
ICONS 2024

The Nineteenth International Conference on Systems

ISBN: 978-1-68558-175-6

May 26 - 30, 2024

Barcelona, Spain

ICONS 2024 Editors

Christoph Knieke, Technische Universität Clausthal, Germany

Eugen Borcoci, National University of Science and Technology Politehnica
Bucharest, Romania

                             1 / 22



ICONS 2024

Forward

The Nineteenth International Conference on Systems (ICONS 2024), held between May 26-30, 2024
in Barcelona, Spain, continued a series of events covering a broad spectrum of topics, including
fundamentals on designing, implementing, testing, validating and maintaining various kinds of software
and hardware systems.

In the last years, new system concepts have been promoted and partially embedded in new
deployments. Anticipative systems, autonomic and autonomous systems, self-adapting systems, or on-
demand systems are systems exposing advanced features. These features demand special requirements
specification mechanisms, advanced behavioral design patterns, special interaction protocols, and
flexible implementation platforms. Additionally, they require new monitoring and management
paradigms, as self-protection, self-diagnosing, self-maintenance become core design features.

The design of application-oriented systems is driven by application-specific requirements that have
a very large spectrum. Despite the adoption of uniform frameworks and system design methodologies
supported by appropriate models and system specification languages, the deployment of application-
oriented systems raises critical problems. Specific requirements in terms of scalability, real-time,
security, performance, accuracy, distribution, and user interaction drive the design decisions and
implementations.

This leads to the need for gathering application-specific knowledge and develop particular design
and implementation skills that can be reused in developing similar systems.
Validation and verification of safety requirements for complex systems containing hardware, software
and human subsystems must be considered from early design phases. There is a need for rigorous
analysis on the role of people and process causing hazards within safety-related systems; however,
these claims are often made without a rigorous analysis of the human factors involved. Accurate
identification and implementation of safety requirements for all elements of a system, including people
and procedures become crucial in complex and critical systems, especially in safety-related projects
from the civil aviation, defense health, and transport sectors.

Fundamentals on safety-related systems concern both positive (desired properties) and negative
(undesired properties) aspects. Safety requirements are expressed at the individual equipment level and
at the operational-environment level. However, ambiguity in safety requirements may lead to reliable
unsafe systems. Additionally, the distribution of safety requirements between people and machines
makes difficult automated proofs of system safety. This is somehow obscured by the difficulty of
applying formal techniques (usually used for equipment-related safety requirements) to derivation and
satisfaction of human-related safety requirements (usually, human factors techniques are used).

We welcomed academic, research and industry contributions. The conference had the following
tracks:

 Complex and specialized systems

 Embedded systems and applications/services

 Computer vision and computer graphics

 Application-oriented systems
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Universidad Politécnica de Cartagena
Cartagena, Spain

email: antoniojavier.garcia@upct.es

Rafael Asorey-Cacheda
Deparment of Information and Communications Technologies

Universidad Politécnica de Cartagena
Cartagena, Spain

email: rafael.asorey@upct.es

Joan Garcia-Haro
Deparment of Information and Communications Technologies

Universidad Politécnica de Cartagena
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Abstract—Recent advances in the virtualization of the world we
live in have enabled an increasing number of new functionalities
that are generating increasing interest from governments, private
organizations, and the general public. One of these functionalities
is the real-time display of Internet of Things (IoT) data in
different types of environments and at varying scales. From maps
encompassing wide regions, to buildings, and objects, such as
industrial machinery. Air quality monitoring is one of the most
popular uses of IoT in Smart Cities due to the severe health
effects that air pollution may cause in people. As such, there is a
growing concern in creating new tools to enhance the accessibility
of the data and increase the awareness regarding air quality. This
paper addresses this specific matter, presenting a Virtual Reality-
enabled Digital Twin for air quality monitoring platforms. The
use case reported in this work applies to the city of Cartagena
(Spain), where several of our air quality monitoring devices for
polluting gases and suspended particulate matter are deployed.
The digital twin was developed using Unity and Citigen for
environment development coupled with the data stored in the
servers localized at the Universidad Politécnica de Cartagena
(UPCT) from our LoRaWAN air quality monitoring IoT network.

Keywords-Digital Twin; air quality; Virtual Reality; Unity.

I. INTRODUCTION

In the recent years, IoT has been adopted for multiple
purposes, accounting for more than 9 billion devices in the
world [1]. Smart cities are one of the applications where a
higher number of devices is needed, as it is necessary for
characterizing each area of the city. Specifically, air quality
monitoring devices are present in most smart cities due to
the growing concern regarding the pollution generated by
increasing amounts of traffic. These devices are often equipped
with sensors that measure two main types of pollutants: gases

and suspended particulate matter. The most relevant polluting
gases include CO, SO2, O3. and NO2 [2]. Conversely,
suspended particulate matter is measured for three main par-
ticulate sizes, including PM1, PM2.5, and PM10. Monitoring
these pollutants in real-time leads to a a great amount of data
that needs to be managed and presented to the users in an
accessible manner. Dashboards allow data representation in
graphical and table formats, but it is limited in functionality.
For that reason, new forms of data representation leveraging
virtual reality and augmented reality are being considered [3].

Digital Twins provide new possibilities for data represen-
tation enabling the creation of digital replicas of the phys-
ical world that can be used for real-time monitoring [4].
Other functionalities that can be included in digital twins
are learning, predictions, and simulations [5]. Most Digital
Twins currently in use have been developed for engineering
applications that includes a series of objects or spaces that
usually do not surpass the scale of a small number of buildings.
But as this technology evolves, the interest of using it for more
ambitious purposes has increased. Smart-cities are viewing
digital twins as the next tool for providing smarter and
more flexible services [6]. However, the creation of a city-
level digital twin introduces new challenges as the functional
boundaries of a city have higher complexity, not allowing a
straightforward upscale.

The technology used to develop a digital twin depends on
its intended use. Digital twins intended for buildings are often
created based on technologies, such as Building Information
Modelling (BIM) and Computer-Aided Design (CAD) that
have evolved from its first stages as software to aid builders
in the construction process [7]. However, these software tools

1Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-175-6
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are not intended for large scale city-like representations.
Therefore, it is necessary to use alternative tools, such as video
game engines, which have substantially evolved allowing the
creation of meta-worlds that can be interacted with. In this
paper, we present a digital twin of a smart city for air quality
monitoring enabled by virtual-reality. It was developed using
Unity and the Citigen tool for the creation of a 3D map of the
city of Cartagena (Spain). Each air quality monitoring device
deployed in the city had its corresponding object in Unity that
could be selected to display a dashboard with the current air
pollution readings gathered from the sensors. The solution is
enabled by virtual reality, facilitating the navigation of the city.

The rest of the paper is organized as follows, Section 2
presents the related work. The methodology is presented in
Section 3. The results are discussed in Section 4. Lastly, the
conclusion and future work is presented in Section 5.

II. RELATED WORK

Many of the currently existing digital twins focus on
buildings and monitoring the physical factors that affect them
or the people inhabiting them. One of them is the digital
twin created by Khajavi et al. for the facade of an office
building [8]. It was equipped with six sensor devices for
real-time monitoring of temperature, relative humidity, and
environmental lighting. More than 25,000 readings where
stored, analyzed and represented in the limited digital twin
that overlapped a 2D graphical representation of the lighting
received by the sensors using different shades of color on
top of an image of the building’s facade. However, city-scale
digital twins have begun to be developed as well. Mohammadi
and Taylor presented a paradigm for a smart city digital twin
[9]. Their use case for the city of Atlanta was developed in
Unity and based on virtual reality. A plugin was developed
to provide analytics according to the data. Furthermore, an
augmented reality crowd-sourcing module was included as
a tagging system, using a mobile application to run it. In
addition, Wolf et al. presented a digital twin for emergency
management in smart cities [10]. The digital twin includes
information, such as weather and traffic data for improved
service coordination. The digital twin was developed using
the Microsoft Azure cloud for its analytical functionalities, and
the maps were generated utilizing TomTom and the Microsoft
Azure Maps Web Software Development Kit.

As air quality monitoring has been gaining more relevance,
the prospect of creating digital twins that feature air quality
data has been increasing. Some of the proposals focused
on indoor environments. Qian et al. presented an indoor air
quality intelligent management approach based on digital twin
platforms [4]. Data from different sources was collected, inte-
grated, analyzed, and displayed through a web-based interface.
The system was tested in a traditional home in china. The
results showed that winter morning presented the most air
quality problems. The definition of healthy quality thresholds
allowed identifying air quality concerns that could be acted on,
solving these problems within 30 minutes since their detection.
Furthermore, Ariswala et al. used BIM to create a digital twin

for monitoring and control of equivalent carbon dioxide in
indoor spaces [11]. The solution used IoT devices equipped
with low cost sensors, the Microsoft Azure Cloud Platform,
Azure Digital Twins, Azure Machine Learning, Power Bi,
and the Polycam application to scan the desired building.
The resulting digital twin with the 3D implementation of the
building included a dashboard to display real-time data and
forecasts.

Smart cities have a great interest in air quality monitoring
as well. As such, city-scale digital twins are also including
these features. Ariansyah et al. presented a digital twin for air
quality monitoring in smart cities using mix reality technology
[12]. The proposal integrated air quality, meteorological, urban
infrastructure, and traffic pattern data that could be displayed
through a mixed reality headset that represented the map and
information as an object placed in the real world. Lastly,
Siddaraju et al. proposed a digital twin for PM2.5 estimation
[14]. This version of digital twin was focused on the simulation
of the environment to determine PM2.5 levels and did not
include a 3D digital representation of the location where
the meteorology stations were deployed. The authors used
machine-learning techniques to implement PM2.5 prediction
models.

Instead of focusing on building-scale digital twins or 2D,
visually limited representations, this paper presents the im-
plementation of a city-scale 3D digital twin for outdoor air
quality monitoring enabled by virtual reality.

III. METHODOLOGY

In this section, the methodology followed to create the Air
Quality monitoring system using virtual reality is presented.

A. Architecture

The architecture of the proposed integral solution for an
air quality monitoring platform enabled by a virtual reality-
based digital twin is presented in Figure 1. IoT monitoring
devices for polluting gases and suspended particulate matter
with different sizes are deployed in the city of Cartagena
(Spain). These devices take measures periodically and send
them to the LoRaWAN Gateway. The Gateway communicates
to the LoRaWAN server through MQTT protocol. Telegraf is
subscribed to the MQTT topics belonging to the IoT devices
to capture the data, provide context and store it at the Influx
database. The 3D environment of the Digital Twin for air
quality monitoring is created using Citygen3D, a tool for map
creations in Unity. The panels that display the device’s data are
created as objects, and the data from the database is accessed
by Unity to display it. Lastly, the users can experience the
Digital Twin with a VR headset or in an ordinary monitor.

The following subsections will detail the implementation of
each of the elements of the architecture.

B. Air quality monitoring sensor devices

Our air pollution monitoring devices were developed inde-
pendently, one encompassing the polluting gas sensors (SO2,

2Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-175-6
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Figure 1. Architecture of the proposed VR-enabled Digital Twin for air quality
monitoring.

NO2, O3 and CO), and one including the suspended par-
ticulate matter sensor (PM1, PM2.5, and PM10) [2]. Both
devices include a Pycom embedded system that manages data
collection, message formatting, and data transmission. The
three devices deployed in Cartagena were equipped with a
LoRaWAN transceiver for long range communications. Fig-
ures 2, 3, and 4 present the data gathered by the suspended
particulate matter for a common weekday. As it can be seen,
the concentration of suspended particulate matter increases
with rush hour, particularly PM10. The polluting gas data is
presented in Figures 5, 6, 7, and 8, respectively. It can be seen
that the gases present a different behaviour compared to each
other and the suspended particles. Newly deployed devices are
easily integrated in the solution, only requiring their activation
in the LoRaWAN network. If necessary, other sensors intended
for different air quality metrics could be similarly embedded
to be adapted to different environments and purposes.

Figure 2. PM1 data from suspended particulate matter device.

Figure 3. PM2.5data from suspended particulate matter device.

Figure 4. PM10data from suspended particulate matter device.

C. Virtual Reality Headset

Virtual Reality Headsets are devices that show images
generated by a computer, usually in 3D, through screens
located very close to the eyes. The headsets occupy all the
user’s vision field, providing an immersive experience. In this
project, two types of VR Headsets were used to assess user
experience. No significant differences were found in their use.
The characteristics of the headsets are the following:

1) PicoBlaze: The Pico 4 VR Headset [14] includes a Snap-
dragon XR2 processor which can reach speeds of up to 2.84
GHz. It offers 8 GB of RAM, ensuring smooth performance in
applications and games. The employed model offers 128 GB
of storage. Regarding connectivity, it supports WiFi 6 (802.11
a/b/g/n/ac/ax) and 2x2 MIMO dual-band (2.4 GHz/5 GHz).
It also has Bluetooth 5.1 for pairing with other devices. The
display is high quality, with two 2.56-inch LCD panels and
a resolution of 2,160 x 2,160 pixels per eye. It offers a high
pixel density (PPI: 1200), a refresh rate of 72/90 Hz and a
wide 105° field of view. In addition, the interpupillary distance
adjustment is electric and varies between 62-72 mm, adjusting
it correctly allows you to view images without distortion. It
features dual stereo speakers and a dual microphone for an
immersive experience. Echo cancellation technology with 50
dB reduction ensures clear communication. This device runs
on the Pico OS 5.0 operating system.

2) Quest 2: The Quest 2 VR headset [15] also includes
a Snapdragon XR2 processor. Regarding storage, our headset
is equipped with 256 GB. The connectivity of this device has
support for WiFi 6 (802.11 a/b/g/n/ac/ax) and 2x2 MIMO dual-
band (2.4 GHz/5 GHz). It also has Oculus Link, to connect to
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Figure 5. COdata from pollutant gas monitoring device.

Figure 6. SO2data from pollutant gas monitoring device.

a PC via USB cable. The display has two LCD panels with
a resolution of 3664 x 1920 pixels per eye. It offers a high
pixel density (PPI: 1100), a refresh rate of 72/90 Hz and a
wide field of view of 105°. The electric interpupillary distance
adjustment varies between 63-72 mm. It features dual stereo
speakers and a 3.5mm audio port for external headphones. The
echo cancellation provides a 45 dB reduction. This device runs
on the Oculus OS operating system, which includes a stable
and efficient Android-based platform.

D. Unity

The digital twin needs to be supported by a powerful
software that enables smooth visualization of 3D environments
and assets. Furthermore, it is necessary to ensure its com-
patibility with popular VR headsets to provide accessibility.
Unity [16] is the most popular game development engine and
3D application creation platform, and thus, it has an extensive
community and substantial development tools and support. It
is used by developers to create games, interactive simulations,
virtual reality (VR) and augmented reality experiences, and
2D and 3D applications. Unity is known for its versatility
and ease of use, making it perfect for the development of this
project. It allows importing and managing 3D models, textures,
sounds and animations in order to speed up the development
process. It can also be programmed in languages, such as C#
and JavaScript to create custom behaviors. The physics system
that allows simulating realistic movements and collisions in the
virtual world.

Some of the main aspects to be considered when creating
the 3D map of the city of Cartagena included the need of
changing between predetermined levels of detail depending on

Figure 7. O3data from pollutant gas monitoring device.

Figure 8. NO2data from pollutant gas monitoring device.

the distance of the object, to increase or reduce the number of
polygons to optimize the scene. The textures are also critical.
A height map was used instead of a normal map to take into
account the angle of the viewer with the surface. Its downside
is the longer processing times. Texture compression improved
these times, selecting ASTC for our project. For lighting,
the use of lights was reduced as mush as possible, utilizing
baked lights whenever possible. These type of lights reduce the
computational cost of rendering the scene, but using many of
them increase the number of objects and thus the processing
time. All options for improved visual quality could not be
included and objects had to be configured as static to avoid
increases in execution time.

Other configurations include animations, physics, object
loading, and geometry. Animation changes are not problem-
atic, but they have a significant performance cost, so the
blend nodes were kept below 6 to reduce this cost. Each
object needs to be linked to an animator object, but inter-
polators are recommended instead of animators. They can
be implemented using custom scripts, especially for the user
interface. Regarding physics, the reuse of collision callbacks
was enabled. Combined primitive colliders were employed to
mimic the object they are attached to. Moreover, the layer-
based collision detection was used to detect collisions of an
object of a predetermined layer with the rest of the objects.
By default, Unity loads objects on top of other objects which
causes overlapping pixels and longer execution time. Using
Occlusion Culling prevents Unity from loading objects outside
the camera view. However, it must be done with each object,
which is time consuming for an entire city plan. Lastly, the
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wireframe mode is used to optimize the geometry. It makes
the level of detail of the objects depend on the distance to the
view. The models must be created manually, adding the LOD
Group component, and placing them in the renderers section.

In order to display the information received from the sen-
sors, a series of objects are included to display the individual
information of each sensor. To do this, an object is added at the
position where the sensor we want to display is located. This
object has an associated script that opens a screen to view the
information when clicking on it. Other objects where added
inside, since the first object only serves to open the screen. The
next object is where the information is printed. It displays the
sensor measurements and is placed on the previous object. The
object is comprised of several sections including temperature,
humidity, CO, NO2, O3 and SO2 (See Figure 9).

Figure 9. Unity object displaying air quality data from sensor devices.

E. Citygen3D

CityGen3D [17] is an extension for the Unity editor de-
signed to simplify the automated creation of three-dimensional
scenarios based on real-world map data from OpenStreetMap.
CityGen3D does not require additional coding. A specific
location, by means of latitude and longitude coordinates, can
be provided and it will download and analyze the real data of
the world map inside Unity to generate the scene. To make
it a more realistic experience, CityGen3D adds heightmaps in
order to be able to appreciate the height differences (moun-
tains, ports, etc). This presented some problems because the
height difference in the relief generated too many triangles to
represent it correctly. Therefore, modifications were necessary
to prevent the application from excessive loading times. Splat
textures could be selected from different types of terrain
(grass, asphalt and earth among others) to make the world
more realistic. The road network could also be generated

automatically using the combination of Unity and Citygen3D.
Most trees were eliminated since they occupied a great part of
the rendering memory and were unnecessary information for
our purpose.

F. InfluxDB

The database used in our project is InfluxDB [18]. It is
a time series database that can receive and process a large
amount of data thanks to the TSM engine, which guarantees
data availability, integrity and retrieval.

IV. RESULTS

This section presents the results of our implementation of
complete virtual reality-enabled digital twin of the city of
Cartagena, that displays the data gathered by all the air quality
monitoring devices deployed in the city.

The result for the creation of a virtual world representing
Cartagena using the Citygen3D tool is shown in Figure 10.
This specialized software has demonstrated its ability to gen-
erate detailed three-dimensional environments with high levels
of realism.

Figure 10. Empty map of Cartagena using Citigen3D.

The final visual presentation inside the virtual reality glasses
can be seen in Figure 11. The differences in height are clearly
appreciable and the object with the dashboard for air quality
data representation is easily detectable.

Figure 11. Complete visualization of the digital twin using the VR headset.

The users can interact with the panels using the controllers
associated with the virtual reality glasses, as shown in Figure
12.

We have therefore succeeded in the implementation of the
digital twin of Cartagena. It can be navigated seamlessly with
the CR headset and the panels can be activated and removed
at will. Other existing works on digital twins for air quality
monitoring use 2D representations [8], [14], are intended for
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Figure 12. Interaction of VR controllers with dashboard objects.

other parts of the Reality–virtuality spectrum [9], [12], or
target only one building [4], [11]. The digital twin presented
in this paper encompasses the city of Cartagena (Spain) and
provides its 3D representation enabled by virtual reality.

V. CONCLUSION AND FUTURE WORK

Digital twin technology is currently evolving, adding more
functionalities and scaling to bigger environments. Smart cities
are viewing this technology as a tool to provide accessible
information to its citizens. One of the main aspects to transfer
into digital twins is air quality monitoring IoT solutions. In
this paper, we describe the implementation of our digital twin
for air quality monitoring in the city of Cartagena (Spain),
which can display the data gathered from polluting gas and
suspended particulate matter sensors at different locations of
the digital twin map. It is enhanced by virtual reality, provid-
ing an immersive experience for the user. There is however
ongoing challenges to be addressed. The main one being the
optimization of polygons that comprise the city 3D mesh and
the trade-off between visualization quality and performance.
Nevertheless, the growing interest in this technologies has led
to conversations with several institutions, where the identified
applications of the digital twin were not limited to data
visualization, but also allows for helping policy-makers in
performing informed decisions on redirecting traffic flows and
urban planning.

For future work, we will implement Artificial Intelligence-
based solutions that evaluate air quality form the sensors
deployed in the city and present the predictions as heat-maps
over the city, allowing the user to quickly determine the areas
of the city with more expected air pollution. This also implies
spatial predictions to obtain detailed information even in areas
without air quality monitoring devices.
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Abstract— Automated driving and connected cyber-physical 
traffic systems present increasing challenges for the 
development and validation of advanced driver assistance 
systems and automated driving functions. In particular, real-
time optimization and testing involves significant workload and 
risk. Providing a holistic, flexibly configurable testbed with real-
time capabilities for the entire vehicle can solve this problem. 
However, in order to make the functionality more accurately 
verified by the test bench, sensor simulation is an important 
component, i.e., the ability to generate real sensor information 
in a simulated environment. In addition, the data structure of 
the virtual sensor, as well as the transmitting type and sampling 
frequency, should be close to or even consistent with that of its 
real sensor. In addition, we also add the noise from the real 
sensor to the virtual sensor. The referenced noise values are 
taken from the data sheet of the real sensor. This alignment 
enables the test bench to better test the real-time functionality 
of the vehicle and its ability to process the sensor signals.  

Keywords—Cyber-Physical System; Virturl sensor; 
Autonomous Driving; Post-Processing; Real-Time Testing 

I.  INTRODUCTION  
 Mobility is undergoing disruptive change due to the 
increasing digitization and networking of vehicles. The 
autonomous driving of electric hybrid vehicles in highly 
interconnected Cyber-Physical traffic systems (CPS) is one of 
the core technologies in this digital transformation process. 
The variety of applications for autonomous vehicles requires 
ever more diverse sensor technology, as well as ever more 
complex and intelligent algorithms from the fields of modern 
control technology and Artificial Intelligence (AI). This 
results in increasingly complex systems. Not only because of 
the increasing range of functionality, but also because of the 
constantly growing degree of interconnection [1]. 

The development of such systems is closely linked to 
safety engineering requirements and is therefore highly 
complex. In order to study the integrated overall functionality 
of intelligent vehicles that are capable of autonomous driving, 
a complete vehicle test bed is essential. This test bed should 

accurately represent the complete system of road, connected 
vehicles, and connected driving environment, as well as 
stimulate the vehicle's sensors. For the above reasons 
presented the paper [2] the concept of a holistic, highly 
flexibly configurable real-time test system for intelligent 
vehicles in cooperating cyber-physical traffic systems, called 
ERAGON. In a closed loop together with the function carrier 
AURONA, this system is able to simulate and stimulate the 
entire autonomous vehicle system, starting from the infusion 
of raw sensor data via the development and testing of AI 
functions up to the stimulation of realistic driving situations. 
Therefore, it is particularly important to test the function under 
test with a simulation test bed for sensor data. It is ideal for 
the simulated data to be bit-for-bit identical to the data 
generated by the physical sensor in the real-world scenario. 
However, this level of similarity may not be necessary or 
achievable. The aim of sensor simulation is to achieve a level 
of data fidelity that ensures the decisions made by the control 
algorithms are equivalent to those made in reality. Therefore, 
the focus should be on achieving a high level of data fidelity 
[3]. 

This paper aims to discuss the virtual sensor simulation in 
ERAGON, how they are transmitted, and the required post-
processing and applications. The rest of the paper is organized 
as follows. Section II presents the holistic model-based RCP 
methodology for the development of complex, interconnected 
mechatronic systems. Section III presents state of the arts of 
the sensor simulation. In Section IV, the concept of the 
simulation of the virtual sensor and their post-processing will 
be introduced. Finally, Section V provides a summary of the 
contents as well as an outlook on further work. 

II. METHODOLOGY 
Through the methodology of mechatronic development, 

specifically mechatronic structuring, the interconnected CPS 
is divided into hierarchically organized subsystems across 
four levels of hierarchy: mechatronic functional modules 
(MFM), mechatronic functional groups (MFG), and 
autonomous mechatronic systems (AMS), and Networked 
mechatronic system (NMS) [4]. The outcome of this 

7Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-175-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2024 : The Nineteenth International Conference on Systems

                            17 / 22



structuring is a functional decomposition of the entire system 
into encapsulated modules. These modules are arranged 
hierarchically and have clearly defined physical and 
informational interfaces in both horizontal and vertical 
directions, which lays the foundation for later integration into 
the overall system [5]. 

 
Figure 1. Seamless model-based development and validation 
process[6] 

After establishing a hierarchical structure and specifying 
all interfaces, a model-based, function-centric approach is 
used to the design of each discrete module, adopting a bottom-
up strategy. The initiation occurs at the most fundamental and 
critical level, the MFM, progressing upwards through the 
hierarchy to assimilate these modules into more complex 
functions. The integration and combination of these functions 
within the larger framework (mechatronic assembly) leverage 
the model-based mechatronic development cycle. 
Subsequently, Model-in-the-Loop (MiL) simulations are 
conducted to create and refine control algorithms and artificial 
intelligence based on a virtual or mathematical model, which 
are then trialed using a vehicle simulation. Within the 
Software-in-the-Loop (SiL) phase, these algorithms, once 
validated through simulation, are translated into operational 
code via automatic code generation, then assessed offline on 
a virtual platform. The sequence advances to Hardware-in-
the-Loop (HiL) simulations, utilizing an augmented real-time 
vehicle model integrated with physical components for online 
verification and enhancement of the algorithms and smart 
functions under actual operational conditions [7]. This 
procedural sequence is delineated in Figure 1.  

In this paper where the vehicle under test belongs to AMS 
due to the autonomous driving function it has, and its other 
underlying actuators such as motor braking are MFM. the 
function of assisted driving is MFG. In testing it is a HiL test 
because the object under test is an entity with physical 
components. 

III. STATE OF ARTS 
Efficient functional verification is a significant challenge 

in realizing autonomous driving, as stated in the literature [8]. 
It is crucial to ensure that the functions designed in the overall 
system are verifiably safe in terms of output quality and the 
probability of misinterpretation [9]. It is necessary to repeat 
the tests for as many situations as possible that the vehicle may 
encounter. Hundreds of millions of kilometers of testing are 
necessary if this task is to be accomplished under real road 

traffic conditions [10]. Reliable and robust environment 
sensing through camera, RADAR, and LiDAR sensors is a 
key element of Advanced Driver Assistance Systems (ADAS) 
and Autonomous Driving (AD-assisted systems). Synthetic 
sensor data is required for driving simulations to develop and 
validate sensor-based algorithms. The classification of 
automotive sensing sensor models is based on their modeling 
approach and coverage effects, and can be divided into three 
categories: ideal, phenomenological, and physical models 
[11]. 

The Ideal Sensor Model, alternatively termed the Ground 
Truth Sensor Model, employs as its input an array of objects 
delineated within the simulation frame, as furnished by the 
World Coordinate System (WCS). This model, representing 
the epitome of accuracy, utilizes the veritable values, 
dimensions, positions, velocities, orientations, and bounding 
boxes of the simulated entities. 

The Phenomenological Sensor Model operates on 
principles similar to those of probabilistic models, while also 
integrating contextual effects. This approach offers a nuanced 
representation of real sensor dynamics. The complexity of 
these models is increased by the need to incorporate special 
phenomena into the sensor framework, and to correlate these 
phenomena with context-sensitive data from the virtual 
environment [11]. 

Physical sensor models are based on physical aspects and 
can be numerically complex. Therefore, they may require 
significant computational power and may not have real-time 
capabilities. Subsequent models use rendering techniques 
provided by the simulation framework as input and generate 
output raw data in the form of point clouds, which contain 
distance, intensity and time stamps. Several rendering 
techniques can generate synthetic LiDAR sensor raw data, 
including ray tracing, ray casting, rasterization (Z-buffer), and 
light paths [12]. 

Virtual sensors have a wide range of applications in analog 
test platforms. Chen et al. [13] used an integrated simulation 
and testing platform for self-driving vehicles. Their platform 
offers the possibility to test real vehicles in a closed test area. 
Their approach is characterized by the fact that the sensor 
signals (GPS, IMU, LiDAR, and camera) are derived from 
high-precision virtual simulation scenarios and processed as 
real driving commands by the real control unit in the vehicle. 
Ying et al. [14] used an in-vehicle loop simulator and testbed 
to functionally validate self-driving cars Vehicle sensors 
(camera, LiDAR and RADAR) are stimulated by signals 
generated based on a virtual traffic scenario. Thus, this test 
environment enables repeatable and fully manageable test 
scenarios. 

Both commercial and open-source simulation platforms 
provide virtual sensor models that manifest varying degrees of 
fidelity. Among these, CARLA [15] stands out as an open-
source simulation framework offering a variety of sensor 
models. Another notable platform is CarMaker/TruckMaker, 
[16] developed by IPG Automotive, which features a 
specialized Simulink interface encompassing libraries for 
diverse sensors, including both realistic and ideal models of 
LiDAR and RADAR. Similarly, Vector's DYNA4 [17] 
provides an assortment of virtual sensor models catering to 
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LiDAR, ultrasound, and RADAR applications. Additionally, 
AURELION [18] by dSPACE extends its simulation 
capabilities by offering virtual models for LiDAR, RADAR, 
and camera sensors. Complementing these, the Automotive 
Simulation Models (ASM) models facilitate a broad spectrum 
of simulations, ranging from individual components like 
internal combustion engines or electric motors to 
comprehensive vehicle dynamics systems and intricate virtual 
traffic environments. 

IV. CONCEPTION 
This section presents the concept of virtual sensor 

simulation and post-processing. As shown in Figure 2, the 
system is divided into two parts: the real vehicle under test and 
the sensors that the vehicle has. The flowchart on the right 
outlines the process for simulating virtual sensors based on 
real sensor parameters. The process includes the following 
steps: 

• Analyze Data Structure: Understand the 
organization, format, and internal relationships of 
the data. 

• Analyze Transmission Types: Investigate how 
sensor data is sent, which may include 
communication protocols, data transfer rates, etc. 

• Coordinate Transformation: This step converts 
the sensor data to a uniform coordinate system for 
comparison and analysis. 

• Virtual Sensor Generator: This function block 
suggests a system or software to create a virtual 
model or representation of sensor data for 
manipulation or testing in a simulation. 

• Virtual Sensor Post-Processing: After generating 
the virtual sensor data, this step involves further 
refinement or processing, which includes, among 
other things, feature extraction, filtering, calibration, 
and so on. 

• DUT: The final block labeled "DUT" stands for 
Device Under Test, indicating that the processed 
virtual sensor data will eventually be used for testing 
purposes, such as testing a car's autopilot function or 
sensor fusion algorithms. 

Where the vehicle control signals fed back from the DUT 
will be sent to the actual vehicle's driver, creating a closed-
loop test. 

V. IMPLEMENTATION OF THE SERNSOR SIMULATION 
In this section, sensor simulation as well as post-

processing implementation will be carried out based on the 
proposed concepts. 

A. Hardware introduction 
 This section describes the sensor data types of the real 

vehicle under test in terms of data transfer types and rates. 
Figure 3 shows the RCP function carrier AURONA. The 
vehicle is equipped with four direct drives and a break-by-
wire system. All four wheels can be driven, braked and steered 
individually. GPS and LiDAR are used for position detection. 
Objects are detected via camera, LiDAR, ultrasound, and 
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Figure 2. Concept of the sensor simulation and post-processing 

Figure 3. RCP function carrier AURONA 
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RADAR. In this paper, we focus on the Camera, LiDAR and 
GNSS.  

In this case, the data in LiDAR is set of laser point cloud, 
which can be denoted by 𝑆𝑆 . Every laser point cloud 𝑠𝑠𝑖𝑖 
contains a distance value in x, y and z axis and the intense. 
The configurable parameters are scanning frequency 𝑓𝑓𝐿𝐿  as 
well as the scanning angles 𝜃𝜃ℎ  and 𝜃𝜃𝑣𝑣 , where 𝜃𝜃ℎ  is the 
horizontal scanning angle and 𝜃𝜃𝑣𝑣  is the vertical angle field. 
Equally important is the angular resolution in the vertical ∆𝜃𝜃𝑣𝑣  
and horizontal directions ∆𝜃𝜃ℎ. Using these parameters, which 
can be obtained from the datasheet, the 𝑃𝑃𝐿𝐿  parameter set can 
be formed. The LiDAR data is transmitted via Ethernet and 
the actual sampling frequency is 10Hz. 

The data type in the camera is a matrix 𝑀𝑀, where the size 
of the matrix is determined by the length 𝑙𝑙 and width 𝑤𝑤 of the 
image. For the sensor simulation, the required camera 
parameters are the FOV (Field of View) 𝜃𝜃𝐶𝐶, the information 
of the lens (aperture 𝑓𝑓𝐶𝐶𝐿𝐿and focal length 𝐹𝐹𝐹𝐹𝐶𝐶𝐿𝐿) and the frame 
rate 𝑓𝑓𝐶𝐶 . All parameters of the camera can be formed as a 
parameter set 𝑃𝑃𝐶𝐶 . The transmission type is Ethernet, and the 
frequency is 20 FPS. 

The IMU and GPS sensors are integrated in the GNSS, 
which provide the vehicle's dynamic state𝑥𝑥𝑉𝑉 , and absolute 
coordinates in the geographic coordinate system 𝑃𝑃𝑉𝑉 . The 
vector 𝑥𝑥𝑉𝑉 contains the acceleration of the vehicle in the 
Cartesian coordinate system along the axial direction 
(𝑎𝑎𝑣𝑣𝑥𝑥 , 𝑎𝑎𝑣𝑣𝑦𝑦 , 𝑎𝑎𝑣𝑣𝑧𝑧) and the angular velocity as it rotates around the 
axis of the same Cartesian coordinate system (𝜔𝜔𝑣𝑣𝑥𝑥 ,𝜔𝜔𝑣𝑣𝑦𝑦 ,𝜔𝜔𝑣𝑣𝑧𝑧), 
while the GPS provides the latitude 𝑙𝑙𝑎𝑎𝑙𝑙𝑣𝑣, longitude 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣  and 
altitude ℎ𝑣𝑣. All parameters of the camera can be formed as a 
parameter set 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. The transmission type is CAN-BUS and 
the measurement frequency can reach 100Hz. 

In following simulations, it’s needed to strive for the 
virtual sensor data to be consistent with the parameters of the 
real sensor data. 

B. Coordinate system 
In autonomous driving, the key to precise perception of the 

environment by the vehicle is that different sensor data can be 
expressed in a uniform coordinate system, so it is essential to 
define a uniform vehicle coordinate system and to find the 
position of the sensors in that vehicle coordinate. Therefore, 
we need to define the coordinates of the sensors as 𝐵𝐵𝐵𝐵𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 
and the coordinate system of the vehicle as 𝐵𝐵𝐵𝐵𝑆𝑆𝑣𝑣 . The 𝐵𝐵𝐵𝐵𝑆𝑆𝑋𝑋 
coordinate system represents the body coordinate system. The 
transformation of the sensor coordinate system to the vehicle 
coordinate system can be expressed using the 𝑇𝑇𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉  matrix. 
The data 𝑑𝑑𝑖𝑖𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  in the sensor can be converted to the vehicle 
coordinate system by the (1). 

 
𝑑𝑑𝑖𝑖

𝑉𝑉 = 𝑇𝑇𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉 ∗ 𝑑𝑑𝑖𝑖𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (1) 

C. Virtual Sensor Generator 
Based on the previous state of arts, this paper describes the 

generation of virtual sensors using the advanced capabilities 
of the ASM model and AURELION. AURELION is a 
versatile software designed for simulating and visualizing 

sensor data. It facilitates the integration of actual sensor 
readings into various stages of development, testing, and 
validation processes for perception algorithms and driving 
functionalities. AURELION facilitates multiple development 
stages, such as hardware-in-the-loop (HIL) and software-in-
the-loop (SIL), by providing flexible data interfaces that allow 
for the customization of virtual sensor parameters. 
Additionally, AURELION's open interface enables the 
retrieval and analysis of data from virtual sensors. 

On the other hand, ASM offers a wide range of simulation 
models designed for automotive applications, which can be 
selectively integrated to meet specific requirements. ASM 
provides detailed insights into the vehicle's motion and 
displacement, allowing for the simulation of virtual IMU and 
GPS sensors. This approach, which integrates ASM and 
AURELION, provides a strong framework for accurately 
representing and analyzing vehicular dynamics and sensor 
systems. 

D. Post -Processing  
Different sensors require different post-processing 

methods. For camera sensors and LiDAR sensors the post-
processing is feature extraction. In this work, the camera 
images are used to identify other traffic participants and traffic 
signals in the virtual environment based on the YOLO [18] 
algorithm. YOLO V8 is used in this article and notable for its 
speed and efficiency, dividing the image into a grid and 
simultaneously predicting bounding boxes and probabilities 
for each grid cell. 

A key formula in YOLO calculates the confidence score 
for each bounding box, indicating the likelihood of object 
presence and the accuracy of the box location, which can be 
represented by the (2).  

 
𝐵𝐵𝑙𝑙𝑙𝑙𝑓𝑓(𝑂𝑂𝑂𝑂𝑂𝑂𝐶𝐶) = 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐) ∙ 𝐼𝐼𝑂𝑂𝐼𝐼𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡ℎ             (2) 

 
Here, 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐)is the probability that an object exists within 
the box, and 𝐼𝐼𝑂𝑂𝐼𝐼𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡ℎrepresents the intersection over union 
between the predicted and the actual bounding boxes. 

The virtual LiDAR sensor can obtain the object of the 
surrounding traffic participants and their location information 
in real time through Exwayz's [19] object recognition 
algorithm.  

In virtual simulation, we cannot directly obtain the global 
coordinates under the Geographic coordinate system provided 
by GPS but are based on the global coordinates of the 
simulation environment 𝑃𝑃𝑡𝑡𝑉𝑉𝑉𝑉. To obtain GPS information, it is 
necessary to convert the coordinates in the simulation 
environment into GPS coordinates. Since the virtual 
simulation environment is built based on the real scene, the 
initial position of the Ego vehicle in the virtual environment 
can be obtained as 𝑃𝑃0𝑉𝑉𝑉𝑉 = (𝑥𝑥0𝑉𝑉𝑉𝑉 ,𝑦𝑦0𝑉𝑉𝑉𝑉), which corresponds to 
the GPS data 𝑊𝑊0 = (𝑙𝑙𝑎𝑎𝑙𝑙0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0) in reality.  

When the vehicle starts to move, the position of the vehicle 
at any moment in the virtual environment can be expressed by 
𝑃𝑃𝑡𝑡𝑉𝑉𝑉𝑉 = (𝑥𝑥𝑡𝑡𝑉𝑉𝑉𝑉 ,𝑦𝑦𝑡𝑡𝑉𝑉𝑉𝑉) . The final GPS coordinate 𝑊𝑊𝑡𝑡 =
(𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡) can be represented by (3) and (4). 
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𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡 =
(𝑦𝑦𝑡𝑡𝑉𝑉𝑉𝑉 − 𝑦𝑦0𝑉𝑉𝑉𝑉)

𝑒𝑒𝑒𝑒
∙

180
𝜋𝜋

+ 𝑙𝑙𝑎𝑎𝑙𝑙0 (3) 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 =
(𝑥𝑥𝑡𝑡𝑉𝑉𝑉𝑉 − 𝑥𝑥0𝑉𝑉𝑉𝑉)

𝑒𝑒𝑒𝑒 ∙ cos �𝑙𝑙𝑎𝑎𝑙𝑙0 ∗
180
𝜋𝜋 �

∙
180
𝜋𝜋

+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 (4) 

 
Since the motion parameters of the car obtained from the 

simulation model are ground truth, which has no noise, while 
the data in the real IMU sensor includes zero-bias and random 
walk noise, the post-processing for the IMU sensor is to assign 
the motion state values to the real noise, whose noise values 
can be found in the manufacturer's parameter descriptions. 
Therefore, the simulation of real IMU values should be done 
by (5) and (6), where 𝜔𝜔�  and 𝑎𝑎�  are the noisy IMU 
measurement, 𝑂𝑂𝑔𝑔, 𝑂𝑂𝑎𝑎 are the zero bias of the gyroscope and 
accelerometer, and 𝑙𝑙𝑔𝑔, 𝑙𝑙𝑎𝑎 are their random walk noise. 

𝜔𝜔� = 𝜔𝜔 + 𝑂𝑂𝑔𝑔 + 𝑙𝑙𝑔𝑔 (5) 
 

𝑎𝑎� = 𝑎𝑎 + 𝑂𝑂𝑎𝑎 + 𝑙𝑙𝑎𝑎 (6) 

E. Result 
In this section, the results of the post-processing will be 

shown, as can be seen in Figure 4, where the vehicles and 
traffic signals at the crossroads in the image captured by the 
virtual camera are successfully detected, and the detected 
objects are boxed by the rectangular frame. After the object is 
recognized, its corresponding weight is displayed. 

 

 
Figure 4. Object Detection in the camera image 

The recognition of objects in the virtual LiDAR point 
cloud is illustrated in Figure 5, where the recognized objects 
are boxed by cubes. 

 

 
Figure 5. Object Detection in the Point-Cloud 

Figure 6 and Figure 7 show the data from the virtual IMU. 
In order to make the noise in the IMU data more visible, a 
release frequency of 100 Hz (the same as the real device) was 
used to simulate two hours of IMU stationary. In that case, the 
measurements of the noiseless IMU should be 0 except for the 
z-axis acceleration, which receives the effect of gravitational 
acceleration. With the added noise, the value of this IMU is 
around 0 and z -axis acceleration is around the -9.81. 

 
Figure 6. Noisy IMU data-acceleration 

 
Figure 7. Noisy IMU data - angular velocity 

Figure 8 shows the GPS values. Loading the converted 
GPS path into OpenStreetMap shows that its virtual GPS data 
basically matches the real driving path. 

 

 
Figure 8. Simulated GPS path on the map 
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VI. CONCLUSION AND FUTURE WORK 
This paper describes the simulation of virtual sensors in 

ERAGON, a highly configurable real-time test system for 
intelligent vehicles that simulates autonomous driving 
environments together with the functional vehicle AURONA. 
The paper focuses on camera, LiDAR, GPS and IMU sensors 
and post-processing techniques including feature extraction 
and noise modeling to refine the virtual sensor data for 
practical applications. The results section illustrates the 
effectiveness of the system in detecting vehicles and traffic 
signals through virtual sensor data, demonstrating the 
potential of virtual simulation in enhancing the design and 
testing of self-driving car technologies. The following work 
will continue to refine the techniques for virtual sensor 
simulation and post-processing, and fusion of multiple virtual 
sensors. 
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