied
the most important concepts to consider when modelling a
particular system to obtain a reliable model, then construct the
global model of the system example, basing on the building of
sub-models representing parts of the system, then the merging
of constructed sub-models.

To finalize the study, we compared different models of
static and autonomic strategies with the aim of forecasting the
more appropriate allocation strategy for the given system.

Regarding the obtained results of our modelling methodol-
ogy, more research work is still required in several directions,
among which: considering workload mixes in the request
arrival modelling, modelling more specific applications of
resource allocation systems, with specific requirements, such
as a cloud computing system. Finally, more specific autonomic
resource allocation strategies using different techniques have
to be compared.
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Abstract—Advancements in on-demand power management of
renewable energy can be achieved by multi-agent systems. This
paper proposes an innovative approach where a population
of autonomous agents are able to cooperate in managing an
accumulator-bank in order to effectively deliver energy in places
where it is required. The distributed and adaptive multi-agent
approach is able to decrease the interferences by avoiding the
negative interactions and conflicts, using the cooperationamong
agents. Our method uses the learning ability of agents to minimize
the number of communications among agents and the central
unit. This adaptive behavior lets the agents minimize the time
to find the optimal routes during the search. A simulation envi-
ronment has also been developed for visualizing the movements
of the agents and the conflict situations. The operation and the
efficiency of the algorithm have been investigated using simple
case studies.

Keywords–renewable energy; agent; genetic algorithm (GA);
cooperation

I. I NTRODUCTION

It is widely recognized (see e.g. [3]), that ”researchers must
find a sustainable way of providing the power our modern
lifestyles demand.” Along this line, more and more research
and development projects are aimed at modernizing energy
sources e.g., [9], [4]. Hadjipascaliset al. [10] present an
overview of the current and future energy storage technologies
used for electric power applications.

The problems of applying renewable energy sources are
widely and extensively investigated because of the need for
sustainability of energy systems. Solar and wind power are
the two main sources of renewable energy, both of them
suffer from the disadvantage that they are not always readily
available on demand. At the same time, the available ways of
energy storing are not economic enough and are of limited
capacity. One of the possible ways of storing the energy is
using accumulators that can be placed in anaccumulator-bank.
An automated service of such an accumulator-bank is desirable
that can be implemented by usingautonomous agents(i.e.,
robots) that can cooperate with each other to provide optimal
on-demand service.

Literature on learning abilities of agents:Usually, in a
multi-agent system the agents have specific pre-defined abili-
ties to perform a certain task. One of the challenges of a multi-
agent system is to develop agents with the ability to learn their
behaviour from each others. In recent years, more and more
researchers focus on the learning ability of agents that can
improve the efficiency of a multi-agent system. Saggaret al.
[19] developed a learning algorithm for agents to optimize
walks in both speed and stability in order to improve a robot’s
visual object recognition. Nguyen-Thinh presented a learning

algorithm for agents based on interactions with humans in
conflict situations [14]. Taylor et al. [21] present an algorithm
that combines transfer learning, learning from demonstration
and reinforcement learning to achieve rapid learning and high
performance in complex domains. Using experiments in a
simulated robot in soccer domain, they show that human
demonstrations transferred into a baseline policy for an agent
and refined reinforcement learning significantly improve both
learning time and policy performance.

Learning by using GA:Genetic algorithms (GA) are pop-
ular tools for implementing heuristic learning policies. In the
context of robot movements, GA is applied for route planning
using the variants of the well-known Vehicle Routing Problem
(VRP) with the help of other heuristic methods. These methods
are called hybrid GAs [5],[6],[12],[16],[17],[20], wherethe
improvement can be achieved by imitating biological evolu-
tion for solutions of VRP [2],[8],[15],[18]. It is important to
emphasize that hybrid GA methods are used for improving the
result starting from an initial - usually not optimal - solution.
Hagen et al. [11] present the implementation of a GA based
path planning on RoboCup’s small-size league robots. Because
path planning on mobile robots is a continuous process, the
path planning runs until the robot arrives at its destination.
Hereby, the path is updated according to the environmental
changes, such as moving obstacles.

Cooperation:Another way of improving the reactivity of
an agent system is to develop the cooperation ability of its
agents. A multi-agent approach was presented in [7], that
uses cooperation among the agents, task decomposition and
task allocation, and decentralized planning. The paper [1]
proposes a solution approach of managing roadway network
congestion over time based on cooperative multi-agent-based
principled negotiation between agents. In our recent study[22]
we proposed a cooperative optimal route planning algorithm
in the accumulator-bank servicing model by using a specially
constructed model that will be extended by a learning method
in this paper.

Learning and cooperation in renewable energy systems:
Advancements in on-demand power management of renewable
energy can also be achieved by multi-agent systems. Many
researchers have used this technology recently. In [23], the
effectiveness of the coordination model was analysed by
investigating the effect of the environmental conditions that
affect the traveling time. Their approach is based on a multi-
agent system for a road transportation network using supply
chain management. Hrncir et al. [13] present the problem of
finding parts of routes, which can be shared by several travelers
with different points of departure and destinations. This is
a complex multi-agent problem, for which a special method

25Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

                            34 / 58



can be developed. They proposed a three-phase algorithm that
utilizes performance of single-agent planners to find individual
plans in a simplified domain first, then merges them using a
best-response planner. This planner ensures that the resulting
solutions are individually rational, and then maps the resulting
plan onto the full temporal planning domain to schedule actual
journeys.

The aim:Based on our cooperative optimal route planning
algorithm [22], we aim at developing a novel approach that
allows autonomous agents to carry out learning in conflict
situations through communication with each others but without
the interaction with any human during the operation. Our
approach uses the learning ability of agents to minimize the
number of communications among agents that is necessary
to the quick service in an accumulator-bank. The learning is
realized by using GA tailored to this special problem.

II. BASIC NOTIONS AND TOOLS

A. The model of the accumulator bank and the basic route
planning algorithm

In our recent study [22] we proposed a cooperative optimal
route planning algorithm in the accumulator-bank servicing
model by using a specially constructed model that guarantees
the avoidance of collisions. This approach is called the basic
route planning algorithm that will be briefly described here.

In order to have a simple model of the accumulator-bank,
we separate the storage place into cells of equal size so thata
transport agent can fit in one cell. These cells are arranged in
a matrix that will be the most important helping tool for the
transport of the agents: moving from cell to cell to get from
one place to another, and this logical unit will also be used to
avoid collision with other agents.

The basic route planning algorithm minimizes the cost that
is the number of covered cells from the start to the destination.
We added certain cost of every90 degrees turns made between
cells, too. (Figure 1 illustrates the cost calculation of a path
with turning.)

Figure 2 shows a possible, simple cell matrix (this is the
map for the accumulator-bank) with the costs in the cells. The
green cell is the starting point, the blue cell is the end point
and the red cells mark obstacles (wall/rack).

Figure 1: Cost calculation

B. Communication in the basic route planning algorithm

In the basic route planning algorithm [22], each agent
navigates not only avoiding collisions with each other but do

Figure 2: Matrix-based representation of a storage place ofa simple example
[22]

this in an optimal way. At the same time we assumed that
the agents receive and send the information directly from/to a
central processing unit. This is not realistic/economicalin prac-
tical situations, but a wireless technology should be considered
instead for communication that allows direct communication
among the agents, too. (We selected the TCP protocol because
this can be applied on WIFI and Bluetooth technologies, so
the adaptation will be easier for future devices.)

The communication system has to deliver to the agents the
data necessary for the route planning:

1) the store layout (the map), that shows, which cells it
can go through and which are prohibited; and

2) the planned route of the other agents (the cell-
reservations), on the basis of which it can determine,
which cell is free, and when or how long it needs
to wait for which other agent. We can send these
information in wireless way to the agents.

C. Synchronization

Because every agent should communicate with the central
unit, it is practical to build up a connection when the agent
connects the system, this connection is reserved continuously
after that. Every agent needs a personal identifier. When an
agent starts its operation, it connects to a predefined server,
from where the agent asks a serial number and a connection
identifier. On the server side a separate thread waits for the
agent on a specific IP-address and port. After connection this
thread manages the communication between the agent and the
central unit.

In this process, synchronization plays an important role. If
two agents join the name-server at the same time, one of the
connection requests is forced to wait until serving the other,
but we assume that this waiting time is negligible compared
to the operation times.

Figure 3 illustrates the exchange of the necessary informa-
tion to build up the connection and to plan the route. The new
agent - placed in the system - is connected to the name-server,
after that it queries its destined connector reach (IP-address
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Figure 3: Building up of the connection and the exchange of information
that is necessary for planning

and port) then it closes this connection. The agent builds up
another connection with its connector then it waits for its task.
The connector gives a task to the agent submitting its goal
(with x and y coordinate pair). After that the agent asks for an
access to the map for reading. Then, the first synchronized
function is executed on the connector side, which induces
the agent to wait until the map is used by another agent.
As soon as the resource gets free, the connector grants the
request and sends the necessary data: the map and the seizing.
Then the agent can plan its route while taking all other agents’
planned movements into consideration. As soon as the agent
has performed planning it sends back the modified seizing. As
a result the connector logs out of the critical section and the
other agents can reach the map again. It is important that the
agent can only reach the map for a given short time period.

There may be a situation in which two agents both read
the seizing and thereafter they both load their calculated results
back but these are in conflict (because neither could plan the
other agent’s route at the retrieving of the seizing). That is
why we apply mutual exclusion, which forces agents to wait,
but each agent has to plan their route only once. Finally, the
agent sends back its route when it reaches the destination, so
it no longer seizes the common resources.

D. Inter-agent communication

Until now, a simple policy of ordering the route planning
of agents has been followed: the agent that gets access earlier
can send back its seizing first, and from that point it cannot be
changed by the later arriving agents. So if the first agent seized

Figure 4: An example of the priority giving

itself a route, the other agents had to respect it. However, this
policy may not be an optimal one. For example, it may happen
that if an earlier planning agent were yielding precedence
to a later arriving agent, than the agents could reach their
destinations quicker. Figure 4 shows an example of such a
situation. The first agent planned earlier (the blue arrow marks
its motion) so this agent can pass through passage first. The
second agent (the green arrow marks it) passes through this
passage too, however it has to wait until the first agent leaves
the passage. We suppose that they start at the same time from
the starting point of the arrow representing them. The second
agent is nearer to the entrance of the passage so the agent waits
more for the first agent than the first agent would wait for the
second agent if they had reserved their route in reverse order.
Negotiating is optimal when the agents can directly exchange
data with each other: passing data through the central server
takes up twice as much time than sending the data directly.

E. Unexpected events

If an agent cannot continue the way for some reason, but
the communication unit is operable, it has to report its break
down to the central unit. The central unit then deletes every
seizing of the broken down agent, thereafter it informs every
agent whose path passes through that cell on which the agent
is broken down and waiting. The affected agents then redesign
their route and bring it again to the central unit.

Of course, a braking down failure can occur in such a way
that causes the complete stop of the agent and it cannot signal
its state. We will not deal with this problem in this paper.

F. Advance planning

An agent can move on one route, but we need to pay
attention to certain situations meanwhile, at the same time.
For example:

1) There may be situations in which it is simply not
enough to avoid another agent because for example
the agent takes up a bottleneck passage and the other
passage is too far. At that time it is more appropriate
to wait for the passing of another agent than to choose
a bypass route.

2) There can be some narrow passages in the storage
for the sake of better utilization of space, therefore
we also need to deal with them. In these passages
there can be one agent at a time, this can cause a
traffic-jam. If two agents approach the passage at its
opposite ends then the route search algorithm can
sense only the character of the problem before the
collisions.

The possible collisions can be detected in advance, not locally.
This requires communication among agents but if every agent
communicates with each other then it is a lot of time that can
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slow down the operation. The learning ability of agents may
help in such situations.

III. A DVANCED ALGORITHM WITH MACHINE LEARNING

The proposed algorithm that uses machine learning im-
plemented as a GA problem is described in this section that
enables the agents to learn in order to minimize the number
of communications.

A. Learning ability of agents

The basic route planning algorithm provided means on
how two agents can yield precedence to each other [22]. With
the cooperative communication ability of the agents available
in the advanced algorithm, they can determine which agent
is worthwhile to contact. If every agent established contact
with every other agent at the planning, it would increase
the planning timen − 1 fold in case of n agents. The
learning ability of the agents is used to minimize the need
for communication, i.e., to limit the number of negotiations
among agents. For this it is necessary to determine, which
agents have a potential conflict against which other ones that
should be contacted.

For this purpose we store the followingdata about a
collision:

• coordinate: where the collision occurred

• agentID: identifier of the collided agent

• distancecovered: the time of the traveled route to
collision (an expected value)

• waiting: how much the agent waited in the cell when
the collision occurred

• shut down: it is true, if the thread was shut down
because of the collision; it is false, if we have to wait
longer to avoid collision

• on route: Is the coordinate on one of the optimal
route? (true/false)

• manh distance: manhattan distance from the target

• estimation: a specific value of the collision, which is
calculated by weighting parameters (equation (1))

These variables representing the collision are stored in a data
structure. The route planner builds up a list for these in the
course of running.

B. The GA problem

Using these data, we use one of the methods of machine
learning, this is the GA to determine from the list of collisions
which agents should be contacted. For this we need to prior-
itize the collisions. This is stored in theestimationfield, and
calculated as:

estimation = distance covered ∗ A + waiting ∗ B +

+shut down ∗ C + on route ∗ D +

+manh distance ∗ E (1)

The numbersA, B, C, D, E are the so-called weights to which
we give initial values, and their future values are determined

by the GA. With their help we are able to estimate, which
agents are willing to give us priority with high possibilityin
case of a collision.

The list of collisions contains data about all collision of
an agent. An element of this list consists of two numbers: the
serial number of the agent that is collided and theestimation
field of that agent. From this list, we selectN agents with
the highest ”estimation” values (this is called theagent list)
and we give back the list of these to the agent to which the
list belongs to. The value ofN is typically about5: smaller
value may cause that we do not succeed, i.e., we don’t get
priority from any agent, in case of bigger value we may spend
too much time on communication. The order of the agent list
has the most important role: if we get priority from an agent
of the list, it has effect on the complete route search. In this
case the total collision list voids and it is not worth to begin
discussions with other agents.

GA aims at minimizing the number of communications
among cooperating agentsand yet to achieve the best possible
result, i.e., to determine optimal routes for the agents. This is
served by the estimation of the collisions, the amendment was
done by the weights (A − E). A GA will be responsible for
the determination of these weights. Following a route plan the
corresponding values are calculated and are added to the agent
to store, and these values are used to calculate the estimation
of the collisions during the next route planning.

In two cases, the GA can be left out:

1) if we got priority from the agent that is the first in
the agent list, or

2) if we didn’t get priority by any of the agents meaning
that the order is irrelevant.

C. GA parameters

We carried out several tests of the algorithm that we can
determine the main parameters of GA, which affect to the
results. We performed tests with different map size and differ-
ent numbers of agents in our program simulation environment.
Some important parameters of the used GA are

• maximum number of populations:100. This is neces-
sary to ensure that we find the optimal solution.

• mutation rate:0.07

• size of population:20 entities

• selection: roulette wheel selection

• recombination: we used one point crossover for gen-
erating the first third of the population, two points
crossover for the second third of the population and
uniform crossover for the third third of the population

• coding: binary,5 bits per weight. So the values of the
weights are placed in the[−15, 16] interval.

D. Fitness function

The fitness calculation is based on noting, which was the
first element of the agent list that has succeededin the previous
route planning. Based on this, the elements of the agent list
are classified as:
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Figure 5: A possible instance of the original and optimal sequence

• priority was requested but we didn’t receive (T1 in-
stance)

• priority was requested and we received (T2 instance)

• priority wasn’t requested because we already got it at
a former element of the list (T3 instance)

The goal of the GA is that theestimationfield value of theT2

instance becomes the highest, so next time the algorithm uses
it earlier, this way we can save time.

Therefore, the fitness function is determined based on
how much the agent list counted again by the new weights
(A, . . . , E), which were stored by some individuals of the
GA, approximating the optimal sequence. Optimal sequence
is considered to be the one where theT2 instance is in the
first place, under it theT3 instances (about these we do not
know if the outcome had been right or wrong), and at the
bottom are theT1 instances (because these are proven wrong),
as Figure 5 shows.

To be able to calculate the fitness of the new agent list
- given by the GA - the agents of the existing agent list and
their types (T1−T3) should be noted. We retrieve the agents of
the new list from this list, after that we execute the following
algorithm (where type is type of the given agent, serial number
is its position in the list).

result := 0
if type = T1 then

result := result + serial number ∗ 2
end if
if type = T2 then

result := result + (5 − serial number) ∗ 5
end if
if type = T3 then

result := result + (5 − serial number) ∗ 1
end if
return result

Thus, better results are obtained when

• disadvantageous cases (T1 type) are placed higher in
the list,

• advantageous cases (T2 type) are placed at the top of
the list,

• neutral cases (T3 type), preferably should be in the
lower positions of the list. (Fig. 5)

The multipliers of positions (2, 5, 1) give the weights of
importance.

Figure 6: Screen shot part from the simulation environment

TABLE I: T HE EFFECT OF THE AGENT NUMBER ON THE RUNNING TIME

(BASIC ALGORITHM)

Number of agents Time of route Time of planning/

planning (ms) agent(ms)

5 14,4 3,08

10 28 2,8

15 46,8 3,12

20 62,6 3,13

IV. CASE STUDIES

Simple case studies were used to test the efficiency of the
proposed learning by GA. It is important to emphasize that
the proposed learning by GA method is used forimproving
the result (usually not an optimal solution).

The simulation environment has been developed in Delphi
programming language (see Fig. 6 for a screen shot part), by
which we could test the agents’ movements, and we could
compare the operation with and without learning by GA.

A. Efficiency test

In order to test and compare the route planning algorithm
we recorded the full running time of the algorithms and exam-
ined how this value changed with the increasing complexity
of the planning problem.

1) Effect of the number of agents using the basic route
planning algorithm:In case of the first test the agents
were arranged randomly in a25x25 cell map-file.
Five program runs were performed with each agent
number value, and the running times were averaged.
Table I shows the simulation results without learning,
i.e., by using the basic algorithm [22].

2) Effect of the number of agents using the advanced
algorithm with GA: In order to test the effect of
learning, the agents were arranged randomly in a
25x25 cell map-file, too. Five program runs were
performed with each agent number value, and the
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TABLE II: T HE EFFECT OF THE AGENT NUMBER ON THE RUNNING TIME

(LEARNING BY GA)

Number of agents Time of route Time of planning/

planning (ms) agent(ms)

5 13,9 2,78

10 26,6 2,66

15 44,25 2,95

20 59,6 2,98

running times were averaged. Table II shows the
simulation results.

It can be seen from the results that the system integrates
the new agents well, the agent per-planning time is below3
ms independently of the number of agents. This important
result shows that the GA scales up well with the size and
complexity of the problem, thus offering an efficient service
of the accumulator-bank.

V. CONCLUSION AND FUTURE WORK

A novel GA-based learning method is proposed in this
paper for optimal cooperative route planning of autonomous
agents moving in an accumulator-bank. The agents calculate
their best possible route in a distributed way giving precedence
to other agents to avoid conflict situations, and communicate
with each other and the central unit. The agents are equipped
with a learning ability in order to minimize the number of
communications with the other agents. The adaptive behaviour
lets the agents minimize the time to find the optimal routes
during the search.

The effect of learning on the performance of the system has
been investigated using simple case studies, and substantial
improvement has been observed. At the same time, it was
observed that the GA used for the learning scales up well
with the size and complexity of the problem.

In the future, we will test our method in different situations
and we plan to build a simulation environment, in which the
agent-robots’ motion as well as the unexpected events can be
tested.
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Abstract -- Workloads running in a multi-purpose database 

environment often compete for system resources causing 

resource contention, which leads to poor performance.  

Autonomic database systems will be required to recognize that 

the system resources are not being utilized optimally and take 

action to correct the situation.  Workload management 

techniques can be used to choose an appropriate mix of 

concurrent work to reduce resource contention.   We describe 

a resource aware scheduling approach that predicts the 

amount of CPU, I/O and sort heap memory that will be 

required by a query and schedules each query to run only 

when doing so is unlikely to overwhelm the resources.  We 

present experimental evidence that indicates that overall 

system performance can be improved using this technique. 

Keywords- workload management; database management 

systems; autonomic computing; scheduling 

I.  INTRODUCTION 

Database management systems (DBMSs) are an integral 
part of virtually every computing system and with modern 
day demands on such systems to handle diverse data types, 
mixed workloads, and ever-changing demand, it is more 
important than ever to ensure that these complex systems are 
self-managing and self-optimizing.  It is no longer feasible to 
manually reconfigure a system to handle a new workload 
type or a change in workload intensity. The system itself 
must recognize changing conditions and adapt accordingly.   
Maintaining a balance of work in the system is crucial to 
ensure that all the demands and goals are met. 

 The characteristics of a database workload determine 
how the resources are used.  Online Analytical Processing 
(OLAP) workloads, for instance, may access a large quantity 
of data, perform complex calculations and sort large 
quantities of data thus taxing the CPU, the I/O subsystem 
and the sort memory.  Transactional workloads, on the other 
hand, may simply scan a table for a particular result and use 
very little CPU or sort memory.   Two or more workloads 
with similar characteristics running concurrently on the 
DBMS can result in workload interference, often due to 
resource contention.  

Workload interference may lead to performance 
degradation in the DBMS system. Consider a workload that 
is currently executing 300 transactions per second and is 
using 98% of the CPU.  If another workload begins 

executing on the system that is also CPU-heavy, the CPU 
will become overloaded.  The work will continue to be 
processed, but at a slower speed as the CPU must be shared.  
The performance of the initial workload will degrade, 
perhaps violating goals that have been defined for this 
workload.   If the competing workload was sort intensive and 
CPU-light, the two workloads may have executed in 
harmony without detrimental effects to the initial workload. 

Workload control is the process whereby the DBMS 
exerts control over which work is allowed to run in the 
system.  This may be done by admission control (deciding 
whether or not a query will be admitted to the system based 
on some criteria), scheduling (deciding the order that the 
admitted queued queries will be allowed to run) or execution 
control (termination, suspension, or throttling of currently 
executing queries) [9]. An autonomic database system 
incorporates workload control to ensure that the system runs 
in an optimal state where resources are used effectively and 
efficiently while allowing all work to meet its service level 
objectives.   

Over the past several years, we have developed a number 
of workload management techniques [5] [6] [7] [8] and 
defined a framework that combines the various techniques 
into a unified system for autonomic workload management 
[10].  The work described in this paper is a subset of our 
framework and involves a scheduling approach to workload 
management.  In previous work [4], we proposed a method 
of scheduling queries based on estimates of the amount of 
sort heap memory required by each query.  The present work 
extends this work to add additional resources, namely CPU 
and I/O, and bases the scheduling decisions on the predicted 
usage of all three resources. The goal of our work is to 
schedule database queries such that the order of execution 
ensures that system resources are utilized as fully as possible 
while not overloading any one resource.  

The remainder of the paper is structured as follows.  
Section II outlines related work.  Section III describes the 
architecture for our prototype scheduling system and outlines 
the approach.  Section IV presents experimental validation of 
the work.  In Section V, we present the conclusions and 
future directions. 

II. RELATED WORK 

The current work focuses on scheduling as a form of 
workload control for database systems.   Many algorithms 
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such as first-come-first-served, shortest job first and priority 
scheduling are used in operating system job scheduling [16]. 
We make use of the first fit algorithm in our scheduling of 
database queries in the current research.  

  Modeling approaches to predict performance metrics for 
database queries are gaining in popularity [15].  These 
performance metrics are necessary for making scheduling 
decisions.  Ahmad et al [14] take this one step further to 
model the interactions between queries and, using these 
models, select a mix queries to run concurrently that 
minimizes contention in the system.   This work takes 
advantages of the unique characteristics of report generation 
workloads and enforces a fixed multi-programming level 
(MPL).  In contrast, our approach allows the MPL to vary 
during workload execution and allows for a general 
workload mix. 

Like the work of Ahmad et al, scheduling approaches to 
control DBMS workloads often control the multi-
programming levels; that is, workload control is achieved by 
controlling the number of queries running concurrently in the 
system.  The work by Schroeder et al. [12] uses queuing 
theoretic models and a feedback control loop to predict the 
relationship between throughput, response time and multi-
programming levels to optimize the MPL. Although 
Schroeder et al. evaluate this approach using query priorities 
in which high priority queries should be chosen to run first, it 
is also relevant in terms of scheduling for resource control. If 
the queue is larger, then a query with resource requirements 
suitable to the currently available resources is more likely to 
be found. Mehta et al. [13] focus on scheduling business 
intelligence (BI) batch workloads and attempt to optimize 
overall response time for the workload.   Queries are 
admitted based on their priority and memory requirements. 

Our approach uses models based on information from the 
optimizer to predict the CPU, I/O and Sort Heap memory 
required by individual queries.  These resources are 
considered “high impact” resources in a DBMS.  We use 
these predicted measures along with scheduling algorithms 
to choose which queries will be allowed to run concurrently 
in the system so as to make efficient use of the system 
resources and avoid resource overload.  Our work is 
distinctive in that we are considering multiple resources in 
scheduling decisions. 

III. ARCHITECTURE AND APPROACH 

Our system can be considered a “load control system”, 
that is, one which controls the current workload executing on 
the DBMS.  The architecture of the load control system is 
shown in Figure 1.  Clients submit queries to the DBMS 
which are intercepted by the scheduler which consults the 
DBMS to collect pertinent information regarding potential 
resource usage.  Using this information, a prediction is made 
by the Resource Requirements Estimator for CPU and I/O 
usage and the memory requirements for the sort heap.   The 
query is then queued for admission.  The Requirements 
Model contains the policies that rule how the scheduling 
decisions are made.  The Scheduler constantly checks the 
queue and, if a query can be admitted into the system based 
on its requirements and the current state of the system, then 

the query is allowed to proceed.  We outline the various 
components in more detail in the following sections. 

 
  

 
 

Figure 1.  Prototype Architecture 

 

A. Requirements Estimator 

The requirements estimator predicts the amount of CPU, 
I/O and sort memory that will be used by a query.   The 
system uses these estimates along with an estimate of the 
current resource usage to determine whether or not the query 
can be admitted to the system at a specific point in time. 

Estimates are derived from statistics provided by the 
DB2 Explain tool [1] which generates an access plan for a 
given query complete with statistics pertaining to the cost of 
execution of the plan.  Relevant statistics for our work 
include the cumulative CPU cost (measured in the number of 
instructions required to execute the query), the cumulative 
I/O cost (the total number of seeks and page transfers 
executed by the query), the total cost (a weighted sum of I/O 
and CPU costs for the query expressed in a measurement that 
IBM calls “timerons”) and sort-related costs such as the 
number of rows to be sorted and the approximate length of 
each row.  Details of how the estimates for each resource are 
derived are described below.  

 

CPU 
The CPU is at maximum capacity when it is nearing 

100% utilization.  DB2 Explain provides an estimate of the 
cumulative CPU cost (in number of instructions) of 
executing a particular query plan. The cumulative estimate is 
the total amount of CPU that will be used during query 
execution.  For our estimates, it is more useful to know the 
average amount of CPU that will be used over the lifetime of 
the query.  To estimate the average CPU cost during the 
query execution, we divide the cumulative CPU cost by the 
overall cost of the query provided by DB2 Explain.  To 
estimate the average CPU cost for each individual query, we 
ran each of our experimental queries (of which there were 
17) alone (without competing workload) 100 times while 
noting both the estimated and the actual CPU cost (average 
percentage CPU used during query execution).   We have 
found that there is a relatively high correlation (r =0.7, n = 
1700, p=0.05) between the estimated value and the actual 
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measured average CPU.   We used linear regression to find a 
formula to predict the percent utilization of CPU for a query 
given the estimates from DB2 Explain tool.   The equation 
used was: 

 
%CPU = (0.0001 * cumulative_cpu/overall_cost) + 8.39   (1) 
 

I/O 

To determine when the I/O subsystem was nearing 
capacity, we measured the maximum throughput for our I/O 
channel using a large database table scan with a small buffer 
pool.  The maximum observed throughput was 
approximately 190MB/s. A reasonable (r = 0.65, n=1700,  p 
= 0.05) correlation exists between the cumulative number of 
I/Os predicted by the DB2 Explain facility and the average 
measured throughput of each query run alone.  To calculate 
this correlation, each of the 17 queries was run alone 
(without competing workload) 100 times while measuring 
the average measured throughput.  Linear regression was 
used to derive a formula to estimate the average throughput 
for a query as follows: 

 
Throughput(MB/s) = (0.00004 * cumulative_io) + 19.2     (2) 
 

Sort Heap 

The amount of sort heap memory allocated in a DBMS is 
important to performance because extending the sort heap 
leads to spills to disk requiring additional I/O and increased 
response times.   

The estimation of the sort heap required by a query, like 
for CPU and I/O estimation, uses the information contained 
in the query execution plan. The plan consists of nodes in a 
tree structure with each non-leaf node representing an 
operator.  Two DB2 operators require sort heap space; sort 
and hash join.  The amount of sort heap required by each of 
these operators is determined by the query execution plan 
which provides the number of rows to be sorted as well as 
the approximate width of each row in bytes. We 
experimentally determined that there is approximately 75 
bytes per row of overhead.  Therefore, the estimate for a 
single sort operator is  

 
RequiredSortMemory = #Rows * (RowWidth + 75)          (3) 

 
The DB2 sortheap parameter limits the amount of sort 

heap space that can be assigned to a single sort or hash join.  
Therefore, the minimum of the value of the sortheap 
parameter or RequiredSortMemory is used as the estimate 
for the sort requirements.   

Given that not all nodes in a plan are active at the same 
time, we cannot simply sum the sort requirements for all the 
nodes in a query [4].  We determine which nodes can be 
active at the same time by the types of nodes (blocking, not 
blocking) and the relationships between them (ancestor, 
descendant). The sort heap estimation process for a complete 
query plan can be separated into two steps: calculating sort 
heap sets and using the sort heap sets to calculate sort heap 

requirements. Both sorts and hash joins are blocking 
operations. Hence, any node that requires sort heap is a 
blocking node. This means that when node N becomes 
active, the sort heap demand is constant for a period of time, 
until N starts to produce output. Specifically, the amount of 
sort heap required while N is blocking is the amount that N 
requires plus that which its active descendants require. This 
total amount of sort heap is referred to as the sort heap set of 
N. Conceptually, a sort heap set for node N is calculated by 
starting at N and traversing towards the leaves of the query 
execution tree, summing the sort heap requirements of the 
traversed nodes, until blocking nodes are encountered. 

The amount of sort heap required varies throughout its 
execution.  In other work, we evaluate different estimations 
including the average usage, the dominant usage and the 
maximum usage [2]. In the current work, we use the average 
estimate, that is, the average amount of sort heap that a query 
will use during its execution time.    

B. Requirements Model 

The Requirements Model represents the current resource 
status of the system, that is, how much of a particular 
resource is available in total as well as the amount that is in 
use by currently running work.    A model is used for each of 
the CPU, the I/O subsystem and the sort memory.    

For the CPU, we assume that the maximum amount of 
CPU utilization is 100 percent. Our goal is to keep the 
resource busy, but not overload it.  Our model states that a 
query “fits” in terms of CPU if the CPU estimate of the 
current query plus the total sum of the CPU estimates for all 
currently executing queries is less than or equal to 90 percent 
and the actual measured CPU usage is less than 100 percent. 

The I/O model is based on our measured maximum 
throughput which was 190MB/s.  To avoid overloading the 
I/O system, we use 185MB/s as our maximum desired 
throughput.    

Our resource estimator provides us with the worst case 
I/O estimate; that is, all data that is requested will need to be 
read from disk. In a DBMS, however, recently requested 
data will often be found in the bufferpool, a main memory 
cache managed by the DBMS.  The data in the bufferpool 
may be reused by other queries requesting the same data, 
thus reducing the amount of necessary I/O.   To account for 
data sharing, we measure and incorporate the buffer pool hit 
rate (expressed as a value between 0 and 100), which is the 
measure of how often a page access is satisfied without a 
physical I/O.   A hit rate of 50 (percent) means that a 
requested page is found in the buffer pool 50% of the time.   
We then calculate the maximum throughput that will be 
allowed into the system as: 

 
Total_Throughput = 185 + current_hit_rate * 185/100       (4) 

 
The theory is that if the buffer pool hit rate is high, we can 
allow more work into the system without overloading the 
disk.  If it is low, it means that more physical I/O is 
occurring, therefore, less work should be allowed into the 
system.    
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Our Requirements Model admits a query based on I/O if 
its estimated I/O plus the sum of the I/O usage of currently 
running queries is less than Total_Throughput (as calculated 
above).   

A query is admitted into the system in terms of sort heap 
requirements if the sort heap requirements estimate for the 
current query plus the sum of the sort heap requirement 
estimates for currently running queries does not exceed the 
value specified by the DB2 parameter, sheapthres_shr, 
which limits the total amount of sort heap used by all 
running queries. 

C. Scheduler 

The scheduler makes decisions as to which query to run 
next based on the rules defined by the Requirements Model.  
We have considered several different scheduling algorithms 
in previous work [4].  In the current work, we use the First 
Fit Scheduling algorithm.  Queries are queued in the order in 
which they arrive for execution.   The scheduler traverses the 
queue (from earliest arrival to most recent arrival) and 
considers the requirements of each query.  In order to fit into 
the system, all conditions must be met for each of the three 
resources.  That is, the query must fit in terms of predicted 
CP, I/O and sort heap usage in order to be admitted to the 
system.  The first query found that meets all the requirements 
is admitted to the system for execution. 
 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Environment 

Our database workload consisted of 17 OLAP queries 
based on the TPC-H benchmark [3].  The ordering of the 
queries was randomly assigned (on a per client basis) prior to 
the run, but was kept constant throughout all subsequent 
runs.  Our OLAP workload was sort-intensive and the 
queries varied in their use of CPU and I/O.   

In order to ensure that the CPU and the I/O subsystems 
were heavily utilized at some points, we simulated a CPU-
intensive workload by running a simple program that 
consumed approximately 30 percent of the CPU when run 
alone. We simulated an I/O intensive workload by 
performing multiple repeat scans on a table not used by our 
OLAP workload.  We used a very small (and separate) 
bufferpool for the I/O intensive workload to ensure that the 
I/O subsystem was being used extensively. 

Twelve clients each sent the 17 OLAP queries to the 
system for processing.   The workload was varied every two 
minutes in the following pattern: 

 
1. OLAP workload alone 
2. CPU intensive workload + OLAP workload 
3. I/O intensive workload + OLAP workload 
4. CPU intensive workload + I/O intensive 

workload + OLAP workload 
 
Each run was repeated 8 times and average values 

reported.  Between each run, the database system was 
restarted to clear all monitor elements and a sample 

workload was run to warm up the bufferpool and to bring the 
database system to a steady state. 

DB2 V9.7 was used to house the 3GB database for the 
OLAP workload.  The bufferpool was configured to 1GB.   
The parameters sortheap (the maximum sort heap allocated 
to any single query) and sheapthres_shr (the limit on the total 
amount of sort heap used by all running queries) were set to 
500 and 2500 4K pages respectively.  The DBMS was run on 
a dedicated Windows 8 Server machine configured with 8 
GB of RAM and a quad core CPU. The clients and the 
scheduling system were run on a remote machine.  

We compared our proposed scheduling approach to a) a 
system running with no control where queries were run on a 
first come, first serve basis and, b) to a system where we 
fixed the maximum multi-programming level (MPL) to four, 
that is, the maximum number of queries that were allowed to 
run concurrently was four.  This number was determined 
experimentally to be an optimal setting for steady 
performance in our configuration [2]. We expected that the 
scheduling approach would yield better performance than the 
system running with no control and that it would perform at 
least as well as when the optimal multiprogramming level 
was used.  We compare our approach with a limited MPL as 
setting the MPL is a common approach to reducing the 
amount of resource contention in a database system.  

B. Results 

The results are summarized in Tables 1, 2 and 3.  Table 1 
shows general metrics including the total run time for the 
204 queries (12 clients each running 17 queries) in minutes 
(including wait time), the average wait time per query 
(minutes), the maximum wait time (minutes), the average 
execution time (minutes) and the maximum multi-
programming level (MPL).   Table 2 shows CPU Usage and 
I/O metrics such as the average disk queue length, the 
maximum disk queue length, the average throughput in MBs 
per second, and the buffer pool hit rate (percentage).  Table 3 
presents the sort metrics including the number of post 
threshold sort operations, the sort overflows, and the number 
of hash join overflows and small hash join overflows.    Sort 
and hash join overflow operations are an indication of sort 
heap contention.  Overflows occur when not enough memory 
can be granted to perform a sort in memory.  In this case, 
temporary results are often written to (and re-read from) disk 
resulting in increased I/O.   
 

TABLE I.  GENERAL METRICS 

 
Total 

RunTime 

(mins) 

Average 

Wait 

Time 

(mins) 

Max 

Wait 

Time 

(mins) 

Average 

Execution 

Time 

(mins) 

Max 

MPL 

No 

Control 

135 0.07 1.1 
7.1 12 

MPL 4 133 4.7 12.9 7.8 4 

First Fit 

Schedule 
127 4.9 15.7 

6.8 8 
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TABLE II.  I/O AND CPU METRICS 

 
 

Average 

Disk 

Queue 

Length 

Max  

Disk 

Queue 

Length 

Buffer 

Pool  

Hit  

Rate  

(%) 

Average 

Through- 

put (MB) 

Average  

CPU 

Usage 

(%) 

No 
Control 

10.4 43 83 86 94 

MPL 4 9.8 42 84 78 94 

First Fit 

Schedule 
5.2 30 86 79 91 

 

TABLE III.  SORT METRICS 

 Post 

Threshold 

Sort 

Operations 

Sort 

Overflows 

Hash 

Join 

Overflows 

Small 

Hash Join 

Overflows 

No 

Control 

81 116 62 
24 

MPL 4 77 112 58 21 

First Fit 

Schedule 
21 22 20 

7 

 
The results show that the overall execution time was 

reduced by approximately 6% using the scheduling approach 
over the baseline (no control) or MPL 4 approaches. 
Although the average wait time per query was higher for the 
scheduling approach, the average execution time per query 
was lower, indicating a more efficient use of resources.  The 
load on the I/O subsystem was reduced as indicated by a 
reduction in the average (and maximum) disk queue length 
and a lower average throughput.  The average CPU usage 
decreased slightly.    Sort operations were improved with 
significantly fewer post threshold sort operations, sort 
overflows, hash join overflows and small hash join 
overflows performed in the scheduling approach than either 
the baseline or the MPL 4 cases.  

 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

We have presented and validated a scheduling approach 
to DBMS workload control that we plan to incorporate into 
our framework for autonomic DBMS workload control.  The 
described approach schedules queries based on their 
predicted resource usage.  Based on our experimentation, the 
approach yields reasonable results and appears to be 
promising approach for adapting to workload changes. 

The current work will be integrated as the scheduling 
component of a proposed framework for DBMS workload 
management [10].   This framework provides coordinated 
control of different workload management techniques such 
as admission control, execution control, and scheduling.  
Each component is controlled by a feedback controller which 
monitors system performance and adjusts the amount of 
control exerted by the mechanism accordingly.   For 
example, the execution control component consists of a 

controller that a) determines the type of execution control to 
use (throttling or query canceling) and b) sets the degree of 
control (for example, in the case of throttling, the controller 
would set the amount of throttling based on feedback 
regarding the system performance).   The controller for the 
scheduler will measure actual system resource usage and will 
feed this information back to the system to update the 
requirements estimators, and to set the threshold policies in 
the requirements models accordingly. Building the 
autonomic controller for the scheduler and integrating it into 
our overall workload control framework will be the next step 
in our work. 

 We have presented the results of only the “first fit” 
scheduling algorithm in this paper.  Experiments have been 
conducted with the smallest job first and the blocking query 
scheduling algorithms that were used in our previous work 
[4].   Results using these algorithms are similar to those 
reported here with the main difference being that the average 
and maximum wait times are vastly increased for longer 
queries using a smallest job first algorithm.   

Currently a query is only allowed to run if it fits in terms 
of CPU, I/O and sort memory.  There are many other 
variations of this approach which may prove to be useful.  
The most promising approach currently under investigation 
is scheduling by “critical resource”.    That is, the resources 
are monitored and if the usage of one or more resources 
enters a pre-determined “critical state”, the scheduling 
algorithm considers only the critical resource(s) when 
making scheduling decisions.   We plan to base this work on 
work done by Zeldes and Feitelson [11], who present an 
algorithm for system resource management that focuses on 
bottleneck resources and allocates them to the most 
deserving clients.   

REFERENCES 

 
[1] IBM DB2 Universal Database. DB2 V9.5 Information Center. 

Available: 
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5 
[retrieved: Feb 2014]. 

[2] N. Gruska, Resource-aware Query Scheduling in Database 
Management Systems. MSC thesis, Queen’s University, 
Kingston, Ontario, July 2011. 

[3] Transaction Processing Performance Council, TPC-H 
Benchmark Specification. Available: http://www.tpc.org/tpch/ 
[retrieved:  Feb 2014]. 

[4] N. Gruska, W. Powley, P. Martin, P. Bird, and K. McDonald, 
“Sort-Aware Query Scheduling in Database Management 
Systems,” Proc of 2012 Conference of the Centre for 
Advanced Studies on Collaborative Research (CASCON 
2012), November 2012, pp. 2-10. 

[5] P. Martin et al., “The Use of Economic Models to Capture 
Importance Policy for Autonomic Database Management 
Systems,”  Proc. of the 8th Intl. Conf. on Autonomic 
Computing (ICAC’11) workshops (Autonomic Computing in 
Economics), June, 2011, pp. 3-10,  doi: 
10.1145/1998561.1998564 

[6] M. Zhang et al.,   “Utility Function-based Workload 
Management for DBMSs,” Proc of the 7th International 
Conference on Autonomic and Autonomous Systems (ICAS 
2011), May, 2011, pp. 116-121. 

35Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

                            44 / 58



[7] W. Powley, P. Martin, M. Zhang, P. Bird, and K. 
McDonald,  Autonomic Workload Execution Control Using 
Throttling,” Proc of the 4th International Workshop on Self-
Managing Database Systems (SMDB 2010) in Conjunction 
with the 26th International Conference on Data Engineering 
(ICDE 2010), March, 2010, pp. 75-80. 

[8] B. Niu, P. Martin, and W. Powley, “Towards Autonomic 
Workload Management in DBMSs, “ Journal of Database 
Management, 20(3), July - Sept 2009, pp.  1-17. 

[9] S. Krompass et al., “Managing Long-Running Queries” In 
Proc.of EDBT’09, March 2009, pp. 132-143,   doi: 
10.1145/1516360.1516377. 

[10] M. Zhang, P. Martin, W. Powley, P. Bird, and D. Kalmuk, “A 
Framework for Autonomic Workload Management in 
DBMSs,” Information Technology (special issue on 
Engineering Adaptive Information Systems), in press. 

[11] Y. Zeldes, and D. Feitelson, “On-line Fair Allocations Based 
on Bottlenecks and Global Priorities,”  Proc of the 4th 
ACM/SPEC International Conference on Performance 
Engineering (ICPE ’13), April 2013,  pp. 229-240, doi: 
10.1145/2479871.2479904. 

[12] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and 
A. Wierman.  “How to Determine a Good Multi-
Programming Level for External Scheduling,” Proc of the 
22nd International Conference on Data Engineering, April 
2006, pp. 60-66,  doi: 10.1109/ICDE.2006.78 

[13] A. Mehta, C. Gupta, and U. Dayal, “BI Batch Manager: A 
System for Managing Batch Workloads on Enterprise Data-
warehouses,”   Proc of the 11th International Conference on 
Extending Database Technology, March 2008, pp. 640-651, 
doi: 10.1145/1353343.1353420 

[14] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala,  
“Interaction-aware Scheduling of Report-Generation 
Workloads,”  The VLDB Journal, 20:589-615, 2011, pp 589-
615. 

[15] A. Ganapathi, et al,  “Predicting Multiple Metrics for Queries: 
Better Decisions Enabled by Machine Learning,”  Proc 
International Conference on Data Engineering (ICDE), March 
2009, pp. 592-603, doi: 10.1109/ICDE.2009.130. 

[16] A. Silberschatz, P.B. Galvin, G. Gagne,  Operating System 
Concepts, Wiley, 9th Edition, 2012. 

 

 

36Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

                            45 / 58



Policy for Distributed Self-Organizing Infrastructure Management in Cloud
Datacenters

Daniela Loreti, Anna Ciampolini
Department of Computer Science and Engineering, Universitá di Bologna
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Abstract—Modern data centers for cloud computing are
facing the challenge of an ever growing complexity due to the
increasing number of users and their augmenting resource
requests. A lot of efforts are now concentrated on providing
the cloud infrastructure with autonomic behavior, so that it can
take decisions about virtual machine (VM) management across
the datacenter’s nodes without human intervention. While the
major part of these solutions is intrinsically centralized and
suffers of scalability and reliability problems, we investigate
the possibility to provide the cloud with a decentralized
self-organizing behavior. We present a new migration policy
suitable for a distributed environment, where hosts can exchange
status information with each other according to a predefined
protocol. The goal of the policy is twofold: energy saving and
load balancing. We tested the policy performance by means
of an ad hoc built simulator. As we expected, our distributed
implementation cannot perform as good as a centralized
management, but it can contribute to augment the degree of
scalability of a cloud infrastructure.

Keywords-Distributed Infrastructure Management; Cloud
Computing; Self-Organization; Autonomic Computing

I. INTRODUCTION

The Cloud Computing paradigm experienced a significant
diffusion during last few years thanks to its capability of
relieving companies of the burden of managing their IT
infrastructures. At the same time, the demand for scalable
yet efficient and energy-saving cloud architectures makes the
Green Computing area stronger, driven by the pressing need
for greater computational power and for restraining economi-
cal and environmental expenditures.

The challenge of efficiently managing a collection of
physical servers avoiding bottlenecks and power waste, is
not completely solved by Cloud Computing paradigm, but
only partially moved from customers’s IT infrastructure to
provider’s big data centers. Since cloud resources are often
managed and offered to customers through a collection of
virtual machines (VMs), a lot of efforts concerning the Cloud
Computing paradigm are concentrating on finding the best
virtual machine (VM) allocation to obtain efficiency without
compromising performances.

Since an idle server is demonstrated to consume around
70% of its peak power [1], packing the VMss into the lowest
possible number of servers and switching off the idle ones,
can lead to a higher rate of power efficiency, but can also
cause performance degradation in customers’s experience and
Service Level Agreements (SLAs) violations.

On the other hand, allocating VMs in a way that the total
cloud load is balanced across different nodes will result in a

higher service reliability and less SLAs violations, but forces
the cloud provider to maintain all the physical machines
switched on and, consequently, causes unbearable power con-
sumption and excessive costs.

In addition, we must take into account that such a system is
continuously evolving: demand of application services, com-
putational load and storage may quickly increase or decrease
during execution. Due to these contrasting targets, the VM
management in a Cloud Computing datacenter is intrinsically
very complex and can be hardly solved by a human system
administrator. For this reason, it is desirable to provide the
infrastructure with the ability to operate and react to dynamic
changes without human intervention.

The major part of the efforts in this field relays on cen-
tralized solutions, in which a particular server in the cloud
infrastructure is in charge of collecting information on the
whole set of physical hosts, taking decisions about VMs
allocation or migration, and operating to apply these changes
on the infrastructure [2], [3]. The advantages of these central-
ized solutions are well known: a single node with complete
knowledge of the infrastructure can take better decisions and
apply them through a restricted number of migrations and
communications. However, scalability and reliability problems
of centralized solutions are known as well. Furthermore, as
the number of physical servers and VMs grows, solving
the allocation problem and finding the optimal solution can
be time expensive, so some other approximation algorithm
is typically used to reach a sub-optimal solution in a fair
computation time [4].

In this work, we investigate the possibility of bringing
allocation and migration decisions to a decentralized level
allowing the cloud’s physical nodes to exchange information
about their current VM allocation and self-organize to reach
a common reallocation plan. To this purpose, we designed a
novel distributed policy, Mobile Worst Fit (MWF), able to
both save power (by switching off the underloaded hosts)
and keep the load balanced across the remaining nodes as
to prevent SLA violations. The policy adopts a decentralized
approach: we imagine the datacenter as partitioned into a
collection of overlapping neighborhoods, in each of which the
local reallocation strategy is applied. Taking advantage from
the overlapping, the VM redistribution plan propagates from
a local to a global perspective. We analyze the effects of this
approach by comparing it with the centralized application of
a best fit policy. In particular, we relay on the definition of the
Distributed Autonomic Migration (DAM) protocol [5], used
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by cloud’s physical hosts to communicate and get a common
decision as regards the reallocation of VMs, according to a
predefined global goal (e.g., power-saving, load balancing,
etc.).

We tested our approach by means of DAM-Sim, a software
to simulate the behavior of different policies applied in a
traditional centralized way or through DAM protocol on a
decentralized infrastructure.

The article is organized as follows: in Section II, we show
the architectural structure of our system, giving an overview of
the DAM protocol and focusing on the adopted MWF policy;
in Section III, we show the experimental results obtained by
means of the DAM-Sim simulator; Section IV shows the state-
of-the-art of Cloud Computing infrastructure management and
Section V illustrates our conclusions and future works.

II. ARCHITECTURAL FRAMEWORK

We present a distributed solution for Cloud Computing
infrastructure management, with a special focus on VM mi-
gration.

As shown in Fig. 1, the framework is composed of three
main layers:

• the infrastructure layer, specifying a software representa-
tion of the cloud’s entities (e.g., hosts, VMs, etc);

• the coordination layer, implementing the DAM protocol,
which defines how physical hosts can exchange their
status and coordinate their work;

• the policy layer, containing the rules that every node must
follow to decide where to possibly move VMs.

The separation between coordination and policy layer allow
us to use the same interaction model with different policies.
We describe each layer in the following sections.

A. Infrastructure Layer

The infrastructure layer defines which information must
be collected about each host’s status. To this purpose two
basic structures are maintained: the HostDescriptor and the
VmDescriptor.

The HostDescriptor can be seen as a bin with a certain
capacity able to host a number of VMs, each one with a
specific request for computational resources. We only take
into account the amount of computational power in terms of
MIPS offered by each host and requested by a VM. An empty
HostDescriptor represents an idle server that can therefore be
put in a sleep mode or switched-off to save power.

The HostDescriptor contains not only a collection (the
current map) of VmDescriptors really allocated on it, but also

Fig. 1: The three tiers architecture of the Sim-DAM simulator.

Fig. 2: Schema of two overlapping neighborhoods.

a temporary collection (the future map) initialized as a copy
of the real one and exchanged between hosts according to
the defined protocol. During interactions only the temporary
copy is updated and, when the system reaches a common
reallocation decision, the future map is used to apply the
migrations.

In a distributed environment, where each node can be aware
only of the state of a local neighborhood of nodes, the number
of worthless migrations can be very high. Thus, this double-
map mechanism is used to limit the number of migrations (as
we describe in Section II-B), by performing them only when
all the hosts reach a common distributed decision.

Each VM is also equipped with a migration history keeping
track of all the hosts where it was previously allocated. For
the sake of simplicity, we assume that a VM cannot change
its CPU request during the simulation period.

B. Coordination Layer

The coordination layer implements the DAM protocol which
defines the sequence of messages that hosts must exchange
in order to get a common migration decision and realize the
defined policy.

DAM protocol coordination details are explained in-depth
in [5]. The protocol is based on the assumption that the cloud
is divided into a predefined fixed collection of overlapping
subsets of hosts: we call each subset a neighborhood.

We assume that each physical host executes a daemon
process called SlaveServer (SS in Fig. 2), which owns a copy
of the node’s status stored into an HostDescriptor and can
send it to other nodes asking for that.

Each node can monitor its computational load and the
amount of resources used by the hosted VMs; according to the
chosen policy, it can detect either it is in a critical condition or
not. A node can, for example, detect to be overloaded, risking
to incur in SLA’s violations, or underloaded, causing possibile
power waste. If one of these critical conditions happens, the
node starts another process, the MasterClient, to actually make
a protocol interaction begin. We call rising condition the one
that turns on a node’s MasterClient.

Since there is a certain rate of overlapping between neigh-
borhoods, the effects of migrations within a neighborhood can
cause new rising conditions in adjacent ones.
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To better explain the DAM protocol, Fig. 2 shows an
example of two overlapping neighborhoods. Each node has
a SlaveServer (SS in Fig. 2) always running to answer ques-
tions from other node’s MasterClient (MC in Fig. 2) , and
optionally can also have a MasterClient process started to
handle a critical situation. A virtual machine vm allocated
to an underloaded node N1 can be moved out of it on N2
and, as a consequence of the execution of the protocol in the
adjacent neighborhood of N3, it can be moved again from N2
to N3. It is worth to notice that node N2, as each node of
the datacenter, has its own fixed neighborhood, but it starts to
interact with it (by means of a MasterClient) only if a rising
condition is observed.

Note that N1’s MasterClient must have N2 in its neighbor-
hood to interact with it, but the SlaveServer of N2 can answer
to requests by any MasterClient and, if a critical situation is
detected (so that N2 MasterClient is started) its neighborhood
does not necessarily include N1.

As regards this environment, we must remark that the
migration policy should be properly implemented in order to
prevent never-ending cycles in the migration process.

We must ensure that the neighbors’s states the MasterClient
obtains, are consistent from the beginning to the end of the
interaction. For this reason, a two-phase protocol is adopted:

1) DAM Phase 1: The MasterClient sends a message to
all the SlaveServers neighbors to collect their HostDescrip-
tors. This message also works as a lock message: when the
SlaveServer receives it, locks his state, so that no interactions
with other MasterClients can take place. If a MasterClient
sends a request to a locked SlaveServer, simply waits for the
SlaveServer to be unlocked and to send its state.

2) DAM Phase 2: The MasterClient compares all the
received neighbor’s HostDescriptors with a previous copy he
stored. If the future map allocation is changed, performs phase
2A, otherwise increments a counter and, when it exceeds a
certain maximum, performs phase 2B:

• Phase 2A: the MasterClient computes a VM reallocation
plan for the whole neighborhood, according to the defined
policy, and sends back to each SlaveServer neighbor the
modified HostDescriptor. The state is accepted passively
by the slaves, without contradictory. The migration deci-
sions only change the future map of VM allocation. No
host switch-on/off or VM migration is performed in this
phase. After all new states are sent, the SlaveServers are
unlocked and the MasterClient begins another round of
the protocol interaction by restarting phase 1.

• Phase 2B: when the number of round with unchanged
neighbor’s allocation exceeds a defined maximum, the
MasterClient sends an update-current-status request to all
SlaveServers and terminates. This last message notifies
the SlaveServers that information inside the HostDe-
scriptor should be applied to the real system state. The
SlaveServer again executes it passively and unlocks his
state.

Phase 2A and 2B alternatives come from the need for reduc-
ing the number of migration physically performed. Looking

Fig. 3: MWF policy algorithm.

at example in Fig. 2, if hosts only exchange and update
the current collection of VMs, every MasterClient can only
order a real migration at each round, so that vmi on N1
would be migrated on N2 at first, and later on N3. Using
the temporary future map (initially copied from the real one)
and performing all the reallocations on this abstract copy,
real migration are executed only when the N3’s MasterClient
exceeds a maximum number of rounds and vmi can directly
go from N1 to N3.

C. Policy Layer

The Policy Layer is responsible for the decentralized migra-
tion decision process. This paper presents MWF, a novel policy
aiming to switch off the underloaded hosts to save power,
while maintaining the load of the other nodes balanced. MWF
exploits two fixed thresholds (FTH UP and FTH DOWN) and
two dynamic thresholds (MTH UP and MTH DOWN) used
to detect rising conditions. The fixed thresholds identify risky
situations: if the host is less loaded than FTH DOWN an
energy waste is detected, while, if the host is more loaded than
FTH UP, SLA violations may occur. The dynamic thresholds
(MTH UP and MTH DOWN) represents the upper and lower
values that cannot be exceeded in order to maintain the
neighborhood balanced.

According to the DAM coordination protocol, at each iter-
ation the MasterClient collects the VM allocation map of the
neighbors and executes a MWF optimization as detailed in
Fig. 3: the MasterClient calculates the average of resource
utilization in his neighborhood (calculateNeighAverage() in
line 1 of Fig. 3) and uses it to compute the two dynamic
thresholds (MTH DOWN and MTH UP) by adding and sub-
tracting a tolerance interval t (lines 2-3 of Fig.3). Then the
MasterClient checks its HostDescriptor h and collects the
current computational load u by invoking a specific getLoad()
method on the HostDescriptor (line 4 of Fig. 3).

The computational load u of the host is compared to fixed
and dynamic thresholds: if it is less than the lower thresholds,
the MasterClient attempts to put the host in sleep mode by
migrating all the VMs allocated; otherwise, if the host load
exceeds the upper thresholds, only a small number of VMs are
selected for migration. As we can see in line 5-6 of Fig.3, if
the computational load u is less than the fixed (FTH DOWN)
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Fig. 4: The selectVms() procedure.

or the dynamic (MTH DOWN) lower thresholds, all the
VMs of the host are collected for migration into an array
vmList. h.getFutureV mMap() in line 6 is the method to
collect the temporary allocation. Indeed in this phase, the
policy only works on a copy of the real VM allocation map,
because according to DAM protocol, all the migrations will be
performed only when the whole datacenter reach a common
decision. If the load u is detected to be higher than the fixed
(FTH UP) or dynamic (MTH UP) upper thresholds, then the
selectV m() operation is invoked to pick (from the host h
temporary state) only the less loaded VMs whose migration
will result in the host load to go back under both MTH UP and
FTH UP. selectV m() is a modified version of Minimization
of Migrations algorithm from Beloglazov et al. [6] and is
detailed in Fig. 4. Differently from [6], we select the threshold
thr as the minimum between FTH UP and MTH UP.

The list of chosen VMs vmList is finally migrated
to neighbors by means of a modified worst-fit policy
(migrateAll(vmList) in line 11 of 3). As shown in Fig.
5, the migrateAll procedure takes as input the list of vm
to move (vmList), the host h where they are currently
allocated, the list offNeighList of switched-off hosts in h’s
neighborhood, the underNeighList of h’s neighbors with
load level lower than FTH DOWN, and otherNeighList
of all the other neighbors of h. The procedure considers
the VMs by decreasing CPU request and, according to the
principles of worst-fit algorithm, tries to migrate it to the
neighbor n with the highest value of free capacity (lines 2-
13 of Fig. 5). If no neighbor in otherNeighList can receive
the vm, the underNeighList is considered with a best-fit

Fig. 5: The migrateAll() procedure.

approach (lines 14-25 of Fig. 5), thus allocating vm on the
most loaded host of the list. This ensure that neighbors with
CPU utilization near to FTH DOWN are preferred, while less
loaded ones remain unchanged and will be hopefully switched-
off by other protocol’s interactions. Finally, if neither hosts
in underNeighList can receive vm (e.g, because the list is
empty), but h is more loaded than FTH UP, then h is in
a risky situation because SLA’s violations can occur. Thus
a switched-off neighbor is woken up (line 27 of Fig. 5).
migrateAll(vmList) operates in a ”all-or-none” way, such
that the migrations are committed on the future maps (line 34
of Fig. 5) only if it is possible to reallocate all the VMs in
the list (i.e., without making other hosts to exceed FTH UP),
otherwise no action is performed (line 29 of Fig. 5).

As shown in Fig. 6, suppose that a protocol execution by
the MasterClient of hb decides to migrate a virtual machine
vmi currently allocated on hc to hb. When the SlaveServer of
hb is unlocked, the policy execution on ha’s MasterClient can
decide to put vmi into ha. Now if hc has a MasterClient
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Fig. 6: Example of three overlapping neighborhoods.

running, and decides to migrate vmi back to hc, then hc

can take the same decision as before and a loop in vmi

migration starts. If this happens, the distributed system will
never converge to a common decision. In order to face this
problem, the MWF policy exploits the migration history inside
each VmDescriptor to avoid loops in reallocation: a VM can
be migrated only on a host that it never visited before. Once
the distributed autonomic infrastructure reached a common
decision, the migration history of each VM is deleted.

III. EXPERIMENTAL RESULTS

To understand the effectiveness of the proposed model we
developed DAM-Sim [5]: a Java simulator able to apply a
specific policy on a collection of neighborhoods through DAM
protocol and compare the performance with a centralized
policy implementation.

We tested our approach on a set of 100 physical nodes
hosting around 3000 VMs (i.e., an average value of 30 VMs on
each host), repeating every experiment with an increasing av-
erage load on each physical server. We fixed the FTH DOWN
threshold at 25% of computational load and the FTH UP at
95%, while the tolerance interval t for load balancing is fixed
at 8%. We always start from the worst situation for power-
saving purposes, i.e., all the servers are switched on and have
the same computational load within the fixed thresholds. To
make the DAM protocol start we need some lack of balance
in the datacenter, so we forced 20 hosts to be more loaded and
20 hosts to be less loaded than the datacenter average value.

In Fig. 7, we compare the MWF performance with nN=5
and 10 nodes in each neighborhood, with the application of a
centralized best fit policy (GLO in Fig. 7a). We also show the
performance of a best fit policy applied in a distributed way
by means of DAM protocol (BF in Fig. 7d). Details about BF
implementation can be found in [5].

Fig. 7a and 7d show the number of servers switched on at
the end of the MWF and BF executions. As we expected, the
DAM protocol cannot perform better than a global algorithm.
Indeed, the global best fit policy can always switch off a
higher rate of servers resulting in the lower trend. Furthermore,
as regards the power saving objective, we can see that BF

perform better than MWF for all the selected neighborhood
dimensions. This comes from the different objectives of the
two policies: MWF tries to switch-off the initially underloaded
servers to save power, while keeping the load of the working
servers balanced; BF brings into question all the neighborhood
allocation at each MasterClient interaction, considering only
power-saving objectives.

Fig. 7b and 7e show the number of migrations executed.
Since the number of VMs can vary a bit from a scenario to
another and the number of switched off servers influences the
result, in the graph we show the following rate:

nMig
onServers

nVM
(1)

where nMig is the number of migrations performed,
onServers is the number of working servers at the end of
the simulation and nVM is the number of VMs in the initial
scenario.

Since no information about the current allocation of a VM
is taken into account during the policy computation in a
global environment, the number of migrations can be very
high. Indeed is high the resulting trend of migration for the
global policy, while DAM always outperforms it. In particular,
MWF performs better than BF for every selected neighborhood
dimension. Nevertheless, for high value of computational load
the performance of MWF in terms of number of switched off
server are comparable to those of the global best fit policy,
while the migration rate is significantly lower.

Fig. 7c and 7f show the number of messages exchanged
between hosts during the computation. As we expected, it
significantly increases as the number of servers in each neigh-
borhood grows. Even if the number of messages for low
values of neighborhood dimension is comparable to the one
of the global solution, when it grows, the number of messages
exchanged significantly increases.

At the moment, the simulator is not able to give trustworthy
results about execution time for distributed environments,
because the CPU executing the simulator code can only
sequentialize intrinsically concurrent processes of the protocol.
For this reason, no test about execution time is reported.

In Fig. 8, we can see the distribution of number of servers
along load intervals. In the initial scenario (INITIAL in Fig. 8)
all the servers have 50% load except for 20 underloaded and 20
overloaded nodes. We show the distribution after a global best
fit optimization (GLO in Fig. 8) and the application of MWF
and BF by means of DAM protocol with 5 as neighborhood
dimension.

The application of a global best fit switches-off a large
number of servers to save power, but packs too much VMs
on the remaining hosts. This results in the red distribution in
Fig. 8, where almost all the switched on servers are loaded
at 95s% creating an high risk of SLAs violations. The best
fit (BF) algorithm applied by means of DAM protocol suffers
of the same problem: a large number of servers is switched-
off, but a part is forced to have 95% load. MWF is more
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effective from the load balancing perspective: it can switch-
off less servers than BF, but is able to decrease the load of the
overloaded nodes leaving all the working servers balanced.

As we expected, Fig. 8 reveals that the median of the MWF
distribution is augmented respect to the initial configuration.
This is due to the fact that a certain number of servers is
switched-off, thus the global load of the remaining servers
results increased.

IV. RELATED WORKS

Our work mainly concern low level infrastructural support,
in which the management of virtualized resources is always a
compromise between system performance and energy-saving.
Indeed, in a cloud infrastructure there are usually well-defined
SLAs to be compliant to and perhaps the simplest solution is to
use all the machines in the cloud. Nevertheless, if all the hosts
of the datacenter are switched on, the energy waste increases
leading to probably too high costs for the cloud provider.

Around cloud environments, with their contrasting targets
of energy-saving versus performance and SLAs compliance,
a lot of work was done in order to provide some kind
of autonomy from human system administration and reduce
complexity. Some of these works involves automatic control
theory realizing an intrinsic centralized environment, in which
the rate of utilization of each host is sent to a collector node
able to determine which physical machines must be switched
off or turned on [2], [3], [7]. Some other solutions concern
centralized energy-aware optimization algorithms [4], [8], [9],
in particular extensions of the Bin Packing Problem [10], [11]
to solve both VMs allocation and migration problems [6].
These approaches focus on finding the best solution and min-
imizing the complexity of the algorithm, without concerning
the particular implementation, but assuming a solver aware of
the whole system state (in terms of load on each physical
host and VM allocation). Thus they particularly lend to a
centralized implementation.

Finally, other approaches involve intelligent, optionally bio-
inspired [12], [13], agent-based system, which can give to
the datacenter a certain rate of independence from human
administration, showing an intelligent self-organizing emer-
gent behavior [14], [15], and also provide the benefits of a
more distributed system structure [16]. As in [14] which is
based on Gossip protocol [17], we adopt a self-organizing
approach, where coordination of nodes in small overlapping
neighborhoods leads to a global reallocation of VMs, but
differently from [14] we created a more elaborate model of
communication between physical hosts of the datacenter. In
particular, while in [14] each migration decision is taken after
a peer-to-peer interaction comparing the states of the only two
hosts involved, in our approach the migration decisions are
more accurate because they comes from an evaluation of the
whole neighborhood state.

V. CONCLUSIONS

We presented a VM migration policy suitable for a dis-
tributed management in a cloud datacenter. To do so, we

relayed on a decentralized solution for cloud virtual infrastruc-
ture management (DAM), in which the hosts of the datacenter
are able to self-organize and reach a global VM reallocation
plan, according to a given policy.

We tested the policy behavior by means of a software
simulator. MWF shows good performances for various compu-
tational loads in terms of both number of migrations requested
and number of switched-off servers. MWF is also able to
achieve an appreciable load balancing among the working
servers, while still some work remain to do to decrease
the number of messages exchanged. Therefore in the near
future, we plan to optimize the DAM protocol in order
to reduce the amount of messages in each interaction. As
we expected, the distributed MWF policy cannot outperform
a centralized global best-fit policy (especially in terms of
number of switched-off hosts and exchanged messages), but
the decentralized nature of our approach can intrinsically
contribute to augment the scalability of the cloud management
infrastructure.

In the near future, we will use DAM-Sim to test different
and more elaborate reallocation policies, taking into account
not only computational resources, but also memory and band-
width requirements. We will introduce variations of VM load
requests at simulation time to better mirror real datacenter
environments. Furthermore, in this work, we avoid loops in
VM migrations by preventing the allocation on nodes that
already hosted the same vm before. We plan to relax this
restrictive constraint by means of a Most Recently Used queue
of hosts.

Finally, we plan to test our implementation on a real
cloud infrastructure and compare the time to get a common
distributed decision with the centralized implementation of the
same reallocation policy. Furthermore, on a real cloud infras-
tructure we expect to face low level architectural constraints
in overlapping neighborhoods definition, which will request
deeper investigations.
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Abstract—Dense IEEE 802.11 networks require thorough radio
network planning to minimize the detrimental effects of channel
interference and achieve good performance. When multiple IEEE
802.11 networks operating under different administrations reside
in the same geographical area (as defined by the bounds of
radio signal transmission and reception), the problem of efficient
radio resource allocation arises. Particularly, in highly populated
urban environments, efficient radio resource allocation can be
quite a challenge, due to the finite number of interference-
free channels available in the IEEE 802.11 family of standards.
To address this shortcoming, we have investigated how the
radio resource management capabilities provided by the IEEE
802.11k standard can support a distributed approach in channel
assignment. In this paper, we present our family of distributed
channel assignment algorithms and elaborate on their pros and
cons. Furthermore, we present our simulation environment for
simulating distributed channel assignment scenarios based on the
NetLogo agent modeling environment.

Index Terms—Channel assignment; Channel Allocation;
WLAN; Distributed Systems; Simulation; NetLogo

I. INTRODUCTION

The establishment of wireless communication as a tech-

nological commodity in modern society and the insatiable

demand for Internet connectivity paved the way to the tremen-

dous popularity and commercial success of the IEEE 802.11

family of standards. With IEEE 802.11b/g as their flag-

ship and—currently—most widespread standard, IEEE 802.11

Wireless LAN (WLAN) type systems feature an ever in-

creasing footprint worldwide. Standardisation work is feverish

and the IEEE 802.11 working groups regularly publishes

improvements to existing standards and introduces additional

features to address emerging use cases.

To address the complexity associated with the manage-

ment of large scale deployments in the Future Internet (FI),

the vision of self-managing systems has been proposed and

adopted. Under the umbrella self-management concept, self-

awareness, self-configuration, self-protection, self-healing and

self-optimization stand as prominent properties. The funda-

mental premise of the self-management paradigm is to con-

strain the operational expenses resulting by the current network

management practices in the Internet. To this end, three

thematic areas have converged [1] under the umbrella of the

Future Internet architecture: autonomic computing, cognitive

networking and self-organization.

A. Radio interference

In a wireless infrastructure, network management and, in

particular radio network planning, becomes a challenging task

due to the volatile and unpredictable nature of the wireless

medium and the mobility patterns of terminal devices. The

increasing footprint and diversification of IEEE 802.11 type

components in ICT equipment suggests that a large portion of

FI devices will employ one or more types of wireless access

technology. Due to the lack of coordination that characterizes

applications in the mass consumer market segments, static

and centralized solutions to wireless network planning prove

inefficient in this chaotic environment [2].

Minimizing radio interference is essential to realizing good

system performance in IEEE 802.11 networks due to the finite

number of interference-free channels available [3]. However,

the volatile nature of the wireless medium, combined with

varying patterns of traffic demand, render any radio network

planning exercise a challenging task. The latter is in iteself a

sophisticated task, which, besides expert knowledge, may also

require a solid understanding of the propagation profile at each

radio site [4]. In cases where IEEE 802.11 networks operating

under different administrations reside in the same geographical

area (as defined by the bounds of radio signal transmission and

reception, efficient radio resource allocation becomes quickly

problematic. This is due to available technology solutions

for radio resource management of IEEE 802.11 installations

supporting only a centralized model of administration (e.g.,

Cisco Unified Wireless Access [5], HP MultiService Mobility

Controller [6]). In addition, they lack support for peer-to-

peer communication between IEEE 802.11 access points in

regard to radio resource management procedures. Thereupon,

as IEEE 802.11 systems continue to increase their footprint

in the residential and enterprise market segments, efficient

radio resource allocation in a dense urban environment rapidly

devolves to a chaotic situation [2].

B. Channel assignment

Channel assignment in IEEE 802.11 systems may result in

a conflict where more than one adjacent (in terms of radio

coverage) wireless access points use the same channel, thus

causing a substantial drop in performance. In addition, as

Fig. 2 illustrates for the case of IEEE 802.11b/g/n, adjacent

access points may use different channels but still experience

a substantial spectrum overlap [3], thus still suffering from
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interference and degraded performance. Performance can also

be degraded by the so-called hidden terminal problem whereby

the transmission of interfering access points are beyond each

other’s reception range but within the reception range of client

devices, thus limiting throughput (e.g., client device D1 and

access points AP1 and AP2 in Fig. 1).

Fig. 1. The hidden terminal case in an IEEE 802.11 access point network.

The main set of IEEE 802.11 standards defines the basic

capacities of the Medium Access Control (MAC) layer that

enable wireless data exchange and mechanisms [3]. Radio

resource management concerns (e.g., measurements of the

radio channel) are addressed by the IEEE 802.11k standard [7].

The latter defines the exchange of radio resource measurement

information to facilitate network management tasks. To this

end, it provides measurements related to the physical and

the (wireless) link layer of the protocol stack [7]. In regard

to channel assignment, IEEE 802.11k defines channel load

measurements as well as noise and time histograms.

C. Research motivation

By making detailed measurements of the radio environ-

ment avaialble, several key optimizations in terms of per-

formance become feasible. Particularly deployments in harsh

radio environments (e.g., aeroplanes, factories, municipalities,

etc.) are greatly facilitated. Utilizing such measurements in

a distributed manner whereby each access point operates

autonomously in deciding which channel to assign presents

a particularly promising proposal. The challenges entailed

in distributed approaches include the engineering of conver-

gence and stability properties to the distributed algorithm

that is collectively effected by the access points. In prior

work we studied the convergence properties between different

distributed algorithms for channel assignment in dense IEEE

802.11k systems. In continuation of that work, we explore

the parameter space of these algorithms using the NetLogo

environment for multi-agent simulation.

We maintain focus on dense deployments of independently

managed IEEE 802.11k systems in an urban environment

where central coordination of radio resource management

tasks is not a realistic assumption. Independent administrations

may be insufficiently skilled, unable or even unwilling to

coordinate their radio resource management strategies, as-

suming they have any. Hence, dynamic distributed resource

management strategies without operator involvement are the

most realistic approach to optimize the use of common radio

resources in this chaotic environment. In developing our dis-

cussion further, we focus exclusively on IEEE 802.11 systems

operating in infrastructure mode.

The rest of the paper is organized as follows: Section II

presents the network model of our studies and outlines related

work. Section III introduces the NetLogo agent modeling

enrivonment and presents its salient features. Section IV

presents our approach of modeling in NetLogo dense IEEE

802.11 networks operating under an autonomic setting. Section

V presents the family of distributed channel assignment algo-

rithms we have integrated in our NetLogo model. Section VI

presents the experimentation settings and shares early results.

Finally, Section VII concludes the paper and sets directions

for future work.

II. SYSTEM MODEL

A. Related work

In [8], the authors take into account the traffic load at

the MAC layer and propose a heuristic method to minimize

the maximum effective channel utilization at the access point

with the highest load. In [9] each access point monitors the

number of active stations and tries to minimize the maximum

effective channel utilization. We note that the set of active

stations includes stations associated with a particular access

point as well as stations using the same channel and whose

transmission power levels is above the access point’s receiver

sensitivity threshold. The work in [10] proposes a new channel

assignment mechanism for infrastructure-based IEEE 802.11

wireless networks in decentralized scenarios. The proposed

mechanism operates at the access point level to select the

operating channel automatically based on client station mea-

surements exchanged through the IEEE 802.11k standard [3].

In [11], the authors evaluate the throughput performance of

different channel assignment strategies in an experimental trial

involving IEEE 802.11b systems while [12] proposes a set of

algorithms to simultaneously solve the channel selection and

user association problems in a fully distributed manner.

Another approach [13], [14] introduces a fully decentralised

stochastic algorithm for graph colouring and applies it to

the isomorphic channel assignment problem in IEEE 802.11

WLAN systems. Their algorithm does not require commu-

nication among WLAN access points and employs learning

to ultimately converge to a conflict-free channel assignment.

Given the widespread deployment of WLAN technology in

urban areas and the lack of coordination among WLAN

administrations with regard to channel assignment, we find

this approach particularly interesting. Hence, we adopt it for

our studies and extend it to accommodate the existence of

communication among WLAN access points for purposes of

radio resource management tasks. An obvious question is

whether the performance of the learning algorithm can be fur-

ther improved by allowing for the exchange of radio resource

information among adjacent WLAN access points and what

kind of information can support such an improvement.

B. Working assumptions

The IEEE 802.11 standards define a finite set of wireless

channel resources and the respective access and usage control-

ling mechanisms [3]. For instance, IEEE 802.11b/g specifies

the details of 14 distinct channels, with minor differences

between world regions due to regulatory constraints. As Fig.
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2 depicts, only channels 1, 6 and 11 are interference-free to

each other and some amount of spectrum overlap occurs in

the remaining subset of the IEEE 802.11 channels.

Fig. 2. IEEE 802.11b/g channel overlap (2.4 GHz band) [3].

The extent to which interference attributed to partially over-

lapping channels in IEEE 802.11 type systems is a determinant

of system performance remains a matter of debate [15]–

[17]. Analytical and simulation studies [15] suggest that the

assignment of partially overlapping channels to neighbouring

wireless access points can be justified, depending on the rela-

tive utilization of each channel. Increasing path loss decreases

the level of interference, therefore, the actual physical distance

among wireless stations is an important performance factor

[17]. When multiple types of IEEE 802.11 systems coexist in

the same geographical area, their topological distribution will

largely affect overall performance, with proximal transceivers

experiencing dramatic degradation in their channel through-

put [16]. Nonetheless, it remains that a finite set of non-

overlapping channels is available to wireless devices, a fact

aligned to our design assumptions.

C. Channel assignment as graph colouring

Channel assignment in IEEE 802.11 type systems is equiv-

alent to the graph colouring problem [18], a well-known

NP-hard problem in graph theory [19]. For a simple graph

G = [V,E], colouring is about determining the number ψ of

colours sufficient for assigning a color to each vertex v ∈ V

without any two adjacent vertices being assigned the same

colour. Several algorithms based on contraction and sequential

ordering have been developed to attack the graph colouring

problem, including Largest First (LF), Recursive-Largest-First

(RLF), Backtracking Sequential Coloring (BSC) and Degree

of Saturation (DSATUR) [20].

The channel assignment problem is isomorphically mapped

to the graph colouring problem as follows:

• The set of access points U = {u1, u2, . . . , uN} is mapped

to the set of vertices V in the graph.

• The pairs of access points {(u, v) : u, v ∈ U} within

transmission and reception range of each other is mapped

to the set of edges E.

• The set of available channels C = {c1, c2, . . . , cD} is

mapped to the set of available colours.

We note that, depending on whether cross-channel interfer-

ence is assumed to be substantial or not, the set of channels

available for assignment by an access point may or may not

include those with partially overlapping spectrum bands. The

following section discusses prior work on these issues.

III. THE NETLOGO AGENT MODELING ENVIRONMENT

A. Principles

NetLogo is an integrated modeling environment for devel-

oping multi-agent simulations in the synonymous program-

ming language. It facilitates rapid development of simulation

models with a focus on emergent behavior in systems with a

large number of agents (e.g., predator-prey relationships in an

ecosystem). As such, it has been used in developing models

in a variety of domains, such as economics, biology, physics,

chemistry, psychology and system dynamics, to name a few.

NetLogo models consist of independently operating agents

in a shared finite environment. The environment is termed

world and is composed as a grid of square patches. Thus

it provides a two dimensional model that define the space

coordinates within which agents will exhibit their behavior

and interact with each other. Within this space, distance is

quantified, but not qualified.

In NetLogo the evolution of time is modeled through a so-

called ticks counter, which is typically incremented through

integer arithmetic, though floating point increments are also

possible. Thus modeling of time supports both discrete time

and continuous time models, albeit the latter would require

additional development effort to complete.

NetLogo also supports extensions, with several extensions

being already contributed and leveraged by the research com-

munity (e.g., associative arrays, network graphs, an interface

to the R projecct for statistical computing, etc.).

B. Agents

An agent in NetLogo may comprise state information (i.e.,

state variables and their values). The set of agents that com-

prise the same set of state variables form a so-called breed.

In manifesting its behaviour, an agent may access the values

of its own state variables, as well as the values of any global

variables defined in the environment. NetLogo offers powerful

filtering and selection mechanisms that operate on agent sets

(i.e., breeds). These include generic primitives that allow an

agent to select the set of agents (possibly out of a breed) with

particular values in their state variables.

IV. AUTONOMIC IEEE 802.11 NETWORKS IN NETLOGO

A. Modeling wireless communication

Aligned to the autonomic networking premise, IEEE 802.11

access points map to autonomous agents that manifest their

behavior driven by their individual policies. To model system

properties resulting from the wireless nature of IEEE 802.11

networks, we employed directed links between agents. Given

that the propagation profile of the radio signal varies in

space and time, we understand that topological proximity will

be determined individually for each pair of access points.

For any given pair of access points (u, v) in the IEEE

802.11 network, reception by u of a radio transmission by

v will depend on the the propagation profile R(u,v) of the

radio signal paths followed between v and u, the power Pv

employed at the transmitter at v, and the sensitivity Su of
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the receiver employed at u. Hence, for any given pair of

access points (u, v), the capacity to exchange information

(i.e., to receive a transmission) is determined directionally.

Consequently, for any access point, being able to receiver

another access point’s transmission does not necessarily imply

the reverse proposition. The typical disk graph model results

by relaxing the assumptions of this propagation model to the

same transmission power and receiver sensitivity for all access

points.

In the NetLogo environment, for any given pair of access

points (u, v), we model the capacity to communicate as a

link e = (u, v) between the respective agents. NetLogo

provides directed and undirected links between agents, thus

supporting both approaches in modeling radio propagation. To

control the complexity of the simulation model at this stage

of our work, we opted for the disk graph model and used

undirectional links between agents. This is supported elegantly

by NetLogo through its builtin in-radius filtering primitive that

selects all agents whose center coordinates are within a given

distance of the center coordinates of the invoking agent in the

world model. Fig. 3 illustrates a screenshot of the NetLogo

model we developed for the distributed channel assignment

algorithms, including simulation parameters and monitors of

state information.

B. Modeling autonomous behavior

In our NetLogo model we leverage each agent’s state

variables (as defined in Table I) to drive the autonomous

behavior of each access point. The set of available channels

and the channel in use are common resources management

variables included in the Simple Network Management Proto-

col (SNMP) Management Information Base (MIB) definitions

for an IEEE 802.11 access point. The set of neighboring

access points can be built and maintained by an access point

that is periodically surveying its known channels for foreign

Beacon management frames, a capacity that is supported by

the IEEE 802.11 standard. The remaining variables in Table

I are not standardized and would have to be included in the

state information of an autonomous access point.

Within the NetLogo environment’s control flow, the be-

vahiour of each access point is invoked in its respective

state scope. When addressing a group of access point with

a particular simulation command (e.g., to scan the radio

channel and identify neighboring access points), NetLogo

randomly iterates over each access point in the group. This

simplifies model development by omitting timing concerns

from its design and aligns to the real world situation where

independently operating access points do not comply to a

global timing sequence related to state changes. For instance,

an IEEE 802.11 access point is able to iterate over its known

channels and observe foreign Beacon management frames, but

the timing sequence of these observations (e.g., the order in

which known channels are observed, the amount of time spent

in observing each channel, etc.) may differ from those of other

IEEE 802.11 access points, even if those are geographically

collocated.

TABLE I
STATE VARIABLES OF EACH ACCESS POINT.

Variable Description

Channels The number M of channels available for assign-
ment to this access point.

Channel The channel c currently assigned to this access
point.

Distribution The distribution P = {p1, p2, . . . , pD} defining
the probability of each channel to be assigned to
this access point by a random selection process.

Neighbor The set access points N =
{uw1 , wa2 , . . . , wa

n(u)
} that are neighbors

to this access point u (according to the disk graph
model).

Conflicts The set of access points W =
{wb1

, wb2
, . . . , wb

c(u)
} that are assigned a

conflicting channel to the channel assigned to this
access point u.

Penalty The percentage b ∈ [0, 1] by which the assignment
probability of an assigned channel is discounted
when existence of a channel conflicts is deter-
mined.

Stability A boolean variable q set to true when this access
point is locked on to the currently assigned channel
and false otherwise. For convenience, an access
point locked onto its assigned channel is termed a
stable access point.

Some of the channel assignment algorithms addressed here

assume the capacity to exchange state information between

IEEE 802.11 access points in a peer-to-peer manner, subject

to sufficient radio coverage of course. The format of the

Beacon Request and Radio Measurement Response manage-

ment frames defined in the IEEE 802.11 specification provides

for the definition of extension fields, thus supporting this

assumption [3]. In this regard, the IEEE 802.11k standard

provides a more efficient and versatile level of support by

explicitly supporting peer-to-peer communications through

the Neighbor Request and Neighbor Response management

frames [7]. Hence, the assumptions underpinning the NetLogo

environment regarding peer-to-peer communication between

access points are properly met by the IEEE 802.11 standard

and its extensions.

V. DISTRIBUTED CHANNEL ASSIGNMENT ALGORITHMS

Herein, we detail each distributed channel assignment algo-

rithm under study, in order of increasing complexity.

Random Walk—The Random Walk (RW) algorithm pro-

vides the crudest variant of distributed channel assignment. In

each iteration, the algorithm checks if any of the neighboring

access points is assinged a channel that interferes with the

channel assigned to its hosting access point. If such a so-

called conflicting access point is found, the algorithm proba-

bilistically selects and assigns a channel anew; otherwise, it

takes no action.

Random Walk with Stickiness—The Random Walk with

Stickiness (RWS) algorithm differs from the RW algorithm in

that once an access point finds its currently assigned channel to

be conflict-free, it locks on to that channel. This is realized by

47Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

                            56 / 58



Fig. 3. Settings of the NetLogo modeling environment.

setting the assignment probability for that particular channel

to one and for all other channels to zero.

Commumication Free Learning—The Commumication Free

Learning (CFL) algorithm [13], [14] provides the basic

learning-capable algorithm that uses past observations regard-

ing each channel in adapting its probability of being assinged

in the future. More specifically, whenever the channel currently

assigned to the hosting access point is found in conflict to the

channel assigned by a neighboring access point, its assignment

probability is discounted by the penalty factor (see Table I).

Commumication Free Learning with Stickiness—The Com-

mumication Free Learning with Stickiness (CFLS) algorithm

[13], [14] differs from the CFL algorithm in that once an

access point finds its currently assigned channel to be conflict-

free, it locks on to that channel.

Learning From Communication—The Learning From Com-

munication (LFC) algorithm [21] leverages communication

with neighboring access points in adapting the probability of

each channel being assigned by the access point hosting the

LFC algorithm. Each access point communicates its conflict

status (i.e., indicating thus whether it will probabilistically

attempt to change its assigned channel in the next iteration) to

its neighboring access points. By knowing which of its neigh-

boring access points will preserve their currently assigned

channel, an access point with a conflicting channel assignment

is able to render its future channel assignments less prone

to conflict, by zeroing out the assignment probability for all

the channels its so-called stable neighboring access points are

currently occupying.

Learning From Communication with Stickiness—The Learn-

ing From Communication with Stickiness (LFCS) algorithm

differs from the LFC algorithm in that once an access point

finds its currently assigned channel to be conflict-free, it locks

on to that channel.

VI. EXPERIMENTS

We establish a square world environment with an area

of 160 × 160 units and a patch size of 4 units. Within it,

we instantiate different populations of agents representing

autonomous access points distributed randomly in 2D space

according to the uniform distribution. Each access point runs

one of the aforementioned channel assignment algorithms

independently of other access points. The performance of a

particular algorithm is assessed under different radius settings

for the disk graph model which, in combination with the

coordinates of access points, determines the connectivity of

the resulting network graph (e.g., Fig. 4).

We study the performance of the CFLS algorithm by varying

the radio coverage experienced by each access point and

the number of access points in the environment. The CFLS

algorithm is a fitting subject for this as it was also studied

in [13], [14]. We consider from 50 to 400 access points
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in increments of 50 and a radius of 10 to 60 for the disk

graph model. We measure the number of iterations it takes

to converge the entire network to a conflict-free channel

assignment (Fig. 4).
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Fig. 4. Performance of the CFLS algorithm.

Aligned to our prior work in this area [21] where we

leveraged the Matlab environment for simulation tasks, we

find that the convergence delay of the CFLS algorithm scales

nicely with an increase in the IEEE 802.11 network density.

VII. CONCLUSIONS

With the deployment of IEEE 802.11 type systems increas-

ing in density, particularly in urban areas, attention is drawn to

optimization aspects. And though the IEEE 802.11k standard

has been developed specifically to support radio resource

management applications, an understanding of radio resource

management approaches and algorithms suitable for these

settings is not fully established. To address this shortcoming,

we have developed a simulation model for distributed channel

assignment problems in an autonomic networking arrange-

ment. We intend to continue studying dense IEEE 802.11

networks under a more dynamic arrangement where a mix

of channel assignment algorithms may manifest.
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