
ICSEA 2011

The Sixth International Conference on Software Engineering Advances

ISBN: 978-1-61208-165-6

October 23-29, 2011

Barcelona, Spain

ICSEA 2011 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering -

Potsdam, Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

 1 / 612

ICSEA 2011

Forward

The Sixth International Conference on Software Engineering Advances (ICSEA 2011), held on October 23-29, 2011
in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and maintaining various
kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design,
implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced
methodologies, open source, agile software, as well as software deployment and software economics and
education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Open source software

 Agile software techniques

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving research productivity

Similar to the previous edition, this event continued to be very competitive in its selection process and very well
perceived by the international software engineering community. As such, it is attracting excellent contributions
and active participation from all over the world. We were very pleased to receive a large amount of top quality
contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2011 technical program committee as
well as the numerous reviewers. The creation of such a broad and high quality conference program would not have
been possible without their involvement. We also kindly thank all the authors that dedicated much of their time
and efforts to contribute to the ICSEA 2011. We truly believe that thanks to all these efforts, the final conference
program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and sponsors.
We also gratefully thank the members of the ICSEA 2011 organizing committee for their help in handling the
logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2011 was a successful international forum for the exchange of ideas and results between
academia and industry and to promote further progress in software engineering research.

We hope Barcelona provided a pleasant environment during the conference and everyone saved some time for
exploring this beautiful city.

 2 / 612

ICSEA 2011 Chairs

Advisory Chairs
Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) – Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Simon Tsang, Telcordia - Piscataway, USA

Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Special Area Chairs

Formal Methods

Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques

Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation

Florian Barth, University of Mannheim, Germany

 3 / 612

ICSEA 2011

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

ICSEA 2011 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) – Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Simon Tsang, Telcordia - Piscataway, USA

ICSEA 2011 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands

Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2011 Special Area Chairs

Formal Methods

Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques

Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation

Florian Barth, University of Mannheim, Germany

ICSEA 2011 Technical Program Committee

Adla Abdelkader University of Oran, Algeria

Mohammed Aboulsamh, University of Oxford, UK

Syed Nadeem Ahsan, TU-Graz, Austria

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Zakarya Alzamil, King Saud University - Riyadh, Saudi Arabia

Vincenzo Ambriola , Università di Pisa, Italy

Francesca Arcelli, UNiversity of Milano Bicocca, Italy

 4 / 612

Cyrille Artho, RCIS/AIST - Tokyo, Japan

Rodrigo Assad, CESAR, Brazil

Gilbert Babin, HEC Montréal, Canada

Rami Bahsoon, The University of Birmingham, UK

Muneera Bano, International Islamic University - Islamabad, Pakistan

Florian Barth, University of Mannheim, Germany

Gabriele Bavota, University of Salerno, Italy

Noureddine Bellhatir, University of Grenoble, France

Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain

Kenneth Boness, Reading University, UK

Crescencio Bravo Santos, University of Castilla-La Mancha - Ciudad Real, Spain

Hongyu Pei Breivold , ABB Corporate Research, Sweden

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

David W. Bustard, University of Ulster - Coleraine, UK

Fabio Calefato, University of Bari, Italy

José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal

Bengt Carlsson, Blekinge Institute of Technology, Sweden

Alejandra Cechich, Universidad Nacional del Comahue - Neuquen, Argentina

Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania

Antonin Chazalet, France Telecom (NRS), France

Yoonsik Cheon, University of Texas at El Paso, USA

Morakot Choetkiertikul, Mahidol University, Thailand

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto - Bilbao, Spain

Lirong Dai, Seattle University, USA

Darren Dalcher, Middlesex University - London, UK

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Claudio de la Riva, Universidad de Oviedo - Gijon, Spain

Steven A. Demurjian, The University of Connecticut - Storrs, USA

Giovanni Denaro, Università degli Studi di Milano - Bicocca, Italy

Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy

Van Nuffel Dieter, University of Antwerp, Belgium

Sebastian Dochow, University of Freiburg, Germany

Lydie du Bousquet, Laboratoire d'Informatique de Grenoble, France

Lars Ebrecht, German Aerospace Centre (DLR), Germany

Juho Eskeli, VTT, Finland

Umar Farooq, SMART Technologies Inc., Canada

Fausto Fasano, University of Molise, Italy

João M. Fernandes, Universidade do Minho - Braga, Portugal

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Stoyan Garbatov, Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento - Lisboa,

Portugal

José García-Fanjul, University of Oviedo, Spain

Angelo Gargantini, University of Bergamo, Italy

Christophe Gaston, CEA LIST - Gif sur Yvette, France

 5 / 612

Michael Gebhart KIT - Karlsruhe Institute of Technology, Germany

Paul J. Gibson, Telecom & Management SudParis, France

Robert L. Glass, Griffith University - Brisbane, Australia

Vic Grout, Glyndwr University - Wrexham, UK

Sebastian Günther, Otto-von-Guericke-Universität Magdeburg, Germany

Ensar Gul, Marmara University - Istanbul, Turkey

Zhensheng Guo, Siemens, Germany

Bidyut Gupta, Southern Illinois University - Carbondale, USA

Jon G. Hall, The Open University - Milton Keynes, UK

Herman Hartmann, Synopsys - Eindhoven, The Netherlands

Zeljko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia

Noraini Ibrahim University of Technology Malaysia (UTM), Malaysia

Naveed Ikram, International Islamic University - Islamabad, Pakistan

Muhammad Ilyas, Johannes Kepler University (JKU) - Linz, Austria

Visar Januzaj, Technische Universität Darmstadt, Germany

Antonio Javier García Sánchez, Technical University of Cartagena, Spain

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM) - Johor, Malaysia

Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun

Nevin Vunka Jungum, University of Technology Mauritius (UTM), Mauritius

Hermann Kaindl, TU-Wien, Austria

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden

Ahmed Kamel, Concordia College - Moorhead, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Tatjana Kapus, University of Maribor, Slovenia

Iman Keivanloo, Concordia University - Montreal, Canada

Petri Kettunen, Helsinki University of Technology, Finland

Holger Kienle, Mälardalen University, Sweden

William Knottenbelt, Imperial College London, UK

Radek Kocí, Brno University of Technology, Czech Republic

Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon

Ondrej Krejcar, VSB - Technical University of Ostrava, Czech Republic

Natalia Kryvinska, University of Vienna, Austria

Cyril S. Ku, William Paterson University, USA

Sukhamay Kundu, Louisiana State University - Baton Rouge, USA

Eugenijus Kurilovas, Vilnius University, Lithuania

Raquel Lacuesta Gilaberte, Zaragoza University, Spain

Alla Lake, LInfo Systems, LLC - Greenbelt, USA

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Cynthia Y. Lester, Tuskegee University, USA

Plinio Sá Leitão-Junior, Federal University of Goias, Brazil

Cati Lladó, Universitat de les Illes Balears, Spain

Maria Teresa Llano Rodriguez, Heriot-Watt University, UK

Sérgio F. Lopes, University of Minho, Portugal

Juan Pablo López-Grao, University of Zaragoza, Spain

Sarah Löw, University of Innsbruck, Austria

Ricardo J. Machado, University of Minho, Portugal

 6 / 612

Oliver Maeckel, Siemens AG, Corporate Technology - Munich, Germany

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

Eda Marchetti, ISTI-CNR-Pisa, Italy

Leonardo Mariani, University of Milan Bicocca, Italy

Adriana Martín, UNPA & GIISCo COMAHUE, Argentina

Andrew McDonough, Atos Origin, Spain

Karl Meinke, Blekinge Institute of Technology, Sweden

Jose Merseguer, Universidad de Zaragoza, Spain

Henry Muccini, University of L'Aquila, Italy

Muhanna Muhanna, University of Nevada - Reno, USA

Natalja Nikitina , KTH (Royal Institute of Technology) - Stockholm, Sweden

Mara Nikolaidou, Harokopio University of Athens, Greece

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering - IESE, Germany

Rocco Oliveto, University of Molise, Italy

Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany

Päivi Parviainen VTT, Software Technologies Center, Finland

Aljosa Pasic, ATOS Research, Spain

Fabrizio Pastore, University of Milano - Bicocca, Italy

Asier Perallos, University of Deusto, Spain

Óscar Pereira, Instituto de Telecomunicações - University of Aveiro, Portugal

David Pheanis, Arizona State University, USA

Christian Prehofer, Ludwig-Maximilians-Universität München, Germany

Claudia Raibulet, Università degli Studi di Milnao-Bicocca, Italy

Outi Räihä, Tampere University of Technology, Finland

Muthu Ramachandran, Leeds Metropolitan University, UK

Hassan Reza, University of North Dakota - School of Aerospace, USA

Samir Ribic, University of Sarajevo, Bosnia and Herzegovina

Elvinia Maria Riccobene, University of Milan - Crema, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

María Luisa Rodríguez Almendros, Universidad de Granada, Spain

Antoine Rollet, University of Bordeaux, France

Siegfried Rovrais, TELECOM Bretagne, France

Patrizia Scandurra, University of Bergamo - Dalmine, Italy

Giuseppe Scanniello, Università degli Studi della Basilicata - Potenza, Italy

Christelle Scharff, Pace University, USA

Rainer Schmidt, HTW-Aalen, Germany

István Siket, University of Szeged, Hungary

Bernd Steinbach, Freiberg University of Mining and Technology, Germany

Thomas Stocker, University of Freiburg, Germany

Dinesh Subhraveti, IBM Almaden Research Center - San Jose, USA

Daniel Sundmark, Mälardalen University, Sweden

 7 / 612

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) - Ishikawa, Japan

Hadaytullah, Tampere University of Technology, Finland

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Pierre Tiako, Langston University - Oklahoma, USA

Durga Toshniwal, Indian Institute of Technology Roorkee - Uttaranchal, India

Davide Tosi, University of Insubria - Como, Italy

Peter Trapp, Ingolstadt, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Simon Tsang, Telcordia - Piscataway, USA

Javier Tuya, Universidad de Oviedo - Gijón, Spain

Roland Ukor, FirstLinq Limited, UK

Sergiy Vilkomir, East Carolina University - Greenville, USA

Rainer Weinreich, Johannes Kepler University Linz, Austria

Martin Wojtczyk, Technische Universität München, Germany & Bayer HealthCare, USA

Maribel Yasmina Santos, University of Minho, Portugal

Michal Žemlicka, Charles University, Czech Republic

Qiang Zhu, The University of Michigan - Dearborn, USA

 8 / 612

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 612

Table of Contents

Software Product Line Agility
Ahmed Abouzekry and Riham Hassan

1

An Agile Model-Driven Development Approach - A case study in a finance organization
Mina Bostrom Nakicenovic

8

A Planning Poker Tool for Supporting Collaborative Estimation in Distributed Agile Development
Fabio Calefato and Filippo Lanubile

14

Scrum Maturity Model: Validation for IT organizations’ roadmap to develop software centered on the client role
Alexandre Yin, Soraia Figueiredo, and Miguel Mira da Silva

20

Usage of Robot Framework in Automation of Functional Test Regression
Stanislav Stresnjak and Zeljko Hocenski

30

A Test Purpose and Test Case Generation Approach for SOAP Web
Sebastien Salva and Issam Rabhi

35

Ev-ADA: A Simulation-driven Evaluation Architecture for Advanced Driving-Assistance Systems
Assia Belbachir, Jean-Christophe Smal, Jean-Marc Blosseville, and Sebastien Glaser

43

On the Preliminary Adaptive Random Testing of Aspect-Oriented Programs
Reza Meimandi Parizi and Abdul Azim Abdul Ghani

49

Devising Mutant Operators for Dynamic Systems Models by Applying the HAZOP Study
Rodrigo Fraxino Araujo, Auri Marcelo Rizzo Vincenzi, Francois Delebecque, Jose Carlos Maldonado, and
Marcio Eduardo Delamaro

58

A Static Robustness Grid Using MISRA C2 Language Rules
Mohammad Abdallah, Malcolm Munro, and Keith Gallagher

65

A Specifications-Based Mutation Engine for Testing Programs in C#
Andreas S. Andreou and Pantelis M. Yiasemis

70

Component-based Software System Dependency Metrics based on Component Information Flow Measurements
Majdi Abdellatief, Abu Bakar Md Sultan, Abdul Azim Abd Ghani, and Marzanah A.Jabara

76

Module Interactions for Model-Driven Engineering of Complex Behaviour of Autonomous Robots
Vladimir Estivill-Castro and Rene Hexel

84

 1 / 7 10 / 612

Case Study for a Quality-Oriented Service Design Process
Michael Gebhart, Suad Sejdovic, and Sebastian Abeck

92

Meta-Model for Global Software Development to Support Portability and Interoperability in Global Software
Development
Bugra Mehmet Yildiz and Bedir Tekinerdogan

98

A New Approach to Software Development Process with Formal Modeling of Behavior Based on Visualization
Abbas Rasoolzadegan and Ahmad Abdollahzadeh Barfourosh

104

Non-Functional Requirements for Business Processes in the Context of Service-Oriented Architectures
Oliver Charles and Bernhard Hollunder

112

A framework for adapting service-oriented applications based on functional/extra-functional requirements
tradeoffs
Raffaela Mirandola, Pasqualina Potena, Elvinia Riccobene, and Patrizia Scandurra

118

PSW: A Framework-based Tool Integration Solution for Global Collaborative Software Development
Juho Eskeli, Jon Maurolagoitia, and Carmen Polcaro

124

Feature-Oriented Programming and Context-Oriented Programming: Comparing Paradigm Characteristics by
Example Implementations
Nicolas Cardozo, Sebastian Gunther, Theo D'Hondt, and Kim Mens

130

Soft Constraints in Feature Models
Jorge Barreiros and Ana Moreira

136

Feature Modeling of Software as a Service Domain to Support Application Architecture Design
Karahan Ozturk and Bedir Tekinerdogan

142

Adding Support for Hardware Devices to Component Models for Embedded Systems
Luka Lednicki, Juraj Feljan, Jan Carlson, and Mario Zagar

149

A Service Component Framework for Multi-User Scenario Management in Ubiquitous Environments
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier

155

A Graph-Based Requirement Traceability Maintenance Model
Vikas Shukla, Guillaume Auriol, and Claude Baron

161

A Systematic Mapping Study on Patient Data Privacy and Security for Software System Development
Isma Masood and Saad Zafar

166

Impact on the inclusion of security in the UPnP protocol within the Smart Home 171

 2 / 7 11 / 612

Alberto Alonso Fernandez, Alejandro Alvarez Vazquez, Maria del Pilar Almudena Garcia Fuente, and Ignacio
Gonzalez Alonso

OntoLog: Using Web Semantic and Ontology for Security Log Analysis
Clovis Nascimento, Felipe Ferraz, Rodrigo Assad, Danilo Leite, and Victor Hazin

177

Intrusion Detection with Symbolic Model Verifier
Ines Ben Tekaya, Mohamed Graiet, and Bechir Ayeb

183

Security Quality Assurance on Web Applications
Rodrigo Assad, Felipe Ferraz, Henrique Arcoverde, and Silvio Meira

190

On Generating Security Implementations from Models of Embedded Systems
Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjodin

198

Proposal for Ground Shipping High Volume of Data Parameter in Supersampling Unmanned Aircraft Through
Radio Modem
Manuel Sanchez Rubio, Vicente Millet Coll, Neves Seoane Vieira, Luis De Marcos Ortega, and Jose Javier
Martinez Herraiz

202

The Smart Persistence Layer
Mariusz Trzaska

206

UML-Based Modeling of Non-Functional Requirements in Telecommunication Systems
Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjodin

213

A maintenance Approach of a BJI Index Configuration
Said Taktak and Jamel Feki

221

Software Cache Eviction Policy based on Stochastic Approach
Stoyan Garbatov and Joao Cachopo

227

Performance Simulation of a System's Parallelization
Markus Meyer, Helge Janicke, Peter Trapp, Christian Facchi, and Marcel Busch

233

Towards Executable Business Processes with the Problem Oriented Engineering Process Algebra
Dariusz W. Kaminski, Jon G. Hall, and Lucia Rapanotti

239

Optimal Functionality and Domain Data Clustering based on Latent Dirichlet Allocation
Stoyan Garbatov and Joao Cachopo

245

Formal Parsing Analysis of Context-Free Grammar using Left Most Derivations
Khalid A. Buragga and Nazir Ahmad Zafar

251

 3 / 7 12 / 612

Functional Complexity Measurement: Proposals and Evaluations
Luigi Lavazza and Gabriela Robiolo

257

Design Patterns for Model Transformations
Kevin Lano and Shekoufeh Kolahdouz-Rahimi

263

Component-oriented Software Development with UML
Nara Sueina Teixeira and Ricardo Pereira e Silva

269

Metrics in Distributed Product Development
Maarit Tihinen, Paivi Parviainen, Rob Kommeren, and Jim Rotherham

275

Edola: A Domain Modeling and Verification Language for PLC Systems
Hehua Zhang, Ming Gu, and Xiaoyu Song

281

A Practical Method for the Reachability Analysis of Real-Time Systems Modelled as Timed Automata
Abdeslam En-Nouaary and Rachida Dssouli

287

Reverse Engineering of Graphical User Interfaces
Ines Coimbra Morgado, Ana Paiva, and Joao Pascoal Faria

293

Towards Design Method Based on Formalisms of Petri Nets, DEVS, and UML
Radek Koci and Vladimir Janousek

299

Invariant Preservation by Component Composition Using Semantical Interface Automata
Sebti Mouelhi, Samir Chouali, and Hassan Mountassir

305

Method for CMMI-DEV Implementation in Distributed Teams
Tiago da Cunha Oliveira and Miguel Mira da Silva

312

Advanced Object Oriented Metrics for Process Measurement
Shreya Gupta and Ratna Sanyal

318

Quality Issues in Global Software Development
Sanjay Misra and Luis Fernandez-Sanz

325

A Systematic Review of Self-adaptation in Service-oriented Architectures
Maria del Pilar Romay, Luis Fernandez-Sanz, and Daniel Rodriguez

331

A Formal Specification of G-DTD:A Conceptual Model to Describe XML Documents
Zurinahni Zainol and Bing Wang

338

 4 / 7 13 / 612

Formal Specification of Software Design Metrics
Meryem Lamrani, Younes El Amrani, and Abdelaziz Ettouhami

348

E-FOTO: Development of an Open-Source Educational Digital Photogrammetric Workstation
Jorge Luis N. S. Brito, Rafael A. Aguiar, Marcelo T. Silveira, Luiz Carlos T. C. Filho, Irving S. Badolato, Paulo
Andre B. Pupim, Patricia F. Reolon, Joao A. Ribeiro, Jonas R. Silva, Orlando B. Filho, and Guilherme L. A. Mota

356

Vitalizing Local ICT-industry by Acceleration of FLOSS-based Software Product Development: A Case Study of
the ICT-industry in Okinawa
Jun Iio, Yasuyuki Minei, Masato Kubota, and Kazuhiro Ooki

362

Empirical Case Study of Measuring Productivity of Programming Language Ruby and Ruby on Rails
Tetsuo Ndoa and Chi Jia

367

Querying Source Code Using a Controlled Natural Language
Oleksandr Panchenko, Stephan Muller, Hasso Plattner, and Alexander Zeier

369

Towards Complementing User Stories
Christian Kop

374

Performance Evaluation of a Generic Deployment Infrastructure for Component- based S/W Engineering
Abdelkrim Benamar and Noureddine Belkhatir

380

A Proof-based Approach for Verifying Composite Service Transactional Behavior
Lazhar Hamel, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, and Walid Gaaloul

386

Certification of MDA Tools: Vision and Application
Oksana Nikiforova, Natalja Pavlova, Antons Cernickins, and Tatjana Jakona

393

Automatic Generation of Graphical User Interfaces From VDM++ Specifications
Carlos Nunes and Ana Paiva

399

An Approach to Model, Configure and Apply QoS Attributes to Web Services
Ahmed Al-Moayed and Bernhard Hollunder

405

Transformation of Composite Web Service for QoS Extension into ACMEArmani
Amel Mhamdi, Raoudha Maraoui, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, and Eric Cariou

411

ATL Transformation of UML 2.0 for the Generation of SCA Model
Soumaya Louhichi, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, Walid Gaaloul, and Eric Cariou

418

Towards the Development of Integrated Reuse Environments for UML Artifacts
Moataz Ahmed

426

 5 / 7 14 / 612

An Automated Translation of UML Class Diagrams into a Formal Specification to Detect Inconsistencies
Khadija El Miloudi, Younes El Amrani, and Abdelaziz Ettouhami

432

UML 2.0 Profile for Structural and Behavioral Specification of SCA Architectures
Wided Ben Abid, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, Walid Gaaloul, and Eric Cariou

439

Process Improvement and Knowledge Sharing in Small Software Companies: A Case Study
Minna Kivihalme, Anne Valsta, and Raine Kauppinen

447

Choosing a Business Software Systems Development and Enhancement Project Variant on the basis of
Benchmarking Data – Case Study
Beata Czarnacka-Chrobot

453

Towards Functional and Constructional Perspectives on Business Process Patterns
Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, and Herwig Mannaert

459

Practical Experiences with Software Factory Approaches in Enterprise Software Delivery
Alan Brown, Ana Lopez, and Luis Reyes

465

A "Future-Proof" Postgraduate Software Engineering Programme: Maintainability Issues
J Paul Gibson and Jean-Luc Raffy

471

Using Software Engineering Principles to Develop a Web-Based Application
Cynthia Lester

477

How to Think about Customer Value in Requirements Engineering
Xinwei Zhang, Guillaume Auriol, Claude Baron, and Vikas Shukla

483

Migrating Functional Requirements in SSUCD Use Cases to a More Formal Representation
Mohamed El-Attar and James Miller

487

KM-SORE: Knowledge Management for Service Oriented Requirements Engineering
Muneera Bano and Naveed Ikram

494

Brainstorming as a Route to Improving Software Processes
Celestina Bianco

500

Web-Based Focus Groups for Requirements Elicitation
Carla Farinha and Miguel Mira da Silva

504

Mapping Architectural Concepts to SysML Profile for Product Line Architecture Modeling
Shahliza Abd Halim, Mohd Zulkifli Mohd Zaki, Noraini Ibrahim, Dayang N. A. Jawawi, and Safaai Deris

510

 6 / 7 15 / 612

Exploring Architecture Design Alternatives for Global Software Product Line Engineering
Bedir Tekinerdogan, Semih Cetin, and Ferhat Savci

515

Towards CMMI-compliant MDD Software Processes
Alexandre Marcos Lins de Vasconcelos, Giovanni Giachetti, Beatriz Marin, and Oscar Pastor

522

From Boolean Relations to Control Software
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci

528

Empirical Evidence in Software Architecture: A Systematic Literature Review Protocol
Nadia Qureshi, Naveed Ikram, Muneera Bano, and Muhammad Usman

534

Agile Development of Interactive Software by means of User Objectives
Begona Losada, Maite Urretavizcaya, and Isabel Fernandez de Castro

539

REfIS: A Stage-based Methodology for Eliciting Requirements
Felipe Ferraz, Leopoldo Ferreira, Rodrigo Assad, Renato Ferreira, and Silvio Meira

546

A Metamodel for Representing Safety LifeCycle Development Process
Yulin Zhang, Brahim Hamid, and Damien Gouteux

550

On the Extensibility of Plug-ins
Vanea Chiprianov, Yvon Kermarrec, and Siegfried Rouvrais

557

Effective Task Allocation in Distributed Environments: A Traceability Perspective
Salma Imtiaz and Naveed Ikram

563

An Agile Method for Model-Driven Requirements Engineering
Grzegorz Loniewski, Ausias Armesto, and Emilio Insfran

570

Evidence in Requirements Engineering: A Systematic Literature Review Protocol
Talat Ambreen, Muhammad Usman, Naveed Ikram, and Muneera Bano

576

Success Factors Leading to the Sustainability of Software Process Improvement Efforts
Natalja Nikitina and Mira Kajko-Mattsson

581

Software Quality Assessment and Error/Defect Identification in the Italian Industry Preliminary Results from a
State of the Practice Survey
Fausto Fasano, Giuseppe Scanniello, Andrea De Lucia, and Genoveffa Tortora

589

Revisiting the Requirements Communication Problem from a Knowledge Management Perspective
Hermann Kaindl and Lukas Pilat

595

Powered by TCPDF (www.tcpdf.org)

 7 / 7 16 / 612

Software Product Line Agility

Ahmed Abouzekry

Computer Science Department

Arab Academy for Science and Technology

Cairo, Egypt

abouzekry@yahoo.com

Riham Hassan

Computer Science Department

Arab Academy for Science and Technology

Cairo, Egypt

riham@cairo.aast.edu

Abstract— Software reuse constitutes a significant challenge

for different development communities, while systematic reuse

is a difficult target to achieve. Software Product Line (SPL)

has been nominated as one of the effective approaches

promoting software reuse. In this paper, we propose the

Enterprise Product Line Software Process (EPLSP) that

integrates practices of both the Enterprise Unified Process

(EUP) and the Agile Unified Process (AUP). This integration

benefits the engineering process with both reusable

components architecture and fast time to market final

products. EPLSP strategy focuses on the two major aspects of

SPL namely the Core Assets (CA) and the Product

Development (PD). CAs are those reusable artifacts and

resources that form the basis for the SPL. PD involves

building, acquisition, purchasing, retrofitting earlier work of

software products, or any combination of these options.

EPLSP promotes a clear up-front architecture in the CA while

employing agility for PD. Constructing an up-front

architecture for CA is effective in enhancing reusability and

increasing productivity. Using agility in PD is meant to

improve the time to market variable. We demonstrate the

EPLSP approach with an SME case study on a Retail

Management System (RMS) named FOCUS. Further, we

leverage an evaluation framework to assess the effectiveness of

EPLSP when applied to FOCUS. This case should define

clearly the preferred areas of agility interference in the SPL,

and where we need architecture to provide a sustainable

production.

Keywords- Enterprise Unified Process; Agile Unified

Process; Software Product line.

I. INTRODUCTION

Modules, objects, components and services are all

different patterns of the reusability practice. Software

Product Line (SPL) is recognized as an approach for

systematic reuse [1]. SPL matches software with different

industries representing it as a manufactured tangible

product. Further, it is one of the most important practices in

sustainable organizations for the ultimate cost and time

reduction [1].

SPL as an effective reuse approach is highly recognized

in software enterprises. Small and Medium Enterprises

(SMEs) do not firmly apply principles, but one can still

recognize a chaotic version of such principles over their

determined or formal processes.

SPL consists of three main activities namely Core Asset

(CA) Development, Product Development (PD) and

Management. CAs represents the basic reusable components

in the SPL. CAs could be a class, a blueprint, a series of

programming code or even a document, while the PD

provides the means of final customer usable product. SPL

management activity plays critical role in coordinating,

supervising, planning and other administration practices

needed across the production activities.

Agile methods promote productivity and values of
iterative development over heavy-weight methodologies
through number of practices that enable cost effective change
[2]. Agile and SPL merge of practices covers the increasing
need for shorter time to market and higher product quality
[7]. On the other hand, the more the SPL becomes agile, it
loses some of its essential properties, as strategic, planned
reuse which yields to predictable results. The SPL reuse
practice requires precise support in different areas like
organizational capabilities, management and technical roles,
architecture optimization…etc seeking a systematic approach
for reusability. Incorporating agile practices in developing
SPL raises some questions like what is the extent of
interfering between the agile and SPL? And could agile fit in
both CAs and PD?

SPL complexity promotes the need for an up-front

design and heavy architecture [8]. CA development should

conform to some standards and include detailed description

and using instructions even if this CA is a Commercial Off-

The-Shelf (COTS) component.

In this paper, we propose the Enterprise Product Line

Software Process EPLSP as a roadmap for the

implementation of the SPL with integration of agile

practices. EPLSP covers the essential architectural practices

in CA building, to solve the asset management pitfalls, and

the use of agile practices in the PD to enhance the time to

market variables.

EPLSP integrates the Enterprise Unified Process (EUP)

[9] with the Agile Unified Process (AUP) [10]. EUP is an

extension of the IBM Rational Unified Process (RUP) [11].

AUP is a simplified version of the IBM RUP that applies

agile techniques in modeling, development and management

[10]. Using the EUP overcomes the problems of managing

such a family of products; like change management,

strategic reuse…etc. EUP enables the enterprise to apply the

1

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 17 / 612

governance practices and disciplines (project management,

retirement management…etc.) within the process. AUP

allows for exploiting the agile essence to lighten the

response to market requirements needed to enhance

productivity. Further, AUP enables the customization of the

development process to multiple agile processes or some of

their combinations like SCRUM and XP. EPLSP focuses on

the extent of agility needed in the SPL practice and where

agility best fits in the SPL development life cycle. Further,

EPLSP depicts where SPL could most benefit from its goals

in the production level.

The rest of this paper is structured as follows: Section 2

surveys the state of the art in integrating agile practices into

SPL. Section 3 depicts the EPLSP process and the artifacts

produced in each step. Section 4 demonstrates EPLSP on

the Retail Management System (RMS) FOCUS. Finally,

Section 5 concludes the paper with remarks for future work.

II. RELATED WORK

Investigating whether Agile and SPL could integrate to

complement each other; there stills a debate among the

research community about its extent and feasibility.

Tian and Cooper [2] argue that the combination of Agile

and SPL forming the Agile Software Product Line

Methodology (ASPLM) could shorten time to market

maintaining the quality, in which the ASPLM leaves room

for futher development work to meet customer's changing

requirements, rather than pure customization of CA. They

showed that CA, PD and SPL Management activities need

to be investigated for possible agility.

Carbon et al. [3] had conducted a class-room experiment

following the motivation to present preliminary results

showing the successful merge between Agile and SPL. They

concluded to a result that agile in SPL reduces time spent on

design (Increases the speed), while SPL keeps changes to

minimum (Increases quality).

On his research, Geir K. Hanssen [4] stated an answer

for how to combine Agile and SPL. In a successful

marriage, he stated that this combination leads to; risk

reduction, organizational development, reduced

maintainability, community building, openness and

visibility and company culture improvement, contributing to

the emergence of a software ecosystem, which refers to how

organizations should exist together as an ecosystem.

One of the popular case studies conducted by the

Software Engineering Institute in Carnegie Mellon

University is Salion [5]. Salion is an SME with no

experience in its application area. It pursued a reactive

approach to its Agile SPL achieving a phenomenal reuse

level of 97% with its 21 employees counting seven

developers only.

Despite the success of the previous cases, they did not

take in consideration the difference in nature between the

CA and the PD. As any other production the sustainability

of the production depends on the systematic the whole

process, which should be only achieved by architecture

III. ENTERPRISE PRODUCT LINE SOFTWARE PROCESS

(EPLSP)

We propose EPLSP as a software process with the goal of

effective production of SPL that better meets its market

requirements. EPSLP integrates agile and SPL practices

from the two extensions of IBM RUP namely EUP and

AUP. EPLSP covers the Enterprise disciplines needed in the

SPL to improve the change management and architectural

variability in the CA phase. These parameters are improved

while taking into account the increasing demand on lower

time to market and quality software production through

employing agile practices.

A. EUP and AUP

EUP is an information technology lifecycle that

encompasses the activities of an IT department. Further,

EUP adds the enterprise disciplines required to effectively

manage organizations' portfolio of systems as described in

Figure 1.

Figure 1. The Scope of different process lifecycles.

EUP extends RUP to include the operation and support

of a system after being in production along with its eventual

retirement, where the two new phases benefits the concept

of strategic reuse promoted by the SPL. Further, EUP

enhances the overall process with the separation of the

disciplines into; development, support and enterprise as

illustrated in Figure 2.

Figure 2: Enterprise Unified Process [9]

Business Lifecycle

IT Lifecycle - EUP

System Lifecycle

System Development Lifecycle - RUP

2

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 18 / 612

AUP is an Ultra-lightweight variant of RUP, with the

work disciplines and products simplified and reduced as

shown in Figure 3.

Figure 3: The Agile Unified Process.

We employ the practices of EUP and AUP that facilitate

different management levels and all involved parties in the

production activities to highly control tasks associated to

their roles. Those practices complement the EPLSP and

close the IT department circle within a tightly managed

manner with the following recommendations;
 Documenting architecture using Unified Modeling

Language (UML)

 Applying SCRUM as an Agile project management

practice

 COTS could be used across the product line

 Configuration Management software is essential to

manage releases

 Specific software to manage commonality and variability

to enhance the strategic reuse option.

The different nature of the CA and the products is one of

the major challenges facing the application of EUP and

AUP to SPL. This marriage between EUP and AUP is

intended to facilitate the application of both processes to

SPL. CA needs the architecture provided by the EUP and

the extension of the production and retirement phases. The

need for fast response to market for the products could be

achieved with agility. AUP has the same phases as EUP but

simplified, so there is no need to rework the architecture of

the artifacts to fit in the other SPL production activities.

B. EPLSP Process

EPLSP provides means to integrate agile practices into

the SPL development life cycle. Figure 4 depicts the overall

process structure in EPLSP. The initial phase on the bottom

of the process consists of the domain engineering, in which

it represents the knowledge needed to build the reusable

artifacts like; scoping, requirement engineering, design,

testing, and the realizing of the commonality and variability

of the product line practice with the CA development

activities. In the middle there exists the CA base which

contains the reusable artifacts. The right downward arrow

represents the reactive approach in which the start point is

the PD.

The PD activity is split into two tasks, development task

and release task for two reasons, the separation between the

deployment and the production which differs in the

application of disciplines, and to maintain a direct agile

incremental iterative practice.

The management tent could be seen as the containing

rounded box, providing SPL process with the needed

management disciplines solely.

Figure 4. EPLSP Conceptual Model

CA development is the activity intended to build

the reusable components of the SPL. CA development

requires prior domain expertise, heavy architecture and

management capabilities. This could be achieved only

by a well defined engineering architectural centric

process to ease the reusability of this asset. EPLSP

proposes the application of the EUP as a basic process

for the domain engineering and CA instantiation as

shown in Figure 5.

3

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 19 / 612

Figure 5. EPLSP Milestones

PD activity is usually in need of the fast response to

customer requirements, and early delivery of quality

products. These goals could be achieved by the agile

methodologies, for this reason EPLSP preferably uses AUP

as a simplified version from the unified process to eliminate

unneeded heavy architecture. Figure 5 determines

milestones in every phase of the EPLSP.

IV. FOCUS
®

 RMS

This section describes an RMS named FOCUS to

demonstrate the feasibility of the EPLSP process. Further,

we discuss FOCUS commonalities and the challenges we

faced during and after the development process.

A. FOCUS® subsystems:

FOCUS® is a mini ERP specially developed for small

and medium retail outlets. This system could work as one

unit, integrated and linked over one database or every

subsystem separated as a single unit as depicted in Figure 6.

Figure 6. FOCUS® RMS Deployment Diagram.

FOCUS is composed of the following subsystems:

 FOCUS® stock control, which holds the essential stock

transactions; basic entries, receiving, item cards…etc.

 FOCUS® Point of Sale (POS): is where daily sales

transactions managed by salesperson in the checkout

area of an outlet or a shop.

 FOCUS® General Ledger (GL): reflects automatically

the daily selling, receiving and monetary transactions to

journal entries and accounts, and reports financial

statements.

 FOCUS® back office is the administrative tool, which

facilitates higher management to monitor transactions,

authorize permissions, link subsystems and modify

system settings.

The system was primarily developed to target large

sector of retail outlets with the following features; installed,

not customizable, self setup with a simple instructions guide

and easy to understand and apply. Since these requirements

could rarely be found in SME's business software, it was

planned to produce enhanced version yearly with new

features; based on wide survey for user requirements.

Figure 7 depicts the system requirements and

demonstrate the similarities as classes, layers and complete

sub modules; like the security module, transaction file and

product catalogue.

Figure 7. FOCUS® RMS System Requirements.

1) Company

The software was built in a small enterprise named

SCOPE Communications, in which it employs 13 people; 6

only is counted as developers, and it took 18 months to

release the basic version of the full system.

This basic version of the system contains 135 KLOC in

total, with 160 database tables, 1100 stored procedures, 450

forms and 320 reports covering the four modules.

The core process was a simple version of the incremental,

iterative process; it was described and documented using the

UML. The system was built using a similar proactive

approach to the SPL's, with no use of any Configuration

4

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 20 / 612

Management software. Test cases are prepared with two

concerns; business cases depend on customer stories and

technical cases over the functions, for data integrity.

2) FOCUS Production Challenges

From our study of the former system we have observed

some challenges resulting from the application of the

previous process, like;
 Recurrent costs associated with the reuse of non-

architectural artifacts

 Higher risk resulted from unplanned resource allocation

and estimation

 Complexity of managing the commonality and

variability of artifacts

 Wasted time resulted from the duplication of code and

documentation

 Corrective bug fixing rather than preventive associated

with the unplanned test cases

 Customers frequent complaint from support

3) EPLSP and FOCUS

Appling EPLSP to FOCUS RMS will help the company

well manage the SPL process, with the allocation of the

architectural centric activities in the needed areas only;

which is intended to well manage changes across the

process, and the use of agile practices in the PD activity to

improve the market response.

4) Refactoring FOCUS®

As a retail management system the product catalogue

regarded as the main component in the solution, therefore;

the selected artifact to be redesigned using the EPLSP is the

product catalogue, which contains the building features of

any product like name, description, type, category, price,

etc.

The product catalogue is considered a sub module, and is

completely used in one of the main modules, and partially

used in the three other modules.

5) Applying EPLSP to FOCUS

The product catalogue features totally differs as the type

of products or services provided by the outlet itself,

however there are some common requirements in this sub

module.

The architecture definition in the EPLSP elaboration

phase defines a practice to manage the commonalities and

variability of the product catalogue. This covers the change

management problem and reduces the recurrent costs

resulting from unplanned reusability.

The main goal of the EUP unique production phase is to

keep systems useful and productive after deployment, in

which it encompasses the operation and support of the

system. Also, this phase provide some means of quality

assurance by monitoring the operation of the system when

working and recovering any problem. These practices help

the company manage the post deployment stage

professionally, which develops customer loyalty.

We are redeveloping the product catalogue as a sub

module with EPLSP maintaining the same functionality of

the catalogue. We compare the development experience

using EPLSP with its counterpart using the older version of

the system developed with an iterative simple RUP. The

metrics used for our comparison are depicted below in

subsection 6.

The product catalogue itself consists of two parts. One

part is recognized as a core asset, which includes the search

base and the basic entry forms like category, product,

limits…etc. The second part is realized as a product which

includes product labeling, reports…etc.

We develop the product catalogue core asset using EUP

as the part of EPLSP that incorporates a complete

architecture, while developing the product part using

SCRUM. In both parts we use an incremental iterative

process.

In the older version of the FOCUS system, we employed

a simple iterative and incremental undefined process to

develop the whole SPL. The sequence of the process steps

mostly relied on the task, the feature or even on the

developer. The older process employed code comments and

traditional UML diagrams for documentation.

Using EPLSP, we define 5 essential practices. We use a

tailored version of SCRUM at the product part of the

catalogue and a set of architectural templates and plans in

the CA part. Further, we utilize configuration management

software and a set of chosen UML diagrams for core assets

and the products. We define the development incremental

steps as shown in Figure 8.

Figure 8. Development Increment.

Draw GUI

Accepted

Building

Unit Testing

Passed

Integrate

Integration Test

Passed

User Test

Passed

Release & Configure

5

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 21 / 612

For the product part of the catalogue, we define a set of

SCRUM roles namely the project manager, the product

owner and the developers. The project manager acts as the

SCRUM master, while the marketing team acts as product

owners. Further, we have a team of a senior developer and

two junior developers.

A daily meeting is held with the team to discuss the

progress and the problems. Further, a weekly meeting is

held with the presence of the product owner to present the

features achieved thus far. The weekly meeting aims also at

collecting feedback from the product owner while

developing new ideas and requirements. Finally, a monthly

meeting is held to test and show the released version, which

could be installed at the customer site for free. Such

installation allows the support team to record comments

within two or three days.

In the production phase, the product backlog is

developed in cooperation between the SCRUM master and

the product owners. The product backlog scenarios are

prioritized while dependencies are identified. Further, the

product backlog is revised and updated in every monthly

meeting. The sprint backlog defines the current set of

features in the construction phase, its tasks and associations

to team members. These backlogs contain:
 Use cases, Class and Activity diagram.

 Test cases.

 Schedules and job orders.

Finally, the released version of the product is configured

and generated with a set of user instructions.

We produce the following set of architectural documents

during the development of catalogue CA part. Such

documents contain the complete domain architecture that

depicts the infrastructure CAs. Infrastructure CAs include

the CA part of the product catalogue along with other CAs :
 Detailed business case.

 Requirements and specifications plan.

 Test plan for the 3 testing levels, unit test,

integration test and user test.

 Software development plan

 Iteration plan.

 Change and configuration plan.

 Deployment and support plan.

Unlike the product development, the configured version

of the core asset is augmented with the developer’s manual

and deployment instructions.

6) Process Validation

We utilize a number of metrics to assess the effectiveness

of EPLSP and compare it to the classical iterative or

incremental development process. These metrics are defined

to assess the effectiveness of the merge between SPL

development and agile process and it was stated and used in

Salion's Agile SPL [6] as follows:

 Reusability: Salion [6] defines the reusability of its system

with a percentage level that is equal to common files used in

all members of the product family divided by the total number

of files generated across the product line (Reusability level%

= common files/total SPL files).

 Time to market: It was proposed in the same case [6] as the

manpower used per month to produce the first customer's

product (# of persons-month).

 Eliminating duplicates: We measure it by the percentage of

eliminated duplicates using the classic Line of Code (LOC)

metrics (Eliminated Duplicates% = # of duplicated LOC/total

LOC).
 Productivity: This metric is measured using popular LOC and

Use Case metrics as an extension of the Function Point

metrics as a complex subject concerning a relation between

different resources or artifacts, the use case metrics defines an

early – prior development measure of software functionality

rather than the function point, which could only be used after

development.(Usecase/hour, LOC-person/month…etc)

 Cost reduction: Similar to of the productivity metrics, but it is

preferred to be measured by the Use Case metrics. Also either

LOC or Function Point could be used, but regarding the LOC

it will be subjective due to the difference in number of

produced lines from one person to another within the same

class. And for the function point analysis it could be

determined only after the development completion; instead of

early determination of cost in the case of Use Case metric.(

UseCase-person/day)

 Defect Removal Efficiency (DRE): Is one of the popular

quality metrics which is intended to measure the discovered

errors during development in relation to the total errors and

defects found.

(DRE=E/(E+D) in which E is the number of errors and D

is the number of defects).

V. CONCLUSION

This paper proposed EPLSP to address the possible

integration between SPL and agile. Applying this process to

FOCUS RMS addresses most of the challenges the company

faced during the production of the software using the

classical process. Further, the proposed EPLSP addresses

the time to market challenge, which is one of the major SPL

challenges. EPLSP addresses the challenges through

leveraging agility in the suitable areas of integration of the

EPLSP which helps the production quality software

products.

Applying EPLSP to FOCUS RMS, our potential

challenges include technical and social challenges.

Technical challenges include training the development staff

in the EPLSP development process and reworking the

design. Our social challenges confine the commitment of the

upper management to change and restructuring the

organization so that the new process is accommodated.

6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 22 / 612

REFERENCES

[1] Linda Northrop. 2008. Software Product Lines Essentials.
Software Engineering Institute, Carnegie Mellon University.
http://www.sei.cmu.edu/productlines/frame_report. [accessed,
April 2011]

[2] Cunningham W, Manifesto for Agile Software Development.
2001. [cited 2008-09-30]; Available from:
http://www.agilemanifesto.org. [accessed, March 2011]

[3] Tian, K. and K. Cooper, Agile and Software Product Line
Methods: Are They So Different?, in 1st International
Workshop on Agile Product Line Engineering.2006.

[4] Carbon, R., et al. Integrating Product Line Engineering and
Agile Methods: Flexible Design Up-front vs. Incremental
Design. in Workshop on Agile Product Line Engineering.
2006.

[5] Hanssen, G.K. and T.E. Fægri, Process Fusion - Agile
Product Line Engineering: an Industrial Case Study. Journal
of Systems and Software, 2007, pp. 836-849.

[6] Clements, P. and Northrop, L., Salion, Inc.: A Software
Product Line Case Study , Software Engineering Institute

(SEI) Technical Report CMU/SEI-2002-TR-038, Carnegie
Mellon University, Pittsburgh, PA, November 2002.

[7] Snorre Gylterud, Constructing a Silver Bullet? Combining
Software Product Line Engineering and Agile Software
Development, A thematic literature review, Norwegian
University of science and technology, 2008.

[8] J. Bosch, Design and use of software architectures: adopting
and evolving a product-line approach. Addison-Wesley,
Harlow, 2000.

[9] S. W. Ambler, J. Nalbone, M. J. Vizdos, The Enterprise
Unified Process, Extending the Rational Unified Process,
Prentice Hall, 2005.

[10] S. W. Ambler, The Agile Unified Process (AUP), Ambysoft,
2005; www.ambysoft.com/unifiedprocess/agileUP.html.
[accessed, March 2011]

[11] Philippe Kruchten, The Rational Unified Process: An
Introduction, 2nd ed. Addison-Wesley, 2000.

[12] Rubin, H. A. “Macro-Estimation of Software Development
Parameters: The ESTIMACS System.” Proc. SOFTFAIR: A
Conference on Software Development Tools, Techniques, and
Alternatives. New York: IEEE, July 1983, pp. 109-118.

7

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 23 / 612

An Agile Model-Driven Development Approach
A case study in a finance organization

Mina Boström Nakićenović

SunGard Front Arena

Stockholm, Sweden

email: mina.bostrom@sungard.com

Abstract–In the Sungard Front Arena, current software

portfolio a business functionality called Market Server

Capability (MSC) is embedded and duplicated in many

components. By the application of Agile and Lean

principles on model-driven development, we will get an

Agile approach for constructing the architecture of a

new MSC definition which will eliminate the

duplication and inconsistency, while still maintaining a

short implementation phase. The resulting architecture

has a single modeling level, with merged PIM and

PSMs. The model is designed by reverse engineering of

the legacy code in a Test Driven Development fashion.

Keywords-agile; lean; MDD; TDD; finance

I. INTRODUCTION

SunGard is a large, world-wide financial services
software company. The company provides software
and processing solutions for financial services. It
serves more than 25000 customers in more than 70
countries. SunGard Financial Systems provides
mission-critical software and IT services to
institutions in virtually every segment of the financial
services industry. We offer solutions for banks,
capital markets, corporations, trading, investment
banking, etc. [1].

The Front Arena system includes functionality for
order management and deal capture for instruments
traded on electronic exchanges. Market access is
based on a client/server architecture. The clients for
market access include the Front Arena applications,
while the market servers, called an Arena Market
Servers (AMAS) provide services such as supplying
market trading information, entering or deleting
orders and reporting trades for a market.

Clients and AMAS components communicate

using an internal financial message protocol for

transaction handling, called Transaction Network

Protocol (TNP) and built on top of TCP/IP. The TNP

protocol uses its own messages, which contain TNP

message records with fields [2]. Many of the TNP

client components query the Market Server

Capability (MSC), information about the trading

functionality that one electronic exchange (market)

offers. Client applications need such information in

order to permit/disable the access to the different

markets.

A. Problem description

When a new market (AMAS) is introduced, the
information about functionality that the new market
offers (which transaction i.e., TNP messages are
supported) should be added to each client. MSCs
describe market trading transactions (Orders, Deals,
etc.), which command are supported for them
(entering, modifying, etc.) and which attributes and
fields could be accessed on the markets (Quantity,
Broker, etc.). This information is presently hard-
coded into each client application. New client
application releases need to be done before the
customers can start using the new AMAS. Depending
on the current release plans of the client applications
this can take a long time. Having to wait for the client
application releases may delay the production start of
the AMAS.

All components, which use the MSC
functionality, must use the same MSC definition.
Unfortunately the same MSCs are defined in several
different files. Different components are developed in
different programming languages so they do not share
the same definition file. Because of historical reasons
and the fact that some client components were
developed within separate teams, even the
components developed in the same programming
language do not share the same definition file. Each
client component has its own MSC definition file.
There is a lot of the duplication of information in
these files. Even worse they do not present exactly
same data since the different clients work within
different business domains, so their knowledge about
the MSCs is on the different levels. Two main
problems with this architecture are:

 Hard-coded MSC definition, requiring the
recompilation of components when a new
MSC is introduced

 Duplication of the MSC definition,
introducing the risk for data inconsistency.

These problems will be resolved in the future by
introducing a Dynamic Market Capabilities (DMC), a
new functionality that will be used to retrieve the
MSC definition dynamically, in run-time, instead of
having them hard-coded. Unfortunately, it will take a
long time, probably years, until the DMC solution
will be completely implemented and in use (for all
AMAS and all client components). Until then all
components have to support the hard-coded fashion.

8

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 24 / 612

All new components, which will be developed during
this time, have to support the hard-coded MSC way
also. That is why there is a need to find an
intermediate solution which will remove the
duplication and which will be used under the
transition phase. Since such an architecture will not
be long lived company management put some time
and resource constraints on the implementation. The
question we address in this paper is how to create
such intermediate solution, taking all conditions and
constraints into account.

Introduction and problem description are
presented in Section I. Section II explains, in more
details, the architectures of both the present and the
DMC solution as well as it introduces reasons for
having an intermediate solution. In Section III,
requirements and constraints are explained. The
produced intermediate solution, an Agile MDD
approach, is presented in Section IV. In Section V,
the benefits are discussed of applying Agile and Lean
principles on the MDD. Finally, Section VI presents
our conclusion.

II. ARCHITECTURE OF THE MSC DEFINITION

A. The present architecture

The client components use the MSC definition
from the different sources, developed in different
programming languages (C++, C# and Java), where
the majority of data is duplicated. The present
architecture of the MSC definition is not centralized
(no single definition of the model) and without
control for the consistency. The lack of centralization
enormously increases the risk for data inconsistency
since the consistency depended on the accuracy of the
developers who edits the MSC definition in a source
code file. The development of the MSC definition is a
continuous process, and new MSCs are defined each
time when a new AMAS is developed (2-3 times per
year) or when a new trading transaction is introduced
(once per month). The current process flow is:

 A new AMAS is developed or a new
transaction is introduced.

 A MSC is added to the MSC definition in
each client component. The same information
must be added to several different files.

 All client components should be recompiled
in order to get the definition of the new MSC.

B. Dynamic Market Capabilities architecture

We have already done design plans for the new
DMC architecture. In the DMC architecture each
AMAS will be responsible to provide, to the client
components, information about the MSC that the
AMAS supports. The description of the MSC that the
AMAS supports will be saved in one XML file. An
example of an extract from a XML file, containing
the MSC definition for the AMAS called OMX, is
presented in the Figure 1. In this example, a MSC
defines that the market OMX supports trading
transaction order with the following commands:

enter, modify and delete, combined with the
following fields: price and quantity.

Figure 1. Market Server Capabilities for market OMX

On the AMAS start up, AMAS reads the MSC

definition from its XML file and sends them, in run
time, to all client components which connect to the
AMAS. In such way the client components do not
have to be recompiled if something changes in the
MSC definition. When a new AMAS is developed, a
new XML file containing MSC definitions for the
AMAS is created. On the AMAS start up, all client
components connect to the AMAS and dynamically
retrieve the MSC definition for that AMAS. So even
in this case there will be no need for the
recompilation of the client components.

C. Transition phase

The decision is that all AMAS components and all
client components should be upgraded to the DMC
architecture. But this transition is a complicated job.
There are over 30 AMAS components and more than
5 client components that are using MSC functionality
today. There is different prioritizing, from the
management side, within the components’ backlogs.
We know, right now, that some of these components
will be upgraded to the DMC in one or two years.
This transition project is not marked as a critical since
there is already a working architecture, although not
the best one. As long as there is at least one
component which has not been upgraded to the new
DMC architecture, the hard-coded MSC solution
must still be supported. The transition will occur
gradually and the transition phase will probably take
several years. Under the transition phase some new
components are going to be developed; some new
components are already under the development. To
develop new client components according to the
present architecture will introduce even more
duplication. Therefore an intermediate architecture,
which will eliminate the duplication, will be
introduced. Such a solution should have a short
implementation phase, since it must be ready before
the new components are completely developed. The
solution should be designed so that it eventually leads
towards the new DMC architecture. It would be good
if the new DMC architecture can benefit from it.

III. INTERMEDIATE SOLUTION

We work according Scrum in the company, trying
to apply Lean and Agile software development

9

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 25 / 612

philosophy. One of the key principles of the Lean
philosophy is to detect and eliminate wastes [3]. The
intermediate solution should eliminate, from the
present architecture, the three major points of waste.

 Duplication of the MSC information

 Amount of work done during the MSC
definition updates

 Amount of time used for communication
among groups, informing each other about
the MSC definition changes

In order to eliminate the duplication of data we
need a centralized MSC definition. In order to be able
to provide support for the MSC definition in different
programming languages we need to generate code in
different programming languages, from the
centralized MSC definition. We need a programming
language independent architecture. First we
considered a solution, where all client components
would be refactored to reference the same central
definition file, but this would require a lot of work.
We did not want to refactor client’s components too
often, since some of them will be refactored soon
regarding the DMC solution. That is why we believed
that the Model-Driven Architecture (MDA) [4]
approach can be the most suitable solution for the
intermediate architecture. With the MDA approach
we mean the general MDA concept: “A MDA defines
an approach to modeling that separates the
specification of system functionality from the
implementation on a specific technology platform”.
The common denominator for all MDA approaches is
that there is always a model (or models), as the
central architectural input point, from which different
artifacts are generated and developed.
Transformations, mapping rules and code generators
are called in common “MDA tools” [5].

The main idea is to have just one source, a union
of all present MSC definition that is programming
language independent. From such a source, which
will be a central MSC definition registry, the present
MSC definition source files are generated. All present
MSC definition files have a similar structure. The
main difference is the programming languages
syntax. Because of that the code generation should
not be too complicated. The way how the client
components work will not be changed, the MSC
definition will still be hard coded. Such a solution
does not require the refactoring of the client
components. But the way how the developers work
will be improved. They will work just with the central
MSC definition registry and add/edit the MSC
definition only there. Then the MSC definition files,
for each client component, will be automatically
generated from the central registry. The client
components will be automatically recompiled. In that
way all three mentioned wastes will be eliminated.

Another key Lean principle is to focus on long-
term results, which is the DMC architecture in our
case. That is why we must point out that one
important part of the DMC architecture is a MSC
XML description file. If the MDA approach is
introduced for the MSC definition, the central MSC

definition registry would be easily divided into
several files (one per AMAS), later on. It is clear that
the DMC architecture would benefit from having
such a central MSC registry. The creation of one
central MSC definition registry, with all MSC
definitions for all markets, would be a good step
towards the future DMC architecture introduction.

A. Limitations

Our company management is usually very careful
with introducing concepts not already used in the
company, since it often requires long implementation
and learning time. Additionally, an investment in an
intermediate solution is not always a very productive
investment. On the other side, the management was
aware that the intermediate architecture would
increase productivity directly and make some new
solutions possible right away. That is why the
management listened carefully to our needs and made
some general decisions. The intermediate architecture
can be introduced, but the time-frame could be only
several weeks. No new tools or licenses should be
bought. Only tools that are already used within the
company or some new, open-source tools, can be
used. No investment in change management. Time
for teaching/learning cannot be invested for the
intermediate solution. The concepts, which our
developers are already familiar with, should be used.

Considering these management decisions, we
decided to explore if the organization was mature
enough to introduce the MDA. Although the MDA
approach has been around for a long time, for many
companies it is still a new approach. A small survey
which we performed showed that the MDA approach
hasn't been used within the company and that a
majority of the developers has never used this
approach and that the UML modeling is not used in
general. Also, the introduction of the full scale MDA
usually implies: a long starting curve, which we
cannot afford having a short time-frame and the usage
of the MDA tools, which cannot be used since
developers don’t have enough knowledge about them
and there is no possibility to invest in learning. In the
following section it will be described how we
managed to overcome these problems and limitations.

IV. AGILE MDD APPROACH

Our goal is to find an intermediate solution with a
MDA philosophy, which satisfies the previously
mentioned requirements and fulfills the constraints. In
order to achieve this goal, we started from the basics
of the MDA concept (models, transformations and
code generators), and combined them with the
following Lean and Agile principles [6]:

 "Think big, act small": Think about the DMC
as a final architecture but act stepwise,
introduce the intermediate solution first.

 “Refactoring”: A change made to the
structure of software to make it easier to
understand and cheaper to modify without
changing its existing behavior [7]”

10

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 26 / 612

 "Simplicity is essential": We have to find an
applicable solution that is simple, keeping in
mind that simple does not have to mean
simplistic [8].

In that way we got our own Agile MDD
approach, an applicable intermediate solution, which
will be described in detail in the following section.

A. Agile modeling and code generators

We need to model the MSC definition registry.
This modeling can be done on the different modeling
levels and in the different modeling languages.
Considering the limitations, the UML modeling
cannot be accepted as a modeling solution in our
project: it is not used in general and there is no time
for learning. Since the XML format is a standard
format and the developers are familiar with it, we
decided to use a XML description as a "natural
language" for the developers. XML was good
enough. We had to balance between the familiarity of
the XML and abstraction benefits of UML but also a
complexity of the related frameworks, keeping the
project within the time-frame.

We have created two models. One is a logical
model which describes the entities in the MSC
definition registry. Another is the MSC definition
registry by itself, expressed in a XML dialect. As a
consequence of that, the logical model is expressed as
a XSD schema and is used to validate the entries in
the registry.

The MDA defines different model categories, like
a Platform Independent Model (PIM) and a Platform
Specific Model (PSM) [5]. This is an important issue
if there are plenty of different platforms with
specifications that differ very much. In our case the
different PSMs didn't differ too much from each other
and, at the same time, didn't differ too much from the
PIM either. In order to keep it simple we made a
pragmatic solution: to have just one model, which
contains all info for all programming languages. The
code generators have the responsibility for creating
the right MSC information to the corresponding
programming language.

We needed code generators for generating the
different types of files: C++, C#, Java. We decided to
use XSL transformations as the code generators. They
satisfied our needs and could be widely used, since
the XSL is a common standard for all developers,
who program in the different programming
languages. In that way a "collective code ownership"
[9] is achieved for the code generators. The
maintainability is also better if all developers can
maintain/develop the transformations.

B. Reverse engineering of the Legacy code

We needed to do a one-time reverse engineering
in order to convert a large amount of the existing
MSC data, legacy code, to the new MSC XML
format. We developed our own tool for this purposes
since no open-source tool was completely suitable.
The main question was: when to start with the reverse
engineering? At the end or at the beginning of the

project? Very soon we realized that we could not
design our model in detail without the data from the
existing MSC definitions. We decided to adopt a
Spike principle. The Spike is a full cross-section of
the modeling and architecture aspects of the project
for a specific scenario. The aim of the Spike approach
is to develop the whole chain for only one, chosen
user scenario. The first chosen scenario is a simple
one, and during the incremental development process
every next scenario is a more complex one [10]. We
started with the round-tripping (the whole chain:
model – code generation – reversing back to the
model) for simple scenarios, which we expanded, in
each sprint, to the more complex scenarios. In that
way we could develop the reverse engineering tool,
the code generators and to design the model in
parallel. The results of the reverse engineering helped
us with the specification of the model objects for both
the logical model and for the central MCS registry.
Since we could do the round-tripping very early in the
project, it was a way in which we could start testing
our MDD approach early, under development. Round
tripping in combination with the Test Driven
Development (TDD) [11] will be explained in more
detail in the following section.

C. Round tripping with the TDD approach

According to the Lean principles, we wanted to
specify our model just according to the existing data,
without unnecessary objects or unnecessary
properties, which risk never to be used. In order to be
able to do that, we wanted to do the reversing first
and specify the logical model and fill the data in the
MSC registry upon these results. We used a TDD
approach and started with writing unit tests first. For
this purpose we used test framework developed and
already used in the company. This framework
simulates the execution of the TNP messages sent
among server and client components. Because of that
the test scenarios that we wrote can be reused later
on, for testing AMAS components, when the DMC is
introduced.

According to the TDD principles we wrote the
tests first, run them on “empty” code and developed
the code, until the tests passed. Since we had to test
several parts of our MDD approach (the logical
model, the central MSC registry, the code generators
and the reverse engineering tool), we established our
own TDD process for the MDD testing. The main
idea was to use the same test, which reflects one
Spike scenario, both to develop the reverse
engineering tool and the code generators, but with the
input from the different sources: the legacy code was
used as input when the reversing tool was developed
and the generated code files was used as input when
the code generators were developed. Our TDD
process is presented on the “Fig. 2”. Modules
presented on “Fig. 2” are parts of our MDD approach
where the following abbreviations are used: RE for
the reversing engineering tool, CG for the code
generators, LC for the legacy code and GC for the
generated code.

11

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 27 / 612

 Figure 2. Our TDD process

Our TDD process will be described now through
one real Spike scenario. The chosen Spike scenario is
called “Get all markets” and the goal is to get all
existing markets, described in the present MSC files.
We started with writing a test, which consisted of
sending a TNP message “TNPGETALLMARKETS”.
The next step was to develop the reverse engineering
tool for this scenario. The legacy code was used as
input data. We developed the corresponding methods
in the reversing tool, which extract markets from the
existing data, producing the results in the XML
format, and inserted them in our MSC registry. It was
a list of all markets. Then we redesigned the model
and registry entities and refactored the reversing tool
according to the model changes. This process flow is
presented with full arrows on the Figure 2. The TDD
logic for the code generators were more complicated.
What we had, so far, was the reversing tool working
for the chosen scenario, and some data in the central
MSC registry. We used the same test, trying to get all
markets, but this time from the generated code instead
(which was empty when we started), via the reversing
tool (where we have some code implemented). We
developed the code generators using the mentioned
test. The final goal was to get the same entries in the
MSC registry by the reversing of the generated code
as we got by the reversing of the legacy code. After
this sprint we had a list of all markets in the MSC
registry, the code generators methods which generate
files containing such a list and the reversing tool
methods for extracting such a list from the generated
files. This process is marked with dashed arrows on
the Figure 2. In the following Sprints we used more
advanced scenarios, such as, for example, “Get all
markets where is Order supported with commands:
Enter, Modify”.

At the end of each Sprint we run the whole round
tripping, starting from the legacy code. In that way
we could confirm that both the newly implemented
code worked, as well as that the previously
implemented code was not broken. As the final
verification process we confirmed that all client
components could be compiled without errors. We
did the usual integration tests also, in order to confirm
that the communication among the client components
and the AMAS components has not been changed.
When we completely finished with the reversing, we
disabled this functionality. We needed the reversing
only for extracting the existing data. It has not been

possible do the reversing nor the round tripping since
the project was released.

It is important to say that we had to reverse the
legacy code from the code, which was written in the
different programming languages. We had to develop
separate methods for the reversing from C++, Java
and C#. Fortunately, the respective legacy code files
had a similar structure; the syntax was the main
difference. So we could develop the corresponding
reversing methods based on the common objects.

The introduction of the TDD approach was
important because of the following reasons:

 By developing and testing in parallel we
shortened the implementation phase.

 We did not produce any wastes in the logical
model (unnecessary info). We designed the
model just according to the data that we got
from the reverse engineering. We achieved to
avoid the usual modeling mistake when a
large amount of metadata is put in the model.

 We showed how the TDD can be an efficient
way to work with, since this development
method has not been yet widely spread within
the company. When it has been introduced
once, it would be easier to introduce the TDD
thinking in other projects too.

 We can reuse some of these tests later on, for
the DMC architecture testing.

D. Automation

We have automated some of the processes,
supporting a kind of continues integration also. We
reduced the amount of work and time spent for
working with the MSC definition architecture. We
use ClearCase (CC) as a configuration management
tool and we have a build server for automatic build
processes. Since all client MSC definition files were
in CC, we decided to keep even the generated files in
the CC repository, at least under some period. This
decision was made by the management.

When the MSC definition registry file is updated
and checked into CC, the following steps are
executed automatically:

 The MSC definition files with hard-coded
data, belonging to the client components, are
checked out from CC.

 The code generators are invoked by a CC
trigger script. All MSC definition files are
generated.

 All generated files are checked into CC, if the
generation did not fail. Otherwise the “undo
checkout” operation is done.

 All client components, affected by the
mentioned code generation, are recompiled.
If some compilation fails, the error report is
immediately sent to the component owners.

V. AGILE AND LEAN PRACTICES IN MDD

The Agile and Lean methods are light in contrast
to the MDA that can become complex, because of all
standards and OMG recommendations. Through the

12

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 28 / 612

application of the Agile and Lean principles, the
MDD becomes more pragmatic and more useful.
Some of the Agile and Lean principles, used in our
Agile MDD approach, are explained below.

 “Eliminating waste”: Eliminating the duplication
of information was also according to the XP’s
principle “Never duplicate your code” [9]. This
principle is the heart of the MDD – to have one
central input point, model (models) from which
everything else is generated.

“Think big, act small”: We were thinking on the
DMC as a final architecture but acted in a stepwise
way, via an intermediate solution.

“Deliver as fast as possible”: The implementation
phase of our Agile MDD approach was short.

“Empower the team”: Roles are turned – the
managers are taught how to listen to the developers
[3]. Despite the fact that managements put non-
technical constraints on our project, they allowed the
developers to make decisions, regarding the
intermediate solution, on their own. It contributed to
faster development, since the developers did not have
to wait for feedback from the management, for each
decision.

“Spike principle” applied on the reverse and
round-trip engineering made the introduction of the
TDD philosophy spontaneous and natural.

“Simplicity is essential.” We have simplified the
full scale MDA. Instead of the UML modeling
language we used the XML. The PIM and PSMs
were merged, avoiding the maintenance of several
models and transformations among them. On the
other side, by merging PIM and PSMs in one model
we lost a good Separation of Concerns but it was a
price worth paying.

 “Welcome changing requirements, even late in
development.” The case-study presented an iterative
development, which allowed late model changes. We
worked in sprints, according to the Spike principle,
which implied the frequent model changes, in each
sprint.

A. Benefits of the Agile MDD approach

We got a lot of benefits by introducing the Agile
MDD approach. Now we will list them:
1. Agile principles can make the starting curve for

the MDD shorter. Through the application of the
Agile principles the long learning curve and
introduction gap of MDD methods and tools
could be avoided.

2. We introduced the TDD approach, showing the
effectiveness of such an approach.

3. We have prepared, in advance, for the
introduction of the DMC architecture: the model
specification and the reverse engineering job are
already done. As well as the test cases, some of
them are going to be reused.

4. The Agile MDD approach could be used instead
of the full scale MDA. When all MDA
recommendations could not be applied, we

adjusted them to our system and organization,
with a help of Agile and Lean principles.

VI. CONCLUSION AND FUTURE WORK

The main point of this paper was to show how
Lean and Agile principles helped us with producing
an intermediate solution, with a short implementation
phase, for the architecture of the MSC definition. In
that way we coped successfully with the management
constraints, achieving the implementation within the
short time-frame and without investment in change
management.

Our Agile MDD approach is based on the general
MDA idea but is shaped then with the Lean and Agile
principles. “Eliminating waste” helped us to detect
main wastes. The most important was the duplication,
which we eliminated by applying the MDA
philosophy. “Simplicity” Agile principle reduced the
MDA concept to the single modeling level, expressed
in the XML dialect. By being aware of “Think big act
small”, we could produce such an intermediate
solution, which can be easily improved in the long-
term solution. The TDD logic improved the
development efficiency and decreased the total time
spent on the development and testing. We got a
simple and applicable solution which will easily grow
to a more complex one.

“A complex system that works has usually been
evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a simple system. [12]”

REFERENCES

[1] SunGard, www.sungard.com. Accessed in May 2011.

[2] TNP SDK documentation: SunGard Front Arena

[3] Mary Poppendieck, Tom Poppendieck: Lean Software
Development, An Agile toolkit. Addison Wesley,
2005.

[4] James McGovern, Scott Ambler, Michael Stevens: A
practical guide to Enterprise Architecture. Prentice
Hall PTR, 2003.

[5] MDA, www.omg.org/mda. Accessed in May 2011.

[6] AgileManifesto, www.agilemanifesto.org. Accessed in
May 2011.

[7] Martin Fowler: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[8] James O. Coplien, Gertrud Bjornvig: Lean Architecture
for Agile Software Development, Wiley 2010.

[9] Ron Jeffries, Ann Anderson, Chet Hendrickson:
ExtremeProgramming. Addison Wesley, 2001.

[10] Ray Carroll, Claire Fahy, Elyes Lehtihet, Sven van
der Meer, Nektarios Georgalas, David Cleary:
Applying the P2P paradigm to management of large-
scale distributed networks using Model Driven
Approach, Network Operations and Management
Symposium, 2006. NOMS 2006. 10th IEEE/IFIP
Volume, Issue , 3-7 April 2006 Page(s):1 – 14.

[11] Michael C. Feathers: Working Effectively with
Legacy code. Prentice Hall PTR, 2005.

[12] John Gall: Systemantics: How Systems Really Work
and How They Fail. Quadrangle, 1975.

13

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 29 / 612

A Planning Poker Tool for Supporting Collaborative Estimation in Distributed
Agile Development

Fabio Calefato
Dipartimento di Informatica

University of Bari
Bari, Italy

calefato@di.uniba.it

Filippo Lanubile
Dipartimento di Informatica

University of Bari
Bari, Italy

lanubile@di.uniba.it

Abstract— Estimating and planning are critical to the success
of any software project, also in the case of distributed agile
development. Previous research has acknowledged that
conventional agile methods need to be adjusted when applied
in distributed contexts. However, we argue that also new tools
are needed for enabling effective distributed agile practices.
Here, we present eConference3P, a tool for supporting
distributed agile teams who applies the planning poker
technique to perform collaborative user story estimation. The
planning poker technique builds on the combination of
multiple expert opinions, represented using the visual
metaphor of poker cards, which results in quick but reliable
estimates.

Keywords- distributed; agile; estimation; planning

I. INTRODUCTION

Software estimation and planning activities aim to create
meaningful cost and schedule estimates for a project. The
ability to accurately estimate the time and cost for a project
is a key factor to its successful conclusion. Hence, estimating
and planning are critical activities also in the case of
distributed agile development. Unfortunately, agile and
distributed development practices are so different that, when
blended together, the key characteristics of the former
exacerbate the challenges intrinsic to the latter, creating a set
of brand new challenges. In fact, as any agile method, agile
planning is based upon intense interactions among
individuals and thus, it emphasizes the need for frequent
informal interaction and communication. On the contrary, in
distributed software development communication and
interaction are dramatically hindered due to the absence of
collocation.

Collaborative software development across distances has
become commonplace for a number of years [19]. However,
there are still important problems to solve that are strictly
related to the effects of distance among the members of a
development team [7]. It is well known that a distributed
approach to software development increases difficulties
related to coordination, control, and communication
mechanisms, which are fundamental for any software
project. Quite the opposite, agile software development
methodologies are based on strong collaboration and
frequent informal communication among project members
[13]. Among the underlying principles that underpin agile

methodologies, personal relationships and direct
communication among people are considered as the best
resource in a project [4].

There is an increasing interest towards new experimental
approaches that aim to combine the specific characteristics of
agile methodologies with those of distributed software
development [23]. Previous research has acknowledged that
conventional agile methods need to be adjusted when applied
in distributed contexts. However, we argue that also new
tools are needed for enabling effective distributed agile
practices. In particular, we argue that tools that provide
better communication support are needed in order to cope
effectively with the reduction of direct, synchronous
interaction.

In this paper, we present eConference3P (eConference
Planning Poker Plugin), a tool meant for supporting
distributed agile teams who applies the planning poker
technique to perform collaborative user-story estimation. The
planning poker technique builds on the combination of
multiple expert opinions, represented using the visual
metaphor of poker cards, which results in quick but reliable
estimates. Our tool has been developed as a plugin of the
eConference system, a communication platform that
connects to either Google Talk or Skype networks and thus,
allows the organization of text- and audio-based conferences.
Among the other features, eConference3P allows to visually
edit user stories and import a backlog from many
collaborative development environments such as Google
Code, Assembla, Github, Trac, and Jira.

The remainder of this paper is structured as follows.
Section 2 discusses in detail the planning poker estimation
technique. Section 3 presents our agile planning prototype.
Instead, related academic and industrial tools for agile
estimation are illustrated in Section 4. Finally, we conclude
in Section 5.

II. AGILE ESTIMATION & PLANNING POKER

Before starting a project, whatever agile methodology a
team is applying, developers have to deal with iteration
planning and, therefore, user story estimation. A user story is
a brief description of functionality as viewed by a user or
customer of a system. User stories are free-form and there is
no mandatory syntax, although they are generally formulated
according to the following template: "As a <role>, I want
<goal/desire> so that <benefit>" [6]. In agile development,

14

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 30 / 612

user story estimates are not defined individually by just one
developer. Instead, estimates are obtained collaboratively by
(part of) the agile team, including those developers who will
actually implement the user stories.

The size of user stories can be estimated in story points
or ideal days. Story points are a relative unit of measure,
used to estimate the size of user story by combining the
effort, the complexity, and the risk inherent in its
development. Ideal days, instead, are used to evaluate the
size of a story in terms of the amount of time it will take to
be fully developed. Both story points and ideal days values
are arranged in an estimation scale. Although any sequence
might work, Cohn [6] suggests using nonlinear sequences
(e.g., the Fibonacci sequence 0,1,2,3,5,8,13…). Because the
gaps between values become appropriately larger as the
numbers increase, such sequences better reflect the greater
uncertainty associated with larger estimates.

To arrive at a shared estimate, agile teams rely on three
main techniques: expert opinion, analogy, and
disaggregation.

In the expert opinion-based approach, experts assign
estimates to user stories relying on their intuition. Typically,
multiple expert opinions are needed because implementing a
system functionality described by a user story requires a
number of multidisciplinary skills that normally belong to
more than one developer. The expert opinion-based approach
has been found to be more effective than others [17].

In the analogy-based approach, estimators compare the
user stories to be estimated to one or two other stories
already estimated before. This approach builds on the fact
that humans find easier to estimate relative size than absolute
size. Thus, in the typical scenario, if an estimator believes
that user story A is twice the size of story B, which was
estimated at 5 story points, then A is estimated at 10 points.
The comparison can be of course generalized by comparing
the size of user story A to a couple of stories already
estimated. Obviously, this approach suffers from a cold start
problem and, therefore, works better when at least a few user
stories have been already estimated.

Finally, in the disaggregation-based approach, before
estimating the expert splits a large user story into multiple
smaller ones, easier to evaluate and compare. In fact, if user

story A is much bigger than previously estimated user story
B, it would be hard to say that A is fifty times as complex as
B. Therefore, disaggregation works well with the analogy-
based approach.

An effective way for combining the three estimation
techniques is planning poker [6]. In planning poker, each
estimator is given a deck of cards with a valid estimate
shown on each. A feature is discussed and each estimator
selects the card that represents the estimate. All cards are
shown at the same time. Then, the estimates are discussed
and the process repeated until agreement on the estimate is
reached. Typically, a planning poker session is arranged at
the beginning of a project, to estimate user stories so that the
first iteration can begin. Then, further sessions may be
arranged after each iteration to estimate new stories, if any.

Planning poker is an effective way to estimate user
stories for at least a couple of reasons. First, it brings
together a cross-functional, agile team of experts from
different disciplines, whose averaged estimations tend to be
more precise than individual scores [14]. Second, it fosters
group discussion, as estimators need to justify their scores,
which has also been found to lead to better results, especially
in case of high amounts of uncertainty and missing
information [18].

III. ECONFERENCE3P

eConference3P (see Figure 1) is a tool developed for
supporting distributed agile teams who perform
collaborative user story estimation by applying the planning
poker technique. As shown in the figure, the eConference3P
user interface has five main areas. The message board is the
view that collects all the messages from the discussion that
ensues upon any estimation. In particular, the message
board is “threaded”, in the sense that messages get stored
with respect to the user story that they are related to. We
point out that our tool distinguishes the roles available in an
agile team and, in particular, between project owner and
developers. Relevant notes and decisions, taken through the
meeting, are logged in the decision place, which can be only

15

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 31 / 612

Figure 1. A screenshot of eConference3P.

edited by participants who receive from the project owner
the right of acting as scribe. A project owner acts as the
moderator of the planning session and, as such, the user
interface of the tool enables specific actions to manage the
meeting, load user stories, call for and accept the estimates,
and grant/revoke rights from other participants. For the sake
of space, through the rest of the paper we report the
screenshots only from the perspective of the project owner.
The backlog view allows starting and stopping the meeting,
as well as importing and exporting the user stories, which
are also listed together with the accepted estimates, once
available. The card deck view shows the scale from which
developers pick the score. Finally, the presence panel shows
the team members that are participating in the planning
meeting, along with their roles (e.g., project owner,
developer) and their rights (i.e. to estimate, scribe, chat).

Through the rest of this section, we first describe the
architecture of eConference3P, showing how its building
components have been arranged together, and then, we
discuss in more detail its features.

A. eConference3P Architecture

eConference3P is built around two main components,
which are the results of two academic research projects
named eConference and AgilePlanner. Both can be run as
either standalone applications or Eclipse IDE plugins. In fact,

such components could be seamlessly and almost effortlessly
integrated because both are rich client applications,
developed using the Eclipse Rich Client Platform (RCP)
technology, a pure-plugin development platform that is fully
extensible by architectural design [8].

eConference [5] is a distributed meeting system,
previously developed by our research group at the University
of Bari, Italy. Its primary functionality is a closed group chat,
augmented with agenda, meeting minutes editing, and typing
awareness capabilities. Around this basic functionality, other
features have been built to help organizers control the
discussion during distribute meetings. eConference can use
either XMPP, an IETF standard protocol, or Skype. In the
latter case, also VoIP communication is supported.

AgilePlanner [21] is a tool for synchronous, card-based
agile planning meetings, developed at the University of
Calgary, Canada. AgilePlanner mimics paper index cards as
it simulates a whiteboard in a meeting room and utilizes
electronic index cards (see Figure 2). AgilePlanner is a
client/server application with its own communication
protocol. The tool is specifically intended to support
distributed agile teams (i.e. work with networked clients),
rather than being an offline visual editor for planning
artifacts.

16

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 32 / 612

Figure 2. AgilePlanner with user story cards being assigned to an iteration.

B. eConference3P Features

In this section, we illustrate the features of our tool
eConference3P against a few requirements acknowledged as
critical in the field of distributed agile development [1] [20]
[26].

1) Offline/online working switch.
eConference and, therefore, eConference3P too, work

with XMPP-based Gmail accounts since the third release and
with Skype accounts since the fourth. One of the benefits of
our solution is that eConference products work without
requiring any user or maintainer to install a server, thus
minimizing the hassles coming from installations and
configurations.

In developing our planning poker plugin for
eConference, we selected AgilePlanner as the graphical
editor of user stories and iterations. However, AgilePlanner
required a connection to a server to work. Therefore, since
we mostly needed AgilePlanner for its editing functionality,
we patched it in order to support both online and offline
mode [2]. In the offline mode, a user has the chance to store
all the planning artifacts on a file and then load them back
later. The online mode, instead, remained untouched.
Because the transition from offline to online co-editing is not
fluid (i.e. developers need to connect again to the Agile
Planner server), at the end of the integration process, we felt
that the presence of a proprietary server to install clashed
with our intention of building an extensible, hassle-free
planning poker tool.

2) Simultaneous interaction and manipulation of
artifacts through telepointers

With respect to the supported planning activity,
AgilePlanner is primarily focused on the interactive
collaboration and meant for conducting real-time planning

meetings, whereas it only has limited capabilities for
progress tracking during the interaction.

The user interactions of AgilePlanner include the
complete manipulation of planning cards (i.e., creating,
moving, and deleting cards). Different colors are used to
distinguish between the cards representing bugs, spikes,
features, user stories, and finally iterations and backlog, to
which they are assigned. To support distributed
collaboration, AgilePlanner provides telepointers, which are
a groupware technology that uses a remote mouse pointer to
represent mouse movement happening on other connected
computers so that remote collaborators can understand other
team members’ mouse movements, much like they would
look at others’ movements in a traditional co-located
meeting.

3) Real-time information sharing & estimation.
In eConference3P all the changes happening to the

shared workspace are notified in real time, so that updated
information is simultaneously available to each remote
developer. In particular, eConference3P focuses on
supporting synchronous interaction rather asynchronous
interaction between distributed agile team members. When
playing planning poker, near real-time interaction is
fundamental to support the discussions and converge to a
shared estimate, when individual scores differ.

With respect to estimation-specific features, the project
owner can import, export, and edit user stories from the
backlog view. In particular, as for the edit feature, selecting
that menu entry will change the current perspective of the
tool to that of Agile Planner, as shown in Figure 2, thus
letting distant developers move user stories in or out of the
backlog, as well as plan multiple interactions for long-term
release planning. The project owner can also call for
estimation. When an estimation procedure starts, the deck

17

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 33 / 612

becomes clickable, and each developer can pick the card
with the desired score by dropping it in the drop zone on the
right hand side of the deck view. The project owner can
check who provided what estimate at any time. Instead,
developers’ estimates will not be visible to each other until
all of them provide one. eConference3P also allows the
project owner to select the estimate scale of choice before a
planning meeting is started.

4) Integration with others development environments
Supporting integration with development environments

increases the ease of access to the planning information for
developers and makes it easier to track progresses.
Therefore, in eConference3P we enabled the import of user
stories from the most used, web-based collaborative
development environments (CDEs). CDEs such as Google
Code [11], Github [10], and Trac [24], offer issue-tracking
features for storing items, such as bug descriptions,
enhancements, and milestones. However, they are also used
by developers of agile teams to store planning artifacts, such
as the backlog of user stories and iterations. The import
procedure locally stores the data retrieved in the same XML
format supported by AgilePlanner, so that imported data can
be graphically edited afterwards.

Table I shows the four CDEs supported by the import
procedure. First, we notice that all the CDEs offered official
APIs to programmatically query and retrieve the information
from the project repository. The only exception was Trac, for
which we had to develop a custom scraper that makes http
requests and then parses the resulting html output to retrieve
the information needed. Because this solution depends on the
structure of web pages, using a scraper is considerably less
stable than using an API, since even smallest changes to the
graphical layout may end up breaking it. Second, we notice
that Assembla [3] is the only CDE that specifically support
user story entries for its repository, whereas Google Code
and Trac allow customizing generic entries (called tickets)
into user stories, and later retrieve them through custom
search queries. Github, instead, does not offer any of the two
solutions and, thus, proved to be the least effective CDE for
hosting an agile project repository. Lately, we have also
added support to Jira [16] and Fogbugz [9].

IV. RELATED WORK

Tools for supporting agile development have been some
ten years in the making. To date, there are literally hundreds
of agile project management tools, some more complete than
others, which tend to focus only on a specific activity of the
agile management process. These tools typically allow teams
to manage agile projects following Scrum and XP agile
methodologies. A list of the most used and well-known
application can be found on UserStories.com [25]. Such
tools, whether free or commercial, can be broadly divided
into three main categories, according to their target
platforms: web-based, standalone, and plugins.

Web-based is the category that accounts for the largest
number of existing agile planning and management tools.
This is because such applications only require a web browser
to be executed on the client side. Besides, as for commercial
tools, web application as are often sold in “hosted mode”,

which requires no installation by customers since companies
sell seats to use the service running on their own servers.
Among web applications, we can first identify general
purpose Wikis, used for agile project management in
general, and estimation as well, by letting developers create,
edit, and publish story cards and other artifacts as web pages.
As such, they do not offer any specific support to agile
practices and, therefore, only meet a very minimal set of
requirements for agile projects management. On the
contrary, there are tens of tools designed for agile project
management, both commercial (e.g., Mingle, VersionOne,
and Rally) and free (e.g., XPlanner, Agilo for Scrum,
Agilefant, and eXPlainPMT), which offer sophisticated
features to represent and manipulate project data, but none of
them support the planning oker technique. The only tool that
supports the homonymous agile estimation technique is
PlanningPoker.com [22], which we analyze in detail in the
next section.

The second category of agile project management
applications is that of standalone tools, most of which run
natively just on Windows with a very few alternatives for
Linux and OS X built on Java. In this category, we identified
no standalone tool supporting planning poker, other than
eConference.

Finally, Integrated Development Environments (IDE),
such as Visual Studio and Eclipse, have also been extended
through specific plugins in order to support, among the other
things, agile practices and create an even more convenient
development environment for closely managing and
interconnecting code artifacts, such as test cases, and agile
planning artifacts, such as story cards. In this category we
identified WolfPoker [27], a planning poker plugin for Jazz,
a commercial CDE developed by IBM that supports the
customization and execution of any agile project
management process of choice.

A. Comparing Planning Poker Tools

From the review in the previous section, we note that
PlanningPoker.com (web-based) and WolfProject (Jazz
plugin) are the only other existing tools that support the
planning poker estimation technique as eConference3P
(standalone), as shown in Table II. All the three tools support
synchronous sessions (i.e., backlog editing and estimation),
while PlanningPoker.com is the only one that also enables
asynchronous estimation sessions.

Besides, we note that both PlanningPoker.com and
WolfPoker support collocated groups of developers only in
picking scores from a card deck and then visualize the
estimates, while they completely lack any communication
feature to support discussion. This is probably due to the fact
that collocation and frequent direct communication are
paramount for agile teams [4]. However, as distributed agile
teams get more and more common [12], face to face
communication cannot be given for granted any longer.
Hence, distributed agile teams willing to adopt
PlanningPoker.com or WolfPoker must also use such
applications in combination with other communication tools.

18

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 34 / 612

TABLE I. THE CDES CURRENTLY SUPPORTED BY THE IMPORT PROCEDURE.

CDE API
User
story

Milestone
Custom

ticket type

Custom
search
query

Assembla X X X
Github X

GoogleCode X X X X
Trac X X X
Jira X

Fogbugz X

eConference3P, instead, integrates text-based and audio

communication to support estimate synchronous discussions
with no hassles. In addition, thanks to the AgilePlanner
component, eConference3P allows collaborative editing of
the backlog.

Finally, eConference3P is the only tool that can import a
backlog from a number of CDEs, such as Google Code,
Github, and Jira, whereas WolfPoker can only read file
exported from MS Project.

V. CONCLUSIONS

In this paper, we presented eConference3P, a tool for
enabling effective estimation meetings for distributed agile
teams. The tool was built by integrating the AgilePlanner
component, to enable iteration planning through a visual
editor, and the eConference meeting system, to build a better
communication tool and cope with the reduction of
information exchanged in distributed settings. In fact, our
review of existing tools for performing planning poker agile
estimation revealed a lack of support for synchronous
communication. Being based on the Eclipse RCP platform,
specific plugins were then added to support the planning
poker estimation technique and import user stories from
web-based collaborative development environments.

TABLE II. A COMPARISON BETWEEN TOOLS SUPPORTING PLANNING POKER

Feature eConference3P PlanningPoker.
com WolfPoker

Category Standalone Web based Plugin (Jazz)
Sync.

sessions
Backlog editing,

estimation
Backlog editing,

estimation
Backlog editing,

estimation
Async.
sessions Backlog editing Backlog editing,

estimation Backlog editing

Comm.
modes Text, audio None None

Backlog
editing Yes (co-editing) None Yes

Integration
w/ CDEs Backlog import None Backlog import*

* only supports MS Project file format

REFERENCES
[1] Abrahansson, R., Salo, O., Ronkainen J., and Warsta J. (2002). Agile

Software Development Methods. VTT Publications, vol. 112.

[2] AgilePlanner for eConference, http://code.google.com/p/agileplanner-
for-econference (last accessed: Jul. 19, 2011).

[3] Assembla, http://www.assembla.com (last accessed: Jul. 18, 2011).

[4] Beck, K. et al. (2001). Manifesto for Agile Software Development.
http://agilemanifesto.org (last accessed: Jul. 18, 2011).

[5] Calefato, F., and Lanubile, F. (2009). Using Frameworks to Develop
a Distributed Conferencing System: An Experience Report. Software:
Practice and Experience, vol. 39, no. 15, pp. 1293–1311

[6] Cohn, M. (2005). Agile Estimating and Planning. Prentice Hall

[7] Damian, D., Sengupta, B., Lanubile, F. (2008). Global Software
Development: Where Are We Headed? Software Process
Improvement and Practice. vol. 13, pp. 473-475.

[8] Eclipse RCP, http://www.eclipse.org/home/categories/rcp.php
(last accessed: Jul. 19, 2011).

[9] Fogbugz, http://www.fogcreek.com/fogbugz (last accessed: Jul.
18, 2011).

[10] Github, https://github.com (last accessed: Jul. 18, 2011).

[11] Google Code, http://code.google.com (last accessed: Jul. 18, 2011).

[12] Herbsleb, J.D. (2007), Global Software Engineering: The Future of
Socio-technical Coordination. Future of Software Engineering
(FoSE’07), May 23-25, pp.188-198.

[13] Highsmith, J., Cockburn A. (2001) Agile Software Development: The
Business of Innovation. Computer, vol. 34, no. 9, pp. 120-122.

[14] Hoest, M., and Wohlin, C. (1998). An Experimental Study of
Individual Subjective Effort Estimations and Combinations of the
Estimates. Proc. 20th Int’l Conf on Software Engineering (ICSE'98),
Kyoto, Japan, Apr. 19-25, pp. 332-339.

[15] Jazz, https://jazz.net (last accessed: Jul. 18, 2011).

[16] Jira, http://www.atlassian.com/software/jira (last accessed: Jul.
18, 2011).

[17] Johnson, P., Moore, C.A., Dane, J.A., and. Brewer, R.S. (2000).
Empirically Guided Software Estimation, IEEE Software, vol. 17, no.
6, pp. 51-56.

[18] Jorgensen, M., and Molokken, K. (2002). Combination of Software
Development Effort Prediction Intervals: Why, When and How?
Proc.14th Int’l Conf. Sw. Eng. and Knowledge Engineering (SEKE
'02), vol. 27, Ischia, Italy, Jul. 15-19, pp. 425-428.

[19] Lanubile F., Damian D, Oppenheimer H. (2003). Global Software
Development: Technical, Organizational, and Social Challenges.
Software Engineering Notes. Vol. 28.

[20] Larman, C. (2004). Agile & Iterative Development - a Managers’s
Guide, Addison-Wesley.

[21] Morgan, R., and Maurer, F. (2008). An Observational Study Of A
Distributed Card Based Planning Environment. Proc. 9th Int’l Conf.
on Agile Processes and eXtreme Programming in Software
Engineering (XP’08),. Limerick, Ireland, Jun. 10-14, pp. 53-62..

[22] PlanningPoker.com, www.planningpoker.com (last accessed: Jul.
18, 2011).

[23] Šmite, D., Wohlin, C., Gorschek, T., and Feldt, R. (2010). Empirical
Evidence In Global Software Engineering: A Systematic Review.
Empirical Software Engineering, vol. 15, pp. 91–118.

[24] Trac, http://trac.edgewall.org (last accessed: Jul. 18, 2011).
[25] UserStories.com, http://userstories.com/products, (last accessed: Jul.

18, 2011).
[26] Wang, X., Maurer, F., Maurer, R., and Oliveira, J. (2010). Tools for

Supporting Distributed Agile Project Planning, in Agility Across
Time and Space (Smite, Moe, Ågerfalk eds.), Springer, pp. 183-199.

[27] Wolfpoker, http://www.realsearchgroup.org/wolfpoker (last
accessed: Jul. 18, 2011).

19

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 35 / 612

Scrum Maturity Model
Validation for IT organizations‟ roadmap to develop software centered on the client role

Alexandre Yin

Departamento Engenharia Informática (DEI)

Instituto Superior Técnico (IST)

Lisboa, Portugal

alexandre.yin@ist.utl.pt

Soraia Figueiredo; Miguel Mira da Silva

INESC . INOV

Instituto Superior Técnico (IST)

Lisboa, Portugal

soraia.figueiredo@inov.pt; mms@ist.utl.pt

Abstract—Within the agile development methodologies context,

the topic of client relationship management is strongly focused,

mainly due to the importance of collaboration between the

development team and its clients. Most clients avoid or are

unable to develop a close cooperation with vendor organizations,

since it requires a motivation and close participation among key

stakeholders in the development processes within and correct

usage of the adopted software development methodology. Hence,

software development projects fail and become unsuccessful

because of this lack of communication. In order to increase the

rate of successful projects, this paper will present the journey of

the validation process for this roadmap to lead and aid software

vendor organizations improve their development processes,

concentrating mainly on the client’s role throughout the process.

This concept is called Scrum Maturity Model; therefore, our

main goal is to validate this concept with organizations that use

Scrum agile methodology as their main development process,

which turns out to be an viable approach to reduce the rate failed

development projects.

Keywords-development methodologies; agile methodologies;

scrum development methodology; maturity model; action research

I. INTRODUCTION

According to a CHAOS Report [1], about 70% of IT
development projects fail to deliver functional software, mostly
due to a poor communication between stakeholders, who play
key roles in the development process. This problem of human
factors in software development collaboration is also
highlighted in these three following papers [2][3][4][5].

The fact that most clients spend an extremely small amount
of time and effort working closely with the software vendor
organization, that develops the solution, goes against the Agile
Manifesto values [6], which are the foundations for a
successful agile oriented development.

The failure of Information Technology (IT) projects caused
by mediocre software requirements engineering and other
human/client factors is a highly researched theme among
professionals and scholars. Therefore, this paper intends to
provide a different insight about the current issues concerning
this topic [7] [8][9][10].

The main concern that induced this research was precisely
the dilemma mentioned above: lack of cooperation among
stakeholders involved in an IT development project, focusing

on the type of communication between the development team
and the client. This problem in communication can result from:
(1) Human factors and resistance to changes; (2) Distance that
separates both vendors and clients or; (3) Inexistence of a
commitment that follows the definition of a contract of
collaboration.

Generally, both clients and software development
organization teams may fear and avoid the adoption of new
methods of collaboration with a new team [10]. This harms the
partnership between the two, thus resulting in inadequate
requirements engineering emphasized by agile methodologies,
which will, eventually, lead to an unsuccessful project.

Concerning human behavior, the distance that separates the
vendor organization and the client challenges the
accomplishment of a fluent and successful cooperation [11].
Apart from this exact physical distance, that hardens the
communication and occasionally blocks the possibility of face-
to-face meetings, a cultural distance must also be considered,
since this aspect may bring a negative impact, such as cultural
clashes, to the performance of the collaboration and influence
the project as a whole [10].

Another cause of this problem is the inexistence of
highlighted goals, such as market competition, which will
motivate all stakeholders to improve their processes and
maximize the outputs. According to a survey made by Gartner
[13], agile methodologies could use a maturity model as a
roadmap and market differential, so software development
organizations might explore their processes and reach higher
levels of maturity. Moreover, a paper from Software
Engineering Institute (SEI) [14] reveals that Capability
Maturity Model Integration (CMMI) can coexist with agile
methodologies and enhance these software development
organizations [15].

This paper will focus on the changes from the previous
proposal [16] and recent evaluation processes of the solution
for this lack of collaboration, usually, between vendor
organizations and clients. Moreover, it will conceive a roadmap
for improvement in order to create successful IT development
projects. Since Scrum development methodology emphasizes
such collaboration, the solution shall be molded as a roadmap
in the form of a maturity model so as to achieve the goal of this
paper.

20

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 36 / 612

Note that this topic of maturity models and other IT
governance frameworks on agile methodologies a highly
polemic among the agile community. Nevertheless, IT
governance mechanisms are necessary and welcomed in
organizations which are underproductive, and, thus, hold the
major slice of failed projects [14].

The chosen research method was Action Research (AR)
due to its success in various academic investigations in the
Information Systems area and for allowing the researcher to
interfere and observe introduced modifications on the studied
environment. AR is comprised by a five stages cycle [17]: (1)
Diagnosis – problem identification; (2) Action Planning –
planning and research phase to prepare the experiment and
alternative actions; (3) Action – implementation of planned
actions, introduction of changes and analysis of the outputs on
the environment; (4) Evaluation – it is determined if the
outcomes are expected or against odds and assures that
introduced actions are the only reason for the obtained success;
(5) Specifying Learning – Identify general findings.

Note that AR is carried out by individuals who are

interested parties in the research. This fact has led to criticisms

of the validity of the research process, with accusations of

inevitable researcher bias in data gathering and analysis. The

justification for AR counters this criticism by suggesting that

it is impossible to access practice without involving the

practitioner. Practice is action informed by values and aims

which are not fully accessible from the outside. The

practitioner may not even be wholly aware of the meaning of

his or her values until he or she tries to embody them in her

action.

Nevertheless, there are some limitations with this research

methodology, namely: the unfamiliarity with research methods

and the representations of the process of action research may

confuse, rather than enlighten.
As stated, this paper continues our previous research,

hence, the first two cycles of action research were already
previously applied. This paper will mainly focus on the
changes to the proposal, based on past learning, and iterate
more cycles of action research in order to achieve stronger
validation of the proposal.

Before the presentation of the improved proposition, a brief
introduction and review of the related work in this area of
research shall be developed in Sections II and III. After, the
changes in the proposition are detailed in Section VI; in the
next section (Section V) the results of newer and various
practical experimentations of the proposition will be presented.
Afterwards, in Section VI, the main lessons learned shall be
analyzed. Finally, Section VII will conclude with the summary
of this investigation, relating all mentioned topics as a whole.
In this section, some future works and approaches are given to
continue the research.

II. RELATED WORK

This section intends to make a brief review of the related

work in the field of agile development study.

A. Agile Methodologies

The origins of Agile methodologies are deeply connected
with the concepts of iterative and incremental development.
There were several ideas concerning the agile concept, hence
an Agile Manifesto [6] was established.

The set of values and inherent principles listed on this
Manifesto stress the importance of the clients‟ presence in
order to obtain a better collaboration outcome, working
software as the main goal and agility when facing a sudden
change in requirements [18][19].

Since this approach requires a high cooperation level
between the client and the development team, mainly through
face-to-face meetings, it has the drawback of being partially
obsolete in the current market, in which an ascending number
of projects are developed at a distance [20][21][22].

B. Scrum

Scrum is an agile methodology to manage development
projects through an iterative and incremental method
[23][24][25]. It is divided into three main key roles: (1) Scrum
Master – individual who is responsible for the Scrum process
and its correct usage maximizing its benefits; also known as the
facilitator of Scrum team; (2) Product Owner – individual who
is accountable for the alignment of the development and
business goals definition, and; (3) Team – team that is in
charge of delivering the product. A team comprises 5 to 9
members with cross-functional skills, who are self-organized
and self-led.

This methodology identifies four objects that are operated
by the Scrum team throughout the development cycle: (1)
Product Backlog – a prioritized list of everything necessary to
conclude the product; (2) Sprint Backlog – a list of tasks to
perform during a sprint, i.e., an up to four weeks development
iteration to introduce parts of the Product Backlog into working
software; (3) Release Burndown Charts – charts that show the
progress of the project over time, and; (4) Sprint Burndown
Charts – charts that show the progress of the sprint over time.

The interaction of the roles maneuvering these objects is set
for the following meeting: (1) Release Planning Meeting –
Scrum team gathers and fills in the Product Backlog; (2) Sprint
Planning Meeting – development team and client closely
discuss matters and define the goals for the next sprint; (3)
Daily Scrum – a brief meeting for developers to identify
personal issues and possible improvements in methodology
usage; (4) Sprint Review – demonstration of the working
software to the client and stakeholders; (5) Sprint Retrospective
– team performs a self-examination regarding the last sprint in
order to seek improvements on their use of Scrum
Methodology and collaboration in general.

Scrum methodology is an iterative and incremental
development methodology. The phase for planning and system
architecture takes place in Release Planning Meeting, while the
sprints are comprised by Sprint Planning Meetings, Daily
Scrum, Sprint Review and Sprint Retrospective.

Although Scrum has a wide definition of concepts, that,
when applied, may allow agile software development, it cannot
guarantee the success of IT projects. This methodology

21

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 37 / 612

emphasizes close collaboration between development teams
and their clients; still, most of the time this does not happen
and, thus, a supplementary solution to complement this
imperfection is needed.

C. Modified Agile

Modified Agile is an agile development methodology that
results from the analysis of the flaws in the Agile Manifesto [6]
opposing to distant outsourcing environment [11].

The main problems identified concerning this matter were
the poor communication among participants of the IT projects
and the exhaustive documentation needed for contract
negotiation. All other values and principles mentioned in Agile
Manifesto remain feasible in a distant outsourcing context.

Figure 1. Modified Agile communcation model proposal [11].

The solution recommended by the author of this paper is an
authentic communication model and team composition
structure, which will enhance the communication between
clients and developers and reduce the negative effects derived
from the distance factor that leads to a loss of knowledge.

In Figure 1, the introduction of two specific roles is
emphasized: (1) Coordination – an individual from the client-
side, who ensures the maximization of development outputs by
assigning the most important business goals to be developed as
a priority; (2) Ambassador – individual from the development
team-side who makes sure that the product developed is
aligned according to the customer‟s needs and wills. These two
roles must work closely as a formal communication channel,
while team members from both development and the client-
side might communicate among themselves through an
informal channel

Although this distributed agile concept is broadly used with
several case studies proving its success, there are also many
failed IT projects due to human factors and inadequate
collaboration between clients and vendor organizations
[26][27].

III. MATURITY MODELS

The maturity models from software development processes

enable the classification of the performance of the actual ones

and guide organizations to encourage process improvement

through a staged method, also known as maturity. These

maturity models are an interesting approach to solving the

problem described in Section I, since the presence of a

maturity classification can allow the comparison between

competitor organizations.

A. Capability Maturity Model Integration

Capability Maturity Model Integration (CMMI) was
introduced in 2002 and ever since, it has focused on process
improvement approaches, which assist organizations in
adopting the best type of practices from each process area and
make the processes performance evolve [28][29].

In the staged representation, CMMI presents different
levels that vary from one to five. One level of maturity is
characterized by a set of predefined process areas, evaluated by
the accomplishment of specific and generic goals applicable to
the various areas. Each of these is attached to a set of practices,
which reflect specific and generic goals [30]. This type of
approach is highly successful worldwide amongst enterprises
that wish to surpass competitors by providing improved and
better products and services.

Given its broad scope coverage, CMMI does not solve the
issue due to its non-focus on agile software development
processes, which are the area of the current study.

B. Agile Maturity Model

Agile Maturity Model (AMM) was introduced by two
researchers in an IT University in Leeds, and it was conceived
in order to provide future researchers a more in-depth agile
maturity model as a basis for their investigations [31].

Figure 2. Agile Maturity Model staged representation [31].

This model is shown in Figure 2. and it is somehow
inspired by CMMI, since it also has 5 levels, each with a set of
goals for their practices: (1) Level 1: Initial – organizations
belonging to this level of agile maturity do not have a clearly
defined process for agile development and eminent success
depends solely on the competence of individuals; (2) Level 2:
Explored – it gives particular focus to project planning and
requirements engineering for organizations; (3) Level 3:
Defined – it stresses the importance of frequent deliveries, pair
programming and customer relationship enhancement; (4)

22

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 38 / 612

Level 4: Improved – it focus on project management,
sustainable velocity of development and self-organizing teams;
(5) Level 5: Sustained – underlines the need for the
management of projects‟ performance, thus continuously
improving processes.

 The AMM provides a first approach to classifying the
maturity of agile development processes, which comprises
practices from various agile methodologies. Therefore, it leads
us to a continuous research, since this model‟s set of practices
crosses too many agile methodologies that most organizations
do not apply, causing increased levels of entropy.

C. Agile Maturity

Agile Maturity paper appeared as a study case from the
British Telecom while developing an IT project [32]. Since it
was said that big organizations had increased the barrier for a
successful agile adoption, an agile maturity roadmap was
presented.

The agile maturity evaluates the agile performance in seven
dimensions within five levels of maturity: (1) Level 1 –
represents the appearance of software engineering best-
practices; (2) Level 2 – best-practices are continuous and
improve within small development teams; (3) Level 3 – there is
continuous integration within local component teams; (4) Level
4 – there is an incessant integration within global journey
teams, i.e., distributed teams, and; (5) Level 5 – on-demand
development maturity.

For each of these levels there shall be an evaluation of each
the seven existing dimension: (1) Automation of regression
tests; (2) Code quality metrics; (3) Automation of deployment;
(4) Automation of configurations and best-practices
management; (5) Interface integration tests; (6) Test driven
development, and; (7) Performance scalability tests.

The combination of these five maturity levels and the seven
dimensions allowed British Telecom to incrementally perform
a better agile development process. However, this approach is
generic and non-focused on the description of these levels and
their practices, which leads to one‟s need to seek another
solution for the major problem stated in Section I.

IV. PROPOSAL

Following the problem focused throughout the last
investigation and its various related work, the proposal of a
potential solution was introduced in the previous work.
Therefore, this section will present the improvements made, the
results from the previous proposal through the last two cycles
of action research, and propose an optimized roadmap for IT
organizations, with renewed validation, so as to develop
software with better quality, i.e., more focused on the client
role and motivated to self-improvement and market
competition.

The Scrum Maturity Model‟s main purpose is to aid and
guide IT software development organizations and encourage
self-improvement, giving special attention to the client‟s role,
which is mandatory on this fast moving, global and competitive
worldwide market. Furthermore, this proposal intends to help
organizations that are not familiar with Scrum and wish to
implement and adopt it on a staged and incremental approach.

This proposition introduces five levels for Scrum
development methodology with its respective goals, objectives,
specific and suggested practices. The number of levels is a
standard of maturity models; thus making it easier to be
measured up with other maturity models for comparison and
evaluation purposes.

Next, the main improvements made from the original
proposal will be presented. Note that the full details of the
proposition contain the complete goals, objectives, practices
and suggested metrics for each level of Scrum maturity.

A. Level 1 – Initial

This first and lowest level of maturity, which can be
assigned to an organization that uses Scrum, represents the
absence of goals for process improvement. The explicit
definition of agile development with Scrum methodology does
not exist within organizations classified as belonging to this
level.

The main issues of the organizations in this level are the
frequent over-time and over-budget projects, poor
communication among stakeholders and unsatisfactory quality
of the final product. These organizations operate on their own
and unique way depending on their particular situation which
makes their success highly reliant on competent and skilled
individuals rather than on standardized and capable teams. In
fact, organizations that do not comply with the goal defined for
level 2 of Scrum maturity are downgraded to level 1 until
further improvements are performed in order to achieve the
next level.

B. Level 2 – Managed

In level 2, software development practices appear more
structured and complete than in level 1, due to the fulfillment
of the two main goals set for this level also shown in Figure 3:

Figure 3. Goals and objectives for level 2 of Scrum Maturity.

 Basic Scrum Management – this goal dictates practices
that organizations in this level must accomplish, which
will ensure the minimum acceptable usage of the
Scrum methodology and structure. Note that, although
all Scrum roles, objects and meetings must exist in
these organizations, those Scrum objects might not be
correctly or effectively used, resulting on the need to
have further process improvement;

23

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 39 / 612

 Software Requirement Engineering – this goal
comprises a set of practices that the organizations must
comply with in order to achieve satisfaction from the
final product‟s quality created by the vendor
organization. Organizations in level 2 usually face
fewer problems in the development process than the
ones in level 1. However, they still have difficulty in
communicating with the client-side representatives and
delivering their projects as planned, concerning
schedule and budget.

According to the last evaluation of the proposal, this level
showed solid goals, objectives, practices and suggested
metrics. For this reason, level 2 presented minor changes in the
text of the practices, remaining the majority of this level intact.

C. Level 3 – Defined

Level 3 of this maturity model has its major focus on the
relationship with clients and on time deliveries. Hence, this
level also has two major goals, shown in Figure 4, to guide
organizations and improve their processes:

Figure 4. Goals and objectives for level 3 of Scrum Maturity.

 Customer Relationship Management – this goal
emphasizes the importance of the client and the efforts
required to maximize the collaboration with the
customer side, even considering the three main
difficulties mentioned in Section I. A set of practices
are defined and must be satisfied in order to solve the
core problem of this investigation.

 Iteration Management – this goal is indirectly linked to
the previous one, since both contribute to raise
customer satisfaction levels. In order to achieve this
goal, a set of practices must be fulfilled and
implemented so that the organizations always deliver
their projects and sprints on time, following their
budgets.

 With the implementation of level 3 of maturity, an
organization can be successful on several projects. However,
this success is only partial due to the lack of standardized
management, which would guarantee the same quality and
performance in all development processes.

Again, the previous work evaluated this level as fairly
solid, and only minor changes within the description of the
practices were introduced.

D. Level 4 – Quantitativelty Managed

In level 4 of Scrum maturity, an organization can boost
their achievements by offering standardized and regular
software development process aided by the management of the
process performance through measurement and analysis
practices. In this level of maturity, there are two main fields:

 Standardized Project Management – this goal shall
lead organizations to use the same development
process for all projects and deliver significantly high
quality and performance levels. In order to achieve this
goal, an organization must complete the
standardization of the performed processes;

 Process Performance Management – this goal demands
the monitoring of all suggested practices up to level 4
of Scrum maturity. These metrics aim to provide
enough feedback about actual processes and manage
their performance.

Although this level seems very simple in Figure 5, it is
actually extremely hard to implement the management and
monitor all projects within an organization so as to fulfill all
specific practices and maintain the process‟ consistency. Note
that suggested metrics may be used and organizations are
encouraged to customize them to be more appropriate for each
enterprise‟s culture and best practices.

Figure 5. Goals and objectives for level 4 of Scrum Maturity.

Organizations in this level adopt appealing Scrum
development processes and the majority of their projects are
successful. The only and last improvement left is optimization
of the current processes.

With the previous evaluation process for this proposal it
was possible to identify the ambiguity within level 4 for many
organizations. In order to clarify it, the demand for
“Standardized Projects Management” is now only applied to all
agile Scrum projects within the organization, and not to all
projects, since in one organization both waterfall development
methodologies and agile, in different projects and clients, can
coexist.

E. Level 5 – Optimizing

Organizations in level 5 of the Scrum Maturity Model are
top class software developers using Scrum methodology. They
focus on continuous self-improvement to excel competition
and bring higher levels of satisfaction from client, development
team and all stakeholders. The only goal for this level is:

 Performance Management – this goal allows
organizations to measure and analyze their own actions
and processes to self-improve.

24

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 40 / 612

Organizations in this level have achieved a maximum level
and must not discard previous accomplishments and goals by
negligence which will block continuous process improvement.

In Figure 6, the four objectives for the main goal of this
Scrum maturity are illustrated, being “Causal Analysis
Resolution” a newly added objective to this level of Scrum
maturity.

Figure 6. Goals and objectives for level 5 of Scrum Maturity.

The main result from the previous work for the definition
and first approach experimentation was that the top levels of
this Scrum Maturity Model were slightly incomplete and
ambiguous. Therefore, the objective “Causal Analysis and
Resolution” was included to be used with Daily Scrum and
Scrum Retrospective Meeting as to analyze the occurred
impediments, differentiate them from incidents and problems,
make causal analysis retrospective and then take corrective
actions against them.

Note that the whole Scrum maturity model was constantly
aligned with similar and renowned best-practices such as
CMMI. This decision was based on the purpose of future
comparisons with CMMI assessments versus assessments
using the proposed model, in order to provided another form of
the validation.

Before the results from the practical experimentation of this
preposition, note that this Scrum Maturity Model is comprised
by its goals, objectives, specific practices and suggested
practices for each level. However, due to its size, the complete
list of specific practices was not presented. Therefore, only
instances from the set were given.

V. RESULTS

In order to evaluate and validate the usefulness and
effectiveness of this improved proposal, a third cycle of action
research was planned, which included two interviews with
Scrum, agile and CMMI experts to validate the concept and
details of the proposal as well as six appraisals and audits of
Scrum maturity in three different enterprises so as to evaluate
its usefulness, efficiency and impact made.

A. Interviews

In order to attain validation of this concept: maturity model

for agile Scrum development methodology, a few experts were

interviewed.

1) Expert A

Expert A, an international CMMI, Agile and Scrum expert

and also partner of an Agile coaching company, granted us

two interviews to present our previous proposal and discuss it

regarding its viability, usefulness and value created from it.

According to Expert A, the first three levels of Scrum

maturity have sufficient detail and acceptable approach.

However, although level 4 and 5 have proper goals and

objectives, they required some more detail, more specifically,

practices to enhance the quality of Scrum Retrospective

Meeting are lacking. For instance, practices such as “Question

five W‟s”, “Identify problems and incidents” and “Build

cause-effect diagram to identify problems” would enhance the

quality of the inner inspection from retrospective meeting to

seek continuous improvement.

Nevertheless, in her feedback, Expert A also stated that the

suggested metrics from level 4 of Scrum maturity presents an

excellent feature, since not even CMMI presents suggested

metrics that exists in COBIT. These suggested metrics allow

the monitoring of the current state of the process and discover

where to put efforts for improvement, apart from analyzing

quantitative statistics from the development process.

About the concept as a whole, Expert A accepts that

scattered Scrum loses integrity, however she also agrees that

Scrum Maturity Model is not intended to split Scrum into five

levels and areas, but rather to provide more emphasis on

different areas in each level. Furthermore, it was assured that

if this proposal does not become a standard worldwide, it will

at least be an extraordinary tool to be used in Scrum

Retrospective Meetings as self appraisal and assessment of

own maturity.

2) Expert B

Expert B, also an international Agile and Scrum expert as

well as a Scrum coach, works for a top five world largest IT

company, and conceded us an interview to present to him the

actual proposal and discuss about its viability, usefulness and

created value . He was pleased with the concept which

involves the evaluation of the maturity of the Scrum process,

and provided precious feedback for the definition of the

practices of each level and within each goal.

Most of the original proposal remains, while merely the

definition of the required practices changed, remaining the

goals and objectives intact.

B. Appraisals

Another way to validate this theoretical work is to apply it
to organizations with strong contact with real business
problems. To evaluate the proposal, the following process was
adopted:

 Pre-appraisal questionnaire – First, a brief presentation
of Scrum Maturity Model concept and its goals on
each level will take place. Then, the organization will
be asked to fill in the pre-appraisal evaluation form,
which will unfold its beliefs about the level in which
the organization should and will be classified;

 Appraisal – Later on, if it was never audited before, the
appraisal for level 2 of Scrum maturity will begin. If
they had obtained successful appraisals before, then the
next level of Scrum maturity will be appraised. This
process consists in auditing the organizations‟ practices
against the checklist of the Scrum ones which must be

25

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 41 / 612

accomplished in order to obtain the intended level
Scrum of maturity.

 Post-appraisal questionnaire – After the appraisal, the
assessed organization receives a post-appraisal
questionnaire to evaluate the proposal. This phase aims
to extract all feedback, both positive and negative,
about the proposal and the satisfaction level with
appraisal results, comparing it to the initial
expectations.

Next, we will present the action taken within three IT
development and consulting organizations while auditing the
maturity of their development process using Scrum. A number
of organizations provided more than one project in progress for
the audit process, therefore, in some, more than one project
manager was interviewed.

1) Organization X
Organization X, which is focused on cutting waste in

software delivery through the practice of lean and agile
concepts that they have been implementing for a year now,
allowed an audit of their software development process to
assess their maturity of Scrum usage.

They are comprised by around seven developers abroad in
Ukraine, who assume the Scrum role “Team”, and three project
managers in Portugal, that take on the role of “Scrum Master”
involved in two or three projects at a time. This enterprise is
the excellent example of distributed Scrum, which intends to
manage the resources wisely without creating waste and still
fulfills the needs of the client, considering the problems from
cooperation and distance.

Within the pre-appraisal questionnaire, the organization
predicted the possible outcome from the audit as level 2 or 3 of
Scrum maturity, since they were aware of the lack of
mechanisms to measure and monitor process metrics and
formal processes for continuous improvement.

As the appraisal occurred, the organization was confronted
with the checklist of the practices which had to be fulfilled in
order to achieve the first level of Scrum maturity – level 2.
According to the audit, they failed the “Basic Scrum
Management” goal by missing the objective of “Scrum
meetings occur and are participated”. Actually, they ignored
the need of a Scrum Retrospective Meeting and neglected the
importance of a formal Daily Scrum Meeting and Scrum
Review Meeting.

During the post-appraisal questionnaire, the organization
did not show any sight of disappointment and, instead,
appeared to be very excited with the results, displaying
motivation and critic analysis toward the results and
opportunities for future improvements for a better development
process. First, they argued that it is very difficult to
communicate with clients in this fast moving generation. It was
hard to convince the collaboration and their presence at the end
of each sprint, which caused them to fail practices such as
“Sprint Review Meeting occurs exactly once per Sprint” and
“Sprint Review Meeting is attended by Stakeholders, Scrum
Master, Product Owner and Team”. They also claimed against
the failed “Daily Scrum occurs exactly once per workday”

practice, since the organization affirms there are casing
meetings from lean development principles, for the nature of
these meetings is different.

Nevertheless, at the end, the organization will rethink these
failed practices, and the interviewed project manager planned
to immediately launch the implementation of Scrum
Retrospective Meeting, since it has great potential benefits that
had not yet been considered.

When the interview ended, the interviewee gave the
following feedback regarding the Scrum Maturity Model:
“This proposal provides a good roadmap for IT organizations
by offering goals and objectives per level to evolve and
gradually improve, attacking one goal at a time.”; “For higher
levels of maturity, it is required much more stability to see the
improvements and, although the existence of suggested metrics
is brilliant, it lacks how to implement the monitoring
mechanism.”. As a final word, the Scrum Master from the
organization stated: “Many organizations nowadays declare
themselves as agile, but how agile they can be when there are
no definitions or rules? The existence of this proposal can
surely differentiate the successful agile practitioners from the
others.”

2) Organization Y
Organization Y, a fast growing IT consultant enterprise

focused on satisfying the market needs through agile and
flexible principles, also accepted to be a part of this
investigation by providing three of their four project managers
to be audited with Scrum Maturity Model.

 They are around forty employees, with about thirty in
headquarters and ten distributed in two other branches, being
one of these branches located abroad, in Vienna. Currently,
they employ four project managers and the CEO arranged three
meetings with three of them in order to receive some academic
research feedback within his company.

a) Project Manager Y1

Project Manager Y1 has been recently promoted to perform
the more technical oriented role of project manager. He has a
background in the business intelligence field, and now focuses
more on the leadership and management of the team of
developers for consulting projects.

During the pre-appraisal questionnaire phase, while
analyzing the goals required for each level, he determined
levels 1 or 2 as a possible result, for he was fully aware that the
organization is on the early stage of agile implementation and
several goals might not be fulfilled.

As the appraisal for level 2 of Scrum maturity occurred,
soon the missing practices was identified. They missed the
“Sprint Retrospective Meeting occurs exactly once per Sprint”
practice. Unfortunately, this missing feature made this
organization fail level 2, although many other practices were
accomplished.

Then, within the post-appraisal questionnaire, the project
manager agreed with the results, although slightly disappointed
with the obtained level. The grounds for this result, he said,
was that many unimplemented practices were not given the
importance they should have and, although it is possibly very

26

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 42 / 612

rewarding, they wanted to focus more on the current client
needs without having to worry about overworking their
employees. Another explanation is that, given the dimension of
his team, so much formality in the development process was
not really necessary, as long as the results show up and the
clients are satisfied.

For evaluation purposes, it was allowed for the project
manager to inspect the next level, which turned out to be
another failed appraisal, but this time for level 3, the
organization failed the “Sprint Backlog Items are split into
tasks” practice when all other practices were accomplished.
With this result, the project manager was relieved as he
believed that they could achieve up to level 3 of Scrum
maturity with a relative small amount of effort, even though it
required immense work in employees‟ culture to implement
them.

To conclude, he agreed that the concept itself has potential
to grown into a certification, which will provide more market
differentiation. Another interesting point is that it might not be
very expensive to concentrate efforts and obtain an acceptable
level 3 of Scrum maturity.

b) Project Manager Y2

Project Manager Y2 is in charge of four development
projects, each of them with only one or two developers located
in Vienna focusing on the improvement of applications for
smart phones. The main challenges for him are how to
coordinate and perform the role of middle man between the
client‟s needs and developers‟ performance with Scrum
methodology, since he has less than a year experience with this
development methodology.

Within the pre-appraisal questionnaire, given Manager Y2
relative inexperience, the project manager did not have high
expectations and pointed out level 2 as a possible outcome.

During the appraisal, they failed many practices such as:
“Release Burndown Chart exists”, “Sprint Burndown Chart
exists” and “Sprint Retrospective Meeting occurs exactly once
per Sprint”.

In the post-appraisal questionnaire phase, the project
manager explained that due to the unawareness of the technical
capabilities from the project management tools, it was not
possible to maintain updated and correct burndown charts.
Concerning the missing retrospective meeting, he stated that it
is very difficult to have a formal meetings with the distributed
team located in Vienna, seriously affecting the performance of
this communication.

Again, for evaluation purposes, it was allowed for the
interviewee to inspect the fully detailed Scrum Maturity
Model, and advanced to the next level‟s audit. They did not
accomplish practices like: “Definition of „Done‟ is achieved in
each iteration” and “During Sprint Review Meeting Product
Owner and other stakeholders provide feedback”.

In the end, the project manager was satisfied to learn more
about agile Scrum methodologies, and where he should
improve in further projects. He stated that this maturity model
might be an important tool to measure their current
performance and guide them to continuous improvement.

c) Project Manager Y3

Project Manager Y3, a very experienced and enthusiastic
Scrum and agile practitioner, is leading the company to
implement the backbone for Scrum adoption. It has been
almost a year since they started trying to reach this objective,
and, at the moment, they are in the final stage. For him,
continuous improvement is the core strategy to achieve a
competitive advantage. In order to achieve this goal, he leads
the implementation and integration of several support systems
to aid the development process, since he believes that no agile
is solid enough without the required backbone tools. Now, he is
in charge of a development project with three developers and a
three month length deadline.

The pre-appraisal questionnaire phase revealed that he had
high expectations and confidence in their maturity, choosing
the level 4 or 5 as the expected result from the appraisal.

When the appraisal began, they succeed to fulfill level 2
practices, and then level 3. No problems were encountered so
far. Surprisingly, level 4 was also achieved, because all his
previous projects were managed with a standard method and he
had a data mining module that defined, monitored and measure
their development process and metrics. At the last appraisal for
level 5, unfortunately, they failed the practices: “Successful
Retrospective Meetings result in concrete improvement
proposals” and “Successful Retrospective Meetings‟ lessons
learned are recorded to a knowledge base”.

Within the post-appraisal questionnaire, the project
manager was satisfied with the results, seeing his efforts
recognized by external parties and not totally disappointed with
the obtained level 4 of Scrum maturity, since they were
working on the quality of retrospective meetings now.

His final feedback for this proposal is the following: “This
proposal is an excellent tool for deeper insight, to rethink their
agile path. Moreover, this preposition motivates the adoption of
Scrum by separating several objectives via levels. Agile is easy
to learn, however very hard to master. Thus, it is very
important for prepositions like these to exist in order to aid
organizations to correctly adopt Scrum.”

3) Organization Z
Organization Z is a worldwide renowned company that

provides technology solutions and services around the world.
In their office located in Portugal, they employ around four
hundred professionals, delivering both consulting service and
software solutions. Their development projects are normally
very big involving more than forty people and a twelve-month
period per project.

a) Project Manager Z1

Project Manager Z1 is the senior software architect and
performs team coaching regularly. He worked for a leading and
pioneer company using agile methodologies, where he learned
a lot about agile best practices from the elite from that
generation. Currently, the project he is working with involves
forty people, three scrum teams and a year of schedule, and it
applies Scrum methodology with this particular client for the
first time. They are on the production and deployment phase.

27

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 43 / 612

In the pre-appraisal questionnaire assessment, Manager Z1
suggested level 3 as the possible result, since he was aware that
the company missed the goals “Measurement and Analysis
Management” and “Performance Management”.

During the appraisal for level 2 of Scrum maturity,
Manager Z1‟s project succeeded to accomplish all practices for
level 2, except “Sprint Burndown Chart exists” practice.

In the post-appraisal questionnaire phase, Manager Z1
intensely argued about the need of a sprint burndown chart,
which is only used to manage small two weeks sprints and
creates waste by joining efforts to manually build such a chart.
Note that the organization uses manual means to follow Scrum
methodology.

By analyzing the next levels, Manager Z1 felt frustrated
again, because he would fail level 3 due to the inexistence of
the sprint burndown chart stressed in the goal “Iteration
Management”. However, to achieve levels 4 and 5, he agreed
that more efforts were needed and that they intend to move
further in their question of continuous improvement as a
competitive advantage.

As final words, he said: “What I see here is a very
interesting approach in agile methodologies study. The
roadmap is very good for new enterprises to adopt Scrum and a
nice differentiation model for companies in the development
industry.”

b) Project Manager Z2

Project Manager Z2 is also a well experienced Scrum

practitioner within the organization, and is currently managing

a project with four years already, which involves three Scrum

teams. This project‟s particularity is that the client does not

collaborate as closely as the company would wish, so Scrum

was only applied as internal communication and work

methodology.

In the pre-appraisal questionnaire, after the overview of the

maturity mode, he selected level 2 as most likely result of the

appraisal.

As the appraisal started, “Sprint Burndown Chart exists”

practice was found to be missing just like in the last project

manager. Moreover, they did not have “Sprint Review

Meeting occurs exactly once per Sprint” practice formally

implemented, only some demonstrations once or twice a year.

Yet another missing practice was “Sprint Retrospective

Meeting occurs exactly once per Sprint”, as according to

company‟s culture, it only happens right after the Scrum

Review Meeting.

During the post-appraisal questionnaire, he commented as

the following: “Agile methodologies stress communication a

lot. Its qualities are not shown in tiny projects, but in large

scale projects in which real problems occur. In these big

projects, flexible and constant communication is needed to

maximize and optimize the work performed. This proposal

presents a staged maturity model to guide Scrum

implementation and Scrum performance and usage to

differentiate enterprises, which is a magnificent idea.”

VI. EVALUATION

Given the results previously presented, in this section, a

critic study for the Scrum Maturity Model will be analyzed

and presented.

Regarding the interviews, it was possible for us to realize

that the first three levels were well structured, while top levels

needed some rework, which is already done. Moreover, it was

stated by professionals that the preposition is a very good

approach for Scrum adoption, self-inspection and continuous

improvement.

This study considered the six performed appraisals in three

sample organizations from Portugal, represented by a small, a

medium and a large-sized company. Although the average

level of maturity is not very high, many of the audited

organizations were able to easily reach level 3 by focusing

efforts to implement the missing goals, objectives and

practices.

The most common missing practices for the first level of

Scrum maturity, level 2, were “Sprint Review Meeting occurs

exactly once per Sprint” and “Sprint Retrospective Meeting

occurs exactly once per Sprint”. In level 3, “Definition of

„Done‟ is achieved in each iteration” is the most commonly

failed practice. Top levels were scarcely achievable due to

their requirements for mechanisms and concepts for

measurement; analysis of process metrics; causal analysis;

resolution of problems; and, impediments identified, which

were not popular among IT development organizations.

Although many organizations define themselves as agile

and Scrum followers, another interesting finding is that many

of the basics were not taken into account, and only main and

popular values and principles were retained, resulting in these

low levels of Scrum maturity.
Through this assessment, it was possible to conclude that

the proposal provides a good roadmap for organizations that
want to implement Scrum methodology from scratch, align
their position for benchmarking purposes or for organizations
that want to self-improve.

All feedback collected from both interviews with experts
and professionals in the development industry gave us a great
deal of confidence and insight to continue our research, refine
it and possibly scale its usage and define it as a standard.

VII. CONCLUSION AND FUTURE WORK

In Section I, followed by some discussion and analysis, the
main problem was a visible lack of collaboration, in most
cases, between vendor organizations and clients as they tried to
achieve the development of a successful IT project. This
problem is a widely researched topic amongst IT experts, due
to its vital importance on the success of software development
projects [1][2][3][4][5][6][7][8].

Inspired by the related work and maturity models, the
improved proposition, from previous research, with five levels
of Scrum maturity presents a roadmap for organizations to
implement Scrum methodology and compare the performance
of software development process amongst competitors.

The main focus of this paper was the validation phase of
the current proposal within cycles of AR, which are comprised

28

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 44 / 612

by two interviews with two agile and CMMI experts and six
appraisals and post-appraisal assessment. The proposal was
evaluated and validated by them, and it is our intention to share
our findings with the scientific community. Since this
proposition is continuously evolving, the current research shall
be repeated until the community agrees on a final iteration and
accept it as standard.

We are aware that the evaluation process has limitations,
but despite credibility issues regarding this process, the
experienced validation phase is worthy to be share with the
scientific community, given the interest of the process and its
results.

Along with the analysis of the motivation for this research,
it was pointed out that further investigation on human factors
and on the change of management areas might benefit and
enhance the performance of this maturity model. Another
interesting research topic would be the classification of the
partnership and client maturity, since, as referred to in Section
I, clients are usually the major impediment for successful IT
projects.

In the end, and we once more stress, the proposition of
maturity model is highly polemic within agile community.
Nevertheless, the concept Scrum Maturity Model has proved
successful as the roadmap for organizations that seek self-
improvement and guidance.

ACKNOWLEDGMENT

We would like acknowledge the participation of all experts,
organizations and their projects manager for their validation,
feedback and experience sharing. A special thanks will go to
Microsoft and Tiago Andrade e Silva for their support and
guidance throughout this validation process.

REFERENCES

[1] Group, S.: The Chaos Report 2009 (2007) Retrieved from

http://www1.standishgroup.com/newsroom/chaos_2009.php last
accessed 25 August 2011

[2] Kraut, R. E. and Streeter, L. A.: Coordination in software development:
Communications of the ACM, 38(3), 69-81. ACM (1995)

[3] Herbsleb, J. D. and Moitra, D.: Global software development: IEEE
Software, 18(2), 16-20. IEEE (2001)

[4] Highsmith, J. and Cockburn, A.: Agile software development: the
business of innovation: Computer, 34(9), 120-127. IEEE (2001)

[5] Cockburn, A. and Highsmith, J.: Agile software development, the people
factor: Computer, 34(11), 131-133. IEEE (2001)

[6] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., et al.: Agile Manifesto (2001) Retrieved
from http://agilemanifesto.org/principles.html last accessed 25 August
2011

[7] Leffingwell, D. and Widrig, D.: Managing Software Requirements: A
Unified Approach: AddisonWesley Longman Publishing Co Inc Boston
MA USA, 491. Addison Wesley (2000)

[8] Charette, R. N.: Why Software Fails: Ieee Spectrum, 42(9), 42-49. IEEE
INSTITUTE OF ELECTRICAL AND ELECTRONICS (2005)

[9] Reel, J. S.: Critical success factors in software projects: IEEE
Software 16(3), 18-23. IEEE (1999)

[10] Wilson S.: Failed IT Projects (The Human Factor) (1998) Retrieved
from http://ac-support.europe.umuc.edu/~meinkej/inss690/wilson.htm
last accessed 25 August 2011

[11] Batra, D.: Modified agile practices for outsourced software projects.:
Communications of the ACM 52(9), 143. AMCIS (2009)

[12] Holmström, H., Fitzgerald, B., Ågerfalk, P. J., and Conchúir, E. Ó.:
Agile Practices Reduce Distance in Global Software Development:
Information Systems Management, 23(3), 7-18. Taylor & Francis (2006)

[13] Norton, D.: The Current State of Agile Method Adoption. Analysis
(2008) Retrivied from
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2
&PageID=3460702&resId=837321&ref=QuickSearch&sthkw=agile+m
ethods last accessed 25 August 2011

[14] Glazer, H., Dalton, J., Anderson, D., Konrad, M., and Shrum, S.:
CMMI® or Agile : Why Not Embrace Both!: Carnegie Mellon
University, Software Engineering Institute (2008)

[15] Laudon, K. C., Laudon, J. P.: Management Information Systems:
Pearson (2009)

[16] Yin, A., Figueiredo, S., and Mira da Silva, M.: Scrum Maturity Model:
Roadmap for IT organizations to develop software centering on the
client role: submitted to 23th Internation Software & Systems
Engineering and their Applications (2011)

[17] Baskerville, R. L.: Investigating information systems with action
research: October, 2(October), 1-32. Association for information
Systems (1999)

[18] Fowler, M., and Highsmith, J.: The Agile Manifesto: Software
Development, 9(August), 28-35. San Francisco, CA: Miller Freeman,
Inc (2001)

[19] Larman, C. and Basili, V. R.: Iterative and Incremental Development: A
Brief History: Computer, 36(6), 47-56. IEEE (2003)

[20] Layman, L., Williams, L., and Cunningham, L.: Motivations and
Measurements in an Agile Case Study: Journal of Systems Architecture
52(11) 654-667 Elsevier North-Holland, Inc. (2006)

[21] Chow, T. and Cao, D.: A Survey Study of Critical Success Factors in
Agile Software Projects: Journal of Systems and Software, 81(16), 961-
971. Elsevier Science Inc. (2008)

[22] Cockburn, A.:Crystal Clear: A Human-Powered Methodology for Small
Teams. (Series in Agile Software Development). Addison-Wesley
Professional (2004)

[23] Schwaber and K., Beedle, M.: Agile Software Development with Scrum
: (Series in Agile Software Development). Prentice Hall (2002)

[24] Beedle, M., Devos, M., Sharon, Y., Schwaber, K., and Sutherland, J.:
SCRUM: An Extension Pattern Language for Hyperproductive Software
Development: Pattern Languages of Program Design, 4, 637-651 (1999)

[25] Kircher, M., Jain, P., Corsaro, A., and Levine, D.: Distributed eXtreme
Programming: Challenges, 20-23. XP01 (2001)

[26] Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N.: Distributed
Scrum: Agile Project Management with Outsourced Development
Teams. 40th Annual Hawaii International Conference on System
Sciences HICSS07 0, 274a-274a. Ieee (2007)

[27] Braithwaite, K. and Joyce, T.: XP Expanded: Distributed Extreme
Programming: Communication, 180-188. Springer Berlin / Heidelberg
(2005)

[28] Chrissis, M. B., Konrad, M., and Shrum, S.: CMMI Guidlines for
Process Integration and Product Improvement: Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA (2003)

[29] Menezes, W.: To CMMI or Not to CMMI: Issues to Think About:
CrossTalk The Journal of Defense Software Engineering, (February
200), 9-11. (2002)

[30] Development, C.: CMMI® for Development, Version 1.3 CMMI-DEV,
V1.3:. Engineering. Carnegie Mellon University (2010) Retrieved from
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm last accessed
25 August 2011

[31] Patel, C. and Ramachandran, M.: Agile Maturity Model (AMM): A
Software Process Improvement framework for Agile Software
Development Practices: International Journal of Software Engineering,
2(1), 3-28. Software Engineering Competence Center (2009)

[32] Benefield, R.: Seven Dimensions of Agile Maturity in the Global
Enterprise: A Case Study: System Sciences HICSS 2010 43rd Hawaii
International Conference, 1-7. IEEE (2010)

29

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 45 / 612

Usage of Robot Framework

in Automation of Functional Test Regression

Stanislav Stresnjak

Siemens CMT
Osijek, Croatia

e-mail: stanislav.stresnjak@siemens.com

Zeljko Hocenski

Computer and Software Engineering Department
University Josip Juraj Strossmayer in Osijek

Osijek, Croatia
e-mail: zeljko.hocenski@etfos.hr

Abstract — Manual testing is a time consuming process. In

addition, regression testing, because of its repetitive nature, is

error-prone, so automation is highly desirable. Robot

Framework is simple, yet powerful and easily extensible tool

which utilizes the keyword driven testing approach. Easy to

use tabular syntax enables creating test cases in a uniform way.

Ability to create reusable high-level keywords from existing

keyword ensures easy extensibility and reusability. Simple

library API, for creating customized test libraries in Python or

Java, is available, while command line interface and XML

based output files ease integration into existing build

infrastructure, for example continuous integration systems. All

these features ensure that Robot Framework can be quickly

used to automate test cases. This paper describes how it is used

for automation of existing functional regression test cases

within short time and with great success and thus saving costs

and enhancing the quality of the software project.

Keywords-software testing; integration testing; regression

testing; test automation; robot framework

I. INTRODUCTION

In order to integrate a component within a larger system,
three major properties, the fitness, the correctness, and the
robustness, have to be tested [1]. The fitness of a component
for an application is in general treated as the compatibility of
the provided interface of the component and the specification
of the required interface of the application. The correctness
of a component is its ability to return the correct output when
provided with the correct input, while the robustness
concerns the absence of a behavior possibly jeopardizing the
rest of the system, especially under wrong input. When lot of
components is present, integration testing became quite
complex and one of the software development improvement
steps pertains to testing process improvements which can
hardly be done without test automation.

There are various tools for test automation available –
commercial and open source, but few are suitable for black
box testing (for a black-box testing, see [2]). Many of
available tools are most suitable for the unit tests performed
by the developers. When it comes to the integration testing
or functional verification – not so many tools are available.

Many of the testing tools provided by vendors are very
sophisticated and use existing or proprietary coding
languages. Effort to automate existing manual tests is similar

to a programmer, using a coding language, writing program
in order to automate any other manual process [3].

This paper is organized as follows. Section 2 explains
how the tool choosing is done. Section 3 describes why
specific tool was chosen. Section 4 describes the
implementation of the tool. Section 5 is about benefits of the
automation. Section 6 draws conclusions.

II. CHOOSING THE TOOL

What was needed was a tool simple enough to make fast
automation and in the same time powerful so these tests can
be extended and produce less error prone. The tool should be
platform independent. Client tests were run on Linux and
Windows and server tests were run on Linux and Solaris.
The tool obtained complete platform independence. And the
main focus was on regression testing of the integration
functional tests. This includes various protocols testing using
proprietary protocol simulator as main tool that triggers
application logic under test. Although most of the tests were
already executed at least once, it became difficult to run
regressions, as with end milestone approaching number of
test cases began to grow (speaking about few hundreds of the
test cases dealing with various scenarios and protocols –
CAP [4], TCP [5], SIP [6], LDAP [7], Diameter [8], SOAP
[9], SMPP [10], SMTP [11], POP3 [12]) and more important
it was rather problematic to check all the logs for errors.
When various servers, against which tests were run, were
introduced, situation got even more complicated because of
their different configuration they had. Not to mention error-
prone process because of large number of small actions that
should be repeated.

Basic procedure was the same for all test cases – create
configuration, start tracing on the platform, run test script,
stop tracing on the platform, check script traces, and check
platform traces. It was important not to omit generation of
report at the end with statistics which could take great
amount of time and effort because it is needed to update test
cases list, mark those which have failed, make some notes
why they failed and for few hundred of test cases – it can
take a while.

First idea was to write just a simple shell script that
would execute all the tests and analyze the results from log
files – but after a while (when it is realized that tests will be
required to run with different configurations against different

30

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 46 / 612

servers) it is realized that could be benefited from real test
framework.

Keyword-driven testing, which enables executing of the
test scripts at a higher level of abstraction, was considered to
be used as a framework. The idea of keyword driven testing
is similar to that of a service or subroutine in programming
where the same code may be executed with different values
[13], what would make it a perfect choice for the required
automation.

III. WHY ROBOT FRAMEWORK

After careful analysis Robot Framework [14] was found
to satisfy all needed requirements. It is created in Python
which can be implemented on all major platforms.
Therefore, multiplatform requirement was completely
fulfilled. Among other open source tools, Robot Framework
seems to be one of the very few tools, which supports multi
platform environment and it is maintained regularly, as it is
listed on [15]. The tool is sponsored by Nokia Siemens
Networks and released under Apache 2.0 license, meaning it
is allowed to be used for free (quite important topic, not only
these days).

Robot Framework is a generic, application and
technology independent framework. It has a highly modular
architecture illustrated in the Figure 1.

Figure 1. High level architecture [14]

The test data is in simple, easy-to-edit tabular format.
When Robot Framework is started, it processes the test data,
executes test cases and generates logs and reports. The core
framework does not know anything about the target under
test, and the interaction with it is handled by test libraries.
Libraries can either use application interfaces directly or use
lower level test tools as drivers [14].

What was missing was the GUI - for easy test case
adding and editing. After considering options, it was decided
to use RIDE, which stands for Robot Framework Integrated
Development Environment [16]. Its purpose is to be an easy-
to-use editor for creating and maintaining test data for Robot
Framework. It is still in alpha state, but surprisingly stable
for 0.3 version.

Robot Framework is a keyword-driven test automation
framework [17]. Test cases are stored in HTML files (in a
form of a ordinary HTML tables, as shown in TABLE I.)
and make use of keywords implemented in test libraries to
drive the software under test, while test suites are created

from files and directories so it’s convenient to store into any
version of control system.

TABLE I. USING HTML FORMAT

Setting Value Value Value

Library OperatingSystem

Library lib/MyLibrary.py

Variable Value Value Value

${MESSAGE} Hello, World!

Test case Action Argument Argument

My Test [Documentation] Example test

 [Setup] Some Setup

 [Timeout] 5 minutes

 Log
${MESSAG
E}

Check If Directory
Exist

/tmp

 [Teardown] Some Finish

Another Test Should Be Equal
${MESSAG
E}

Hello,
World!

Keyword Action Argument Argument

Check If
Directory Exist

[Arguments] ${path}

Directory Should
Exist

${path}

It is possible to create new higher-level keywords by

combining and grouping existing keywords together. These
keywords are called user keywords to differentiate them
from lowest level library keywords that are implemented in
test libraries. The syntax for creating user keywords is very
close to the syntax for creating test cases, which makes it
easy to learn - TABLE I. Rules that should be followed is
that keyword names should be descriptive, clean and they
should explain what the keyword does, not how it does it.

IV. REAL LIFE EXAMPLE

A. Test suite creation

One way to mitigate mistakes, which arise when new tool
usage is started, is to create scripts that will provide
immediate pay back [1]. That is, create scripts that won't take
too much time to create yet will obviously save manual
testing effort and, more important, by creating the scripts you
will learn more about the tool's functionality and learn to
design even better scripts. Not much is lost if these scripts
are thrown away since some value has already been gained
from them. Since Robot Framework is based on keywords,
and combination of keyword can form a new user keyword -
it can be seen as a script.

Robot Framework has some libraries already defined (for
example, OperatingSystem, Telnet, String, Collection, etc.),
but since it is Python based tool, it is easy to extend it with

Test Data

Robot Framework

Test Libraries

System Under Test

Test tools

Test data syntax

Test library API

Application interfaces

31

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 47 / 612

libraries written in Python or Java. What is needed is just to
write your own function and return some value (if needed).

def FTP_Delete(self, host, user, pwd,

file_remote):

 ftp = ftplib.FTP()

 ftp.connect(host, 21)

 try:

 try:

 ftp.login(user, pwd)

 ftp.delete(file_remote);

 return True

 finally:

 ftp.quit()

 except:

 traceback.print_exc()

 return False

Figure 2. New library keyword (FTP Delete) definition in Python

Writing and including own library with newly defined
keywords it is easy – example for deleting file on FTP server
is shown in Figure 2. When using newly defined keywords in
the Robot Framework it is only necessary to replace “_” with
spaces and new keyword is ready for usage.

RIDE has keyword completion feature that shows the
keywords that are found either from the test suite, resource
being edited, from its imported resource files or libraries.
Also arguments are validated automatically for all known
keywords and validation is shown on the grid editor and
visualized as different cell backgrounds (everything ok –
white background, too many or too few arguments - red
background, optional argument - light gray, and if no
arguments are allowed then cell background is dark gray).
This feature works for built-in and user defined keywords.

Descriptive keywords are one of the Robot Framework
features, and with RIDE possibility to create keywords, it is
possible to describe test case first and then to actually create
keywords and fill them with actions.

Figure 3. Test case definition in RIDE

Other thing that can happen is to find out that some
sequence is needed to be used repeatedly. In that case it is

possible to group that sequence, and define it as new
keyword. It is easy task in RIDE - it is just needed to mark
the sequence and RIDE will extract those lines and create the
new keyword with auto recognition if parameters are needed.
After new keyword creation RIDE will replace the sequence
and change the test case accordingly.

Keywords and variable definition can be saved into
resource file, so it can be used in various suites. It is a good
idea if the keyword could be useful also to other tests to
move it to shared resource. This way, those keywords can be
used later by other tests and duplicate work is avoided.

Usually, there is a need for some setup and cleaning
actions – this is also supported and, not only on the test case
level, but setup and teardown actions can also be defined on
the suite level.

TABLE II. TEST CASE DEFINITION IN HTML FORMAT

Test case Action Argument Argument

TCS2F185 [Setup]
Clean Batch
Data

 [Timeout] 5 minutes

 Transfer Batch
${SERVER_IP
}

${SERVER_
USER}

 Check Batch

Generate
Include File

 Compile CAP test

 Compile SIP SCSF

Run Protocol
Simulator

CAP Test

Run Protocol
Simulator

SIP SCSF

 ${OUT} Run TC runme.cmd

 Should Contain ${OUT}
TC run
finished

 ${OUT} Decode SIP

 … CAP

 Should Contain ${OUT}
Call finished
sucesfully

 [Teardown]
Clean Batch
Log

All this helps to read test cases, even for non technical

persons, since we used live language grammar and our test
case have execution defined as “Transfer Batch”, “Check
Batch”, “Generate Include File”, “Compile”, “Run Protocol
Simulator”, “Decode Output”, “Should Contain something”
as shown in Figure 3. and in native HTML format in TABLE
II.

B. Test case execution

It is possible to execute suite or just some test cases
directly from the RIDE GUI, however there is a need to run
test cases from the command line so its execution could be
easily automated – for example from some continuous
integration server. Since Robot Framework is command line
tool this is usually done this way. That way various switches

32

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 48 / 612

can be used. All possible switches are shown and explained
with running tool with “—help” switch. One of many things
that can be specified (via test case name pattern matching) is
the critical test cases definition. In order to complete the test
suite successfully, all critical test cases have to pass.

After executing our test suite HTML report is generated,
as shown on Figure 4. and the background color undoubtedly
tells whether the whole test suite finished correctly. Critical
test cases must be specified with a caution. If critical test
cases pass successfully, regardless of other test cases results,
the report will be marked as OK. However, statistics will
show the number of test cases failed and specify these cases,
if any.

Figure 4. Test case report file

For further manual analysis, there is also detailed log file
generated, as shown on I (also configurable with command
line switch) with all actions, detailed description of the input
and output parameters and keyword output with marked
actions that went wrong. There is a keyword “Log” defined,
so it is also possible to write additionally whatever need to
the log file.

Since all output, as input also, is in the HTML format and
already nicely formatted – it is very convenient to use it for
reporting.

Robot Framework also generates XML output file which
can be used for further analysis. In the source distribution
there are interesting tools, for example “risto.py”, used for
generating graphs about historical statistics of test executions
and “robotdiff.py“ tool for generating diff reports from
multiple Robot Framework output files.

Figure 5. Test case log file

V. BENEFITS OF THE AUTOMATION

An automated test suite can explore the whole product
every day. A manual testing effort will take longer to revisit
everything. So, the bugs automation does find will tend to be
found sooner after the incorrect change was made.
Debugging is much faster, which is also meaning – cheaper,
when there’s only been a day’s worth of changes. This raises
the value of automation.

Automated tests, if written well, can be run in sequence,
and the ordering can vary from day to day. This can be an
inexpensive way to create something like task-driven tests
from a set of feature tests.

Before Robot Framework execution of the test suite took
about two days with one person executing test cases
sequentially and looking for traces and, most important,
being busy all that time. With Robot Framework whole
process take only few hours, but only one batch command is
needed to run, so person is not busy during test suite
execution and can work on other topics, as shown in Table
III.

TABLE III. USED TIME COMPARISON

Time used (in hours)

Manual Automated

Preparation of one test case 8:00 8:00

Execution of one test case 0:02 0:02

Check of one test case 0:05 0:01

Automation of one test case - 2:00

Report for one test case 0:03 0:00

Total time used for one test case 8:10 10:03

One test run cycle 0:10 0:03

33

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 49 / 612

Time used (in hours)

Manual Automated

For 100 test cases - one suite run
16:40

tester involved
5:00

machine time

20 suite runs
333:20

tester involved

100:00

machine time

20 suite runs with automation
time included
(suites run time + automation
time for all test cases)

333:20 300:00

VI. CONCLUSION

Benefit of working with Robot Framework is that writing
test cases follows natural work flow with test case
preconditions, action, verification and finally cleanup. Real
language is used for keyword description, so it’s easy to
follow test case – even for non technical person, which,
together with its simple usage and easy library extension,
make it great tool for test case automation.

Everything is checked automatically and all reports are
automatically generated and published on the web pages.
This also saved lot of time when decision to introduce
continuous integration was made.

The cost of automating a test is best measured by the
number of manual tests prevented from running and the bugs
it will therefore caused to miss [21], and this is probably the
biggest strength of the Robot Framework.

REFERENCES

[1] B. Lei, X. Li, Z. Liu, C. Morisset, and V. Stolz, Robustness Testing
for Software Components, Science of Computer Programming,
Volume 75 Issue 10, 2010, pp. 879-897

[2] R. Patton, Software Testing, Sams Publishing, 2005

[3] K. Zallar, Practical Experience in Automated Testing, METHODS &
TOOLS, Global knowledge source for software development
professionals, Volume 8, Spring 2000, pp. 5-9

[4] 3GPP, Customised Applications for Mobile network Enhanced Logic
(CAMEL) Phase 4; CAMEL Application Part (CAP) specification
(Release 6), TS 29.078 6.3.0, September 2004

[5] RFC: 793, TRANSMISSION CONTROL PROTOCOL DARPA
INTERNET PROGRAM PROTOCOL SPECIFICATION,
Information Sciences Institute University of Southern California,
September 1981

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, Network Working Group,
Request for Comments: 3261, June 2002

[7] M. Wahl, T. Howes, and S. Kille, Network Working Group Request
for Comments: 2251, Lightweight Directory Access Protocol (v3),
December 1997

[8] H. Hakala, L. Mattila, J-P. Koskinen, M. Stura, and J. Loughney,
Network Working Group Request for Comments: 4006, August 2005

[9] E. O'Tuathail and M. Rose, Network Working Group Request for
Comments: 3288, Using the Simple Object Access Protocol (SOAP)
in Blocks Extensible Exchange Protocol (BEEP), June 2002

[10] SMPP Developers Forum, Short Message Peer to Peer Protocol
Specification v3.4 Issue 1.2, October 1999

[11] J.B. Postel, RFC 821 - SIMPLE MAIL TRANSFER PROTOCOL,
Information Sciences Institute University of Southern California,
August 1982

[12] M. Rose, Network Working Group Request for Comments: 1460,
Post Office Protocol - Version 3, June 1993

[13] A.M. Jonassen Hass, Guide to Advanced Software Testing,
ARTECH HOUSE INC, 2008

[14] http://code.google.com/p/robotframework/, May 2011

[15] http:// www.opensourcetesting.org/, May 2011

[16] http://code.google.com/p/robotframework-ride/, May 2011

[17] P. Laukkanen, Data-Driven and Keyword-Driven Test Automation
Frameworks, Master Thesis, HELSINKI UNIVERSITY OF
TECHNOLOGY, February 2006

[18] R.W.Rice, Surviving the top ten challenges of software test
automation, In Proceedings of the Software Testing, Analysis &
Review Conference (STAR) East 2003. Software Quality
Engineering, 2003.

[19] W.E.Lewis, Software Testing and Continuous Quality Improvement,
AUERBACH PUBLICATIONS, 2005

[20] J.Bach, Test Automation Snake Oil, Windows Technical Journal, pp.
40–44, October 1996.

[21] B.Marick, When Should a Test Be Automated? Proc. 11th Int'l
Software/Internet Quality Week, May 1998.

34

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 50 / 612

A Test Purpose and Test Case Generation Approach for SOAP Web Services

Sébastien Salva, Issam Rabhi
LIMOS CNRS UMR 6158

PRES Clermont University, Campus des Cézeaux
Aubière, FRANCE

sebastien.salva@u-clermont1.fr, rissam@isima.fr

Abstract—SOA Web services are now supported by most
of major software development companies and industry.
To be reliable, these ones require to be developed with
respect to a complete software development life cycle and, in
particular, they need to be tested. Test purpose-based methods
are black box testing techniques which take advantage of
reducing the time required for test derivation in comparison
with exhaustive methods. Nevertheless, test purposes must
be constructed manually. This paper proposes some test
purpose generation methods for SOAP Web services, modelled
by Symbolic Transition Systems (STS). Prior to generate
test purposes, we augment the specification with the SOAP
environment, to benefit from the messages generated by SOAP
processors which give new information about the operations
and the faults received. Then, we describe the test case
generation from test purposes by synchronizing them with the
specification. Test cases are finally translated into XML to be
used later by the Soapui tool.

Keywords-Stateful Web services; STS; SOAP; test purpose
generation.

I. INTRODUCTION

Web services represent a remarkable branch in the evo-
lution of software development since they offer substantial
advantages such as the externalization of Business or so-
cial applications available on the Internet, or the reuse of
software accompanied by cost reduction. During the recent
years, industry has embraced Web services as well-accepted
channel for conducting E-Businesses on the Web.

Nevertheless, to ensure that Web services hold their
promises, it is crucial that testing activities play an important
role in the development process. Indeed, to achieve trustwor-
thy Web services in an environment like the Internet, these
ones must also be tested to check various aspects such as
robustness, security and conformance which is the topic of
this paper. Several testing methods concerning Web services
testing have been proposed recently [1], [2], [3]. Some of
them, dealing with conformance testing, are said exhaustive
i.e., the test case selection is performed to ensure that a
faulty implementation is detected by a least one test case.
This exhaustiveness often implies to construct test cases for
covering all the actions of a specification at least one time.
So, the test case generation is often costly and eventually
may lead to a state space explosion.

Test purpose-based methods represent an interesting al-
ternative which solve the previous issues and which can
be used to test various properties (not the whole system).
The test selection is then guided and thereby reduced since
test purposes target the test of some implementation parts
only. But, although using this approach greatly reduces
test costs, the main encountered issue is that test purposes
are formulated manually. This task is particularly difficult
when the system is large, has real-time constraints or is
distributed. Few works propose to solve this issue. For
instance, Henniger et al. propose to generate automatically
test purposes for distributed systems [4] by considering the
specific properties of these latter. None method has been
proposed for service-oriented applications though. This is
why we present, in this paper, some test purpose generation
methods for stateful Web services to test the following
specific properties: the operation existence, the critical states
and the exception handling. To test them, we augment the
specification, modelled with the STS formalism (Symbolic
Transition System [5]), with the SOAP environment. Indeed,
this one gives more information about the operations and
the faults produced by Web services under test. Then, we
describe the test case generation. We define a synchronous
product which combines the specification and test purposes
to produce test cases which can be executed on the im-
plementation and which contain the test purpose properties.
Finally, test cases are translated into XML to be executed
with the Soapui tool [6], which is dedicated to the functional
testing of Web services.

This paper is structured as follows: In Section II, we
define both Web service and test purpose modelling. Section
II-A provides an overview on some related works about
Web service testing. We describe the advantages granted by
SOAP for testing in Section III and define the specification
completion. Test purpose generation methods are given in
Section IV. Section V describes the testing method: we
detail the test case generation and the testing framework.
Finally, Section VI describes some experimentation results
and Section VII concludes with some perspectives.

II. WEB SERVICE AND TEST PURPOSE MODELLING

We formalize, in this paper, Web services with Symbolic
Transition Systems (STS [5]). This extended automaton

35

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 51 / 612

model associates a behaviour with a specification composed
of transitions labelled by actions and of internal and external
variables sets, which may be used to send or receive concrete
values and to set guards which must be satisfied to fire
transitions. Below, we only summarize the STS suspension
definition where quiescence (the lack of observation) is taken
into account with the δ symbol. The complete definition can
be found in [5].

Definition 1 A (suspension) Symbolic Transition System
STS is a tuple < L, l0, V, V0, I,Λ, →>, where:

• L is the finite set of locations, with l0 the initial one,
• V is the finite set of internal variables, I is the finite

set of external or interaction ones. We denote Dv the
domain in which a variable v takes values. The internal
variables are initialized with the assignment V0, which
is assumed to take an unique value in DV ,

• Λ is the finite set of actions, partitioned by Λ =
ΛIUΛO: inputs, beginning with ?, are provided to the
system, while outputs (beginning with !) are observed
from it. a(p) ∈ Λ is an action where p = (p1, ..., pk) is
a finite set of external variables. We denote type(p) =
(t1, ..., tk) the type of the variable set p. δ denotes the
quiescence i.e., the lack of observation from a location,

• → is the finite transition set. A transition
(li, lj , a(p), ϕ, %), from the location li ∈ L to

lj ∈ L, also denoted li
a(p),ϕ,%−−−−−→ lj is labelled by

a(p) ∈ Λ × I , ϕ ⊆ DV × Dp is a guard which
restricts the firing of the transition. Internal variables
are updated with the assignment % : DV ×Dp → DV

once the transition is fired.

The STS model is not specifically dedicated to Web
services. These latter may be invoked with methods called
operations. This is why, for modelling, we assume that an
action a in Λ represents either the invocation of an operation
op which is denoted opReq or the return of an operation op
with opResp. For an STS S, we denote OP(S) the operation
set found in Λ. We also assume that service handlers, which
may be used to modify SOAP messages, are actions of the
specification. An example is illustrated in Figures 1(a) and
2 (solid transitions only). This one describes a part of the
Amazon Web Service devoted for e-commerce (AWSEC-
ommerceService). For sake of simplicity, we consider only
two operations, ”CartCreate” which creates a virtual cart
composed of items, and ”CartAdd”, which fills the existing
cart with new items. Initially, a customer has to create a
cart by giving a correct identifier (AWSAccessKeyID), an
item identifier and a quantity. If the cart is instantiated (the
CartCreate operation response is composed of the variable
Isvalid equal to ”true”), this one can be upgraded with the
CartAdd operation. Note that we do not include all the
parameters for readability reasons.

An STS is also associated to an LTS (Labelled Transition
System) to define its semantics. Intuitively, the LTS seman-
tics corresponds to a valued automaton without symbolic
variables: the states are labelled by internal variable values
while transitions are labelled with actions and parameter val-
ues. The semantics of an STS S =< L, l0, V, V0, I,Λ,→>
is expressed by an LTS ||S|| =< Q, q0,

∑
,→>.

(a) An STS specification (b) A test purpose

Figure 1.

?a ?CartCreate(String AWSAccessKeyID, String ItemASIN, Integer
quantity) id:=AWSAccessKeyID q:=quantity

!b !CartCreateResponse(String[] errors, String isvalid)
[isvalid==false & id<>”ID”]

!c !CartCreateResponse(String CID, String isvalid, Cart cart) [is-
valid==true & id==”ID” & q>0] CartId:=CID

!c2 !(soapfault,cause) [q≤0]
?d ?CartAdd(String AWSAccessKeyID, String ItemASIN, Inte-

ger quantity, String CID) [CID==Cartid] id:=AWSAccessKeyID
q:=quantity

!e !CartAddResponse(String isvalid) [isvalid==true & id==”ID” &
q>0]

?f1 ?CartAdd(String AWSAccessKeyID, String ItemASIN, Integer
quantity, String CID)

!f2 !a(p) [a(p) 6=(soapfault,”Client”) & a(p)6=(soapfault,”the end-
point...”)]

?g1 ?CartCreate(String AWSAccessKeyID, String ItemASIN, Integer
quantity)

?sc1 ?CartCreate(String AWSAccessKeyID, String ItemASIN, In-
teger quantity) [ItemASIN==B0000457L2 & quantity==5]
id:=AWSAccessKeyID q:=quantity

!sc2 !CartCreateResponse(String CId, String isvalid, Cart
cart) g1=[isvalid==true & id==”ID” & q>0 &
cart.ItemASIN[0].quantity==5] CartId:=CID

!sc3 !CartCreateResponse(String CId, String isvalid)
g2=[isvalid==true & id==”ID” & q>0 & cart.ItemASIN[0].q 6=
5] CartId:=CID

!sc4 !CartCreateResponse(String CId, String isvalid) [¬g1 & ¬g2]

Figure 2. Specification symbols

Test purposes describe the test intention. We assume
that they are composed of specification properties which

36

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 52 / 612

should be met in the implementation under test. Usually,
test purposes do not represent complete specification paths.
Therefore, they are often synchronized with the speci-
fication to generate executable test cases. Consequently,
for a specification S =< L, l0, V, V0, I,Λ,→>, we also
formalize a test purpose with a deterministic and acyclic
STS TP =< LTP , l0TP , VTP , V 0TP , I, Λ,→TP> where
internal variables of the test purpose and the specification
are exclusive (V ∩ VTP = ∅), →TP is composed of
transitions modelling specification properties. So, for any

transition lj
a(p),ϕj ,%j−−−−−−→ l′j ∈→TP , it exists a transition

li
a(p),ϕi,%i−−−−−−→ l′i ∈→ and a value set (x1, ..., xn) ∈ DI such

that ϕj ∧ ϕi(x1, ..., xn) |= true. A test purpose example
for the AWSECommerceService is illustrated in Figure 1(b).
This one aims to create a cart composed of five items whose
identification number (ASIN) is B0000457L2.

A. Related work on Web service testing
Some test purpose-based methods dealing with Web ser-

vices can be found in literature. These ones propose to
transform and adapt an initial specification to be used with
existing test purpose-based techniques [2], [3].

These test purpose-based method assume having an exist-
ing test purpose set constructed manually. Few works have
also proposed automatic test purpose generation techniques:
for instance, in [4], some generation techniques are proposed
for distributed systems by identifying significant action se-
quences of the distributed components. From each sequence,
a test purpose is generated. To our knowledge, none method
has been given for service-oriented applications. However,
these ones are composed of specific properties, e.g., SOAP
faults, operations with data or exceptions. Therefore,these
applications require new test purpose generation techniques
which take into consideration these properties. We introduce,
in this paper, some of these techniques for stateful Web
services, which aim at testing the operation existence, the
critical states and the exception handling. Then, we define
a synchronous product to achieve the test case selection.

III. THE ADVANTAGES OFFERED BY THE SOAP
ENVIRONMENT FOR TESTING

Web services are deployed in specific environments, e.g.,
SOAP for SOAP Web services, to structure messages in an
interoperable manner and to manage operation invocations.
In particular, the SOAP environment consists in a SOAP
layer which serializes messages with XML and of SOAP
receivers (SOAP processor + Web services) [7] which is
software, in Web servers, that consumes messages. The
SOAP processor is a Web service framework part which
represents an intermediary between client applications and
Web services and which serializes/deserializes data and calls
the corresponding operations.

SOAP processors complete Web service behaviours by
adding new messages, called SOAP faults, which give details

about the faults raised in the server side. They return SOAP
faults composed of the causes ”Client” or ”the endpoint
reference not found” if services or operations do not exit.
SOAP processors also generate SOAP faults when a service
instance triggers exceptions. In this case, the fault cause is
equal to the exception name. However, exceptions correctly
managed in the specification and in the service code (with
try...catch blocks) are distinguished from the unhandled
ones since a correct exception handling produces SOAP
faults composed of the cause SOAPFaultException only.
So, SOAP faults can also be used to test whether the
exception handling is correct by identifying the received
causes. Consequently, taking into account these messages
while generating test purposes sounds very interesting to
check the satisfaction of some service properties. So, we
propose to augment the specification with SOAP faults. We
denote (soapfault, cause) a SOAP fault where the variable
cause is the reason of the SOAP fault receipt.

Let S =< L, l0, V, V0, I,Λ, →> be a Web service
specification. S is completed by means of the algebraic
operation addsoap in S which completes the specification
with SOAP faults as stated previously. The result is a
new STS S↑. The operation addsoap is defined as follow:
addsoap in S =def S↑ =< LS↑ , l0, V, V0, I,ΛS↑ ,→S↑>
where LS↑ , ΛS↑ and→S↑ are defined by the following rules:

• l1
?opReq(p),ϕ,%−−−−−−−−−→Sl2,l1

?op′Req(p),ϕ′,%′−−−−−−−−−−→l/∈→S ,

l1
?op′Req(p),∅,∅−−−−−−−−−→

S↑ l
′,l′

!a(p),ϕ,∅−−−−−→
S↑ l,ϕ=[a(p)6=

l′ /∈LS
(soapfault,”CLIENT”)∧a(p) 6=(soapfault,”the endpoint...”)]

•

l
?opReq(p),ϕ,%−−−−−−−−−→Sl

′,ϕ′=

∧
l′

!opRespi(ri),ϕi,%i−−−−−−−−−−−−→Sl′i

¬ϕi

l′
!(soapfault,cause),ϕ′,∅−−−−−−−−−−−−−−−→

S↑ l

The first rule completes the initial specification on the
input set by assuming that each unspecified operation request
returns a SOAP fault message. The second rule completes
the output set by adding, after each transition modelling an
operation request, a transition labelled by a SOAP fault. Its
guard corresponds to the negation of the guards of transitions
modelling responses. A completed specification is illustrated
in Figure 1(a) (with solid and dashed transitions). Note
that unhandled exceptions are caught by specific exceptions
called unhandledException in Java or C# and translated later
by SOAP faults composed of the unhandledException cause.
So, unhandled exceptions are supported by our work since
we differentiate them from the SOAPFault exceptions thanks
to the received SOAP faults.

IV. AUTOMATIC TEST PURPOSE GENERATION METHODS

Although test purposes sound interesting to reduce test
costs, these ones also raise an important drawback since

37

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 53 / 612

they are usually formulated manually. So, we contribute to
solve this issue by introducing some automatic generation
techniques for Web services. We propose three test purpose
generation approaches which aim at testing the operation
existence, the critical locations, and the exception handling.

A. Operation existence testing

This approach generates test purposes for testing whether
operations in OP(S↑), with S↑ an STS specification, are
implemented and can be invoked. With the completion of
the specification, detailed in the previous section, it becomes
possible to test the existence of any operation, even those
which do not return any response, i.e., any observable reac-
tion. Indeed, if an operation is not implemented as it is de-
scribed in the specification, the SOAP processor will return
a SOAP fault composed either of the cause ”Client” or of the
cause ”the end point reference not found”. So, for a speci-
fication S↑ =< LS↑ , l0S↑ , VS↑ , V 0S↑ , IS↑ ,ΛS↑ ,→S↑>, the
test purpose set is given by:
TP =

∧
op∈OP(S↑)

{tp =< L, l0, V, V 0, IS↑ ,ΛS↑ , →> where

→= {l0
?opReq(p),∅,∅−−−−−−−−−→ l1, l1

!a(p),ϕ,∅−−−−−→ l2, with ϕ =
[a(p) 6= (soapfault, ”Client”) ∧ a(p) 6= (soapfault,
”the end point reference not found”)]}

The specification of Figure 1(a) is composed of two
operations, so we obtain two test purposes. These ones
will be synchronized later with the specification to test any
operation invocation.

B. Critical location testing

The second technique aims at testing the specification
critical locations. This method is especially suitable when
the specification locations have a precise meaning. It is not
obvious to set which location is critical since no general
and formal definition is given in literature. So, in this paper,
we suggest that the critical locations are those the most
potentially encountered in the acyclic specification paths.
Algorithm 1, derived from the DFS (Depth First path Search)
one, returns the critical location set CS, from a specification.
Then, for each critical location l ∈ CS, we construct test
purposes to test all the outgoing transitions of l.

The test purpose set, expressed below, is composed of
specification paths finished by output actions to observe the
implementation reactions while testing. For a specification
S↑ =< LS↑ , l0S↑ , VS↑ , V 0S↑ , IS↑ ,ΛS↑ ,→S↑>, the test
purpose set is given by:
TP =

∧
l∈CS

{tp =< L, l0, V, V 0, IS↑ ,ΛS↑ ,→> where → is

constructed with the following rules:

• l
!a(p),ϕ,%−−−−−→

S↑ l
′,a(p) 6=δ

l0
!a(p),ϕ,φ(%)−−−−−−−→l′

• l
?a(p),ϕ,%−−−−−−→

S↑ l
′,p=l′

a1(p),%1,ϕ1−−−−−−−→
S↑ l
′
1...

l0
?a(p),ϕ,φ(%)−−−−−−−−→l′,l′

a1(p),ϕ1,φ(%1)−−−−−−−−−→l′1...

l′n−1

an(p),ϕn,%n−−−−−−−−→
S↑ l
′
n,an(p)∈ΛO

S↑/{δ}

l′n−1

an(p),ϕn,φ(%n)−−−−−−−−−−→l′n

In both rules, we use a renaming function φ : V → V ′,
φ(v)→ v′ to obtain exclusive test purpose internal variables.
The first rule is used when an outgoing transition, from a
critical location, is labelled by an output. In this case, this
transition is added to the test purpose. The second rule is
used when a transition is labelled by an input. The test
purpose is completed with this transition followed by a
specification path finished by an output.

Algorithm 2, given below, constructs a test purpose set
from one critical location l. For each outgoing transition t
of l, if t is labelled by an output action then t is a test
purpose (rule R1). Otherwise, we extract a path p with the
Cover procedure such that the test purpose t.p is finished
by a transition labelled by an output action (rule R2).

In the specification of Figure 1(a), we have two critical
locations req and cart. For each, one test purpose is
constructed, with the previous rules, whose purpose is to
test all the outgoing transitions with paths finished by an
output action. For instance, for the req location, we obtain
a straightforward test purpose composed of one transition
labelled by !b and another one labelled by !c.

Algorithm 1: Critical location search

1 Critical(STS,location);
input : An STS S =< L, l0, V, V 0, I,Λ,→>, the

initial location l0
output: A location set CL

2 ∀t ∈→, label(t) :=”UNEXPLORED”;
3 foreach t = (l, li, ai, %i, ϕi) ∈ OutgoingTransition(l)

do
4 if Label(t) == ”UNEXPLORED” then
5 Label(t):=”VISITED”;
6 Count(l):=Count(l)+1;
7 Critical(S, li);

8 else
9 Count(li):=Count(li)+1 ;

10 CL := {location l | Count(l) ≤
∑
li∈L Count(li)

card(L)
};

C. Exception handling testing

As described in Section III, SOAP processors return
SOAP faults when exceptions are triggered in a Web ser-

38

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 54 / 612

Algorithm 2: Test purpose generation dedicated to crit-
ical locations

1 TPgen(STS,location);
input : An STS

S↑ =< LS↑ , l0S↑ , VS↑ , V 0S↑ , IS↑ ,ΛS↑ ,→S↑>,
a critical location l ∈ LS↑

output: A test purpose
tp =< L, l0, V, V 0, IS↑ ,ΛS↑ ,→>

2 ∀t ∈→S↑ , label(t) :=”UNEXPLORED”;

3 foreach ti = l
a(p),ϕ,%−−−−−→ li ∈→S↑ do

4 if a(p) ∈ ΛOS↑ then

5 →:=→ ∪{l0
a(p),ϕ,φ(%)−−−−−−−→ li};

6 else
7 p′ := ∅; Cover(li, p′);

→:=→ ∪{l0
a(p),ϕ,φ(%)−−−−−−−→ li.p

′};

8 Cover(location l, path p);

9 if ∃l a(p),ϕ,%−−−−−→ l′ ∈→S↑ with a(p) ∈ ΛOS↑ then
10 p := p.l

a,ϕ,%−−−→ l′; l := null;

11 else

12 foreach ti = l
a(p),ϕ,%−−−−−→ li ∈→S↑ labelled by

”UNEXPLORED” do
13 label(ti) :=”VISITED”; Cover(li, p.ti);
14 if l == null then
15 break;

16 label(ti) :=”UNEXPLORED”;

vice operation at runtime. SOAP processors also enable
to differentiate the exceptions resulting of unexpected Web
service crashes from those which are thrown in Web service
operations (with try...catch blocks for instance). In the last
case only, we obtain SOAP faults composed of the ”Soap-
FaultException” cause.

With the specification completion described in Section
III, we can construct test purposes to test whether the
exception handling is correctly implemented and not
managed by SOAP processors. However, to trigger
exceptions, test purposes must be formulated over
predefined value sets, that we denote U(t). These ones
are composed of unusual values well known for relieving
bugs, for any simple or complex type t. For instance,
U(string) is composed of the values &”, ”$”, null or
” ”, which usually trigger exceptions. For a specification
S↑ =< LS↑ , l0S↑ , VS↑ , V 0S↑ , IS↑ ,ΛS↑ ,→S↑>, the test
purpose set is given by:
TP =

∧
l

?opReq(p),ϕ,%−−−−−−−−−→S↑l′

{tp =< L, l0, V, V 0, IS↑ ,ΛS↑ ,

→> where →= {l0
?opReq(p),ϕ′,φ(%)−−−−−−−−−−−→

l1, l1
(!soapfault,”SOAPFaultException”),∅,∅−−−−−−−−−−−−−−−−−−−−−−−−−−−→ l2 with ϕ′ =

ϕ ∧ p = (p1, ..., pn) ∈ U(type(p1))× ...× U(type(pn))}
The specification of Figure 1(a) contains two operation

requests. If we suppose that card(U(type(p1)) × ... ×
U(type(pn))) = n, we obtain at most 2n test purposes. It is
observed that the larger the unusual values sets, the larger
the test purpose set will be. To limit it, instead of using a
cartesian product, we have chosen to use pairwise testing [8]
which helps to reduce the coverage of the variable domain
by constructing discrete combinations for pair of parameters
only.

V. TESTING METHODOLOGY

Each test purpose is synchronized with the specification
to produce products, formalized with STSs, which combine
the specification behaviour with the test purpose proper-
ties. We extract from these synchronous products complete
paths (from their initial location until a final one) with an
algorithm which performs a reachability analysis to check
whether the guards of each path can be satisfied to guarantee
its execution. These paths are also completed to express the
incorrect (unspecified) behaviour. We obtain test cases ended
by locations labelled by pass, fail, inconclusive which
represent the test case local verdict. These ones are finally
translated into an XML format to be used with the Soapui
tool. Each of these steps are described in detail below.

A. Synchronous product

A test purpose represents a test requirement which should
be met in the implementation. To test this statement, both
the specification and the test purpose are synchronized to
produce paths which model test purpose runs with respect
to the specification.

Similarly to the specification S↑ =< LS↑ , l0S↑ , VS↑ ,
V 0S↑ , IS↑ ,ΛS↑ ,→S↑>, a synchronous product
SP = S↑ × TP , with TP =< LTP , l0TP , VTP ,
V 0TP , IS↑ ,ΛS↑ ,→TP> a test purpose, is defined as
an STS SP =< LS↑ × LTP , l0S↑ × l0TP , VS↑ ∪ VTP ,
V 0S↑ ∪ V 0TP ,ΛS↑ ,→SP>, where the transition relation
→SP is defined with the following rules. The R2 and R3

rules perform the product of one specification transition with
one test purpose one by synchronizing actions, variables
updates and guards. We have written the specific rule R3

for output actions to add locations labelled by inconclusive.
This rule yields two transitions: the first one is composed
of a guard satisfying both the specification and the test
purpose ones (ϕi ∧ ϕ′i). The second transition, ended by an
inconclusive location, is composed of the guard ϕi ∧ ¬ϕ′i
which satisfies the specification transition but not the test
purpose one. So, reaching such an inconclusive location
during the tests means that the test purpose transition is not
satisfied although the specification is not faulty.

39

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 55 / 612

R1 :
(li,li′)∈LSP ,li

a(p),ϕi,%i−−−−−−→S↑,li′
b(p),ϕ

i′ ,%i′−−−−−−−→TP lj′

(lili′)
a(p),ϕi,%i−−−−−−→SP (lj li′)

R2 :
(li,li′)∈LSP ,li

?a(p),ϕi,%i−−−−−−−→
S↑ lj ,li′

?a(p),ϕ
i′ ,%i′−−−−−−−−→TP lj′

(∃x∈D(I
S↑∪VS↑∪VTP)ϕi∧ϕi′ (x)|= true)

(lili′)
?a(p),ϕi∧ϕi′ ,%i∧%i′−−−−−−−−−−−−−→SP (lj lj′)

R3 :
(li,li′)∈LSP ,li

!a(p),ϕi,%i−−−−−−−→
S↑ lj ,li′

!a(p),ϕ
i′ ,%i′−−−−−−−−→TP lj′

(lili′)
!a(p),ϕi∧ϕi′ ,%i∧%i′−−−−−−−−−−−−→SP (lj lj′)

(∃x∈D(I
S↑∪VS↑∪VTP)ϕi∧ϕi′ (x)|= true)

(lili′)
!a(p),ϕi∧¬ϕi′ ,%i∧%i′−−−−−−−−−−−−−→SP (ljinconlusive)

The synchronous product of the test purpose given in Fig-
ure 1(b) and the completed specification is depicted in Figure
3. The yellow transition, which reaches an inconclusive
location, models a response which does not contradict the
specification but does not satisfy the test purpose. Transitions
labelled by ?f1 !f2 still belong to the product. They represent
a CartAdd operation request which may be called before the
CartCreate operation given in the test purpose.

Figure 3. A synchronous product

B. Test case extraction

Figure 4. The final test cases

Final test cases are constructed with the following steps
from the previous synchronous product SP .

• Synchronous product path extraction with reacha-
bility analysis: acyclic paths are extracted from SP
with Algorithm 3. This one computes a set P of SP
paths p. With the Cover subroutine (lines 4-14), it ex-
plores SP with backtracking and solves the constraints
of p with the solving subroutine to ensure that p may be
completely executed. solving takes a path p and returns
a variable assignment %0 which satisfies the complete
execution of p. If the constraint solvers [9], [10] cannot
compute a value set allowing to execute p, then solving
subroutine returns an empty set (lines 19-20). We use
the solvers in [9] and [10] which work as external
servers that can be called by the test case generation
algorithm. The solver [10] manages ”String” types, and
the solver [9] manages most of the other simple types.
In practice, to reduce the time required for solving
guards and to prevent from an explosion of values
possibilities, we assume that the variable domains are
limited by using value sets extracted from database for
instance.

• ”pass” verdict addition: for each path p ∈ P , the final
locations not already labelled by ”inconclusive” are
labelled by ”pass” which means that some behaviours
modelled by test purposes has been reached,

• Incorrect behaviour completion: each path p ∈ P is
completed on the incorrect response set: ∀l ∈ L such
that l has the outgoing transitions l

!opResp(r1),ϕ1,%1−−−−−−−−−−−→
l1, ..., l

!opResp(rk),ϕk,%k−−−−−−−−−−−−→ lk, we add: (1) l
δ,∅,∅−−−→ fail,

(2) l
!opResp(r),ϕ,∅−−−−−−−−−→ fail, ϕ = [¬(ϕ1 ∨ ... ∨ ϕk)].

(1) δ models the location quiescence i.e., the lack of
observation. We suppose that if no response is observed
after a defined timeout Tmax, then the Web service
under test is faulty. (2) If the called operation does
not return an expected response, then the implemen-
tation does not satisfy both the test purpose and the
specification. Thus, a fail verdict is reached too. Note
that when an operation is called, we cannot observe the
response provided by another operation. So, this case
is not considered in this completion.

Final test cases are given in Figure 4. We obtain two
acyclic paths from the previous synchronous product en-
hanced with the possible verdicts.

C. Test execution and verdict

The implementation under test I is assumed behaving like
an LTS semantics, composed of valued transitions (Section
II). We assume that there is no security constraint or firewall
between the tester and the implementation, which modifies
the SOAP messages and thus the implementation behaviour.
To produce a verdict on the test purpose satisfaction, the
tester executes each test case by traversing the test case tree:
it successively calls an operation with parameters and waits
for a response from I while following the corresponding

40

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 56 / 612

Algorithm 3: Testcase(STS): P;

input : An STS SP =<
LSP , l0SP , VSP , V 0SP , ISP , SSP ,→SP>

output: A set P of STS paths

1 ∀t ∈→SP , label(t) :=”UNEXPLORED”;
2 p := ∅;
3 Cover(l0SP , p, 0);

4 Cover(location l, path p, int n);
5 if ∃(l, l′, a, %, ϕ) ∈→SP labelled by ”UNEXPLORED”

then
6 foreach ti = (l, li, ai, %i, ϕi) ∈→SP labelled by

”UNEXPLORED” do
7 if Solving(p.ti) 6= ∅ then
8 label(ti) :=”VISITED”;
9 Cover(li, p.(l(n), li(n+ 1), ai, %i, ϕi), n+

1);
10 label(ti) :=”UNEXPLORED”;

11 else
12 % := Solving(p);
13 V 0p = % //V 0p is the variable initialization of p;
14 P := P ∪ p ;

15 Solving(path p) : %;
16 p = (l0, l1, a0, ϕ0, %0)...(lk, lk+1, ak, ϕk, %k);
17 c = ϕ0 ∧ ϕ1(%0) ∧ ... ∧ ϕk(%k−1);
18 (x1, ..., xn) = solver(c) //solving of the guard c

composed of the variables (X1, ..., Xn) such that
c(x1, ..., xn) true;

19 if (x1, ..., xn) == ∅ then
20 % := ∅
21 else
22 % := {X1 := x1, ..., Xn := xn}

branch. When a branch is completely executed, a local
verdict is reached. For a test case t, we denote the local
verdict v(t) ∈ {pass, inconclusive, fail}. The final verdict
is given by:

Definition 2 Let I be a Web service under test, P be a test
purpose set and TC be a generated test case set. The verdict
of the test over P , denoted V erdict(I/P) is

• pass, if for all t ∈ TC, v(t) = pass. The pass verdict
means that test purposes in P are satisfied,

• inconclusive, if it exists t ∈ TC, v(t) = inconclusive
and for all t ∈ TC, v(t) 6= fail. This verdict means
that some test purposes in P are not satisfied although
the implementation does not sound faulty,

• fail, otherwise. At least on test purpose in P is not
satisfied and the implementation is faulty.

VI. EXPERIMENTATION

Existence Critical locations Exception handling
test purposes 22 2 22
test cases 44 22 210
fail verdicts 0 0 39

Figure 5. Test results on the Amazon AWSECommerceService Service

At the moment, we have implemented an incomplete
tool which performs the test purpose generation from a
completed STS and the synchronous products between the
specification and test purposes only. So, test cases are
not generated from synchronous products but are extracted
manually. To experiment them on real Web services, test
cases are extracted and written into the Soapui format. So,
these ones can be executed with the Soapui tool [6] which
aims to experiment Web services with unit test cases.

We applied this preliminary tool on several Web ser-
vices to experiment the test purpose generation. Figure 5
describes the results obtained for the Amazon AWSEC-
ommerceService (09/10 version) which is a representative
sample because it is composed of a large operation set
(22 operations) and of many data structures. We limited
the test purpose number to 10 per operation for the ex-
ception handling method. We obtained fail verdicts only
for the exception handling tests. Indeed, we obtained some
SOAP faults composed of the cause Client, meaning that
the requests are incoherent although the test cases satisfy
the specification. We also received unspecified messages
corresponding to errors composed of a wrong cause. For
instance, instead of receiving SOAP faults, we obtained the
response ”Your request should have at least 1 of the fol-
lowing parameters: AWSAccessKeyId, SubscriptionId” when
we called the operation CartAdd with a quantity equal to ”-
1”, or when we searched for a ”Book” type instead of the
”book” one, whereas the two parameters AWSAccessKeyId,
SubscriptionId were right.

In comparison with the other test purpose-based methods
for service-oriented applications [2], [3] or tools, our ap-
proach takes into account the SOAP environment for testing.
This one generates messages which help to conclude if
operations exist as it is stated in the specification and which
help to identify the exceptions resulting of unexpected Web
service crashes from those which are thrown in Web service
operations. These features helped to detect the incorrect
SOAP faults, composed of the cause Client in the previous
experimentation. These errors cannot be detected by the
previous methods. But the major benefit of this approach
concerns the automatic generation of test purposes. Most
of the test purpose-based method assume having an existing
test purpose set, constructed manually. As stated earlier, this
manual construction requires time and is difficult when the
system is large.

41

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 57 / 612

VII. CONCLUSION

We have presented some automatic test purpose gener-
ation methods dedicated to Web services, which aim to
test the operation existence, the critical locations, and the
exception handling. Then, we have defined a synchronous
product of the test purpose with the specification to construct
test cases, which are finally translated into XML and then
executed by means of SOAPUI.

An immediate line of future work is to take into consider-
ation test purposes describing incorrect behaviours. Such test
purposes may be composed of properties which do not be-
long to the specification. These ones can be used for testing
behaviours which should be met in the implementation but
also behaviours which should not. With such test purposes,
we could propose new generation methods for robustness or
security testing.

REFERENCES

[1] J. Garcı́a-Fanjul, J. Tuya, and C. de la Riva, “Generating
test cases specifications for compositions of web services,”
in in Proceedings of International Workshop on Web Services
Modeling and Testing (WS-MaTe2006), A. Bertolino and
A. Polini, Eds., Palermo, Sicily, ITALY, June 9th 2006, pp.
83–94.

[2] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang, “Automatic
timed test case generation for web services composition,”
in The 6th IEEE European Conference on Web Services
(ECOWS’08), I. C. S. Press, Ed., Dublin, November 2008,
53–63.

[3] T.-D. Cao, P. Felix, and R. Castanet, “Wsotf: An automatic
testing tool for web services composition,” in Proceedings
of the 2010 Fifth International Conference on Internet and
Web Applications and Services. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 7–12. [Online]. Available:
http://dx.doi.org/10.1109/ICIW.2010.9

[4] O. Henniger, M. Lu, and H. Ural, “Automatic generation
of test purposes for testing distributed systems,” in FATES,
ser. Lecture Notes in Computer Science, A. Petrenko and
A. Ulrich, Eds., vol. 2931. Springer, 2003, pp. 178–191.

[5] L. Frantzen, J. Tretmans, and T. Willemse, “Test Generation
Based on Symbolic Specifications,” in Formal Approaches
to Software Testing – FATES 2004, ser. Lecture Notes
in Computer Science, J. Grabowski and B. Nielsen, Eds.,
no. 3395. Springer, 2005, pp. 1–15. [Online]. Available:
http://www.cs.ru.nl/∼lf/publications/FTW05.pdf

[6] Eviware, “Soapui,” 2011, http://www.soapui.org/.

[7] W.-I. organization, “Web services ba-
sic profile,” 2006, http://www.ws-
i.org/docs/charters/WSBasic Profile Charter2-1.pdf.

[8] M. B. Cohen, P. B. Gibbons, and W. B. Mugridge, “Construct-
ing test suites for interaction testing,” in Proc. Intl. Conf. on
Software Engineering (ICSE), 2003, pp. 38–48.

[9] N. Een and N. Sörensson, “Minisat,” 2003, http://minisat.se.

[10] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst, “Hampi: a solver for string constraints,” in ISSTA ’09:
Proceedings of the eighteenth international symposium on
Software testing and analysis. New York, NY, USA: ACM,
2009, pp. 105–116.

42

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 58 / 612

Ev-ADA: A Simulation-driven Evaluation Architecture for Advanced
Driving-Assistance Systems

Assia Belbachir, Jean-Christophe Smal and Jean-Marc Blossevillle
Laboratoire de Mesure de la Mobilité Coopérative (LEMCO)

IFSTTAR
25 allée des marronniers
78000 Versailles, France

Email: firstname.name@ifsttar.fr

Sébastien Glaser
Laboratoire sur les Interactions Véhicules Infrastructure

Conducteurs (LIVIC)
IFSTTAR

14, route de la Minière
78000 Versailles, France

Email: firstname.name@ifsttar.fr

Abstract—This paper reports the architecture of a simu-
lator which is able to evaluate sensors, path planners and
controllers of the advanced driving-assistance systems (ADAS).
The outstanding feature of this simulator is that it is able to
evaluate algorithms by giving scores. The implementation of the
algorithms requires several tools such as Pro-SiVICTM. To have
a good evaluation of the developed algorithms, we give a list
in this paper of the requirements for an ADAS simulator. The
simulator architecture and the developed algorithms are tested
in several ADAS scenarios. Using Pro-SiVICTM as a simulator,
we are now able to evaluate different algorithms for ADAS.

Keywords-Simulation architecture; Pro-SiVICTM; Evaluation;
ADAS.

I. INTRODUCTION

Advanced driving-assistance systems (ADAS) received an
increasing attention from the car industry recently. To attract
industrial attention, pieces of hardwares and softwares are
developed. However, the software developments cannot work
from the first time and can make costly damage. This is
why, there is a strong need to ease the development and
the validation process of different parts of hardware and
software components. In this sense, using computational
simulation techniques can be a candidate solution to this
problem since it is cheaper in terms of time, money and
human resource needed. By generating different types of
vehicles, a simulator should be able to evaluate the vehicle’s
behavior. Up until now, several simulators are developed.
They can be logically divided into two main groups. The
first group focuses on simulating only one specific behavior,
such as the camera perception or the path planning [1].
The second group simulates all the system’s components
behaviour at the same time especially for ADAS [2], [3].
The proposed simulator in this paper belongs to the second
group, since the overall aim is to simulate and evaluate
different sensors, path planning and control algorithms for
ADAS. We use Pro-SiVICTM [4] and RTMaps [5]. The former
is able to generate the design (hardware) of different vehicles
(e.g., the wheel’s dimension, the environment, etc.) and
the latter is used to implement different perception, path
planning and control algorithms. In our case, we want to

Figure 1. The general architecture to simulate the perception, path planning
and control algorithms.

simulate and evaluate algorithms for ADAS. However, there
are two questions rising: “What do we need to simulate?”
and “How can we evaluate all the behaviors?” As a brief
answer to the first question is that we are trying to simulate
the perception, the path planning and the control part (see
Figure 1). For the second question, the evaluation tests need
to be realistic. We define realistic tests such as:

- Definition of different scenarios: the defined scenarios
should simulate different road traffic cases, several kinds of
road (e.g., motor-way), etc.

- Evaluation requirements: we need to define some criteria
to evaluate algorithms. For that we define eight simulator

43

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 59 / 612

requirements for the ADAS (see Figure 2) and discuss them
in Section III.

The originality of this paper is that, while simulating, we
are able to evaluate algorithms. We applied our work to a
project called: ABV (Automatisation de la conduite à Basse
Vitesse sur des itinéraires sécurisés : low speed automation,
on a safe trip). This project aims to automatize the driving
in low speed (less than 50km/h). The system should be able
to advice or take decisions for the safety of the driver and
pedestrians/cars on the road. As safety is a main matter, we
must evaluate each function of the system, choosing the best
option available to realize them.

Our paper is organized as follow: first of all we explain the
background and discuss briefly the used tools mainly Pro-
SiVICTM. Section III describes our simulator requirements to
evaluate different algorithms. Section IV shows the deployed
architecture Ev-ADA and some experiments to show the
system versatility. We conclude the paper by a discussion
and future work.

II. BACKGROUND

Several simulators have already been developed [6] such
as MORSE [7], Player/Stage [8] and Gazebo [9]. In general,
these simulators are used to imitate the behavior of a
robotic system. However, these simulators do not evaluate
algorithms by giving scores. Our aim is first of all to
simulate the system and secondly to assess how the system
is running. We defined several criterion to assess the ADAS
system running. We used the simulator Pro-SiVICTM, that is a
platform for prototyping sensors. We used RTMaps to be able
to implement the loop of perception–path planning–control
by using different algorithms. The coupling between Pro-
SiVICTM and RTMaps brings to RTMaps the ability to observe
simulated data from Pro-SiVICTM. As follow we explain how
can Pro-SiVICTM and RTMaps works together.

A. Simulation using Pro-SiVICTM

Pro-SiVICTM is developed in order to be independent of
applications type. To be realistic, Pro-SiVICTM integrates all
functionalities allowing the most realistic possible graphical
in the environment. mg Engine is the graphical 3D engine
used. To reduce the computing board process, mg Engine
uses a tree of binary positioning (BSP) (for more details
ses [10]). To ensure its portability under numerous oper-
ating systems, this application is developed in C++ under
LGPL with OpenGL and SDL libraries. In general several
functionalities can be developed such as:

1. Simulated sensors: Several sensors can be simulated
such as camera, inertial platform, odometer, telemeter, etc.

Camera (module sivicCamera): It simulates different sets
of camera configured by using the Pro-SiVICTM parameters
or by using the parameters related to OpenGL.

Inertial Navigation System (module sivicInertial): this
module simulates the inertial sensor.

Collision detection
Conformability speed
Distance to other vehicles
Respect car speed limitation

Acceleration

Car path

Car path Car speed

Lane detection

Object position

Real lane position
Real object position

Score 

RTMaps

Figure 2. The general architecture to simulate the perception, path planning
and control algorithms with different simulator requirements.

Odometer (module sivicOdometer): It provides the dis-
tance covered by a vehicle.

Telemetric scanner (module sivicTelemeter): This module
simulates a laser scanner. Depending on the type of the
telemeter, several methods can be implemented such as ray
tracing or others.

2. Vehicle model: Three axes are defined : Roll, pitch
and head. A generic model is able to reproduce the move-
ment of the vehicle taking into account shock absorbers,
viscosity and tie adherence [10]. In Pro-SiVICTM other car
models can be implemented and used from external libraries.

3. Mode changes: Several control modes are possible.
The vehicle can be internally controlled by Pro-SiVICTM

features or externally controlled as in our case using RTMaps.

B. Simulation under RTMaps

We implemented sensors, path planner and lateral, longi-
tudinal controllers under RTMaps. [11]. The path planner re-
defines a path when the vehicle trajectory should be changed
for example in case of an obstacle in front of the vehicle.

III. SIMULATOR REQUIREMENTS FOR ADAS

ADAS are systems that assist the driver in his driving
process. The main objective of these systems is to increase
car safety and road safety. Such ADAS systems are adaptive

44

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 60 / 612

cruise control (ACC), lane departure avoidance, lane keep-
ing, emergency braking, etc. Every system is specialized in
one topic (path, control, etc.). our work has been to define
and to group all the required criterion to assess the ADAS
simulated components. Eight requirements, explained below,
have been selected :

1) Lane detection error: During these last years, a lot
of algorithms were developed for road lane detection.
Different types of sensor are used, such as LIDAR,
RADAR, Camera [12], etc. Our simulator should be
able to compare the real position of the lane with the
perceived position lane. In the next subsection we
detail how the error is computed (δLane).

2) Pedestrian detection error: A lot of algorithms have
been designed to detect pedestrians on the road.
The objective of this detection process is to avoid
collisions with pedestrian. It is hard to sense, process
data and avoid the pedestrian when the car is at
high speed. Intensive work has been done on this
topic [13], however to ensure the correct pedestrian
detection implies that the vehicle speed is limited.
For assessing this process part, the error between
the simulated pedestrian position and the detected
pedestrian position has been computed (δPosi, where
i represent the pedestrian object).

3) Car position detection error: ADAS perception
systems should detect other vehicles or objects in
order to avoid collisions. Our assesment process
computes the error of the simulated position of the
car and the relative estimated position with other
vehicles or objects(δPosi, where i represent the car
object).

4) Car localization error: Some dedicated process
(odometer, GPS like etc.) is used to localize the
vehicle on the road. A localization error should be
computed to evaluate the localization correctness.

5) Path planning error: A huge number of algorithms
have been developed for path planning, originally
for robotics applications. These algorithms have as
main criterion to avoid collision with existent objects
and to reduce the computation time. Our objective is
to evaluate the capability of the algorithms to avoid
collisions with other objects, at any time (δCollision).

6) Control/command error: Algorithms of control allow
to control the path execution. In general the speed
and the direction of the vehicle are controlled (e.g.,
Longitudinal and lateral ref. to e-value project).
(δSpeed)

7) Driver safety estimation: It is the main requirement
that should be taken into account in all ADAS
systems. ADAS should warn the driver in case
of high risk or should take the control to prevent
accidents. For example, while driving too close to the
preceding car, a sound signal can be used to prevent
the driver or braking can be triggered(δDist secur).

8) Driver comfort estimation: Even if the comfort cannot
be fully evaluated, some criterion should be respected,
related to speed changes for example. Next section
explains how each requirement is computed and let
the simulator evaluates the perception–path planning–
control/command loop regarding this comfort criteria
(Accelconfort).

All these requirements are used to evaluate any ADAS
system. In the next section, we explain how we can merge
these requirements to define a final score.

IV. A SIMULATION DRIVEN EVALUATION
ARCHITECTURE FOR ADAS

To satisfy the aforementioned requirements, developers
need a tool that support sensor, path planner and control
command specification and development. For this purpose,
we used Pro-SiVICTM with RTMaps that are fully able to
support the algorithm specification and development tasks.

Our simulator is composed by Pro-SiVICTM and RTMaps,
where we have added a component that assess algorithms
by giving scores. The detailed computed scoring process is
explained in the following subsections.

A. Pro-SiVICTM components and the link with RTMaps

Modeling cars, under Pro-SiVICTM needs several compo-
nents. Car description uses observers and sensors. Each car
is also described with parameters, the wheel’s dimension, the
weight, etc. that are estimated from real car measurements.
This ability to implement different vehicle shapes make our
simulator versatile. The road shape is generated by using
PathEdit. The latter is used to generate the vehicle path in
a specific road. According to the road description, PathEdit
generates a trajectory as a set of position coordinates and
speed set points on the road.

The implementation of the environment in Pro-SiVICTM

is easy, the vehicle path being as well easily loaded. The
dynamic model of a car is taken into account and can be
modified under Pro-SiVICTM. Observers have been imple-
mented to allow RTMaps to take the vehicle position in the
simulated time.

B. Scores

We developed a component called ABVsim under RTMaps
from observations (e.g., CarObserver). This component pro-

45

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 61 / 612

Structure: Ego structure.
1: struct Ego {

int id; index lane;number ego;gear;
Vehicle Type type;
double position x;position y;heading xy;
position x standard deviation;
position y standard deviation;
heading xy standard deviation;
yaw rate;speed x;speed y;
acceleration x;acceleration y;
yaw rate standard deviation;
speed x standard deviation;
speed y standard deviation;
acceleration x standard deviation;
acceleration y standard deviation;
steering angle;timestamp;
Indicators: indicators;
float revolutions wheel rear right;revolutions wheel rear left;
revolutions wheel front right;revolutions wheel front left;
revolutions motor;weight empty;
position x rear;position x front;
position y right;position y left;
radius wheel rear;radius wheel front;
speed x minimum;speed x Max;
acceleration x minimum;acceleration x Max;
curvature Max; ratio steering wheel on front wheel;
Clutch clutch;
Charge charge;
Status status;
};

Figure 3. Illustration of different input and output in the ABVsim
componant.

vides a data structure such as required in the ABV project
(see Figure 3).

Fifteenth entries are developed described as follow:
• iObserverEgo is an entry that observes from Pro-

SiVICTM the position of the car.
• iObject1,.., iObject12 are entries to observe other ob-

ject’s position such as pedestrian or cars.
• iSpeedEgoMax is the maximal allowed speed of the

vehicle.
Three outputs are developed such as:
• oEgo is the output of the vehicle position, speed, etc.
• oLane is the output of the lane detection using the

appropriate sensor. This structure contains also the error
of the lane detection.

• oObject is related to the existing objects in the envi-
ronment such as pedestrian or cars.

Different scores are computed for each set of sensors, path
planning, control and safety/comfort algorithms as follow:

Scoresensor = δLane+ (δ

12∑
i=1

Posi) (1)

Scoreplanning = δCollision (2)

Scorecontrol = δSpeed+ δDirection (3)

Scorecomfort/security = Accelconfort

+ δDist secur (4)

The sensing score (Scoresensor) is associated to the
lane error detection (δLane) and the detection error of
other object positions (δ

∑12
i=1Posi). δLane is a normalized

distance between the real lane position and the estimated
lane position. The normalized value is between 0 and 1.

The path planning score is related to the collision cri-
terion. If, while running path planning algorithms, the car
collides with another object, the δCollision is equal to zero.

The controller score Scorecontrol represents the com-
pliance with the maximal speed and the direction to be
followed. When the vehicle exceed the maximal speed the
value δSpeed is equal to zero. When the car does not follow
the road, the δDirection value is equal to zero.

The Scorecomfort/security is the main objective of ADAS
systems. Accelconfort represents a score between the maxi-
mal acceleration allowed for a vehicle and the actual vehicle
acceleration. δDist secur is related to the distance between
the vehicle and other vehicles. In general, this distance
should corresponds to a car interval of 2 seconds.

All these scores are normalized between 0 and 1. The
higher the normalized score value, the better the score is. The
normalization procedure for each value is as follows. δLane
is normalized by dividing the result by the traffic lane width.
Posi is normalized by the car/pedestrian dimension. δSpeed
is normalized by the maximal allowed speed. Accelconfort is
normalized by the maximal acceleration that the vehicle can
drive. δdistsecur is normalized by the whole driven distance.

V. SIMULATION RESULTS

In our simulation, we are using Windows 7 Professional
under Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz, 64 bits.

In this scenario, we run two vehicles. One vehicle is a
Mini Cooper and the second vehicle is a Megan Renault.
All the algorithms are implemented in the Mini Cooper car

46

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 62 / 612

Camera2 Camera1

Figure 4. Illustration of different sensors in Ego car.

called Ego. This one follows the second car (Megan Renault)
called Car1.

Our path planning algorithm allows the vehicle to follow
another vehicle keeping a minimal safety distance with the
preceding vehicle (1) and respecting a maximal speed (2).

Ego structure is represented in Figure 4, where two
cameras are implemented in the upper front of Ego. A path-
planning algorithm is implemented based on Camera1. This
camera detects the road surface marking. Ego should follow
Car1 at any time and at the same time do not exceed the
maximal predefined speed. Several tests are implemented,
where we vary the maximal speed and safety distance
between Ego and Car1.

All the tests are evaluated in a horse-ring circuit repre-
sented in Figure 5.

Figure 5. Illustration of a horse-ring circuit for both Ego and Car1.

Different strategies can be used to compute a score. An
example of total score utilization is shown as follow:

Score =
1

γ + α+ β + Γ
∗ [γScoresensor

+ αScoreplanning

+ βScorecontrol

+ ΓScoreconfort/security] (5)

γ, α, β and Γ are coefficients. Depending on the coeffi-
cient values, some related parameters can be more important
than others.

In our case, the control and security/comfortability are the
main part that the system should respect, this is why :

β + Γ > α+ γ (6)

We use a weight of β=1, Γ= 2 and a weight of α=γ=1.

Case studies of our score
Speed Ego < Speed Car1 0s (0.89 + 0.0 + 0.7 + 0.5) /4 = 0.52

1s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77
2s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77
3s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77
4s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77

Speed Ego > Speed Car1 0s (0.89 + 0.0 + 0.7 + 0.5) /4 = 0.52
1s (0.89 + 0.0 + 0.7+ 0.5) /4 = 0.52
2s (0.89 + 0.0 + 0.7+ 0.6) /4 = 0.54
3s (0.89 + 1.0 + 0.7+ 0.7) /4 = 0.82
4s (0.89 + 1.0 + 0.7+ 0.7) /4 = 0.82

Figure 6. Illustration of the obtained score using the equation 5

Figure 6 represents different case studies of our score.
When the maximal Ego speed is less than Car1 ones, the
higher score is 0.77. When the maximal Ego speed is greater
than Car1 ones, the higher score is 0.82. Due to the low Ego
speed, this one can not follow Car1. This difference of score
is only related to the speed divergence. This sceanrio shows
that our platform is able to evaluate different implemented
algorithms on a simulation mode.

VI. CONCLUSION AND FUTURE WORKS

Our contribution aims at defining an architecture and a
framework to evaluate various types of advanced driving-
assistance systems (ADAS). In our experiments, an ego car
is used to follow another car on a horse-ring road. Each
algorithm part (perception, path planning, task control) is
evaluated using different types of scores. To extend the Pro-
SiVIC architecture, an evaluator based on proposed criteria
has been implemented. These criteria are: (1) Lane detection
error, (2) Pedestrian detection error, (3) Car position detec-
tion error, (4) Car localization error, (5) Path planning error,
(6) Control/command error, (7) Driver safety estimation (8)
Driver comfort estimation.

47

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 63 / 612

The evaluation of the tested algorithms related to lane de-
tection (based on camera), path planning, control command
and comfort/safety of the driver, gives a satisfied score. Our
Ev-ADA simulator is now able to evaluate different types of
algorithms working on different types of scenarios.

This work opens perspectives. As future works, we plan
to evaluate other algorithms in other case studies, varying
not just the speed, but also external parameters such as the
weather, the traffic, etc. As a matter of fact, the versatility
of Pro-SiVIC allows us to evaluate algorithms in various
conditions including raining, cloudy, dark weather associated
with different car traffic situations.

We will be also able to compare different algorithms
between them in the same reproduced conditions. This work
will contribute to obtain the best ADAS systems suitable
for drivers, safety criteria included. Nevertheless, even if,
working with simulation tools reduces works, time and
resources, we should recognize that real experimentations
will be necessary to take account driver perceptions.

ACKNOWLEDGMENT

The authors would like to thank all the LEMCO team and
Dominic Gruyer for allowing us the use of the simulator. We
would like to thank also CIVITEC for their daily help.

REFERENCES

[1] T. Siméon, J. p. Laumond, and F. Lamiraux, “Move3d: a
generic platform for path planning,” in in 4th Int. Symp. on
Assembly and Task Planning, 2001, pp. 25–30.

[2] M. Parent, “Advanced urban transport: Automation is on the
way,” IEEE Intelligent Systems, vol. 22, pp. 9–11, 2007.

[3] “Haveit eur. project [online]. available: http://www.haveit-
eu.org/,” Last access date 10/2011.

[4] N. Hiblot, D. Gruyer, J.-S. Barreiro, and B. Monnier, “Pro-
sivic and roads, a software suite for sensors simulation and
virtual prototyping of adas,” DSC2010 Driving Simulation
Conference, 2010.

[5] F. Nashashibi, B. Steux, P. Coulombeau, and C. Laurgeau,
“”rtmaps a framework for prototyping automotive multi-
sensor applications,” In Proc. of the IEEE Intelligent Vehicles
Symposium, 2000.

[6] S. Petters, D. Thomas, M. Friedmann, and O. Stryk, “Mul-
tilevel testing of control software for teams of autonomous
mobile robots,” in Proceedings of the 1st International Con-
ference on Simulation, Modeling, and Programming for Au-
tonomous Robots, ser. SIMPAR ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 183–194.

[7] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan,
“Modular Open Robots Simulation Engine: MORSE,” in
Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, 2011.

[8] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor
systems,” in 11th International Conference on Advanced
Robotics (ICAR 2003), Coimbra, Portugal, 2003. [Online].
Available: citeseer.ist.psu.edu/gerkey03playerstage.html

[9] N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,” in In
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2004, pp. 2149–2154.

[10] M. S. Glaser, “Modélisation et contrôle d’un véhicule en
trajectoire limite : application au développement d’un système
d’aide à la conduite,” Ph.D. dissertation, Ecole Doctorale
Sitevry (Université Evry-Val-D’Esonne), 12 mars 2004.

[11] S. Glaser, V. Benoit, S. Mammar, D. Gruyer, and L. Nou-
velière, “Maneuver-based trajectory planning for highly au-
tonomous vehicles on real road with traffic and driver inter-
action,” Trans. Intell. Transport. Sys., vol. 11, pp. 589–606,
September 2010.

[12] J. McCall and M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,”
Intelligent Transportation Systems, IEEE Transactions on,
vol. 7, no. 1, pp. 20 –37, 2006.

[13] L. Oliveira and U. Nunes, “Context-aware pedestrian detec-
tion using lidar,” in In: IEEE Intelligent Vehicles Symposium,
2010, pp. 773–778.

48

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 64 / 612

On the Preliminary Adaptive Random Testing of Aspect-Oriented Programs

Reza Meimandi Parizi, Abdul Azim Abdul Ghani
Department of Information Systems, University Putra Malaysia,

43400 Serdang, KL, Malaysia
{parizi, azim}@fsktm.upm.edu.my

Abstract— Adaptive random testing (ART) is a new family of
random-based test data generation and selection strategies that
enhances the effectiveness of tests over the classical random
testing (RT). ART has been widely investigated and studied in
numerous research papers over the recent years. These studies
have included proposing various techniques for implementing
and improving the intuition behind ART (evenly spread of test
cases over the input domain, measured by some distance
measures) generally for procedural programs with numerical
input domain and most recently object-oriented programs.
However, there is currently no work available in the literature
that discusses the applicability of ART to aspect-oriented
programming (AOP), as it is gaining popularity in software
development. Inspired by this, this paper aims to investigate the
possible ways that ART can be applied to AOP. This investigation
focuses on a multi-perspective analysis of the current ART-based
techniques. In this respect, we identified three related
perspectives based on the current state of art in the area of ART.
Each perspective was analyzed in terms of its applicability and
possibility for aspect-oriented programs, particularly its
constituent distance measure. As a result, our study gives rise to
some interesting points and outlines a number of potential
research directions in applying ART to AOP. This can pave the
way for efficient development on applying of ART to AOP and
finally AOP success.

Keywords-software testing; random testing; adaptive random
testing; aspect-oriented programming; aspect testing.

I. INTRODUCTION
Aspect-oriented programming [1],[2],[3] is one of the

prominent modularization techniques emerged to cope with the
complexity of software development process. To realize the
benefits of aspect-oriented programming, the programs
developed by this programming paradigm should be effectively
tested. The reason is that the aspect-related defects [4],[5],
stemmed from the unique characteristics of AOP, can affect the
quality of these programs and consequently their general
benefits, i.e., enhanced modularity and maintainability.

Software testing as the most widely used practice of
ensuring the program’s correctness, is useful to help finding
these defects (i.e., their presence) and thus to provide a higher
level of software quality. However, it has to be said that there is
comparatively little work on testing of AOP in the literature
and very little on automated testing of AOP such as [6],[7],[8].
This obviously indicates an insufficiency of testing approaches
for the aspect-oriented programs at the current time and
provides a primary motivation for leveraging the current testing

techniques and/or developing new techniques for these
programs.

Adaptive random testing proposed by Chen et al. [9] (as a
recent derivative of random testing [10]) is an active and
interesting research topic, which has shown [11],[12],[13],[14],
[15] to have higher fault detection effectiveness compared to
classical random testing, with facility of test automation. This
is why Jaygarl et al. [16] has noted that ART is one of the most
effective technique in automated test generation. The essential
idea of ART techniques is that the evenly spread random test
cases over the whole input domain allows finding faults
through fewer test cases than with classical random testing.
ART has shown to reduce the number of tests required to
reveal the first fault by as much as 50% over classical random
testing [17]. Adaptive random testing has seen remarkable
progress during the recent past years in order to address the
notion of evenly spread of test cases. It seems reasonable to
conjecture that ART would continue to be active and become
popular among the other random-based testing strategies.

In line with importance of AOP testing and on the other
hands its current insufficiency, we believe the idea behind
adaptive random testing can be worthwhile and attractive for
automated testing of aspect-oriented programs since current
research on testing of AOP, especially automated has not been
adequately performed and is still in stage of infancy. In order to
investigate the applicability of ART to AOP, we indentified
three perspectives/directions based on scouring the current
ART-based techniques in the literature. Corresponding to each
perspective and its underlying technique (i.e., distance
measure), we analyzed and discussed the feasibility of the
given technique to AOP.

As far as we are aware, this is the first attempt made in the
literature to discuss the applicability of ART for aspect-
oriented programs. In other words, this paper takes some initial
steps towards addressing the ART concept for automated test
data generation and selection of the aspect-oriented programs.
The specific contributions made by the paper are:
• It makes the current vague realization of ART to AOP

more understandable by providing thought-provoking
perspectives on this matter. Specifically, it gives a
theoretical analysis and comparison of three known ART
criterions adopted (presented under three identified
perspectives) to calculate the distance among different test
cases for aspect-oriented programs.

• It analyzes and potentially guides the application of ART
in AOP and discusses the potential of using current ART
techniques and their results to foster the development of

49

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 65 / 612

new testing techniques in area of aspect-oriented software
development (AOSD).

The remainder of this paper is organized as follows. Section
II provides the background on ART and overviews the current
state of the art in this field of research; Section III presents and
analyzes the perspectives on adaptive random testing of AOP;
Section IV summarizes the results of the analyses; and Section
V reports the conclusion and future work.

II. ADAPTIVE RANDOM TESTING (ART)

A. Overview and Classification
Random testing [18],[10],[19] as one of the eldest

techniques that include automated test input generation and
selection has been studied and applied in different
programming paradigms and application domains for decades.
The first emergence of the random testing was meant for
programs with numerical input domain, however with passage
of time and emerging different paradigms the interest in
random testing has been substantially increased due to the
merits it offers. This matter is evident by various studies in the
literature that have extended/applied the RT to the area of their
interest.

Random testing is normally referred as the opposite of
systematic testing such as functional or structural testing. The
techniques in this family, i.e., random-based, can be generally
classified into classical/pure random testing (the word classical
and pure are interchangeability used in this paper) and enriched
random testing due to the strategies they use for test input
generation and selection, see Figure 1.

Figure 1. General classification of random testing techniques

By enriched, we mean those strategies that have been
equipped with some guidance to their normal random
generation process to pick up test inputs that give higher
effectiveness in results, in contrast to the classical random
testing in which test inputs are only picked at just random. In
other words, both classical RT and enriched RT randomly
generate test inputs from the input domain, but enriched RT
uses additional guidance/criteria to help systematically test case
selection rather than randomly selection. Note, in classical
random testing test cases are generated by selecting random
values of the input variables, which means the generation and
selection are not two separated process but rather both imply
each other and carried out randomly, see Fig. 2. (Note, in the
classical RT, the test generation and test selection processes are
the same but in the figure they have been separated for only the
purpose of contrasting).

ART [9],[20] is the most dominant family of the enriched
RT that suggests a selection criterion of “enforcing the test
cases to be evenly spread over the entire input domain”.
Spreading evenly the test cases over the input domain is not
only the basic idea underlying the ART but also Quasi-Random
Testing (QRT) [21] and somewhat the Diversity-Oriented Test
Data Generation (DOTG) [22]. These techniques emphasize on
the idea of existence a correlation between the fault detection
effectiveness and the evenness of the test case distribution in
which the more even distribution of the test cases over the
input domain the more fault detection capability with fewer test
cases is gained.

Figure 2. The contrasts between the classical and enriched random testing

In ART has been tried to enhance the fault detection
effectiveness of classical RT by imposing some additional
criteria on the test inputs selection process. As we mentioned
before, the basic intuition of ART technique is that the evenly
spread random test cases over the whole input domain allows
finding faults through fewer test cases than with purely random
testing. In literature several algorithms and variations of the
techniques have been proposed to address the “even spread”
intuition. The different ART algorithms give different test case
selection criteria to ensure an even spread of the test cases.
These algorithms attempt to maintain the benefits of random
testing while increasing its effectiveness. For instance, one of
the test case selection criterions used in one typical ART
algorithm called the Fixed Size Candidate Set ART (FSCS-
ART) [9] is as follows, which ensures the evenly spread of the
test cases by means of a distance measure. The technique
defines two test sets: the Executed Set, containing the test data
that have been executed, and the Candidate Set, containing a
set of randomly selected test data. The Executed Set is initially
empty and the first test datum is randomly chosen. The
Executed Set is then incrementally updated with the elements
selected from the Candidate Set until a fault is revealed. The
choice of the test datum from the Candidate Set requires the
measurement of the distances of each candidate to all test data
in the Executed Set. The chosen candidate is the datum that has
the maximal value for the minimal distance among the
distances to each test data in the Executed Set (furthest away
from the already used inputs).

B. State of the Art in ART
Based on the idea of ART great deals of related algorithms,

i.e., various implementation of the idea, have been proposed
(distance-based ART, DART [23] was the first ART

50

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 66 / 612

algorithm). The different algorithms give different test case
selection criteria towards achieving this idea. Some of these
algorithms are closely related to the ART, however, with slight
changes. Example of these include the Restricted Random
Testing (RRT) [24] or Ordinary Random Testing [25], while a
plenty of them, as explained below, emphasize on the
improvement to ART itself since its emergence [9].

Although ART has shown to be able to improve the fault
detection effectiveness of RT, it requires additional
computation overhead (considered as main problem associated
with ART) to evenly spread test cases [26]. On this regard, a
great deal of research has been proposed to minimize the
boundary effect [27] and the overhead of primary ART
algorithm. Mirror ART (called MART) [28], Fuzzy ART [13],
ART by restriction [29], ART by localization [30], ART
through dynamic partitioning [31], ART with CG constraints
[32] are examples of these improvements which alleviate the
pitfalls of the original ART algorithm, especially its overhead.

Further advancement to ART has also been provided by
lattice-based ART. Lattice-based ART (L-ART) is a distinctive
ART method that generates test cases by systematically placing
and then randomly shifting lattice nodes in the input domain.
The first introduction of L-ART [33] showed that L-ART is
capable of yielding a better fault detection capability than RT,
at the same generation cost. However, the test cases of L-ART
may be highly concentrated on certain parts of the input
domain and cause a skewed distribution of test cases. This
skewed distribution of test cases can cause a tight coupling
between the fault detection capability and the failure region
location in the input domain. This means, when failure regions
coincidentally reside in the area where L-ART selects a high
density of test cases, L-ART may show a better fault detection
capability than when failure regions are in the low density area.
In reality, however, failure regions can be in any part of the
input domain, therefore this dependency of fault detection
capability on the failure region location is undesirable.

The issue of skewed test case distributions was addressed in
an enhanced version of L-ART presented by Chen et al. [34].
The new L-ART not only had a less-skewed test case
distribution, but also demonstrated better and more consistent
fault detection capability compared to the original L-ART. This
superiority of the fault detection capability of the new L-ART
has been shown to be better than the results by Restricted ART
by random partitioning [35], ART by bisection with restriction
[36] and localization [37], ART through iterative partitioning
revisited [38] and not revisited [39], ART with enlarged and
high dimensional input domains [40], ART with randomly
translated failure region [41], ART using Voronoi diagram
[42], ART by balancing [43].

Distribution Metric Driven ART [44] has been conducted to
measure how evenly an ART algorithm can distribute its test
cases according to some distribution metrics such as
discrepancy and dispersion, which reflect different aspects of
the test case distribution. Discrepancy and dispersion are two
commonly used metrics for measuring the equidistribution of
sample points. Intuitively, low discrepancy and low dispersion,
not in isolation, indicate that sample points are reasonably
equidistributed [45] and finally implies an even spread of test
cases. These distribution metrics have not only been used to
measure and compare the equidistribution of various ART

algorithms but also they have recently been adopted as criteria
for the test case selection process aiming at improving the
evenness of test case distribution and the fault detection
capability of ART [45], [46].

More recently, a new family of ART [47] algorithms,
namely adaptive random testing with dynamic non-uniform
candidate distribution (ART-DNC) has been proposed. ART-
DNC uses a new test profile called failure driven instead of
uniform distribution or operational profiles used in the original
ART algorithm to maximize the effectiveness of fault
detection. These new algorithms showed better fault detection
capabilities in contrast with the original ART and RT.
Moreover, a new ART approach [48] based on the application
of an evolutionary search algorithm, called Evolutionary
Adaptive Random Testing (EART), was proposed lately.

As could be seen from above, there are so many different
growing approaches that address the concept of ART and its
further improvements. This matter may raise the question how
the results of this work can be related to each other to come up
with a completed and optimally effective ART approach.
Recently, the work in [49] has taken into account this issue.
This work presented a classification, amalgamation of the
influential research work related to ART by highlighting the
connections, and dependency relationships among the current
work in this area.

 The review of the current state of the art, as given in this
section, shows that none of the presented work has discussed
the applicability of adaptive random testing to AOP yet. This
has primarily provided the motivation for the research in this
paper to address this gap.

III. PERSPECTIVES ON ADAPTIVE RANDOM TESTING OF AOP
In this section, we present and discuss three perspectives on

adaptive random testing of AOP. For each of the perspective,
the discussion is based on the following:

• Its underlying technique and difference measure it
encompasses

• Analysis (i.e., theoretical) of its applicability/
feasibility to AOP

A. Overview
It has been generally believed that how evenly an ART

technique spreads test cases has an impact on how effectively it
detects software failures, and an even distribution of test cases
brings a good fault detection capability [11],[12],[13],[14],[15],
[50]. However, this matter has only been proven for the
numerical and recently objects input types, where there is no
evidence on the other complex contexts such as aspect-oriented
yet.

In order to be able to apply a typical ART technique (such
as FSCS-ART) to a given program the following two issues
should be generally figured out [49]:

(1) A strategy to help random sampling from the input
domain of the program under test. In other words, this strategy
is used to generate random test inputs/data.

(2) A mechanism to compare any two members of the input
domain and determine the distance between them to select
those test inputs that ensures the evenly spread of the test
cases over the input domain. The distance measure should be
able to represent the probability of common failure behavior

51

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 67 / 612

between two inputs. In other words, the distance measure can
be viewed as a difference measure that tries to maximize the
diversity of the inputs in which the smaller the distance, the
more likely the test cases will show a similar failure behavior.
Up to the present time, ART and its all variations in the
literature are limited to programs with numeric inputs. On this
regards, these studies have calculated the distance between
two test cases, i.e., values from input domain, using the
Euclidean measure.

Nevertheless, the first issue is common between any pure
random testing and adaptive random testing techniques in
which a given strategy needs to provide random generation of
the test inputs (i.e., random testing). The second issue is meant
to be only for ART techniques, i.e., solely unique to the
adaptive random testing. It is worth mentioning that the first
issue, which is RT, for different programming
paradigms/languages and many application domains has been
popularly resolved for decades, e.g., [51],[52],[53], [54]. In
particular, there have been some recent attempts [55],[56]
towards application of random testing to aspect-oriented
programs, however the second issue has received lesser
attention as the major challenge towards applying the concept
of ART to AOP. Therefore, we place emphasis on discussing
the second issue as the target objective in this paper.

The main question that we seek to provide insight into it is
how the concept of distance measure can be lifted or applied to
aspect-oriented programs. The answer to this question can
consequently help developing adaptive random testing
techniques towards automated testing of aspect-oriented
programs.

According to the current evidence from literature, there are
three perspectives in which this question can provoke
discussion in the applying the notion of distance measure
(second issue) or more generally ART to AOP. These
perspectives are presented and discussed in the following sub-
sections. Furthermore, in our discussion AspectJ [57],[58] is
adopted as the target language. The reason is that the AspectJ is
the most commonly used aspect-oriented programming
language that warrants special attention.

B. Category and Choice-based Perspective
1) Underlying technique: This perspective is based on the

concepts of categories and choices [59] to which the failure
behavior of test cases (i.e., their ability to trigger faults) can be
predicated according to the similarity of computation in the
executions of them [49]. With regard to this idea, a difference
measure (hereafter category and choice distance, CCD) for the
category-partition method was first proposed by Kuo [60],
who claimed that this measure can be used to help applying
ART to a broad range of software input types.

The category-partition method is a specification-based
testing approach. In this approach, the parameters and
environment conditions that define the behavior of the
program under test are first identified, which called as
categories. Then, for each category, a set of mutual values that
possibly triggers similar computation forms the choices. The
more categories in which two inputs have various choices, the
more diversifiable computation they trigger. Therefore, the
number of categories containing differing choices is used as
predictor of this difference measure, i.e., CCD.

In order to illustrate this difference measure, a simple object
recognition system that is capable of distinguishing shapes,
sizes and colors is presented as follows (taken from [49]).
Suppose that the color of objects can only be light-red, red,
deep-red, light-blue, blue, deep-blue, light-green, green and
deep-green, and objects are spheres, cubes or pyramids in
shape. The size is in the range (0,10] in m3. The system
behavior depends only on the object shape, the base color (i.e.,
red, blue or green), and whether the object is larger than 1 m3.
In this case, three categories can be defined: Color, Shape and
Size; three choices for the Color category: red, blue and green;
three choices for the Shape category: sphere, cube and
pyramid; and two choices for the Size category: large and
small. Some choices contain more than one possible value. For
example, the red choice has light-red, red and deep-red as its
possible values and large has any size more than 1 m3.
Consider two program inputs (i.e., test cases) T1 and T2, where
T1 is a light-red sphere of size 3.2 m3, and T2 is a deep-blue
sphere of size 2.7 m3. T1 has the choices (red), (sphere) and
(large) while T2 has the choices (blue), (sphere) and (large).
Therefore, there is only one category, color, in which T1 and T2
differ, thus the difference between the two inputs is 1 according
to the given distance measure. This is to say that, these two
tests are computationally similar as there is not much
differences and thus might possibly have a similar failure
behavior.

2) Analysis: The primary intension of Kuo [60] was to

suggest the CCD difference measure as a generic metric for
developing ART algorithms of non-numeric input types, but
his primary work has not provided any practical example or
case study to discuss this matter for modern programs such as
object-oriented (OO) or aspect-oriented (AO). Thus, one
might think of how this measure could be possibly generalized
to these programs with non-numeric input types.

Following the same source of motivation that the CCD
difference measure can be possibly applied to a broad range of
program input types (as claimed by Kuo [60]), we have here
analyzed its feasibility of the application to object- and aspect-
oriented programs. To this end, we need to define what would
be the categories and choices with respect to these programs
and how truly they can represent the essential idea of ART.

In adoption of this measure to the object-oriented programs
(as complementary to AOP), categories can be viewed as
classes and their associated choices can be considered as
instances of those classes, say objects. Therefore, the number
of classes containing differing object’s values would be a
refined definition of the CCD measure for OO programs.
Given this, recall the previous example (i.e., recognition
system) and test inputs T1 and T2, we now assume this system
is an object-oriented application containing three classes:
Color, Shape and Size that does the same functionality but
implemented in different programming paradigm, e.g., Java. In
this case, we define three classes to represent the three
categories, Color, Shape and Size respectively. Accordingly,
three objects are instantiated to be as choices of the Color
category that is red, blue and green. Likewise, three objects for
the Shape category: sphere, cube and pyramid; and two objects
for the Size category: large and small. According to the
definition, there is only one class, color, in which T1 and T2

52

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 68 / 612

has different object’ values, thus the difference between the
two inputs is 1.

It can be said that the adaptive random testing of OO
programs with respect to this category and choice-based
measure (i.e., CCD) is possible to be performed. However,
effectiveness of this measure would be another research effort
that is worth further investigating.

Concerning the aspect-oriented programs, we now further
assume that the recognition system example is an aspect-
oriented application written in AspectJ that include the same
classes as well as one more feature implemented in one aspect
to keep track of the object’s movement. The aspect is used to
monitor the movement of the recognized objects to refresh the
object’s display whenever they actually move. Note, tracking
movement of object is a crosscutting concern for the system,
where it has been implemented as an aspect straightforwardly.
If the aforementioned distance measure is chosen to be used
for addressing the notion of evenly spread of test cases on this
system, the only way to perform the adaptive random testing is
to apply the given measure on the base code of the aspect-
oriented program (by employing the aforementioned CCD for
OO programs). The reason is that the aspects in most of AO
languages (including AspectJ) do not have independent
identity or existence in the system and cannot be instantiated.
This articulates an aspect-related property known as
obliviousness [61] in which objects, generally base code, are
not aware of the aspects in the system. Consequently, such
unique properties and characteristics related to AOP perhaps
avoid adopting the categories and choices concepts to aspects,
generally aspect code. (Typically, a given AO program such as
AspectJ is comprised of two parts known as base code and
aspect code. The base code contains all the classes and objects
and provides the context execution (join points information)
for the aspects. The aspect code contains all the existing
aspects in the program and run based upon reaching certain
join points in the base code. For more information on this
please refer to [58]).

To sum up, we can state that the CCD measure is possible
to be applied to adaptive random testing of AOP, however, it
will not consider the direct testing of aspect code, specifically
the aspect’s constructs such as pointcuts and advice (as the
focus is more on relationships between the affected/advised
classes and aspects, i.e., base code). In this case, the tests
mostly stress the integration between aspects and affected
classes.

C. Object-based Perspective
1) Underlying technique: This perspective was inspired by

two recent work on adaptive random testing of object-oriented
programs. Since OO programs are considered as
complementary parts to AO programs, thus the discussion
regarding the prior application of ART to OO would be clearly
helpful and connected to the objective of the paper, i.e.,
investigating the applicability of ART to AOP. Nevertheless,
this work has been proposed for object-oriented programs
written in Eiffel and Java languages, as briefly presented in the
following.

a) ART for Eiffel: Ciupa et al. [17] propose adaptive
random testing for object-oriented programs written in Eiffel,
called ARTOO. Their approach initially share the idea of the
DART approach [23] to select input objects (considered as test

data/cases) from a testing pool. Since DART for object-
oriented programs needs to calculate the distance between two
arbitrary objects, accordingly they developed a new distance
measure, object distance [62],[63] to be applied in adaptive
random testing of OO programs. The proposed object distance
was made up of the summation of three measure components
namely elementary distance (i.e., the distance between the
direct values of data types associated with objects), type
distance (i.e., the distance between types of objects
irrespective of object values), and field distance (i.e., the
distance between matching fields of the objects). In addition to
these three components, some weights and normalization were
incorporated to the calculation process.

ARTOO is capable to automatically specify how to
calculate the difference measure, however exponential
calculation time, i.e., time complexity, imposed by increasing
the dimension of the input domain is a major issue associated
with object distance. For instance, checking the distance of
integer type values are easier and quicker; however,
calculating an object distance takes considerable much longer
time (ARTOO takes 160% longer time compared to normal
random testing [17]). Recently, in response to this issue,
ARTOO has been further enhanced by Jaygarl et al. [16] for
the purpose of more efficient testing of object-oriented
programs. In this work, they suggested a simplified object
distance that calculates object distance with lesser time
complexity. They divided input data types into three
categories− primitive types (including boxed types and a string
type), array types, and object types. This separation was able
to reduce unnecessary calculation of the ARTOO’s object
distance.

b) ART for Java: Lin et al. [64] propose a divergence-
oriented technique to adaptive random testing of Java
programs. The primary idea of this approach is to provide the
program under test with a pool of test data each of which has
considerable difference from the others (i.e., high divergence),
and then to use the ART technique to select test data from the
pool for the program under test. Unlike ARTOO that came up
with a well-defined distance measure, this work employed
only an intuitive divergence measure that was simply
measured as distances of the objects in the pool, without
providing any details about what this measure is and how it
was calculated. This obviously makes the analysis of this
measure’s applicability to AOP difficult and therefore, it shall
be excluded from the discussion in the analysis section in the
following. Nevertheless, from an abstract point of view, since
AspectJ is an AO extension of Java, the approach proposed by
this work is likely to be applied to AOP, i.e., AspectJ
programs. However, prior to that, a clear definition of the used
distance measure along with further configurations to consider
crosscutting constructs, e.g., advice and pointcuts, into the test
generation process would be required.

2) Analysis: In the first place, one might think that the

unique characteristics of AOP (including obliviousness
property) can completely bar the notion of object distance
(calculating the distance between two arbitrary objects) from
applying to AOP and to some extent makes no sense of it, i.e.,
constructing difference measure between two arbitrary aspects
is not feasible. The reason is that, contrary to the objects in

53

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 69 / 612

object-oriented programs, in most of AOP languages such as
AspectJ a given aspect does not have independent identity or
existence in the system (i.e., the base code has no references to
the given aspects) and cannot be instantiated. Note, in some
special cases, it is possible to create several instances of a
given aspect in AspectJ but by default, a unique instance of an
aspect is only created and shared by all the objects when the
application is launched. The aspect is then said to be a
singleton [65].

However, it is important to note that it is just an instinctive
misunderstanding. Because, in object-oriented programs
(where the object distance was proposed for), the test
data/cases to the programs are regarded as objects. Thus, in
line with the idea of ART, measuring the distance between
two objects would represent the difference between two test
cases. Whereas, in the context of aspect-oriented programs it
makes no sense to similarly measure the difference between
two arbitrary aspects, while it should be between the tests for
the aspects not aspects themselves.

Therefore, similar to the first perspective or specifically the
category and choice-based measure (i.e., CCD), the object
distance measure can only be used in the context of base code
of the AO programs towards their adaptive random testing
(i.e., the tests that stress the integration between aspects and
affected classes). Because, the objects will form the base part
of AO programs, i.e., base code.

It is also worth mentioning that, the object distance has an
added advantage of requiring less effort compared to the first
measure. This is why the object distance was originally
developed and well-defined for OO programs, thus unlike the
first measure no further effort would be required to leverage
the underlying technique to OO programs, prior its application
to AOP.

Finally, the explanations on the analysis of the object
distance lead us to conjecture that the idea of the ART, using
this measure, cannot be currently applied to aspect code of
AOP (only base code). Hence, future research might include
in-depth investigation of ART notion’s applicability to AOP
inspired by this measure, of course with a focus on adaptive
random testing of aspects, i.e., aspect code. If one can figure
out the feasibility or applicability of this matter then a metric
model on top of object distance, as next step, will be required.
This model should be designed in a way to capture an
appropriate distance between arbitrary test cases (not aspects)
for a given aspect under test to ensure the evenly spread of test
cases (maybe “aspect distance” similar to its corresponding in
object-oriented programs, object distance).

D. Coverage-based Perspective
1) Underlying technique: This perspective was motivated

by some work related to coverage-based test case selection
and prioritization [66],[67] in the context of regression testing.
This work proposed methods to measure the distance between
test cases based on coverage information such as statement
and branch coverage, as presented below.

Zhou [66] proposes a metric, called the Coverage
Manhattan Distance (CMD) as in (1), to measure the
difference between any two arbitrary test cases, applicable to
adaptive random testing. This measure uses the branch
coverage information associated with the test cases. The
formal definition of this measure is as follows. Given x as one

test case, and Ex as a vector that records the branch coverage
information related to x. The vector is defined to be Ex = (x1,
x2, . . . , xn), where xi ∈ {0, 1} for 1≤ i ≤ n, and n is the total
number of branches in a given program. The value of xi is set
to 1 if and only if the ith branch of the program has been
exercised by execution of x; otherwise xi is set to 0. Similarly,
let y be another test case, and Ey = (y1, y2, . . . , yn) records the
branch coverage information of y. The Coverage Manhattan
Distance (CMD) between x and y is captured by:

∑ −=
=

n

i
ii yxyxCMD

1
),((1)

Similar to the work by Zhou, Jiang et al. [67] suggested a
distance measure based on the Jaccard distance of the two sets
to be used as measured distance between two test cases. The
Jaccard distance between two test cases x and y is defined as:
D (x, y) = 1−|A∩B|/|A∪B|, where A and B are the sets of the
coverage of elements such as statements or branches exercised
by x and y, respectively.

Empty-intersection set is a problem associated with Jaccard
measure. That is, whenever the intersection between set A and
B is empty the Jaccard measure just returns the maximum
value of 1. This problem can result in capturing the distance
between the test cases in a wrong way and consequently
misguide the ART algorithm in picking the test case
candidates (see [66] for example on this problem). However,
this is not the case with CMD measure, whereas it is capable
of yielding result that is more effective. This superiority led us
to put emphasis on the CMD measure in the analysis of its
capability to AOP, in the next sub-section.

2) Analysis: The two preceding measures, i.e., category

and choice-based and object distance, focus on the input
values (according to the program’s input domain/space) as
their sources of measurements. This dependency on input
values makes these measures to be only applicable to certain
types of programs (or at least more suited to some). On the
contrary, CMD measure relies on a totally different source,
which is independent of the input values. In our view, this
measure is promising as it has the advantage (i.e., by using
coverage information) that enables ART to be applied to a
border range of programs with lesser limitations. In addition,
the coverage fulfillment has been the most analyzed and
required test criterion through the testing studies, which CMD
has also taken into account.

In adoption of this measure to AOP, towards the ART,
there can be two interesting ways of further exploration:

First, we suggest including the aspectual branch coverage
[8] instead of the traditional branch coverage in the original
CMD measure to record the required coverage information.
Aspectual branch coverage is a coverage metric that captures
the aspectual behavior, specifically the branch coverage within
the aspect code (i.e., including branches from predicates in
advice and methods in aspects). This metric has been
previously used to guide the test generation in area of AOP
testing [8],[6]. As a result, the selection of the test cases
according to this adopted CMD measure (one may call it
Aspectual Coverage Manhattan Distance, ACMD) would be
based on test cases that are able to cover new aspectual

54

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 70 / 612

branches that have not been covered by the previous executed
test cases.

In order to make the point clear, a simple example showing
the applicability of the coverage Manhattan distance to an
aspect code is presented below. Given the aspect
ODRuleAspect shown in Figure 2 (adapted from AspectJ
examples by Laddad [58]):

public aspect ODRuleAspect

pointcut debitExecution(Account account, float
withdrawalAmount) : execution(void
Account.debit*(float) && this(account) &&
args(withdrawalAmount);
before(Account account, float withdrawalAmount)
: debitExecution(account, withdrawalAmount) {
 Customer customer = account.getCustomer();
 if (customer == null) return;
 if (account.getAvailableBalance()>
withdrawalAmount){
 float deductedAmount =
 account.getAvailableBalance()-

withdrawalAmount;
 ...
 } else System.out.println("not enough
money!");
 }
 ...
 }

public class Account {
 private float balance;
 private int accountNumber;
 private Customer customer;
 public Account(int accountNumber,Customer
customer) { ... }

 public void debit(float amount) { ... }
...
}

Figure 2. An AspectJ example

In this case, there are two predicates (surrounded by a red
box in Figure 2) which result in four aspectual branches in the
given aspect, that is n=4. Suppose x and y are two test cases,
where each of which contains a different instance of
Account class, say Ac1 and Ac2 respectively. In addition,
two calls to debit method (plus two parameter values for
method’s calls) on these instances are required to trigger the
execution of the advice. Thus, for instance Ac1.debit
(95.60) and Ac2.debit (64.35) would form the test
cases x and y respectively. Assume, Ac1. getCustomer
will return null, in this case x would be able to exercise only
one branch, i.e., customer == null, hence Ex = (1,0,0,0).
Similarly assume, Ac2. getCustomer has not returned
null and its Ac2.getAvailableBalance is 120 (which
is higher than 64.35). Thus, the test case y is able to exercise
two branches, i.e., customer ≠ null and
(account.getAvailableBalance()>
withdrawalAmount), so Ey = (1,1,0,0). Now, recall the
metric in (1) the difference measured between these two cases
would be of 1.

Alternatively, in order to obtain the proper coverage
information to make use of the CMD measure in ART of
AOP, we suggest employing the program’s control flow graph
of aspect-oriented programs. For this purpose, aspect-oriented
control flow graph (AOCFG) proposed by Parizi et.al [68] (or
other similar approaches such as [69]) would be a capable
choice to help testers gain coverage-related information. This
type of structural modeling and graph embodiment of aspects
not only allows obtaining information related to the branch
coverage but also a variety of coverage elements such as node,
edge, etc. However, further research needs to be done to study
the usefulness of these types of coverage information for ART,
including coverage of elements in graphs/models used in
aspect-oriented modeling.

In summary, the above analysis demonstrates that it is
possible to construct more meaningful distance measure (using
the idea of coverage information) in compared with the other
presented measures for adaptive random testing of aspect-
oriented programs. However, it still requires conducing further
research to produce a well-suited coverage-based ART
technique for aspect-oriented programs and then to proof the
effectiveness of the produced technique through
experimentation or proper case study.

IV. SUMMARY OF ANALYSES
For the brevity, a summary of the presented perspectives

along with the analyses of the distance measure’s properties,
are presented in Table I.

TABLE I. SUMMARY OF THE DISTANCE MEASURES OF DIFFERENT
PERSPECTIVES

Perspective
Distance/
difference
measure

Source of
measurement

Original
Paradigm/

Application
domain

Applicability
to AOP

Category and
choice-based

Category
and choice
distance

Input values
Procedural

programs (with
numerical inputs)

Base code

Object-based Object
distance Input values Object-oriented

programs Base code

Coverage-
based

Coverage
manhattan
distance

Structural
information
(e.g., branch

coverage)

Procedural and
object-oriented

programs

Base & aspect
code

With respect to above table, the first column lists down the

reviewed perspectives. The second column gives the original
distance measure provided by the corresponding perspectives.
The third, presents the source from which the measurement of
the given measures are captured. The forth column lists the
programming paradigms/application domains that the given
measure were first proposed or applied to. Finally, the fifth
column gives the possible applicability of the distance
measures in terms of their suitability to adaptive random
testing of aspect-oriented programs.

From the table, it can be clearly seen that only one
measure, i.e., CMD, has the capability of being adopted to
both base and aspect code, generally the whole AO program.
Furthermore, the source of measurement used by this measure,
it is more fine-grained and desirable compared to the other two
measures.

Nevertheless, based on the theoretical analysis and
interpretation shown among different perspectives and their

55

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 71 / 612

distance measures and the fact that these measures are capable
of providing different level of adoptability to AOP (i.e.,
relative advantages and weakness), at the moment and based
on our understanding of these reviewed perspectives, the
coverage-based perspective, to be exact the CMD measure,
proposed by Zhou [66] shows to be one of the most suited
(with respect to the unique characteristics of AO programs)
and promising distance measure towards adaptive random
testing of the aspect-oriented programs.

V. CONCLUSION AND FUTURE WORK
Research on automated AOP testing is quite young and

there is still a way to grow to its maturity. In ambition to
advance the work with test automation of AOP and reaching to
a plausible maturity, we have performed some preliminary
research to investigate the applicability of one of the current
automated test generation and selection techniques (i.e., ART)
to AOP. The given investigation included the identification and
presentation of the three related perspectives (by comparing
their enclosed distance measures) on adaptive random testing
of AOP and their general limitations and applicability.

As a general conclusion, our study shows that it is possible
to apply the ART technique to AOP, however the current
distance measures would not be all applicable or sufficient to
address the notion of evenly spread of test cases suggested by
ART. Two of the measures were intended to be only
applicable to base code of AO programs while one was more
applicable in nature, having potential of calculating distance
between test cases meant for aspect code. Thus, aspect-
oriented programs require evolving the discussed measures
and/or developing new effective distance measure that can
truly represent the notion of evenly spread of test cases with
regard to the unique characteristics of these programs.

At last, we believe the work presented in this paper has
provided new avenues of exploration within the area of
AOP testing. Decidedly, this would be only the initial stage of
leveraging a well-known testing technique to AOP; hence, it
still requires further research to establish a concrete and useful
ART-based technique for AOP in the future.

ACKNOWLEDGMENT
The authors acknowledge the support of the Malaysian

Ministry of Higher Education for supporting
this research (Fundamental Research Grant Scheme Phase
2/2010 (FRGS/2/2010/SG/UPM/01/2)).

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, "Aspect-Oriented Programming " in Proceedings
of the 11th European Conference on Object-Oriented Programming
1997, p. 220−242.

[2] G. Kiczales, J. Lamping, C. V. Lopes, J. J. Hugunin, E. A. Hilsdale, and
C. Boyapati, "Aspect-Oriented Programming," in United States Patent
6467086: Xerox Corporation, 2002.

[3] A. Colyer and A. Clement, "Aspect-Oriented Programming with
AspectJ," IBM systems journal, vol. 44, p. 301−308, 2005.

[4] R. T. Alexander, J. M. Bieman, and A. A. Andrews, "Towards the
Systematic Testing of Aspect-Oriented Programs," Colorado State
University 2004.

[5] F. C. Ferrari, J. C. Maldonado, and A. Rashid, "Mutation Testing for
Aspect-Oriented Programs," Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, 2008, p.
52−61.

[6] M. Harman, F. Islam, T. Xie, and S. Wrappler, "Automated Test Data
Generation for Aspect-Oriented Programs," in Proceedings of the 8th
International Conference on Aspect-Oriented Software Development,
Charlottesville, Virginia, USA, 2009, p. 185−196.

[7] T. Xie, J. Zhao, D. Marinov, and D. Notkin, "Automated Test
Generation for AspectJ Programs
" in Proceedings of the 1st Workshop on Testing Aspect-Oriented
Programs, 2005, p. 1−6.

[8] T. Xie and J. Zhao, "A Framework and Tool Supports for Generating
Test Inputs of AspectJ Programs," in Proceedings of the 5th
International Conference on Aspect-Oriented Software Development,
2006, p. 190−201.

[9] T. Y. Chen, H. Leung, and I. K. Mak, "Adaptive Random Testing," in
Proceedings of the 9th Asian Computing Science Conference, 2004, p.
320−329.

[10] R. Hamlet, "Random Testing," Encyclopedia of software Engineering, p.
970−978, 1994.

[11] J. Mayer and C. Schneckenburger, "An Empirical Analysis and
Comparison of Random Testing Techniques," in Proceedings of the
2006 ACM/IEEE International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil, 2006, p. 105−114.

[12] T. Y. Chen, F.-C. Kuo, and R. G. Merkel, "On the Statistical Properties
of the F-measure," in Proceedings of the 4th International Conference
on Quality Software, 2004, p. 146−153.

[13] K. P. Chan, T. Y. Chen, and D. Towey, "Good Random Testing," in
Proceedings of the 9th Ada-Europe International Conference on
Reliable Software Technologies, 2004, p. 200−212.

[14] Y. Liu and H. Zhu, "An Experimental Evaluation of the Reliability of
Adaptive Random Testing Methods," in Proceedings of the 2nd
International Conference on Secure System Integration and Reliability
Improvement 2008, p. 24−31.

[15] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, "Does Adaptive
Random Testing Deliver a Higher Confidence than Random Testing?,"
in Proceedings of the 8th International Conference on Quality Software
2008, p. 145−154.

[16] H. Jaygarl, C. K. Chang, and S. Kim, "Practical Extensions of a
Randomized Testing Tool," in Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference 2009, p.
148−153.

[17] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, "ARTOO: Adaptive
Random Testing for Object-oriented Software," in Proceedings of the
30th International Conference on Software Engineering, Leipzig,
Germany, 2008, p. 71−80.

[18] J. W. Duran and S. C. Ntafos, "An Evaluation of Random Testing,"
IEEE Transactions on Software Engineering, vol. SE-10, p. 438−444,
1984.

[19] P. S. Loo and W. K. Tsai, "Random testing Revisited," Information and
Software Technology, vol. 30, p. 402−417, 1988.

[20] T. Y. Chen, F.-C. Kuo, and H. Liu, "Distributing Test Cases More
Evenly in Adaptive Random Testing," Journal of Systems and Software,
vol. 81, p. 2146−2162, 2008.

[21] T. Y. Chen and R. G. Merkel, "Quasi-Random Testing," in Proceedings
of the 20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, CA, USA, 2005, p. 309−312.

[22] P. M. S. Bueno, W. E. Wong, and M. Jino, "Improving Random Test
Sets using the Diversity Oriented Test Data Generation," in Proceedings
of the 2nd International Workshop on Random testing Atlanta, Georgia:
ACM, 2007, p. 10−17.

[23] P. Godefroid, N. Klarlund, and K. Sen, "DART: Directed Automated
Random Testing," in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, 2005, p. 213−223.

[24] K. P. Chan, T. Y. Chen, and D. Towey, "Restricted Random Testing:
Adaptive Random Testing by Exclusion," International Journal of
Software Engineering and Knowledge Engineering, vol. 16, p. 553−584,
2006.

[25] S. Xu, "Orderly Random Testing for Both Hardware and Software," in
Proceedings of the 14th IEEE Pacific Rim International Symposium on
Dependable, 2008, p. 160−167.

[26] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, "On Favourable Conditions for
Adaptive Random Testing," International Journal of Software
Engineering and Knowledge Engineering, vol. 17, p. 805−825, 2007.

56

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 72 / 612

[27] J. Geng and J. Zhang, "A New Method to Solve the "Boundary Effect"
of Adaptive Random Testing," in Proceedings of International
Conference on Educational and Information Technology, 2010, p.
298−302.

[28] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng, "Mirror Adaptive
Random Testing," Information and Software Technology, vol. 46, p.
1001−1010, 2004.

[29] K. P. Chan, T. Y. Chen, F.-C. Kuo, and D. Towey, "A Revisit of
Adaptive Random Testing by Restriction," in Proceedings of the 28th
Annual International Computer Software and Applications Conference,
2004, p. 78−85.

[30] T. Y. Chen and D. H. Huang, "Adaptive Random Testing by
Localization," in Proceedings of the 11th Asia-Pacific Software
Engineering Conference 2004, p. 292−298.

[31] T. Y. Chen, R. G. Merkel, G. Eddy, and P. K. Wong, "Adaptive Random
Testing Through Dynamic Partitioning," in Proceedings of the 4th
International Conference on Quality Software, 2004, p. 79−86.

[32] F. T. Chan, K. P. Chan, T. Y. Chen, and S. M. Yiu, "Adaptive Random
Testing with CG Constraint," in Proceedings of the 28th Annual
International Computer Software and Applications Conference, 2004, p.
96−99.

[33] J. Mayer, "Lattice-based Adaptive Random Testing," in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering 2005, p. 333−336.

[34] T. Y. Chen, D. H. Huang, F.-C. Kuo, R. G. Merkel, and J. Mayer,
"Enhanced Lattice-based Adaptive Random Testing," in Proceedings of
the 2009 ACM Symposium on Applied Computing, Honolulu, Hawaii,
2009, p. 422−429.

[35] J. Mayer, "Restricted Adaptive Random Testing by Random
Partitioning," in Proceedings of the International Conference on
Software Engineering Research and Practice 2006.

[36] J. Mayer, "Adaptive Random Testing by Bisection with Restriction," in
Proceedings of the 7th International Conference on Formal Engineering
Methods, 2005, p. 251−263.

[37] J. Mayer, "Adaptive Random Testing by Bisection and Localization," in
Proceedings of the 5th International Workshop on Formal Approaches
to Testing of Software 2006, p. 72−86.

[38] J. Mayer, T. Y. Chen, and D. H. Huang, "Adaptive Random Testing
Through Iterative Partitioning Revisited," in Proceedings of the 3rd
International Workshop on Software Quality Assurance, Portland,
Oregon, 2006, p. 22−29.

[39] T. Y. Chen, D. H. Huang, and Z. Q. Zhou, "Adaptive Random Testing
Through Iterative Partitioning," in Proceedings of the 11th International
Conference on Reliable Software Technologies, 2006, p. 155−166.

[40] F.-C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan, "Enhancing Adaptive
Random Testing for Programs with High Dimensional Input Domains or
Failure-unrelated Parameters," Software Quality Journal, vol. 16, p.
303−327, 2008.

[41] J. Mayer, "Adaptive Random Testing with Randomly Translated Failure
Region," in Proceedings of the 1st International Workshop on Random
Testing, 2006, p. 70−77.

[42] T. Y. Chen and R. G. Merkel, "Efficient and Effective Random Testing
Using the Voronoi Diagram," in Proceedings of the 17th Australian
Software Engineering Conference 2006, p. 300−308.

[43] T. Y. Chen, D. H. Huang, and F.-C. Kuo, "Adaptive Random Testing by
Balancing," in Proceedings of the 2nd International Workshop on
Random Testing, 2007, p. 2−9.

[44] T. Y. Chen, F.-C. Kuo, and H. Liu, "Distribution Metric Driven
Adaptive Random Testing," in Proceedings of the 7th International
Conference on Quality Software, 2007, p. 274−279.

[45] T. Y. Chen, F.-C. Kuo, and H. Liu, "Adaptive Random Testing Based on
Distribution Metrics," The Journal of Systems and Software, vol. 82, p.
1419−1433, 2009.

[46] T. Y. Chen, F.-C. Kuo, and H. Liu, "Enhancing Adaptive Random
Testing through Partitioning by Edge and Centre," in Proceedings of the
18th Australian Software Engineering Conference, 2007, p. 265−273.

[47] T. Y. Chen, F.-C. Kuo, and H. Liu, "Application of a Failure Driven Test
Profile in Random Testing," IEEE Transactions on Reliability, vol. 58,
p. 179−192, 2009.

[48] A. F. Tappenden and J. Miller, "A Novel Evolutionary Approach for
Adaptive Random Testing," IEEE Transactions on Reliability, vol. 58,
p. 619−633, 2009.

[49] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, "Adaptive Random
Testing: The ART of Test Case Diversity," Journal of Systems and
Software, vol. 83 p. 60−66, 2010.

[50] T. Y. Chen and F.-C. Kuo, "Is Adaptive Random Testing Really Better
than Random Testing," in Proceedings of the 1st International Workshop
on Random Testing, Portland, Maine, 2006, p. 64−69.

[51] C. Csallner and Y. Smaragdakis, "JCrasher: An Automatic Robustness
Tester for Java," Software: Practice and Experience, vol. 34, p.
1025−1050, 2004.

[52] C. Oriat, "Jartege: A Tool for Random Generation of Unit Tests for Java
Classes," in Proceedings of the 1st International Conference on the
Quality of Software Architectures, 2005, p. 242−256.

[53] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li, "Tool Support for
Randomized Unit Testing," in Proceedings of the 1st International
Workshop on Random Testing, Portland, Maine, 2006, p. 36−45.

[54] B. Meyer, I. Ciupa, A. Leitner, and L. L. Liu, "Automatic Testing of
Object-Oriented Software," in Proceedings of the 33rd International
Conference on Current Trends in Theory and Practice of Computer
Science, 2007, p. 114−129.

[55] R. M. Parizi, A. A. A. Ghani, R. Abdulla, and R. B. Atan, "Towards a
Framework for Automated Random Testing of Aspect-oriented
Programs," in Proceedings of the ISCA 18th International Conference on
Software Engineering and Data Engineering, Las Vegas, Nevada, USA,
2009, p. 217−223.

[56] R. M. Parizi, A. A. A. Ghani, R. Abdulla, and R. B. Atan, "On the
Applicability of Random Testing for Aspect-Oriented Programs,"
International Journal of Software Engineering and its Applications vol.
3, p. 1−20, 2009.

[57] G. Kiczales, E. A. Hilsdale, J. J. Hugunin, M. Kersten, J. Palm, and W.
G. Griswold, "An Overview of AspectJ," in Proceedings of the 15th
European Conference on Object-Oriented Programming 2001, p.
327−353.

[58] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
first ed. Greenwich: Manning Publications Co. , 2003.

[59] T. J. Ostrand and M. J. Balcer, "The Category-partition Method for
Specifying and Generating Functional Tests," Communications of the
ACM, vol. 31, p. 676−686, 1988.

[60] F.-C. Kuo, "On Adaptive Random Testing," Melbourne, Australia:
Swinburne University of Technology, PhD Thesis, 2006.

[61] R. E. Filman and D. P. Friedman, "Aspect-oriented programming is
quantification and obliviousness," in Proceedings of the Workshop on
Advanced Separation of Concerns 2000.

[62] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, "Object Distance and Its
Application to Adaptive Random Testing of Object-oriented Programs,"
in Proceedings of the 1st International workshop on Random Testing
Portland, Maine: ACM, 2006, p. 55−63.

[63] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer, "On the
Predictability of Random Tests for Object-Oriented Software," in
Proceedings of the 1st International Conference on Software Testing,
Verification, and Validation, 2008, p. 72−81.

[64] Y. Lin, X. Tang, Y. Chen, and J. Zhao, "A Divergence-Oriented
Approach to Adaptive Random Testing of Java Programs," in
Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, 2009, p. 16−20.

[65] R. Pawlak, J.-P. Retaillé, and L. Seinturier, Foundations of AOP for
J2EE Development: Apress, 2005.

[66] Z. Q. Zhou, "Using Coverage Information to Guide Test Case Selection
in Adaptive Random Testing," in Proceedings of the IEEE 34th Annual
Computer Software and Applications Conference Workshops 2010, p.
208−213.

[67] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, "Adaptive Random Test
Case Prioritization," in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, 2009, p.
233−244.

[68] R. M. Parizi and A. A. A. Ghani, "AJcFgraph-AspectJ Control Flow
Graph Builder for Aspect-Oriented Software," International Journal of
Computer Science, vol. 3, p. 170−181, 2008.

[69] M. L. Bemardi and G. A. Di Lucca, "An Interprocedural Aspect Control
Flow Graph to Support the Maintenance of Aspect Oriented Systems," in
Proceedings of the International Conference on Software Maintenance
2007, p. 435−444.

57

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 73 / 612

Devising Mutant Operators for Dynamic Systems Models by Applying the HAZOP
Study

Rodrigo Fraxino Araujo
José Carlos Maldonado

Márcio Eduardo Delamaro
Instituto de Cîencias Mat. e de Computação

Universidade de S̃ao Paulo
São Carlos, Brazil

{rfaraujo, jcmaldon, delamaro}@icmc.usp.br

Auri Marcelo Rizzo Vincenzi
Instituto de Inforḿatica

Universidade Federal de Goiás
Goiânia, Brazil
auri@inf.ufg.br

François Delebecque
Met., Alg. et Log. pour l’Automatique
Inst. Nat. de Recherche en Inf. et Aut.

Rocquencourt, France
francois.delebecque@inria.fr

Abstract—Embedded systems are increasingly present in
many electronic devices. Therefore, it is necessary to use rig-
orous testing techniques aimed at ensuring that these systems
behave as expected. Our contribution is the definition of mutant
operators for the context of embedded systems models. We
focus on dynamic systems models, specifically on Simulink
and Scicos models, which are considered standards in many
industrial application domains, such as avionics and automotive
control. The HAZOP study was applied to investigate and
analyze all the main features of such models, in order that the
resulting mutant operators could be systematically generated.
We developed a testing environment to support the mutation
testing for dynamic system models, which was used to employ
the defined mutant operators in a sample application.

Keywords-Simulink, Scicos, HAZOP, mutation testing.

I. I NTRODUCTION

Due to the complexity of systems and the ever-increasing
needs for shortening time-to-market pressures, the testing
task has become even more challenging. A common problem
is the testing stage being performed at the end of a project
development life cycle. Thus, when faults are found, the cost
to fix them is much higher [19].

A possibility to lessen the aforemetioned problem is by
using precise models that support a system development life
cycle. Models are concise and understandable abstractions
that capture the decisions of the functions of a system whose
semantics are derived from the concepts and theories of a
specific domain [18].

In this context, platforms such as ScicosLab/Scicos [12]
and Matlab/Simulink [20] are widely used to design and
simulate dynamic system models. One of their advantages
is the applications analysis at different levels of abstraction.
Another benefit is the automatic code generation, which
reduces development costs and programming faults. In this
paper we will usedynamic systemsaiming specifically at
SimulinkandScicossystems.

To ensure the reliability of this kind of system, the
industry has been investing in an approach known as model
based testing [6]. In this approach, it is easier to automate

the testing activity, which includes an automatic generation
of test sets. The testing activity can begin to take place in
a more abstract level, even before the software is coded.
This leads to a more efficient process with significant cost
reduction and a final product with higher quality.

In order to support this approach, our goal is to make
possible the application of the mutation testing in embedded
systems models, or specifically in dynamic systems models.
In this paper, we show how a set of mutant operators was
defined by the employment of the HAZOP (Hazard and
Operability) [14] study to evaluate the features of such
models. Some of these mutant operators were implemented
in a testing tool that supports the mutation testing for
dynamic systems models.

The mutant operators are responsible for determining the
testing requirements of a model, that must be satisfied by the
choice of an adequate input test set. A reason that ensures
the wide usage of the mutation testing is the quality of the
resulting final test set, i.e., its proneness to reveal faults [1].

In order to describe our study and the resulting mu-
tant operators, the remainder of this paper is structured
as follows. Section II describes dynamic systems models
and the HAZOP study. In Section III, we show how the
HAZOP study was employed in dynamic systems models.
Section IV presents the mutant operators generated by a
rigorous analysis of the achieved results. In Section V, a
testing tool to support the mutation testing is described along
with a sample application regarding the employment of our
defined mutant operators. Section VI presents a discussion
regarding related work. Section VII concludes with some
final remarks and an outlook on future directions.

II. BACKGROUND

Mutation Testing is a testing approach in which the
product under test is altered several times, creating a set
of alternative products with slight syntactical differences, the
so-called mutants. The tester is responsible for choosing test
data that show difference in the behavior among the original

58

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 74 / 612

product and the mutant products [16]. The test set quality is
measured according to its likelihood of revealing faults [9].

The construction of mutant operators must be driven by
an analysis of the characteristics of the product under test.
A great deal of authors do not employ general guidelines
and a rigorous methodoloy for their definition. The mutant
operators are usually a representation of a fault model
considering the underlying product [10]. In our case, we
are exploring a larger number of mutant operators generated
by systematically applying the HAZOP study in dynamic
systems models, which may later be minimized by the
conduction of experiments.

In the following subsections we present a brief overview
of a dynamic system model and of the HAZOP study. We
used it to analyze the features of a dynamic system model,
making possible to define appropriate mutant operators, that
can guide the test data generation process for this sort of
model.

A. Dynamic System Model

A dynamic system consists of a set of possible states,
together with a rule that determines the present state from a
past state. According to Korn [15], dynamic systems relate
model-system states to earlier states. Classical physics,for
example, predicts continuous changes of quantities such as
position, velocity, or voltage with continuous time.

With the increasing complexity of these systems, de-
velopment tools have become imperative to support their
design. Simulink [20] and Scicos [12] are environments for
sharing data, designs and specifications, making possible to
develop more reliable critical systems and safely generating
code. They are widely used within industry due to the large
expressiveness of their languages.

The models used by such environments are based on block
diagrams. These blocks include a library of sinks, sources,
connectors and linear and non-linear components. Models
can be hierarchical, which helps to understand the model
organization and how the components interacts with each
other [20, 12].

Such platforms offer a convenient way to describe systems
that evolve according to time. Such systems are math-
ematically represented by systems of equations, that are
differential equations in the case of continuous time systems,
difference equations in the case of discrete time systems,
and a mix of both in the case of hybrid systems. The
simulation of these types of systems is based on numerical
algorithms, where the solution of a system of equations, i.e.,
the semantics of a dynamic system model, is given by the
sequence of values representing the temporal functions [7].
The input values can be read from a file or provided by a
signal generator, e.g., a sinusoid or a square wave generator.

Figure 1 contains an example of a dynamic system model
that is divided into three subsystems [7]. A continuous
time subsystem is present in Figure 1a and represents a

braking pedal as a mass-spring-damper mechanical system.
A discrete time subsystem is present in Figure 1b and is
responsible for detecting when the pressing force is greater
than a given threshold to activate the brake. Figure 1c
presents the main system, a composition of both subsystems,
containing an input, the force, and an output, the detection
result.

(a) Continuous Time Model

(b) Discrete Time Model

(c) Hybrid Model

Figure 1: Dynamic Systems Models

These models are composed by blocks connected by lines
(signals). The blocks can be elementary, containing simple
operations (as arithmetics, for instance), or subsystems,
that contains a composition of elementary blocks. In the
models of Figure 1, it is worth emphasizing theIntegrator
and theUnitDelay blocks, which introduce the notion of
time. When an Integrator is used, the model is called of
continuous time, and the operation associated to the block
is a mathematical integration over time. A model that uses a
UnitDelay is called of discrete time. A mix of both produces
a hybrid model, defined as a data flow where the signals are
continuous or discrete time functions.

A block worth mentioning is theSwitch, which contains
two data inputs and one control input. The developer must
specify how the evaluation of the second input (control) must
be performed, in order to redirect the first or third data input
to the output. Thereby, this block can be compared to an
if-then-else sentence. Table I, adapted from Chapoutot and
Martel [7], presents the main blocks of a dynamic system
model. VIADINHO

B. HAZOP (Hazard and Operability Study)

Hazard and operability studies (HAZOP) [14] originated
in the chemical industry and, thereafter, have been widely

59

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 75 / 612

Table I: DYNAMIC SYSTEM BLOCKS

Name Block Descript. Equation

Input Input l1 = In(t), ∅

Const. Constant l1 = c, ∅

Output Output Out(t) = l1, ∅

Add Adittion l3 = l1 + l2, ∅

Sub Subtraction l3 = l1 - l2, ∅

Product Multipl. l3 = l1 * l2, ∅

Divide Division l3 = l1 / l2, ∅

Gain
Multipl.

l2 = g * l1, ∅by
Constant

AND AND l3 = l1 && l2, ∅

NAND NAND
l3 = !(l1 && l2)

,∅

OR OR l3 = l1 || l2, ∅

NOR NOR
l3 = !(l1 || l2),

∅

XOR XOR
l3 = (l1 && !l2)

||
(!l1 && l2), ∅

NOT NOT l2 = !(l1), ∅

== ==
l3 = (l1 == l2),

∅

∼= ! =
l3 = (l1 != l2),

∅

> >

l3 = (l1 > l2),
∅

>= >=
l3 = (l1 >= l2),

∅

< <

l3 = (l1 < l2),
∅

<= <=
l3 = (l1 <= l2),

∅

Switch
Conditional l4 = if(ρ(l2),
Command l1, l3), ∅

Integr.
Continuos l2(t) = η(t),

Time η̇(t) = l1(t)
Integration

Unit Discrete l2(t) = η(t),
Delay Time η(t + 1) = l1(t)

Delay
Sub

Subsystem l2 = f(l1), ∅System

applied in different contexts to assess varying sorts of sys-
tems. The main purpose of such studies is to systematically
examine the behavior of the underlying system in order to
determine deviations and hazards that might arise as well as
potential related problems. They are currently used in several
areas for qualitative risk analysis [3].

The first step in the HAZOP study consists in identifying
entities and attributes of the system under examination by
means of an analysis of its description. For instance, taking a
software system into consideration, such a description canbe
the software control flow. The next step is to apply a number
of predeterminedguidewordsto system attributes in order to
investigate possible deviations and determine possible causes
and consequences [13].

The role of these guidewords is to act as mnemonics.
After structurally applying each of them to attributes of the
system under examination, it is possible to focus on a certain
sort of anomalous behavior and ponder over it. Thus, this
method provides additional insight into potential deviations.
However, matching a guideword with an attribute requires
interpretation. Depending on the context, guidewords may
have more than one interpretation. For instance,MORE
applied to a data value attribute can be interpreted asgreater,
i.e., yielding a greater value then it should be. Similarly,
applying MORE to bit rate attributes can be interpreted as
higher. Moreover, guidewords may be meaningless in certain
contexts, demanding the creation of additional guidewords.

III. HAZOP IN A DYNAMIC SYSTEM MODEL

The testing activity is typically applied taking in con-
sideration source code, platform independent intermediate
representations or machine-specific code. However, several
researches propose its use in a representation at a higher
level of abstraction, i.e., models [16]. In our case, we address
the testing of Simulink and Scicos models by applying the
HAZOP study to the specification of a dynamic system
model.

The representation examined is the syntax of the model
construction. Attributes are identified for each constructof a
dynamic system model, and syntactic deviations are investi-
gated by the employment ofguidewordsto these attributes.
For each possible deviation, the cause and consequence of a
deviation are examined in order that mutant operators, that
result in minor syntactic modifications, can be derived [13].

Table II presents the identified attributes for a dynamic
system model. To show how the employment of the HAZOP
guidewords to the attributes of a dynamic system model were
performed, we present some examples as follows.

In the first example the constructtypesand the atribute
compatibility affect the blocksInput and Output. It is pos-
sible to apply 2 guidewords:

• AS WELL AS. Cause: replacement among compatible
types among double, single, int8, uint8, int16, uint16,

60

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 76 / 612

Table II: ATTRIBUTES OF ADYNAMIC SYSTEM MODEL

Constructs Attributes Related
Blocks

Types Compatibility Input
Intervals Output

Variables Stored Values Lines
Constants Stored Values Constant

Blocks

Execution Result of Switch
Switch Statement

Execution Result of UnitDelay
Temporal Statement Integrator
Interaction Among Subsystem

Subsystems

Expressions

Evaluation Result
Relat. Op.of Relat. Op.

Evaluation Result
Logic. Op.of Logic. Op.

Evaluation Result
Arith. Op.of Arith. Op.

int32, uint32 and boolean. Consequence: no loss of
information.

• PART OF. Cause: types with lower capacity can be
used as, for instance, single instead of double. Conse-
quence: it is possible to lose information or precision.

In the next example the constructconstantsand the
atributestored valuesaffect the blockConstant. It is possible
to apply 3 guidewords:

• MORE. Cause: increase of a numeric value. Conse-
quence: possible incorrect result.

• LESS. Cause: decrease of a numeric value. Conse-
quence: possible incorrect result.

• OTHER THAN. Cause: replacement among the con-
stants of a model. Consequence: possible incorrect
result.

Similar to the aforementioned examples, theguidewords
were applied to the defined attributes of a dynamic system
model, resulting in the analysis of all main blocks for this
kind of model. Due to the lack of space, we are not able to
present the relations among all guidewords and the defined
mutant operators.

IV. M UTANT OPERATORSDEFINITION

A set of mutant operators was derived from the employ-
ment of the HAZOP study in a dynamic system model and
is presented in this section. It is important to note that notall
guidewordsresulted in a mutant operator, because according
to our evaluation, in some occasions the operation would
not be significant, or would always result in a faulty model
impossible to be simulated.

We decided to keep a conservative approach in the defini-
tion of mutant operators, i.e., all coherent mutant operators
possible to be derived for this kind of system by the
application of the HAZOP study were defined.

Types
Type Replacement Operator
This operator replaces a type with compatible
types, and can be applied directly in the Input and
Output blocks, which are used in the interaction
among systems and subsystems.

Variables
Variable Change Operator
This operator acts in the connections among the
blocks of a model, increasing or decreasing the
value that is being carried. As it is not possible
to know a priori which value that is, a possible
implementation is to insert anadd or subtract
block between the source and destination blocks.
Variable Replacement Operator
This operator acts in the connections among the
blocks of a model, replacing the compatible values
that are being carried by swapping their connec-
tions. For the implementation, special attention
must be drawn to the compatibility analysis among
the number of inputs and outputs of each block.

Constants
Constant Change Operator
This operator is responsible for increasing or de-
creasing the value of the constants of a model.
Constant Replacement Operator
This operator replaces the values among the con-
stants of a model.

Blocks
Statement Swap Operator
This operator is responsible for swapping the first
and the third input of the Switch block, acting in a
way similar to modifying the evaluation result of
the blocks condition.
Delay Change Operator
This operator can increase or decrease the delay in
which the output of the UnitDelay or the Integrator
blocks will be provided to the system.
Subsystem Change Operator
This operator swaps the connections between two
subsystems or between a main system and a sub-
system aiming to act in the integration of com-
ponents of a model. Despite being a suboperator
of the Variable Replacement Operator (VRO), this
operator may be useful if the tester desires to
analyze only the interaction among the subsystems
of a model.
Block Removal Operator
This operator is responsible for removing each of
the blocks of a model, and can be useful to ensure
that every block is being used and that a test data
exists to force its execution.

Expressions

61

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 77 / 612

Relational Op. Replacement Operator
This operator is responsible for the replacement
among the relational operators>, >=, ==, ∼=,
< e <=.
Arithmetic Op. Replacement Operator
This operator is responsible for the replacement
among the blocks Add, Sub, Product, Divide and
Gain.
Logical Op. Replacement Operator
This operator is responsible for the replacement
among the logical operators AND, OR, NAND,
NOR, NOT and XOR.

A. Summary

12 mutant operators were defined by employing the HA-
ZOP study for Simulink-like models and are summarized
in Table III. Most of the defined mutant operators deal with
the data flow of a Simulink-like model, which is the essence
of this type of system. Three mutant operators were defined
aiming at dealing with unique features of this kind of model.
Although most of the operators deals with modification in a
model, in certain cases for their implementations new blocks
need to be added and removed. As a result, we consider that
they are a complete set, taking into account that along with
our analysis, the defined mutant operators force addition,
alteration and deleting operations in Simulink-like models.

Table III: MUTANT OPERATORS

Acron. Description
TRO Type Replacement Operator
VCO Variable Change Operator
VRO Variable Replacement Operator
CCO Constant Change Operator
CRO Constant Replacement Operator
SSO Statement Swap Operator
DCO Delay Change Operator
SCO Subsystem Change Operator
BRO Block Removal Operator

RORO Relational Op. Replacement Op.
AORO Arithmetic Op. Replacement Op.
LROO Logical Op. Replacement Op.

The first one, SSO, aims to swap the inputs of a Switch
block, altering the control flow of a system. The second
operator, DCO, deals with the temporal characteristics of a
system, and acts in the UnitDelay and Integrator blocks. The
third one, SCO, operates in the interaction among the sub-
systems of a model, swapping the blocks connections among
them or among a main system and possible subsystems.

Table IV presents the worst case scenario, or the max-
imum number of mutants to be generated by each mutant
operator regarding the model property that is being affected,
i.e., input and output ports, blocks or blocks connections
(lines). The VRO mutant operator is the most likely to
produce a larger number of mutants.

Table IV: NUMBER OF GENERATED MUTANTS

M. Op. Worst Case Scenario
TRO (Inputs + Outputs) * Data Types
VCO Lines * 2
VRO Lines * (Lines -1)/2
CCO Constants * 2
CRO Constants * (Constants-1)/2
SSO Switchs * 2
DCO Delays * 3
SCO SSLines * (SSLines -1)/2
BRO Blocks

RORO Relat. Op. * 5
AORO Op. * 2

Op.Inputs + Gain * 2
LROO Logic. Op. * 5

V. TESTING TOOL

TeTooDS (Testing Tool for Dynamic Systems) [2] can
interpret dynamic systems models, interact with simulation
environments such as Scicos or Simulink, and is used to
assist in the test data generation task. It was previously
developed to provide support for the application of func-
tional criteria, specifically the pairwise approach, in dynamic
systems models. This approach ensures that any two possible
values, belonging to two different parameters, will be present
in at least one test data [11].

We have extended TeTooDS to support mutation testing
in dynamic systems models. The first necessary step was the
development of a full-blown parser, that provides the infor-
mation required by the mutant operators to the generation of
mutants of a model. These information include input ports,
input datatypes, blocks, blocks parameters, connections and
output ports. Our parser makes use of the pyparsing module
[17], a flexible approach for creating and executing gram-
mars, against the lex/yacc approach or the use of regular
expressions. The pyparsing module provides a library of
classes that supports building grammars directly into the
Python code.

After parsing a Scicos or Simulink model, which is
accomplished when a testing project is created in TeTooDS,
several options become available to the tester. A possibility
is to select which mutant operator will be used for the
generation of the mutant models.

The tester can also visualize the mutant models inside
TeTooDS: (i) as an image;(ii) as the source code of the
model; or(iii) using TeTooDS to call Scicos/Simulink along
with the mutant model. It is useful for performing an analysis
of equivalent mutant models or to see which mutants are
alive or dead.

Test cases can be added by specifying input files that will
be read by the dynamic system model during its simulation,
together with the specification of which output files should
be read by the testing tool when the simulation finishes.

To run the simulation of the main dynamic system model
and the generated mutants, TeTooDS provides a default

62

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 78 / 612

script that can be used or customized in order that the
parameters values, such as start time, stop time and step
time, can be configured according to the tester needs. After
the simulation finishes, output files are analyzed and the mu-
tation score is updated with the mutants status information.

A. Sample Application

This model represents an electronic regulator which con-
tains a flow regulator, a temperature sensor and a logic
controller. The system has three input ports: temperature,
temperature lower bound and temperature upper bound.
When the temperature is below the lower bound, a valve
is closed, i.e., receives a zero value. When the temperature
is above the high bound, a valve is opened, receiving
a value of 100. When the temperature is between these
limits, the valve aperture is calculated by the expression
(5.0/3.0) ∗ (temperature− low bound) [4].

We used all the defined mutant operators, applying one
mutation at a time, which resulted in 131 generated mutants.
For the execution of the mutants, firstly we selected input
data randomly. For the remaining mutants, in order to
achieve 100% of mutation score, we manually analyzed each
mutant aiming to select a test data that could kill it or
mark it as equivalent. Table V shows the number of mutants
generated by each operator.

Table V: NUMBER OF MUTANTS

Operator Mutants Operator Mutants
TRO 0 DCO 4
VCO 36 SCO 0
VRO 26 BRO 19
CCO 4 RORO 10
CRO 1 AORO 15
SSO 1 LROO 15

The TRO did not return any mutants, as we used a Scicos
model as source and it does not allow the use of several data
types. Mutants also were not generated by the SCO operator,
as the number of inputs of the subsystems of this particular
model are not compatible.

To show the viability of the defined mutant operators, the
second step of our case study was to manually generate the
C code that corresponds to this particular model. We used
Proteum [8] and its 73 mutant operators to generate mutants
for the C code, which resulted in 1473 mutants. By applying
the test set that was selected to achieve 100% of mutation
score in the model, which represents a simulation of the
system that is going to be hardware integrated, we could
achieve 98.1% in the C code.

Our first intention was to use the code that can be
automatically generated by Scicos. Nevertheless, it presents
too many unused variables and other pieces of unexecuted
code, resulting in a large number of equivalent mutants to
be analyzed (up to 100 000 mutants).

We consider that we achieved a high mutation score for
this particular model when applying the test set responsible
for achieving a full coverage of the model (100%) in the
C generated code (98.1%), which encourages the develop-
ment of a thorough experiment, taking into account all the
necessary validity levels. We emphasize that our intentionis
to assess the feasibility of all mutation operators aiming at
possible refinements.

VI. RELATED WORK

The existing literature shows that the mutation criterion
is very effective for revealing faults of traditional programs
and models. Nonetheless, this criterion has not been widely
explored for the context of dynamic systems models.

We are aware of two studies that aim at applying the
mutation testing in dynamic systems models. The first one
is described by Brillout et al. [5]. They developed a method-
ology to assess the correctness of Simulink models by
automating the test data generation activity. Their objective
is to cover the requirements imposed by the mutation testing.
In order to generate and optimize the test data, the approach
focus on model checking techniques. However, the authors
do not clearly present an solution of how to apply the
mutation testing, i.e., which mutant operators should be used
to generate the testing requirements.

The second study is the one of Zhan and Clark [21]. De-
spite introducing a testing framework for Simulink models
and focusing on the mutation testing, the approach presents
a few limitations. The authors make use of a random test
data generator and try to improve the test set by the use of
dynamic analysis and simulated annealing methods, in order
to satisfy the constraints imposed by their mutant operators.
We consider as a drawback of their approach the low number
of defined mutant operators, i.e.,add, multiplyand assign.
In our approach, we have tried to overcome such issue by
performing a systematic analysis of a dynamic system model
in order to define a complete set of mutant operators for this
context, that includes the ones defined by Zhan and Clark.

VII. F INAL REMARKS AND FUTURE WORK

We address the testing of Simulink and Scicos models.
Dealing with these models entails properly concerning their
domain specific language, which is geared towards code
generation, and also present specific features, as temporal
and combinatorial characteristics.

The employment of the HAZOP study to derive mutant
operators for a particular type of system can produce differ-
ent syntactic variations, which can assist in finding possible
faults of a system. In this paper we presented the solutions
that the authors consider appropriate for dynamic systems
models.

One of the advantages of the HAZOP study is that the
set of mutant operators can be more complete than those

63

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 79 / 612

generated based only on the experience of faults of a
developer, since the language constructs are analyzed.

Future work also includes the definition of a method for
the automatic generation of test data for dynamic systems
models, that aims at satisfying the mutation test require-
ments. Longer term future work includes the conclusion
of an integrated testing environment that can assist in the
automation of the testing activity for dynamic systems
models.

VIII. A CKNOWLEDGMENT

The authors would like to thank the financial support pro-
vided by CNPq (grant number 141976/2008-0). We are also
thankful to Vinicius Durelli, who proofread and commented
on drafts of this paper.

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In27th ICSE, pages
402–411. ACM Press, 2005.

[2] R. F. Araujo and M. E. Delamaro. TeTooDS - Testing Tool
for Dynamic Systems. InTools Session – Brazilian Software
Engineering Symposium, Brazil, 2008. SBC.

[3] J. S. Arendt and D. K. Lorenzo.Evaluating Process Safety
in the Chemical Industry. A user guide to quantitative risk
analysis. AIChE, second edition, 2000.

[4] M. Blackburn, R. Busser, and A. Nauman. Why model-based
test automation is different and what you should know to get
started. InInternational Conference of Practical Soft. Quality
and Testing. SPC, 2004.

[5] A. Brillout, M. He, Nannan afend Mazzucchi, D. Kroening,
M. Purandare, P. Rümmer, and G. Weissenbacher. Mutation-
based test case generation for simulink models. InProceed-
ings of the 8th international conference on Formal meth-
ods for components and objects, FMCO’09, pages 208–227,
Berlin, Heidelberg, 2010. Springer-Verlag.

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive
Systems, Advanced Lectures, volume 3472 ofLecture Notes
in Computer Science. Springer-Verlag, 2005.

[7] A. Chapoutot and M. Martel. Abstract simulation: A static
analysis of simulink models. InICESS ’09: Proceedings of the
2009 International Conference on Embedded Software and
Systems, pages 83–92, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] M. E. Delamaro and J. C. Maldonado. Proteum – a tool for the
assessment of test adequacy for c programs. InProceedings
of the Conference on Performability in Computing Systems
(PCS 96), pages 79–95, 1996.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection help for the practicing programmer.IEEE
Computer, 11(4):34–41, Apr. 1978.

[10] F. Ferrari, J. Maldonado, and A. Rashid. Mutation testing for
aspect-oriented programs. InSoftware Testing, Verification,
and Validation, pages 52 –61, april 2008.

[11] M. Grindal, J. Offutt, and S. F. Andler. Combination testing
strategies - a survey. Software Testing, Verification and
Reliability, 15(3):167–199, 2005.

[12] INRIA Rocquencourt. Scicos, 2011. Available at
http://www.scicos.org.

[13] S. Kim, J. A. Clark, and J. A. McDermid. The rigorous gener-
ation of java mutation operators using hazop. InProceedings

of the 12th International Conference on Software and Systems
Engineering and their Applications (ICSSEA’99), 1999.

[14] T. Kletz. Hazop and Hazan: Identifying and Assessing
Process Industry Hazards. CRC Press, fourth edition, 1999.

[15] G. A. Korn. Advanced Dynamic-system Simulation: Model-
replication Techniques and Monte Carlo Simulation. Wiley-
Interscience, 2007.

[16] A. Mathur. Foundations of Software Testing. Pearson
Education, 2008.

[17] P. McGuire. Pyparsing, 2011m. Available at
http://pyparsing.wikispaces.com.

[18] B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for translating
Simulink models into input language of a model checker. In
Z. Liu and J. He, editors,ICFEM, volume 4260 ofLNCS,
pages 606–620. Springer, 2006.

[19] W. Perry.Effective methods for software testing, third edition.
John Wiley & Sons, Inc., 2006.

[20] The Mathworks Inc. MATLAB and Simulink, 2011. Available
at http://www.mathworks.com.

[21] Y. Zhan and J. A. Clark. A search-based framework for
automatic testing of matlab/simulink models.Journal of
Systems and Software, 81(2):262–285, 2008.

64

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 80 / 612

A Static Robustness Grid Using MISRA C2

Language Rules

Mohammad Abdallah

School of Engineering and

Computing Sciences

Durham University

Durham, UK

m.m.a.abdallah@dur.ac.uk

Malcolm Munro

School of Engineering and

Computing Sciences

Durham University

Durham, UK

malcolm.munro@dur.ac.uk

Keith Gallagher

Department of Computer Sciences

Florida Institute of Technology

Florida, USA

kgallagher@fit.edu

Abstract—Program robustness is the ability of software to

behave correctly under stress. Measuring program

robustness allows programmers to find the program’s

vulnerable points, repair them, and avoid similar mistakes

in the future. In this paper, a Robustness Grid will be

introduced as a program robustness measuring technique. A

Robustness Grid is a table that contains rules classified into

categories, with respect to a program’s function names and

calculates robustness degree. The Motor Industry Software

Reliability Association (MISRA) rules will be used as the

basis for the robustness measurement mechanism. In the

Robustness Grid, for every MISRA rule a score will be given

to a function every time it satisfies or breaches a rule. The

Robustness Grid shows how much each part of the program

is robust, and assists developers to measure and evaluate

robustness degree for each part of a program.

Keywords-Robustness; Robustness Grid; MISRA C2.

I. INTRODUCTION

Robustness is required in critical programs where
failures could cause problems [1]. Robustness is an
important factor in any program development process.
The IEEE defines robustness as “The degree to which a
system or component can function correctly in the
presence of invalid inputs or stressful environmental
conditions” [2].

In this definition, there are three main aspects; the
correct program response, the input data, and system
environment. Program response means that the system
should respond rationally [3], but not necessarily correctly.
It should not fail to reply or react illogically. The input
data is one of the factors that affect the robustness of the
program. A robust program can continue to operate
correctly despite the introduction of invalid input [4].

The environment where the program is run is contained
in hardware, other software systems, and the humans that
run the program. These factors also affect the program
robustness. It is this aspect of robustness that this study is
concerned with.

Static measures of software robustness complement
robustness testing. Robustness testing is a “testing

methodology to detect vulnerabilities of a component
under unexpected inputs or in a stressful environment.” [5]

The objective is to evaluate the robustness features of
imperative programs from the perspective of programmers
and maintainers. Thus it will give an assessment of the
program vulnerabilities, in order to help improve and
certify the robustness of existing programs.

The Robustness Grid is developed as a measurement
tool and is a numeric representation of the robustness
degree for each function, and for the program in total. The
Robustness Grid certifies C program robustness through
applications of MISRA C2 guidelines.

There are different standards that the programmers are
advised to follow during writing a C program to produce a
robust program. However, these standards are not widely
used to measure the program robustness after the program
has been written.

This study will contribute a Robustness Grid using a
number of robust features. The MISRA C2 language rules
will be used as a measurement of the robustness features.
The Robustness Grid will provide the robustness degree
for the program, and each function it includes, as a
numeric value. Thus the Robustness Degree will show the
degree of satisfaction that a program has according
standards of robustness.

In section 2, MISRA C language rules are presented.

Section 3 overviews the existing research in Robustness

Grid technique. In Section 4 the Robustness Grid

Calculations concepts are listed. Section 5 presents the

related work in Robustness measurement. Finally, in

Conclusions future research is highlighted.

II. MISRA C2

The Motor Industry Software Reliability Association
(MISRA) has published a standard set of rules for C and
C++ “to provide assistance to the automotive industry in
the application and creation within vehicle systems of safe
and reliable software” [6]. MISRA C 1998 rules (“MISRA
C1”) where published in 1998 and were followed by
technical clarification document in 2000. In 2004, MISRA
published a second version of MISRA C rules (MISRA
C2) to address some technical and logical problems, and
for further technical clarification. In MISRA C2 the rules

65

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 81 / 612

are rephrased to be more sensible, accurate and
comprehensive.

MISRA C2 rules are classified into two types:
Required (122 rules) and Advisory (20 rules). Required
rules are obligatory and must be followed by developers to
create safe programs. Advisory rules are necessary but not
as important as the Required rules; however a developer
should follow the advisories in order to build a safe
program. In addition, MISRA C2 has 21 categories that
consider different programming processes, coding styles,
and programming syntax.

The MISRA categories cover all C language common
programming issues. The MISRA categories start with
Environment category, which describes the optimum
environment for C programs. Then Language extensions
category, where it has headlines for writing comments
through programming. Documentation category contains
general rules for documentation process.

The syntax format concerns, problems and advice is
covered and discussed in the rest of the categories. An
example of a MISRA C2 rule is rule 8.1:

Rule 8.1 (required) Functions shall have prototype
declarations and the prototype shall be visible at both
the function definition and call. [4]

“X.y” is the MISRA rule numbering method and
means this is rule 1 (“y”) in category 8 (“X”) (Declarations
and definitions). “required” means it the rule is an
obligatory rule.

III. ROBUSTNESS GRID

Measuring software robustness needs to examine
features in order to produce a relative scale that calculates
the robustness degree for functions, and the entire
program.

A. Robustness Features and Robustness Degree

Before discussing the Robustness Grid, some terms
should be clarified: Robustness Features and Robustness
Degree.

Robustness Features are characteristics that affect
software robustness, such as code syntax [7]. Robustness
Features in this study are divided into two groups
depending on their source. Robustness Language Features
certify the robustness degree of code syntax and coding
style. Second, User Functional Requirements features
certify the robustness degree of the service that program
provides, how it reacts to input, and how the system
responds [8].

Robustness Degree is a scale of a program robustness
features satisfaction, expressed as a percentage.

MISRA C rules are divided to several Categories as
described in following section. These categories will be
used to create the Robustness Grid.

B. Robustness Grid

The Robustness Grid is a table showing the robustness

degree of every function in a program and for the entire

program. Then the robustness features satisfaction

percentage will be calculated cumulatively in each

category, function, and whole program. The values

highlight the vulnerable points (low percentage score) of

the functions and program. TABLE II shows an example

of the Robustness Grid. Each category in the Robustness

Grid is independent, so a function could score a high

marks in one category and score low marks in another.
The Robustness Grid has two parts: the static part

which contains the MISRA C2 rules; here, there is no need
to understand the code functionality because only the
program code will be certified. The second part is the
dynamic part, which contains User Functional
Requirements. In this paper, only the static part will be
discussed.

1) Rules selection method and conditions:
In this study, some assumptions and conditions are

applied to programs to be certified by the Robustness Grid:
1. The program must be compileable by a compiler

that satisfies the MISRA C2 environment rules.
2. Programs should satisfy MISRA C2 rules number

1.1 and 14.2 which means the program must satisfy
the ISO Standards [9].

The total number of MISRA C2 rules, after applying
Robustness Grid assumptions and conditions is 100 in 6
Categories.

2) Rule categorization method:
The Robustness Grid (TABLE II) is a table that

classifies MISRA C2 rules into 6 different Categories;
each Category has a set of related rules:

TABLE I. ROBUSTNESS CATEGORY CONSTRUCTIONS

Category Constructs

0
The rules that considers type definition,
arithmetic statements.

1
Rules that consider control statements (if, for,
while …etc).

2 The rules that consider function structure.

3
The rules that consider arrays, pointers, and
data structure (union, struct, enum …).

4
The rule that consider header files and the
pre-processor

5 All MISRA C2 advisory rules.

If a rule is in more than one Category, it will be

classified under the highest Category. If a single line of
code is considered by more than one Category, it will be
certified against each Category, individually.

IV. ROBUSTNESS GRID CALCULATIONS

Certifying program robustness using the Robustness
Grid uses the following procedure:

1. The program must be able to be compiled by the
gcc compiler.

2. Pre-processor code lines are considered as part of
the function main, unless it related to a particular
function.

66

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 82 / 612

3. Rules which are not applicable for all functions in a
program are removed from Robustness Grid in
order to save space.

After the rules have been selected, and program
eligibility is satisfied, the Robustness Grid is built for the
program. In the Robustness Grid, the calculations that
measure the Robustness Degree for the functions and for
the program is novel and introduced here for the first time.

 The Robustness Grid building process is as follows:
1. Each statement in the program is assessed against

all the selected MISRA C2 rules.
2. All selected rules will be put in their categories

depending on the categorisation method defined
above.

3. Each rule has the applied status next to it,
showing whether it is satisfied (+), violated (-), or
not applicable (0).

4. Program Statements will be grouped by their
function.

5. For each function the status of all rules is listed.
6. The Robustness Grid calculations are made for

each function (FACS), category (ACD), and for
the entire program (WPCS).

The SwapAdd.c program is a simple example program
that will be used to illustrate how the Robustness Grid is
applied. The SwapAdd.c program, shown in Fig 1, is a C
program with three functions, main, swap, and incr. The
swap function exchanges two pointers and incr function
increments its first parameter by the value in its second
parameter, and main calls both functions.

In program SwapAdd.c, incr, swap, and main are the
program functions. In the Robustness Grid the numbers
under each function are the rule states; a positive number
(+n) means the rule has been satisfied n times in the
function. Negative numbers (-n) means the rule has been
broken n times in the function. Zero means the rule is not
applicable to the code.

The robustness degree can be calculated as follows:
1. Function Category Satisfaction (FCS): For Category

n the number of times a rule has been satisfies divided
by the number of times the rule has been applied,
expressed as percentage.

2. Program All Categories Satisfaction (PACS): For
Category n, a count of all the times a rule has been
satisfied for all the program’s functions divided by the
number of times the rule has been applied in all
program functions, expressed as percentage.

3. All Categories (between 0 and n) Accumulative
Robustness Degree (ACD): Number of times rules are
satisfied in categories (0 - n) divided by number of
times rules are applied in categories (0 - n), expressed
as percentage.

4. Function All Categories Satisfaction (FACS):
Number of times rules are satisfied in all categories
divided by number of times rules are applied in all
categories, expressed as percentage.

5. Whole Program Categories Satisfaction (WPCS):
For all program functions: Count of all times rules

been satisfied divided by all times that rules been
applicable as a percentage.

Figure 1. SwapAdd.c Program

The result of analysis as shown is TABLE II shows

that the SwapAdd.c program satisfied the robustness
features by 75.5%. To improve the robustness of the
program the category 5 rules should be examined because
they have the smallest PACS ratings. It also shows that
swap should be examined because has the smallest FCS
value.

This static Robustness Grid is still produced manually,
which is a limitation of this study. The automation for the
Grid will be done by using the semantic part of C
language.

V. RELATED WORK

Critical programs must be robust to avoid the problems

that could be caused by failures [10]. The C Language

standards were introduced to avoid the code

misinterpretation, misuse, or misunderstanding. The IEEE

has the ISO/IEC 9899:1999 standard [9], which is used

later by MISRA to produce MISRA C1 and C2. This in

turn led to Jones producing “The New C Standard: An

Economic and Cultural Commentary” [10]. The LDRA

Company uses MISRA C rules in addition to 800 rules

that it created to assess programs [11]. Other C standards

such as “C programming language Coding guideline” [12]

are less frequently used.

#include <stdio.h>

#define LAST 10

void incr(int *num, int i);

void swap(int *a, int *b);

int main(){

 int i, sum = 0, *a = 12,*b = 13;

 for (i = 1; i <= LAST; i++) {

 incr(&sum, i);}

 printf("sum = %d\n", sum);

 swap (&a,&b);

 return 0;

}

void incr(int *num, int i) {

 *num = *num + i;

}

void swap(int *a, int *b) {

 int temp= *a;

 *a= *b;

 *b= temp;

 printf ("pointer a is:%d\n",*a);

 printf ("pointer b is:%d\n",*b);}

67

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 83 / 612

Measuring the application of language standard to a
program is one program robustness measurement
technique. Several techniques have been tried to measure
program robustness. Software measurement means
estimates the cost, determine the quality, or predict the
maintainability [13]. Arup and Daniel [14] presented
features such as portability to evaluate some existing
benchmarks of Unix systems. As a result they built a
hierarchy structured benchmark to identify robustness
issues that have not been detected before. Behdis and
Shokat [15] introduced a theoretical foundation for a
robust matrices that reduce the uncertainty in distributed
system. Arne et al. [16] used some robustness criteria such
as input date rate, and CPU clock rate to create a multi-
dimensional robustness matrices and use them to measure
the robustness of a system.

A Robustness Hierarchy is a relative scale to find the
robustness characteristics that needs to be added to
programs. A Robustness Hierarchy is a technique used to
build a robust program. The Hierarchy starts with non-
robust program as first step then adds robust features
before reaching a robust program in the highest level of
the Hierarchy [7].

All the previous software measurement techniques do
not give the developer a fully detailed set of
measurements. Nor do they specify the parts of the
program that need to be modified to raise its quality. Thus
the focus of this study is to give the programmer a full
description for all the robustness features and the degrees
to which they are satisfied.

The Robustness Grid allows the developer to specify
the code lines that need to be modified to improve the
program Robustness Degree.

VI. CONCLUSION AND FUTURE WORK
A Robustness Grid has been defined and it has been

shown how it can work as an assessment tool. This means
that every function in a program can be certified using
MISRA C2 rules through the calculation of a robustness
degree.

The Robustness Degree show the MISRA C2 rules that
have been followed and satisfied by the program and the
rules that have been violated. The Robustness Degree
gives an indication as to where the developer or maintainer
should do some code changes to improve the robustness of
the program.

The calculation of the Robustness Degree can be
considered as simplistic in that is based on percentages of
rules that are passed or failed. It does not fall into the trap
of allowing positive and negative values to cancel each
other out. All rules are treated with the same weight. It is

clear that for any particular program this is not necessarily
so. In the future work, a dynamic robustness features will
be introduced to make the measurement more accurate and
reliable by giving weights to the important statements in
the program. Thus in the Robustness Grid, each static rule
will be weighted by the Dynamic rules to highlight the
different level of importance of the static rules.

REFERECES

[1] G.M. Weinberg, Kill That Code!, Infosystems, 1983, pp. 48-

49.

[2] IEEE, IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std 610.12-1990, IEEE Computer Soc, 1990.

[3] S.D. Gribble, Robustness in complex systems, Proceedings of

the Eighth Workshop on Hot Topics in Operating Systems, 2001,

pp. 21-26.

[4] L.L. Pullum, Software fault tolerance techniques and

implementation, Artech House, Inc., 2001.

[5] L. Bin, L. Xuandong, L. Zhiming, M. Charles, and S. Volker,

Robustness testing for software components, Elsevier North-

Holland, Inc., 2009, pp. 879-897.

[6] M.I.S.R. Association, MISRA website, last access <retrieved:

7, 2011>.

[7] M. Abdallah, M. Munro, and K. Gallagher, Certifying

software robustness using program slicing, 2010 IEEE

International Conference on Software Maintenance, Timisoara,

Romania, 2010, pp. 1-2.

[8] I. Sommerville, Software Engineering, Addison-Wesley,

2006.

[9] ISO/IEC, International Standard ISO/IEC 9899, International

Organaization for Standardization, 1999.

[10] D.M. Jones, The New C Standard: A Cultural and Economic

Commentary, Addison-Wesley Professional, 2003.

[11] LDRA, LDRA Test Suite, last access <retrieved: 7, 2011>.

[12] E. Laroche, C programming language coding guidelines, last

access <retrieved: 7, 2011>.

[13] N.E. Fenton, and S.L. Pfleeger, Software Metrics, A

Rigorous and Practical Approach, PWS Publishing Company,

1997.

[14] A. Mukherjee, and D.P. Siewiorek, Measuring Software

Dependability by Robustness Benchmarking. IEEE Transactions

of Software Engineering 23 (1994) 94-148.

[15] B. Eslamnour, and S. Ali, Measuring robustness of

computing systems. Simulation Modelling Practice and Theory

17 (2009) 1457-1467.

[16] A. Hamann, R. Racu, and R. Ernst, Methods for multi-

dimensional robustness optimization in complex embedded

systems, Proceedings of the 7th ACM & IEEE international

conference on Embedded software, ACM, Salzburg, Austria,

2007, pp. 104-113.

68

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 84 / 612

TABLE II. SWAPADD.C ROBUSTNESS DEGREE

 Category C2 Rules incr FCS% swap FCS% main FCS% PACS%

Category 0

4.1& 7.1 0
3/3
=

100%

+2
5/7
=

71.4%

+1
6/8
=

75%

14/18
=

77.8%

4.2 +2 +2 +4

5.1 +1 +1 +1

5.2 0 -2 -2

Category 1

12.2 +1

4/5
=

80%

0

5/5
=

100%

-1

8/11
=

72.7%

17/21
=

81%

13.1 +1 +3 +4

13.4 0 0 +1

13.5 0 0 -2

13.6 0 0 +1

14.7 +1 +1 +1

17.1 -1 0 0

17.5 +1 +1 +1

ACD (0 – 1) 87.5% 83.3% 73.7% 79.5%

Category 2

8.1 +1

10/12
=

83.3%

+1

8/13
=

61.5%

0

9/12
=

75%

27/37
=

73%

8.2 +1 +1 +1

8.3 +1 +1 +1

8.6 +1 +1 +1

8.11 -1 -1 -2

14.8 0 0 +1

16.1 +1 +1/-2 +3

16.2 +1 0 0

16.3 +2 +2 0

16.4 +1/-1 -2 0

16.5 0 0 -1

16.8 0 0 +1

16.9 +1 +1 +1

ACD (0 – 2) 85% 72% 74.2% 76.3%

Category 3 16.7 +1 100% +2 100% 0 0 100%

ACD (0 – 3) 85.7% 74.1% 74.2% 77.2%

Category 4

19.6 0
2/2
=

100%

0
2/2
=

100%

+1
4/4
=

100%

8/8
=

100%

20.1 +1 +1 +1

20.2 +1 +1 +1

20.9 0 0 +1

ACD (0 – 4) 87 75.9 77.1 79.3

Category 5

5.7 -1
1/2
=

50%

-2
1/3
=

33.3%

-3
3/6
=

50%

5/11
=

45.5%

19.1 0 0 +1

19.2 0 0 +1

19.7 +1 +1 +1

FACS 84% 71.9% 73.2%
WPCS
75.5%

69

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 85 / 612

A Specifications-Based Mutation Engine for Testing Programs in C#

Andreas S. Andreou
Department of Electrical Engineering and Information

Technology,

Cyprus University of Technology

Limassol, Cyprus

email: andreas.andreou@cut.ac.cy

Pantelis Stylianos Yiasemis

Department of Electrical Engineering and Information

Technology,

Cyprus University of Technology

Limassol, Cyprus

e-mail: pm.yiasemis@edu.cut.ac.cy

Abstract—This paper presents a simple and efficient engine

which produces mutations of source code written in C#. The

novelty of this engine is that it produces mutations that do not

contradict with the specifications of the program. The latter are

described by a set of pre- and post-conditions and invariants.

The engine comprises two parts, a static analysis and syntactic

verification component and a mutation generation component.

Preliminary experiments showed that the proposed engine is

more efficient than a simple mutations generator in terms of

producing only valid mutations according to the specifications

posed, thus saving time and effort during testing activities.

Keywords-mutation testing; mutation engine; specifications;

I. INTRODUCTION

Technology advancements nowadays lead to the
automation of a large number of activities within the software
development process. The exploitation of computing power
drives the need for producing better, faster and more reliable
software systems. Nevertheless, the aforementioned targets
increase software complexity and size, making this need hard
to be satisfied. The competition in the software development
market pushes companies to increase their productivity,
developing software in tighter time limits usually sacrificing
the quality of the resulting software.

One of the most significant reasons for the inadequate
quality control in software development is the lack of efficient
software testing. The latter is a way for verifying the
correctness and appropriateness of a software system, or,
alternatively, for ensuring that a program meets its
specifications ([1], [2]). Software testing is not a simple
process; on the contrary, it consumes a large percentage of the
time and budget of the whole development process. In some
cases it even surpasses the time needed for the creation of the
software product. Its main purpose is to reveal and locate
faults so as to assist developers improving the functional
behavior of the system under development.

Software testing consists of two main processes, the
identification of faults (testing) and their correction
(debugging). Indentifying faults is the most time consuming
process as it can take up to 95% of the time of software
testing. Having this in mind, we can safely conclude that there
will be a constant need to develop tools that will assist in
accelerating and automating the testing process, guiding
developers to locate and debug faults faster and more
efficiently.

The aim of the present paper is to introduce a mutation
engine for source code written in C#, which is the basic
element of a novel mutation testing technique that takes into
consideration the specifications of the program for creating
only valid mutants. The engine is implemented in Visual
Studio 2010 and consists of two components: The first offers
the ability to validate the grammatical correctness of the
source code and provides a form of statistical analysis for
exporting useful information that can be used to
process/modify the source code. The second involves the
production of mutations of the original source code and
facilitates the identification of faults, as well as the assessment
of the quality of test data.

The rest of the paper is structured as follows: Section II
describes briefly the basic concepts that form the necessary
technical background of this work. Section III presents the
mutation engine, its architecture and key elements ruling the
generation of mutations, as along with a brief demonstration
of the supporting software tool. Section IV describes a set of
preliminary experiments and the corresponding results that
indicate the correctness and efficiency of the proposed
approach. Finally, Section V concludes the paper and suggests
some steps for future work.

II. TECHNICAL BACKGROUND

According to McMinn [3], three different kinds of
software testing techniques exist. These are White Box
Testing (WBT), Black Box Testing (BBT) and the mixing of
the two called Gray Box Testing (GBT). Each of these three
techniques offers its own advantages and disadvantages,
differing on the way test cases are created and executed. In
BBT the test cases are created based on the functions and
specifications of the system under testing without the need for
actual knowledge of the source code. WBT requires that the
tester needs to have full access to the source code and know
exactly the way it works. Advantages of this method are that it
can locate coincidental correctness, this is the case where the
final result is correct but the way it is calculated is not.
Moreover, all possible paths of code execution may
potentially be tested offering the ability to identify errors
or/and locate parts of dead code, that is, parts that are never
executed.

Different techniques have been proposed for WBT making
use of the structure of the source code or the sequence of
execution, giving birth to static code analysis and testing for
the former and dynamic testing for the latter. We concentrate
on dynamic testing where the actual flow of execution drives

70

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 86 / 612

test data production. One such technique that has gain serious
interest among the research community is Mutation Testing
(MT).

MT is a relatively new technique introduced by DeMillo et
al. [4] and Hamlet [5], which is based on performing
replacements in code statements through certain operators that
correspond to specific types of errors, producing the so-called
mutant programs; the latter are then used to assist in
producing or/and assessing the quality of test data as regards
revealing the errors in the mutants [6].

The general idea behind MT is that the faults being
injected correspond to common errors made by programmers.
This means that the mutants are slightly altered versions of
programs which are very close to their correct form. Each
fault is actually a single change of the initial version of the
program, pretty much the same as a slight change (mutation)
in living species causing a different form of life. The quality
of a produced set of test cases is assessed by executing all the
mutants and checking whether the injected faults have been
detected by the set or not.

There are quite a few ways to represent code and provide
the means for better understanding and management of the
source code. Most of them use graphs or/and binary trees that
are able to depict graphically how the program actually works.
The Control Flow Graph (CFG) is one such way of
graphically representing the possible execution paths. Each of
its nodes usually corresponds to a single line of code, while
the arcs connecting nodes represent the flow of execution.
CFG may be used as the cornerstone of static analysis, where
its construction and traversing offers the ability to identify and
store information about the type of statements present in the
source code and the details concerning the alternative courses
of execution. A fine example is the BPAS framework
introduced by Sofokleous and Andreou [7] for automatically
testing Java programs. More to that, CFG may drive the
generation of test data by providing the means to construct an
objective function for optimization algorithms to satisfy (e.g.
by evolution, like Michael et al. [8]).

During the last years the Visual Studio (VS) platform [9]
has been constantly evolving becoming one of the most wide
spread platforms used today in the software industry. This is
partly due to the fact that it provides to developers the ability
to create a number of different types of applications, like
window-apps, web-apps, services, classes etc. The wide
acceptance of VS has driven the development of a number of
third party tools and plug-ins that enhance the platform with
even more functionality, making development of special-
purpose applications simpler and easier. The aforementioned
advantages of VS2010 led us to investigate its use for
software testing, and more specifically for developing a new
mutation testing tool.

Code Contracts (CC) are offered by VS2010 as the means
to encode specifications [10]. CC may consist of pre-
conditions, post-conditions and invariants. Their aim is to
improve the testing process during runtime checking and
static contract verification, as well as to assist in
documentation generation.

The mutation engine introduced in this paper is partly
based on the aforementioned concepts. More specifically, it

utilizes CFG and static analysis as in [7] to extract the
information needed for analyzing and describing adequately
the source code under investigation. Moreover, it employs CC
to embed the specifications required so that the program
functions properly and static analysis (contract verification) in
order to guide the production of meaningful mutant programs,
that is, programs that do not violate their original
specifications. The engine targets at offering the means for
automatic, time-preserving software testing.

III. MUTATION ENGINE

A. Architecture

As previously mentioned, the mutation engine was
implemented in the VS2010 platform. The selection of
VS2010 was made partly because it is a relatively newly
introduced platform, meaning that the components developed
may be used as a backbone for future tools and studies based
on this platform, without facing any incompatibility issues
compared to the use of older platforms. Also, to the best of
our knowledge, at present no other such system exists. The
engine was specifically designed to work with the C#
programming language, but with minor changes and additions
the support of the rest of the programming languages VS2010
platform offers may be enabled as well.

Figure 1. The mutation engine architecture

The architecture of the proposed mutation engine is
depicted graphically in Figure 1 where three major
components enable the execution of the engine‟s stages. The
first is a source code validation component, which compiles
the source code and presents the erroneous lines in code if
such exist. This component takes as input a source code file
(.cs), or an executable file (.exe), or a dynamic link library file
(.dll), as well as the project file (.csproj). The project file is
needed to provide the component with information for
references in libraries and files that the source code must use
and are part of the program. Validation includes compiling the
source code and making sure that no syntactic or other
compilation errors exist so as to proceed with the second stage
of the engine which is the production of mutations. Otherwise
the engine terminates.

Project File

Source

Code

Validate

Source File

Pass

Parser

Visitor Information Lists

AST

Mutation Operands

Mutation

Programs

Analyzer

Exit

Fail

71

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 87 / 612

The second component performs statistical analysis of the
source code without the need of an executable form of the
program under testing. By statistical analysis we mean
exporting the useful information from the source code as
regards the structure of the program. This component takes as
input the source code file and uses the class
AbstractSourceTree (AST) of SharpDevelop [11] to model the
abstract syntax tree of the code. While compiling a source
code file, a binary tree is created, each node of which
represents a line of code. Traversing this binary tree, once the
tree is completed, offers access to any part of the source code.

Analyzing the statistical component described above we
can see that it consists of two sub-components, the Parser and
the Visitor. The Parser analyses the source code and creates
the AST as mentioned earlier. After it finishes, the Visitor
passes through the tree collecting useful information, while
giving the opportunity to the user to make changes and
additions to the information stored. The implementation of the
Visitor utilized the AbstractAstVisitor class of SharpDevelop,
with some minor additions to help accessing all the nodes of
the AST, both at the high and the low level characteristics of
the programming language. The Visitor recursively visits each
node and stores in stack-form lists all the information
identified according to the node‟s type. In the experiments
described in the next section thirteen such lists were created;
nevertheless, the way the Visitor is structured enables the
addition of any new lists or the modification of existing ones
in a quite easy and straightforward manner.

The third and final component is actually the heart of the
mutations production. This component analyses the
information stored in the lists created by the Visitor so as to
identify the structure and content of the source code, and
creates mutated programs by applying a number of predefined
operators to the initial program. These mutators are
responsible for creating a number of different variations of the
initial source code based on the rules each of them represents
without breaching the grammatical correctness of the resulting
program.

Mutations are performed at the method level via operators
that are usually of arithmetic, relational, logical form, and at
the class level with operators applied to a class or a number of
classes and usually refer to changing calls to methods or
changing the access modifiers of the class characteristics
(public, private, friendly etc.). The operators supported by the
proposed mutation engine are the following:

Arithmetic

 AORBA – arithmetic operations replacement (binary,

assignment)

 AORS – arithmetic operations replacement (shortcut)

 AOIS – arithmetic operations insertion (shortcut)

 AOIU – arithmetic operations insertion (unary)

 AOIA – arithmetic operations insertion (assignment)

 AODS – arithmetic operations deletion (shortcut)

 AODU – arithmetic operations deletion (unary)

 AODA – arithmetic operations deletion (assignment)

Relational

 ROR – relational operations replacement

Conditional

 COR – conditional operations replacement

 COI – conditional operations insertion

 COD – conditional operations deletion

Logical

 LOR – logical operations replacement

 LOI – logical operations insertion

 LOIA – logical operations insertion (assignment)

 LOD – logical operations deletion

 LODA – logical operations deletion (assignment)

Shift

 SOR – shift operations replacement

 SOIA – shift operations insertion (assignment)

 SODA – shift operations deletion (assignment)

Replacement

 PR – parameter replacement

 LVR – local variable replacement

B. Specification-Based Mutations

The number of possible mutated programs for a certain
case-study may be quite large depending on the type and
number of statements in the source code. Therefore, when
testing is based on mutations processing time may
substantially increase as it is proportional to the number of
mutants processed. This is a significant problem that may
hinder the use of mutation testing in certain cases. Thus, there
is a need to minimize mutation testing execution time. This is
feasible taking into account the fact that a considerable
number of useless mutations may be observed as the changes
made to the code correspond to invalid forms of executions
for that particular program as these are determined by the
program‟s specifications. Therefore, we need to take these
specifications into consideration when producing the mutants.
This is exactly what we do via the Code Contracts supported
in VS2010. Additionally, this feature is enhanced by ruling
out mutation cases that have syntactical errors and are
practically of no use.

The following example demonstrates how mutations are
driven by the specifications inserted via CC, where class Test
includes methods Foo and Goo and uses CC to express two
pre-conditions (denoted by Contact.Requires) and one post-
condition (denoted by Contact.Ensures):

public class Test {

 private int Foo(int a, int b) {

 Contract.Requires(a > b);

 Contract.Requires(b > 0);

 Contract.Ensures(Contract.Result<int>()>0);

 …

 return (a / b);

 } …

 private void Goo() {

 int x, y;

….

 x = y + 10;

 int result = Foo (x , y) }

In Goo the assignment of x affects the values with which

Foo is called. The first pre-condition requires that x>y. The

72

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 88 / 612

engine normally would perform operation replacement

substituting „+‟ with „-‟, „/‟, „%‟ and „*‟. Due to the pre-

condition the engine will drop the first three replacements and

use only the last one as it is the only replacement that will still

satisfy the pre-condition. The same applies for b>0, where

any arithmetic replacement should not set b equal or less than

zero. Therefore, a sort of “thinking” before producing a

certain mutation is implemented in the engine which enables

the production only of valid mutants thus ensuring that the

minimum possible time and effort will be spent in the

subsequent analysis and testing activities.

C. The software tool

A dedicated software tool was developed to support the
whole process. An example scenario is given below to
demonstrate its operation: A source code file and the project
file of the program tested are given as input to the system. The
project file and all the references to other files or libraries are
automatically located and linked, and the source code file is
compiled through the validation component. In the case of
compilation errors a pop up window is presented to the user
with the corresponding information (Figure 2) and the process
is terminated. If there are just warnings, the user is again
informed, but the system now continues to the next step.
Statistical Analysis of the source code is executed next
resulting the creation of the AST. The visitor component then
passes through the binary tree and creates the lists that store
the information found in the source code. Lastly, the third
component takes as input the lists created earlier by the visitor
and a set of selected mutators, applies these operators and
returns the resulting mutated programs (Figure 3).

Figure 2. Execution : Errors in compilation

Figure 3. Execution : Mutations successfully produced

IV. EXPERIMENTAL RESULTS

A series of preliminary experiments was conducted to
assess the correctness and efficiency of the proposed testing
approach. The aim here was twofold: First, to demonstrate
that the proposed engine works as it is supposed to, that is, it
is able to produce correctly a number of mutations to be used
for testing by performing atomic changes to the source code in
hand according to a selected operator. Second, to assess
whether the incorporation of specifications in the way
mutations are produced indeed improves its performance by
allowing only certain types of mutations to be executed and
thus bounding the computational burden for revealing faults.

The first experiment is involved with assessing the quality
(adequacy) of test cases to identify faults in a benchmark
program via the use of the proposed approach. The second
deals with fault detection using two sample programs with
injected faults and producing mutants for detecting those
faults. The final experiment compares the number of
mutations produced with a standard mutation process to that
of a specifications-driven production so as to assess the
improvement in time performance. The experiments are
analyzed below:

A. Test-Data Quality Assessment

This experiment used as benchmark the well-known triangle

classification program listed below, which was tested against

certain test data presented in Table I.

int triang(int i, int j, int k) {

 if ((i <= 0) || (j <= 0) || (k <= 0))

 return 4;

 int tri = 0;

 if (i==j) tri+=1;

 if (i==k) tri+=2;

 if (j==k) tri+=3;

 if (tri==0) {

 if ((i+j==k) || (j+k<=i) || (i+k<=j))

tri=4;

 else tri=1;}

 else {

 if (tri>3) tri=3;

 else {

73

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 89 / 612

 if ((tri==1) && (i+j>k)) tri=2;

 else {

 if ((tri==2) && (i+k>j)) tri=2;

 else {

 if ((tri==3) && (j+k>i)) tri = 2;

 else tri = 4; } } } }

 return tri; } }

TABLE I. TEST DATA THAT COVER ALL POSSIBLE OUTPUTS OF THE

TRIANGLE CLASSIFICATION PROGRAM (TCP)

i j k Result

2 2 2 equilateral

0 1 2 not a triangle

3 3 1 isosceles

3 4 2 scalene

Using the values of Table I for the three variables it seems

at first that we have tested adequately the TCP. Nevertheless,
if we employ the mutation engine proposed we may conclude
that the aforementioned set of test data is of low quality as at
least one atomic change produces an error that is not
recognized by the set. Indeed, the engine produced several
mutations of which the one below passed the set as it
successfully yields an identical result as the original program:

if ((i <= 0) || (j < 0) || (k <= 0))

This simple code mutation suggests that indeed the
proposed engine is able to assess the quality of a set of data to
adequately test a given program.

B. Fault Detection

This set of experiments investigated the ability of the
mutation engine to reveal errors that were injected in the
initial source code of two programs, the first finds the
maximum number between four integers, while the second
implements division of two integer numbers and it is
controlled by specifications expressed with code contracts.

In the first example, three faults were inserted in the code
below, one relational, one parameter replacement and one
unary.

public class FindMax {

 public int getMax(int num1, int num2, int

 num3, int num4) {

 int max = 0;

 if (num1 > num2) max = num1;

 else max = num3;

//** should have been max = num2 **//

 if (max < num3) {

 max = num3;

 if (max > num4) max = num3; }

//** condition should have been (max < num4)

**//

 else {

 if (max < num4) max = num4; }

 return -max; } }

//** should have been return max **//

The engine applied a series of mutators, of which

operators ROR, PR and AODU were actually the ones that

revealed the injected errors. More specifically, ROR replaced
relational operation „>‟ with „<‟, „>=‟, „<=‟, „-‟ and „!=‟
capturing the proper behavior. PR performed every possible
combination of parameter replacement among (num1, num2,
num3 and num4) resulting in the correct identification of
presenting the error because of the use of num2 instead of
num3. Finally, AODU successfully located the error in the last
line after removing the minus sign.

The second example below employs CC with three pre-
conditions, one post-condition and one invariant, and involves
two errors inserted in class CompareParadigm that cannot be
traced by the static analyzer in VS2010.

class CompareParadigm {

 int num,den;

 public CompareParadigm(int numerator, int

denominator) {

 Contract.Requires(0 < denominator);

 Contract.Requires(0 <= numerator);

 Contract.Requires(numerator>denominator);

 this.num += numerator;

 //** should have been this.num = numerator **//

 this.den = denominator; }

 [ContractInvariantMethod]

 private void ObjectInvariant() {

 Contract.Invariant(this.den > 0);

 Contract.Invariant(this.num >= 0); }

 public int ToInt() {

Contract.Ensures(Contract.Result<int>()>=0);

 return this.num * this.den; } }

//** should have been this.num / this.den **//

The engine was once again capable of bringing these

errors to light using the arithmetic operation replacement
(AORBA) and arithmetic operations deletion (AODA)
mutators.

C. Normal vs Specifications-Based Mutations Production

As mentioned earlier, a sort of “intelligence” was
embedded in the engine that eliminates all mutants that violate
the pre-conditions, post-conditions or invariants set for a
program. Using class CompareParadigm listed earlier, we
will compare the number of mutations produced by the
mutation engine with the use of specifications to that of a
normal (typical) mutations generator (in this case the engine
with the CC disabled). Table II lists the mutations produced
according the operator used. One may easily notice that a 58%
reduction to the mutants was achieved by the “intelligent”
engine, which resulted in 16 mutated programs compared to
38 produced without taking into consideration the specs. This
is indeed a remarkable saving of effort and time with just a
small part of code consisting of less than 20 statements.
Therefore, we can safely argue that in cases of large programs
the computational burden will be considerably eased,
preserving at the same time the effectiveness and efficiency of
the testing process.

74

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 90 / 612

TABLE II. MUTATED PROGRAMS CREATED BY THE ENGINE WITH

(SPECS-BASED) AND WITHOUT THE USE OF SPECIFICATIONS (NORMAL)

Operator
Number of Mutations

Specs-based Normal

AORBA 5 8

AOIS 7 10

AOIU 0 6

LOI 2 6

PR 2 3

LVR 0 5

Total 16 38

V. CONCLUSION AND FUTURE WORK

Software testing is an important, though complex, area of
software development that aims at increasing the quality and
reliability of software systems. Automatic software testing
approaches are increasingly popular among researchers that
attempt to handle the aforementioned complexity and lead to
faster and cheaper software development with high quality
standards.

Mutation testing is a technique that produces different
versions of a program under study which differ slightly form
the original one and uses these versions either to identify
faults or assess the adequacy of a given set of test cases. In
this context, the present paper proposed a simple, yet efficient
mutation engine, which uses a number of mutation operators
that can be applied at the method level and incorporating a
sort of intelligence to generate only valid mutants based on
the program‟s specifications. The engine is developed in the
Visual Studio 2010 platform and utilized Code Contracts to
represent the specifications that must be satisfied with pre-
conditions, post-conditions and invariants.

The engine is supported by a dedicated software tool
consisting of two main parts. The first part verifies the
syntactical correctness of the source code and proper linking
with the appropriate libraries, and provides statistical analysis
of the source code, using grammatical analysis and producing
the Abstract Source Tree representation of the source code.
The second part uses the information gathered from the
previous part and generates mutations using specific operators
and obeying to the rules imposed by the encoded
specifications.

A series of experiments was conducted that showed that
the mutation engine constitutes a tool that may efficiently be
used for identifying faults in the code and for assisting to the
creation of the proper set of test data. The incorporation of the
specification-based concepts can significantly improve
performance by reducing the number of mutants processed,
thus saving time and effort.

Future work will involve extending the proposed engine
to include more class-level mutators, as well as investigating

the potential of supporting other programming languages
under the .Net framework. Moreover, we plan to integrate our
tools with tools offered by the VS2010, like the PEX, which is
responsible for unit testing and UModel, which assists in
creating UML diagrams. This integration will enable the
formation of a complete testing environment with dynamic
user interaction, both at the flow of control level and at the
diagrammatical. Finally, our efforts will concentrate on
evaluating the engine on a more systematic basis using sample
programs of different size and complexity and assessing
various parameters like the time for creating and processing
mutations, the type of mutators used, the nature of the errors
induced, etc. This systematic investigation will also address
scalability issues and more specifically our future
experimental evaluation will include code from large-sized,
real-life software projects.

REFERENCES

[1] C. Kaner, J.H. Falk, , H.Q. Nguyen, Testing Computer
Software, John Wiley & Sons Inc., New York, NY, USA,
1999.

[2] Bertolino, “Software testing research: achievements,
challenges, dreams”, Proc. 29th International Conference
on Software Engineering (ICSE 2007): Future of Software
Engineering (FOSE‟07), Minneapolis, MN, USA, 2007,
pp. 85–103.

[3] P. McMinn, “Search-based Software Test Data
Generation: A Survey”, Software Testing, Verification
and Reliability Vol. 14(2), 2004, pp.105–156.

[4] R.A. DeMillo, R.J. Lipton and F.G. Sayward, “Hints on
Test Data Selection: Help for the Practicing Programmer”,
IEEE Computer Vol. 11(4), 1978, pp. 34–41.

[5] R.G. Hamlet, “Testing Programs with the Aid of a
Compiler”, IEEE Transactions on Software Engineering,
Vol. 3(4), 1997, pp. 279-290.

[6] “Mutation Testing Repository”,
http://www.dcs.kcl.ac.uk/pg/jiayue/ repository/ ,
[accessed 10 May 2011]

[7] A.A. Sofokleous and A.S. Andreou, “Automatic,
Evolutionary Test Data Generation for Dynamic Software
Testing”, Journal of Systems and Software, Vol. 81(11),
2008, pp. 1883–1898.

[8] C.C. Michael, G. McGraw and M.A. Schatz, “Generating
software test data by evolution”, IEEE Transactions on
Software Engineering (12), 2001, pp. 1085–1110.

[9] “Visual Studio 2010”, (2009)
http://www.microsoft.com/visualstudio/en-
us/products/2010-editions, [accessed 18 May 2011]

[10] “Code Contracts User Manual”, (2010), Microsoft
Corporation, http://research.microsoft.com/en-
us/projects/contracts/userdoc.pdf [accessed 20 May 2011]

[11] “SharpCode”,(2009),
http://www.icsharpcode.net/opensource/sd/, [accessed 17
May 2011]

75

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 91 / 612

Component-based Software System Dependency Metrics

based on Component Information Flow Measurements
Majdi Abdellatief

ab
, Abu Bakar Md Sultan

a
, Abdul Azim Abd Ghani

a
, Marzanah A.Jabar

a

a
Department of Information System, Faculty of Computer Science & Information Technology,

 University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
b
Mehareeba Technical College, Technical Education Corporation, 2081 Khartoum, Sudan

Khwaja24@yahoo.com, {abakar, azim, marzanah}@fsktm.upm.edu.my

Abstract-The motivation of this paper is that the measurement

based on the flow of information connecting software

components can be used to evaluate component-based software

system dependency. The ability to measure system dependency

implies the capability to locate weakness in the system design

and to determine the level of software quality. In this paper,

dependency between components is considered as a major

factor affecting the structural design of Component-based

software System (CBSS). Two sets of metrics namely,

Component Information Flow Metrics and Component

Coupling Metrics are proposed based on the concept of

Component Information Flow from CBSS designer’s point of

view. We also discuss the motivation for and possible uses of

system level metrics and component level metrics. Initial

results from our on-going empirical evaluation indicate that

the proposed metrics are very intuitive.

 Keywords-Component-based software system; Software metric;

Dependency; Information flow.

I. INTRODUCTION
In Component-based development (CBD) paradigm,

Component-based software system (CBSS) are developed
using a set of independent components which work together.
Some of these components may be developed in-house,
while others may be third-party components, without source
code [1]. Nowadays, this development methodology has
become one of the predominant software engineering
solutions for the design of a large and a complex system [2].

Analysis of CBSS dependencies is an important part of
software research for understandability [3], testability [4],
maintainability [5] and reusability [6][7] of a component-
based system. Thus, dependency metrics could have a real
impact on the quality of the system delivered to the user. If
valid dependency metrics could be identified, they could
provide the information required by developers, testers and
maintainers to understand the system, identify the critical
components, evaluate the impact of change in one
component on the other components and even to support the
future evolution of the CBSS when adding, removing and
modifying some components. It is difficult to perform such
tasks without understanding potential component
dependencies [8]. In addition, a large and complex CBSS
should be evaluated early at the specification phase, to avoid
faults, poor interaction among components and failure of one
component which could lead to a total system failure [9][10].

Previous research conducted in CBSS metrics
concentrated on one of two major areas. Many research
papers [11][12][13], focused on measuring the reusability of
software components, while others [2][10][14][15][16],

focus on measuring the interaction complexity of integrated
components. In the past, only a few papers based on graph
theory addressed the evaluation of CBSS dependency
[8][10][17][18][19]. However, there has been no theoretical
or empirical validation conducted for the proposed metrics.
In this paper, interface dependency is considered to be the
main dependency affecting CBSSs. Interface dependency
exists as relationships among different functionalities and
parameters of software components. For example, when one
interface relies on other to obtains functionalities necessary
for its own tasks. However, if the components produced by
component providers only include specifications of the
interfaces [19][20], the interface specification does not
supply adequate information for analysis of integrated CBSS
dependency. Thus, in CBSSs, due to the black box nature
and the separation of interface specification from its
implementation, the analysis of information flows will be
quite difficult using the traditional information flow
techniques. Therefore, we first proposed a new method
named Component Information Flow (CIF) to analyze the
information flows into a component, out of a component and
between components. We believe that the CIF is a more
suitable and practical basis for characterizing and evaluating
CBSS for several reasons. First, often the component’s
internal structure is not available. Second, the elements of
CIF could be directly determined at design phase. Third, the
availability of metric values early in the design phase allows
the CBSS structure to be corrected with the least cost.
Fourth, as seen in the subsections of this paper, it’s based on
standard Information flow [21], which is considered more
sensitive than other measurements.

Based on the concept of CIF, we also propose two sets of
metrics, namely, Component Information Flow Metrics and
Component Coupling Metrics that represent the CBSS
designer’s point of view (they are also relevant to testers and
maintainers). The proposed metrics depict details about the
quality of a structure design at three levels, entire CBSS
level, component level and interface level. For each level
they concern with the way in which components or interfaces
connect.
 This paper is organized as follows: Section II describes
research methodology. Section III illustrates component-
based information flow definitions and concepts. Section IV
provides the definition of the metrics and their description.
Section V applies our proposed metrics in a small scale
example and discusses the results. The conclusion and
direction for future work are in Section VI.

76

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 92 / 612

II. RESEARCH METHODOLOGY
 The metrics are derived in the following steps:

1. Conducting systematic mapping study on existing
CBSS metrics and metrics validation techniques.

2. Defining information flow for CBSS.
3. Defining a new dependency metrics for CBSS

specification.
4. Application of the proposed metrics in a small

scale example.
 In step 1, a systematic mapping study of the values for
various metrics was carried out by the authors of this paper
and the limitations of the current research were drawn from
them in “unpublished” [22]. The third author suggested step
2. The planning, data collection and reporting of steps 2 and
3 were performed by the first author with respect to the
context defined in Section III. Each step and its content was
checked and reviewed by the rest of authors independently
and carefully. In case there is ambiguity point, a negotiation
took place. Particularly, step 2 was investigated many times
since it is considered as the core of this study. Step 4 was
conducted by all of the authors as stated in Section V.

III. COMPONENT INFORMATION FLOW CONCEPTS AND

CONTEXT
To provide a context for this Section and the next Section,
we need a background of software component and CBSS
specification method. Components definition adopted in this
study clearly fall under Szyperski’s definition [1]. The CBSS
structural specification method used is that of Cheesman and
Daniels [23]. Our measurement approach assumes that the
proposed approach is generally applicable to developments
using any of the technology standards such as Sun’s EJB,
Microsoft’s COM+ and CORBA Models.

A. Software Component Concept
 We visualize software component concepts from the
perspective of component developers and CBSS designers.
Figure 1 provides a simplified model of a component such
that a specification defines the functionality and behaviour of
a component which is composed of an interface part and a
body part. The specification and interface are visible to
CBSS designers, whereas the specification, interface and
body are visible to component developers.

The interface definition includes a collection of one or more

operations to specify the functionality and behaviour

identified in the specification. The body of the system

implements the external methods and any other internal

methods that are required to provide the functionality and

behaviour identified in the specification. Metrics may be

derived from the specification, interface or body but only

metrics derived from the interface and specification can be

used by CBSS designers.

B. Definition of Component Information Flow
This subsection describes the mechanisms for deriving

the various types of component information flow based on
the above assumptions.

The separation of interface from implementation is a core
principle of component based development. That is, the
functionality specified in the interface could be implemented
in different applications by different programming
languages. Therefore, it is important to view interfaces and
their specifications separately from any specific component
that may implement or use such interfaces. To explain this
view, it suffices to consider the interface of a component to
define the component’s access point [24]. These access
points allow clients of a component, usually components
themselves, to access the functions provided by the
component. Normally, a component could have multiple
access points corresponding to different functions provided
in the interface [1].

In Figure 2, we depict this view from an interface
perspective. This model focuses on what the interface must
do to fulfill the client’s information required without
considering how this will be accomplished. With respect to
the proposed model in Fig 3, for any component in CBSSs,
two boundaries are considered: (1) Interface boundary which
separates the provider interface from a client interface. The
client might be a user, a required interface or an engineering
device. (2) The body boundary which separates the provider
interface from its implementation.

Component Information Flow (CIF) is characterized by
two types of flows, Inter-component flow and Intra-
component flow. In the Inter-component flow, the provider
interface communicates with client to exchange information
by In-flows and Out flows. Thus, the information flows
across the interface boundary. The In-flow carries
information from a client to a provider interface through the

A user

A required

interface

Clients

Provider interface

specification
Component Body

Implementations

In-Flow

Out Flow

Software Component

Body boundaryInterface boundary

Engineering

device

Write Flow

Read Flow

Inter-component flow Intra-component flow

Figure 2. Generic model of component information flow

Figure 1. Simplified component model

Body
Component

Specification

Interface

CBS Designers

visible_to
visible_to

Defines
Implements

Visible to
visible_to

visible_to

 Component

Component Developers

77

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 93 / 612

list of in-parameters. The Out flow carries information from
a provider interface to a client through the list of out-
parameters. In the Intra-component flow, it is assumed that
the data structure is used (i.e., a component body) to store
and retrieve the information needed by the provider
interface, represented by Read flow and Write flow. Thus,
the information flows across the body boundary. In other
words, an intra-component flow takes place when an
interface retrieves data from or updates a data structure.

An important characteristic of the CIF described above is
that the knowledge essential to build the complete flow
structure can be established from a simple analysis of a UML
requirements specification. The UML modeling technique
describes the component specification, the component
interaction diagram and the interface specification to design
the intended CBSS. Component specifications name the
interfaces that a component adhering to the specification
must implement. An interface specification consists of a set
of operation specifications. An interface specification has to
specify how the inputs, outputs, and component object state
are related, and what the effect of calling the operation has
on that relationship [23]. An operation specifies an
individual action that an interface will perform for the client.
Each action shows one or more types of information flow
(i.e., In-flow, Out flow, Read flow or Write flow), where
each type of information flow shows one possible execution
flow. Thus, for each interface we can identify all potential
flows from the interface specification. To facilitate the
mapping of CIF to a complete flows structure, we describe a
template for CIF analysis and data collection as shown in
Table 1.

To understand the relationship between components and
make the concept of CIF clear, consider an example
presented in Figure 3, which shows three components, A, B,
C and their relationship to each other. This example is purely
from the specification perspective. It is assumed that some
functionality required by component “A” is implemented by
“B” and “C. We depict the information flow among
components as a result of methods calling and events firing
as Inter-component flow, and the information flow inside the
components to update or retrieve from component store as
Intra-component flow. The information flow from
component “A” to “B” or “A” to “C” can be represented by a
set of direct inter-flows plus a set of intra-flows, whereas the
information flow from “B” to “C” can be represented by a
set of indirect inter-flows plus a set of intra-flows.

A

B

C

Direct Inter-flow

Indirect Inter-flow

Intra-flwo

Figure 3. An example of component information flow

The following definitions describe precisely the terms

and the four types of information flow presented informally
above. These four types of flow identify the logical flow of
information between components. The reader should refer to
Figure 3 to understand definitions 1, 2 and 4, and Figure 3 to
understand definition 4, 5, 6 and 7.

Definition 1: Information flow is the set of messages

streaming across the boundaries which define a particular
communication between two components based on the
logical representation of the interface specification.

Definition 2: There is an Intra-component flow of

information from component “B” to component “A” if a
component “B” implements some functionality of
component “A”.

Definition 3: There is an Inter-component flow of

information from component “A” to component “B” if one
or more of the following conditions hold:

1) If a component “A” invokes a component “B” and
passes information to it; or component “B” returns a result to
a component “A” (termed direct inter-component flow).

2) If a component “A” invokes both a component “B”
and a component “C” passing output values from “B” to “C”
(termed indirect inter-component flow).

Definition 4: In-flow is an inter-component flow type and

carries information provided or passed from a client entity to
a provider interface.

Definition 5: Out flow is an inter-component flow type

and carries information returned from a provider interface to
a client entity.

TABLE 1. TEMPLATE FOR COMPONENT INFORMATION FLOW ANALYSIS AND DATA COLLECTION

Interfaces operations Operation Description
Information

Flow Types

Source of

Information Flow

Destination of

Information Flow

Each

component can

consists of one

or more

interfaces

Each interface

can consists

of one or

more

operations

Each operation could be

described as a set of messages

with respect to the definitions

information flow (i, e.,

definitions 1, 4, 5, 6, and 7)

In-flow Client interface Provider Interface

Out flow Provider interfaces Client interface

Read flow Provider Interface Component store

Write Flow Provider interface Component store

78

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 94 / 612

Definition 6: Read flow is an intra-component flow type

and carries information retrieved from a component store to
a provider interface.

Definition 7: Write flow is an intra-component flow type

and carries information from a provider interface to update
component store.

C. CIF supports:

 a variety of software architectures from simple stand-alone
application to large distributed software based on OSI 7
layers or J2EE n-tiers. Therefore, almost any kind of
CBSS structure can be analyzed and evaluated.

 all stages of the software life cycle. Analysis can be
carried out as early in the requirement specifications or as
late in the life cycle as necessary.

 a defined measurement unit. An elementary unit of CIF
defined by us is a base flow type (i.e., in-flow, out flow,
read flow and write flow)

IV. DEFINITION OF DEPENDENCY METRICS

We use measurement based on the flow of information to

evaluate and mange dependencies between components in

the CBSS. Particularly, we use the following metrics to

characterize the effect of dependency on the structure design

of CBSS.

A. Component Coupling Metrics

In our literature survey, we found inconsistencies in the
definition of coupling in the literature [6][7][25][26][27][28].
There were several different definitions of coupling,
depending on the measurement goal and entity being
measured (i.e., inheritance coupling, messages passing
coupling or data abstraction coupling) [29]. Thus, the
coupling attribute has been defined, measured and
interpreted in various ways. Xia [27] studied this ambiguity
of coupling concept and redefined it based on its essence.
We adopted his definition here. “Component coupling of m is
the impact-dependence of components to m”. The impact-
dependence of X2 to X1 means that when X1 is modified,
there will be an impact on X2. For example, when changing
component X1 in Figure 4, we only need to consider how
component X2 will be affected. Component X2 returns F1
and F2 to component X1. F1 and F2 are out-flows of
component X2 and in-flows of component X1 which will
influence component X1 when component X2 is changed.
But when X1 is modified, F1 and F2 have no impact on X2.
Therefore, the right definition should consider only the out
flow of X1 for its coupling. Another important source which
could influence the change in X1 is the number of distinct
components receiving the out flows [30]. For example, an
impact on a component that depends on one component is
not the equivalent to a component that depends on three
components, even if both components receive the same
number of out flows.

XI

X2

F1
F2 F3

F4
Figure 4. The impact of component modification

Assumption 1: The more the spread of inter-flow from a

component, the larger the context of its interface operations
and the more the external information required to test and
maintain the components.

Accordingly, we defined coupling metrics as

Interface Coupling (IC) = n × 


p

1i
iOF

where
p = number of operations in an interface

OFi = number of out flows in each operation (i)
n = the number of other component to which an interface

is coupled

Component Coupling (CC) = 


p

i 1 i
IC

where
ICi = interface coupling
p = the number of interfaces in a component.

CBSS coupling = 


n

i 1 i
CC

where
CCi = component coupling
n = the number of components in the system.

This definition consistent with the study by Kitchenham

and Likman [31], which indicated that all the information
flow metrics studied, except for informational fan-in, appear
to act as indicators of future problems.

B. Component Information Flow Metrics

We adopted the definition of information flow proposed
by Ince and Shepperd [32] which is considered to be a more
sophisticated metric than the original information flow
proposed by Henry and Kafura [21]. The aim of this metric
is to predict a critical components. A critical component is
one that is more likely to contain errors during testing, faults
during operation and is more likely to be costly after faults
are found [33]. If a critical component is identified early,
then a CBSS designer can take appropriate action to reduce
the potential problem, such as redesigning critical
components or allocating additional test resources.

Fan-in and fan-out are defined with respect to individual
interface as follows:

Definition 8: Fan-in of an interface “I” is the sum of
inter-flows into an interface “I” plus the number of intra-
flows which an interface “I” retrieves.

79

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 95 / 612

Definition 9: Fan-out of an interface “I” is the sum of
inter-flows from an interface “I” plus the number of intra-
flows which an interface “I” updates.

Interface Information Flow (IIF) = (Fan-in *Fan-out)
2

The following is a step by step guide to derive the
information flow metrics values for a CBSS:

1. For each interface in a component, calculate the
Interface Information Flow (IIF) value of that interface
using the formula below:

Interface Information Flow (IIF) = (Fan-in *Fan-out)
2

2. For each component in a CBSS, sum the Interface

Information Flow (IIF) values for all interfaces in that
component. We will term this the Component
Information Flow (CIF).

Component Information Flow (CIF) =




p

i 1
)

i
(IIF

 where
p = the number of interfaces in a component

3. Sum the Component Information flow (CIF) values for
all components in a CBSS. We will term this the
(CBSIF).

CBSS Information Flow (CBSIF) = 


n

i 1
)

i
(CIF

 where
 n = the number of components in a CBSS

Kitchenham [31], Shepperd [34] and Lanza [35] have

shown that the multidimensional metrics are a more effective
approach in understanding, assessing and identifying
problem components than any method based on a single
metric. Therefore, we grouped the set of metrics to
characterize and evaluate different levels of design as
follows:

1. Dependency Structures of Interface (DSI)

To characterize and evaluate the dependency behavior of
the interfaces we can rank the interfaces according to the
Interface Coupling metrics (IC) and Interface Information
Flow metrics (IIF) in a scatter plot

2. Dependency Structures of Component (DSC)

To characterize and evaluate the dependency behavior of
the components we can rank components according to the
Component Coupling metric (CC) and the Component
Interface Information Flow metric (CIF) in a scatter plot.

3. Dependency Structures of CBSS (DS-CBSS)

To characterize and evaluate the dependency behavior of
the CBSSs we can rank the CBSSs according to the CBSIF
and CBSS coupling in a scatter plot.

DSI and DSC represent component level metrics while

DS-CBSS represents CBSS level metrics. For CBSS level
metrics, CBSS designers should compare different
compositions of the same system with respect to testing and

maintenance. For component level metrics, CBSS designers
should compare different component of the same system
with respect to reusability of component.

V. INCORPORATING THE METRICS INTO WEB-BASED

CBSS APPLICATION
To study the usefulness of our metrics, we applied them

to assess the structure design of Hotel Management System
(HMS) which is used in [23] as well as in [36]. Other
researchers such as Mahmood and Lai [14] use a similar
approach. The choice of HMS was even better since it
developed according to [23], which is a good example of
Szyperski’s CBSS specification methodology. Figure 5
shows HMS architecture used in the study. The HMS is a
web based application that allows a user to search, reserve a
hotel room and checks the availability of rooms and prices or
cancels his reservation at any time. (Full details of the
application can be found at [37]).
In the context of HMS the goals of the application were:

 To explain and demonstrate the capabilities of our
proposed metrics and to help software engineering
community gain a deep understanding of their
definition and application context.

 To investigate whether the metrics results yielded
intuitive information to characterize and evaluate the
CBSS dependency.

A. Data Collection
Data collection was done by manual inspection of the

HMS specification (i.e., components specification, interfaces
specification and interaction diagrams). The CIF analysis
was performed for each component in the HMS using
template defines in Table 1. The following quantitative data
was collected:

 The number of inter-component flows.

 The number of intra-component flows.

 The number of components.

 The number of interfaces in each component.

 The number of operations in each interface.
This information was tabulated and analyzed using Excel
program. We discarded billing component from the study
because we did not find enough information about it is
specification. The Data were primarily collected by the first
author and checked by the second and third authors
independently to help avoiding bias and error. In the event of
a disagreement, a negotiation took place. The results were
reviewed and discussed in a formal meeting by the authors of
this paper.

I Make

Reservation

I Take up

Reservation

 I Hotel Mgt

Reservation

System

Component

Customer

Management

Component

 I Customer Mgt

 I Billing System

Hotel

Management

Component

Billing System

Component

Figure 5. HMS architecture

80

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 96 / 612

B. Data analysis
Given the goal of producing components which have a

better dependency and with respect to the concept of
coupling and information flow complexity, we should
interpret the coupling metric and the information flow metric
in isolation to verify their functionality, since they reflect the
behavior of components based on different concepts, goals
and definitions. This claim should, as we understand it, not
be interpreted outside the context of metrics hypothesis.
Obviously, the coupling metrics reflect the behavior of
components in terms of a one directional relationship (i.e.,
the number of inter-flows out of the component), which in
turn assesses the component’s impact on the overall system.
Whereas, the information flow complexity metrics reflects
the behavior of components in terms of bi-directional
relationship (i.e., fan-in and fan-out), which assesses the
amount of information flowing to and from other
components of the system.

The component dependency might be characterized as
better, if the component has relatively low values of both
coupling metric and information flow metric, which in turn
indicates lower CBSS maintenance time and cost.

C. Result and discussion
When changing the reservation system component, we

need to consider how both the hotel management component
and customer management component will be affected.
Whereas, when modifying either the hotel management
component or customer management component, we only
need to consider how the reservation system component will
be influenced. According to the component coupling metric
results shown in Figure 6, the coupling of reservation system
component is quite high compared with hotel management
and customer management components. This means that the
reservation system component depends strongly on the
customer management component and hotel management
components. Usually, high Coupling refers to a more elusive
problem [38][39]. Any changes made to a highly coupled
component would probably require changes to many other
components in the design. Consequently, in the future,
understandability, maintainability and reusability of the
reservation system component is likely to be quite difficult.
The customer management component has the lowest
coupling degree which means it’s the easiest to modify and
reuse.

3697, 39
Reservation Sys

2916, 10
Hotel Mgt

256, 2 Customer
Mgt

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000

CC

CIF

Figure 6. Dependency Structures of Components

In addition, it is interesting to note that the CIF metric
values are consistent with the component coupling metric
values. Empirical studies in the literature confirm that a high
value of information flow measure can reveal three potential
problem areas: component which possibly lack functionality,
component with stress point (which means a change to it
could affect other component in its environment) and/or an
inadequate refinement [21].

As shown in Figure 7, in the case of IC metric, the “I
make reservation” (IMR) and “I take reservation” (ITR)
interfaces indicate highly coupled interfaces. Therefore, it is
recommended to investigate IMR and ITR interfaces in
terms of the number of other component to which each
interface is coupled. The underlying theory of this metrics is
that an interface should have a low coupling with other
interfaces in a system. The high values of IC metric might
mean that the responsibilities of their operations are not
clearly defined, which in turn means that the
understandability and testability of those interfaces in
isolation is very hard, significantly lowering design quality.
In contrast, the “I Hotel” and “I Customer” interfaces show
lower coupling degree which means they can be easily tested
and maintained.

The IIF metric shows interesting results when looking at
the total level of information flow. The results show that “I
Hotel” interface and IMR interface have relatively high
values. The high value of “I Hotel” interface is due to large
number of operations exposed by the “I Hotel” interface.
This implies that the “I Hotel interface” and IMR interface
should be redesigned or investigated by an expert.

2401, 21
IMR

1296, 18
ITR

2916, 10
I Hotel

256, 2
I Customer

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500

IC

IIF

Figure 7. Dependency Structures of Interfaces

VI. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

In this paper, first, we proposed a method named CIF for
analyzing information flow in CBSSs. We believe that the
CIF is very useful, much easier to collect earlier in the
lifecycle, and is a practical basis for evaluating CBSS.

Second, we proposed two sets of metrics which
characterize and evaluates the dependency between
components, so that CBSS designers can identify critical
components in terms of error-proneness and evaluate the
impact of the change on the whole CBSS in terms of the
difficulty of making a corrective change, which in turn
allows designers to target components that need to be revised
to improve the quality of the design.

81

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 97 / 612

Overall, we believe that our propose metrics can become a

very useful tool in help monitoring, managing and

controlling test cost estimation, quality estimation and

complexity analysis. The component level metrics can be

used to identify complex components and/or critical

components. Complex and/or critical components assembly

would potentially take longer time to develop and test than a

simple one. Therefore, developers, tester and maintainers

with better experience and more money should be used to

integrate and test critical components. For a software tester,

complex components require substantial testing effort [2].

The metrics could be used as the basis of a coverage measure

of testing for each component (i.e. testers should as a

minimum cover all input and output flows). There are also

coverage measures that can be based on combinatorial

testing of the inputs. Components produced by component

providers only include specifications of the interfaces. This

imposes difficulties on sufficient testing of an integrated

CBSS [40]. For testing such components, we need

techniques that do not require the source code and instead

relay mainly on the specification of system [20][41]. We

believe that the CIF analysis is very useful for this purpose.

 The system level metrics might be suitable for effort

estimation. In particular, the CBSS metrics should be related

to testing costs (since testing requires activating the

information flows to confirm the functional and non-function

requirements have been met). They might be used to

estimate minimal set of test cases that must be run when one

component is modified.
This paper represents only the beginning of the research

that should be undertaken to explore this approach. So we
invite researchers to comment on whether the new approach
we proposed captures the real essence of component
information flow or if there are areas that are left out.

ACKNOWLEDGMENT

We would like to thank Barbara Kitchenham for her ideas,
comments, suggestions and support as we prepare this paper.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object Oriented
Programming,Second Editioned, Addison Wesley, New York, 2002,

[2] L. Narasimhan and B. Hendradjaya, "Some theoretical considerations
for a suite of metrics for the integration of software components,"
Information Sciences, vol.177, 2007, pp. 844-64.

[3] A. De Lucia, A.R. Fasolino and M. Munro, "Understanding function
behaviors through program slicing," wpc, 1996, pp. 9.

[4] S. Bates and S. Horwitz, " Incremental program testing using program
dependence graphs," Proc. Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM,
1993, pp.384-396

[5] K.B. Gallagher and J.R. Lyle, "Using program slicing in software
maintenance," Software Engineering, IEEE Transactions on, vol.17, 1991,
pp. 751-61.

[6] G. Gui and P.D. Scott, "Measuring Software Component Reusability by
Coupling and Cohesion Metrics," Journal of Computers, vol.4, 2009, pp.
797-805.

[7] G. Gui and P. Scott, "Ranking reusability of software components using
coupling metrics," Journal of Systems and Softwar, Journal of Systems and
Software, vol.80, 2007, pp. 1450-9.

[8] B. Li, " Managing dependencies in component-based systems based on
matrix model," Proc. Proceedings Of Net. Object. Days, Citeseer, 2003,
pp.22-25

[9] J. Gorman, "OO Design Principles & Metrics," Online verfügbar unter
http://www.parlezuml.com/metrics/OO% 20Design% 20Principles%
20&% 20Metrics.pdf, zuletzt geprüft am, vol.15, 2006, pp. 2009.

[10] N.S. Gill and Balkishan, "Dependency and interaction oriented
complexity metrics of component-based systems," SIGSOFT Softw. Eng.
Notes, vol.33, 2008, pp. 1-5.,
http://doi.acm.org/10.1145/1350802.1350810.

[11] M.A.S. Boxall and S. Araban, " Interface Metrics for Reusability
Analysis of Components," Proc. Proceedings of the 2004 Australian
Software Engineering Conference, IEEE Computer Society, 2004, pp.40

[12] H. Washizaki, H. Yamamoto and Y. Fukazawa, " A Metrics Suite for
Measuring Reusability of Software Components," Proc. Proceedings of the
9th International Symposium on Software Metrics, IEEE Computer
Society, 2003, pp.211

[13] O.P. Rotaru and M. Dobre, " Reusability metrics for software
components," Proc. Proceedings of the ACS/IEEE 2005 International
Conference on Computer Systems and Applications, IEEE Computer
Society, 2005, pp.24-I

[14] S. Mahmood and R. Lai, "A complexity measure for UML
component-based system specification," Software: Practice and
Experience, vol.38, 2008, pp. 117-34.

[15] N. Salman, "Complexity Metrics AS Predictors of Maintainability and
Integrability of Software components," Journal of Arts and Sciences, 2006,

[16] L. Kharb and R. Singh, "Complexity metrics for component-oriented
software systems," SIGSOFT Softw. Eng. Notes, vol.33, 2008, pp. 1-3.,
http://doi.acm.org/10.1145/1350802.1350811.

[17] A. Sharma, P.S. Grover and R. Kumar, "Dependency analysis for
component-based software systems," SIGSOFT Softw. Eng. Notes, vol.34,
2009, pp. 1-6., http://doi.acm.org/10.1145/1543405.1543424.

[18] S.M. Alhazbi, " Measuring the complexity of component-based system
architecture," Proc. Information and Communication Technologies: From
Theory to Applications, 2004. Proceedings. 2004 International Conference
on, 2004, pp.593-594

[19] M.E.R.V.M.S. Dias and D.J. Richardson, " Describing Dependencies
in Component Access Points," Proc. Proceedings of the 4th Workshop on
Component Based Software Engineering, 23rd International Conference on
Software Engineering, 2001,

[20] S.D. Cesare, M. Lycett and R.D. Macredie, Development of
Component-based Information System, Prentice Hall of India, New Delhi,
2006,

[21] S. Henry and D. Kafura, "Software Structure Metrics Based on
Information Flow," IEEE Trans. Softw. Eng., vol.7, 1981, pp. 510-8.,
http://dx.doi.org/10.1109/TSE.1981.231113.

[22] M. Abdellatief, A.b.M. Sultan, A.A. Abdul Ghani and M. Jabar, "A
mapping Study to Investigate Component-based System Metrics,"

[23] J. Cheesman and J. Daniels, UML Components: A Simple process for
Specifying Compoent Based Software, Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2001,

[24] I. Crnkovic, B. Hnich, T. Jonsson and Z. Kiziltan, "Specification,
implementation, and deployment of components," Commun ACM, vol.45,
2002, pp. 35-40.

[25] M.M. Pickard and B.D. Carter, "A field study of the relationship of
information flow and maintainability of COBOL programs," Information
and Software Technology, vol.37, 1995, pp. 195-202.

[26] E.B. Allen, T.M. Khoshgoftaar and Y. Chen, " Measuring coupling
and cohesion of software modules: an information-theory approach," Proc.
metrics, Published by the IEEE Computer Society, 2001, pp.124

[27] F. Xia, "On the concept of coupling, its modeling and measurement,"
Journal of Systems and Software, vol. 50 pp. 75-84. 2000.

82

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 98 / 612

[28] W. Khlif, N. Zaaboub and H. Ben-Abdallah, "Coupling metrics for
business process modeling," WSEAS Transactions on Computers, vol.9,
2010, pp. 31-41.

[29] L. Sallie, "Object-oriented metrics that predict maintainability,"
J.Syst.Software, vol.23, 1993, pp. 111-22.

[30] L.C. Briand, S. Morasca and V.R. Basili, " Measuring and assessing
maintainability at the end of high level design," Proc. Software
Maintenance, 1993. CSM-93, Proceedings., Conference on, IEEE, 1993,
pp.88-87

[31] B.A. Kitchenham and S.J. Linkman, "Design metrics in practice,"
Information and Software Technology, vol.32, 1990, pp. 304-10.

[32] D. Ince C. and M. Shepperd J., " An empirical and theoretical analysis
of infromation flow-based system design metrics," Proc. 2nd European
Software Engineering Conf, Springer Verlag, 1989,

[33] K. El-Emam, "A methodology for validating software product
metrics," 2010,

[34] M. Shepperd, "Measurement of structure and size of software
designs," Information and Software Technology, vol.34, 1992, pp. 756-62.

[35] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practics:
Using softqware Metrics to Characterize, Evaluate, and improve the Design
of Object-Oriented Systems, Springer, Berlin Heidelberg - Germany, 2006,

[36] M. Heisel and J. SouquiÃ¨res, "Adding Features to Component-Based
Systems," Objects, Agents, and Features, vol. 2975 pp. 25-36. 2004.

[37] "http:www.umlcomponents.com," August/8/ 2011.

[38] L. Briand, S. Morasca and V.R. Basili, "Defining and validating high-
level design metrics," pp. 31. 1994.

[39] S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol.20, 1994, pp. 476-93.,
http://dx.doi.org/10.1109/32.295895.

[40] Y. Wu, M.H. Chen and J. Offutt, "UML-based integration testing for
component-based software," COTS-Based Software Systems, 2003, pp.
251-60.

[41] E.J. Weyuker, "Testing component-based software: A cautionary tale,"
Software, IEEE, vol.15, 1998, pp. 54-9.

83

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 99 / 612

Module Interactions for Model-Driven Engineering
of Complex Behaviour of Autonomous Robots

Vladimir Estivill-Castro
School of ICT / IIIS

Griffith University, Nathan Campus
Brisbane, Australia

Email: v.estivill-castro@griffith.edu.au

René Hexel
School of ICT / IIIS

Griffith University, Nathan Campus
Brisbane, Australia

Email: r.hexel@griffith.edu.au

Abstract—In this paper, we describe a model-driven engineer-
ing approach that enables the complete description, validation,
verification and deployment of behaviour to autonomous robots,
directly, and automatically from the models. This realises the
promises and benefits of model-driven engineering, such as
platform-independent development and behaviour traceability.
However, such a top-down approach of modelling by finite-state
machines and sub-machines creates a conceptual challenge to the
behaviour designer due to the complex interaction of independent
modules. Simply finding which modules are necessary for other
modules can be a challenge. We also describe here our solution to
this. Interestingly, our approach goes in the opposite direction of
Object Oriented Software Engineering as currently represented
by the Unified Modeling Language and corresponding software
processes. That is, typically, the static models are derived first
(and in particular class diagrams), while dynamic modelling
follows later with behaviour diagrams and interactions diagrams.
We actually start with the description of behaviour in finite state
machines and we complement this by static information pro-
vided by logics that describe concepts and by our dependencies
diagrams that show static dependencies between modules.

Index Terms—Automation of Software Design and Implemen-
tation. Software Modeling. Model-Driven Engineering. Visual
Modeling.

I. INTRODUCTION

Model-driven engineering raises the level of abstraction in
software engineering so that engineers no longer have to be
concerned with programming language details or the specifics
of execution platforms. We show here an approach where ex-
ecutable software is generated automatically from models. We
show that we can easily adapt to new platforms and behaviour
requirements and illustrate this with the development of the
complex software that constitutes the RoboCup challenge. The
Mi-Pal team, qualified for RoboCup-2011, uses this approach
to compose the programs that constitute the behaviour and
execute on the humanoid autonomous robot platform.

We aim at systems at higher levels of abstraction. Our first
toolset for a higher level of abstraction are logics, and in
particular logics that emulate common reasoning. We argue
for logics that describe a context by iterative refinement and
are natural and analogous to how humans describe a context,
starting from the most general case, then proving extensions or
refinements. Similarly, our second tool is behaviour captured
by a hierarchy of finite state machines (FSMs). This enables

iterative refinement, describing the most general behaviour,
which is then refined by a finite state sub-machine (sub-FSM).

For this reason, we use models at different levels of ab-
straction. From a high-level, platform independent model, it is
possible to generate a working program without manual inter-
vention. We describe this approach but we focus here on the
technologies and infrastructure to facilitate design, verification
and validation of inter-module communication. Other research
publications expand on the details and technologies that have
enabled this approach. In particular, we have discussed [1][2]
the advantages of using non-monotonic reasoning to express
in logic what otherwise becomes laborious and error-prone
in an imperative programming language. For example, sanity
checks on the landmarks reported by a vision system signif-
icantly benefit from their abstraction into logic rules. In fact,
logic and iterative refinement are common in expressing and
describing a concept. The off-side rule in soccer is an example
that starts with “Usually a player is not off-side” (a default
situation); then progressively some exceptions are presented.
For example, “Unless two opponent players are between [a
player] and the opponents’ goal line”, but then exceptions of
the exception continue, forming the definition [3].

Modelling by FSMs, where the labels for transitions can
be statements in a logic that demand proof, has been con-
trasted with plain FSMs, Petri nets, and Behavior trees (rel-
evant behaviour modelling techniques in software engineer-
ing) using the very prominent example of modelling the
behaviour of a microwave oven [4]. Our approach produces
smaller models, clarifies requirements and we can generate
implementations for diverse platforms and programming lan-
guages, e.g., the same models can generate code in Java
for a Lego Mindstorm (www.youtube.com/watch?v=
iEkCHqSfMco) as well as C++ for a Nao (www.youtube.
com/watch?v=Dm3SP3q9_VE). The modelling of a mi-
crowave is a classical example in the literature of software
engineering [5][4] as well as model-checking [6, Page 39]
as the safety feature of disabling radiation when the door is
open is an analogous requirement to the famous case of faulty
software on the Therac-25 radiation machine that caused harm
to patients [7, Page 2].

We have illustrated [8] the power of non-monotonic logic
to describe and complement the descriptions of Behavior

84

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 100 / 612

G
et

U
pF

ro
m

Fr
on

t G
et

U
pF

ro
m

B
ac

k

D
ur

at
io

n

G
et

U
pF

ro
m

Fr
on

t

G
et

U
pF

ro
m

B
ac

k

D
ur

at
io

n

G
et

U
pF

ro
m

Fr
on

t

G
et

U
pF

ro
m

B
ac

k

D
ur

at
io

n

Pa
us

e

Th
ey

Sc
or

e

W
eS

co
re

Fo
rc

ed
To

B
lu

eK
i

ck
O

ff
Fo

rc
ed

To
R

ed
K

i
ck

O
ff

IN
IT

IA
L

C
H

A
N

G
E_

K
IC

K
_O

FF

C
H

A
N

G
E_

TE
A

M

R
EA

D
Y

SE
T

PE
N

A
LI

ZE
D

PL
A

YI
N

G

FI
N

IS
H

ED

in
iti

al
R

ec
ei

ve
d

re
ad

yR
ec

ei
ve

d

sh
or

tC
he

st
B

ut
to

nP
re

ss
ed

fin
is

he
dR

ec
ei

ve
d

pe
na

lty
R

ec
ei

ve
d

R
ea

dy
O

ur
G

oa
l

R
ea

dy
Th

ei
rG

oa
l

ro
bo

tF
al

le
nB

ac
k

ro
bo

tF
al

le
nF

or
w

ar
d

pl
ay

in
gR

ec
ei

ve
d

sh
or

tC
he

st
B

ut
to

nP
re

ss
ed

R
ea

dy
O

ur
G

oa
l

R
ea

dy
Th

ei
rG

oa
l

re
ad

yR
ec

ei
ve

d
pl

ay
in

gR
ec

ei
ve

d

ro
bo

tF
al

le
nB

ac
k

ro
bo

tF
al

le
nF

or
w

ar
d

se
tR

ec
ei

ve
d

U
D

Ps
ay

sR
ed

K
ic

kO
ff

U
D

Ps
ay

sB
lu

eK
ic

kO
ff

ro
bo

tF
al

le
nF

or
w

ar
d

ro
bo

tF
al

le
nB

ac
k

TR
U

E

TR
U

E

le
ftF

oo
tB

um
pP

re
ss

ed rig
ht

Fo
ot

B
um

pP
re

ss
ed

sh
or

tC
he

st
B

ut
to

nP
re

ss
ed

re
ad

yR
ec

ei
ve

d

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

TR
U

E

rs
t_

n

G
am

eC
on

tro
lle

r
Ve

rs
io

n
1

5/
05

/1
1

8:
32

 P
M

Fig. 1. The module guGameController.fsm that is interpreted on board the Nao’s for participation in the SPL for RoboCup2011.

85

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 101 / 612

trees and of fine state machines for requirements engineering.
Further illustrations [9] show the benefits of this idea in the
context of embedded systems and robots. The software engi-
neering architecture and the software design patterns that sup-
port our model-driven engineering are based on a whiteboard
architecture [10][11]. This offers a cognitive architecture [12]
or a working memory as well as a publisher-subscriber pat-
tern for module communication, analogous to what others
have called a repository architecture [5], or Data-Distribution
Service [13]. Our whiteboard architecture is complementary
to Aldebaran’s inter-module communication and messaging
architecture in the Red-Documentation.

Our interest for high-level modelling is that RoboCup, and
in particular the Standard Platform League is an important
benchmark for the deployment of legged robots in human en-
vironments (with RoboCup@Home also promoting this in the
home or office). Therefore, there is a clear overlap with con-
cerns in the field of software engineering, such as reliability,
safety, human-computer interaction, requirements engineering,
platform independence, composability, distribution, simplicity,
and most importantly, model-driven engineering.

However, a challenging aspect of our approach is to model
the interactions between modules, and to have a tool that
enables the display of modules dependencies as behaviour
designers integrate the behaviours of a complex system.
Because we had shown an equivalence between FSMs and
Behavior trees [8], we could translate our models to tools like
BECCIE [14] that capture some of the module interactions,
and this was sufficient for the already mentioned example of
the micro-wave oven [9]. However, BECCIE’s limitations do
not enable this to scale further. Here we illustrate the new
tools we have developed to achieve this.

The rest of this paper is structured as follows: Section II
exemplifies the approach used. Section III shows how module
interactions are modelled and what the consequences are for
complex behaviour and iterative refinement. The paper is
concluded with a discussion in Section V.

II. MODEL-DRIVEN ENGINEERING

We present a case study in the context of the SPL for
RoboCup-2011 to illustrate our model-driven engineering ap-
proach, considering the FSM that playing robots are supposed
to conform to. The model for this appears on page 7 of the
SPL rules, and essentially indicates that the league’s game
controller would emit UDP packets (or a manual push of
the chest button) for the playing robots to update their state.
As in any requirements engineering scenario, the rules are
under-specified and ambiguous – more seriously the actual
SPL game controller (server) does not follow nor enforce the
specified transitions. For example, Figure 2a and Figure 2b
show the current activities for the state INITIAL and for the
state READY (both corresponding to a state of the behaviour
required by the competition). An OnEntry activity is to post
(to the whiteboard) the message type NaoMotionPlayer
(whose listener is gunaomotion with the message content
play get_up_anywhere, which is a pre-loaded motion

that stands up the Nao). Also in this state and also OnEntry,
we post message type LEDS whose listener is gunaoleds
to turn the ChestBoard off.

However, we do model our guGameController FSM
for the behaviour executed by our robots for participation in
RoboCup 2011. Figure 1 is produced with Qfsm (qfsm.sf.
net), a graphical tool for designing FSMs. This produces
XML files that our own tool, qfsm2gu, translates into to
ASCII files. These files contain the transition table of the FSM
and activities for each state of the automaton. Our FSMs are
interpreted by our gubehaviourinterpreter module
that, e.g., for guGameController.fsm reads the transition
table from the file TguGameController.txt (transition
files always start with the letter T), and the activities from
AguGameController.txt (activity files start with A).

A. The semantics of our finite state machines

There are some important aspects of the interpreter of FSMs
that represent behaviour. First, the transitions out of a state are
not evaluated simultaneously, but they are evaluated in reverse
order of their appearance in the transition file. Importantly, this
liberates the behaviour designer of the concern of ensuring that
only one transition can fire at any one time. In a sense, this
provides a priority relation between the transitions and can be
specified explicitly with Qfsm in the output field of a transition.

Second, the label of a transition is a query to an ex-
pert to make a proclamation about the truth value of that
label. The interpreter will halt, waiting for a response on
the whiteboard for this particular message type that indi-
cates this proposition requires proof, typically by a logic
inference engine – gucdlmodule that implements Propo-
sitional Clausal Defeasible Logic [15] (but, we have an im-
plementation for standard prolog as well using gnuprolog).
However, many times, the question is directly related to a
sensor. That is, the best expert to ascertain the truth value
of the transition label is a wrapper for a sensor (providing
information about anything external to the system). For ex-
ample, in the guGameController.fsm of Figure 1, a
label UDPSaysRedKickOff is a query, but is answered by
guUDPreceiver, which is the actual module connecting to
the league’s UDP server that can assert if the league’s game
controller is now broadcasting that the red team is to kick-off.
There is a special label TRUE that always fires and causes a
state transition.

It is important to highlight that the behaviour interpreter, the
logic engine, and many of our modules are developed to con-
form to the POSIX standard (and therefore not only execute
on the Nao but also, e.g., Linux, and MacOS). This enables
module simulation, developing and testing independently of
the platform. In particular, one can impersonate an expert by
using our testcdl module and a FSM is oblivious to this.

We can use the example of guGameController.fsm
to stress which of our modules provide the interface be-
tween the whiteboard and the Nao platform. In addi-
tion to guUDPreceiver, the following modules must
run: gunaobuttonsensor for button-press events and

86

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 102 / 612

(a) The activities of INITIAL. (b) The activities of READY.

Fig. 2. Display of activities in two states of guGameController.fsm using qfsm.

gupositionsensor to detect if (and which way) the robot
has fallen.

Other modules are actuators that send a message or produce
and effect on the environment external to the system. Actuators
are typically subscribers through the whiteboard to postings by
FSMs. It is important to understand that a state has essentially
two types of activities, postings to the whiteboard or execution
of some C++ code. The possibility to integrate C++ code
means that any behaviour that we do not represent as FSMs
can also be integrated into our modelling. The activities in
our state machines are classified into three different execution
steps (following very much the conventions of state machines
for modelling Object Oriented Systems in OMT [16], UML,
and may other standards for state machines).

• On Entry: These activities are executed at least once,
and always just once and before any other activity upon
arriving at the state.

• On Exit: These activities are executed at least once, and
always just once and after any other activity upon leaving
the state.

• Internal activities: These activities may not be executed
at all. They are executed once, every time the entire
set of leaving transitions has been tested (against the
corresponding expert) and determined no transition fires.

Evaluation of leaving transitions and execution of internal
activities is repeated until a transition fires that moves the
machine to a new state.

Actuators that listen to messages posted by the
guGameController state machine include the following.

• gunaoleds: The interface to illuminate Nao’s ears,
face, feet and the chest button.

• gunaospeechmodule: The robot speaks to identify
itself.

• gunaomotion: The interface to actions like to get up
if the robot is lying down.

In the C++ code, there is a method named
sayTeamI_AmPlayingAndShallWeKickOff. This

routine uses C++ variables that record the integer number
(player number) and the team as red or blue. This could also
be modelled by states, but the state machine would basically
be a clone of itself for playing red and for playing blue.
Thus, this illustrates that sometimes clarity (and generality)
is achieved with some algorithmic C++ code (rather than
duplicating all the states). The values of the borrowed code
are initially supplied on the command line but are updated by
the guGameController state machine as the event from
the league game controller demands via UDP.

B. The abstraction power of sub-machines

While everything that is required for the SPL in the
INITIAL state is defined in the corresponding state of the
guGameController.fsm, this is not the case for the
READY state. There are many things that are done directly here
in the OnEntry section, such as starting the vision pipeline
in the module gunaovision. Also the ChestBoard LED is
set to blue, and the sensitivity of the buttons is turned off
(otherwise, the feet bumpers sense events just by walking).

So, how to achieve the behaviour that in state READY the
robot is to find its correct position within the field before
the state SET? The posting of the message with a type
corresponding to the name of a sub-FSM starts a previously
dormant automaton. In this case Placer: On (the message
content is On). The OnExit activity is a posting of Placer:
Off that makes this sub-machine dormant.

Sub-machines are a sub-class (in the C++ and object-
oriented sense) of FSMs with the additional feature that
they can be suspended or resumed. The Placer.fsm sub-
machine (Fig. 3a) uses an implementation of a Kalman filer for
localisation inside our module gulocalizationfilter.
It uses walks from gunaomotion to walk until it is 150 cm
from its own goal. The localisation module listens to he
whiteboard for postings by gunaovision of landmark sight-
ings (for its internal sensor model) and also to the walk
commands for its internal motion model. Placer.fsm uses

87

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 103 / 612

Visible

Placed

StepBack

StepForward

Judge
SleepNStop

SpinLeft

SpinRight

Centered

StepRight

StepLeft

Duration

PLACING

headIsTooFarRight

headIsTooFarLeft

MineIsAboutCL
~MineIsVisible

MineIsVisible

TRUE

TRUE

TRUE

MineIsCloserXXXX

MineIsFurtherCLX

TRUE

TRUE

TRUE

MineIsVisible

TRUE

TRUE

TRUE

headIsLeft

headIsCentered

headIsRight

rst_n

GameController Version 1
5/05/11 8:40 PM

(a) The Placer.fsm sub-machine.

Duration

Duration

StepLeft

CorrectRight

Duration

NoLandmarkCentered

StepRight

StepLeft

DurationPLACING

MineIsLeft

MineIsRight

~MineIsVisible

MineIsCenter

MineIsVisible

~MineIsVisible

TRUE

TRUE

TRUE

MineIsVisible

MineIsVisible

~MineIsVisible

~MineIsVisible

MineIsVisible

MineIsVisible

~MineIsVisible

MineIsVisible

~MineIsVisible

MineIsVisible

~MineIsVisible

rst_n

GameController Version 1
5/05/11 8:38 PM

(b) The GoalTracker.fsm sub-machine.

Fig. 3. Qfsm model of two READY-state sub-FSMs of guGameController.fsm.

gunaosensor (and Naophysical) to know if the head
angle relative to the body is pointing straight or sideways (in
order to post suitable commands to motion; the step to move

in the direction of a landmark may be to walk forward or
to walk to the side or even to spin). The GoalTracker
uses only the gulocalizationfilter filtering to post

88

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 104 / 612

commands to gunaomotion to turn the head in order to
keep the target landmark in the centre of the vision frame.

III. MODELLING MODULE INTERACTIONS

If the reader was able to remember what modules are
required and which ones communicate with each other, even
at this very top level of the behaviour of the robot, we would
be surprised. Clearly, the description in the previous section
needs some way to document, present, visualise, verify and
validate the inter-module dependencies and the corresponding
message passing and communication.

More importantly, SPL autonomous robots follow a design
pattern that repeats what we have seen in the last forty years of
desktop computer development. The hardware of the system
and its Operating System becomes a commodity while the
software on the system determines its ultimate behaviour.
Here, we have a large number of sensors and actuators that
can be utilised to navigate the robot’s environment and to
exhibit effective or intelligent behaviour. Sensor fusion needs
to be performed to integrate (uncertain) input from numerous
different input devices (such as buttons, cameras, etc.).

Therefore, while it can be argued that the static model
of the robot remains the same throughout (and therefore
conforms to traditional software engineering design processes
as, for example, standardised in UML), this static structure
is only marginally descriptive of the actual behaviour the
robot is required to exhibit. In fact, a quite marginal change
to behaviour can trigger a vastly different interaction pattern
between modules or subsystems. For instance, switching from
ultrasonic distance sensors to vision to detect nearby obstacles
only requires a minute change to the corresponding behaviour
state machine.

However, immediately, module dependencies and, conse-
quently, the design of the overall static system structure
changes. In a traditional approach, this would require a full
redesign of the system and its composition.

To address this problem, we have created a tool that inspects
a dictionary of strings that describes what messages a module
is a listener for and what messages are posted. In reality,
there are two types of paradigms for listeners. They may
subscribe and wait for a message, and thus, as processes, such
listeners are paused and then re-started by the whiteboard.
The second module just queries the whiteboard if such a
message of interest is present on the whiteboard and thus is
non-blocking. Therefore, we also need to indicate the type
of message, whether it is provided or required by that module
(akin to inputs and outputs in UML composite structures [17]).

Moreover, many modules are platform independent and
some modules may have alternatives. This is easily represented
by specifying the same provisions and requirements. An
example of an alternative module is a guspeechmodule.
Such a module exists in two version, a MacOS version that
generates speech from text on a laptop, and a Nao version
that carries the same functionality but on a Nao robot. Even
though these module need different compilers and run under
different operating systems, from the perspective of supplier

gu
UD

Pre
cei

ver

Ga
me

Co
ntr

oll
er

kF
ini

she
dR

ece
ive

d
kIn

itia
lRe

cei
ved

kP
ena

lty
Re

cei
ved

kP
lay

ing
Re

cei
ved

kR
ead

yO
urG

oal
kR

ead
yR

ece
ive

d
kR

ead
yT

hei
rG

oal
kS

etR
ece

ive
dk

UD
Psa

ysB
lue

Ki
ckO

ff
kU

DP
say

sR
edK

ick
Of

f

po
six

gu
Se

eke
r

Pla
cer

gu
nao

led
s

kL
ED

S

gu
loc

aliz
atio

nfi
lter

kL
ED

S
kN

aoW
alk

gu
nao

mo
tio

n

kN
aoM

oti
on

Pla
yer

kN
aoW

alk

gu
ma

cvi
sio

n

kR
un

Vis
ion

Pip
elin

e

gu
nao

vis
ion

kR
un

Vis
ion

Pip
elin

e

gu
ma

csp
eec

hm
od

ulekS
pee

chW
BM

sg

gu
nao

spe
ech

mo
du

le

kS
pee

chW
BM

sg

gu
cdl

kU
pd

ate
Pro

of

gu
Ga

me
Co

ntr
oll

er

kU
pd

ate
Pro

of

un
kn

ow
n

gu
vis

ion
_st

op
Vis

ion
Pip

elin
e

gu
nao

bu
tto

nse
nso

r

kL
eft

Fo
otB

um
pP

res
sed

kR
igh

tFo
otB

um
pP

res
sed

kS
ho

rtC
hes

tBu
tto

nP
res

sed

nao

gu
nao

po
siti

on
sen

sor

kR
ob

otF
alle

nB
ack

kR
ob

otF
alle

nF
orw

ard

gu
beh

avi
ou

rin
ter

pre
ter

ma
cos

x
cdl

Fig. 4. The diagram that illustrates the module dependencies related to the
module guGameController.fsm whose behaviour appears in Figure 1.

89

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 105 / 612

(provider) and consumer (listener) message types, the modules
are completely analogous.

Our models can now be generated completely automatically
from the dictionary of messages, which in turn is gener-
ated directly from the code (in fact it is part of the code).
The result is a series of diagrams that show dependencies
for each module as well as overall module dependencies.
For example, Figure 4 shows the module concerned at the
centre of the diagram. Those modules that are suppliers to
guGameController.fsm are show in the upper row of
modules, and the green arrows show that these are experts,
queried in labels of the FSM, about the change of state. In this
case, guGameController.fsm will be making blocking
calls to these modules requesting they make a proclamation on
a particular proposition (evaluating to true or false) that
labels the transition. The bottom row of modules are those
to whom the module guGameController.fsm will be
posting a message. The black arrows indicate also this is a non-
blocking interaction while the direction of the arrow indicates
who is the provider of a message and who is the listener. In
this illustration we have chosen a faulty version of a FSM
that posts a message not recognised in the dictionary, i.e., no
listening module has been found. Therefore, we see the word
“unknown” in red as a destination of a message. This warns
the behaviour designer that there is a fault in the current design
of interactions of the software, at least with the respect of the
behaviour specified by this FSM.

Discussion

What additional advantages besides the correctness of mod-
ule interactions does this provide? The behaviour designer
can now configure particular testing, verification and vali-
dation plans, and the corresponding script can be generated
automatically. For example, by looking at the corresponding
diagram for a module, and indicating associated modules,
a particular script can be rapidly configured for testing the
chosen module on a particular platform. The script will only
start those modules necessary for interaction and support of
the module under scrutiny, and therefore significant resources
of compilation, porting to the platform, and test configuration
are saved. Lets recall the importance of testing [5, Chapter 7]
and in particular testing automation and early validation; the
sooner we verify a change and test that we have not introduced
a fault or broken the current functionality the better. This leads
to more traceability, to more reliability and to more robustness
in the software process and the product itself.

Why not use UML’s collaboration diagrams or UML’s
sequence diagrams (or some other sort of UML interaction
diagram)? Simply because such UML diagrams are used to
model the dynamic behaviour of the system. They represent a
particular trace of execution. The order and time of message
passing is the principal aspect. Our FSMs are already the
dynamic model. In fact, our proposed diagrams here represent
static information; they are a static model of the software on-
board of the robot. This is precisely why they are so useful in
configuring versions and identifying the modules that together

integrate a module. Thus, the diagrams here are in fact more
analogous to UML composite structures [17]. In fact, it is
trivial to convert the dependency information on whiteboard
message suppliers and listeners to corresponding ports therein.
However, this would not capture the fact that the responsibility
for such compositions are factored out from the individual
modules (as we already mentioned, our software architecture
is actually a repository architecture in the terminology of Som-
merville [5, Chapter 6] or whiteboard architecture [10][11]).

IV. OTHER ASPECTS

Some features in our approach that enable further powerful,
high-level control on the behaviours for the robots are

1) to dynamically load a behaviour (a FSM) at any time
and not only at start-up, and

2) to dynamically modify vision pipelines, so the camera
feed (upper or lower camera) is adjusted, based on FSM
context.

We mentioned that the FSMs (or sub-machines) that model our
behaviour are in fact encoded as two tables: the transitions
table and the actions table. The capability to read, parse
and have an internal representation of the FSM is not only
used at start-up time, but can be used on demand. In the
example discussed earlier regarding the model of the Game
Controller, the robot can, during execution, re-load the tran-
sition table from the file TguGameController.txt and
the activities from AguGameController.txt. Once the
corresponding parsing and internal representation are ready
for the interpreter, this refreshed behaviour can take over.
This parsing and re-building of the internal representation is
not a CPU-intensive operation. The grammar of the transition
table and the activities table is very straightforward and the
internal representation is not particularly different from a graph
representation of the FSM as the diagrams we have been
displaying. Namely, our class fsmMachine that represents
a behaviour model is a vector of fsmStates. An object
of the class fsmState has a stateID, stateName, a
vector of fsmTransitions and an fsmActivity object.
An fsmActivity object has postings and/or callbacks for
each of three possibilities: OnEntry, OnExit and Internal. An
object of the class fsmTransition can hold an expression
to evaluate.

Granted, this parsing must be combined with the facilities
that enable sub-machines. That is, sub-machines can be paused
(and therefore become dormant), and later be resumed from
their initial state. Therefore, a dormant sub-machine can be re-
loaded without the need to halt the whole robot. Moreover, re-
loading a sub-machine can be part of a behaviour. Therefore,
this opens the door to the possibility of the robot learning or
adapting its behaviour while operating, by simply modifying
the behaviour model during execution (however, such a learn-
ing behaviour is not implemented yet).

Once the concept of a model being able to be loaded during
runtime and not only during start-up is available it is not
difficult to see that a linear software architecture, such as
a pipeline (also known as a pipe and filter architecture [5,

90

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 106 / 612

Section 6.3.4]), can easily be modified and adapted with
specific commands during runtime. This is what enables the
second aspect mentioned above.

The advantages provided by these facilities are many. For
example, they can be used as a powerful mechanism for a
faster and more reliable software development cycle for the
the robot (and, in general, for embedded systems). To illustrate
this, it is enough to consider what the testing of a behaviour
demands if the robot needs to be shut down every time a
new behaviour is loaded. Typically, re-booting a robot such
as the Nao is quite time consuming, and requires placing
the robot in a safe position, e.g., to physically prevent the
robot from falling. The boot process is slow, because it is
not only the operating system that needs to be loaded, but
also all the middleware that enables the hardware subsystems,
and any other modules that the behaviour uses and that are
part of the system as a whole. As we alluded earlier, in the
case of playing robotic soccer, these include many modules
for motion, vision, sonar, actuators, etc. In general, which
modules are required for a behaviour is determined by our
new diagrams illustrating module dependencies. Dynamically
loading a behaviour (or a sub-behaviour as a sub-machine)
enables iterative refinement and testing of new behaviour,
without the lengthy delay of re-booting the robot for every
single modification of the behaviour model. This facilities and
speeds up the testing of every behaviour. The more a behaviour
is tested, the more reliable it becomes.

V. CONCLUSION

We have described our model-driven engineering approach
to software development. We can completely develop the
behaviour of autonomous humanoids robots through models
that consist of

1) models for logics that describe the domain knowledge
and the declarative part of the system,

2) models for the action part of the system, that are
visualised by finite state machines, or state diagrams.

However, understanding the interactions, the service available,
and the request that will be made to service providers needs
validation and visualisation. We have described the mecha-
nisms to obtain such diagrams and the benefits they provide
to software development.

Nevertheless, there are also some aspects of our infrastruc-
ture that constitute immediate targets for further work;

• to expand even further the vocabulary of messages the
behaviour interpreter can use when requesting a proof so
we can use other inference engines,

• to add priorities to the messages on the whiteboard, so
we can have a subsumption architecture, and

• to add a planning module (so we can apply the infrastruc-
ture to other environments besides soccer, that demand
more planning and are less reactive).

ACKNOWLEDGEMENTS

The authors would like to thank Andrew Rock and David
Billington for fruitful discussions and collaboration in the

conceptual idea of model-driven engineering of behaviour of
autonomous robots.

The authors also thank Carl Lusty, Steven Kuok, and Vitor
Bottazzi who helped significantly in the programming of many
of the modules and tools used in the practical illustration of
this approach, which is the large software environment and
system that is the code for the RoboCup Standard Platform
League.

REFERENCES

[1] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Non-
monotonic reasoning for localisation in robocup,” in Australasian Con-
ference on Robotics and Automation, C. Sammut, Ed. Sydney:
Australian Robotics and Automation Association, December 5-6 2005.

[2] ——, “Using temporal consistency to improve robot localisation,” in
RoboCup 2006: Robot Soccer World Cup X, ser. Lecture Notes in Com-
puter Science, G. Lakemeyer, E. Sklar, D. G. Sorrenti, and T. Takahashi,
Eds., vol. 4434. Springer, 2006, pp. 232–244.

[3] ——, “Chapter 3: Non-monotonic reasoning on board a sony AIBO,”
in Robotic Soccer, P. Lima, Ed. Vienna, Austria: I-Tech Education and
Publishing, 2007, pp. 45–70.

[4] ——, “Non-monotonic reasoning for requirements engineering,” in
Proceedings of the 5th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE). Athens, Greece:
SciTePress (Portugal), 22-24 July 2010, pp. 68–77.

[5] I. Sommerville, Software engineering (9th ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2010.

[6] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[7] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[8] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Plausible
logic facilitates engineering the behavior of autonomous robots,” in
IASTED Conference on Software Engineering (SE 2010), R. Fox and
W. Golubski, Eds. Anaheim, USA: ACTA Press, February 16 - 18
2010, pp. 41–48, location: Innsbruck, Austria.

[9] ——, “Modelling behaviour requirements for automatic interpretation,
simulation and deployment,” in SIMPAR 2010 Second International
Conference on Simulation, Modeling and Programming for Autonomous
Robots, ser. Lecture Notes in Computer Science, N. Ando, S. Balakirsky,
T. Hemker, M. Reggiani, and O. von Stryk, Eds., vol. 6472. Darmstadt,
Germany: Springer, November 15th-18th 2010, pp. 204–216.

[10] B. Hayes-Roth, “A blackboard architecture for control,” in Distributed
Artificial Intelligence, A. H. Bond and L. Gasser, Eds. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1988, pp. 505–540.

[11] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Architecture
for hybrid robotic behavior,” in Hybrid Artificial Intelligence Systems,
4th International Conference, HAIS 2009, Salamanca, Spain, June
10-12, 2009. Proceedings, ser. Lecture Notes in Computer Science,
E. Corchado, X. Wu, E. Oja, Á. Herrero, and B. Baruque, Eds., vol.
5572. Springer, 2009, pp. 145–156.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 2002.

[13] C. H. Wu, W. H. Ip, and C. Y. Chan, “Real-time distributed
vision-based network system for logistics applications,” Int. J. Intell.
Syst. Technol. Appl., vol. 6, pp. 309–322, March 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1521389.1521397

[14] L. Wen and R. G. Dromey, “From requirements change to design
change: A formal path,” in 2nd International Conference on Software
Engineering and Formal Methods (SEFM 2004). Beijing, China: IEEE
Computer Society, 28-30 September 2004, pp. 104–113.

[15] D. Billington, “Propositional clausal defeasible logic,” in Proceedings
of the 11th European conference on Logics in Artificial Intelligence,
ser. JELIA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 34–47.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-87803-2 5

[16] J. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premer-
lani, Object-Oriented Modelling and Design. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1991.

[17] OMG Unified Modeling Language (OMG UML), Superstructure, V2.3.
Object Management Group, May 2010, ch. 9, Composite Structures, pp.
167–198.

91

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 107 / 612

Case Study for a Quality-Oriented Service Design Process

Michael Gebhart, Suad Sejdovic, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | sejdovic | abeck} @kit.edu

Abstract—Due to the usage of distributed information, such as
sensor information, geographical information systems are
designed according to service-oriented principles. Thus, the
development of new solutions within this context requires a
design of necessary services. These services have to follow
certain quality attributes that have evolved as important for
services, such as loose coupling and autonomy. In this paper, a
quality-oriented design process is considered and its
applicability and effectiveness are shown within the
Personalized Environmental Service Configuration and
Delivery Orchestration project of the European Commission.

Keywords-service; design; quality; geographical information
system; case study

I. INTRODUCTION

Today, geographical information systems use distributed
information, such as sensor information, that measures
environmental data, such as air temperature, or presume
precipitation. This information is provided by public
authorities or private sectors in form of services [8]. The
geographical information system acts as service consumer,
thus sends requests to the services and receives according
responses. Additionally, functionality of the geographical
information system can also be provided in form of services
in order to enable the realization of systems at a higher level.

Accordingly, the development of such geographical
information systems requires a design of necessary services
in order to support the usage of distributed information and
the provision of functionality that bases on this information.
The design of services consists of two elementary phases, the
identification and the specification [1, 2, 9, 10, 11, 25].
During the identification phase service candidates as
proposals for services and their dependencies are formalized
[5, 6]. Each service candidate includes a set of operation
candidates that represent preliminary operations. A
dependency between service candidates describes that a
service requires another service for fulfilling its
functionality. Within the specification phase, the final
specifications of the services are created. Each specification
constitutes a so-called service design and consists of a
specification of the service interface and the realizing service
component. The service interface describes provided and
required operations, message and data types, interacting roles
and the interaction protocol [7]. The specification of the
service component determines the services provided by the

realizing component and the services required for fulfilling
the provided functionality. Additionally, the internal
behavior in form of a composition of own functionality and
functionality provided by other services is formalized.

For services several quality attributes have been
identified that should be fulfilled in order to attain goals that
are associated with the application of service-orientation,
such as an increased flexibility [5, 6, 12, 14, 15, 20, 30],
reusability [5, 21], or maintainability [19] of provided
functionality. Wide-spread quality attributes that support
these goals are a unique categorization, loose coupling,
discoverability, and autonomy [2, 6, 13, 16, 17, 18, 19].
Since these goals are also important for geographical
information systems, the quality attributes should be
considered when designing new services in the context of a
geographical information system. This requires a quality-
oriented service design process when developing a service-
oriented geographical information system.

In the context of the project Personalized Environmental
Service Configuration and Delivery Orchestration
(PESCaDO) [3, 4] of the European Commission, a service-
oriented geographical information system has to be
developed in cooperation with the Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation.
This system enables getting personalized information
regarding the personal profile and environmental conditions.
Since the services should fulfill quality attributes, such as
loose coupling, a quality-oriented service design process has
to be applied. For this purpose, the design process created by
the authors of this paper as introduced in [1] has been
applied. This design process includes a transfer of artifacts of
the business analysis phase into artifacts of the design phase
and considers a certain set of quality attributes. In this case,
the quality attributes of a unique categorization, loose
coupling, discoverability and autonomy are regarded using
the quality indicators as introduced in [2]. This case study
shows how to apply the design process for a geographical
information system of a real world project and demonstrates
the applicability and effectiveness of the design process.

The paper is structured as follows: Section 2 introduces
the PESCaDO project and the considered service design
process. In Section 3, the design process is performed in
order to design the necessary services for PESCaDO. In this
context, the artifacts of the design phase are systematically
derived and revised subsequently. Section 4 concludes the
paper and offers suggestions for future research.

92

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 108 / 612

II. FUNDAMENTALS

In the following, the PESCaDO project and the
considered scenario of this project are introduced.
Additionally, the quality-oriented service design process that
is applied for designing the required services is described.

A. Personalized Environmental Service Configuration and
Delivery Orchestration

Nowadays, more and more people are aware of the
influence that environmental conditions can have on the
quality of their life. Since each individual has the need for
specific information about the environment that is affecting
him and his life, information personalization plays a major
role.

The PESCaDO project of the European Commission [3,
4] takes up this issue and aims at developing a platform for
getting personalized information regarding the personal
profile, such as health status, mode of presentation or
language of an individual, and also takes into consideration
the intention of the individual. PESCaDO covers the
discovery of services providing the data, their orchestration,
the processing of the data and the delivery of the gained
information. In terms of reusability, technology
independence and the flexible usage of existing
functionalities, a service-oriented approach should be
pursued [5, 6, 12, 14, 15]. The resulting services are
expected to consider the quality attributes of a unique
categorization, loose coupling, discoverability, and
autonomy. These attributes are chosen, because they can be
evaluated during design time [1, 2]. Quality attributes, such
as statelessness, require implementation information.

Within a first prototype, the data access functionality has
to be developed. One special requirement is the semantic
support for accessing environmental data. Thus, the system
has to be capable to identify all related data sources for a
requested phenomenon like temperature. For this purpose, it
has to be able to extend a single requested phenomenon by
other related ones. For example, if the system has identified
the phenomenon “Pollen” as relevant, it also will have to
retrieve information about more specific phenomena, like
“Birch Pollen”. For achieving this goal, the system uses a
knowledge base, which contains a related ontology. The
focus in the development of the first prototype lies on the
extension of the requested phenomenon and accessing the
related data in the background.

B. Quality-Oriented Service Design Process

The quality-oriented service design process, which is
illustrated in Figure 1, starts with the business analysis phase
that yields artifacts that constitute the input for the service
design phase. The primary goal of this phase is the
identification and modeling of the considered business use
cases and the realizing business processes [9, 10]. The
artifacts use terms as introduced within the domain model for
a common understanding. The business processes can
consider already existing services in order to increase the
reuse of functionality. This means, that the activities within
the business process are aligned with the operations of
existing services regarding their granularity and names.

Existing
Services

Business Analysis

Analysis and
Revision

Service
Candidate

Service
Candidate

Service
Candidate

Service
Candidate

Existing Service

1

2

SpecificationIdentification

Analysis and
Revision

Service Design
Provided

Service Interface

Service Component

Required
Service

Interface

Required
Service

Interface

Business Process
Business
Use Case

Domain Model

Service

Service

Figure 1. Quality-oriented service design process.

Within the service design phase, two activities have to be
performed. In a first step service candidates are
systematically identified by using the modeled business
processes of the analysis phase. Afterwards, these service
candidates are analyzed and revised according to the quality
attributes unique categorization, loose coupling,
discoverability, and autonomy [1]. In a second step the
service specification is performed. The service specification
uses the identified and revised service candidates as input
and defines service design, i.e., the service interfaces and
service components. After a systematic derivation, the
service designs are revised with regard to the previously
mentioned quality attributes. This additional revision is
necessary as service designs include more information than
service candidates.

III. CASE STUDY FOR A QUALITY-ORIENTED SERVICE

DESIGN PROCESS

Within PESCaDO the business use case for getting an
observation has to be considered. The business use case can
be modeled using use case diagrams of the Unified Modeling
Language (UML) [34]. Furthermore, the UML profile for
business modeling as introduced by IBM [22, 23] can be
applied with its adapted notation for use case diagrams as
shown in the following figure.

Get
Observation

User
Figure 2. Considered business use case.

 For the derivation of service candidates, especially the
internal behavior of the business use case is required. This
behavior is represented by a business process and can be
modeled using the Business Process Model and Notation
(BPMN) [31]. Figure 3 shows the business process as main
artifact for deriving service candidates as first step of the
service design phase.

93

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 109 / 612

User

O
b

se
rv

a
tio

n
P

ro
vi

d
e

r

Query Inferior
Concept

D
at

a
P

ro
vi

d
e

r

Get
Sensor

Description

Provide
Sensor

Information

Provide
Observation

Data

Get
Observation

Data
Needed area

covered?

no
yes

K
no

w
le

dg
e

P
ro

vi
de

r

Describe
Sensor

Get Data

Get Observation

Provide
Capability

Information

Get
Capabilities

Determine
Inferior

Capabilities

Get
Capabilities

Query Superior
Concept

Create
Capability
Response

Process
Query

Query
Ontology

Query Inferior
Concept

Figure 3. Considered business process.

Each term within the business use case and business
process bases on a common domain model for avoiding
ambiguity and misunderstandings. This domain model can
be described using an ontology based on the OWL 2 Web
Ontology Language (OWL) [32, 33]. It determines the
concepts and their relations within the considered domain.

A. Identification

For the derivation of service candidates each pool within
the BPMN business process is transformed into one
capability element of the Service oriented architecture
modeling language (SoaML), for this element represents a
collection of capabilities that corresponds to the
understanding of service candidates. Each capability element
contains operations that represent operation candidates as
preliminary operations of the service [7, 24, 26]. Figure 4
shows the derived service candidates.

«Capability»

Data Provider

+ Get Capabilities()
+ Describe Sensor()
+ Get Data()

«Capability»

Observation Provider

+ Get Capabilities()
+ Get Observation()

«use»

«Capability»

Knowledge Provider

+ Get Capabilities()
+ Query Ontology()

«use»

Figure 4. Derived service candidates.

The operation candidates within the service candidates, i.e.,
capability elements, are derived from the business process
and its contained message start events. The usage
dependencies are determined by means of the interaction
between the pools. The names of the service candidates and
operation candidates are taken from the business process.

In a next step, the service candidates have to be analyzed
and revised with regard to the quality attribute unique
categorization, loose coupling, autonomy and discoverability
using the quality indicators introduced in [2].

1) Unique Categorization: According to Erl [5, 6, 28,
29], business-related and technical functionality should be
divided. This quality indicator is fulfilled because all
services only provide business-related functionality.
Similarly, agnostic and non-agnostic functionality should be
separated. Also this quality indicator is fulfilled, for all
services only provide agnostic functionality, which is not
specific for certain business proesses. Another quality
indicator for the unique categorization addresses the
sovereignity of data. If a service manages a business entity,
it should be explicitly managing this business entity for
ensuring consistent and clear responsibility [5, 6, 12].
Within the busines process there are two types of data:
ontology data and observation data. The former are
accessed by the knowledge provider and the latter by the
data provider, which is why this quality indicator is fulfilled
optimally. The last quality indicator for a unique
categorization describes that the operations within one
service should use common business entities. The data
provider and knowledge provider only operate on ontology

94

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 110 / 612

data or observation data. However, the observation provider
uses both observation data and ontology data, which may
result in a split of these two operation candidates into two
seperate service candidates. Since the ontology data
describes the observation data in more detailed, the ontology
data does not represent an own business entity. Thus, the
operation candidates can be grouped within one service
candidate. As result, the derived service candidates best
fulfill the quality indicators for a unique categorization.

2) Loose Coupling: According to Josuttis [15], long-
running operations should be able to be invoked
asynchonously. Since there are no long-running operations,
respectively operations candidates, within the derived
service candidates, this quality indicator does not have to be
considered. Additionally, the parameters within the
operations should be preferably simple types if they are used
across several services. Complex types that are used within
several services should be avoided. Since during the
identification phase the parameters are not defined, this
quality indicator can not be determined. Instead, this quality
indicator will be considered during the specification phase.
A further quality indicator describes that the operations
should be abstract [5, 6, 15, 17]. This means that they
should hide implementation details. The operation
candidates are on a high-level of abstraction, which is why
this quality indicator is fulfilled. Also if there is an state-
changing operation, a compensating operation should be
provided [17]. Since there is no data written or created,
there is no state-changing operation.

3) Discoverability: The discoverability is only of
interest during the specification phase, when the names of
services and operations are finally determined. During the
identification phase the artifacts are only preliminarily
named.

4) Autonomy: One quality indicator for the autonomy of
services focuses on the direct dependencies between
services [5], which should be minimal for a maximum
autonomy. Within the derived service candidates, the only
service candidate with dependencies is the observation
provider. However, due to the requirement of using
distributed functionality, this quality indicator can not be
improved. Another quality indicator addresses the
overlapping of functionality [5, 28]. Services should have a
certain functional scope. Since the service candidates do not
have any overlapping functionality.

As result, the derived service candidates optimally fulfill
the quality indicators for the considered quality attributes and
thus do not have to be further revised.

B. Specification

The subsequent phase, the specification phase, focuses on
the creation of service designs. A service design consists of a
service interface, which describes the service from an
external point of view, and a service component, which
performs the provided functionality [2]. First, the service
candidates of the identification phase are used to generate
preliminary service designs that can be further revised in
order to fulfill the desired quality attributes. Figure 5 shows
the derived service interface for the Observation Provider.

«interface»

Observation Provider

«ServiceInterface»

Observation Provider

observationProviderRequester :
«interface» Observation ProviderRequester

observationProvider :
«interface» Observation Provider

+ Get Capabilities(: GetCapabilitiesRequest) : GetCapabilitiesResponse
+ Get Observation(: GetObservationRequest) : GetObservationResponse

+
Interaction Protocol

: observationProvider : observationProviderRequester

Get Capabilities

Get Observation

«interface»

Observation ProviderRequester

«use»

Figure 5. Derived service interface.

The service interface is formalized using the
ServiceInterface modeling element of SoaML [7]. A service
interface includes operations provided by the service and
operations that have to be provided by the service consumer
in order to receive callbacks. In SoaML these aspects are
modeled using UML interfaces that are associated with the
ServiceInterface element by generalizations and usage
dependencies. Additionally, it defines the participating roles
and an interaction protocol, which determines the possible
orders of operation calls that result in valid results. Latter is
modeled using a UML Activity that is added as
ownedBehavior. The derivation of a service interface from
service candidates transforms the operation candidates into
provided operations. Also the name of the service candidate
is used for the name of the service interface. Additionally,
messages, roles and the interaction protocol are added
systematically.

The service component includes provided services,
services that are required to fulfill the functionality, and the
internal behavior of the component in form of a flow of
operation calls. The service component is represented by a
Participant in SoaML. A Participant can be an organization,
a system or a component within a system. It contains
ServicePoints for provided services and RequestPoints for
required services. Each ServicePoint and RequestPoint is
typed by the describing ServiceInterface element. In Figure
6, the service component for the Observation Provider is
shown. The name of the service component is directly
derived from the name of the service candidate. The internal
behavior is added as ownedBehavior in form of a UML
Activity. It will be illustrated in context of the subsequent
revision phase.

95

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 111 / 612

«Participant»
Observation Provider

Component

«ServicePoint»
observationProvider :
Observation Provider

«RequestPoint»
knowledgeProvider :
Knowledge Provider

«RequestPoint»
dataProvider :
Data Provider

Figure 6. Derived service component.

In a next step, the subsequent analysis and revision
phases can be performed considering the quality attributes
unique categorization, loose coupling, discoverability, and
autonomy.

1) Unique Categorization: Since the quality indicators
that influence the unique categorization have already been
optimal on basis of service candidates and the service
designs were derived from these service candidates, the
unique categorization is also optimal on basis of service
designs. Thus, there is no revision required.

2) Loose Coupling: In contrast to the identification
phase, during the specification phase, the parameters are
formalized. For geographical information systems, standard
data types, such as the Keyhole markup language (KML)
[35], exist. Also within PESCaDO, standardized data types
are expected to be used. Since complex types that are used
across several services should be avoided, the data types are
modeled within single UML packages for each service
design. This ensures that changing data types does not
necessarily affect other services. The infrastructure, for
instance in form of an enterprise service bus, can handle the
transformation between similar data types. The other quality
indicators are still optimal, for the affecting artifacts have
not changed during the specification phase.

«interface»

ObservationRetrievalService

«ServiceInterface»

ObservationRetrievalService

observationRetrievalServiceRequester :
«interface» ObservationRetrievalServiceRequester

observationRetrievalService :
«interface» ObservationRetrievalService

+ Get Capabilities(: GetCapabilities) : GetCapabilitiesResponse
+ Get Observation(: GetObservation) : GetObservationResponse

+
Interaction Protocol

: observationRetrieval
Service

: observationRetrieval
ServiceRequester

getCapabilities

getObservation

«interface»

ObservationRetrievalServiceRequester

«use»

Figure 7. Revised service interface.

3) Discoverability: During the specification phase, the
final names of the services and data types are determined.
According to Josuttis [15] and Maier et al. [17], the names
of the visible artifacts should be functionally named.
Additionally, the names should follow naming conventions.
Thus, during the specification phase, the names of the
artifacts should be inspected in detail. Exemplarily naming
conventions are the usage of the english language and
beginning operation names with a lower-case character. In
Figure 7, a revised service interface is shown that considers
the naming conventions of the PESCaDO project.
Additionally, the service has been renamed regarding its
actual functionality for improving its discoverability.

This revision also affects the service component that uses
this service interface. Figure 8 shows the revised service
component of the Observation Provider. The service
component and the ServicePoints and RequestPoints have
been adapted to the revised service interfaces and the naming
conventions for PESCaDO. Additionally, the internal
behavior of the service component for one of the provided
operations is shown.

: observationRetrieval

Service

getCapabilities

: dataRetrieval

Service

: knowledgeBaseAccess

Service

getCapabilities queryOntology

queryOntology
Create Capability

Response

«Participant»

ObservationRetrieval

ServiceComponent

«ServicePoint»
observationRetrievalService :
ObservationRetrievalService

«RequestPoint»
knowledgeBase
AccessService :
KnowledgeBase
AccessService

«RequestPoint»
dataRetrievalService :
DataRetrievalService

Figure 8. Revised service component.

4) Autonomy: Since the autonomy has already been
optimized during the identification phase, there is no
revision necessary regarding this quality attribute.

By finishing the revision of the initial service designs, the
specification phase ends. The results for developing a
prototype for the PESCaDO project are three revised service
specifications, which now can serve as an input for the
implementation phase [27]. The service designs have been
revised that the resulting services optimally fulfill the chosen
quality attributes of a unique categorization, loose coupling,
discoverability and autonomy.

IV. CONCLUSION AND OUTLOOK

In this paper, we applied a quality-oriented service design
process to the Personalized Environmental Service
Configuration and Delivery Orchestration project of the
European Commission. The design process enabled the

96

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 112 / 612

systematic derivation and revision in order to gain service
designs that fulfill both the functional requirements and the
quality attributes of a unique categorization, loose coupling,
discoverability and autonomy. The service designs result in
services that support the strategic goals that are associated
with service-oriented architectures, such as an increased
flexibility and maintainability. Due to the application on a
concrete scenario, the usage of the design process in terms of
its applicability and effectiveness for real-world projects is
demonstrated.

The case study also showed shortcomings of the service
design process that are expected to be solved in the future:
The used quality indicators that were derived from common
and wide-spread descriptions of quality attributes use terms
that are not exactly defined. For example, the meaning of
agnostic functionality is not clear. The IT architect has to
interpret these terms in order to determine the quality
indicators and the quality attributes. This may result in
wrong measures.

Thus, this case study showed the applicability and
effectiveness of the service design process. However, in the
future, we plan to further refine the definitions of terms used
within the quality indicators and quality attributes to reduce
ambiguities, thus increase the correctness of the results.
Additionally, we plan to apply the design process on further
scenarios.

REFERENCES
[1] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service

design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[2] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[3] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[4] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[5] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[6] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[7] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[8] The European Parliament and the Council of the European Union,
“INSPIRE”, Directive 2007/2/EC, 2007.

[9] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: June 04, 2011]

[10] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[11] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: June 04, 2011]

[12] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[13] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.

[14] R. Reussner and W. Hasselbring, Handbuch der Software-
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.

[15] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[16] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

[17] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Was macht einen guten public service aus?“, SOA-
Spezial, Software & Support Verlag, 2009.

[18] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[19] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[20] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[21] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[22] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: June 04, 2011]

[23] J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: June 04, 2011]

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]

[25] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[26] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[27] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[28] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[29] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[30] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[31] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[32] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[33] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[34] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[35] OGC, “Keyhole markup language (KML)”,
http://www.opengeospatial.org/standards/kml/, Version 2.2, 2008.
[accessed: June 04, 2011]

97

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 113 / 612

Meta-Model for Global Software Development to Support Portability and

Interoperability in Global Software Development

Bugra Mehmet Yildiz, Bedir Tekinerdogan

Department of Computer Engineering

Bilkent University

Ankara, Turkey

{bugra, bedir}@cs.bilkent.edu.tr

Abstract— Global Software Development (GSD) considers the

coordinated activity of software development that is not

localized and central but geographically distributed. To

support coordination among sites, usually it is aimed to adopt

the same development and execution platform. Unfortunately,

adopting a single platform might not be always possible due to

technical or organizational constraints of the different sites in

GSD projects. As such, very often GSD projects have to cope

with portability and interoperability problems. To address

these problems we propose to apply model-driven architecture

design (MDA) approach. For this we present a common meta-

model of GSD that we have derived from a systematic domain

analysis process. The meta-model enhances the understanding

of GSD, is used to define platform independent models of GSD

architecture, and transform platform independent models to

platform specific models.

Keywords-Global Software Development, Architecture

Modeling, Model-Driven Development

I. INTRODUCTION

Global Software Development (GSD) is a software
development approach that can be considered as the
coordinated activity of software development that is not
localized and central but geographically distributed. In
principle, GSD can be considered as the realization of
outsourcing. The reason behind this globalization of software
development stems from clear business goals such as
reducing cost of development, solving local IT skills
shortage, and supporting outsourcing and offshoring [1].
There is ample reason that these factors will be even stronger
in the future, and as such, we will face a further globalization
of software development [6].

One of the challenging issues in setting up global
software development is the interoperability among the
distributed sites [13][14]. Interoperability is defined as the
ability of two or more systems or components to exchange
information and to use the information that has been
exchanged [7]. Although it is aimed to adopt the same
platforms in global software development projects, this
might not be always possible due to technical or
organizational constraints. As such, different sites might run
on different operating system platforms, use different
component language platforms, or adopt a different
middleware platform. Further, due to the continuous
evolution of project requirements, the platforms on different
sites might also need to evolve. Portability of the existing

software to a new platform is not easy for even a single site
development project; in the case of global software
development projects this is even a much harder problem.
Altogether, both the portability and interoperability problems
will impede the adoption of a global software development
approach.

Portability to different platforms and interoperability
among different sites working on different platforms have
been mainly addressed in the model-driven software
development approaches. In this context, Model Driven
Architecture (MDA) is a framework defined by the Object
Management Group (OMG) that separates the platform
specific concerns from platform independent concerns to
improve the reusability, portability and interoperability of
software systems [12]. To this end, MDA separates Platform
Independent Models (PIMs) from Platform Specific Models
(PSMs). The PIM is a model that abstracts from any
implementation technology or platform. The PIM is
transformed into one or more PSMs, which include the
platform specific details. Finally the PSM is transformed to
code providing the implementation details. Obviously by
separating the platform specific concerns and providing
mechanisms to compose these concerns afterwards in the
code MDA provides a clean separation of concerns and as
such the systems are better reusable easier to port to different
platforms and have increased interoperability.

We present the model-transformation pattern for
transforming the global platform independent model to the
local platform specific models. An important part of the
model transformation is the common GSD meta-model. We
describe both the abstract syntax and the concrete syntax of
the meta-model. The abstract syntax is defined using the
UML notation; the concrete syntax is specific for the parts of
the meta-model. The meta-model enhances the
understanding of GSD, and supports the model
transformation for solving portability and interoperability
problems.

The remainder of the paper is structured as follows.
Section II provides some background on GSD. Section III
describes the meta-model for GSD and Section IV describes
the related work. Finally, Section VI concludes the paper.

II. GLOBAL SOFTWARE DEVELOPMENT

A GSD architecture usually consists of several nodes, or
sites, on which different teams are working to develop a part
of the system. The teams could include development teams,

98

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 114 / 612

testing team, management team, etc. Usually, each site will
also be responsible for following a particular process. In
addition, each site might have its own local data storage.
Overall we can identify four important key concerns in
designing GSD:

Development - the software development activities
typically using a software development process. This
includes activities such as requirements analysis, design,
implementation and testing. Each PDS will address typically
a subset of these activities.

Communication – communication mechanisms within
and across sites. Typically the different sites need to adopt a
common communication protocol.

Coordination – coordination of the activities within and
across sites to develop the software according to the
requirements. Coordination will be necessary to align the
workflows and schedules of the different sites. An important
goal could be to optimize the development using appropriate
coordination mechanisms.

Control – systematic control mechanisms for analyzing,
monitoring and guiding the development activities. This
does not only include controlling whether the functional
requirements are performed but also which and to what
extent quality requirements are addressed.

In fact each of these concerns requires further in-depth
investigation and has also been broadly discussed in the GSD
community.

To realize multi-site development is not a trivial task. In
particular if the different sites are working on different
platforms the interoperability problems must be resolved.

Figure 1 shows the transformation pattern for mapping a
global platform independent model to local platform specific
models. The platform independent model can be considered
the same across multiple development sites. If needed the
local sites can keep working on different platforms. In that
case the alignment and the interoperability can be achieved
by defining transformation patterns, which map the local
platform models to the global platform independent models,
and vice versa. To support the model transformation a proper
definition of the GSD meta-model is necessary. We discuss
this in the next section.

.

GSD Meta

Model

Global

Platform

Independent

Model

conforms

to

Transformation

Engine

Local Site

PSM MM

Local Site

PSM

Transformation

Specification

reads writes

executes

uses uses

conforms

to

Figure 1. Model-Transformation pattern for mapping GSD PIM

to local PSM

III. META-MODEL FOR GLOBAL SOFTWARE

DEVELOPMENT

Meta-models define the language for the models. In both
software language engineering [9] and model-driven
development domains [2], a meta-model should have the
following two key elements:

Abstract Syntax: Captures the concepts provided by the
language and relationships between these concepts.

Concrete Syntax: Defines the notation that facilitates the
presentation and construction of models in that language.

Based on the literature of GSD, we have defined a meta-
model for GSD that defines the concepts and their relations
to enhance the understanding of GSD and support the model
transformation. Since the meta-model is quite large and we
aim the modeling of different concerns of GSD, we have
decomposed meta-model into six meta-model units. Each of
these meta-model units includes semantically close entities
and address different concerns. These units are Deployment,
Process, Data, Communication, Tool and Migration. Each
unit includes abstract syntax representing GSD elements and
their relations and visual concrete syntax for visualization of
these elements.

A. Deployment Unit

Deployment Unit concerns the deployment of the teams
to different sites. The abstract and concrete syntax of this
unit are shown in Figure 2.

Team is the primary essential entity in Deployment and
also in the whole meta-model and is defined as a group of
persons that work together to achieve a particular goal. A
Team may be organized in a temporary way that it will be
dismissed after its function is complete. Team is allocated at
a particular Site. Site may to a country, city or a building
where a Team works at. Location attribute determines where
Site is placed in the world. Time zone shows the local time
of Site. Teams may belong to different types of
Organizations, such as commercial organizations,
subcontractors or non-profitable organizations such as open
source communities. Teams can be from different countries
and depending on the society they are in, they may have
different Social Cultures. Like Social Culture, Team’s
background including work experience, the time that
members work together, their habits are captured by Work
Culture entity. Expertise Area, Team and Site can be further
decomposed into sub-parts. For example, a Software Team
may consist of sub-Teams each responsible for Design,
Implementation, Testing and Integration.

99

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 115 / 612

is temporary

is virtual

Team

Expertise AreaLanguage

type

Organization

Work Culture Social Culture

time zone

location

Site

speaks has

1..* 1..*

0..1

1..* 1..*

1

has has

*

*

*

allocated at

belongs to

Abstract Syntax

Concrete Syntax

Site: <Site name>

<Teams>

Team:

<Team name>

<Properties>

<Organization name>

Site-Site association: <Parent Site> visually contains <Child Site>

Expertise Area:

Language:

Social, Work Culture: Displayed as property of Team

Displayed as property of Team

Displayed as property of Team

Team-Team association: <Child Team> <Parent Team>

Figure 2. Deployment Unit: Abstract and Concrete Syntax

B. Process Unit

Process Unit concerns the different kind of processes in
GSD. The abstract and concrete syntax of this unit are shown
in Figure 4.

Process is defined as a planned set of activities that aims
to provide some service. Teams participate in Process in
order to provide some service. Service is defined with
Function. A Function can be any service during software
development process that requires some Expertise Areas
such as software development, architecture design, business
management, requirements elicitation and so on.
Coordination is also a Function that should be provided for
coordinating several Teams’ activities. A Process consumes
or uses several different Data Entities and also creates other
Data Entities for providing targeted Functions. For
supporting activities defined in Process, Process concept is
further specialized into Workflow, Business Process and
Development Process (not shown in figure).

C. Data Unit

Data Unit is for representing ownership and physical
deployment of software development data. The abstract and
concrete syntaxes are shown in Figure 4.

Data Entity is the fundamental entity of this unit. It
represents any piece of data: digital, textual or informal piece
of information such as notes taken by developers, telephone
calls that are usually not recorded. Data Entity has size
whose unit is defined by size type; for example, a 120-page
report, 6 minutes of voice record, 2 gigabyte of digital data.
Creation date and last update date show the history of Data
Entity. Data Entity has Actual Type where Actual Format
can be one of predefined formats (video, sound, text, picture

and complex-Data Entity) or some designer defined format.
If Data Entity is digital, then in addition to Actual Format, it
has a Digital Format. Data Entity may be implemented in
one or more Languages.

Data Entity is stored in Data Storage. Data Storage
corresponds to any object in real world that can store
information. For example, some textual document is stored
in paper form, or it is stored in a voice record, or it is stored
digitally in the format of some text editor. Data Storage has
ability to store some Actual Types and if it can store digital
data, then it can support some Digital Types also. A Data
Storage instance is owned by one or more Teams and it can
be located in one Site or may be distributed over several Sites
like distributed databases.

Team

Function

Coordination

Process

Data Entity ExpertiseArea

coordinates

includes

provides

produces requires

1..*

1..*

1..*

0..* 0..*

1..*

*

uses

Abstract Syntax

Concrete Syntax

Team:

<Team name>

Data Entity:

<Data Entity name>

Function: <Function name>

<Expertise Areas>

Process: <Process name>

<Teams>

Expertise Area: Displayed as property of Function

Function-Process association: <Function> <Process>

Data Entity-Process association: <Used Data Entity> <Process>

<Process> <Produced Data Entity>

Figure 3. Process Unit: Abstract and Concrete Syntax

D. Communication Unit

Communication Unit focuses on the representation of
both formal and informal communication activities between
Teams. The abstract and concrete syntaxes are shown in
Figure 5.

Communication is done over Communication Platform in
the context of Process and it can be an instance of
sudden/event based communication activity like a telephone
call or a continuous communication channel such as a
discussion forum. Type attribute is for representing in which
way Communication takes place such as email, phone call,

100

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 116 / 612

face-to-face chat and so on. Suggested time period is an
important attribute for GSD since Teams work in different
time zones, some Communication channels can be used
effectively in a defined time period. For example, phone
calls should be done during the hours when both sides are in
or around their work hours.

Communication has two sides, which are caller and
receiver. Generally speaking, caller starts communication
and receiver is the one who is called by caller. For example,
an email sender is classified as caller and receiver is the one
who receives email. Sometimes, there can be multiple callers
such as video conferences or there can be multiple receivers
such as discussion forums. It is also possible that caller and
receiver are the same such as a planned meeting. For all
cases, caller and receivers are considered as Teams in this
unit. While Teams communicate, one or more Data Entities
are carried in the context of Communication.

size

is Digital

size Type

creation Date

last Update Date

Data Entity

can store digital

Data Storage

Team

Actual Format

Digital Format

Language

Site

stored in

in

owned by

0..* in

in

can store

can store

1..*

1..*

0..1

1

0..1

1..*

located by1..*

Abstract Syntax

Concrete Syntax

Site: <Site name>

<Data Storages>

Data Storage: <Data Storage name>

<Data Entities>

<Compatible Formats>

Team:

<Team name>

Team-Data Storage association: <Data Storage> <Team>

Data Entity: <Data Entity name>

<Compatible Formats>

Actual-Digital Format: <Format name>

Figure 4. Data Unit: Abstract and Concrete Syntax

Team

type

is Formal

is Syncronous

is Channel

start Time

end Time

suggested Time Period

Communication

Communication Platform

Data Entity

Process

has caller as

has receiver as

done over

aims

carries

1

1..*

1..*

1..*

0..*

Abstract Syntax

Concrete Syntax

Process: <Process name> Team:

<Team name>

Data Entity:

<Data Entity name>

Communication: <Communication name>

<Data Entities>

Communication Platform: <Communication Platform name>

Team-Communication association: <Caller Team> <Communication>

<Communication> <Receiver Team>

Communication-Process association: <Communication> <Process>

Communication-Platform association:<Communication> <Platform>

Figure 5. Communication Unit: Abstract and Concrete Syntax

E. Tool Unit

Tool Unit captures details of tools used by Teams for
communication and providing Functions. The abstract and
concrete syntax are shown in Figure 6.

Tool is compatible with one or more Actual Format and
Digital Format. Platform is the set of Tools used by Teams
for communication or providing some functions. Depending
on the purpose, the platform is defined as Function Platform
or Communication Platform.

F. Migration Unit

Migration Unit concerns the migration and traveling of
Teams during GSD activities. These travels are especially
needed in the first and final phases of the projects to ease and
support coordination and integration. The abstract and
concrete syntax are shown in Figure 6.

Migration is executed by one or more Teams from Site to
Site at a particular date. In a Migration, Teams may carry
Data Storage such as documents, digital data containers and
so on. Migration is executed in the context of Process.

101

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 117 / 612

Team

Communication Platform

Function Platform

Digital Format

Actual Format

consists of

1..*

used by

compatible with

compatible with

1..*

1..*

1..*

used by

1..*

1..*

consists of

support Collaboration

Tool

Abstract Syntax

Concrete Syntax

Communication/Function Platform: <Platform name>

Team:

<Team name>

Actual-Digital Format: <Format name>

Tool: <Tool name>

<Compatible Formats>

Team-Platform association: <Platform> <Team>

<Tools>

Figure 6. Tool Unit: Abstract and Concrete Syntax

Team

Site
Data Storage

date

Migration

Process

done to

done from

executed by

1..*

1

1
0..*

1..*

carries

done in context of

Concrete Syntax

Abstract Syntax

Team:

<Team name>

Data Storage: <Data Storage name>

Process: <Process name>

Migration:
<Migration name>

<Processes>

<Teams>

<Data Storages>

Site: <Site name>

Migration-Site association: <Home Site> <Migration>

<Migration> <Destination Site>

Figure 7. Migration Unit: Abstract and Concrete Syntax

G. Example Case

As an example case, consider a GSD environment with 5
Sites. Company A operates in United States. Customer
relations and requirements management jobs are done in
New York while software architecture is designed in Los
Angeles. Company B is hired as subcontractor for
developing software and testing, which is located in Pekin,
China. Moving from this case definition and Deployment
meta-model unit, the model in Figure 9 can be drawn.

INTERNET

United States

Requirement Management Team

Company A

New York

Expertise Area: Requirement Analysis

Languages: English, Spanish

Social Culture: American Culture

Work Culture: Work Culture 1

Architecture Team

Company A

Los Angeles

Expertise Area: Architecture Design

Languages: English, Spanish

Social Culture: American Culture

Work Culture: Work Culture 2

China

Development Team

Company B

Pekin

Expertise Area: Java Development

Languages: Hindu, English

Social Culture: Indian Culture

Work Culture: Work Culture 3

Test Team

Company B

Expertise Area: Sofware Testing

Languages: Hindu, English

Social Culture: Indian Culture

Work Culture: Work Culture 4

Figure 9. Example Case Model

IV. RELATED WORK

Notably, architecting in GSD has not been widely
addressed. The key research focus in the GSD community
seems to have been in particular related to tackling the
problems related to communication, coordination and control
concerns. Clerk et al. [4] report on the use of so-called
architectural rules to tackle the GSD concerns. Architectural
rules are defined as “principles and statements about the
software architecture that must be complied with throughout
the organization”. They have defined four challenges in
GSD: time difference and geographical distance, culture,
team communication and collaboration, and work
distribution. For each of these challenges they list possible
solutions and describe to what extent these solutions can be
expressed as architectural rules. The work of Clerk et al.
aims to shed light on what kind of architectural rules are
necessary to guide the GSD. We consider our work
complementary to this work. In our work the design actions
that relate to the expected answers of questions are defined
as design actions.

Tool support has been named as one of the important
challenges for GSD since it requires making software
development tools and environments more collaborative
[13]. Booch and Brown [3] have introduced the vision for
Collaborative Development Environment (CDE), which is
defined as “a virtual space wherein all the stakeholders of the
project – even if distributed by time or distance – may
negotiate, brainstorm, discuss, share knowledge, and
generally labor together to carry out some task, most often to

102

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 118 / 612

create an executable deliverable and its supporting artifacts”.
A number of efforts have been carried out to support the idea
of CDEs. Whitehead [13] has presented a survey on existing
collaboration support tools in software engineering.
Whitehead distinguishes among four broad categories of tool
support to support collaboration in software engineering:
Model-based collaboration tools for representing the adopted
models; Process support tools for representing software
development process; Awareness tools for informing
developers about the ongoing work of others and to avoid
conflicts; Collaboration infrastructure to support data and
control integration and likewise support interoperability.
Despite the clear need and benefits of the existing CDE
tools, it appears that most of the work on CDE has focused
on the (social) collaboration concern and less on the
(technical) development part. Further the tools that address
development primarily focus on collaborative coding and
relatively little attention has been paid to architecture design.
There seems to be a general agreement that more research is
needed in this domain. Our approach and the meta-model
definition can be considered as part of the efforts for
enhancing CDE for design of GSDs.

Maciel et al. [10] present a domain-specific architecture
(DSA) defining middleware services to provide
interoperability in collaborative environments. Similar to our
approach they define a platform independent model that is
independent of platform specific models. In their approach
the reference architecture (PIM) is based on MDA’s UML
Profile for Enterprise Distributed Object Computing (EDOC)
[11] and the viewpoints defined in RM-ODP (Open
Distributed Processing-Reference Model) are adopted [8]. In
our approach we do not use a general purpose architecture
framework such as RM-ODP but adopt a meta-model based
on a domain analysis of the GSD literature.

V. CONCLUSION AND FUTURE WORK

Different challenges have been identified to set up a

Global Software Development environment. Our literature

study on GSD showed that in particular the challenges of

communication, coordination, and control of GSD is

addressed in the GSD community but less focus has been

provided on the modeling, documentation and analysis of

architecture for GSD. One of the key technical problems in

GSD projects is the evolution of platforms on different sites

and the need for interoperability among different sites. A

close analysis of the literature shows that the application of

MDSD has not been explicitly addressed, neither in the

GSD community nor in the MDSD community. In this

paper we have provided a general transformation pattern for

mapping a global platform independent model to the

platform specific models at local sites. Portability can be

supported by defining transformation definition that map

the new platform models to the global platform independent

models and vice versa. Interoperability is supported due to

the common model, global platform independent model that

conforms to the meta-model that we have defined in the

paper. The meta-model aimed to support the portability and

interoperability in GSD but also enhances the

understandability and communication about GSD. In our

future work we plan to define domain specific languages for

the six units of the GSD meta-model. For this we will use

the Eclipse Modeling Framework [5] and develop the

corresponding tool support for realizing the automatic or

semi-automatic model transformations in GSD projects.

REFERENCES

[1] P. J. Agerfalk, B. Fitzgerald, H. H. Olsson, and E. O´
Conchu´ir, “Benefits of Global Software Development: The
Known and Unknown,” in International Conference on
Software Process, ICSP 2008. 2008. Leipzig, Germany,:
Springer Berlin / Heidelberg

[2] J. Bézivin. On the Unification Power of Models. Software and
System Modeling (SoSym) 4(2):171-188, 2005.

[3] G. Booch and A. Brown. Collaborative Development
Environments. Advances in Computers Vol. 59, Academic
Press, August, 2003.

[4] V. Clerc, P. Lago and H. van Vliet, “Global Software
Development: Are Architectural Rules the Answer?” Proc. of
the 2nd International Conference on Global Software
Engineering, pp. 225–234. IEEE Computer Society Press, Los
Alamitos, 2007.

[5] Eclipse Modeling Framework, http://www.eclipse.org/
modeling/emf/, accessed: July 2011.

[6] J. D. Herbsleb, Global Software Engineering: The Future of
Socio-technical Coordination, 2007 Future of Software
Engineering, p.188-198, May 23-25, 2007

[7] Institute of Electrical and Electronics Engineers. IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[8] ISO-2004. Use of UML for ODP system specification.
Working Draft. ISSO/IEC JTC1/SC7.

[9] A. Kleppe. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Addison-
Wesley Longman Publishing Co., Inc., Boston, 2009.

[10] R. S. P. Maciel, C. G. Ferraz, and N. S. Rosa, “An MDA
domain specific architecture to provide interoperability
among collaborative environments,” in Proceedings of the
19th Brazilian Symposium on Software Engineering (SBES
’05), pp. 1–16, Uberlandia, Brazil, October 2005.

[11] OMG EDOC. UML Profile for Enterprise Distributed Object
Computing Specification. OMG Adopted Specification
(ptc/02-02-05), 2002.

[12] OMG Model Driven Architecture, OMG Model Driven
Architecture. http://www.omg.org/mda/. Accessed in June
1,2011.

[13] J. Whitehead, Collaboration in Software Engineering: A
Roadmap, In FOSE '07: 2007 Future of Software
Engineering, pp. 214-225, 2007.

[14] I. S. Wiese and E. H. M. Huzita, "IMART: An
Interoperability Model for Artifacts of Distributed Software
Development Environments," Global Software Engineering,
2006. ICGSE '06. International Conference on , vol., no., pp.
255-256, Oct. 2006.

103

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 119 / 612

A New Approach to Software Development Process
with Formal Modeling of Behavior

Based on Visualization

Abbas Rasoolzadegan, Ahmad Abdollahzadeh Barfourosh
Information Technology and Computer Engineering Faculty
Amirkabir University of Technology (Tehran Polytechnic)

{rasoolzadegan, ahmad}@aut.ac.ir

Abstract—This work investigates the advantages and
limitations of various modeling methods. Despite of their
advantages, due to some limitations of each modeling method,
using only one of them as the sole approach will not ensure
high quality software. This work proposes a new feasible
approach to improve the software development process by
integrating semi-formal and formal modeling methods. In this
approach, software is initially modeled using the formal
specification language Object-Z. The formal models, produced
by Object-Z, are formally refined to ensure correctness. Then,
software behavior is extracted and visualized in specific
intervals using UML. Applying design patterns to the
visualized models increases reusability and flexibility. The
newly improved models are then re-formalized. Such an
iterative and evolutionary process continues until developing
the software with the desired quality. This paper proposes a
new approach to develop reliable, yet flexible software.

Keywords-Formalization; visualization; design patterns;
formal modeling methods; semi-formal modeling methods.

I. INTRODUCTION

Requirements engineering (RE) plays a crucial role in
software development cycle. Studies show that the major
causes of most software projects failure are imprecise and
incomprehensive understanding, elicitation, specification,
analysis, validation, and verification of software
requirements during software development process [3].
Moreover, mainstream software development, with its
recurring practice of trial and error, already suffers from its
premature insistence on code and program testing. The
problem is that code is expensive; it has too much detail,
and is not at the right level of abstraction to help thinking
about the problem and design of its solution [1].

The increasing importance of requirements engineering
and need for further abstraction leads to increasing use of
models during software development cycle, in general, and
throughout RE process, in special. Models can be used at
different phases of a software life-cycle, ranging from
requirements (more abstract) to detailed design (more
concrete). It also gives a basis for a stepwise approach to
software development: abstract models are refined into more
concrete ones in a stepwise manner, where each step carries
some design decisions. This is known as model refinement
[3].

Models and modeling play a crucial role in software
development cycle. In software engineering, models are
used to describe both the problem (requirements) and the
solution (design) in order to gain a better understanding of
the issues involved. Once a model has been constructed it
can be analyzed to uncover flaws and expose fundamental
issues [23]. This role of models cannot possibly be assumed
by code. The idea is not new, but there is a recent trend
towards more use of models in mainstream circles of
software engineering. This is the goal of MDSE [19], which
tries to alleviate the complexity of software development by
using models. Model transformation has a key role in
MDSE. A model transformation takes as input a model
conforming to a given meta-model and produces as output
another model conforming to a given meta-model. One of
the characteristics of a model transformation is that it is also
a model, i.e. it conforms to a given meta-model.

There are two reasons for against-our-expectation
behavior of the software [25]: either there are shortcomings
or omissions in the original specification, or the software
does not conform to its specification. These two issues result
from the following causes: 1) incomplete, ambiguous, and
inconsistent requirements specification, 2) imprecise and
imperfect verification of the specification and design which
in turn lead to incomplete and untimely discovery of the
software’s errors during the development cycle. These
problems arise from the weaknesses of informal and semi-
formal modeling methods (SFMMs) in specification and
verification of the software requirements.

This paper investigates the advantages and shortcomings
of SFMMs and formal modeling methods (FMMs) by
surveying the literature [1][5][13][25]. Reference [26] has
already investigated the advantages and disadvantages of
SFMMs and FMMs, empirically, by specifying the multi-lift
system case study. The most important conclusion is that
each modeling method has some unique advantages and
limitations. Using only one of them as the sole approach
leads not to satisfy all required aspects of software quality
such as reliability, flexibility, reusability, scalability, and so
on [30]. Combination of these methods is necessary to
successfully understand, analyze, specify, validate, and
verify requirements, problems, and solutions. Although,
there are several valuable attempts to integrate these

104

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 120 / 612

methods to utilize unique advantages of both formal and
semi-formal modeling methods, there is a long way ahead to
achieve the promised goals.

This paper proposes a new approach to enhance the
software development process. This work emphasizes on the
software behavior rather than its structure. In the proposed
approach, the formalism plays the key role, i.e., the structure
and behavior of the software is initially modeled using a
suitable formal modeling language (such as Object-Z).
These formal models, along with formal refinement [3]
ensure correctness and reliability. Then, with an iterative
and evolutionary approach and in specific intervals,
software behavior is extracted from formal models to be
visualized in a semi-formal modeling language (such as
UML). Visualized behavior increases and facilitates the
interactions among project stakeholders (such as analyzers
and designers), who are not, necessarily, familiar enough
with complex mathematical concepts of formal methods.
This also provides the possibility of applying design patterns
on visualized behavior to improve its flexibility, reusability,
and scalability. So, potential shortcomings and
inconsistencies of the software behavior are identified and,
consequently, required changes are applied and a newly
improved version of the formal behavior is produced. The
improved models are then re-formalized. The proposed
approach is a step towards development of correct, reliable
[6], flexible, reusable, and scalable software through
enabling the construction of formal models from semi-
formal ones (formalizing) and vice versa (visualization)
during an iterative and evolutionary approach. References
[26] and [27] present a case study in order to show the
proposal applicability.

A detailed study regarding visualization and
formalization is given in [1]. All related works are just a
step in the right direction, but much more is yet to be done.
The most frequently adopted approach is to define
transformations between the visual and formal models
[1][2][4][7][11][12][14][18][20][23][24]. However, a
significant problem with these suggested approaches is that
the transformation itself is often described imprecisely, with
the result that the overall transformation task may be
imprecise and incomplete. Consequently, the confidence the
developer may have in the models is reduced, making the
transformation approach unreliable.

The rest of this paper is organized as follows: Section 2
presents the motivation of the work by describing the
reasons of integrating SFMMs and FMMs and its
importance. The advantages and limitations of semi-formal
and formal modeling methods are also investigated
according to the literature review in this section. Section 3
defines the problem to be solved by the proposed approach.
Finally, Section 4 discusses future work and draws
conclusions.

II. MOTIVATION

This section describes the motivation of this paper via
elaborating the benefits and limitations of SFMMs and
FMMs according to the literature review.

A. Semi-formal Modeling Methods

SFMMs consist of a development method and a
collection of notations for modeling software systems. UML
is a unification of semi-formal modeling notations [23][31].
In summary, the main strengths of semi-formal techniques
are as follows:
 Semi-formal notations are graphical, making them

appealing, intuitive, and easy to be adopted. They are
good at describing particular aspects of systems,
abstracting away from details, and giving a good overall
picture of what is being described. Sometimes they do
not require a great deal of expertise to be understood. So
they provide a good medium for discussions with clients.

 SFMMs are more than just a notation. They provide
step-by-step guidance on how to approach problems.
They encourage problem decomposition, which helps to
reduce complexity.
Lack of a sound mathematical basis is the major

weakness of SFMMs. They do not have a formal semantics.
There are several problems related to their semantics:
 Either they are defined informally and vaguely using

natural language, or they are defined through meta-
modeling using some meta-language that is not precisely
defined.

 Developers tailor the interpretation of diagrams to the
problem at hand informally, tacitly, and sometimes
unconsciously. This constitutes a source of confusion
and ambiguity. Such misinterpretations might be even
greater if the specification volume is large or
development team crosses national and cultural
boundaries [5].
These limitations lead to lack of means for mechanical

analysis. They can also make the understanding more
apparent than real; All is too easy and superficial, and the
specifier is never confronted with the relevant issues. As a
result, semi-formal methods cannot produce a precise,
complete, and consistent specification. Specification plays a
vital role in producing reliable software. Design and
subsequent implementation is based upon the specification.
Misunderstandings in the specification lead to the delivery
of final applications that do not match user requirements.
Moreover, testing is always carried out with respect to
requirements as laid down in the specification. If the
specification document is in any way ambiguous it is open
to interpretation, and hence misinterpretation, making
testing a rather inexact science.

Next section shows how the formal methods help in
covering the weaknesses of SFMMs in specification,
validation, and verification.

105

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 121 / 612

B. Formal Modeling Methods

FMMs are inspired by the way mature engineering
disciplines build their artifacts: based on prediction and
calculation with sound mathematical theories. Formal
methods are utilized in all phases of software development
process. FMMs, using formal languages such as Object-Z
[7], provide the software with a precise, unambiguous, and
abstract specification. In the next steps, required details are
added to the initial abstract specification through an
evolutionary process, including some design steps towards
the final program. Accordingly, the initial formal
specification is gradually refined. The refinement process
will proceed until the generation of the final code [3].
Certain notations of formal methods support the notion of
formal refinement. Formal refinement ensures that these
refinements and transformations are correct. The correctness
of a refinement is demonstrated through mathematical proof
[23]. The benefits of using the formal modeling techniques
have been recognized as follow:
 Formal modeling helps to gain a deep understanding of

the system and its domain. It encourages the specifier to
be abstract, yet rigorous and precise, forcing the modeler
to ask all sorts of questions.

 Formal modeling clarifies the customer's vague ideas,
revealing ambiguities, inconsistencies, and
incompleteness in the requirements [23].

 The analysis of formal models can be used to support
verification and validation. In verification, a formal
model can be proved or checked for the satisfaction of
desired properties, and that a refined design or
implementation satisfies its specification. In validation, a
requirements model can be checked against its
requirements for white-box system testing either through
animation or proof, and for black-box system testing by
generating test cases from the model.
Although the increased rigor, precision and means of

calculation that formal techniques offer seems indisputable
[22], formal methods have not been taken up by industry. To
explain this, many reasons have been hypothesized,
education being one of them. So, FMMs have been
embraced only in domains where reliability is absolutely
crucial, such as safety-critical, security-critical, and high
integrity systems [5]. Some other recognized shortcomings
of FMMs are given below:
 Formal methods are notorious for being hard. Substantial

efforts are required for formal modeling and verification.
They are only effectively usable by highly-skilled
experts.

 Most formal methods are suited to describe particular
aspects of systems, but usually not all aspects. The
problem occurs when all aspects need to be modeled.

 Formal methods provide a notation to write models and
approaches to analyze them. However, software
engineering practices require further support: guidelines,
approaches to modeling, and patterns.

 The large variety of formal methods makes the choice of
a particular one difficult.

 Most formal methods have little automated support
beyond type-checking; developers are usually left the
onus of performing proofs, which demand too much
time and expertise for practical application.

 Practitioners need to be trained, and, since there is not
much experience in using formal methods, the costs
associated with their use are high. They also require an
investment of time and money in specification, before
any code is written.
The main conclusion is that FMMs and SFMMs have

some advantages and limitations. Using only one of them as
the sole approach leads not to satisfy all required aspects of
software quality. This paper advocates an approach to
building a framework for rigorous MDSE based on
combining UML as a semi-formal language with Object-Z
as a formal modeling language. SFMMs are supplemented
with FMMs to introduce rigor in the development and to
sweeten formal methods usage with diagrams.

III. PROBLEM DEFINITION

The problem to be investigated by this work is defined in
this section. Solving this problem is a step towards
developing high quality software. To do so, a new approach
based on integrating Object-Z, as a formal, and UML, as a
semi-formal modeling language, is proposed.

Using FMMs as the sole approach to software
development leads to reliable software but with the
following issues:
1. There are different interpretations of the initial informal

requirements by customer and development team. There
is also possibility of changing requirements during
software development. These issues end to production of
a software in contrary with the initial requirements. Fig.
1 illustrates this problem. There are two reasons for such
an incorrect result: 1) there is no possibility of proving a
perfect match between actual informal requirements and
initial formal specification (

1T), 2) it is difficult to do
validation in the interval

2T because of the trouble in
understanding the formal models. So formal methods,
certainly brings us to a result that conforms to the initial
formal specification (because of formal refinements),
however, it does not necessarily conform to the actual
informal requirements.

Figure 1. Imprecise interpretation of customer requirements

Visualization is an approach to solve the first problem,
which leads to facilitate requirements validation in the
interval

2T [15]. However, prototyping [16] is a better

106

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 122 / 612

solution for requirements validation. To do so, the formal
specification should be transformed so that its new form can
be executed or animated [16][32].
2. Even assuming that the initial formal specification

exactly represents the actual informal functional
requirements of the customer, we still do not reach the
software with good enough quality of non-functional
requirements such as reusability, flexibility, scalability,
and extendibility. There are two reasons for such an
unexpected result: 1) difficulty in utilizing the heuristic
and narrative techniques of software engineering such as
design patterns in the interval

2T , 2) inability of
development team members such as analyzers and
designers in understanding complex mathematical
concepts of formal languages.
This work aims to solve the second problem. To do so, a

new approach is suggested to improve software
development process by combining Object-Z and UML to
achieve high quality models of specification and design. In
other words, this work proposes a new approach to develop
high quality software through model transformation between
Object-Z and UML. Fig. 2 illustrates a schematic view of
the new proposed approach. Visualization facilitates
understanding of the formal models and subsequently
provides possibility of interaction with stakeholders, who
are not necessarily familiar enough with complex
mathematical concepts of formalism. It also simplifies using
the narrative techniques of software engineering such as
design patterns during software development process.

Figure 2. A schematic view of the proposed approach

As illustrated in Fig. 2, the initial formal specification is
produced as the first artifact, according to the informal
requirements of the stakeholders, using Object-Z. The initial
formal specification is then refined using several
transformations. Details of design are gradually added to the
initial formal specification during transformations referred
to as formal refinement. Formal refinement ensures
correctness and reliability of the produced artifacts. In time

of reviewing the artifacts from the aspect of behavioral
design patterns, the last refined formal artifact is visualized
in a dominant semi-formal modeling language, i.e., UML.
UML diagrams make it possible to revise the structure and
behavior of the software from the view points of design
patterns. The visualized model is then gradually revised
using behavioral design patterns. Such a revision improves
the flexibility and reusability of the visual models. The last
revised visual model is then re-formalized in Object-Z.
Repeatedly, the more required details of design or even
implantation are augmented to the formal model using
formal refinement. Such an iterative and evolutionary
process continues until achieving a final product with the
desired quality.

Software includes two aspects: structure (static) and
behavior (dynamic) [16][21]. The proposed approach
concentrates on software behavior. It facilitates analyzing
and validating the behavioral aspect of formal models of
software by visualization. Visualization prepares an
appropriate ground to use heuristic and narrative principles
of software engineering such as behavioral design patterns
during software development process. So, the potential
shortcomings and inconsistencies of the behavioral aspect of
these models are identified. This improves the process of
gradual augmentation of design decisions to the initial
formal specification. Such an improvement leads to more
flexibility, reusability, and scalability in developing
software.

Design patterns are high level building blocks that
promote elegance in software by ordering proven and
timeless solutions to common problems in software design.
Applying design patterns in software design has important
effects on software quality metrics such as flexibility,
reusability, scalability, and robustness [9][22][28][29][33].
There are three types of design patterns, including structural,
creational, and behavioral patterns [8][9]. According to the
above-mentioned goal of this work, we focus on the
behavioral patterns (such as mediator, observer, and state)
which shift your focus away from flow of control to let you
concentrate just on the way objects are interconnected.

Object-oriented design encourages the distribution of
behavior among objects to increase software reusability and
flexibility. An important issue here is how peer objects
know about each other. Peers could maintain explicit
references to each other, but that would increase their
coupling. Though distributing software into many objects
generally enhances reusability and flexibility, proliferating
interconnections tend to reduce reusability again. Moreover,
it can be difficult to change the software behavior in any
significant way, since behavior is distributed among many
objects. Such a difficulty decreases the flexibility again. As
a result, you may be forced to define many subclasses to
customize the software behavior. The mediator pattern
avoids this by introducing a mediator object between peers.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their

107

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 123 / 612

interaction independently. In this respect, we attempt to
propose a systematic approach to improve the quality of
formal design from the viewpoint of the mediator design
pattern. That is, a formal design, in Object-Z, is received as
an input, and then behavior of this formal design is
abstractly visualized, in UML, as an output. Indeed, there is
a focus on visualizing those aspects of the software behavior
that are prone to revising from the viewpoint of the mediator
pattern. Moreover, this approach, after full implementation,
will automatically explore and recognize the suitable times
in order to review the software behavior from the view point
of mediator pattern throughout the software development
process.

 Moreover, software distribution into a collection of
cooperating classes requires maintaining consistency among
related objects. You don’t want to achieve consistency by
making the classes tightly coupled, because that reduces
their reusability and flexibility. Observer pattern define a
one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and
updated automatically. In short, the required activities to
visualizing the software behavior (by focus on those aspects
of behavior that are required for revision from the viewpoint
of observer pattern) include: 1) systematic elicitation of the
objects that their states are dependent on each other, 2)
visualizing the discovered objects as appropriate candidates
for review, as well as 3) automatic proposing of the suitable
times to review the software behavior from the viewpoint of
observer design pattern.

Strategy pattern define a family of algorithms,
encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients
that use it. We use the strategy pattern when: l) many related
classes differ only in their behavior. Strategies provide a
way to configure a class with one of many behaviors, 2) you
need different variants of an algorithm. Strategies can be
used when these variants are implemented as a class
hierarchy of algorithms, and 3) a class defines many
behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals,
move related conditional branches into their own Strategy
class. So the Strategy pattern increases the flexibility
through defining families of related algorithms, preventing
subclassing, and eliminating conditional statements.
Summarily, the required activities to visualize the software
behavior form the viewpoint of strategy pattern include: 1)
systematic discovery and elicitation of the classes that have
several behaviors, 2) visualizing the discovered classes as
appropriate candidates for review, as well as 3) automatic
proposing of suitable times for software behavior review
from the viewpoint of the strategy design pattern.

In all above-mentioned revision processes, the required
changes, revealed after visualization, are re-formalized and
thus the primary formal models are improved from the view
point of behavioral design patterns. Software behavior is
visualized from the required aspects using the suitable
diagrams of UML such as class diagram [15][16]. Class

diagram makes it possible to revise the structure and
behavior of the software from the view points of design
patterns

There has been an evolution in the way of transforming
the models [10][17]. In model transformation, the most
important issue is how to preserve the semantic and the
syntactic structure of model elements. To do so, this work
tends to propose a formal bidirectional meta-model-based
transformation between UML and Object-Z. To do so, a
meta-model should be formally defined for Object-Z in a
similar architecture to which the UML meta-model is
defined [11]. Then these meta-models will be used to define
a systematic transformation between the two languages at
the meta-level. In this way, we can provide a precise,
consistent, and complete transformation between the two
languages preserving the semantics and the syntactic
structure of models presented in both languages. Since UML
and Object-Z share basic object-oriented concepts, an
attempt to create a systematic transformation between the
two languages seems sound. Proposing such a meta-model-
based mechanism is left for future work. In the following
subsections, as an instance, we show how a common
construct between UML and Object-Z such as class can be
formally defined at the meta-level in a unified format using
Object-Z [11]. Then a formal rule is presented to transform
class construct from UML to Object-Z based on the formal
definitions of class in UML and Object-Z at meta-level.

A. Formal definition of UML class

A UML class has a name, attributes, and operations. An
attribute has a name, a visibility, a type, and a multiplicity.
An operation has a name, a visibility, and parameters. Each
parameter of an operation has a name and a given type. Prior
to formalizing classes, we define a given set, Name, from
which the names of all classes, attributes, operations,
operation parameters, associations, and roles are drawn:

The class UMLType, as an Object-Z class, is a meta-
type, from which all possible types in UML such as object
types, basic types (integer and string), and so on can be
derived. Each type has a name and contains a collection of
its own features: attributes and operations. Thus, a circled c
which models a containment relationship in Object-Z is
attached to the types of attributes and operations.

Attributes and parameters are also defined as follows.
Variable multiplicity in UMLAttribute describes the possible
number of data values for the attribute that may be held by

108

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 124 / 612

an instance. Visibility in UML can be private, public, or
protected.

Within an operation, parameter names should be unique.

With these classes, an Object-Z class UMLClass is
defined as follows. Since a class is a type, it inherits from
UMLType. Attribute names defined in a class should be
different and operations should have different signatures.
The class invariant formalizes these properties.

B. Formal definition of Object-Z class

First, the semantics of type Name is extended to include
the names of all classe, attributes, operations, and operation
parameters in Object-Z. The following Object-Z class
OZType is a formal description of metaclass OZType. In the
metamodel, OZType is an abstract class from which all
possible types in Object-Z can be derived.

The Object-Z class OZAttribute is a formal description
of attributes. Each attributs has a name, a type, and a
multipilicity constraining the number of values that the
attribute may hold. It also has an attribute, relationship, to
represent whether this attribute models a relationship

between objects. Like UML, relationships between objects
can be common reference relationships, shared, or unshared
containment relationships. For this, we define an
enumeration type, RelationshipKind, which can have
relNone, reference, sharedContainment, and
unsharedContainment as its values. The value relNone
represents pure attributes of a class. When an attribute
models a relationship, the attribute navigability represents
the direction of the relationship (although the navigability of
a relationship is modeled impilicitly in Object-Z). Visibility
in Object-Z can be public or private.

We formalize OZParameter and OZOperation in the
same way as OZAttribute.

Now we are in the position to formalize Object-Z
classes. An Object-Z class named OZClass is a formal
description for classes in Object-Z. Since classes are a kind
of type, OZClass inherits from OZType. The attribute
superclass maintains inheritance information of classes.
Each class has its own attributes and operations defining
static and dynamic behaviors of its instances. Circular
inheritance is not allowed. Attribute and operation names
should be unique within a class. These properties are
specified in the predicate of OZClass. Functions
directSuperclass and allSuperclass return direct superclass
of a class and all inherited superclasses of a class,
respectively.

109

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 125 / 612

C. Formal transformation rule for class

As illustrated in Fig. 3, a formal description for mapping
a UML class to an Object-Z class is given by function
mapUMLClassToOZ that takes a UML class and returns the
corresponding Object-Z class. The UML class name is used
as the Object-Z class name. All attributes of the UML class
are declared as attributes in the state schema of the
corresponding Object-Z class. Also, each operation in the
UML class is translated to an operation schema. In UML,
types of attributes are a language-dependent specification of
the implementation types and may be suppressed. Types of
attributes in Object-Z are language-independent
specification types and cannot be omitted. Operations
parameters are similar. Detailed transformation rules
regarding attribute types and operation parameter types are
not provided. Instead, an abstract function, convType is
defined that maps a UML type to an Object-Z type.

Visibility and multiplicity features are mapped to those of
Object-Z.

An appropriate evaluation method helps determine the
overall effects of the new approach in relation to promised
objectives. This method also includes any recommendations
for improvement. As previously mentioned, the major goal
of introducing the new approach is to improve the process of
formal modeling (including specification and design) of
software behavior based on visualization. So we should
measure the capability of the suggested approach in
satisfying the expected goals. Evaluation criteria of the
proposed approach include: 1) correspondence percentage
between visual and formal models transformed to each other
by the proposed meta-model based transformation method,
2) the amount of increasing the quality (such as flexibility,
reusability, and scalability) of the developed software using
the proposed method. As we intend to propose a meta-
model-based transformation approach, a formal and
systematic transformation between the two languages will
be defined at the meta-level. So we can prove the
correctness, precision, and completeness of the
transformation mathematically. In addition, to demonstrate
the proposed approach, a high quality multi-lift system as a
non-trivial case study will be developed using the proposed
approach.

IV. CONCLUSION AND FUTURE WORK

Although, the widespread use of SFMMs in mainstream
software development provides the possibility of developing
flexible, reusable, and scalable software, it does not lead to
software reliable enough for safety-critical purposes. Their
semantics are not well defined. FMMs have precise
semantics, allowing for unambiguous models of systems to
be specified and designed. However, their use has not been
widely adopted due to the mathematical nature of the
languages.

Figure 3. Formal transformation rule for class

110

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 126 / 612

Investigation of integrated methods has taught us many
things: (a) visual modeling notations and formal methods
can coexist within the same development and complement
each other when developing software models, (b) this
coexistence is useful and provides many benefits, and (c)
formalization of diagrammatic languages, like UML, and
visualization of formal models, like Object-Z, is far from
trivial.

This work proposes a new approach for integrating
visual and formal models to ensure achieving more flexible,
reusable, scalable, yet reliable software. To do so, we
propose a precise mechanism to transform graphical models
into formal specifications and vice versa. This work intends
to present a meta-model-based transformation between
UML and Object-Z. The two languages will be defined in
terms of their meta-models, and a systematic transformation
between the models will be provided at the meta-level. As a
result, we provide a precise, consistent, and complete
transformation between visual models in UML and formal
models in Object-Z. Visualizing the formal models of the
software behavior prepares an appropriate ground to revise
them from the viewpoints of design patterns. Although, this
paper draws the path towards solving the defined problem
and achieving the promised goals, proposing the meta-
model-based transformation is left for future work.

REFERENCES
[1] N. Amálio, Generative frameworks for rigorous model-driven

development, PhD thesis, Dept. of Computer Science, University of
York, 2006.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation”, Proc. ACM/IEEE 10th
International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pp. 436-450, 2007.

[3] D. Bjørner, Software Engineering 3: Domains, Requirements, and
Software Design, Springer, 2006.

[4] F. Bouquet, F. Dadeau, and J. Groslambert, “Checking JML
specifications with B machines”, Proc. ZB 2005, LNCS, vol. 3455,
Springer, pp. 434-453, 2005.

[5] Q. Charatan and A. Kans, Formal Software Development: From
VDM to Java, Palgrave Macmillan, 2004.

[6] R. N. Charette, “Why software fails”, IEEE Spectrum, vol. 42(9), pp.
42-49, 2005.

[7] R. Duke and G. Rose, Formal Object-Oriented Specification Using
Object-Z, MacMillan Press, 2000.

[8] E. Freeman, E. Freeman, and B. Kathy Sierra, Head First Design
Patterns. O’Reilly Media, First edition, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Publishing Company, Fifth printing, 1995.

[10] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum,
“Generating Transformation Rules from Examples for Behavioral
Models”, Proc. Second International Workshop on Behavior
Modeling: Foundation and Applications, Paris, France, 2010.

[11] S. Kim and D. Carrington, “A formal meta-modeling approach to a
transformation between the UML state machine and Object-Z”, Proc.
ICFEM 2002, LNCS, vol. 2495, Springer, pp. 548-560, 2002.

[12] H. Miao, L. Liu, and L. Li, “Formalizing UML models with Object-
Z”, Proc. ICFEM2002, Springer-Verlag, pp. 523-534, 2002.

[13] J. Bowen and M. Hinchey, “Seven more myths of formal methods”,
IEEE Software, vol. 12 (4), pp. 34-41, 1995.

[14] I. Poernomo, “Proofs-as-model-transformations” LNCS, vol. 5063,
pp. 214-228, 2008.

[15] F. Polack, “SAZ: SSADM version 4 and Z”, Proc. Software
Specification Methods: an overview using a case study, Springer, pp.
21-38, 2001.

[16] I. Porres, “Modeling and Analyzing Software Behavior in UML”,
PhD thesis, Department of Computer Science, Abo Akademi
University, Finland, 2001.

[17] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th
edition, McGraw Hill, 2009.

[18] S. K. Rahimi, “Specification of UML Model Transformations”, Proc.
Third International Conference on Software Testing, Verification and
Validation, pp. 323-326, Paris, 2010.

[19] R. Razali, C. Snook, M. Poppleton, and P. Garratt, “Usability
Assessment of a UML-based Formal Modeling Method Using
Cognitive Dimensions Framework”, Human Technology, 2008.

[20] D. C. Schmidt, “Model-driven engineering”, IEEE Computer, 39 (2),
pp. 25-31, 2006.

[21] C. Snook and M. Butler, “UML-B: Formal modeling and design aided
by UML”, ACM Trans. Softw. Eng. Methodol, vol. 15 (1), pp. 92-
122, 2006.

[22] I. Sommerville, Software Engineering, 8th edition, Addison Wesley,
June 4, 2006.

[23] S. Stepney, F. Polack, and I. Toyn, “Patterns to guide practical
refactoring: examples targeting promotion in Z”, Proc. ZB 2003,
Finland, LNCS, vol. 2651 of, Springer, pp. 20-39, 2003.

[24] J. R. Williams, Automatic Formalization of UML to Z, MSc Thesis,
Department of Computer Science, University of York, 2009.

[25] J. Ludewig, “Models in software engineering – an introduction”,
Software and Systems Modeling, vol. 2(1), Springer-Verlag, 2003.

[26] A. Rasoolzadegan and A. Abdollahzadeh, Specifying a Parallel,
Distributed, Real-Time, and Embedded System: Multi-Lift System
Case Study, Technical Report, Information Technology and Computer
Engineering Faculty, Amirkabir University of Technology, Tehran,
Iran, 2011: http://ceit.aut.ac.ir/~86131901/Publications.htm.

[27] A. Rasoolzadegan, A. Abdollahzadeh, “Empirical Evaluation of
Modeling Languages Using Multi-Lift System Case Study”, Proc.
MSV'11: The 8th annual International Conference on Modeling,
Simulation and Visualization Methods, Las Vegas, Nevada, USA,
2011.

[28] S. Blazy, F. Gervais, and R. Laleau, “Reuse of specification patterns
with the B method”. Proc. ZB 2003, Turku, Finland, LNCS, vol.
2651, Springer, pp. 40-57, 2003.

[29] A. Flores, R. Moore, and L. Reynoso, “A formal model of object-
oriented design and GoF design patterns”, Proc. FME 2001, LNCS,
vol. 2021, pp. 223-241, Springer, 2001.

[30] A. H. Eden and T. Mens, “Measuring Software Flexibility”, IEE
Software, vol. 153(3), pp. 113-126. London, UK: The Institution of
Engineering and Technology, 2006.

[31] OMG, Object Constraint Language (OCL). version 2.0, Object
Management Group, 2006: http://www.uml.org.

[32] H. Liang, J. Song Dong, J. Sun, and W. Wong, “Software monitoring
through formal specification animation”, Innovations in Systems and
Software Eng., vol. 5(4), pp. 231-241, 2009.

[33] S. Kim and D. Carrington, “A rigorous foundation for pattern-based
design models”, Proc. ZB 2005, LNCS, vol. 3455, Springer, pp. 242-
261, 2005.

111

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 127 / 612

Non-Functional Requirements for Business Processes

in the Context of Service-Oriented Architectures

Oliver Charles

agilTech Information Technologies GmbH

Am Krebsgraben 15

D-78048 Villingen-Schwenningen, Germany

oliver.charles@agiltech.de

Bernhard Hollunder

Furtwangen University of Applied Sciences

Robert-Gerwig-Platz 1

D-78120 Furtwangen, Germany

hollunder@hs-furtwangen.de

Abstract—We present novel concepts to formalize and apply
non-functional requirements (NFRs) for business processes in
the context of Service-Oriented Architectures (SOAs). Today,
popular languages for modeling business processes do not
support the specification of NFRs in a systematic manner.
However, there is a strong demand to explicitly address such
requirements when designing and deploying software systems.
In this paper, we elaborate an extension for BPMN (Business
Process Model and Notation) towards the modeling of NFRs. A
key feature is the tool independent representation of NFRs,
which will be achieved by applying the widely used WS-Policy
standard. Our approach also covers the mapping of the speci-
fied NFRs to the technical level represented by BPEL (Business
Process Execution Language). For the monitoring of NFRs we
exploit techniques from Complex Event Processing (CEP). A
key characteristic of our solution is its coherence: from NFRs
modeling at design level to their technical enforcement and
dynamic validation during execution. The feasibility of our
approach has been demonstrated by a proof of concept imple-
mentation based on NetBeans, Glassfish ESB, IEP as CEP
implementation, and the BPEL Service Engine.

Keywords-Non-functional requirements, Business process,

BPMN, BPEL, SOA, WS-Policy, Web services, Quality of service

I. INTRODUCTION

When introducing a Service-Oriented Architecture
(SOA) for some enterprise, the definition of appropriate
business processes as well as services plays a crucial role. A
business process can be viewed as a well-defined sequence
of activities to achieve a particular business goal. In order to
exchange data with back-end systems (e.g., ERP systems,
specific business applications and database systems), busi-
ness processes typically use course-granular services, which
hide the technical details of the services’ implementation.
Today, services are often realized with the Web services
technology. In other words, a business process within a SOA
composes a set of Web services in such a way that higher
business goals will be obtained.

When employing Web services in the area of so-called
mission critical business applications, “pure” Web services
are not sufficient. This is because in such an environment
non-functional requirements (NFRs) such as message relia-
bility, confidentiality, availability and performance must be
addressed. The importance of NFRs for Web services has
been stressed elsewhere (see e.g., [1] or [7]). There are
proven standards such as WS-SecurityPolicy [2] bringing
selected NFRs to Web services.

As Web services are composed by business processes,
the interaction of NFRs at service level on the one hand and
at process level on the other hand must be clearly defined.
Hence, it is crucial to assign – explicitly or implicitly – NFRs
to business processes such as time and resource consump-
tion, auditability and scalability (e.g., as described by Adam
and Doerr in [3]).

In the past, there has been much work on modeling func-
tional requirements of business processes. The most promi-
nent approaches used in SOA infrastructures are the Business
Process Model and Notation (BPMN) and the Business
Process Execution Language (BPEL). While BPMN prima-
rily focuses on the graphical representation of business
processes, BPEL tackles technical aspects such as the
mapping to Web services to be invoked during process exe-
cution. It should be noted that there is broad tool support, for
an overview see e.g., [4].

Currently, there is only very limited support for specify-
ing NFRs for business processes, though. In fact, the BPMN
and BPEL do not provide language features for including
NFRs features. As a consequence, when transforming a
process model into an executable format the application
developer must pollute the business logic with mechanisms
for realizing the desired NFRs. This approach, however,
would strongly limit the reusability and adaptability, if the
solution should be deployed in an environment where
different sets of NFRs must be supported.

In this paper, we present a novel approach for forma-
lizing NFRs for business processes that overcomes these
deficits. Special focus lies on its coherence, because we not
only cover the modeling of NFRs at design level, but also
their technical enforcement and their dynamic validation
during execution. Our approach comprises the following
aspects:

 Modeling of NFRs with BPMN and BPEL by ex-
ploiting standard extension mechanisms.

 Enforcement strategy for NFRs based on Web servi-
ce handlers.

 Usage of standards such as WS-Policy to formalize
NFRs at the technical level.

 Static and dynamic validation of NFRs.

 Tool support and proof of concept.

The paper is structured as follows. The next section will
give a short introduction to the underlying technologies
required to understand our approach. Related work will be

112

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 128 / 612

discussed in Section three, followed by a detailed description
of our solution. Section five will cover the proof of concept
implementation. Conclusions and open issues are part of the
final section.

II. FOUNDATIONS

This section briefly introduces the most important con-
cepts and techniques as required for the understanding of our
approach. We start with Business Process Management,
which is the general area our results apply to. Then we pro-
vide background information to Non-Functional Require-
ments, followed by a short review of WS-Policy, which is a
well-known and widely used standard for formalizing NFRs
for Web Services and SOAs.

Due to limited space, this paper does not give an intro-
duction to BPMN and BPEL. Hence, we assume an under-
standing of the basic concepts of these technologies.

A. Business Process Management

Business Process Management (BPM) includes concepts,
methods, and techniques to support the design, imple-
mentation, enactment, monitoring, and strategy alignment of
business processes. In the context of SOAs, BPM focuses on
how business processes can be automated using SOA infra-
structure elements. The target is not only a high automation
of processes, but also to enable development and manage-
ment to react in a flexible and agile manner on changing bu-
siness or technical requirements.

BPM covers the following topics:

 Strategy phase

 Design phase

 Execution phase

 Monitoring phase.

As the name of the first phase indicates, the main focus is
the elaboration of the mid- to long-term alignment of an
enterprise and how IT can be leveraged to automate and
optimize business processes. Having defined the strategic
goals, in the design phase the identified business processes
are brought to “IT-level”. This includes a proper description
from which an implementation will be derived. The usage of
graphical modeling languages – in particular BPMN and
BPEL – is not only advantageous for the domain experts, but
also helps bridging the gap to the implementation level.
While the execution phase is concerned with the usage of the
implemented business processes by clients, the goal of the
monitoring phase is to receive data regarding the runtime
behavior such as identification of bottlenecks, quantity of
invoked processes, and performance analysis.

As already mentioned in the introduction, our solution
considers NFRs at the design, implementation, and monito-
ring level. That is the reason why we term it coherent.

B. Non-Functional Requirements

In system and software engineering there are mainly two
categories of requirements: functional and non-functional
requirements. A functional requirement describes a specific
business or technical functionality of a system in terms of the
input/output behavior. In contrast, a non-functional require-

ment addresses a quality of service (QoS) attribute of the
implementation. In software engineering, there was (and still
is) much research on NFRs for software systems. Standardi-
zation organizations such as ISO have identified manifold
aspects (see e.g., ISO/IEC 9126 [6], which is superseded by
ISO/IEC 25000 [5]).

There are several publications that consider NFRs in the
specific context of SOA, e.g., by O’Brien, Merson, and Bass
[7]. OASIS [1] gives a classification of different types of
NFRs (which are called quality factors). Besides others, the
following topics are covered:

 duration and response time

 throughput

 availability and reliability

 standard conformance

 observability

 security aspects such as confidentiality, authenti-
cation, authorization, integrity, and non-repudiation

 pricing and accounting

 robustness.

Let us make some remarks. Even though we can find in
the literature characterizations of NFRs, there are often dif-
ferences regarding their exact meaning and definition. Some
of them can be described by a formula; e.g., response time,
duration, and availability. The behavior of other NFRs such
as integrity can be defined in terms of functions for digital
signature. Robustness is an example for an NFR that has
diverse facets such as error tolerance, often described as the
ability to deal with erroneous input. A business process, for
example, should not crash or run into an inconsistent state if
it is called with invalid parameter values.

C. WS-Policy

WS-Policy [8] is a specification of the W3C and provides
a policy language to formally describe “properties of a
behavior” of services. A WS-Policy description is a collec-
tion of so-called assertions. A single assertion may represent
a capability, a requirement or a constraint and has an XML
representation. An example for an assertion is

 <Performance max_runtime_minutes="15"/>,

which formalizes a condition for the runtime behavior of a
particular business process.

WS-Policy introduces operators to form policies, which
are basically sets of assertions. Policies can be attached via
the WS-PolicyAttachment [9] specification to other entities
such as a BPEL process description and a Web service’s
WSDL. We will come back to this issue when introducing
our solution.

III. RELATED WORK

In [10], Pavlovski and Zou present an approach to model
NFRs for business processes in a graphical manner. They
introduce extensions for BPMN, the enforcement on the
technical level (e.g., in BPEL) has not been elaborated,
though. For the modeling of NFRs, Zou and Pavlovski
propose two extensions of BPMN: i) an “operating
condition” artifact and ii) a “control case” artifact. With an

113

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 129 / 612

operating condition artifact, a business process modeler
should be able to connect NFRs such as security, performan-
ce or availability to activities of the BPMN process model.
The use of the control case artifact is optional and is
introduced to refine an operating condition artifact. From a
more technical point of view, a control case artifact is a
reference to a table containing detailed information about the
modeled NFRs.

The approach of Rodriguez et al. [11] also tackles the
modeling of NFRs within BPMN. However, their solution is
restricted to the modeling of security requirements. They do
not extend the standardized artifacts of BPMN, but rather
implement new Business Process Diagram (BPD) core ele-
ments. In this context it is described how to extend the BPD
meta-model towards the coverage of security issues. The
mapping of “security-enhanced” process models to the
technical level (as in the approach in [10]) is not addressed.

Tai et al. [12] explain a new idea about how transactional
behavior can be modeled as NFRs within BPEL. To express
this with XML, the authors use WS-Policy [8] in
combination with WS-PolicyAttachment [9]. They directly
attach WS-Policy descriptions to selected BPEL elements
within the process document. Proposed elements are for
example <partnerLink> or <scope>. To enforce the
attached WS-Policy descriptions, Tai et al. assume a
coordination middleware, which executes the BPEL-process
taking into account the NFRs.

Charfi et al. present in [13] another approach to model
non-functional requirements with BPEL. Their approach is
based on well-known standards and specifications such as
WS-Policy, WS-PolicyAttachment and XPath. It has to be
mentioned that their approach is not a completely new one
but a combination of the mentioned standards.

To sum up, there are several approaches that extend
process models towards NFRs. However, they either focus
on BMPN or BPEL. As we will see in the next section, our
solution – beside other features – includes the mapping from
BPMN to BPEL.

IV. THE OVERALL ARCHITECTURE

A. Modeling NFRs in BPMN

BPMN does not provide explicit language constructs for
modeling NFRs. Basically, there are two options to over-
come this limitation: i) introducing new language features
optimized for modeling NFRs, and ii) applying existing
artifacts in a specific way. A disadvantage of the first alter-
native would be missing support by existing BPMN tools.
Therefore, we pursue the second approach.

A so-called text annotation is a standard artifact of
BPMN, which allows one to attach auxiliary information to
model elements. The following figure gives an example:

Figure 1. QoS artifact for BPMN.

At the left hand side there is some business process
activity. In order to impose NFRs for this activity, we assign
a text artifact. In this approach, we distinguish between
arbitrary text annotations and those, which formalize NFRs.
The latter are called “QoS artifacts” and are text artifacts
with a particular content and specific syntax.

In our approach, we support the following syntax: The
prefix “QoS” indicating a QoS artifact is followed by a
category name, which specifies a particular NFR. In the
previous example, we impose a performance restriction to
the modeled activity. Finally, a set of attribute/value-pairs
define the specific properties for the NFR.

The content of a QoS artifact is a text with some well-
defined structure, which will be mapped to XML. In order to
support syntax checking, we have defined XML schemas for
the supported NFRs. Due to lack of space, we omit the
description of the schemas.

We have defined a library comprising well-known QoS
artifacts. Each QoS artifact comes with a modeling manual
describing its meaning, formalizing the required syntax by
means of an XML schema, and optional modeling examples.
It should be noted that the set of predefined QoS artifacts
could be extended by additional NFRs basically by defining
its XML schema.

 To sum up, our NFRs modeling approach is a light-
weight solution, which reuses standard artifacts supported by
BPMN tools. As a consequence, process models can be
exchanged between different tools without losing NFRs
model information. The usage of XML schemas not only
specifies the specific syntax but also allows the automated
validation. Last but not least, the QoS artifacts library can be
reused in different settings.

B. Modeling NFRs in BPEL

As mentioned above, BPEL does not support the mode-
ling of NFRs in a direct manner. In [13] it has been shown
how to overcome this limitation by applying the standards
WS-Policy, WS-PolicyAttachment and XPath. The main
idea is to link BPEL process elements to a WS-Policy de-
scription. Such a description contains WS-Policy assertions
formalizing NFRs (see Section II-C). A well-known set of
assertions for the security domain has been introduced in [2].

Figure 2. Assigning WS-Policy to BPEL.

114

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 130 / 612

Figure 2 depicts the linkage between the BPEL process
and the policy description. A WS-PolicyAttachment file
contains an <AppliesTo> entry referring to the BPEL
element to which the WS-Policy description should be
applied. The latter is linked via the <PolicyReference>
element, which is also introduced by the WS-PolicyAttach-
ment specification. As we apply XPath for selecting the
targets, this approach exclusively uses well-known and
widely supported specifications.

This concept clearly separates i) the logic of the business
process and ii) the required NFRs. As a consequence, both
parts of the overall application can evolve independently
from each other, which has a positive effect on main-
tainability, reusability and adaptability of the solution. As an
example, consider a WS-Policy file that formalizes a parti-
cular set of NFRs. The policy can be applied to several
business applications. As a consequence, this not only in-
creases reusability of the required “NFRs patterns” but also
guarantees conformance to corporate compliance rules.

C. Transformation of NFRs – From BPMN to BPEL

Having described how to represent NFRs within BPEL,
we are now able to consider the mapping from QoS artifacts
in a BPMN model to WS-Policy descriptions for BPEL. It
should be noted that we do not consider the general trans-
formation rules mapping BPMN elements to BPEL elements,
because they are part of most BPMN/BPEL modeling tools.

 To map NFRs we proceed as follows: For each QoS
artifact, we create both a WS-PolicyAttachment file as well
as a WS-Policy file. The assertions contained in the policy
description correspond to the NFRs of the QoS artifacts.
These assertions in turn have references to the XML schema
definition and the modeling manual, respectively. After all
WS-Policy documents have been created, they are used by
the corresponding WS-PolicyAttachment files to link the re-
quired policies to BPEL process elements as already
described.

D. Enforcement of NFRs

This section is concerned with the question how the
modeled NFRs can be enforced. Basically, we observe that
there are two targets to which the modeled NFRs will be
applied: i) the business process itself, and ii) the com-
munication between a BPEL service and an underlying Web
service. From a modeling perspective, we use the following
convention: if the category name of a QoS artifact starts with
“WSComm_”, the latter target is meant, otherwise the NFR
applies to the business process.

If a policy relates to the business process itself, which
means that the described prefix is not set by the BPMN
modeler, the Web service developer has to extend the Web
service’s application logic, i. e., the source code.

If a policy relates to the service communication, the Web
service developer has the responsibility to enforce the NFRs
with the help of interceptors (also called handlers), which
can be installed in SOA infrastructures and manipulate the
outgoing and incoming messages. Details can be found e.g.,
in [14].

In order to enforce a specified behavior, typically an
appropriate WS-Policy description will be attached to the
Web service’s WSDL as well as to BPEL process elements
(see Figure 3). This policy may for example specify that the
invoker (e.g., the BPEL service) must encrypt the parameter
values passed to the Web service, which in turn is able to
decrypt these values. For standard NFRs (such as security
and reliable messaging) Web services frameworks typically
provide respective handlers. For other NFRs such as
accounting and resource consumption specific handlers must
be configured.

Figure 3. QoS enforcement through handlers.

To support several NFRs, all the required handlers must

be installed. This can be achieved by using so-called handler
chains supported by Web services frameworks. Before a
request is delivered to the service implementation, each
handler will be invoked.

E. Validation of NFRs

Our architecture also includes components for validating
NFRs. We distinguish between static and dynamic va-
lidation. During the static validation process, the NFRs
contained in a BPMN process diagram will be checked
against the WS-Policy descriptions of the underlying Web
services implementations. Static validation can be automated
by applying WS-Policy compatibility algorithms such as
WS-Policy intersection [8] and semantic policy differencing
[15].

Performance is an example of an NFR where dynamic
validation must be applied. As the actual execution time of a
process depends on factors, which are not determinable a
priori (e.g., server consumption, network latency and user
interaction), a monitoring system is required in order to
continuously observe the infrastructure. To provide a
monitoring system with the required data, so-called sensor
components (such as JMX and NFRs handlers, see [16]) can
be installed in SOA infrastructures.

This system will inform, for instance, the system
administrator if some NFRs are violated. Depending on the
severity of the violation (e.g., leakage of sensible data)
actions may be immediately performed such as shutting
down a service or a server.

115

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 131 / 612

Figure 4. Dynamic validation with CEP [17].

Complex Event Processing (CEP) [18] has been introduced

as a technology to find correlated data items in a continuous

flow of data. The data items to be selected are specified by

patterns defined, for instance, with the Continuous Query

Language (CQL). It turned out that the conditions, which

indicate a violation of an NFR during execution, can be

appropriately defined as CEP patterns. Figure 4 illustrates

the integration of an abstract CEP engine in a BPEL/Web

services environment. We have identified the following

components:

 input component

 output component

 CEP engine

 reaction component

 event senders.

The input component receives events from the BPEL engine

and the Web services, respectively. The so-called event

senders, which are specific implementation of the above

mentioned sensor components, inform the CEP engine about

significant actions in the business application (e.g.,

transition within the business process, Web service

invocation, passing of non-encrypted sensible data, etc.).

Subsequently, the input component passes the received

events to the CEP engine. As soon as the CEP engine

detects data items that match a CEP pattern, a new

(complex) event will be created. The output component has

the responsibility to pass it to a user (e.g., via SMTP) or to

the reaction component, which in turn will inform the

orchestration service, or to a management system (via Web

service invocation) about the violation of an NFR.

V. PROOF OF CONCEPT

The overall architecture presented in the previous section
is quite generic and can be instantiated in different ways. In
order to show the feasibility of our approach we have
developed a proof of concept implementation based on

NetBeans IDE and Glassfish ESB. This combination compri-
ses the following tool set:

 BPMN/BPEL designer to model business processes.

 BPEL runtime environment for executing BPEL

processes.

 Web services development, deployment and runtime

environment.

 Intelligent Event Processing (IEP) service engine as

implementation of a CEP engine.

The BPMN/BPEL designer allows the graphical mode-

ling of business processes according to the BPMN and BPEL
languages. It should be noted that only those BPMN ele-
ments are supported by the tool, which can be mapped to the
XML BPEL process file.

One of these elements is the documentation artifact,
analogous to the common BPMN text artifact that allows the
attachment of comments to elements in a BPEL process.
These comments are transformed to the common BPEL tag
<documentation> within the underlying XML BPEL
process file. To avoid this intrusion, we extended the
BPMN/BPEL designer by a new QoS artifact (see Figure 5)
with which it is possible to implement our introduced
transformation process as described above.

Figure 5. QoS artifact in the BPMN/BPEL designer.

With the NetBeans composite application display it is

possible for a Web service developer to attach handlers via
the context menu not only to the BPEL service but also to
the Web services, which are invoked. This enables an easy
configuration of handlers required for enforcing the defined
NFRs.

The IEP service engine comes with a graphical modeling
language for selecting, transforming and aggregating events.
This modeling language also provides predefined types for
output components, e.g., datasets, database tables and dash-
board formats. It is also possible to generate WSDL inter-
faces for the input components and their implementations as
Web services, which can be used by the event senders.

116

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 132 / 612

Hence, IEP enables the validation of a business process
during its execution.

Independent of IEP, it is also possible to make theoretical
commitments before process execution. For example, a Web
service developer wants to check if the modeled runtime of a
business activity complies with the modeled runtime of the
Web services. Therefore, the WS-Policy assertion of the
business activity has to be checked against the sum of
runtime assertions of the Web services to be invoked.
Unfortunately, this functionality is not provided yet by
NetBeans and Glassfish ESB, respectively, so that this check
has to be accomplished manually.

VI. CONCLUSIONS AND FUTURE WORK

In software engineering, there has already been much
work on non-functional requirements. This is motivated by
the fact that nearly all deployed application systems must not
only fulfill the desired business logic, but should also
guarantee aspects such as robustness, scalability, security,
performance and reliability. Although NFRs should be
especially considered when designing applications according
to the SOA principle, there is currently only partial support –
both from a conceptual as well as technical point of view.

In our work, we have presented a coherent concept for
formalizing, applying, enforcing, and monitoring NFRs for
business processes. A driving force of our solution is the
commitment to well-known standards and widely used tech-
nologies such as BPMN, BPEL, WS-Policy, CEP, and
others. As a consequence, the conceptual framework of our
solution can be instantiated in several ways based on existing
tools such as NetBeans and Glassfish ESB.

This demonstrates the high impact of our results on soft-
ware engineering practice. Specifically, our approach is a
further step towards improving the development of business
application with well-defined NFRs. We support the well-
known separation of concerns principle by flexibly attaching
NFRs to business processes.

Our work can be extended in several ways. In order to
leverage our solution, further NFRs should be formalized.
This includes the definition of the required QoS artifacts for
BPMN and their mapping to corresponding WS-Policy asser-
tions. To disseminate our approach in software engineering
practice, additional proof of concept implementations would
be quite helpful; especially an instantiation with the Visual-
Studio IDE and the .NET technology.

ACKNOWLEDGMENT

We would like to thank Markus Schalk for the extensive
support during the elaboration of the architecture and the
proof of concept. This work has been partly supported by the
German Ministry of Education and Research (BMBF) under
research contract 17N0709.

REFERENCES

[1] OASIS, Web Services Quality Factors 1.0 (07/2010),
Retrieved April 16, 2011, from http://docs.oasis-
open.org/wsqm/wsqf

[2] OASIS, WS-SecurityPolicy 1.3 (03/2009), Retrieved October
11, 2010, from http://docs.oasis-open.org/ws-sx/ws-
securitypolicy

[3] S. Adam and J. Doerr, “Towards Early Consideration of Non-
Functional Requirements at the Business Process Level”, Pro-
ceedings of International Conference on Information Resour-
ces Management, pp. 227-230, 2007.

[4] OMG, Object Management Group / Business Process Mana-
gement Initiative, Retrieved March 03, 2011, from
http://www.bpmn.org

[5] ISO/IEC, “Software engineering – Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE”,
ISO/IEC 25000, 2005.

[6] ISO/IEC, “Software engineering – Product quality”, ISO/IEC
9126-1 to 9126-4, 2001-2004.

[7] L. O’Brien, P. Merson and L. Bass, “Quality Attributes for
Service-Oriented Architectures”, in Proceedings of Inter-
national Workshop on Systems Development in SOA
Environments (SDSOA '07), pp. 1-5, 2007.

[8] W3C, Web Services Policy 1.5 (09/2007) – Framework,
Retrieved April 03, 2011, from http://www.w3.org/
TR/ws-policy

[9] W3C, Web Services Policy 1.5 (09/2007) – Attachment,
Retrieved April 03, 2011, from http://www.w3.org/
TR/ws-policy-attach

[10] C. Pavlovski and J. Zou, “Non-Functional Requirements in
Business Process Modeling”, in Proceedings of the Asia-
Pacific Conference on Conceptual Modelling, pp. 103-112,
2008.

[11] A. Rodriguez, E. Fernández-Medina and M. Piattini, “A
BPMN Extension for the Modeling of Security Requirements
in Business Processes, IECE Trans. Inf. & Syst, pp. 745-752,
2007.

[12] S. Tai, R. Khalaf, and T. Mikalsen, “Composition of Coor-
dinated Web Services”, Middleware, pp. 294-310, 2004.

[13] A. Charfi, R. Khalaf and N. Mukhi, “QoS-Aware Web Ser-
vice Compositions Using Non-intrusive Policy Attachment to
BPEL”, in Proceedings of the 5th International Conference on
Service-Oriented Computing, pp. 582-593, 2007.

[14] E. Hewitt, Java SOA Cookbook: SOA Implementation
Recipes, Tips, and Techniques, O´Reilly, 2009.

[15] B. Hollunder, “Domain-Specific Processing of Policies or:
WS-Policy Intersection Revisited,” Proceedings of the 7th
IEEE International Conference on Web Services (ICWS), pp.
246-253, 2009.

[16] A. Wahl, A. Al-Moayed, and B. Hollunder, “An Architecture
to Measure QoS Compliance in SOA Infrastructures”,
Proceedings of the Second International Conferences on
Advanced Service Computing (Service Computation 2010),
pp. 27-33, 2010.

[17] O. Charles, M. Schalk, and B. Hollunder, “CEP meets SOA”,
OBJEKTSpektrum: Vol 5, pp. 28-32, 2010.

[18] D. Luckham, “The Power of Events”, Addison Wesley, 2007.

117

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 133 / 612

A Framework for Adapting Service-oriented Applications based on
Functional/Extra-functional Requirements Tradeoffs

Raffaela Mirandola
Politecnico di Milano

DEI, Milano, Italy
mirandola@elet.polimi.it

Pasqualina Potena
Univ. degli Studi di Bergamo
DIIMM, Dalmine (BG), Italy
pasqualina.potena@unibg.it

Elvinia Riccobene
Univ. degli Studi di Milano

DTI, Crema (CR), Italy
elvinia.riccobene@unimi.it

Patrizia Scandurra
Univ. degli Studi di Bergamo
DIIMM, Dalmine (BG), Italy
patrizia.scandurra@unibg.it

Abstract—This paper introduces an adaptation framework
for service-oriented applications based on trade-offs between
functional and extra-functional (e.g., availability, performance,
and adaptation cost) requirements. The framework relies on
an optimization method for adaptation space exploration based
on the combined use of meta-heuristic search techniques and
of functional and extra-functional patterns (e.g., architectural
design patterns and tactics). A formal service-oriented compo-
nent model, called SCA-ASM, is also adopted for the specifi-
cation and functional analysis of service-oriented applications.
Through a sample application, we exemplify the methodology
with emphasis on the use of extra-functional patterns.

Keywords-Service-oriented applications; software adaptation
and evolution; extra-functional adaptation patterns.

I. I NTRODUCTION

Service-oriented applications are playing an important
role in several application domains (e.g., health care, defense
and aerospace) since they offer advanced and flexible func-
tionalities in widely distributed environments by composing,
possibly on demand, different types of services. These ap-
plications may require dynamic adaptation to changing user
needs, system intrusions or faults, changing operational envi-
ronment and resources. Foundational theories and notations
are required to support the engineering of such applications.
Also required are techniques for monitoring and evaluating
the behavior and performance of these applications, fully
integrated in a software engineering process that reflects the
closed-loop paradigm(e.g., the MAPE-K loop in the context
of autonomic computing) [1] are required.

Extra-functional properties of services are often specified
as quality of service (QoS) constraints and their values
are dynamic [2]. For example, the system response time
depends on environmental factors among which input data,
server load, and network latency. The adaptation decisions
for implementing the single changes should be triggered
whenever unsatisfactory behaviors and values are reported
by monitoring modules or required by the user (or “system
designer” or “system maintainer”), and the right trade off
among the functional requirements, software qualities and
the adaptation cost should be considered. A decision, for
example, taken for modifying the dynamic of a service may

be good for the satisfaction of the system reliability, but
at the same time it may require a high adaptation cost for
adapting the interfaces of services [3].

This paper presents an adaptation framework based on
functional and extra-functional requirements trade offs.It is
based on a formalservice-oriented component model, named
SCA-ASM [4], for the specification and analysis of service-
oriented applications, and on a runtimeoptimization method
for adaptation exploration that uses a mixed approach of
metaheuristic search techniques [5], of functional and extra-
functional adaptation patterns, such as architectural design
patterns and tactics, or also software actions defined by
the maintainer based on his/her experience. The adopted
optimization approach enhances the one defined in [3] by
taking into account also functional issues that allow, among
other things, to relax the independence assumption between
adaptation actions for different adaptation requirements.

According to thedesign for adaptabilityvision in [6], our
framework supports both evolution (at re-design time) and
self-adaptation (at run time). The second form of adaptation
regards temporary modification (such as the re-execution
of an unavailable service or a substitution of an unsuitable
service) permitting to respond to changes in the requirements
and/or in the application context. However, when changes
regard critical aspects and should be applied permanently
to the system, they should be considered as evolution steps,
and therefore fast answers are not essential since adaptation
strategies are evaluated and carried out at (re-)design time.

This paper is organized as follows. Section II reports
related works. Section III provides background on SCA-
ASM. Section IV describes our adaptation methodology.
Section V presents the overall architecture of our framework.
Section VI exemplifies our methodology through a sample
application. Finally, Section VII sketches some future work.

II. RELATED WORK

A survey on adaptation approaches and frameworks can
be found in [1]. Most of them typically adapt a system by
adopting different service selection policies, varying system
parametrization or exploiting the inherent redundancy of the
Service-Oriented Architecture (SOA) environment.

118

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 134 / 612

Some frameworks exist for the dynamic generation of a
service composition, but usually they adapt a system only
in a reactive way, after the adaptation request triggered by
a user. They support the service selection with respect to a
service composition defined by the user (e.g., the VRESCo
runtime environment [7]) or choose the service composition,
which they have generated together with a finite set of other
candidates, that better fulfill the required quality (e.g.,[8]).

With respect to the state-of-art, our work is the first
framework (to the best of our knowledge) that supports the
adaptation of service-oriented applications (including both
static and dynamic aspects) at runtime and at re-design time.
It uses a mixed approach of metaheuristic search techniques,
whose effectiveness and efficiency has been already demon-
strated for supporting the service selection activity at run-
time [2], and of functional and extra-functional adaptation
patterns [9]. Existing approaches typically do not take into
account functional aspects and assume that a component
is functional equivalent to its alternatives [10]. Concerning
design solutions, existing approaches (e.g., [9] and [11])do
not quantify or predict the impact of the adoption of one or
more solutions on the system quality and functionality. As
opposite, we address such a problem.

III. B ACKGROUND ON SCA-ASM

SCA-ASM [4] [12] is a formal and executable modeling
language based on: (i) the open standardService Component
Architecture(SCA) [13] for heterogeneous service assembly,
and (ii) theAbstract State Machines(ASM) formal method
[14], which is an extension of FSMs wherestates are
arbitrary complex data (multi-sorted first-order structures)
and thetransition relation is specified byrules describing
how functions change from one state to the next. The
SCA-ASM formalism is able to model service interactions,
orchestration, compensations, and services internal behavior.

An SCA assembly (or composition) of service-oriented
components can be graphically produced using the Eclipse-
based SCA Composite Designer (an inner module of the
SCA tools), and also stored or exchanged in terms of an
XML-based file that is then used by the SCA runtime to
instantiate and execute the system. The ASM formalism
complements the structural description of the SCA assembly
with a formal and executable behavioral description of the
assembled components. Figure 1 shows an example of an
SCA assembly of a stock trading application (better de-
scribed in Sect. VI), while Figure 2 shows an ASM fragment
of theOrderDeliveryComponent component behavior.

IV. T HE ADAPTATION METHODOLOGY

An SCA assembly can be adapted through the following
actions: adding/removing components, component services,
references, properties, reference-service wires and promo-
tion wires (component interactions); changing a component
implementation (but keeping its shape); changing component

Figure 1. Stock Trading System

module OrderDeliveryComponent
//@Provided service interface
import OrderDeliveryService
//@Required service interface
import StockExchangeService
...//Other module imports
signature: //ASM function declarations
//@Reference to the external stock exchange system
shared stockExchange:Agent−>StockExchange
//@Backref back reference to the requester
shared client: Agent−> Agent
//Other function declarations for internal computation
controlled order: Agent−> Order
definitions:
//ASM rules for the provided service operations
@Service
rule r place($clientin Agent,$oin Order)= ...//to place buy or sell orders
...
//ASM rule for the component’s agent behavior
rule r OrderDeliveryComponent=
seq
r wreceive(client(self),”place”,order(self))
//direct service invocation
r place(client(self),order(self))
r wreplay(client(self),”place”,order(self))

endseq
//constructor rule
rule r init($agentin OrderDelivery)=$...//do initialization (if any)

Figure 2. ASM module of theOrderDeliveryComponent

properties values; changing SCA domains (components re-
deployment). It is also possible to change the component
interaction style in synchronous/asynchronous, statefulor
not, unidirectional or bidirectional. See [13] for details.

Actions can be combined into anadaptation plan, which
is a set of actions modifying the static and dynamic parts
of a system architecture to address a certain requirement.
Adaptation plans may differ for adaptation cost and/or for
the system quality achieved after their application.

The proposedadaptation processstarts from a set of
initial SCA-ASM assemblies (initialcandidatesor popula-
tion) fulfilling the existing/new functional requirements. It
proceeds iteratively till stop criteria are satisfied. Currently,
we use a predefined number of iterations to determine the
end of the search. More sophisticated stop criteria could use
convergence detection and stop when the global optimum is
probably reached. At each iteration step, new candidates are
generated from the initial population (whose size depends on

119

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 135 / 612

the specific search technique) by two subprocesses executed
in parallel: (i) metaheuristic searchby applying user adap-
tation plans, service selection and service re-deployment;
(ii) functional/extra-functional patterns applicationby ex-
ploiting architectural design patterns and tactics. Then the
functional and quality analyses of the resulting candidates
are performed together with an assessment of the adaptation
costs. In case of self-adaptation, SCA-ASM assemblies are
automatically selected as solutions according to predefined
selection criteria (e.g., cost minimization). In case of evo-
lution, the solution can be more accurately selected also
considering a possible feed-back from the user [6].

Metaheuristic search techniques.Several metaheuristics
[5] with different characteristics could be adopted depend-
ing on the problem: for example, considering the system
reliability, a possible heuristic is to regard as increasing
the whole reliability of the system when the reliability
of the most used components increases. As remarked in
[10], there exist design options for which we have no prior
knowledge on how they affect the extra-functional property
of a particular system. To this extent, undirected operations
could be performed (e.g., random choices or exhaustive
evaluation of all neighboring candidates).

Architectural design patterns and tactics.Architectural
patterns are templates for concrete software architectures.
They are adopted to embody functional requirements and,
in particular, to enable self-adaptability by introducingsen-
sors/effectors components (e.g., Microkernel pattern, Re-
flection pattern, Interception pattern) [1]. To build new
design solutions embodying extra-functional requirements,
we adopt architectural tactics [9], which are reusable archi-
tectural building blocks that provide a generic solution to
issues pertaining to quality attributes.

V. THE ADAPTATION FRAMEWORK

Figure 3 shows the main modules of the framework.
The core of the framework is an optimization approach
(implemented by theReasonermodule) that adapts (through
theExecutormodule) an SCA-ASM assembly (developed by
theSystem Model Creator) of a service-oriented application
with respect to the functional requirements, system qualities,
and adaptation costs. Adaptation actions can be triggered
automatically (after receiving alerts from theMonitor mod-
ule) and/or by the user (through theUser Requests Manager
module that also interacts with theMonitor module to figure
out internal or context changes). AnAnalyzerassists during
the adaptation process for functional and quality analysis
purposes. A description of each module follows.

System Model Creator and Executor. This module con-
sists of two sub-modules (thecreator and theexecutor) and
relies on the integration of the SCA tools and runtime plat-
forms (like Tuscany, FraSCAti, etc.) with the ASM toolset
ASMETA [15], to graphically model, compose, analyze,
deploy, execute, and introspect service-oriented applications.

Figure 3. The Adaptation Framework

An SCA-ASM model (or assembly) of an application
can be produced from scratch, or generated from an ex-
isting system implementation. Analysis techniques can be
employed to assure consistency between the architecture
and the implementation. Another feature of theSystem
Model Creator is allowing, by exploiting the SCA Policy
Framework [13], the designer to specify for components
necessary metadata annotations. These are useful for provid-
ing metrics that can be extracted from the model for non-
functional analysis purposes, and for representing policies
that can be guarantee by the runtime platform. It also allows
the application of design patterns and tactics to an SCA-
ASM assembly, leading to a chain of adaptation actions.
To guarantee the functional correctness of the resulting
assembly and that changes claimed by the adaptation actions
do not compromise the satisfaction of existing functional
requirements, an interaction with theFunctional and Quality
Analyzeris required. Different adaptation actions of the SCA
assembly may be enacted manually (as suggested by the
User Request Manager) or automatically (by theReasoner).

The System Model Executorimplements the adaptation
actions suggested by theReasoner. Through the use of
effectors, changes applied at model level must be related
to the underlying mechanisms and runtime infrastructure.
To this extent, guidelines of existing approaches supporting
dynamic service invocation and of the ones for dynamically
adapting the system behavior could be exploited. In the case
of SCA, mechanisms like introspection and reconfiguration,
for managing and enacting self-adaptation [16] are applied.

User Requests Manager. It allows users to make adap-
tation requests by providing appropriate adaptation plans. It
assures that plans of different adaptation requirements are
independent between each other, i.e., changes claimed by a
plan do not compromise the application of other plans.

120

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 136 / 612

Reasoner. It is activated after receiving either adaptation
requests from the user or alerts from theMonitor. By using
an optimization approach, it produces a set of software
adaptation actions. Through the help of theSystem Model
Creator, it generates the new system architecture model,
i.e., the new SCA-ASM assembly model including both
structural and behavioral aspects. The adaptation space ex-
ploration process implemented by the reasoner is iterative
and is based on the combined use of meta-heuristic search
techniques and of functional and extra-functional adaptation
patterns (i.e. architectural design patterns and tactics). A
detailed description of the optimization method and related
techniques are out of the scope of this paper.

Monitor. It controls the system at runtime through the use
of probes (sensors). It may trigger self-adaptation when de-
tecting relevant context and internal changes or an evolution
cycle of the system for introducing important and perma-
nent changes [6]. For implementing such a module, several
monitoring approaches exist in the literature (see, e.g., [1]).
The monitor can also continually measure the services’ QoS
attributes. The providers can improve the estimate of the
services’ non-functional properties by monitoring them.

Functional and Quality Analyzer. It consists into a set
of external tools that can be invoked for different analysis
purposes. Essentially two sub-modules can be identified:
one for thefunctional, the other one for thenon-functional
analysis. The functional analyzeris linked with ASMETA
[15], a set of tool for the ASMs. It is invoked when a pre-
liminary analyses of the functional requirements satisfiability
of the SCA-ASM assembly would be performed by easier
techniques as simulation or scenario-based validation. Later,
heavier formal verification techniques (as model checking)
can be exploited when more complex functional proper-
ties [17] must be proved to guarantee behavioral system
correctness. The functional analyzer is also invoked when
correctness must be proved upon a refinement step of the
SCA-ASM assembly due to adaptation actions. Techniques
for checking correctness of model refinement as supported
by the ASMETA tool-set. Thenon-functional analyzerex-
ploits external tools for performance and reliability analysis
like qnetworks [18] andLQNsolver [19]. The system
qualities (e.g., performance and reliability) and the adap-
tation costs are predicted exploiting the SCA-ASM model
of the system. Examples of adaptation costs can be found
in [3]. Considering quality analysis, different approaches/s-
trategies can be used depending on several factors due
mainly to the use of our framework for evolution (at re-
design time) or self-adaptation (at run time). If permanent
changes, for example, are requested or a safe-critical service
has to be adapted, precise (often expensive) analysis must
be performed (e.g., see [20] for performance analysis). As
opposite, if runtime changes are claimed and these require,
for example, only the adaptation of parameters without
using more sophisticated analysis, faster approaches must

be adopted allowing a prompt run-time adaptation (see, e.g.,
techniques for estimation of quality at runtime, such as [21]).

VI. T HE STSCASE STUDY

We describes the adaptation methodology by a sample
application from the Stock Trading System (STS) in [9].
Figure 1 shows the SCA assembly of the STS. Briefly, an
STS user, through theOrderWebComponent interacting
with theOrderDeliveryComponent, can check the cur-
rent price of stocks, placing buy or sell orders and reviewing
traded stock volume. Moreover, he/she can know stock quote
information through theStockQuoteComponent. STS
interacts also with the external Stock Exchange system,
which we do not model.

Figure 2 shows a fragment of the ASM (abstract)
model for the OrderDeliveryComponent behavior.
The main service of this component (the ruler_place
annotated with@service) is to place buy or sell or-
ders when requested (see the blocking receive action
and the replay action preceding and following, respec-
tively, the service invocation within the component’s main
rule r_OrderDeliveryComponent). The ASM def-
inition for the provided and required interfaces of the
OrderDeliveryComponent are reported in Figure 4.
They are ASM modules containing only declarations of
business agent types (the subdomainsOrderDelivery
and StockExchange of the predefined ASMAgent
domain) and of business functions (parameterized ASM
out functions) used as temporary locations to store service
computation results.

module OrderDeliveryService
import ... //Other module imports
signature:
// the domain defines the type of the provider component’s agent
domain OrderDeliverysubsetofAgent
// business function value
out place: Prod(Agent,Order)−> Order

//@Remotable
module StockExchangeService
import ... //Other module imports
signature:
domain StockExchangesubsetofAgent
out sendOrder: Prod(Agent,Order)−> Rule

Figure 4. ASM modules of theOrderDeliveryComponent interfaces

Below, we apply to the STS case study some adaptation
strategies adopted by our methodology. Specifically, first we
describe the application of a simple metaheuristic technique,
and then we show the use of some tactics as examples of
extra-functional adaptation patterns. Details on the experi-
mental data set used in this case study can be found in [23].
Metaheuristic search:Figure 5 shows an example of
instantiation of our optimization process by considering,
on the STS example, thesteepest-ascent hill-climbing
metaheuristic [5] that tries to adapt the system minimizing

121

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 137 / 612

Figure 5. Example of steepest-ascent hill-climbing application

the adaptation costs and assuring a level of system
reliability greater than 0.98. The initial candidate is the
vector [C11, C21, C31] (see Figure 5), whereCij denotes
the jth instance available on the market for the component
Ci with C1 indicating the OrderWebComponent,
C2 the StockQuoteComponent and C3 the
OrderDeliveryComponent. Each vector comes
with two parameters: the resulting system reliability and
the cost of the solution (predicted using the reliability and
cost model used in [22] and reported in Table 1 in [23]).
At each iteration step, a set of new candidates is generated
by replacing, one at a time, an existing component with
one available on the market. The best candidate is then
selected as the one improving the system reliability and
minimizing the adaptation costs. It becomes the basis for
next candidates generation. The process terminates eitherif
no better candidates can be found or the reliability threshold
is reached. In our case, the optimization process returns the
solution [C12, C21, C33] with reliability equals to 0.990644
and cost equals to 14.5 KE.

Application of extra-functional adaptation patterns:We here
show how availability and performance tactics can be used to
embody extra-functional requirements of the STS example
into its architecture. Let us assume the following extra-
functional requirements (taken from [9]):
NFR1.The STS should be available during the trading time
(7:30 AM6:00 PM) from Monday through Friday. If there is
no response from the system for 30 s, the STS should notify
the administrator.
NFR2. The system should be able to process 300 transac-
tions per second, 400,000 transactions per day. A client may
place multiple orders of different kinds (e.g., stocks, options,
futures), and the orders should be sent to the system within
1 s in the order they were placed.

To address NFR1 theFault Detection Tacticfor the detec-
tion and notification of a fault to a monitoring component
or to the system administrator can be adopted. Such kind
of tactic can be refined into other ones (e.g.,Ping/Echo,

Heartbeatand Exceptiontactics [9]). As done in [9], we
support NFR1 combiningPing/EchoandHeartbeat.

As in [9], NFR2 is supported combining theFIFO (for
the Resource Arbitration) andIntroduce Concurrency(for
the Resource Management) tactics. TheFIFO tactic allows
clients to place each type of orders (e.g., stocks, options,
futures) to a dedicated queue for immediate processing. Fi-
nally, to handle considerable amount of transactions by their
kinds within a very short time, as suggested in [9], NFR2
can be also supported by reducing the blocking time of
transactions on I/O, which can be realized by the combined
use of theFIFO and Introduce Concurrencytactics (i.e., by
concurrent dispatching of the same kind of orders).

Figure 6 shows how it would change the SCA assem-
bly by composing these tactics: the assembly is extended
to add the newQueue component (for theFIFO tac-
tic) and theMonitor component (for theFault Detec-
tion Tactic). The OrderWebComponent is refined for
concurrently producing orders to place into theQueue.
Similarly, theOrderDeliveryComponent is refined for
adding the monitoring functionality and for the concurrent
consuming of different kinds of orders placed into the
Queue component. Of course, this implies a change of the
components shape (i.e. in the required/provided interfaces)
and of their behavior. The behavior, for example, of the
OrderDeliveryComponent is refined in ASM as shown
in the fragment reported in Figure 7: the consuming and
sending of different kind of orders (stock, option, or future)
are executed in parallel (i.e. concurrently) by thepar rule.

Figure 6. Adapting the STS by applying tactics for NFR1 and NFR2

It is possible to prove that the behavior of the
OrderDeliveryComponent in Figure 7 is a correct
refinement [14] of that in Figure 2, and, therefore, all
initial functional requirements are still guaranteed. More-
over, the impact of the adoption of the tactics should
be quantified with respect to the existing system quality.
For example, the introduction of new components could
decrease the maximum level of reliability. In the STS
example, after the embedding of new components into the
OrderDeliveryComponent for NFR1, if the probabil-
ity of failure of the instance available for this component

122

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 138 / 612

module OrderDeliveryComponent
...
rule r OrderDeliveryComponent=
... seq

par //Queue consuming
r wsendreceive[client(self),”dispatch”,”Stock”,stockorder(self)]
r wsendreceive[client(self),”dispatch”,”Option”,optionorder(self)]
r wsendreceive[client(self),”dispatch”,”Future”,futureorder(self)]

endpar
par //Order sending to the Stock Exchange system
r wsend(stockExchange(self),”sendOrder”,(self,stockorder(self)))
r wsend(stockExchange(self),”sendOrder”,(self,optionorder(self)))
r wsend(stockExchange(self),”sendOrder”,(self,futureorder(self)))

endpar
endseq...

Figure 7. The refined behavior of theOrderDeliveryComponent

increases (for example, from 0.00006 to 0.0002 [23]), then
the reliability of the overall solution will decrease (from
0.990644 to 0.970639 [23]). Therefore, it could happen
that the reliability constraint is not satisfied any more (in
the example indeed, the system reliability is not greater
than 0.98). Note that, also the reliability of the newQueue
component may contribute to decrease the system reliability.

VII. C ONCLUSION AND FUTURE DIRECTIONS

This paper presented an adaptation framework for service-
oriented applications that relies on design-for-adaptability
principles while supports the closed-loop paradigm. With
such a kind of support, a system is able to monitor itself
and its context to detect significant changes, decide how to
react on the base of functional/non-functional trade offs,and
execute such decisions at runtime or at re-design time.

We intend to enhance our framework towards several
directions. Currently, we are implementing a prototype to
compare different implementations of our optimization pro-
cess (e.g., with heuristics depending on application domain
or quality attributes) on realistic examples. We intend to
support the right trade-off between the adaptation overhead
(due, e.g., to the frequent execution of the reasoning algo-
rithms) and the accrued benefits of changing the system.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software:Landscape
and research challenges,”ACM Transactions on Autonomous and
Adaptive Systems, vol. 4, no. 14, pp. 14:1–14:42, 2009.

[2] F. Rosenberg, M.B. Müller, P. Leitner, A. Michlmayr, A.Bouguettaya,
and S. Dustdar, “Metaheuristic optimization of large-scale qos-aware
service compositions,” inProc. of the IEEE Int. Conf. on Services
Computing, 2010, pp. 97–104.

[3] R. Mirandola and P. Potena, “Self-adaptation of servicebased systems
based on cost/quality attributes tradeoffs,” inProc. of WoSS at
SYNACS 2010, pp. 493–501.

[4] E. Riccobene, P. Scandurra, and F. Albani, “A modeling and ex-
ecutable language for designing and prototyping service-oriented
applications,” to appear inProc. of EUROMICRO SEAA 2011.

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,”ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, 2003.

[6] A. Bucchiarone, C. Cappiello, E. Di Nitto, R. Kazhamiakin, V.
Mazza, and M. Pistore, “Design for adaptation of service-based
applications: Main issues and requirements,” inICSOC/ServiceWave
2009 Workshops, ser. LNCS, 2010, pp. 467–476.

[7] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dustdar,
“An End-to-End Approach for QoS-Aware Service Composition,” in
EDOC, 2009, pp. 151–160.

[8] D. Chiu, S. Deshpande, G. Agrawal, and R. Li, “A Dynamic Ap-
proach toward QoS-Aware Service Workflow Composition,” inICWS,
2009, pp. 655–662.

[9] S. Kim, D. Kim, L. Lu, and S. Park, “Quality-driven architecture
development using architectural tactics,”Journal of Systems and
Software, no. 8, pp. 1211–1231, 2009.

[10] H. K. A. Martens, “Automatic, model-based software performance
improvement for component-based software designs,” inProc. of
FESCA 2009, vol. 253, no. 1, 2009, pp. 77 – 93.

[11] K. Vallidevi and B. Chitra, “Effective self adaptationby integrating
adaptive framework with architectural patterns,” inProc. of A2CWiC
2010, ACM, pp. 67:1–67:4.

[12] E. Riccobene and P. Scandurra, “Specifying formal executable behav-
ioral models for structural models of service-oriented components,”
in Proc. ACT4SOC 2010, pp. 29-41.

[13] “Service Component Architecture (SCA)”www.osoa.org, 2007.
[accessed: May 18, 2010]

[14] E. Börger and R. Stärk,Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer, 2003.

[15] “The ASMETA tooset,”http://asmeta.sf.net/, 2006. [ac-
cessed: April 26, 2011]

[16] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J.
Stefani, “Reconfigurable sca applications with the frascati platform,”
in Proc. of Int. Conf. on Services Computing, IEEE, 2009, pp. 268–
275.

[17] C. Attiogbé, P. André, and G. Ardourel, “Checking component
composability,” inSoftware Composition, ser. LNCS, W. Löwe and
M. Südholt, Eds., 2006, pp. 18–33.

[18] M. Marzolla, “The qnetworks toolbox: A software package for
queueing networks analysis,” in Proc. ASMTA 2010, Springer.

[19] G. Franks, P. Maly, M. Woodside, D.C. Petriu, and A. Hubbard,
“Layered Queueing Network Solver and Simulator User Manual,
LQN software documentation,” 2006.

[20] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni,“Model-
based performance prediction in software development: A survey,”
IEEE Trans. Software Eng., no. 5, pp. 295–310, 2004.

[21] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” inProc. of ICSE’09,
pp. 111-121.

[22] V. Cortellessa, F. Marinelli, and P. Potena, “An optimization frame-
work for “build-or-buy” decisions in software architecture,” Comput-
ers & OR, vol. 35, no. 10, pp. 3090–3106, 2008.

[23] R. Mirandola, P. Potena, E. Riccobene, and P. Scandurra, “A
framework for adapting service-oriented applications based on
functional/extra-functional requirements tradeoffs: the Stock
Trading System case study,” TR Univ. of Bergamo (Italy),
http://cs.unibg.it/potena/AdaptationFramework/TRExpResults.pdf,
2011. [accessed: July 21, 2011]

123

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 139 / 612

PSW: A Framework-based Tool Integration Solution for Global Collaborative

Software Development

Juho Eskeli

VTT Technical Research Center of Finland

Oulu, Finland

Juho.eskeli@vtt.fi

Carmen Polcaro

Innovalia Association

Bilbao, Spain

cpolcaro@innovalia.org

Jon Maurolagoitia

CBT Communication Engineering

Getxo, Spain

jmaurolagoitia@cbt.es

Abstract—The market of solutions for collaborative and

distributed software development offers currently a wide range

of tools that support specific tasks involved in these kind of

projects. Several solutions aim to support the whole

development process in a single tool or via groups of tools by

providing distributed teams the possibility to share and

connect information and to use common interfaces.

Nonetheless, every one of them includes some disadvantages

that lessen their value for companies that use them across their

distributed development projects. In this paper the authors

will highlight relevant issues associated with collaborative and

distributed software development projects. Prisma Workbench

will be presented as the framework to overcome many of these

issues and to provide a compelling option for teams to integrate

their existing tools into a complete collaborative solution.

Currently Prisma Workbench is being tested by the partners

involved in the ITEA2 PRISMA Project and some of the first

feedback will be presented as well.

Keywords-collaborative software development; global

software development; collaboration; tools; tool integration

I. INTRODUCTION

Collaborative and distributed software development is
currently one of the most common ways of facing the
development for many applications that due to its complexity
or size require a large team working together [1]. The level
of distribution for each group of the team can vary from
different departments of the same company located in the
same building to the case that several companies’ located in
completely distant regions of the world participate in a
common development. The motivation to adopt this
organizational paradigm can vary from case to case: cost
reduction, collaboration between reference centres or using
this as a way to increase the innovation inside the company
[2]. The number of cases that can be found in the industry is
enormous [3][4].

A distributed software organization model brings
problems to the development process that have to be
addressed with specific methodologies or tools. The most

relevant that could be identified as part of the PRISMA
Project[5], previously to the development of Prisma
Workbench (PSW) [6], are highlighted here:

• Communication Breakdown: the barrier of not being
able to discuss issues and agree on specific topics
face to face leads to delays in the development
process.

• Coordination Breakdown: can happen in a project
where people don’t know each other or don’t have
the possibility to interact continuously to adapt
project planning. The chances of the project to go on
wrong track are higher and following of planning is
difficult.

• Control Breakdown: For project managers, having a
clear view of the status of a project when the team is
distributed in different locations and work in
different time zones can be a really challenging task.
The level of control that the project manager will
have is not as deep as in a non-distributed scenario.

• Cost of currently available tools: currently a number
of providers offer their commercial solution for
collaborative development. The price of
implementing these solutions in companies is
sometimes an obstacle.

• Poor interoperability between tools: in a case where
each team is using their own tools, integration
between the tools is difficult and most of the times
impossible. For this reason manual copying or
exporting of data from one tool to another is often
needed.

• Lack of traceability: during the development project
information elements are created which traceability
should be maintained throughout the whole process.
These elements include e.g., client requests, system
requirements, test information, bug reports, and so
on. Having no connection between the tools that
manage each of these elements makes the
traceability maintenance an effort consuming task.

124

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 140 / 612

Nowadays, the market of tools that support specific tasks

of the development process is very large. In most cases their
learning curve is high. Therefore, teams feel reluctant to
include a new tool or change the tools that they are currently
using as part of their development process although this
could sometimes lead to a better integration with the rest of a
distributed team.

Another type of tools, which will be discussed in chapter
V of this paper, presents a global solution that supports the
whole development process. As mentioned before, these
solutions include sometimes a price tag that not every
company is able to pay, especially in those cases where
SME’s are involved.

Prisma Workbench, the solution proposed in this paper is
a tool integration framework designed for collaborative
distributed software development. This framework allows
connecting of software development tools to create company
specific software development environment instances. In this
paper the solution is presented from instance point of view;
how it can be used with a particular set of tools. The tool set
mentioned consists of tools proposed by the PRISMA project
partners.

PSW fills the gaps that exist in the current collaborative
software development environments. It allows distributed
teams to integrate their own existing tools and link data
among them. PSW provides the visibility of how the project
is running and what every group is doing to the whole
development team as if everybody would be working in the
same room.

II. RELATED WORK

Wasserman [7] defines tool integration as follows: ‘tool
integration is intended to produce complete environments
that support the entire software development lifecycle.’ In
our vision tool integration can be used to provide a consistent
software development environment using tools that were not
planned to be used together initially. Furthermore, with the
help of suitable tool set a notable part of software
development lifecycle can be supported. Thus, the vision is
not entirely separate of what Application Lifecycle
Management (ALM) tools attempt to provide. According to
Kääriäinen [8] ALM can be understood as coordination of
activities and the management of artefacts such as
requirements, test cases, etc. during the lifecycle of a
software development project.

Schwaber [9] and Shaw [10] mention that the type of
ALM solutions at that time could be divided into single
vendor (e.g., IBM Jazz), multi-vendor (e.g., Eclipse, ALF),
and single repository approaches. In single vendor approach
a vendor has built a framework where other vendors can
build integrations. In multi-vendor approach development
and direction is driven by open source community (e.g.,
Eclipse, ALF). In single repository approach all the software
lifecycle artefacts are managed in a single place.

According to the previous classification PSW is a multi-
vendor platform. Furthermore, it is a framework integration
based on tools’ own repositories. As described by [11]
framework-based integrations attempt to classify tools and

provide integration between tool classes based on vendor-
neutral interfaces and mechanisms. Furthermore, the
framework-based approach aims to provide an integration
environment and common look and feel without limiting the
choice of tools [11].

As far as we know our solution is unique because it does
not rely on any specific software development tool. Also, in
theory the tool set could be extended to support notable parts
of software development lifecycle using a suitable tool set.
Modelbus [12] is a project of tool integration, but to our
understanding the focus is mainly integration of modelling
tools and study of model transformations. Also Eclipse
Mylyn is advertised as ALM framework [13], but as far as
we can tell it seems to focus largely on task management and
integration of task / defect management tools.

III. FEATURES

PSW has been developed from ground up based on the
experiences achieved from ITEA Merlin[24] and ITEA2
TWINS[25] projects. The previous Eclipse based tool
integration has been described in detail in [14]. In case of
PSW the main interface is via a web browser. This approach
was chosen to decrease dependency on a particular
technology/platform (Eclipse) and making it easier to use
PSW in day-to-day operations (i.e. lower the barrier of
deployment).

The solution proposed is a tool integration framework
designed for collaborative distributed software development.
In its current form it has been previously presented in [5].
PSW allows connecting of software development tools to
create company specific software development environment
instances. In this paper the solution is presented from
instance point of view; how it can be used with a particular
set of tools. The tool set mentioned consists of tools
proposed by the PRISMA project partners.

PSW implements a repository neutral integration of tools.
This means that the lifecycle data produced during software
development process is maintained in separate tools. The
benefit of this type of approach is that it has minimum
impact on the company’s current tool set. The caveat is that
integrations to the tools have to be constructed on a per tool
basis. However, there is no need to create point-to-point
integrations between each of the tools because PSW acts as a
hub where tools are connected via its integration interface.

For PSW one of the primary goals has been to make the
integration of new tools as easy as possible. To get to this
goal the following steps have been taken: designed
integration mechanism for simple integration, provide
example integrations, and created integration instructions.
The integration mechanism has been described in [6]. The
example integrations will be described later in this section.

The solution provides visibility of tools data in easy to
understand dashboards (see Figure 1 and Figure 2) that can
be customized based on the user’s preferences. Furthermore,
the framework handles user sign-in into the separate tools
transparently. The solution also provides the means for the
user to create links between different lifecycle items. These
links can then be exploited in the reporting to e.g.,
demonstrate amount of defects in a build. The reporting

125

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 141 / 612

solution built into PSW allows users to customize their own
reports.

Figure 1. The traceability view showing a requirement and related work

products

Figure 2. The reporting view showing a generated graph based on data

retrieved from the integrated tools

To support collaborative, distributed development PSW
provides means for asynchronous (chat) and synchronous
(voice & video) communication with the help of a tool
(OpenMeetings). The notifications system provides users up-

to-date information about any important events (e.g., build
status) in the project.

Although PSW can be connected to several other
commercial tools or custom developed ones, the project team
has made a selection of open source solutions that cover the
complete development process. By using these solutions,
companies will be able to start working together also if
currently no tool is used for any of the requirements
specification, development or testing tasks. The solutions
that have been selected are the following:

• Edgewall Trac[15]: this tool originally developed for
bug tracking has also been used a simple
requirement management tool. As part of PSW it
should be used for requirement management and bug
tracking.

• Subversion: this versioning system is one of most
popular in the open source community.

• Testlink[16]
:
 This web based test management tool

will support your test case and test data
management.

• Openmeetings: with Openmeeting companies will be
able to host their own audio and video conferencing
solution.

IV. BENEFITS

PSW addresses many relevant issues related to
collaborative and global software development. Some of
these issues were extracted during the research done by the
PRISMA Project and have been highlighted in the
introduction of this paper. After taking into account the
features available in PSW we propose how distributed
development process could be dramatically enhanced using
PSW:

• Communication enabler: the possibility to organize
virtual meetings and link those to other information
items such as requirements, test, etc. enables a
centralized solution where every group of the team
can refer to decisions made any time during the
development process.

• Improved team coordination: by sharing the status of
key information such as requirements or tests and
providing an event log, every member of the team
will be informed of what others are doing. This will
help them to coordinate their own work according to
the planning. In a scenario where groups work in
different time zones this log will be sometimes the
only reference to achieve this kind of coordination.

• Centralized project management: the dashboards
provide information a project manager needs to have
for a quick image of how the project is running
comparing to the plan. It will also give access to
more detailed view of specific tasks. Using only one
tool (PSW) for overview will facilitate the
continuous control of projects. The virtual meeting
functionality will be a key tool for the interaction
between project managers, group managers,
developers and testers.

126

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 142 / 612

• Seamless integration between tools: PSW will
enable tools from different vendors, located in
distant location to integrate while maintaining their
independence. As described in chapter VI, this
integration can be done easily through standard
REST or WS communication interfaces. The number
of manual copying processes between tools to
maintain the traceability throughout projects will be
reduced and in most cases eliminated

• High level of traceability: One of the main benefits
of PSW it the possibility to trace information from
different tools as if all of it would be in one tool.

• Low cost of investment: By including PSW in your
organisation, every group will still be able to use the
same tools as they had done before since they will be
integrated instead of being replaced. The investment
needed is therefore much lower than in other cases
where only tools from the same vendor can be
linked.

The research performed as part of the PRISMA Project
has included the analysis by the partners of the
improvements achieved by using PSW in tasks that were
supported before by independent tools or by no tools at all.
Since the PRISMA project is still ongoing and will be
finished by the end of 2011, only the preliminary results of
this analysis can be presented here. Currently PSW is being
tested in real distributed software development projects in
order to extract the most valuable results. This analysis is
being performed using the tools provided by default with
PSW and described in chapter III. Some of these tools had
already been in use for some time by the partners involved in
the project.

The first comment that has been shared after starting this
testing phase is that, although using the same tools as before,
the information supported by those is not isolated anymore.
The tool supported traceability helps every member of the
team to have a clear view about how every information
artefact is related with the rest.

The centralized reporting tool has been identified by
project, development and test managers as one of the best
features in order to review the status of the overall project. It
is one of the main functionalities where PSW combines data
coming from several tools and provides a higher level of
information.

Future publications will detail the complete results from
this analysis.

V. EXISTING SOLUTIONS AND APPROACHES

As mentioned before, the market offers currently a
number of solutions focused on distributed and collaborative
environment. As described below, most of them include any
restriction due to being closely related with one development
technology, provider or business model.

• Jazz: This solution from IBM is targeted to integrate
the Rational line of tools which support several
phases of the development process. These tools
include Rational Requirements Composer, Build

Forge and Quality Manager. Jazz also offers the
Open Services for Lifecycle Collaboration (OSLC),
an industry initiative to enable interoperability of
tools developed by different vendors. Though
promising, during the research performed in the
PRISMA project, this interoperability was not
achieved. Jazz is free to download from its site but
currently it would be only useful for distributed
teams that use Rational solutions.

• Teamforge: This webportal provided by Collabnet
allows the collaboration of developers and IT project
managers by proving the tools to plan and coordinate
projects following agile methodologies. Collabnet
features the management for user stories, source
code integration, discussion forums, bug tracking
and file and document sharing. Teamforge is
licensed as a subscription based service. Although
powerful, this solution forces every group of the
team to use new tools and follow agile development
methodologies which is not always the case in some
companies.

• Application Lifecycle Framework (ALF): This
Eclipse project proposal has been archived but its
goal aimed to provide a logical definition of the
overall interoperability business process. This
technology handles the exchange of information, the
business logic governing the sequencing of tools in
support of the application lifecycle.

• Team Foundation Server (TFS): Microsoft offers
this collaborative back end solution that can be
connected with other Microsoft tools in order to
exchange data among them. TFS does not have any
user interface, rather it exposes web services which
are the connection point between the tools. These
include all the Visual Studio solutions but also
Microsoft Project, Office or Sharepoint and cover
almost the complete development lifecycle. As a
disadvantage, teams where no Microsoft
development tools are used will not be able to
benefit from the TFS integration features.

• SourceForge.net: It claims to be the world's largest
open source software development web site. They
say that as of February, 2009, more than 230,000
software projects have been registered to use their
services by more than 2 million registered users.
SourceForge provides the following features for
projects: discussion forums, wiki, version control
system, file management and other tools more suited
to open source projects.

VI. TECHNOLOGY BEHIND PSW

PSW consists of two main components: a server and
collection of JSR 286 portlets. The server component
integrates tools, implements some basic functions needed by
tool integration such as user management, and provides its
services to the portlets (or other possible clients). The
portlets act as the user interface.

127

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 143 / 612

The server is built on top of Apache Tuscany[17], which
is a framework for building Service Oriented Architecture
(SOA) solutions. The framework takes care of runtime
handling (initialization, termination, etc) of services. SOA
was selected because it promotes loose-coupling between
software components. Loose-coupling is useful because it
provides us the freedom to add / remove / change the tools as
needed. Yet another reason was because the SOA based
approach provides us easy access to the distributed tools.

The integration mechanism of PSW has been described
in [6]. A new tool can be integrated by creating a Java class
that implements a Java interface definition provided by us. In
the interface definition there are specific functions that need
to be filled in; i.e. to get all work products (e.g.,
requirements) from the tool. What happens here is that the
integrator creates a glue code that connects the data from the
tool to PSW. The actual data from the tools can be fetched
via any means supported by the tool, e.g., using REST or
WS. Example integrations and guidance are provided to
make the integration as easy as possible.

The server also takes care of authenticating the users to
the tools. In essence a user’s account for the tools is tied to
the user’s PSW account. Furthermore, it implements a
traceability service which can be queried for work product
relations and for creating new ones. The traceability
mechanism is implemented so that no data is replicated.
Instead unique identifiers are used to identify the work
products in the tools, and the relations are stored in a
relational database, MySQL[18]. The information artefacts
are maintained in the original tool repositories.

For improved performance the data from tools has to be
temporarily cached, for which Memcached[18] is used.
Caching is needed because some of the tool specific queries
can take a long time to complete (e.g., due to amount of data,
tool location). The cache is updated at definable intervals.
During an update the changes in the work products are
detected and stored. The changes can then be queried using
the notification service and shown in the user interface (i.e.
portlets).

The user interface consists of several portlets
implemented following the JSR 286

¡Error! No se encuentra el origen de

la referencia.
 standard. The views (e.g., traceability, reporting)

are implemented via one or many portlets and use the
services provided by the server to produce their output. The
portlets have been designed so that minimal or no changes
need to be done if the set of tools is changed. The
techonologies used are Java, JavaServerPages[20] (JSP), and
Javascript (JQuery etc.). For current implementation
Liferay[21] portal has been chosen to run the portlets since it
supports the JSR 286[22] standard. Nonetheless any other
platform which support this standard could be used

The reporting feature is the most recent addition into
PSW. It enables users to build their own customized reports.
An existing implementation (BIRT[23]) was studied and
found promising; however the effort needed to implement
custom reports with it in portlets was considered to be too
much compared with the result. The reporting feature
enables users to filter the data (e.g., from which tools, what
type of work products) they use for the reports. Some

rudimentary manipulation of the data can also be performed
e.g., addition or grouping of values. Existing traceability
information can also be used to create e.g., requirements test
coverage report. The plot types supported are currently bar,
line, and pie chart. New types can be easily implemented
with the library that is responsible for generating the charts.
Additionally, the parameters used for creating the report can
be stored for further usage, e.g., recurring reports. Reports
with data can also be stored, named, and dated for reference.
Finally, the reports can be exported in CSV and PDF
formats.

VII. CONCLUSION

In this paper the authors have presented relevant issues
that development teams face when a distributed organization
model is adopted. These issues, which were identified as part
of the research of the PRISMA Project, have been the
motivation to develop PSW, a solution that allows the
integration of a heterogeneous number of tools in order to
collaborate and exchange data while maintaining their
independence.

Solutions for collaborative software development that are
currently available have been described, highlighting the
advantages of PSW among them.

PSW features, technology background and benefits have
been also thoroughly explained in order to make clear how
using this solution in a distributed and collaborative
environment could dramatically reduce the impact of this
organization model in software development projects.

ACKNOWLEDGMENT

The authors would like to thank the partners involved in
the ITEA2 PRISMA Project for their contribution and
inspiration.

REFERENCES

[1] P. Parviainen, J. Eskeli, T. Kynkäänniemi, M. Tihinen, 2008. Merlin
Collaboration Handbook - Challenges and Solutions in Global
Collaborative Product Development. In Proceedings of ICSOFT
(SE/MUSE/GSDCA)'2008. pp.339~346

[2] T. Forbath, P. Brooks A. Dass, A , “Beyond Cost Reduction: Using
Collaboration to Increase Innovation in Global Software
Development Projects.”, 2008. IEEE International Conference on
Global Software Engineering.

[3] M. Bass, J.D. Herbsleb, C. Lescher, “Collaboration in Global
Software Development Projects at Siemens: An Experience Report” ,
2007 , IEEE, International Conference on Global Software
Engineering.

[4] Booz Allen Hamilton, “Globalization of Engineering Services”,
August 2006 , NASSCOM

[5] Prisma Project website http://www.prisma-itea.org/

[6] J. Eskeli, J. Maurolagoitia, “Global Software Development: Current
Challenges And Solutions.”, 2011. ICSOFT

[7] A. Wasserman, “Tool Integration in Software Engineering
Environments”, Springer-Verlag, Berlin, International Workshop on
Environments, pp. 137-149, 1990.

[8] J. Kääriäinen, “Towards an Application Lifecycle Management
Framework”, VTT Publications, Dissertation, 103p., 2011.

[9] C. Schwaber, “The Changing Face of Application Life-Cycle
Management”, Forrester Research Inc., August 2006.

128

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 144 / 612

[10] K. Shaw, “Application Lifecycle Management for the Enterprise”,
Serena Software, White Paper,
http://www.serena.com/docs/repository/company/serena_alm_2.0_for
_t.pdf, April 2007. (available 24.5.2011)

[11] J. Pederson, “Creating a tool independent system engineering
environment”, In: IEEE Aerospace Conference, 8 pp., March 2006.

[12] C. Hein, T. Ritter, and M. Wagner, “Model-driven tool integration
with modelbus”, In Workshop Future Trends of Model-Driven
Development, 2009.

[13] http://www.eclipse.org/mylyn/ (read 27.05.2011)

[14] J. Eskeli & P. Parviainen, “Supporting hardware-related software
development with integration of development tools”, Proceedings -
5th International Conference on Software Engineering Advances,
ICSEA 2010, IEEE Computer Society, pp. 353 – 358, 2010.

[15] Edgewall http://trac.edgewall.org/

[16] Teamst http://www.teamst.org/

[17] Apache Tuscany http://tuscany.apache.org/

[18] Mysql http://www.mysql.com/

[19] Memcached http://memcached.org/

[20] JSP http://java.sun.com/products/jsp/

[21] Liferay http://www.liferay.com/

[22] JSR286 http://www.jcp.org/en/jsr/detail?id=286

[23] BIRT http://www.eclipse.org/birt/phoenix/

[24] Merlin-project
http://virtual.vtt.fi/virtual/proj1/projects/merlin/icgse.html

[25] TWINS-Project http://www.twins-itea.org/

129

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 145 / 612

Feature-Oriented Programming and Context-Oriented Programming:
Comparing Paradigm Characteristics by Example Implementations

Nicolás Cardozo∗†, Sebastian Günther†, Theo D’Hondt† and Kim Mens∗
∗ICTEAM Institute

Université Catholique de Louvain
Louvain-la-Neuve, Belgium

Email: {nicolas.cardozo,kim.mens}@uclouvain.be
†Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Email: {ncardozo,sgunther,tjdhondt}@vub.ac.be

Abstract—Software variability can be supported by providing adap-
tations on top of a program’s core behavior. For defining and compos-
ing adaptations in a program, different paradigms have been proposed.
Two of them are feature-oriented programming and context-oriented
programming. This paper compares an exemplar implementation of
each paradigm. For the comparison, a common case study is used in
which we detail how adaptations are defined, expressed, and composed
in each paradigm. Based on the case study, we uncover similarities and
differences of each implementation, and derive a set of characteristics
that identify each of them. The experiment shows several overlapping
similarities between the two implementations, which is an indicator that
there is a similar core set of characteristics for each paradigm. This
finding brings the two seemingly disjoint research directions together,
and can stimulate future research both in the direction of merging
features and context as well as to improve the characteristic strengths
of each paradigm.

Keywords-feature-oriented programming; context-oriented program-
ming; language paradigms

I. INTRODUCTION

Software variability is an important factor in design and imple-
mentation of programs. Software programs are often developed for
high customizability, for example to provide individual variants for
particular clients. The implementation of such programs consists
of core behavior and of different adaptions that add or modify
the functionality. Program variability can be realized by using
language level abstractions as introduced by different paradigms
tailored to express program adaptations. Two such paradigms
are feature-oriented programming (FOP) [1] and context-oriented
programming (COP) [2].

The FOP paradigm is concerned with identifying functionality
in the form of features. A feature is a stakeholder-relevant func-
tionality [3] that can be implemented coarsely as a module or
fine-granular as different lines of code scattered over the source
code [4]. In FOP, adaptations are provided by features that can be
expressed in several ways, for example by annotating the core pro-
gram, or by defining adaptations as refinements. To yield different
program variants, features are composed with the core program.
Normally, feature composition is done statically at compile time,
but recent approaches also offer runtime composition [5].

The COP paradigm is concerned with runtime behavior mod-
ifications in order to provide functionality that is adapted with
respect to the execution environment of a program. In most COP
implementations, adaptations are defined as first-class entities,

to which context-dependent behavior is associated in a modular
fashion. Adaptations are dynamically activated and deactivated at
runtime to provide and undo context-dependent behavior [2].

Our objective is to identify the similarities and differences for
realizing variability in these two paradigms. To this end, we use
the expression product line (EPL) case study, providing an example
implementation in each paradigm. For FOP we use rbFeatures,
a versatile extension of the Ruby programming language that
introduces features as first class entities [6][5][7]. For COP we
use Subjective-C [8], a COP implementation for mobile devices
that is based on the Objective-C programming language. From a
comparison in the expression and implementation of the variability
concerns of the EPL case study, we derive a set of characteristics
that describe how each paradigm introduces variability.

A clear identification of the core characteristics between the two
paradigms is a first result to help in forming a joined research for
implementing variability. As we will see, the overlapping set of
characteristics is an indicator that the FOP and COP paradigms
could be brought together as a hybrid language for software
variability.

The paper is organized as follows. We provide background to
FOP and COP in Section II. Then in Section III, we provide a
side-by-side comparison between the FOP (using rbFeatures) and
COP (using Subjective-C) implementations of the case study. We
compare both implementations with the help of the Expression
Product Line (EPL) case study. Based on the case study, we discuss
the similarities and differences of both implementations in Section
IV. Sections V and VI respectively present the related work, and
the conclusion and future work.

II. BACKGROUND

This section introduces the feature-oriented programming and
context-oriented programming paradigms.

A. Feature-Oriented Programming

The concept of features initially emerged with the goal to
express distinct functionality that is targeted towards a specific
stakeholder [3]. This notion of a feature is called conceptual
[6], because it only regards the end-user visible behavior, but
not its implementation. How to implement such conceptual fea-
tures is considered in the feature-oriented programming paradigm.
Basically, a program consists of different artifacts that provide

130

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 146 / 612

the program’s functionality. Features encompass different parts
of these artifacts, and are therefore distinguished into coarse-
grained and fine-grained features [4]. Coarse-grained features can
be represented with conventional mechanisms provided by a pro-
gramming language, such as modules and packages. These can
then be composed conveniently with the program’s core behavior.
Fine-grained features are more difficult to represent and compose,
because they can consist of individual classes, methods, or even
parts of method bodies. Related work shows a diversity of FOP
implementation approaches [9]. Each approach differentiates how
features are represented, expressed, and composed. We distinguish
these approaches as follows:

• Annotations – These approaches use the existing program
source code and mark the occurrences of feature-related
source code. One type of annotations are source code anno-
tations such as “#ifdef” statements in C++, which are native
preprocessor directives. Before the program gets compiled,
all parts of the source code that do not belong to the current
feature configuration are pruned. Then, a program variant is
created by compiling the remaining source code [10]. Another
option is to use virtual annotations. In this case, the source
code itself is not annotated, but a suitable intermediate pro-
gram representation, such as the abstract syntax tree [10]. This
approach requires tool support for representing the annotations
and for generating a program variant.

• Modules – These approaches use the programming language
modularization concepts to represent features. Among these
approaches are traits in Scala [11], atoms and units in Jiazzi
[11], Classboxes [12], CaesarJ [13], and Object Teams/Java
[14]. The capabilities of modules constraint the level to
which especially fine-grained features can be represented and
composed.

• Refinements – These approaches separate a program into a
fixed base program and extensions that are called refinements.
Refinements are added to a program, where they change
the behavior and the structure. Typically, these approaches
add specific language constructs to express these refinements.
Some approaches as the AHEAD tool suite [15], for example,
use the keyword refine as a language construct, other
approaches introduce concepts similar to refinements, such as
aspects from aspect-oriented programming [16].

We use rbFeatures [6][5][7] as the FOP example language.
rbFeatures is a versatile, pure language of Ruby, that allows features
to be defined as first-class entities, giving a close integration of
features and other application code. In order to express which
part of the source code belongs to a feature, semantic annotations,
called feature containments in rbFeatures, are used. Containments
consist of a condition and a body. A containment condition is a
logical expression determining which features need to be active or
inactive in order for the body to be included in the program. The
containment body is any piece of code: modules, classes, methods,
and even individual lines and characters. rbFeatures allows to
express the hierarchy and constraints of features with an expressive
rule language. A program that is feature-refactored with rbFeatures
allows both runtime and compile-time composition. At runtime,
features can be activated and deactivated to immediately affect the
program behavior, even allowing different variants of a program to

exist at runtime [5]. At compile-time, the semantic annotations can
be preprocessed to derive a static variant. This is done by pruning
source code not define within the configured containments.

B. Context-Oriented Programming

Context-oriented programming paradigm [2] allows software
systems to be modularized into behavioral adaptations that can
be activated, deactivated and composed at runtime. Adaptations
are triggered by changing properties of the execution environment,
such as device presence, battery level, or user settings. COP
languages typically provide dedicated constructs for the definition
of behavior adaptations in a modularized fashion, as well for the
composition and execution of such adaptations [2][17]. Program
entities in which adaptations are defined are called layers [2] or
contexts [17], which are normally defined as first-class entities of
the program. We will refer to them as contexts.

Contexts may specify either behavioral or structural adaptations.
The former case focuses in modifying functionality of the program
with more suited behavior to particular situations of the execution
environment. The later case concerns with providing new entities or
adapting existing entities in the program for a particular situation.

Behavioral adaptations are the key concepts of COP. Adaptations
rely in the dynamic activation and deactivation of context entities.
When a context is activated, its associated behavioral adaptations
become available in the current scope of the application. Simi-
larly, whenever contexts are deactivated the behavior adaptations
become unavailable to the execution environment, and the observed
behavior of the program is restored to its former state. Behavioral
adaptations can be associated with more than one context, in such
a case, a new context entity is created implicitly, representing the
combination of the contexts, to which the adaptation is associ-
ated [18]. Combined contexts are made available if and only if all
of its components are active.

If not dealt with careful, dynamic activation and deactivation
of contexts may lead to unexpected or inconsistent behavior. To
manage such situations it is possible to define different dependency
relations among contexts [8][19]. Constraints imposed by the
dependency relations are verified at runtime when a particular
context is to be activated or deactivated.

Contexts are stateful objects, state of variables and objects
defined within a context are always preserved between context
activations [2][8][20]. Moreover, within a context it is possible to
extend the definition of objects already existing in a program by
dynamically adding state properties to them. As with behavioral
adaptations, these structural adaptations also become available and
unavailable as the context in which they are defined is respectively
activated or deactivated.

In the remainder of this paper we use Subjective-C [8] a full
context-oriented language extension of Objective-C whose design
is influenced by the Ambience language [18]. Contexts are defined
as first-class entities. Context-dependent behavior adaptations need
to be defined as methods in a class. These methods are annotated
with the name of the context they belong to. Context-dependent
behavior is not accessible by the core program until the context to
which they are associated is activated. When a context is activated,
a method replacement mechanism (from Objective-C’s meta-object
protocol) replaces original methods with their context version at
runtime. Subjective-C uses a context manager to maintain a record

131

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 147 / 612

Add SubLit Neg Print Eval

Expressions Operations

EPL

Mandatory
feature

Optional
feature

MORE
relation

OR
relation

AND
relation

Mul Div

Numbers

Figure 1: Feature diagram of the Expression Product Line.

of all context objects at runtime, whether they are active or not,
and the dependency relations between contexts.

III. CASE STUDY: EXPRESSION PRODUCT LINE

The expression product line (EPL) [11] is a well known case
study concerned with finding suitable modularization concepts for
representing different types of integers, expressions, and operations
over them. All possible program variations of the EPL are shown in
Figure 1 – this notation is called a feature diagram, as it depicts the
constraints between different features of a program [21]. For the
EPL all its features are optional, meaning that they can be build in
any combination. We conduct a side-by-side implementation of the
case study providing first the rbFeatures example, and subsequently
the Subjective-C one. The two implementations are compared
based on the principal techniques each uses to realize software
adaptations, specifically we are concerned with: (a) The way in
which adaptations are declared, (b) The way in which adaptation’s
behavior is declared, and (c) The way in which modification to the
core program is done.

A. Adaptation Declaration

The implementation of the product line starts with its top down
definition. As originally expressed in the case study, expressions
like ADD and NEG, as well as the operations for PRINT and
EVAL are defined as features, shown in the following snippet for
rbFeatures.�
c l a s s Add
is Feature

end

c l a s s Print
is Feature

end� �
In Subjective-C, LIT, ADD, NEG and the other expression

elements are defined as regular (behavior-less) objects, taking
advantage of the polymorphic abilities of the language. The PRINT

and EVAL operations are defined as contexts providing behavior
for expression objects. Operations are declared as named context
objects and added to the context manager.�
@interface Add : Exp {

Exp *left, *right;
}
@end

SCContext* Print = [[SCGlobalContext alloc]
initWithName:@"print"];

[[SCContextManager sharedContextManager] addContext:
Print];� �

B. Behavioral Declaration

Once all adaptations have been defined, the next step is to define
the specific behavior added by the features to other objects of the
program. We consider enhancing Add expressions with the printing
behavior provided by the PRINT adaptation.

In rbFeatures, adaptations are introduced by forming feature
containments around a pice of feature-specific code, which can be
for example a method declaration. In the following example, the
containment condition is the PRINT adaptation, and the contain-
ment body is the method declaration. When the PRINT adaptation
is activated, a call to the print method will behave as shown in
the snippet, otherwise the method will return an error message.�
c l a s s Add
Print.code do

def print
Kernel.print(@left.print + " + " + @right.print)

end
end

end� �
In Subjective-C, behavioral adaptations are also introduced by

adding context-dependent methods within the body of the object
that defines it. This is shown in the following snippet.�
@implementation Add {
@contexts Print
- (NSString) print {

return [NSString stringWithFormat:@"%@ + %@", [left
print], [right print]];

}
@end
}� �

Unlike rbFeatures, in Subjective-C it is not possible to define
specific lines within a method as context-dependent. However, this
is possible in other COP languages [2][18].

C. Behavioral Modification

Behavior defined for the different EPL expressions and oper-
ations is available to the program through the explicit activation
of the related feature. For example, in order to have the PRINT

132

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 148 / 612

Entity Representation Annotations Modules Refinements First-Class Entities

Adaptation Constraints Hierarchy Rules

Adaptation Trigger Internal External

Adaptation Activation Compile-Time Runtime

Composition Process Order-Independent Order-Dependent Blocking Non-Blocking

Adaptation Properties Stateful Extensible Cascading

Figure 2: Morphologic scheme of all implementation characteristics.

adaptation, in rbFeatures a call to the Print.activate method
must be made to activate the adaptation. In Subjective-C the
@activate(Print) keyword is used to process the context
activation.

However, there is a difference in the processing of the two
activation messages. In rbFeatures the source code enclosed by
the feature definition is re-executed, that is, with every activation
the code gets redefined and because of changed containment
conditions, new behavior is eventually added to the program.
Subjective-C, on the other hand, does not re-execute any code.
Instead, activation of a context allows its associated methods,
variables, objects, and so on, to be visible by the method dispatcher.
This is the main reason context-dependent variables are stateful.
Whichever the state of a variable is, it remains untouched as long
as the context in which the variable is defined is inactive, since it
cannot be found by the program.

IV. COMPARISON OF FEATURE-ORIENTED PROGRAMMING

AND CONTEXT-ORIENTED PROGRAMMING

In this section, the similarities and differences encountered
between our FOP and COP implementations are made explicit.
Then we define them as specific characteristics of the implemented
paradigm.

We summarize the observed similarities as follows:
• Features and contexts are declared as first-class entities of the

program.
• Features and contexts add adaptions on top of the core behav-

ior by annotating source code at the place where adaptations
would normally be defined in.

• Features and contexts can both be activated and deactivated
at runtime, immediately changing the program behavior.

• Both implementations offer a runtime representation of the
dependencies between adaptions.

The differences are the following:
• There is no automatic adaptation of the dependent features in

rbFeatures, while Subjective-C uses the dependency relations
defined between contexts to automatically activate or deacti-
vate related contexts.

• Feature activation is externally triggered by the user in rbFea-
tures, while Subjective-C uses internal triggers based on the
program state to activate contexts.

• There is no stateful composition of adaptations in rbFeatures:
while instances of objects with feature-dependent behavior
retain their state, class variables will be overridden during

the program adaptation. Subjective-C uses a stateful represen-
tation of contexts. Variables declared in a context cannot be
accessed or modified unless the context that defines them is
available. Maintaining there state between activations.

• Features can be composed at compile-time and runtime in
rbFeatures, while Subjective-C only offers runtime composi-
tion.

We use this comparison and related work as the frame of refer-
ence for FOP and COP to define a set of characteristics that identify
our implementations of each paradigm. These characteristics, also
illustrated in Figure 2, are the following ones:

• ENTITY REPRESENTATION [ANNOTATIONS, MODULES, RE-
FINEMENTS, FIRST-CLASS ENTITIES] – Specifies how adap-
tations are represented. On the one hand are pure annotations
that are external to the program and receive their meaning as
contexts or features from the processing tool. On the other
hand we see first-class entities that are high-level abstractions
and can be fully integrated with the program.

• ADAPTATION CONSTRAINTS [HIERARCHY, RULES] – The
availability of composition constraints, for example in the
form of a hierarchy (a hierarchically higher adaptation is only
available if its children are) or rules (arbitrary expressions
that state which adaptions need to be active or inactive for a
particular adaption to be composed with the program).

• ADAPTATION TRIGGER [INTERNAL, EXTERNAL] – The
adaptation process is triggered by an internal signal, like a
certain program state upon which it reacts, or by an external
signal, for example a change in environment that is detected
by a sensor or through a command by the user.

• ADAPTATION ACTIVATION [COMPILE-TIME, RUNTIME] –
The adaptation can occur statically at runtime, usually loosing
the information about the adaptation and producing a program
with fixed behavior, or fully dynamically at runtime.

• COMPOSITION PROCESS [ORDER-DEPENDENT, ORDER-
INDEPENDENT, NON-BLOCKING, BLOCKING] – An impor-
tant difference in the adaptation process is whether the ac-
tivation order influences the adaptation result, for example
when adaptations provide different composition of source
code pieces. Furthermore, the adaptation process can block
activation of other adaptations during the composition.

• ADAPTATION PROPERTIES [STATEFUL, EXTENSIBLE, CAS-
CADING] – In a stateful adaptation, defined objects and vari-
ables retain their states between deactivations and activations.

133

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 149 / 612

Extensible means to modify existing adaptations or to add new
ones at the program runtime. Finally, cascading denotes the
capability that if an adaptation needs to be added or removed
from the program, all dependent adaptations are automatically
removed or added.

In terms of these characteristics, we can identify our imple-
mentations as shown in Figure 3. As we see, there are 6 com-
mon characteristics shared between the implementations, and 6
unique ones. Judging from this representation, the main difference
between features and contexts is the availability of compile-time
composition of program and the availability of stateful, cascading
adaptations.

Subjective-C rbFeatures

Annotations
Refinements First-class

EntitiesModules

Runtime
External

Order-dependent

Hierarchy

Internal

Non-blocking

Blocking
Rules

Compile
Time

Stateful

Cascading

Figure 3: rbFeatures and Subjective-C characteristics.

V. RELATED WORK

To the best of our knowledge, a structured comparison of COP
and FOP paradigms as proposed in this paper has not been done.
However, several COP ideas are used to build FOP programs and
vice versa. We discuss such proposals here.

A first close relation can be seen from the concept of super-
imposition, which is the process of merging software artifacts by
merging their substructures [22]. This mechanism lies at the heart
of introducing adaptations of programs, and it is used by several
implementations for feature-oriented programming and context-
oriented programming.

Context-oriented languages borrow several concepts of feature-
oriented programming, at both the implementation and design
level. The ContextL [2] COP language uses the concept of mixin-
layers [23] normally used as an implementation technique for
FOP. Specifically, ContextL uses layers as the main abstraction to
define adaptations [24]. Based on the need to express dependencies
between layers, and to better control their interaction, a Feature
Description Language (FDL) was introduced in ContextL [25] to
automatically enforce dependencies between layers.

Additionally, an extension of feature-oriented domain analysis
has been used for the design of context-oriented systems, namely
Context-Oriented Domain Analysis (CODA) [19]. In this approach,
feature diagrams are extended to express resolution strategies
whenever there are multiple adaptations available that provide
behavior for the same functionality. The CODA approach also
introduces inclusion and exclusion relations between adaptations.
The former relation expresses that if an adaptation can be activated
all included adaptations are also activated. The later one, expresses

that if an adaptation can be activated, all its excluded adaptations
are deactivated.

VI. CONCLUSION AND FUTURE WORK

This paper shows how feature-oriented programming and
context-oriented programming paradigms provide closely related
strategies for realizing software variability. To understand the
differences and similarities between the two paradigms, we imple-
mented a common case study with an FOP language (rbFeatures)
and a COP language (Subjective-C). Based on analyzing how
behavioral adaptations are expressed and implemented, we derived
a set of characteristic properties constituting each paradigm. We
found that six characteristics are common in both paradigms, and
six a are different. In essence, the difference lies in the availability
of compile time and/or runtime adaptations and in the stateful
transition of the program’s behavior.

This contribution helps to clarify the commonalities of the two
seemingly disjoint research directions, and can help to stimulate
research both towards the merging of features and contexts, as
well as to improve the characteristic strength of each paradigm.

In future work, the next step is to extend this study with an
in-depth analysis of other FOP and COP languages. We wish to
further refine the characteristics, and based on it, it would be
possible to think about how FOP and COP can be merged in
hybrid languages for variability, for example, by adding stateful
representation of features or to add compile-time composition to
COP implementations that restrict the amount of runtime contexts
deployed in devices.

ACKNOWLEDGEMENTS

This work has been supported by the ICT Impulse Programme
of the Brussels Institute for Research and Innovation, and by
the Interuniversity Attraction Poles Programme, Belgian State,
Belgian Science Policy. We thank the anonymous reviewers for
their comments on an earlier version of this paper.

REFERENCES

[1] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at
Objects,” in Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP), ser. Lecture Notes in
Computer Science, M. Aksit and S. Matsuoka, Eds., vol. 1241.
Berlin, Heidelberg, Germany: Springer-Verlag, 1997, pp. 419–
443.

[2] P. Costanza and R. Hirschfeld, “Language Constructs for Context-
Oriented Programming: An Overview of ContextL,” in Proceed-
ings of the 1st Symposium on Dynamic Languages. New York,
USA: ACM, 2005, pp. 1–10.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software
Engineering Institute, Carnegie Mellon University, USA, Tech.
Rep. CMU/SEI-90-TR-21, 1990.

[4] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in Software
Product Lines,” in Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE). New York: ACM, 2008,
pp. 311–320.

134

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 150 / 612

[5] S. Günther and S. Sunkle, “Dynamically Adaptable Software
Product Lines using Ruby Metaprogramming,” in Proceedings
of the 2nd International Workshop on Feature-Oriented Software
Development (FOSD). New York: ACM, 2010, pp. 80–87.

[6] S. Günther and S. Sunkle, “Feature-Oriented Programming with
Ruby,” in Proceedings of the First International Workshop on
Feature-Oriented Software Development (FOSD). New York:
ACM, 2009, pp. 11–18.

[7] S. Günther and S. Sunkle, “rbFeatures: Feature-Oriented Pro-
gramming with Ruby,” in Science of Computer Programming.
Elsevier, 2011, accepted 01.01.2011, in press.

[8] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, and
J. Goffaux, “Subjective-c: Bringing context to mobile platform
programming,” in Proceedings of the International Conference
on Proceedings of the International Conference on Software
Language Engineering, ser. series-lncs, B. Malloy, S. Staab, and
M. van den Brand, Eds., vol. 6563. Eindhoven: Springer, 2011,
pp. 246 – 265.

[9] S. Apel and C. Kästner, “An Overview of Feature-Oriented
Software Development,” Journal of Object Technology (JOT),
vol. 8, no. 5, pp. 49–84, 2009.

[10] C. Kästner and S. Apel, “Virtual Separation of Concerns – A
Second Chance for Preprocessors,” Journal of Object Technology
(JOT), vol. 8, no. 6, pp. 59–78, Sep. 2009.

[11] R. E. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating
Support for Features in Advanced Modularization Techniques,” in
Proceedings of the 19th European Conference on Object-Oriented
Programming (ECOOP), ser. Lecture Notes in Computer Science,
A. P. Black, Ed., vol. 3586. Berlin, Heidelberg, Germany:
Springer-Verlag, 2005, pp. 169–194.

[12] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts, “Classboxes:
Controlling Visibility of Class Extensions,” Computer Languages,
Systems & Structures, vol. 31, no. 3, pp. 107–126, 2005.

[13] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An
Overview of CaesarJ,” in Transactions on Aspect-Oriented Soft-
ware Development I, ser. Lecture Notes in Computer Science,
A. Rashid and M. Aksit, Eds. Berlin, Heidelberg, Germany:
Springer-Verlag, 2006, vol. 3880, pp. 135–173.

[14] S. Herrmann, “A Precise Model for Contextual Roles: The
Programming Language ObjectTeams/Java,” Applied Ontology,
vol. 2, no. 2, pp. 181–207, 2007.

[15] D. Batory, “Feature-Oriented Programming and the AHEAD Tool
Suite,” in Proceedings of the 26th International Conference on
Software Engineering (ICSE). Washington: IEEE Computer
Society, 2004, pp. 702–703.

[16] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in
Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP), ser. Lecture Notes in Computer Science,
M. Aksit and S. Matsuoka, Eds. Berlin, Heidelberg, Germany:
Springer-Verlag, 1997, vol. 1241, pp. 220–242.

[17] S. González Montesinos, “Programming in ambience: Gearing up
for dynamic adaption to context,” Ph.D. dissertation, Université
Catholique de Louvain, October 2008.

[18] S. González, K. Mens, and A. Cádiz, “Context-oriented pro-
gramming with the ambient object system,” Journal of Universal
Computer Science, vol. 14, no. 20, pp. 3307–3332, 2008.

[19] B. Desmet, J. Vallejos, P. Costanza, W. De Meuter, and
T. D’Hondt, “Context-Oriented Domain Analysis,” in Modeling
and Using Context, Sixth International and Interdisciplinary
Conference on Modeling and Using Context, August 2007, pp.
178–191.

[20] S. González, K. Mens, and P. Heymans, “Highly Dynamic Be-
haviour Adaptability through Prototypes with Subjective Multi-
methods,” in Proceedings of the 2007 symposium on Dynamic
Languages (DLS), ser. DLS ’07. New York, NY, USA: ACM,
2007, pp. 77–88.

[21] K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications. Boston, San Franciso et al.:
Addison-Wesley, 2000.

[22] S. Apel and C. Lengauer, “Superimposition: A Language-
Independent Approach to Software Composition,” in Software
Composition, ser. Lecture Notes in Computer Science, C. Pautasso
and E. Tanter, Eds. Berlin, Heidelberg: Springer-Verlag, 2008,
vol. 4954, pp. 20–35.

[23] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 11, no. 2, pp. 215–
255, 2002.

[24] B. Desmet, J. Vallejos, and P. Costanza, “Introducing Mixin
Layers to Support the Development of Context-Aware Systems,”
in 3rd European Workshop on Aspects in Software (EWAS), ser.
Technical Report IAI-TR-2006-6, G. Kneisel, Ed. Universität
Bonn, 2006, pp. 23–30.

[25] P. Costanza and T. D’Hondt, “Feature Descriptions for Context-
Oriented Programming,” in Proceedings 12th International Con-
ference for Software Product Lines (SPLCL), 2nd International
Workshop on Dynamic Software Product Lines (DSPL), S. Thiel
and K. Pohl, Eds., vol. 2 (Workshops). Ireland: University of
Limerick, 2008, pp. 9–14.

135

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 151 / 612

Soft Constraints in Feature Models

Jorge Barreiros

Instituto Superior de Engenharia de Coimbra, Coimbra

Universidade Nova de Lisboa, Lisboa,Portugal

jmsousa@isec.pt

Ana Moreira

CITI/Departamento de Informática

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Lisboa, Portugal

amm@di.fct.unl.pt

Abstract—Feature Models represent admissible configura-

tions of products in Software Product Lines. Constraints are

used to represent domain specific knowledge, such as

requiring or excluding a feature in the presence of another.

Configurations failing to conform to these constraints are

deemed invalid. However, in many cases useful domain

information cannot be expressed comfortably with such

forceful, hard constraints. Therefore, we propose the use of

softer constraints of less forcing nature. We categorize

possible semantics for such constraints, analyze their impact

on the feature expression and describe some specific analysis

procedures that are unique to the use of soft constraints.

Keywords-Feature Models; Software Product Lines; Soft

Constraints; Feature Consistency; Feature Interaction,

Semantic Validation

I. INTRODUCTION

In opposition to traditional single system development,
Software Product Line (SPL) development is concerned
with the creation of families of software products. In SPLs,
product variants belonging to the same family are created
by specifying a feature configuration, which is then
realized by the composition of corresponding artifacts
from a common pool of assets (such as requirements
documents, design models, code, etc.) [1].

Feature models are frequently used in SPL
development for identifying valid product configurations,
that is, configurations corresponding to a variant that can
be created by an application engineer using the SPL [2].
Feature models identify valid configurations by using a
feature tree annotated with additional domain constraints.
These can be represented graphically (e.g., linking
dependent features with a dependency arrow) or textually,
by means of arbitrary cross-tree expressions (Boolean
expressions depending on the configuration variables).
Feature models can be represented using logic expressions
according to well known transformations described in [3,
4]. A feature model expression is obtained by conjoining
the feature tree expression with the domain constraints.

An example of a feature model can be found in Fig. 1,
where Sound, Keyboard and Screen are mandatory
subfeatures of the root feature node Phone, while
MP3Player and Camera are optional subfeatures.
Polyphonic and Monophonic are mandatory and
alternative subfeatures of the Sound feature, and
Monochromatic and Polychromatic are alternative

subfeatures of the Screen feature. One domain constraint is
represented: the requires arrow describes that selection of
the Camera feature implies the selection of the Color
feature.

Links such as the one connecting Camera and Color in
Fig. 1 describe hard constraints. Any configuration that
does not respect this constraint is invalid. It can be the
case, however, that domain information is not comfortably
representable using such strict constructs. For example, a
situation can be considered where the overwhelming
majority of configurations do indeed respect a certain
restriction, but a few exceptions may exist. In this case,
restrictions on admissible configurations cannot be as
strict. A simple example will be the case of a default
selection for a group of alternative selections: if the parent
feature of such group is selected, then the preferred
alternative configurations may be suggested.

 We propose the use of soft constraints, of less forcing
nature, in these situations. The concept of soft constraint
has been described earlier in the context of probabilistic
feature models

[5]. Probabilistic feature models extend

standard feature models by the addition of “soft”
constraints that are associated with a degree of probability.
These are often obtained as the result of a feature mining
processes. We consider the use of a similar concept in in
standard, deterministic feature models. This allows richer
semantics to be represented in feature models, with
advantages such as enhanced analysis and improved
configuration support. An example of such a constraint in
Fig. 1 would be “Sound suggests Polyphonic”, expressing
domain knowledge that indicates the more common sound
configuration option. Naturally, soft constraints do not
need to be restricted to parent-child features as described:
other relations such as “Monophonic suggests
Monochromatic” can be represented. This type of
constraints can be useful for efficiently capturing useful
domain information that might be lost otherwise, as it is
usually absent in standard feature models. It can be used to
good effect for multiple purposes, depending on the
specific semantics that are adopted as described later, such
as allowing interactive configuration tools to suggest
configuration choices to the user.

136

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 152 / 612

Keyboard Screen

Phone

Camera

Monochromatic Color

Sound

Polyphonic Monophonic

MP3 Player

requires
Figure 1. Mobile phone feature model.

Using soft constraints also allows some semantic

consistency analysis that would otherwise be impossible,
e.g., if a suggested dependency can never be realized in a
feature model, then probably something is not right.
Conflicting suggestions can also be found (e.g., multiple
suggestions that cannot be satisfied simultaneously),
highlighting that a trade-off analysis may be in order to
compatibilize the inconsistent soft constraints.

The contributions of this work are the categorization of
soft constraint semantics, the formalization of the impact
(if any) of these constraints on the logic representation of
the feature model and the description of automated
analysis procedures made possible by the use of soft
constraints.

In Section II, we present motivating examples for our
work. In Section III, we discuss benefits of the use of soft
constraints and propose a categorization of the different
types of soft constraints. In Section I, we suggest a
formalization and analysis techniques for detecting
unsatisfiable and conflicting soft constraints. In Section V
we present related work and we conclude in Section VI.

II. MOTIVATION

Consider the example in Fig. 2, adapted from [5],
where a feature model is used to describe configuration
variability for an automobile vehicle. In this case, hard
domain restrictions are used to enforce the selection of
manual transmission in sports vehicles and to make sure

that emission control techniques are always used in
products destined for markets with stricter environmental
legislations. While observance of such constraints is
always found in valid products, soft constraints are used to
represent relevant relations between features that, while
not as critical or universally applicable as the hard
constraints, are also important. In this case, it is well
known that the USA market tends to favor vehicles with
automatic transmission over those with manual
transmission, while the converse is true for the European
market. Using soft constraints, such information can be
readily represented in the feature diagram, bringing in
additional semantics that can be used to good effect.

Another example of the use of soft constraints can be
found in Fig. 3. In this case, the feature model is used to
represent dynamic variability of the runtime behavior of a
real-time system. The system should adapt its behavior to
conform to variations in its environment. The state of the
operation environment is assessed by appropriate sensors
and the corresponding features are (de)selected
accordingly, with corresponding impact on the runtime
behavior as dictated by the constraints. A base control task
is to be active at all times, while fan control is only
suggested if the temperature is medium, but mandatory if it
reaches a high level. A filtering task is suggested if electric
noise is detected.

The need to use soft constraints to describe the
variability in this scenario is supported by the fact that the
suggested (non mandatory) features may not always be
selected because of limited resources (e.g., available CPU
load). This means that a feature such as Fan Control may
in fact remain unselected in the presence of its suggestor
(i.e., the Noisy feature), which cannot be comfortably
expressed using only hard constraints.

These examples suggest that soft constraints can be
used to good effect in feature models, by allowing the
inclusion of important domain information of non-forcing
nature.

Car

Transmission

Manual

Automatic

USA Europe

MarketEmission Control

Africa

requiresrequires

suggests

suggests

Profile

Utility

Sport

requires

Figure 2. Feature model for car configuration

137

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 153 / 612

Engine Control

Moderate

Environment

Noisy

suggests

High

Temperature

Runtime

Base Control

Fan Control Filtering

requires

suggests

Figure 3. Engine control system

III. SOFT CONSTRAINTS

In this section, we discuss the benefits gained by using soft

constraints in feature models and present a categorization of

alternative semantics.

A. Benefits

Benefits of soft constraints in feature models include:

• Improved configuration support: Interactive
configuration and completion techniques can assist
the configuration of feature models by assessing the
liveliness of features after each configuration step.
Starting from an empty configuration where all
features are considered to be unspecified (neither
selected or deselected), after a feature is selected or
deselected by the user, the liveliness of all features is
re-evaluated with respect to the partial configuration
already defined. Features that are found to be dead
(always unselected) in that partial configuration can
be safely deselected automatically. Conversely,
features that are common to all configurations that
include the partial configuration so far specified can
be automatically selected. For example, if the
developer specifies feature C in Fig.4 to be selected,
then features D and E can be automatically
deselected by the configuration tool, as no valid
configuration including feature C will contain either
(i.e., both are dead in all configurations where C is
selected). Similarly, A and root are common to all
such configurations, so they can be selected
automatically, leaving only feature B unspecified.
Interactive configuration and completion tools can
use soft constraint information to make
configuration suggestions to the user. For example,
if “A suggests B”, the configuration tool can propose
the selection of B by default whenever A is selected
and B is unspecified. In the case of normative soft
constraints, increased restrictions on admissible
configurations also help to narrow down the correct
configurations. Also, if a valid configuration fails to
conform to a large percentage of soft constraints, it
can be flagged to the developer as suspicious.

root

A
B

C D

excludes

E

requires

Figure 4. Iterative configuration example

• Improved semantic-oriented consistency checks:
Standard consistency analysis of feature models is
concerned with ensuring that valid configurations do
exist. If soft constraints are present, it is possible to
make sure that configurations are available that
verify the suggested dependencies. If that is not the
case, this may be a sign that an analysis or modeling
error has occurred. For example, if it was actually
impossible to configure a car for the European
market with manual transmission despite such
association being suggested (e.g., because of the
unintended side effect of some hard constraints), this
would be highly suspicious and should be reported
to the developer for additional consideration. This
could be the case if hard domain restrictions would
make it impossible to select a configuration where
both such features are selected.

• Controlled generalization of feature models: A
generalization of a feature model is a transformation
that increases the number of admissible
configurations, making sure that previously valid
configurations remain valid. In some cases, soft
constraints can be used as a mechanism for
controlled generalization of feature models. For
example, if it was found, after creating the feature
model in Fig. 2, that it should actually be possible,
under certain circumstances, to produce vehicles
without emission control for the USA market, the
hard restriction that forbids such products from
being created could be transformed into an
equivalent soft constraint. This would have the
benefit of preserving important domain information
while accommodating the need to allow for spurious
“rogue” configurations.

B. Semantics and Categorization

Soft constraints can be interpreted according to different
semantics, from unassuming configuration suggestions (e.g.,
describing a predominant configuration as in [5]) to stricter
impositions that must be enforced if possible (i.e., a feature
must be selected if possible). According to the adopted
interpretation, different types of analysis and interpretations
may be possible. Therefore, we must consider the possible
semantics. These can be broadly categorized in two different
categories:

138

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 154 / 612

• Annotational: A soft constraint with an annotational
semantics does not impose any additional restriction
when added to a feature model. Its main purpose is
to embed domain information in the feature model to
assist the configuration automation and semantic
consistency checking. The validity of any specific
product configuration is never influenced by the
presence of an annotational soft constraint.

• Normative: A normative soft constraint must be
considered when assessing the validity of a product
configuration. These constraints represent
configuration information that may potentially
condition the validity of some configurations. A
normative soft constraint must be satisfied if
possible, but can be ignored otherwise. The concept
of “possible satisfaction” is, generally, always
dependent on the characteristics of the feature model
and is also potentially dependent on domain-specific
information (external to what is represented on the
feature model: see below). A normative soft
constraint may change the validity of a configuration
(with respect to the unconstrained feature model),
but it may never cause a feature model to become
inconsistent. Normative constraints can be
interpreted informally as meaning “requires-if-
possible”, “may-require”, “require-if-does-not-
make-configuration-invalid” or some other similar
formulation.

Applying normative constraints entails the need to assess
the “possibility” of selecting a specific feature. The
topology of the feature model and cross-tree-constraints
is always a decisive factor in making that assessment
(i.e., it cannot be reasonably considered “possible” to
select a feature when doing so would generate an invalid
configuration). However, it may be the case that the
feature model information is not sufficient to assess the
possibility of selecting a feature: in this case, external
factors, not represented in the feature model would come

into play. This suggests the following characterization of
normative constraints:

• Internal: The feature model holds all the
information required to assess selection possibility.

• External: The information in the feature model
alone is not sufficient for assessing possibility of
selection. External factors come into play.

In the example of Fig. 2, if the soft constraints are

interpreted under annotational semantics, then any
configuration that upholds the hard constraints is considered
valid, regardless of complying or not with the soft
constraints. On the other hand, if an (internal) normative
semantic is considered, the following interpretation holds: “If
the USA feature is selected, then the Automatic feature must
be selected, unless doing so would generate an invalid
configuration”. That is, a normative soft constraint should be
interpreted as a hard constraint, unless doing so would turn
an otherwise valid configuration into invalid. In Fig. 3, a
potential example of external normative soft constraints is
represented: in this case, the Fan Control feature should
always be selected if the Moderate heat feature is selected,
unless that is not possible, according to domain information
that is not necessarily integrated in the feature model. For
example, knowing that the implementations of the Base
Control, Fan Control and Filtering features compete for a
limited resource (CPU load), assessing of the possibility of
including the Fan Control feature must be conducted with
respect to external information. It is out of the scope of this
work to discuss how such external information would be
obtained or retrieved – as examples, an oracle could be used
to provide the required information or a domain specific
ontology could be queried.

 Table I presents a summary of the characterization of
hard and soft constraints.

TABLE I. SOFT AND HARD CONSTRAINTS CHARACTERIZATION

Nature Subtype Description
Affects FM

consistency?

Affects config

validity?
Semantics

A requires B Yes Yes A =>B

A excludes B Yes Yes A => ¬B

A may-require B No Yes

A may-exclude B No Yes

A encourages B No No

A discourages B No No

Hard

Equivalent hard restriction should

be upheld unless doing so would

make the configuration invalid.

May be further catgorized as

"external" or "internal"

Measure of belief concerning the

correlation between the

configuration of both features.

Soft

Normative

Annotational

139

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 155 / 612

IV. SOFT CONSTRAINT ANALYSIS

In this section, we present some formalization and
analysis techniques specific for feature models with soft
constraints. Although we propose a specific terminology for
each different type of soft constraints in Table I, in the
remaining text we use a link labeled “suggests” to indicate
either “mayRequire” or “encourages” when the distinction is
not important. For economy of space, exclusion-oriented
constraints are not specifically discussed, but most results
apply with minimal, usually obvious, adaptations.

A. Feature Expression for Normative Soft Constraints

Internal normative soft constraints may change the
assessment of the validity of configurations with respect to
the unconstrained feature model. This results in a change of
the model expression when a new soft constraint is
introduced in an existing feature model. The effect of
inserting an internal normative soft constraint (A suggests B)
results in a new feature model expression defined by:

,...)),()((,...),(,...),(BAFBABAFBAFS ¬¬∨⇒∧= (1)

where F is the feature model expression without the soft
constraint and FS is the resulting feature model expression.

An advantage of using internal normative soft constraints
is that standard feature model techniques apply normally,
e.g., satisfiability-based techniques are commonly applied to
the analysis of feature model expressions [6], for tasks such
as finding dead features This can be also done in a feature
model annotated with soft constraints by considering the
relevant FS.

Equation (1) can be applied iteratively with respect to all
soft constraints to obtain the feature expression
corresponding to a feature model with multiple soft
constraints. However, as described in Section IV.C,
conflicting constraints may warrant additional care.

B. Unsatisfiable Constraints

Soft constraints can be used to include meaningful
domain information in the feature model. One of the benefits
this provides is the possibility of verifying if the feature
model admits the existence of solutions that satisfy these soft
constraints. That is, verifying if the feature model is
semantically consistent with well known domain properties
represented by soft constraints. If that is not the case, it is
almost certainly an indication that an analysis error has been
made and the feature diagram should be evaluated. This is
not the same problem as the standard consistency assessment
of a feature model as in that case we are only concerned with
ensuring that at least one valid configuration exists. Consider
the example in Fig. 5; in this case, because B and C are
alternative features, it is not possible to find any
configuration that conforms to the soft constraint suggestion.
If the soft constraint represents a well known domain
property, then it can be reasonably assumed that an analysis
error has been made and that a re-evaluation of the feature
model or the soft constraint might be advisable.

A

B C

D
suggests

Figure 5. Unsatisfiable soft constraint

Car

Transmission

Manual

Automatic USA Europe

Market

suggests

suggests

Profile

Utility

Sport

sugge
sts

Figure 6. Conflicting soft constraints example

Unsatisfiable soft constraints can be identified by

assessing the unsatisfiability of:

,...)),(,..),((BAFBAFS ⇔¬ (2)

Where F and FS are defined as in (1). Unsatisfiability of

(2) is indicative of an unsatisfiable soft constraint.
Unsatisfiable constraint analysis can be performed not only
with respect to normative constraints but also annotational
ones. This is one of the advantages of including annotational
soft constraints in feature models. Although these do not
actually change the feature expression in any way, the same
equations can be used for the purpose of constraint
satisfiability analysis.

C. Conflicting Soft Constraints

Consider that, in the example of Fig. 2, after constructing
the feature model, the developer finds that, although unusual,
in some cases it may be necessary to allow configurations
with the Sport profile and Automatic transmission. One way
to handle this situation is to reduce the strength of the hard
domain constraint that imposes Manual transmission for
Sport vehicles by transforming it into a corresponding soft
constraint. A partial representation of the resulting feature
model is found in Fig.6.

It can be observed that simultaneous selection of the USA
and Sport features will entail conflicting suggestions of
transmission configuration. In such a situation, we describe
the corresponding constraints to be conflicting. It is worth
noting that this model is not inherently wrong as would be
the case if hard constraints were involved.

The following procedure can be used to determine if soft
constraints (A→B) and (C→D) will conflict when added to
in a consistent feature model with expression F(A,B,…):

140

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 156 / 612

1. Verify the satisfiability of CABAF ∧∧,...),(. If

it is not satisfiable, then no conflict exists.
2. If that is not the case, verify the satisfiability of

)()(,...),(DCBABAF ⇒∧⇒∧ . If it is not

satisfiable, then a conflict exists.

When conflicting soft constraints are to be applied to a
feature model, the order by which (1) is iterated to obtain the
feature expression, as described in Section IV.A, is relevant
to the outcome. Assuming all conflicting suggestions are of
equal force, this is not desired and the following process
should be used instead:

1. Identify all groups of conflicting soft constraints.
2. Iterate over all groups of conflicting soft constraints

and compute:

,...)),()((,...),(,...),(1,, iiiiinnS BAFBABAFBAF ¬¬∨⇒∧= ∨
−

 with ,...),(,..),(0, BAFBAFs =

This will create a feature expression where all conflicting

suggestions are integrated. No preference is given to any
suggestion over other, that is, in the example of Fig. 6,
configurations with {Sport, Manual, USA} are just as
admissible as {Sport, Automatic, USA}, If an interactive
configuration tool was being used, {USA, Sport} were
selected and both Automatic and Manual were unspecified,
both of these features could be presented as configuration
suggestions. Nevertheless, in some situations it may be
desirable to perform a trade-off analysis and prioritize the
relative importance of soft constraints. This would be the
case if, for example, the Sport feature was a dominating
factor on the choice of transmission. In this case, rather than
following the process outlined above, (1) should be used
instead, in order of the desired priority. That is, first consider
the effect of the Sport feature on the feature model and only
then compute the effect of the USA feature (on the previously
computed feature model). This would allow for
disambiguation of the suggestions represented by the soft
constraints.

V. RELATED WORK

In [5], probabilistic feature models are described that use

soft constraints as descriptions of features that have high

probabilities of being concurrently selected in the same

configuration. Probabilistic feature models and

corresponding samples spaces are suited to represent feature

models obtained through feature mining processes. The

fundamental purpose of probabilistic soft constraints in that

context is to represent the results of the mining process.

According to the classification in Section III.B, probabilistic

soft constraints are inherently annotational, and as such do

not affect the validity of any specific configuration, as is the

case of the normalizing soft constraints we describe and

analyze. We envision the use of soft constraints more as a

fundamental construct of feature models, rather than being

an auxiliary artifact.

“Encourages” and “discourages” constraints have been

proposed for feature models in [7]. However, no precise

semantics have been provided, precluding automated

analysis and reasoning as described in our work.

In [8], fuzzy logic is applied to related feature

configurations to costumer profiles. Fuzzy logic is a

powerful tool for handling uncertainty. Nevertheless,

normative semantics may be difficult to include in such an

approach.

VI. CONCLUSIONS

We presented an exploratory analysis of the use of soft

constraints in feature models. Possible semantics were

specified and specific analysis techniques described. We

found that soft constraints are useful in a diversity of

contexts and offer the possibility of bringing additional

important domain information to the feature model.

Future work includes application of soft constraints to

well known industrial and academic case studies. Our

prototype tool will be integrated with configuration tools

providing enhanced configuration support.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the

Portuguese Government through the PROTEC program

grant SFRH/PROTEC/49834/2009 and by the Portuguese

research centre CITI through the grant PEst-

OE/EEI/UI0527/2011.

REFERENCES

[1] P. Clements and L. Northorp, Software Product
Lines:Practices and Patterns: Addison-Wesley, 2001.

[2] K. Czarnecki and U. Eisenecker, Generative Programming:
Methods, Tools, and Applications: Addison-Wesley
Professional, 2000.

[3] D. S. Batory, "Feature Models, Grammars, and Propositional
Formulas," in Software Product Lines, 9th International
Conference, SPLC 2005 Rennes, France, 2005, pp. 7-20.

[4] K. Czarnecki and A. Wasowski, "Feature Diagrams and
Logics: There and Back Again," in 11th International
Software Product Line Conference (SPLC) Kyoto, 2007, pp.
23-34.

[5] K. Czarnecki, S. She, and A. Wasowski, "Sample Spaces and
Feature Models: There and Back Again," in Software Product
Lines, 12th International Conference, SPLC Limerick,
Ireland, 2008, pp. 22-31.

[6] M. Mendonça, A. Wasowski, and K. Czarnecki, "SAT-based
analysis of feature models is easy," in Software Product
Lines, 13th International Conference, SPLC 2009, San
Francisco, California, USA, 2009, pp. 231-240.

[7] H. Wada, J. Suzuki, and K. Oba, "A feature modeling support
for non-functional constraints in service oriented
architecture.," IEEE Computer Society, pp. 187-195, 2007.

[8] S. Robak and A. Pieczynski, "Employment of fuzzy logic in
feature diagrams to model variability in software families.," in
10th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS 2003) Huntsville, AL, USA,
2003, pp. 305-311.

141

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 157 / 612

1

Feature Modeling of Software as a Service Domain

to Support Application Architecture Design

Karahan Öztürk

Department of Computer Engineering,

Middle East Technical University

Ankara, Turkey

e-mail: karahanozturk@gmail.com

Bedir Tekinerdogan

Department of Computer Engineering

Bilkent University

Ankara, Turkey

e-mail: bedir@cs.bilkent.edu.tr

Abstract—Cloud computing is an emerging computing paradigm

that has gained broad interest in the industry. SaaS architectures

vary widely according to the application category and number of

tenants. To define a proper SaaS architecture it is important to

have a proper understanding of the domain. Based on our

extensive domain analysis approaches, we provide a feature model

for SaaS that depicts the design space and represents the common

and variant parts of SaaS architectures. The feature model

enhances the understanding of SaaS systems, and supports the

architect in designing the SaaS application architectures.

Keywords- modeling, service, architecture, design, SaaS

I. INTRODUCTION

Cloud computing is an emerging computing paradigm that

has gained broad interest [6][19]. Unlike traditional enterprise

applications that rely on the infrastructure and services

provided and controlled within an enterprise, cloud computing

is based on services that are hosted on providers over the

Internet. The services that are hosted by cloud computing

approach can be broadly divided into three categories:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS) and Software-as-a-Service and Software-as-a-Service

(SaaS). In this paper we will focus on the Software as a Service

context [18]. SaaS is a web-based, on-demand distribution

model where the software is hosted and updated on a central

site and does not reside on client computers [1][3]. With SaaS,

software applications are rented from a provider as opposed to

purchased for enterprise installation and deployment. Similar

to the general benefits of cloud computing the SaaS approach

yields benefits such as reduced cost, faster-time-to-market and

enhanced scalability.

An appropriate SaaS architecture design will play a

fundamental role in supporting the cloud computing goals

[13][4]. Based on the literature we can derive the basic

components required for SaaS. However, while designing

particular applications one may derive various different

application design alternatives [1] for the same SaaS

architecture specification. Each design alternative may meet

different functional and nonfunctional requirements. It is

important to know the possible design so that a viable

realization can be selected.

To enhance the understanding of SaaS systems and support

the architect in designing SaaS architectures we propose

defining a feature model for SaaS architectures. A feature

model is the result of a domain analysis process whereby the

common and variant properties of a domain or product are

elicited and modeled [15]. In addition, the feature model

identifies the constraints on the legal combinations of features

and as such, a feature model defines the feasible models in the

domain. The feature model has been derived after an extensive

literature study to SaaS architectures. This included basically a

systematic literature study on cloud computing in general and

software as a service architectures in particular. It should be

noted that we could not put all the references in this paper due

to space limitations. Based on a commonality and variability

analysis of the selected papers the common and variant

features of SaaS were derived.

The remainder of the paper is organized as follows. Section

II presents SaaS architecture for which a feature model will be

defined. Section III presents the family feature model for SaaS.

Section IV presents an example illustrating the derivation of

application architecture based on application feature model.

Finally section V concludes the paper.

II. SOFTWARE AS A SERVICE ARCHITECTURE

SaaS has been widely discussed in the literature and various

definitions have been provided. In general when describing

SaaS, no specific application architecture is prescribed but

rather the general components and structure is defined. Based

on the literature we have defined the reference architecture for

SaaS as given in Figure 1 [3][13][18][6]. Besides of the

theoretical papers we have also looked at documentation of

reference architectures as defined by SaaS vendors such as

Intel [18], Sun [19] and Oracle [10].

internet

 KEY
Node Internet

Connection
Layer

SaaS Provider

Data Access Layer

Application and Business

Service Layer

Distribution Layer

Data Storage Layer S
u

p
p

o
rt

in
g

 S
e

rv
ic

e
 L

a
y
e

r

Presentation Layer

SaaS Client

User Layer

*

Figure 1. SaaS Reference Architecture

142

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 158 / 612

2

In principle, SaaS has a multi-tier architecture with multiple

thin clients. In Figure 1 the multiplicity of the client nodes is

shown through the asterisk symbol (*). In SaaS systems the

thin clients rent and access the software functionality from

providers on the internet. As such the cloud client includes

only one layer User Layer which usually includes a web

browser and/or the functionality to access the web services of

the providers. This includes, for example, data integration and

presentation. The SaaS providers usually include the layers of

Distribution Layer, Presentation Layer, Business Service

Layer, Application Service Layer, Data Access Layer, Data

Storage Layer and Supporting Service Layer.

Distribution Layer defines the functionality for load

balancing and routing. Presentation Layer represents the

formatted data to the users and adapts the user interactions.

The Application and Business Service Layer represents

services such as identity management, application integration

services, and communication services. Data Access Layer

represents the functionality for accessing the database through

a database management system. Data Storage Layer includes

the databases. Finally, the Supporting Service Layer includes

functionality that supports the horizontal layers and may

include functionality such as monitoring, billing, additional

security services, and fault management. Each of these layers

can be further decomposed into sub-layers.

Although Figure 1 describes the common layers for SaaS

reference architecture, it deliberately does not commit on

specific application architecture. For example, the number of

clients, the allocation of the layers to different nodes, and the

allocation of the data storage to nodes is not defined in the

reference architecture. Yet, while designing SaaS for a

particular context we need to commit on several issues and

make explicit design decisions that define the application

architecture. Naturally, every application context has its own

requirements and likewise these requirements will shape the

SaaS application architecture in different ways. That is, based

on the SaaS reference architecture we might derive multiple

application architectures.

III. FEATURE MODEL OF SAAS

To support the architect in designing an appropriate SaaS

application architecture a proper understanding of the SaaS

domain is necessary. In this section we define the SaaS feature

model that represents the overall SaaS domain. Figure 2 shows

the conceptual model representing the relation between feature

model and SaaS architecture.

SaaS

Family Feature Model

SaaS

Reference Architecture

SaaS

Application Feature

Model

SaaS

Application Architecture

instance

of
instance

of

supports

supports

Figure 2. Conceptual model representing relation between feature model

and SaaS architecture

We distinguish between family feature model and

application feature model. The family feature model represents

the features of the overall SaaS domain, whereas the

application feature model represents the features for a

particular SaaS project. The application feature model is

derived from the family feature model. The features in the

feature model typically refer to the architectural elements in

the SaaS architecture. As discussed in the previous section we

also distinguish between SaaS reference architecture and SaaS

application architecture. For designing the SaaS application

architecture first the required features need to be selected from

the family feature model resulting in the application feature

model. The application feature model will be used to support

the design of the SaaS application architecture. In the

following we will elaborate on the family feature model.

A. Top-Level Feature Model
The top level feature diagram of SaaS that we have derived

is shown in Figure 3. The key part represents the different

types of features including optional, mandatory, alternative,

and or features [15]. Note that the features in Figure 3 denote

the layers in the SaaS reference architecture as defined in

Figure 1. All the layers except the Support Layer have been

denoted as mandatory features. The Support Layer is defined

as optional since it might not always be provided in all SaaS

applications. Each of these layers (features) can be further

decomposed into sub-layers.

KEY
feature

optional

feature
mandatory

feature

alternative

features

User

Layer

SaaS

Distribution

Layer

Presentation

Layer

Application

Layer

Data Storage

Layer

Data Access

Layer

Support

Layer

or sub-

features

Figure 3. Top-Level Feature Model

B. User Layer
User layer is the displaying layer that renders the output to

the end user and interacts with the user to gather input. This

layer is the only part that the user can see. In principle the user

layer might include a Web Browser or Rich Internet

Application (RIA), or both of these (or features). RIA is

especially used on mobile platforms.

Web

Browser

User Layer

RIA

Figure 4. Feature Diagram for User Layer

C. Distribution Layer
Figure 5 shows the features for the distribution layer

feature. This layer is the intermediate layer between the

143

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 159 / 612

3

internet and the SaaS application. The main concerns of the

layer are scalability, availability and security. The mandatory

features of this layer are load balancers and firewalls [11].

A firewall inspects the traffic and allows/denies packets. In

addition to this, firewalls provide more features like intrusion

detecting, virtual private network (VPN) and even virus

checking. The distribution layer can have a single firewall or a

firewall farm. A firewall farm is a group of connected firewalls

that can control and balance the network traffic.

Load balancers divide the amount of workload across two

or more computers to optimize resource utilization and

increase response time. Load balancers are also capable of

detecting the failure of servers and firewalls and repartitioning

the traffic. Load balancers have the mandatory features of Type

and Strategy, and an optional feature Load Balancer.Firewall.

There are two types of load balancers, hardware based and

software based. Load balancing strategies decide how to

distribute requests to target devices. Passive load balancing

strategies use already defined strategies regardless the run time

conditions of the environment. Some of the most used passive

strategies are Round Robin, Failover, Random and Weighted

Random. Dynamic load balancing strategies are aware of

information of the targets and likewise route the requests based

on traffic patterns. Some of the most used passive strategies are

Fastest Response Time, Least Busy, Transfer Throughput, IP

Sticky and Cookie Sticky.

The optional Load Balancer.Firewall can be used as

firewall by providing both packet filtering and stateful

inspection. Using load balancer as a firewall can be an

effective solution for security according to network traffic and

cost requirements. This feature excludes the “Distribution

Layer.Firewall” feature.

Load

Balancer

Distribution

Layer

Type
Loadbalancer

Firewall
Strategy

Firewall

Hardware

Based

Software

Based
Passive Dynamic

Single Farm

Round

Robin
FallOver Random Weighted

Random

Fastest

Response Time

Least

Busy

Transfer

Throughput

IP

Sticky

Cookie

Sticky

Figure 5. Feature Diagram for Distribution Layer

D. Presentation Layer
Figure 6 presents the presentation layer feature. The

presentation layer consists of components that serve to present

data to the end user. This layer provides processes that adapt

the display and interaction for the client access. It

communicates with application layer and is used to present

data to the user.

Web

Browser

Presentation

Layer

Web Proxy

Server

Figure 6. Feature Diagram for Presentation Layer

The presentation layer feature includes two subfeatures, the

mandatory Web Server and optional Web Proxy Server

features. A web server handles HTTP requests from clients.

The response to this request is usually an HTML page over

HTTP. Web servers deal with static content and delegate the

dynamic content requests to other applications or redirect the

requests. Web Proxy Server can be used to increase the

performance of the web servers and presentation layer, caching

web contents and reducing load is performed by web proxy

servers. Web proxy servers can also be used for reformatting

the presentation for special purposes as well for mobile

platforms.

E. Application Layer
Figure 7 shows the feature diagram for Application Layer,

which is the core layer of the SaaS architecture. Business logic

and main functionalities, Identity Management, orchestration,

service management, metadata management, communication,

and integration are provided by this layer.

Especially in the enterprise area, SaaS platforms are usually

built on SOA technologies and web services. Application

Server, Integration, Metadata Management, Identity

Management and Communication are mandatory features for

the application layer. In case of using SOA, some other

features – ESB, Orchestration, Business Rules Engine, are used

in this layer. In the following subsections we describe these

features in more detail.

Communication

Application

Layer

IntegrationESB Orchestration
Business Rule

Engine

Metadata

Management

Identity

Management

Application

Server

Figure 7. Feature Diagram for Application Layer

 Application Server

An application server is a server program that handles all

application operations between users and an organization's

backend business applications or databases. The application

server’s mission is to take care of the business logic in a multi-

tier architecture. The business logic includes usually the

functions that the software performs on the data. Application

servers are assigned for specific tasks, defined by business

needs. Its basic job is to retrieve, handle, process and present

144

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 160 / 612

4

data to the user interface, and process any input data whether

queries or updates, including any validation and verification

and security checks that need to be performed.

Asymmetric

Clustering

Symmetric

Application

Server

Business

Service

Figure 8. Feature Diagram for Application Server

SaaS applications have to have continuous uptime. Users

around the world can access the application anytime.

Application failure means customer and monetary loss. The

application should be prevented from single point of failure. In

addition to availability issues, there are performance and

scalability capabilities to overcome for SaaS applications. By

combining more than one computer and make it as a unified

virtual resource can solve these problems. This technique is

called server clustering. There are two techniques for server

clustering: asymmetric and symmetric. In asymmetric clusters,

a standby server exists to take control in case of another server

gets of failure. In symmetric clusters, every server in the

cluster do actual job. The first technique provides more

available and fault tolerant system but the latter is more cost-

effective.

 ESB

When we are talking about SaaS applications and service

oriented architecture, the requirement is providing an

infrastructure for services to communicate, interact, and

transform messages. Enterprise Service Bus (ESB) is a

platform for integrating services and provides enterprise

messaging system. Using an ESB system does not mean

implementing a service oriented architecture but they are

highly related and ESB facilitates SOA.

 Orchestration

Orchestration is a critical mission in SOA environment. A

lot of tasks should be organized to perform a process.

Orchestration provides the management, coordination and

arrangement of the services. BPEL is, for example, an

orchestration language that defines business processes. Some

simple tasks may be performed by ESB but more complex

business processes could be defined by BPEL. To interpret and

execute BPEL a BPEL engine is needed.

 Metadata Management

SaaS has a single instance, multi-tenant architecture.

Sharing the same instance to many customers brings the

problem of customization. In SaaS architecture, customization

is done using metadata. Metadata is not only about

customization (e.g. UI preferences), it is also intended to

provide configuration of business logic to meet customers

need. Updating, storing and fetching metadata is handled

through Metadata services. This feature requires Metadata

Repository feature.

 Business Rule Engine

As mentioned before, SaaS applications can be customized

and configured by metadata. Workflow may differ for each

customer. Business Rules Engine is responsible of metadata

execution. It consists of its own rule language, loads the rules

and then performs the operations.

 Integration

The feature diagram for Integration is shown in Figure 9. In

the context of SaaS, all the control, upgrade, and maintenance

of user applications and data are handled by SaaS provides. An

important challenge in SaaS is the data integration. SaaS

applications usually need to use client data which resides at the

client’s node. On the other hand, each client may use more

than one SaaS application or on-premise application using the

same data. The data may be shared among several applications

and each application may use different part of it or in different

formats. Manipulating the data will usually have an impact on

the other applications. Data accuracy and consistency should

be provided among those applications. Re-entering or

duplicating the data for any application is not a feasible

manner to provide data.

There are three different approaches for providing

consistent data integration including: common integration,

specific integration and certified partner integration. In the

common integration approach services are provided for all

clients. This feature requires “Integration.Services.Web

Services” feature. In the specific integration, services are

customized for each customer. This feature requires

“Integration.Services.Integration Services” feature. Finally, in

the Certified Partner approach the SaaS vendor delegates the

integration to another vendor which is a specialist for SaaS

integration. The SaaS vendor still needs to provide web

services, but it leaves the control to other entities and focuses

itself on the application. This feature also requires

“Integration.Services.Web Services” feature.

The Integration feature describes either Integration Service

or Web Service: In Integration Service approach, the SaaS

vendor provides custom integration services for customers.

Although this is the easiest way for customers, it is hard to

manage adding integration service for different needs for

vendors and increasing number of customers causes scalability

problems. In the Web Service approach, the SaaS vendor

provides a standard approach for customers as web services.

The customers themselves take responsibility for SaaS

integration. Compared to the Integration Service approach,

customers have to do much more and need extensive

experience. On the other hand this is a more scalable solution

for vendors.

145

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 161 / 612

5

Common

Method

Certified

Partner

Integration

Service

Specific Integration
Web

Service

Figure 9. Feature Diagram for Integration

 Identity Management

Figure 10 represents the feature model for Identity

Management, which deals with identifying individuals in a

system and controlling access to the resources in the system by

placing restrictions on the established identities of the

individuals [7]. The Directory Management is responsible for

managing the identities.

Identify Management includes two mandatory features

Identity Model and Directory Management. Identity Model can

be Single Sign-On, Isolated or Federated. Isolated Identity

Management: The most common and simplest identity

management model is the isolated one. Hereby, each service

provider associates an identity for each customer. Despite its

simplicity, this model is less manageable in case of the growth

of number of users who should remember their login and

passwords to their accounts for each service. Single Sign-On is

a centralized identity management model, which allows users

to access different systems using a single user ID and

password.

Single Sign-On identity management model [5] can be PKI-

Based, SAML-Based, Token-Based, Credential

Synchronization, or Secure Credential Caching. SAML stands

for Security Assertion Markup Language and defines the XML

based security standard to enable portable identities and the

assertion of these identities. The Token-Based approach can be

either based on Kerberos or Cookie. The Secure Credential

Caching can be on the Server Side or Client Side.

Identity

Model

Identity

Management

Single

Sign-On
Isolated Federated

Directory

Management

Name

space

Directory

Service

PKI

Based

Token

Based

Secure

Credential

Caching

Credential

Synchronization

Kerberos

Based

PKI

Based

SAML

Based

Kerberos Cookie
Server

Side

Client

Side

SAML
SAML

Figure 10. Feature Diagram for Identity Management

The Federated Identity Model is very close to Single Sign-

On, but defined identity management across different

organizations [6]. There are three most used approaches,

Kerberos-based Federation, PKI-based Federation or SAML-

based Federation. Directory Management feature includes two

mandatory features, Namespace and Directory Service.

Namespace maps the names of network resources to their

corresponding network addresses. Directory Service represents

the provided services for storing, organizing and providing

access to the information in a directory (e.g. LDAP).

 Communication

Figure 11 shows the feature model for the Communication

feature. SaaS vendor needs to provide a communication

infrastructure both for inbound and outbound communication.

Notification, acknowledging customers, sending feedbacks,

demanding approvals are useful for satisfying users. The most

common approach for communication is e-mailing. To transfer

mails between computers a Mail Transfer Agent (MTA) can be

used which requires Simple Mail Transfer Protocol (SMTP)

protocol. Besides of mailing other protocols such as Short

Message Peer-to-Peer Protocol (SMPP) and Simple Network

Paging Protocol (SNPP) can be used.

SMTP

Protocol

SNPP

Communication

MTA

SMPP

Figure 11. Feature Diagram for Communication

F. Data Access Layer
Figure 12 shows the feature diagram for Data Access Layer.

This layer provides the database management system (DBMS)

consisting of software which manages data (database manager

or database engine), structured artifact (database) and metadata

(schema, tables, constraints etc.).

One of the important, if not the most important, SaaS

feature is multi-tenancy [2][12]. Multi tenancy is a design

concept where a single instance of software is served to

multiple consumers (tenants). This approach is cost saving,

scalable, easy to administrate, because the vendor has to

handle, update or upgrade and run only single instance. Multi-

tenancy is not only about data, this design can be applied in all

layers but the most important part of the multi tenancy is multi

tenant data architecture. Based on the latter different kind of

multi-tenancy can be identified. Multi-tenancy with Separate

Databases means that each tenant has its own data set which is

logically isolated from other tenants. The simplest way to data

isolation is storing tenant data in separate database servers.

This approach is best for scalability, high performance and

security but requires high cost for maintenance and

availability. In the Shared Database, Separate Schemas

approach, a single database server is used for all tenants. This

approach is more cost effective but the main disadvantage is

146

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 162 / 612

6

restore is difficult to achieve. Finally, the Shared Database,

Shared Schema approach involves using one database and one

schema for each tenants' data. The tables have additional

columns, tenant identifier column, to distinguish the tenants.

This approach has the lowest hardware and backup costs.

DBMS

Separate

DB

Data Access

Layer

Multi-

Tenancy

Shared DB

Separate

Schema

Shared DB

Shared

Schema

Figure 12. Feature Diagram for Data Access Layer

G. Data Storage Layer
Figure 13 shows the feature diagram for Data Storage Layer.

The layer includes the feature for Metadata storage,

Application Database and Directory Service. Metadata files

can be stored either in a database or in a file based repository.

Application Database includes the sub-features of Storage Area

Network (SAN), Clustering and Caching [2]. SAN is a

dedicated storage network that is used to make storage devices

accessible to servers so that the devices appear as locally

attached to the operating system. SAN is based on fiber

channel and moves the data between heterogeneous servers.

Clustering is interconnecting a group of computers to work

together acting like a single database to create a fault-tolerant,

high-performance, scalable solution that's a low-cost

alternative to high-end servers. By caching, disk access and

computation are reduced while the response time is decreased.

Directory Service stores data in a directory to let the

directory service to lookup for identity management. This data

is read more often than it is written and can be redundant if it

helps performance. Directory schemas are defined as object

classes, attributes, name bindings and namespaces.

SAN

Application

Database

Caching

Data Storage

Layer

Directory

Service

Clustering

Metadata

Repository

DBFile

SNPM PMP

Figure 13. Feature Diagram for Data Storage Layer

H. Supporting Service Layer
Supporting Service Layer is a cross-cutting layer that

provides services for all layers. The feature model is shown in

Figure 14. As known, SaaS applications have quality attributes

such as scalability, performance, availability and security. To

keep the applications running efficiently and healthy, the SaaS

system needs to have monitoring system to measure metrics.

The monitoring infrastructure can detect failures, bottlenecks,

and threats and alert the administrators or trigger automatic

operations. Furthermore, SaaS systems may be built on service

oriented architecture and may need metering process for

service level agreements and billing. A few examples for the

metrics are CPU usage, CPU load, network traffic, memory

usage, disk usage, attack rate, number of failures, mean time to

respond etc.

Monitoring

Support

Layer

Metering

Figure 14. Feature Diagram for Support Layer

IV. EXAMPLE

Figure 15 shows an alternative application architecture

design that is derived from the reference architecture shown in

Figure 1. To derive this architecture based on the family

feature model as discussed in the previous sections, the

application feature model is defined. Typically in the

application feature model multi-tenancy is selected using a

single database management system with a shared database

and shared schemas for the tenants.

Data Server

Data Access Layer

Data Storage

Distribution Server

Distribution Layer

1

internet

SaaS Client

*

User Layer

Application Server

Application and Business

Service Layer

Figure 15. SaaS Application Architecture derived based on corresponding

application feature model

V. RELATED WORK

Despite its relatively young history, different surveys have

already been provided in the literature on cloud computing and

many papers have been published on SaaS. An example survey

paper is provided by Goyal and Dadizadeh [8]. However, to

the best of our knowledge no systematic domain analysis

approach has been carried out to derive a feature model for

SaaS.

La and Kim [14] propose a systematic process for

developing SaaS systems highlighting the importance of reuse.

The authors first define the criteria for designing the process

model and then provide the meta-model and commonality and

variability model. The metamodel defines the key elements of

SaaS. The variability model is primarily represented as a table.

The work focuses more on the general approach. The

metamodel could be complementary to the reference

147

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 163 / 612

7

architecture in this paper and as presented by SaaS providers.

Although the goal seems similar, our approach appears to be

more specific and targeting the definition of a proper modeling

of the domain using feature modeling.

Godse and Mulik [9] define an approach for selecting SaaS

products from multiple vendors. Since the selection of the

feasible SaaS product involves the analysis involves analysis

of various decision parameters the problem is stated as a multi-

criteria decision-making (MCDM) problem. The authors adopt

the Analytic Hierarchy Process (AHP) technique for

prioritizing the product features and for scoring of the

products. The criteria that are considered in the AHP decision

process are Functionality, Architecture, Usability, Vendor

Reputation, and Cost. Our work is also focused on selecting

the right SaaS product but it considers the design of the SaaS

architecture based on feature modeling. The selection process

defines the selection of features and not products. However, in

our approach we did not outline the motivation for selecting

particular features. For this we might add additional criteria to

guide the architect also in selecting the features. We consider

this as part of our future work.

Nitu [16] indicates that despite the fact that SaaS

application is usually developed with highly standardized

software functionalities to serve as many clients as possible,

there is still a continuous need of different clients to configure

SaaS for their unique business needs. Because of this

observation, SaaS vendors need take a well designed strategy

to enable self serve configuration and customization by their

customers without changing the SaaS application source code

for any individual customer. The author explores the

configuration and customization issues and challenges to SaaS

vendors, and distinguishes between configuration and

customization. Further a competency model and a

methodology framework is proposed to help SaaS vendors to

plan and evaluate their capabilities and strategies for service

configuration and customization. The work of Nitu considers

the configuration of the system after the system architecture

has been developed. We consider our work complementary to

this work. The approach that we have presented focuses on

early customization of the architecture to meet the individual

client requirements. The approach as presented by Nitu could

be used in collaboration with our approach, i.e. by first

customizing the architecture based on the potential clients and

then providing configurability and customization support for

the very unique business needs.

VI. CONCLUSION

Cloud computing and SaaS is a broad domain that is not

easy to understand for novice designers. In this paper we have

applied domain analysis techniques to derive a family feature

model that represents both the common and variant features of

SaaS architecture. Based on the family feature model a

particular application feature model can be derived and the

SaaS application architecture can be designed accordingly. As

such, the family feature model helps both to enhance the

understandability of SaaS and the generation of particular

applications.

The feature model that we have derived is based on our

selection of papers. We do not claim that this is the only

correct or eventual feature model. Enhancing the domain

analysis study might refine the feature model that we have

presented. Yet, the work should also be considered from an

architecture design perspective. An important lesson from this

paper is that feature modeling helps to support the architectural

design of SaaS systems. In our future work we will develop the

required tool support to represent the family feature model,

define the link with architecture design decisions and generate

application architecture.

VII. REFERENCES

[1] S. A. Brandt, E. L. Miller, D. D. E. Long, L. Xue. Efficient Metadata

Management in Large Distributed Storage Systems, 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and

Technologies(MSST’03), pp. 290–298, 2003.

[2] F. Chong and G. Carraro. Building Distributed applications: Multi-
Tenant Data Architecture. MSDN architecture center, 2006.

[3] F. Chong and G. Carraro. Architecture Strategies for Catching the Long

Tail, Microsoft, MSDN architecture center, 2006.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.

Merson, R. Nord, J. Stafford. Documenting Software Architectures:

Views and Beyond. Second Edition. Addison-Wesley, 2010.

[5] J. de Clercq, Single Sign-On Architectures, Proceedings of the

International Conference on Infrastructure Security, p.40-58, October 01-

03, 2002.

[6] Cloud Computing. Wikipedia - [Online].

http://en.wikipedia.org/wiki/Cloud_computing

[7] FIDIS, "Structured Overview on Prototypes and Concepts of Identity
Management Systems", Future of Identity in the Information Society

(No. 507512)

[8] A. Goyal, S. Dadizadeh. A Survey on Cloud Computing, University of
British Columbia, Technical Report, 2009.

[9] M. Godse, S. Mulik. An Approach for Selecting Software-as-a-Service

(SaaS) Product, in Proc.of. 2009 IEEE International Conference on
Cloud Computing, 2009.

[10] S. Joshi. Architecture for SaaS applications - using the Oracle SaaS

Platform, Oracle White Paper, 2009.

[11] C. Kopparapu, "Load Balancing Servers, Firewalls, and Caches", Wiley,

2002.

[12] T. Kwok, T. Nguyen. A Software as a Service with Multi-tenancy

Support for an Electronic Contract Management Application. In IEEE

International Conference on Services Computing, 2008.

[13] P.A. Laplante, Jia Zhang, Jeffrey Voas, "What's in a Name -

Distinguishing between SaaS and SOA", IT Professional, Volume 10,

Issue 3 (May 2008), Pages: 46-50, Year of Publication: 2008,

[14] H. Jung La and Soo Dong Kim, A Systematic Process for Developing

High Quality SaaS Cloud Services, in Proc. Proc. of the 1st International

Conference on Cloud Computing, Springer LNCS, Volume 5931/2009,
278-289, 2009.

[15] K. Lee , K. Chul Kang , J. Lee, Concepts and Guidelines of Feature

Modeling for Product Line Software Engineering, Proceedings of the 7th
International Conference on Software Reuse: Methods, Techniques, and

Tools, p.62-77, April 15-19, 2002

[16] H. Liao. Design of SaaS-Based Software Architecture, International
Conference on New Trends in Information and Service Science, 2009.

[17] Nitu. ISEC '09: Proceeding of the 2nd annual conference on India

software engineering conference, , pp. 19-26, February 2009.

[18] C. Spence, J. Devoys, S.Chahal. Architecting Software as a Service for

the Enterprise IT@Intel White Paper, 2009.

[19] Sun Cloud Computing Primer,
http://www.scribd.com/doc/54858960/Cloud-Computing-Primer,

accessed 2011.

148

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 164 / 612

Adding Support for Hardware Devices to Component
Models for Embedded Systems

Luka Lednicki, Mario Žagar
Faculty of Electrical Engineering and Computing

University of Zagreb
Croatia

{luka.lednicki, mario.zagar}@fer.hr

Juraj Feljan, Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University
Sweden

{juraj.feljan, jan.carlson}@mdh.se

Abstract—Component-based development promises many
improvements in developing software for embedded systems, e.g.,
greater reuse of once written software, less error-prone
development process, greater analyzability of systems and shorter
time needed for overall development. One of the aspects
commonly left out of component models is communication of
software components with hardware devices such as sensors and
actuators. As one of the main characteristics of embedded systems
is the interaction with their environment through hardware
devices, the effects of this interaction should be fully included in
component models for embedded systems. In this paper we
present a framework that enables inclusion of hardware devices
in different phases of the component-based development process,
including system design, deployment, analysis and code synthesis.
Our framework provides a way for software components to
explicitly state their dependencies on hardware devices, promotes
reuse of software components with such dependencies and
provides a basis for including hardware devices in analysis of
component based embedded systems. We evaluate the feasibility
of our approach by applying it to the ProCom component model.

Keywords – Component-based Development, Embedded Systems,
Hardware devices, platform modeling

I. INTRODUCTION

Embedded systems are getting increasingly important in
our daily lives, while at the same time getting more complex.
Additionally, larger portions of functionality of embedded
systems are being put into software, rather than hardware,
which results in increased software complexity. Parallel with
this trend there is a growing demand on software to be robust,
reliable, flexible, adaptable, etc., while shorter time-to-market
is desired. One of the approaches to tackle these issues is
component-based software engineering (CBSE). CBSE
promotes building systems from prefabricated software
components, instead of coding from scratch, promising to
lower time-to-market, manage complexity and produce
software of higher quality. CBSE has proven to be successful
in the domains of desktop- and Web applications and
enterprise systems. However, embedded systems introduce
some domain-specific issues (e.g., safety-criticality, real-time
requirements, interaction with the environment), and to fully
take advantage of the CBSE potential these must be addressed
[1].

In this paper, we focus on enriching existing component
models with support for proper handling of the interaction
between a software system and its environment, the physical
world that the system is embedded into. This interaction is
done using hardware devices, such as sensors and actuators.
The communication between software and hardware devices
can be as simple as writing a value to a hardware pin or port,
or as complex as invoking a service on a remote device. In all
cases, this interaction with the environment implies that
software components are dependent on the hardware or
middleware used to communicate with the environment. As
this affects reusability and analyzability of software
components, failure to adequately express these dependencies
can hinder the use of a component-based approach in the
embedded system domain.

To address the problem of interaction between software
components and hardware devices, we have investigated what
is needed to properly integrate such devices into software
component models for embedded systems, and devised a
framework that allows us to describe hardware devices and
hardware platforms that we can deploy software systems on,
software components dependent on hardware devices. The
framework also allows describing a mapping between
hardware devices, hardware platforms and software
components. Our approach has been developed in the context
of ProCom component model [2], but is also applicable to
other component models.

In Section II, we describe different ways in which
hardware devices can impact the use of a component-based
approach when developing software systems for the embedded
domain. Section III provides an overview of how interaction of
software components with hardware devices is managed in
some of the existing component models. Our approach to
inclusion of hardware devices in component models is
presented in Section IV. Section V gives an example of how
our approach can be used in developing software systems that
interact with hardware devices, and Section VI concludes the
paper.

II. EFFECTS OF HARDWARE DEVICES ON SOFTWARE COMPONENT
MODELS

Dependencies of software components on hardware
devices, as well as the communication between hardware and

149

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 165 / 612

software impact all phases of a component-based development
process. In this section we discuss these impacts, in order to be
able to address them accordingly. We consider a component-
based development process suitable for developing embedded
systems, and comprising the following phases: design,
deployment, analysis and synthesis. The phases are not strictly
sequential and can be iterative.

In the design phase, a developer specifies models of (i) the
software layer of the system being developed, as a composition
of components, and (ii) the hardware layer, as a composition
of the hardware devices the system will be deployed on. The
former requires a means to manage interaction with hardware
devices in the software layer. The latter requires a means to
describe the actual instances of hardware devices and how they
are connected to a particular instance of a hardware platform.

In the deployment phase, a mapping between the software-
and hardware layers is defined. In other words, the software
components are allocated to the underlying hardware that will
execute them. In this phase we must be able to explicitly
identify the dependencies of software components on the
hardware devices, in order to ensure that the hardware targeted
for deployment satisfies these dependencies.

Embedded systems have particularities such as limited
resources and real-time requirements, which increase the
relevance of extra-functional properties compared to, for
example, desktop- and Web applications. In order to guarantee
constraints on extra-functional properties, extensive analysis
has to be performed. During the analysis phase, effects of the
hardware devices on the behavior of the software components
must be taken into consideration.

During the synthesis phase executable code is generated
based on the models specified in the design- and deployment
phases. During the synthesis we must ensure that the code
generated for software components reflects the specifics of the
platform, with respect to communication with hardware
devices.

As reuse is one of key concepts of CBSE, additionally we
consider the effects hardware has on the ability to reuse
components developed in different contexts. For successful
reuse, we must ensure that components dependent on hardware
can be deployed on different platforms.

With regards to the aforementioned concerns, the
objectives of our work are to:

• provide means to describe hardware elements in a
way that they can be integrated into component
models for embedded systems;

• enable specification how software components
depend on hardware devices, and description of
communication between the two;

• allow inclusion of both functional and extra-
functional properties of hardware devices and
physical platform in analysis of component-based
software systems;

• enable analysis of systems in early stages of
development, before they are fully implemented; and

• promote reuse of both software components and
hardware device descriptions.

III. BACKGROUND AND RELATED WORK

We have identified four different levels of support for
hardware dependencies in a component-based context.

A. Outside of the Component Model
Many component models, especially those developed for

research purposes, do not provide any method for including
hardware devices in system design. All communication with
the environment is performed at input and output at the top
level of the system. In this approach, functionality must be
modeled separately from hardware interaction. Therefore,
functionality specifically developed to fit particular hardware
is difficult to represent. Furthermore, propagating all hardware
interaction to the top level can be particularly cumbersome in
complex systems, where many nesting levels exist.

SaveCCM [3] is an example of such a component model.
In SaveCCM software components are not allowed to directly
communicate with hardware devices. Instead, communication
with them takes place outside of the component model.

B. Code Level
Many component models do not provide ways to explicitly

state dependencies on hardware devices. However, they allow
to communicate with them in the code of software components
through direct method calls to the underlying platform. This
approach can severely limit reuse of software components, as
components with such hard-coded communication with
hardware cannot be used on multiple hardware platforms or
when the configuration of the hardware platform is changed.

An example of such a component model is Rubus [4].
Rubus was created by Articus Systems for developing
dependable real-time systems. Reuse is not the main focus of
Rubus, rather it is to provide a higher abstraction layer and
better basis for analysis. Thus platform and device dependent
information are part of basic software components.

C. Using Specialized Entities
Some component models introduce new entities, separate

from software components, which are used to interact with
hardware devices. With a way to explicitly describe
dependencies and communication with hardware devices, and
a clear separation of hardware and software components we
can easily reuse parts of systems or include hardware devices
in analysis of systems. A drawback of this approach is that it
hinders the possibility of hierarchical component composition.
As components cannot specify their interaction with hardware
devices through their interface, we cannot reuse composite
components that contain hardware entities.

A component model that uses this approach is COMDES-II
[5]. COMDES-II provides a two-layered component model.
The upper layer a system is defined by active software
components named actors. The lower layer is used to define
the behavior of actors using function block instances. Actors
interact with hardware devices using entities called input and
output signal drives. Drives can be used to communicate over
a network (communication drivers) or to sense or actuate
physical signals (physical drivers).

AUTOSAR [6], also provides similar level of support.
AUTOSAR is a component-based architecture created by a

150

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 166 / 612

partnership of a number of automotive manufacturers and
suppliers. Dependencies on hardware devices are encapsulated
in sensor and actuator software components. These
components provide a special interface for managing their
interaction with hardware devices. They are dependent on
specific sensor or actuator hardware devices. However,
AUTOSAR does not provide means for hierarchical
composition of components. As it does not provide support to
state hardware dependencies for all component types we still
argue that sensor and actuator components act as specialized
entities.

D. Explicitly Encapsulated in Software Components
Component models can also encapsulate communication

with hardware devices in software components, but expose it
through the component's interfaces. Compared to approaches
that use specialized entities for interaction with hardware
devices, this approach enables us to organize components
dependent on hardware devices in multiple levels of hierarchy

Our approach also falls into this category since it provides
an explicit way to define how software components are
connected to hardware devices. For this we do not use
specialized entities, but instead extend the definition of
standard software components. This lets us reuse all parts of
component model framework and tools while including
hardware devices in software component and system
definition.

IV. OVERVIEW OF OUR APPROACH

Led by the objectives described in Section II, we have
devised a framework that allows us to include hardware
devices in component models, and applied it to the ProCom
component model.

The ability to reuse components or complete systems is one
of the main goals of CBSE. Having components that are
dependent on a particular instance of hardware device, or how
this device is connected to the platform, can severely limit
possibility of their reuse. For this reason we have separated
our framework in three layers: software layer, hardware layer
and mapping layer. With this separation we are able to
independently describe software system and hardware
platform, making them suitable for reuse in different scenarios.
We can then connect these two layers through the mapping
layer when developing a complete system. An overview of
how these three layers are connected is given in Figure 1.

In our approach we have a clear distinction between types
and instances for both hardware and software entities. Types
are entity definitions that are context-independent. They can be
easily reused in different settings or stored to repositories for
future use. Once we want to use an entity in a concrete system,
we are in fact creating an instance of that entity type. Instances
are not copies of the entity, but a representative of the general
entity in a specific context. For example, when we are
describing a hardware device, we are actually describing a
device type. Once we want to use the device in a system we
need to create a new instance of that device type. Instances can
also refine properties of an entity depending on the usage
context.

As we handle hardware devices using extended software
components, and not specialized entities, we are able to reuse
many solutions that already exist in ProCom component
model. For the purpose of defining attributes for hardware
components we leverage Attribute Framework [7], which
allows us to define extra-functional properties for architectural
elements of the component model. Also, integration with
ProCom allows us to use ProCom Analysis Framework with
different types of analysis, such as parametric worst-case
execution time analysis [8], model checking of behavioral
models [9] and fault-propagation.

A detailed metamodel that describes our approach is given
in Figure 2. Next, each of the three layers will be described in
more detail.

A. Software Component Layer
To enable interaction of component-based applications

with hardware devices we have introduced a new type of
component named device component. This entity is derived
from ordinary software components. Its purpose is to
encapsulate dependencies of component-based software
system on hardware devices and enable communication with
these devices.

When looking at a device component as a black-box, it has
the same interface and semantics as all software components.
The difference between normal software components and
device components is in their internals: device components do
not provide the ability for the developer to explicitly specify
their realization. This is because they inherit their realization
from hardware devices (described in Section IV.B.2)) once the
two are mapped together.

Device components are only used to express the existence
of dependencies on hardware devices, but not the specifics of a
device, i.e., how it is connected to the platform or the code for
actual communication with hardware. A device component has
exactly one hardware dependency. In case of composite
components, its device dependencies must mach the combined
dependencied of its subcomponents. This way the software

Figure 1: Overview of three layers of our approach relate to
each other.

Software Layer

Mapping layer

Hardware Layer

SW Component
Instance

Mapping

Device Component
Instance

Platform

Hardware
Device

Instance

Hardware
Device

Instance

151

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 167 / 612

layer stays hardware- and platform-independent. Any system
or composite component that contains device components can
still easily be reused in a new system or on different platforms.

B. Hardware Layer
The hardware layer allows us to describe physical nodes

(i.e., processing unit such as microcontrollers or ECUs that
runnable code can be deployed to), hardware devices such as
sensors and actuators and platforms which consist of instances
of physical nodes and hardware devices and to which we can
deploy software systems.

We have designed the hardware layer based on research of
what is needed to promote the ability of reuse of software
components. However, we also wanted to provide the ability to
reuse structures defined in hardware platform. For this purpose
we have divided hardware into three separate parts which can
be developed independently to each other: physical node
specification, hardware device specification and platform
instantiation.

1) Physical Node Specification
In our model, physical nodes describe different processing

units such as microcontrollers or ECUs. They are reusable as
they only describe a type of unit and do not contain any
information about how they are used or configured in a
particular system.

Physical nodes define a list of inputs and outputs they
provide. Inputs and outputs are defined by their type, e.g.,
one-bit digital I/O, serial communication port, analogue input,
etc. Also, for each input or output we define actual program
code that will be used for its initialization and data transfer.

Physical nodes can also be characterized by extra-
functional properties such as their processing power, available
memory, behavioral models, execution times for input or
output functions and other similar attributes.

2) Hardware Device Specification
Hardware devices are peripherals such as sensors and

actuators that are connected to physical nodes in order to
interact with the environment. Each hardware device
represents a specific, real-world sensor or actuator.

Each hardware device references a device component for
which the device can be used as realization. It should be noted
that one device component can be referenced by many
different hardware devices. For example, a temperature sensor
device component can be referenced by two different
implementations of (i.e., hardware devices) temperature
sensor. However, a device component (in the software layer) is
not dependent on any of these implementations.

Similarly to a list of inputs and outputs provided by
physical nodes, hardware devices define a list of inputs and
outputs that they require for communicating with them.

A part of hardware device specification is the code for
communication with the device. This code is merged with
software component code during the synthesis phase of the
development process, leaving software components free of
hardware-specific code. In that way software components can
be reused on different hardware configurations. However, this
code leaves out actual function calls needed for
communication, which is defined in the physical node
specification. This allows us to reuse the same code regardless
of which input or output of a physical node the device is
connected to, or use it on different physical nodes.

Similar to physical nodes, we can also define attributes that
describe extra-functional properties of hardware devices.

3) Platform Instantiation
We have defined platform as a collection of physical node

instances on which we can deploy software systems. Except
creation of physical node instances, platform instantiation also
encompasses creation of hardware device instances and
connections of these instances to instances of physical nodes.
It should be noted that we do not use type-instance paradigm

Figure 2: Metamodel that contains all entities we use to add support for hardware devices in software component models.

Software Layer

Mapping Layer

Hardware Device Specification

Platform Instantiation Physical Node
Specification

IO Type

IO

Physical NodePhysical Node Instance

Hardware Device

Hardware Device Instance

Component Instance

Device ComponentComponent

Platform

IO AllocationHardware Component Mapping

Deployment Configuration

152

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 168 / 612

for platform. We assume that platforms will be collections of
reusable physical nodes, and will be specific for every system,
there will be no need for their reuse.

Connections between hardware devices instances and
physical node instances are implicit: device instances are
contained by physical node instances. Allocation of hardware
device instances to inputs or outputs of physical node instances
is done through IO Allocation. Once the allocation of inputs
and outputs is defined, we can also validate a platform by
checking if requirements of all hardware device instances are
fulfilled by inputs and outputs of physical node instances they
are connected to.

C. Mapping Layer
As already stated, we have defined software and hardware

layers to be as distinct as possible in order to promote reuse of
structures defined in them. In order to create systems
consisting of both, we had to introduce the mapping layer. The
mapping layer allows us to define connections between device
component instances in software layer and hardware device
instances in hardware layer. By this we put our reusable units
in the context of a system and are able to provide platform-
specific code for platform independent, reusable software
components.

Mapping between the two can be created only if type of
hardware device instance references type of device component
instance. By having this constraint we can easily assure that a
system is deployed (i.e., component instances are allocated to
physical node instances) in a valid way.

Besides the platform-specific code, the mapping also
allows us to propagate platform- or device-specific values for
extra-functional properties.

Our approach supports mapping of component instances to
hardware device instances even in early stages of system
development. By having reusable descriptions, models and
extra-functional properties defined for hardware devices and
physical nodes we are able to test and analyze behavior of a
system before it is fully implemented. This allows us to detect
potential problems and avoid changes in late stages of system
development.

Another benefit of separate mapping model is that it allows
a more flexible process, where software and hardware can be
addressed separately in any order, and interleaved. Also, it
enables us to provide partial mappings in early stages of
development.

V. EXAMPLE

To illustrate use of our approach, we will demonstrate it on
an example. The example will model a simple temperature
control system using ProCom component model.

A. The ProCom component model
ProCom is a component model for distributed embedded

systems in the vehicular and automation domains. These
systems often have a safety-critical role and have to perform in
real-time. Therefore, ProCom explicitly addresses extra-
functional properties such as timing (e.g., worst case execution
time) and resource usage (e.g., static memory, CPU). ProCom
follows a model-based methodology centered around a rich

notion of reusable architectural design-time components. A
ProCom component can consist of source code, models of
timing and resource usage, analysis results and documentation.

The external view of a component consists of ports and
attributes. Through the ports the functionality provided by a
component can be accessed, while the attributes represent
additional information about a component, such as
extra-functional properties.

In order to be able to design both the complete system and
the low level control functionality, ProCom has been divided
into two layers. The upper layer, called ProSys, models a
system as a collection of complex, active, concurrent, and
typically distributed subsystems that communicate via
asynchronous message passing. The lower layer, ProSave, on
the other hand models smaller parts of control functionality.
ProSave components communicate through trigger (control
flow) and data ports (data flow).

B. Temperature Control System
Our example temperature control system consists of two

temperature sensors that monitor temperature in a water tank
and a heater that will engage if the temperature drops below a
defined temperature. A graphical representation of all software
and hardware layers of the system, and the mapping between
the two layers, is given in Figure 3.

Our software layer consists of a clock (an element that
creates periodical triggering signals), two instances of
TemperatureSensor device component (TS1 and TS2), one
instance of ControlUnit software component (CU1) and one
instance of HeaterActuator device component (HA1). The
component instances are connected in such a way that the
clock triggers both TS1 and TS2. When both of them have
finished their execution they forward temperature values to
CU1 and generate signals that trigger its execution. Depending
on given temperature values, CU1 performs calculations and
provides signals to HA1 to be turned on or off.

It should be noted that TS1, TS2 and HA1 just serve just
for describing interaction of software components with
hardware devices, but are not device-specific. In that way
whole software layer is reusable on different hardware
platform configurations.

In the hardware layer we need to include specifications of
physical nodes and hardware devices, and instantiate our
platform. For the purpose of this example we will not fully
specify the hardware but will only use parts that satisfy the
needs of our system. Physical node specification will consist
only of one physical node which we will call MicroCrtl.
MicroCtrl will provide three IOs: two analog and one digital.
For temperature sensors we use hardware devices that require
analog input. We also specify heater hardware device which
requires digital output. To instantiate our platform, we will
create an instance of MicroCtrl with name Micro1. Micro1
will have two instances of the analog temperature sensor
device (AT1 and AT2) and one instance of the heater device
(H1). We will allocate the instances of temperature sensor to
the analog inputs and the instance of heater device to the
digital output of Micro1.

To complete our system, we need to define mappings
between device components in software layer and hardware

153

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 169 / 612

devices in hardware layer. For this, we will define mappings
between AT1 and TS1, AT2 and TS2, and HA1 and H1.

VI. CONCLUSION

In this paper, we have presented our approach for
managing hardware devices such as sensors and actuators in
component models for embedded systems. Our framework
consists of three layers: software layer, hardware layer and
mapping layer. These three layers enable separation of device
dependencies in software and models of the actual hardware
and allows us to reuse software components and hardware
models. The hardware layer enables us to specify all aspects of
hardware devices and platforms needed for their integration
into component models. In the software layer we enable
explicit definition of dependencies of software components on
hardware devices. The mapping layer enables us to connect
instances of software components to hardware device instances
and in that way to design complete systems including software
and hardware. The mapping also allows propagation of extra-
functional properties of hardware devices to component
model. In early stages of system development we can also
define just partial mappings. Our approach promotes reuse of
software components, hardware device specifications and
platform node specification by creating clear distinction
between types and instances of these entities, and by removing
platform- and device-specific code out of software
components.

ACKNOWLEDGMENT

This work was supported by the Unity Through Knowledge
Fund via the DICES project, the Swedish Foundation for
Strategic Research via the strategic research centre
PROGRESS, and the Swedish Research Council project
CONTESSE (2010-4276).

REFERENCES

[1] I. Crnković and M. Larsson, Building Reliable Component-Based
Software Systems, Artech House Publishers, 2002.

[2] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic. A
component model for control-intensive distributed embedded systems.
In 11th International Symposium on Component Based Software
Engineering. Springer Berlin, October 2008., pp. 310-317

[3] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson, A.
Möller, P. Pettersson, and M. Tivoli. The SAVE approach to
component-based development of vehicular systems. Journal of Systems
and Software, May 2007. pp. 655-667

[4] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and
K- Lennart Lundbäck, The Rubus Component Model for Resource
Constrained Real-Time Systems, 3rd IEEE International Symposium on
Industrial Embedded Systems, 2008, pp. 177-183

[5] K. Xu, S. Krzysztof, and A. Christo, COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time
Control Systems, RTCSA '07: Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications, 2007, pp. 199-208

[6] H. Heinecke, W. Damm, B. Josko., A. Metzner, H. Kopetz, A.
Sangiovanni-Vincentelli., and M. Di Natale, Software Components for
Reliable Automotive Systems, Design, Automation and Test in Europe,
2008, pp. 549-554

[7] S. Sentilles, P. Stepan, J. Carlson, and I. Crnković, Integration of Extra-
Functional Properties in Component Models, 12th International
Symposium on Component Based Software Engineering (CBSE 2009),
LNCS 5582, Springer Berlin, East Stroudsburg University,
Pennsylvania, USE, June, 2009, pp. 173-190

[8] T. Leveque, E. Borde, A. Marref, and J. Carlson, Hierarchical
Composition of Parametric WCET in a Component Based Approach, In
14th IEEE Int. Symposium on Object/Component/Service-oriented
Real-time Distributed Computing, 2011, pp.261-268

[9] D. Ivanov, M. Orlic, C. Seceleanu, and A. Vulgarakis, REMES tool-
chain – A set of integrated tools for behavioral modeling and analysis of
embedded systems. In 25th IEEE/ACM International Conference on
Automated Software Engineering, 2010, pp. 361-362

Figure 3: Example of a temperature control system created using ProCom extended with our approach.

Hardware Layer

Mapping layer

Software Layer
TemperatureSensor

TS1 ControlUnit
CU1

TempSensor : TS1TemperatureSensor
TS2

Clock

HeaterActuator
HA1

MicroCtrl
Micro1

AnalogTemp
AT1

AnalogInput
ADC0

AnalogTemp
AT2

AnalogInput
ADC1

Heater
H1

DigitalIO
PA0

MappingMapping Mapping

154

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 170 / 612

A Service Component Framework for Multi-User
Scenario Management in Ubiquitous Environments

Matthieu Faure∗,†, Luc Fabresse†, Marianne Huchard‡, Christelle Urtado∗, and Sylvain Vauttier∗

∗LGI2P / Ecole des Mines d’Alès, Nı̂mes, France
{Matthieu.Faure, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

†Ecole des Mines de Douai, Douai, France
Luc.Fabresse@mines-douai.fr

‡LIRMM - UMR 5506, CNRS and Univ. Montpellier 2, Montpellier, France
huchard@lirmm.fr

Abstract—Software dedicated to ubiquitous environments
has to deal with the multiplicity of devices and users. It also
has to adapt to frequent changes in its environment. Users can
easily access and trigger services provided by different devices
but also need to implement complex scenarios, i.e., structured
compositions of multiple service. State-of-the-art frameworks
do not fully meet the expectation we identified. This is why, we
designed the SaS (Scenarios As Services) ubiquitous software: a
platform for ubiquitous systems that provides a SDL (Scenario
Description Language) to support the creation of tailored user-
centric scenarios. Our previous work on the subject did not
tackle all distribution and concurrency concerns. In this paper,
we present SaS’s new features. Using the improved SDL, a user
can now describe scenarios that combine services even if all
of them are not currently available and will never be at the
same time. Moreover, different scenario sharing mechanisms
coupled with an access right policy are now included in SaS.
SaS is currently implemented in a prototype on top of OSGi.

Keywords-Ubiquitous environment; service-oriented com-
puting; user-centric; service composition; scenario creation.

I. INTRODUCTION

More and more electronic devices (such as smartphones,
tablet PCs, etc.) assist us in our daily life. They can interact
with their environment and propose various functionalities to
users. This is the rise of ubiquitous computing [1][2]. These
functionalities can be handled as services, and thus, Service-
Oriented Computing (SOC) [3] is a suitable paradigm to
design software for ubiquitous environments. Service access
and system adaptability to environmental changes are al-
ready well handled by execution frameworks. However, to
our knowledge, these systems fail to meet user expectations
to express their needs as complex scenarios involving mul-
tiple services. Based on this observation, we designed the
SaS (Scenarios as Services) ubiquitous software [4]. SaS
features a service component framework that enables end-
users to easily define, control and share scenarios. SaS also
proposes an SDL to create scenarios as service compositions.

Besides, ubiquitous environments involve multiple users
and devices. Consequently, handling previously unknown

device types, sharing information among users and handling
control device mobility are challenging issues. First, device
types must not be hardwired in the system. It has to be pos-
sible to create scenarios with services from specific devices
but also from any device of a given type. This capability
makes the system more flexible to device change. Second,
an access right policy and a process dedicated to sharing
scenarios must be specified. Thirdly, handling control device
mobility can be seen both as a constraint on the system (that
must dynamically adapt to its changing environment) but
also as a chance (as the system can benefit from mobility,
while executing scenarios that involve services that never
coexist in a same environment).

The SaS system is twofold. It divides into a scenario
description language called SaS-SDL that provides simple
means to describe services, scenarios, environments and an
execution framework called SaS platform that provides the
processes to support the behavior of the ubiquitous software.
In this paper, we focus on SaS’s new features. The improved
SaS-SDL now manages the environment. In addition, SaS
handles scenario sharing among selected users, service mem-
orization for future scenario creation and scenario mobility
(execution distributed in multiple places and times).

This paper is further organized as follows. Section II
introduces service and scenario declaration in SaS-SDL.
Section III presents the new feature of SaS-SDL: context
management. Then, Section IV describes how the SaS sys-
tem executes distributed scenarios. Section V is dedicated to
the design of our prototype implementation. Related works
are discussed in Section VI. Finally, Section VII concludes
this paper and draws perspectives.

II. SERVICE AND SCENARIO DECLARATION WITH
SAS-SDL

In this section, we give an overview of service and
scenario declaration (a previous version was presented
in [4]) using SaS-SDL, the proposed scenario description
language. SaS-SDL enables end-users to create scenarios

155

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 171 / 612

that correspond to their needs. Improvements are specifi-
cally introduced here, such as: multiple operation selection
schemes (from a specific device/service or not), the ability to
define and set scenario parameters, the ability to specify the
execution type (either in sequence or in parallel) of an action
list. Compared to other programming languages for service
composition (like BPEL [5]), which are imperative and
designed for executable processes, our SDL is a high level
language, which is declarative and dedicated to end-users.
With this SDL, SaS automatically declares services after
they are discovered and then, users can declare scenarios.

A. Service declaration

To be interoperable, SaS does not restrict to a protocol
but uses a generic pivot mode to declare services. SaS
can be specialized by adding bridges to different protocols
(as Frascati [6] and EnTiMid [7] already does). SaS-SDL
defines a service by a device (its provider), a name and an
operation list. Operations have a return type and can have
typed parameters. Users can choose if a service operation
to compose comes from a specific device and a particular
service or not. To do so, the new version of SaS-SDL features
the special word any, which enables to elude the provider
device or the service name. Only the main elements of the
grammar are presented in Listing 1.

<service> ::= service <device> <service_name> <op_list>
<op_list> ::= (<operation> ;)+
<operation> ::= operation <operation_name>([<param_list>])

: <return_type>
<param_list> ::= <parameter_type> (,<parameter_type>)*

<return_type>::= <type>
<parameter_type> ::= <type>
<device> ::= identifier | any
<service_name> ::= identifier | any

Listing 1. Service declaration with the Backus–Naur Form (BNF)

Listing 2 is a Clock service declaration example.

service clock_Bedroom Clock
operation getTime() : Time;
operation setTime(Time) : void;

Listing 2. Service declaration example

B. Scenario declaration

A scenario has a name, some actions and properties. An
action can be: (i) an operation invocation, (ii) an alternative
(if - else), or (iii) a repetition loop.

Listing 3 describes the main elements of a scenario decla-
ration using the BNF notation. With this improved version of
SaS-SDL, scenarios have properties, which enable to specify
if the scenario is exportable, editable, etc. Moreover, action
lists are now executed in sequence by default, however, SaS-
SDL enables users to specify some actions to execute in
parallel. In addition, users can now leave some parameter
values blank at scenario creation. This is represented by
the ? value in SaS-SDL. Such eluded parameters become

scenario parameters and must be valued by users every time
the scenario is invoked.

<scenario> ::= scenario <scenario_name> <action_block>
[<scenario_properties>]

<action_block> ::= { (<action>)+ } |
{ ([[<parallel_exec>] <action_list> <action_list>]) }
<action_list>::= (<action> | <action_block>)+

<action> ::= <op_invocation> ; | <alternative> | <repeat>

<op_invocation> ::= (<device>) <service_name>.
<operation_name>([<parameter_list>])

<parameter_list> ::= (<op_invocation> | <parameter_value>)
(, (<op_invocation>|<parameter_value>))*

<alternative> ::= if <cplx_condition> <action_block>
[<else_clause>]

<else_clause> ::= else <action_block>
<cplx_condition> ::= (<condition>

(<log_operator> <condition>)*)
<condition> ::= <op_invocation> <comp_operator>

(<op_invocation> | <value>)
<repeat> ::= (while<cplx_condition> | <repeat_value> times)

<action_block>

<parameter_value> ::= <value> | ?
<parallel_exec> ::= parallel:
<log_operator> ::= and|or|not
<comp_operator> ::= < | <= | > | >= | ==

Listing 3. Grammar of the scenario declaration using the BNF notation

Listing 4 illustrates SaS-SDL with a scenario example.

scenario night
if ((any) Clock.getTime() == 6pm and
(BedroomThermomether) Thermometer.getTemperature() <= 17)
{
(BedroomRadiator) Heater.setValue(7);
}

Listing 4. Scenario declaration example

C. Users point of view
SaS integrates a GUI based on our SaS-SDL to facilitate

scenario creation for end-users.
1) Service selection: Our GUI presents ordered services

in three columns: by device, service and operation. To avoid
duplicates, SaS groups services and operations with same
name. When users select a device (resp. a service), services
(resp. operations) attached are filtered. It enables users to
select a service (resp. operation) from a specific device (resp.
service). In addition, SaS indicates if a service is a scenario.

For users to create conditions on service availability and
define alternatives, SaS adds the operation isPresent to
each service.

2) Scenario creation: When users select a service oper-
ation to compose, SaS displays corresponding informations
(provider device, service name, operation name and result
type) and enables users to enter operation parameters. Users
can either provide a fixed value or select another operation
result (on which they can apply a basic operation such as
+, -, *, /). In case the parameter type is complex, SaS only
allows users to select an operation result. Figure 1 represents
the GUI sendMail service operation, with two parameters
(second one is complex).

156

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 172 / 612

Figure 1. GUI: service operation

SaS provides users with several templates (i.e.alternative,
while, repeat, etc.) to create scenarios. Users can combine
templates to create the scenario skeleton. Then, users just
need to put service operations inside the templates and
complete with basic instructions (and, or, not, <,
>, ≤, ≥, ==). Figure 2 illustrates a scenario template
and Figure 3 shows an example of scenario creation (sce-
nario operations are represented by pictograms to simplify
but they actually are similar to those in Figure 1).

Figure 2. GUI: scenario tem-
plates Figure 3. GUI: example of scenario creation

III. CONTEXT MANAGEMENT IN SAS

As seen, our previous version of SaS enables users to
create scenarios. To do so, they dispose of SaS-SDL and its
graphical representation. We presented in Section II some
improvements for service and scenario declaration. Never-
theless, ubiquitous computing implies users mobility and
multiplicity. As defined in [8], two characteristics of ubiq-
uitous system are the social environment and the evolving
environment. A ubiquitous system should therefore provide
an access right policy and advanced sharing mechanisms.
Moreover, this system has to be adaptive but could also
benefit from this changing environment.

A. SaS in ubiquitous environment

Ubiquitous environments involve electronic devices. We
define two types of devices: simple devices (such as radiator,
light) and control devices (such as laptop, pda) which have
an advanced user interface (i.e., touch screen), and can be
considered as personal and mobile. A SaS container (which
contains all SaS mechanisms handled by SaS ubiquitous
software) can therefore only be deployed on a control device
to constitute a SaS system.

B. Service and System Directories

Every SaS system has a unique identifier. As a SaS
system is associated to a unique user, sharing scenarios
with select SaS systems is equivalent to define access rights.
SaS systems (which might not be always available locally)
are permanently indexed into a system directory. It makes
possible to share scenarios with a system even if it is
temporary unavailable (failure, mobility). Such a permanent
index is also provided for services by the service directory.
Users can registers services that they discovered or obtain
service declarations from a scenario created by someone
else. By this means, scenarios can be defined that include
temporarily missing services.

To ease directory browsing, services and systems can be
grouped into named categories. These categories are like
keywords as a service (resp. a system) can be included into
several distinct categories. Browsing by categories dimin-
ishes the amount of information to be presented to users.
They can also by used to collectively export services (which
can be equivalent to providing grouped access rights), see
Section IV-B1 for details. Examples of categories might
be locations (all services available at home) or users (all
systems owneb by kids).

Listing 5 represents the main elements of the grammar for
context management and Listing 6 illustrates how this part
of SaS-SDL can be used. Scenarios in the service directory
are highlighted to be differentiate from basic services.

<sas_system> ::= system<system_id><system_dir><service_dir>

<system_dir> ::= system_directory { (<system_cat>)* }
<system_cat> ::= category <cat_name> [<system_list>]
<system_list> ::= (system <system_id>)*

<service_dir> ::= service_directory { (<service_cat>)* }
<service_cat> ::= category <cat_name> [<service_list>]

<service_list> ::= [services <service_name>
(, <service_name>)*]

Listing 5. Context Management with SaS-SDL

system pda12
system_directory {

category mySystems
platform Nokia3310
platform Acer TimelineX

category family
platform macintosh

}

service_directory {
category home

[services TV, wakeUp]
category office

[services fax, print]
}

Listing 6. Service and system directories

The class diagram of Figure 4 provides an alternative
compact view of SaS-SDL.

157

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 173 / 612

Figure 4. SaS-SDL class diagram

IV. EXECUTION OF DISTRIBUTED SCENARIOS IN SAS

This section presents how the SaS platform supports the
execution of distributed scenarios.

A. Scenario execution control

To control scenario execution, SaS handles the scenarios’
life-cycle. The objective here is threefold:
• provide basic start, pause, abort and resume operations

for the user to manually control scenario execution,
• provide mechanisms on top of the middleware’s detec-

tion capability to dynamically react to detected changes
in the environment (e.g., unpredictable service unavail-
ability consequent to its failure or mobility),

• provide mechanisms that take advantage of service
and scenario mobility to enrich scenario functionalities
(e.g., enabling to combine in a same scenario services
that will never coexist on a single SaS platform).

Scenario life-cycle. Scenario execution is externally con-
trolled: users can interfere during execution and changes
in the environment can trigger compulsory reactions from
the platform (e.g., it is impossible to ignore that a service
disappeared while being executed). Therefore, scenario life-
cycle needs to be rich enough to encompass specific behavior
to dynamically react to many different situations. Scenario
life-cycle management is enforced by SaS platform. The
state diagram of Figure 5 illustrates the proposed life-cycle.
Here, most transitions are initiated by users (except when
finished, which is automatic) which use the basic start,
pause, resume and abort service operations for the scenario.

Figure 5. Scenario life-cycle in SaS

Fine, step by step, scenario running. Scenario execu-
tions cannot be considered atomic as they involve multiple
and distributed service invocations. Moreover, scenario exe-
cution can be paused at any time by users or be interrupted
at any unpredictable step in case a service disappears.

The Running state itself decomposes into a more precise
state machine (see Figure 6). SaS considers scenario exe-
cution as a succession of steps, and define pre-conditions
and post-conditions for each. For example, a pre-condition
can be the presence of appropriate services or the exe-
cution of a previous step. Post-conditions are threefold:
(1) successful execution of the step, (2) a problem occurs
(service disappearance or timeout), or (3) interruption by
the user. Such capabilities are completed with a logging
system that reports scenario step by step execution status.
Users can therefore check scenario advancement through the
getScenarioState operation. Moreover, this enables
SaS to retrieve scenario status after an interruption. Tran-
sitions are all handled by SaS container.

Figure 6. Internal running state diagram

Scenario delayed execution. The step by step running
of scenarios has a positive counterpart when considering
service mobility. If the user wishes to do so (this option
is set at scenario creation), a scenario can be created that
comprises operations that are never encountered in a same
place at a same time. The user can choose from simultaneous
(all services must simultaneously be present) or not. In the
latter case, the user has to set a scenario maximum waiting
period such as an hour or a day, that limits the duration the
scenario might spend waiting for some services to appear.

When the scenario is to be executed, the steps that can
be are and the system pauses the scenario until the next
step is doable. The satisfaction of the next step precondition
will automatically be detected and cause the execution to be
resumed. If the device on which the scenario executes has
not changed place, this step by step execution might have
executed services that are supposed to be present at the same
place but not at the same time (e.g., a service offered by a
device that moves with its user such as a mobile phone). If
the device on which the scenario executes has changed place
(e.g., the scenario is executed on a device that moves with
the user), this step by step execution might have executed
services that are supposed to be present at two distinct places
(e.g., a service offered by a device at home and a service
offered by another device in a hotel room).

158

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 174 / 612

B. Scenario distribution

Registering SaS systems enables users to select who to
share scenarios with. Having multiple users generates the
need for a scenario access policy. In addition, as devices
might fail and scenarios not be shared elsewhere, main-
taining scenario availability also lies on SaS’s scenario
redeployment capability.

1) Scenario access right policies: By exporting their
scenarios as services, users can share them. However, users
might not want everyone to have the same access to created
scenarios. SaS provides two modes for sharing scenarios:
individual, the scenario is shared with a specific system
(which provides access to the system’s owner) or grouped,
the scenario is shared with a whole category of systems
(which provides access to the set of these systems’ owners).
Grouped access mode can be used to designate all systems
a given user has access to (e.g., dad’s) or all systems
that pertain to another category (e.g., local network). Three
access levels are possible: private, the scenario is not shared,
delegated, the scenario is known and remotely accessible to
the systems it is shared with but the owner system possesses
the only copy and still executes the scenario, and copied, the
scenario is copied locally into the system it is shared with
and can be executed on the new system autonomously.

2) Scenario redeployment: When a user shuts down
his / her platform, the solution to maintaining scenario avail-
ability is redeployment. Before doing so, SaS first warns the
user if a scenario provided by this platform still is running.
User can wait for the end of scenario execution. Otherwise,
SaS tries to redeploy the scenario on another platform and
transfer its current status and execution advancement. The
destination platform is chosen from other available SaS
systems registered in the system directory. If none of these
systems accept, SaS asks other SaS systems present in the
environment. If the scenario has not been redeployed on
platform restart, SaS asks the user if scenario execution
should be resumed.

V. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
the SaS prototype. It is an ongoing work implemented in
Java over OSGi [9][10] with iPOJO [11]. OSGi is a popular
framework that enables to dynamically manage softwares
as sets of decoupled modules called bundles. iPOJO is a
full fledge Service-Oriented Component Model [12] based
on OSGi. The main idea is that a component should only
contain business logic as in EJB 3.0 [13] (EJB entities); SOC
mechanisms should seamlessly be handled by the component
container as container-managed cross-cutting services. The
already implemented parts of SaS are presented in the
previous paper [4].

Scenario delayed execution. Depending on execution
rules (parallel or sequence), SaS invokes services present as

defined in IV-A and register the result necessary for some
services (as operation parameter).

As defined in [4], SaS translates a scenario in a succession
of Java instructions thanks to Javassist [14]. Instead of
implementing the whole scenario as the start operation, this
version of SaS implements each action block of the sce-
nario in different methods to enable a stepped and delayed
execution. A scenario can now be launched even if all
services are not present, and it keeps running until it ends,
it is stopped, period of validity finishes or, the platform
is closed. Leveraging iPOJO the presence of each service
independently. So, when all the services involved in an
action block become available, the appropriate method is
automatically called.

Sharing scenarios. When users share a scenario with
all the available platforms, SaS exports the corresponding
service as a remote service.. This way, discovery and distri-
bution can be handled automatically by the last version of
OSGi. Instead, if users select some other systems to share a
scenario with, SaS uses the UpdateServiceDirectory service
exported by each SaS platform. It enables to send events
(service appearance or disappearance) to selected systems.

VI. STATE OF THE ART

This section analyses a representative set of systems that
provide a solution for ubiquitous environments and enable
scenario creation.

SLCA [15] provides developers with means to compose
web services. A composite service contains proxy compo-
nents bound to involved web services. With SODAPOP
[16], users specify a goal that the system tries to reach
with the available services. The main hypothesis is that each
service contains informations about its initial conditions and
its effects. MASML [17] is a multi-agent system for home
automation. Scenarios are defined with an XML syntax
and consist of sequences of service operation invocations.
Mobile agents are in charge of scenario execution. SASHAA
[18] is one of our previous work, focused on ubiquitous
systems for home automation. It enables end-users to create
scenarios with Event - Conditions - Action rules through an
appropriate GUI.

The SaS ubiquitous software manages scenario life cycle
and provide users with basic start, pause, resume and abort
operations to fully control scenarios, whereas MASML and
SASHAA only enables to start and stop scenarios. The SaS
system is the only one to to share scenarios with other
users. SASHAA, SLCA and MASML handle adaptation
to environmental changes, however, scenarios cannot be
executed in different times on multiple places. SODAPOP
manages the environment by automatically classifying new
services according to pieces of information. However, users
have no control on this organization. Moreover, SASHAA
enables to specify locations for systems but not register
services. Table VI summarizes this study. Symbol Xmeans

159

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 175 / 612

that the requirements is fulfilled, - signifies that it is partially
accomplished and × represents an absence of solution.

TABLE VI - SYSTEMS COMPARISON

Systems Scenario
Execution
Control

Multi
User

Adaptability Context
Management

SLCA × × - ×
MASML - × - ×

SODAPOP × × × -
SASHAA - × - -

SaS X X X X

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the new mechanisms of our
SaS system to manage ubiquitous environments. In addition
to enable scenario creation by service composition, the SaS-
SDL provides means to organize users’ contexts. Users can
register services for a future use. SaS can execute scenarios
step by step, at different times, on different platforms.
Users can also classify surrounding SaS systems and share
scenarios according to different access rights. A graphical
representation of SaS-SDL enables end-users to benefit from
SaS mechanisms.

For future work we want to add semi-automatic service
composition to SaS. Learning from existing scenarios, SaS
will propose some possible service compositions to the
user. SaS will analyze which scenarios are created and
used by users and will extract the more frequent services
compositions.

ACKNOWLEDGEMENTS

This work is partially supported by the CARNOT
M.I.N.E.S Institute (http://www.carnot-mines.eu/).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, pp. 78–89, 1995.

[2] H. Schulzrinne, X. Wu, S. Sidiroglou, and S. Berger, “Ubiq-
uitous computing in home networks,” IEEE Communications,
pp. 128–135, Nov 2003.

[3] M. P. Papazoglou, “Service-Oriented Computing : Concepts,
Characteristics and Directions,” in Proc. of the 4th Int. Conf.
on Web Information Systems Engineering. IEEE, Dec 2003,
pp. 3–12.

[4] M. Faure, L. Fabresse, M. Huchard, C. Urtado, and S. Vaut-
tier, “The SaS Platform for Ubiquitous Environments,” in
Proc. of the 23rd Int. Conf. on Software Engineering and
Knowledge Engineering, July 2011, pp. 302 – 307.

[5] OASIS, “Web services business process execution language
version 2.0,” april 2007, [Last consulting: July 2011].
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf

[6] D. Romero, R. Rouvoy, L. Seinturier, and P. Carton, “Service
Discovery in Ubiquitous Feedback Control Loops,” in Proc
of the 10th IFIP Int. Conf. on Distributed Applications and
Interoperable Systems, ser. LNCS, F. Eliassen and R. Kapitza,
Eds., vol. 6115. Springer, Jun 2010, pp. 113–126.

[7] G. Nain, E. Daubert, O. Barais, and J.-M. Jézéquel, “Using
mde to build a schizofrenic middleware for home/building au-
tomation,” in ServiceWave’08: Networked European Software
& Services Initiative (NESSI), Madrid, dec 2008, p. 49–61.

[8] G. Banavar and A. Bernstein, “Software infrastructure and
design challenges for ubiquitous computing applications,”
Communi. of the ACM, vol. 45, no. 12, pp. 92–96, 2002.

[9] OSGi Alliance, “OSGi Service Platform Core Specification
Release 4,” 2005, [Last access: July 2011]. [Online].
Available: http://www.osgi.org/download/r4v40/r4.core.pdf

[10] ——, “OSGi Service Platform Enterprise Specification,” pp.
15–27, 2010, [Last access: July 2011]. [Online]. Available:
http://www.osgi.org/download/r4v42/r4.enterprise.pdf

[11] C. Escoffier and R. Hall, “Dynamically adaptable applications
with iPOJO service components,” in Proc. of the 6th int. Conf.
on Software composition, ser. LNCS, vol. 4829. Springer,
Mar 2007, pp. 113–128.

[12] H. Cervantes and R. Hall, “Autonomous adaptation to
dynamic availability using a service-oriented component
model,” in International Conference on Software Engineering
(ICSE). IEEE, May 2004, pp. 614–623.

[13] Sun Microsystems, “Enterprise javabeans specifications,”
may 2006, [Last consulting: July 2011]. [Online]. Available:
http://java.sun.com/products/ejb/docs.html

[14] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Ef-
ficient Java Bytecode Translators,” Proc. of the 2nd int. conf.
on Generative programming and component engineering, pp.
364–376, Sept 2003.

[15] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill,
“SLCA, composite services for ubiquitous computing,” in
Proc. of the Int. Conf. on Mobile Technology, Applications,
and Systems. New York, USA: ACM Press, 2008, pp. 1–8.

[16] J. Encarnaçao and T. Kirste, “Ambient intelligence: Towards
smart appliance ensembles,” in From Integrated Publication
and Information Systems to Information and Knowledge En-
vironments. Springer, Dec 2005, pp. 261–270.

[17] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-Oriented Smart-
Home Architecture Based on OSGi and Mobile-Agent Tech-
nology,” IEEE Trans. on SMC, Part C, vol. 37, no. 2, pp.
193–205, Mars 2007.

[18] F. Hamoui, M. Huchard, C. Urtado, and S. Vauttier, “Specifi-
cation of a component-based domotic system to support user-
defined scenarios,” in Proc. of 21st Int. Conf. on Software
Engineering and Knowledge Engineering, July 2009, pp.
597–602.

160

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 176 / 612

A Graph-Based Requirement Traceability Maintenance Model

Facilitating Chronological Evolution

Vikas Shukla
1, 2

, Guillaume Auriol
1, 2

, Claude Baron
1, 2

1 LAAS-CNRS ,

7 avenue du Colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS ;

F-31077 Toulouse, France

{vshukla, gauriol, cbaron}@laas.fr

Abstract—Requirement traceability remains a challenging task

for the software developers. It helps stakeholders to

understand the various relationships between the artifacts

produced during the development process. During this

requirement evolution process, information is produced and is

stocked as trace. Some part of this information is lost owing to

traceability maintenance process as links are deleted and

removed from the system. This lost information is very useful

while making decisions during the development process. In this

paper we discuss a graph-based traceability model, which

allows easy maintenance without any significant information

loss. We show that both nonfunctional and functional

requirements can be traced forward and backward using our

proposed graph-based traceability model.

Keywords-Requirement Traceability; Graph; Maintenance;

Decision making.

I. INTRODUCTION

 Requirement traceability is the ability to describe and
follow a requirement in both forward and backward direction
in a software development life cycle [1]. Requirement
traceability is seen as an index of software quality, it is one
of the recommended activities for the system requirement
specifications [2], CMMI and ISO 15504 consider it as ‘best
practice’ and strongly suggest its usage. Requirement
traceability allows various stakeholders to understand the
various existing relationships among the produced artifacts
during the product development process.
 A requirement is traceable if you can discover who
suggested the requirement, why the requirement exists,
which requirements are related to it and how that
requirement relates to other information such as systems
design, implementation and user documentation. Traceability
information helps you discover which other requirements
might be affected by requirement changes.
 Requirement traceability is always associated with
artifacts, we define artifact as any product which may have
originated during the course of development process or is
utilized during the development process or later and is
important for the success of project.
 Every organization implements its own suitable guiding
principles for requirement traceability which are known as
‘traceability policies’. Traceability policies define which
information dependencies between requirements should be
maintained and how this information should be used and
managed.

Traceability means different things for different types of
users depending on the types of users high-end or low-end
[3, 4]. Usually, quality requirement of a system, which are
mostly nonfunctional requirements, are high-end users
requirements associated with management people. Low-end
users are usually developers, programmers or people
involved with testing, verification or validation.
 For high-end users it implies how the client needs have
been fulfilled but usually the low-end users find it
unnecessary work overload [3], Tracing of nonfunctional
requirements satisfies their needs. Similarly the traceability
need of low-end users is satisfied with functional tracing.
 We have contributed to the existing state of art by
proposing a valid solution to the maintenance problems, i.e.,
the information loss, and dangling traces. Our paper
addresses solution for the existing requirement traceability
maintenance problems using graph-based methodologies,
based on event-based traceability [5]. We show how we can
increase the value of trace for the low-end users and hence
involve them rigorously in traceability process. Our approach
shows the interesting solution for the dangling-trace and
information-loss problem and shows how our technique can
be suitably used for minimizing cost of maintenance.
 The paper is organized as follows. Section 2 of this paper
highlights the current traceability maintenance problems.
Section 3 presents the existing related works. Section 4
presents our graph-based traceability maintenance model.
Section 5 discusses various aspects of our maintenance
scheme and discusses feasibility and scalability issues linked,
and equally the various combinations possible with recovery
schemes. Section 6 concludes the paper and brings the
possible problems and solutions linked to our approach.
Finally, Section 7 presents the future perspective works
envisaged.

II. TRACEABILITY MAINTENANCE PROBLEM

 The requirement traceability is a continuous activity,
involving peoples of various levels to participate
continuously and maintaining a perfect communication
channel among them for avoiding any information lapse. A
good communication channel can help to figure out
inconsistencies in the interpretation of requirements among
various stakeholders which is very necessary for requirement
engineering activities. Besides the communication there are
various issues in traceability maintenance. Maintenance is
the activity of updating and modifying already existing
traceability relationships [6]. We discuss a few of the

161

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 177 / 612

existing important maintenance problems, which we address
in this paper.

A. Cost of Maintenance

 As the requirements are continuously evolving through
the life of a project, requirements are added, removed or
modified. The links between these evolving requirements
need to be maintained. In a sufficiently complex system, the
number of requirements can vary up-to few thousand
requirements depending upon the granularity. Maintaining
these requirements can be tedious task involving lot of
computational and human resources.

B. Dangling Trace

 A dangling trace is one which points nowhere or it lacks

either a source or a target [7]. Such situation may arise due

to human or system error during the course of a continuous

evolution of a fairly complex system. They may also arise

due to changes in the system model rendering some part of

old system out of the boundaries of new system and hence it

becomes difficult to trace them with respect to new

requirements.

C. Information Loss

 Whenever a new requirement is added to the system it
needs to be linked to other requirements and available
artifacts. The corresponding owners of the linked artifacts
should be informed and advised to bring up the necessary
changes. Similarly whenever an artifact is removed or
altered or its dependency changes all the information should
be communicated to the various stakeholders. This task
usually involves maintaining these fine grained relationships
and continuous update of such information usually leads to
loss of data and hence information. We claim this
information to be important as they are result of earlier high
level discussions and decisions which involved certain cost.

If any such information is deleted permanently then in
case of a future discussion there is chance that development
team may reach a similar decision which was earlier found to
be inutile. This may happen due to a probable change in the
team or may be just of a simple absence of a member, which
is quite possible as project development may take
sufficiently long time.

D. Increasing Value of Trace for low end users

 As mentioned earlier, for the low end users traceability

seems to be a monotonous task and they are reluctant to

involve themselves in traceability process. They do not find

it very useful for their objectives and hence traceability does

not offer them sufficient valorization for their work.

 Whereas with every change brought to an artifact during

the course of development there is an inherent risk attached

to every dependent artifact involved which may jeopardize

the success of project. We show in the following section that

this risk evaluation factor can be used as a tool to valorize

the work of low-end users and hence to continuously

involve them in traceability mechanism. This associated

risk can then be utilized in change impact management.

III. OTHER REALATED WORKS

 Current literature on traceability contains ample work on

need, and generation of traceability [1]; however, fewer

work has been produced regarding the maintenance of

traceability [5, 7, 9, 10, 14] the existing ones do not address

properly the information loss problem. Cleland-Huang et al.

[5] proposes publish–subscribe mechanism, a relationship

between artifacts is registered to a central server. The

evolution is represented by the series of change event. When

a requirement is changed, the subscribers are notified about

the change and they may bring the potential changes to their

artifacts. It allows complete removal of requirements.

 Another event-based scheme [14] uses a tool called

Ttracemaintainer but it uses only UML structural models.

Another similar tool to Ttracemaintainer is ArchTrace [13],

it addresses the consistency and evolution of trace links

between software architecture models and their associated

code. Another approach for evolving traceability for

heterogeneous artifacts [11] gives interesting insights about

which information should be traced for corresponding

artifacts so that fine-grained differencing can be used to

identify evolution. The graph-based traceability schemes

exist in literature like [6, 15, 16]. Schwarz et al. [6]

recommends the complete deletion of traceability links

hence in this respect it is like our maintenance model, but it

insists the trace maintenance using the technique based on

[5], but essentially they are based on transformation models,

while this paper is based on classical techniques. Some

earlier works have recommend versioning schemes for

traceability maintenance of artifacts [9], but with the

versioning schemes it becomes hard to see the evolution at

an instant. The other approaches are state-based [7], and

scenario-based traceability. The state-based techniques

employ syntactic differences between different versions of

model. Some use text differencing to identify change. The

other techniques for managing traceability, based on

evolution, use policy-based support [10].

 An important aspect of various traceability models is of

the traceability recovery scheme. To reduce the cost of

traceability, use of semi-automatic and automatic

mechanism for traceability recovery is advocated. This is an

important aspect, as for a fairly large sized project creating

traces manually can be tardy.

 ADAMS [16, 17] uses a latent semantic indexing

scheme for traceability recovery from the checked in

artifacts. There are many schemes based on IR (information

retrieval) and vector space model techniques. The majority

of traceability tools equipped with semi-automatic or

automatic recovery techniques are plagued with ‘false

positive’ problem [16]. The tool ADAMS uses an event

notification scheme and claims automatic traceability

recovery scheme and other modules for project

management. It also uses a versioning scheme for traces, but

still some information loss is still possible owing to

complete removal of artifacts before the version release.

162

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 178 / 612

 There are many traceability models, but most of the

systems are overly complex and do not address the

chronological evolution and information loss problem in

particular. Valorizing traceability can be used as a tool in

software configuration management [8].

IV. GRAPH-BASED TRACEABILITY MAINTENANCE MODEL

 Figure 1 .Trace meta-model

 Our graph-based traceability maintenance model is
comprised of two entities: trace meta-model and traceability
mechanism.

A. Meta-model

 We propose our solution to the aforesaid problems; we

assume that the information that a trace should contain are

decided by traceability policies of the enterprise. We define

our traceability meta-model, as shown in Figure 1. We have

introduced the concept of live and dead information in our

meta-model. Live information is one which is coherent till

date and is represents the current state of artifact, whereas

dead information is one which is obsolete with respect to

current state of artifact but still holds information which

shows the chronological evolution of system.

 The trace meta-model defines trace as composition of

other traces; a trace always contains at least one source and

at least one target artifact. A trace contains two types of

information live information and dead information.

 Information is always associated with a time stamp

indicating the period during which it was conceived or

created. A trace should contain at least single live

information and may not contain dead information. A trace

always contains a risk associated apart from information.

We recommend link model of [11] data to be taken in

consideration for representing a trace information.

B. Traceability mechanism

 Traceability mechanism is based on the graphical

traceability techniques in which artifacts are represented as

nodes and traces are links between the two or more artifact.

The need of a product or product is considered as the root of

the tree, non-functional requirements (NFRs) and functional

requirements (FRs) are the immediate nodes to the root. As

most of the NFRs are implemented as FRs, the NFRs are

later linked to FRs and artifacts in next level at finer

granularity.

 In our traceability mechanism, we define three actions

addition, modification, and rejuvenation; they can be

applied both on traces and artifacts; there is no deletion

operation but instead another sub-operation of modification

called suspension. Suspension is envisaged to provide

similar functionality like deletion, which permits to keep the

track of trace evolution.

Figure 2. Addition operation

Figure 3. Modification-suspension operation

Each node/artifact maintains two additional lists, one for the

dependencies or links, which are pointing to a dead artifact,

and one which maintains the names of dead child artifacts.

1) Addition operation

Figure 2 shows the addition operation, when an artifact is

created a trace is created pointing from the parent node to

the recently created node. All the necessary data are filled

and the node is initialized.

163

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 179 / 612

2) Modification operation

Modification operations are of two types change and

suspension.

a) Change

In case of modification change operation whenever data are

updated the earlier existing data are marked dead and the

newer ones take their place and are marked alive.

b) Suspension operation

Modification-suspension operation is one when an artifact is

no longer coherent with the current system state, and user

actually wants to remove it, in this case the artifact is

marked dead and is suspended and instead of complete

deletion from tree it is moved one level up and is added to

the list of dead artifacts of corresponding node. Figure 3

shows the modification–suspension operation. The other

consequence to modification–suspension operation is that

all the links from the various other artifacts which were

pointing to dead artifact are added to the list of dead

pointers.

3) Rejuvenation operation

A rejuvenation operation permits to change the status of a

trace from dead to alive. This operation can only be applied

when all the pre-artifacts to current artifact are alive or

controlled, i.e., all the earlier artifacts which were the

existential reason for the current artifacts should have been

taken in account suitably.

V. DISCUSSION

 In principle, the majority of graph-based traceability

tools are more or less similar, plagued with similar

deficiencies. We would recommend a semi-automatic

traceability recovery technique. As, in a fairly large system

a fully automatic mechanism can lead to false-positive

notifications, which can be errant for requirement engineers.

The current traceability mechanisms based on information

retrieval (vector space models, latent semantic indexing, and

probabilistic model etc.), structural rule-based, linguistically

rule-based, transformation rule-based or other hybrid

techniques are still error prone and needs to be improved.

 Our traceability maintenance technique can be coupled

with any traceability recovery technique, and used

efficiently. Our paper addresses vital issue of information

loss; for example, in a fairly large project which has

duration of several years, it is possible that one artifact

which was previously decided not to be included in the

product owing to a certain constraint, is reintroduced. If the

analyst had removed this artifact from system, the

information regarding its exclusion was lost which was

valuable to the project, and hence it costs again time and

money, only to be discovered later regarding its deficiency.

We claim that this ‘artifact evolution information’ is useful

and should not be lost whether the decision regarding the

artifact is finally affirmative or negative.

 The major limitation of event-based traceability

approach is of scalability; as the number of messages

generated passes a certain limit, it becomes difficult to

handle so many notifications manually [17]; even reduced

subscription cannot answer this problem. This maintenance

problem is addressed by our technique. The cost of

maintenance using our technique is fairly less, as compared

to other techniques. For every artifact updated, the

information which is obsolete becomes part of the parent

node in the form of dead information, and the pointing trace

is also removed and stocked as dead information with parent

node, this eases the work of requirement engineer. In a large

project with an event-based notification procedure, using

our proposed technique, the deletion operation on any

artifact could be executed without the overhead of

notifications, and overhead of follow-up trace deletion

requests from lower level artifact owners to higher level

artifact owners.

 Our traceability model includes risk evaluation of every

trace created, this helps to valorize the traceability task of

requirement engineer. The risk involved can be the

information vital information regarding the dependencies or

the rationale behind the existence of the artifact. We claim

that, this can help requirement engineer to valorize his work

and renders the tracing activity interesting by coupling

analysis together, which can be used later, for calculating

ripple effect.

VI. CONCLUSION

 This paper has presented a new approach for traceability

maintenance scheme, trying to address chief problems of

current trace processes. The proposed traceability model

emphasizes on maintenance with efficient maintenance

schemes, we are developing a tool which comprises our

technique, and we are yet to obtain results and observations

which support our claims. Our technique provides

interesting solution to the dangling trace problem, which can

immensely help to reduce the tediousness of tracing process.

Our solution offers a plausible solution to the information-

loss problem as the information ever generated in the

development process remains in system to provide the exact

trace of evolution of the system.
With the ease in trace maintenance process the cost of

maintenance can be reduced noticeably as the dangling
pointer problem is solved the effort in maintenance is
reduced and hence less time and less human resources are
engaged to do the same task.

We claim that our technique can bind tightly the low-end
users to the traceability process and can help them to valorize
their work by involving them in risk assessment process of
every artifact they own. Usually in the system development
process there are numbers of iterations before an artifact is
finally accepted as the part of system, our technique allows
retaining the information regarding iterations and
chronological evolution and hence helps in better decision
making.

We can still not trace 100% of information as it is always
difficult to trace the informal aspects of many artifacts. We
advocate the usage of semi- automatic trace mechanism with

164

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 180 / 612

event specific human intervention for the optimal benefits of
traceability.

VII. FUTURE WORK AND PERSPECTIVES

 We are currently working to fully implement our

technique, which addresses maintenance issues which we

discussed in this paper. In spite of these facts there are other

issues which need to be addressed like heterogeneous

traceability schemes for capturing informal aspects.

 Usually graph becomes large and hard to understand

[12], our technique can be constrained to map intra-level

traceability, reducing size and increasing the

understandability of graph. Our technique can be evolved

further to enable global distributed traceability.

 There are still issues like increasing the value of trace

and methods to augment the usability of trace in

organization and how to holistically link the various aspects

of system development with the traces. Can we utilize traces

for rapid development process? Can traceability patterns be

used for product development? How to evolve traceability

techniques as a tool for change impact analysis? These are

the numerous issues which need to be addressed by research

communities.

ACKNOWLEGEMENTS

The research leading to above results has received funding

from the European Community’ Seventh Framework

Program (FP7/2007-2013) under grant agreement n°

234344.

REFERENCES

[1] Gotel, O.C.Z., and Finkelstein, C.W., “An analysis of the
requirements traceability problem,” Proceedings of the First
International Conference on Requirement Engineering (ICRE 1994),
pp. 94-101, 18-22 Apr-1994, doi: 10.1109/ICRE.1994.292398.

[2] “IEEE Recommended Practice for Software Requirements
Specifications,” IEEE Std 830-1998, 1998
doi:10.1109/IEEESTD.1998.88286.

[3] Ramesh,B., “Factors influencing requirements traceability practice,”
Commun. ACM 41, 12 (December 1998), pp. 37-44.
doi=10.1145/290133.290147.

[4] Ramesh, B., and Jarke, M., “Toward reference models for
requirements traceability,” IEEE Transactions on Software
Engineering, vol.27, no.1, pp. 58-93, Jan 2001
doi: 10.1109/32.895989.

[5] Cleland-Huang, J., Chang, C.K., Christensen, M., “Event-based
traceability for managing evolutionary change,” IEEE Transactions
on software engineering, vol.29, no.9, pp. 796- 810, Sept. 2003, doi:
10.1109/TSE.2003.1232285.

[6] H. Schwarz, J. Ebert, and A.Winter., “Graph-based traceability: a
comprehensive approach,” Softw. Syst. Model. 9, 4 (September
2010), pp. 473-492. doi=10.1007/s10270-009-0141-4.

[7] N ,Drivalos-Matragkas; D.S. Kolovos. R. F. Paige; and K.J.
Fernandes., “A state-based approach to traceability maintenance,”
Proceedings of the 6th ECMFA Traceability Workshop (ECMFA-TW
'2010). ACM, New York, NY, USA, pp. 23-30.
doi=10.1145/1814392.1814396.

[8] K.Mohan, P.Xu, LCao, B.Ramesh., “Improving change management
in software development: Integrating traceability and software
configuration management,” Decision Support Systems, Volume 45,
Issue 4, Information Technology and Systems in the Internet-Era,
November 2008, pp. 922-936, ISSN 0167-9236, doi:
10.1016/j.dss.2008.03.003.

[9] T. N. Nguyen, C. Thao, and E. V. Munson., “On product versioning
for hypertexts,” Proceedings of the 12th international workshop on
Software configuration management (SCM '2005), ACM, New York,
NY, USA, pp. 113-132. doi=10.1145/1109128.1109137.

[10] A.Seibel, S. Neumann, and H.geise., “Dynamic hierarchical mega
models:comprehensive traceability and its efficient maintenance,”
Softw. Syst. Model. 9, 4 (September 2010), pp. 493-528.
doi=10.1007/s10270-009-0146-Z.

[11] Hong, Y; Kim, M; Lee, S-W., “Requirements Management Tool with
Evolving Traceability for Heterogeneous Artifacts in the Entire Life
Cycle,” Proceedings of the Eighth ACIS International Conference on
Software Engineering Research, Management and Applications
(SERA 2010), pp. 248-255, 24-26 May 2010
doi: 10.1109/SERA.2010.39.

[12] Winkler, S., and Pilgrim, J.V., “A survey of traceability in
requirements engineering and model-driven development,” Softw.
Syst. Model. 9, 4 (September 2010), pp. 529-565.
doi=10.1007/s10270-009-0145-0.

[13] Murta, L.G.P.,van der Hoek, A., Werner, C.M.L., “ArchTrace:
Policy-Based Support for Managing Evolving Architecture-to-
Implementation Traceability Links,” Proceedings of the 21st
IEEE/ACM International Conference on Automated Software
Engineering (ASE '06), pp. 135-144, 18-22 Sept. 2006
doi: 10.1109/ASE.2006.16.

[14] P.Mäder, O.Gotel, and I.Philippow., “Enabling Automated
Traceability Maintenance through the Upkeep of Traceability
Relations,” Proceedings of the 5th European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA
'09), LNCS 5562, pp. 174-189, doi: 10.1007/978-3-642-02674-4_13.

[15] Pinheiro, F.A.C., Goguen, J.A., “An object-oriented tool for tracing
requirements,” Proceedings of the Second International Conference
on Requirements Engineering (ICRE 1996), pp. 219, 15-18 Apr
1996, doi: 10.1109/ICRE.1996.491449.

[16] De.Lucia, A., Fausto, F., Rocco, O., and Genoveffa, T., “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.
16, 4, Article 13 (September 2007). doi=10.1145/1276933.1276934.

[17] De.Lucia, A., Fausto, F., Rocco, O., and Genoveffa, T., “Fine-grained
management of software artefacts: the ADAMS system.,” Softw.
Pract. Exper. 40, 11 (October 2010), pp. 1007-1034,
doi=10.1002/spe.v40:11.

165

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 181 / 612

A Systematic Mapping Study on Patient Data Privacy and Security for Software
System Development

Isma Masood
Department of software engineering

International Islamic University
Islamabad, Pakistan

ismamasood786@gmail.com

Saad Zafar
Faculty of Computing

Riphah International University
Islamabad, Pakistan

 saadzafar@riu.edu.pk

Abstract-The exchange of Electronic Health Records (EHR)
has increased threats to patient data privacy and security. The
software systems developed for healthcare sector are required
to explicitly address patient data privacy and security. A
number of solutions have been proposed to incorporate these
requirements into the software systems. However, there is no
comprehensive study that synthesizes the different research
initiatives according to any predetermined criteria. The main
focus of this paper is to survey the various proposed solutions
in the literature to incorporate patient data privacy and
security into software systems. The proposed solutions are
mapped against: (1) the software development stage for which
the solution has been proposed, and (2) the established patient
privacy and security principles. The existing literature has
been surveyed using a systematic mapping study by phrasing
two questions. In the mapping study, a total of 58 studies,
dating from 2000 to 2011, were evaluated and mapped against
the aforementioned categories.

Keywords-Systematic mapping study; Electronic Health
Records (EHR); Patient data privacy and security; Software
system development.

I. INTRODUCTION
Health information and medical records contain sensitive

personal information including diagnosis and testing
information along with person’s family history, genetic
testing, history of diseases and treatments, history of drugs
used, sexual orientation and practices, and testing for
sexually transmitted diseases [1]. Nowadays, digitized health
records are not only used for diagnosis and treatment but
they are also used for other purposes like improving
efficiency of the healthcare system, drive public policy
development administration, conduct medical research, and
to provide effective health services that can be tracked and
evaluated [2,3].

Increasingly, the electronically shared information within
healthcare sector is receiving new threats to patient data
privacy and security. Threats to patient data privacy and
security become a major cause of inaccuracies and improper
disclosure of information, which threaten individual’s
personal life and financial well being [3, 4]. Therefore, many
laws and policies in different countries have been

implemented to protect patient data privacy and security
especially for EHR [5].

To bridge the gap between different patient privacy rules,
regulations and policies, Markle Foundation has proposed a
set of principles under a Common Framework for uniform
implementation of health information exchange across the
health sector [9]. Markle Foundation works for advancement
of health and national security through information and
information technology in the United States of America. One
of the major objectives of the Common Framework is to
ensure patient privacy and seamless connectivity among
various organizations related to the health sector. The
privacy principles defined under the framework are
described later in the paper.

A number of initiatives have been taken to propose
effective integration these policies into software systems.
However, effective implementation of all the policies and
principles related to patient privacy and security into
software systems remains a challenge.

Therefore, there is a room for new and improved
solutions in this field. But before performing any new
research, there is a need to synthesize the existing work in
the area and to understand the need for improvement or to
identify any new solution to an unresolved matter. Typically,
a systematic literature review [SLR] is performed for this
purpose. The idea of conducting SLR in the field of software
engineering has been proposed by Kitchenham [6]. Often, a
pre-requisite for conducting SLR is a mapping study, which
is performed as an initial step to assess the feasibility of a
complete SLR. In this paper we have conducted a mapping
study as we could not find any SLR on the proposed
solutions related to the Patient Data Privacy and Security in
the field of software engineering. For this mapping study, we
have followed the guidelines published in [7, 8].

We have presented the results of mapping study to
identify available solutions on patient data privacy and
security for software system development and have
categorized these solutions against: (1) software
development stages in software development cycle, and, (2)
the well established policy principles for patient data privacy
and security presented in [9]. Specifically, our mapping
study addressed the following research questions (1) which
solutions of patient data privacy and security have been

166

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 182 / 612

proposed for software system development? (2) Can we
categorize these solutions using the Markle Foundation’s
Common Framework?

 In Section II, we have described our systematic mapping
process; in Section III, we provide explicit answers to our
research questions; the discussion of the results is provided
in Section IV; conclusion and the future work are given in
the last section.

II. THE SYSTEMATIC MAPPING PROCESS
For our mapping study, we following the guidelines

provided in [7, 8]. Accordingly, our mapping study was
conducted in three stages. In Stage 1, we define the scope,
the search strategy and the selection criteria. In the second
stage primary studies were selected applying the search
strategy and the selection criteria. Lastly, in Stage 3, the
selected studies are classified into the different categories.

A. Stage 1: Defining Scope, search strategy and selection
criteria
We define the scope of the study as follows. The

population of the study is selected as the set of articles
addressing patient data privacy and security. As intervention,
we selected any patient data privacy and security solution
proposed for any of the software development cycle (e.g.,
requirements engineering, design, testing, etc.). The outcome
of our study is a mapping of selected solutions to the patient
data privacy principles found in [9]. Our search string for
conducting the research was:

Patient AND Data AND (Privacy OR Security)

The research sources selected for our study were IEEE

Digital Library, ACM Digital Library, Science Direct and
Springerlink. To select relevant studies, we used the
following inclusion and exclusion criteria.

Inclusion Criteria: A study contribution related to any
stage of the software system development lifecycle. The
study should also discuss at least one or more than one
principles of patient data policy. For this purpose we read
abstract, conclusion, introduction, or the full paper (if
required).

Exclusion Criteria: Any study not related to the domain
of software engineering, patient data privacy or security is
not selected. The studies related to patient data privacy and
security for images, sensor network and wireless
transmission are also not included.

B. Stage 2. Selecting primary studies
In the first iteration, the search string was used at each

resource. All references along with their abstracts were
downloaded in Endnote [11] reference library. At this stage,
we downloaded 4,670 references. In the second iteration,
abstract of all reference were read and relevant studies which
explicitly addressed the patient data privacy or security with
contribution towards software system development were
selected and placed in another library of selected papers. In
this iteration, 120 studies were selected. We selected 93
papers from IEEE, 6 papers from ACM, 17 papers from

Science Direct and 4 papers from Springerlink. In the third
iteration, full texts of these 120 studies were downloaded.
We read all the articles one by one and applied the inclusion
and exclusion criteria and finally selected 51 studies in our
third iterative phase. We placed our 12 doubtful studies in
the pending folder. In the fourth iteration, we discussed these
doubtful studies and decided to accept 7 studies and to reject
5 studies. The breakdown of the results from each of the
source is presented in Table 1, whereas Table 2 shows the
distribution of our four iterative phases and the number of
studies which were retained in each phase. In Table 3, we
summarize the most relevant publication channels.

TABLE 1. NO. OF STUDIES AT EACH RESOURCE

Resource No. of studies No. of
selected
studies

Percentage

IEEE 4,540 44 0.96%

ACM 74 6 8.1%
Science Direct 40 8 20%
Springerlink 16 0 0%

Total 4,670 58 1.2%

TABLE 2. NO. OF STUDIES AT ITERATIONS

1st iteration 2nd iteration 3rd iteration 4th iteration
4,670 120 51 58

TABLE 3. MOST RELEVENT PUBLICATION CHANNELS

Acronym Type of publication Percent
International Journal of
medical informatics

Journal 13.7%

Information Technology
in
Biomedicine

Journal 6.8%

CCSW Workshop 5%
ICBECS Conference 3.4%

The IEEE Digital Library had yielded the most number

of papers (4,670), followed by ACM (74), Science Direct
(40), and Springerlink (16). It is noteworthy that the most
relevant studies were found in Science Direct (20%) and the
least were found in Springerlink (0%). ACM had 8.1% and
IEEE Digital Library had 0.96% relevant studies,
respectively. Most of the relevant studies were found in
International Journal of Medical Informatics (13.7%). This
was followed by Information Technology in Biomedicine
(6.8%). The rest of the relevant studies were found in two
conferences: Workshop on cloud computing security
(CCSW) (5%) and International Conference on Biomedical
Engineering and Computer Science (ICBECS) (3.4%).

As part of our inclusion criteria, we included studies
from the year 2000 to 2011. For the year 2000 we did not
find any relevant study. However, from the years 2001 to
2008 the number of relevant studies increased steadily with a
sharp increase in the year 2008 (frequency=17). The only
exception to the trend is the year 2009 where the total
number was reduced to only 4. In 2010 the number was
again increased to 10 studies showing a positive trend. Only
one study was found to be relevant in the first quarter of

167

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 183 / 612

2011. This trend of number relevant studies per year is given
in Table 4.

TABLE 4. PERCENTAGE OF STUDIES AT EACH YEAR

Years Relevant
Studies Selected Studies Percentage

2000 2 0 0%

2001 5 2 3.4%

2002 6 1 1.7%

2003 8 3 5.1%

2004 8 3 5.1%

2005 10 3 5.1%

2006 10 4 6.8%

2007 23 8 13.7%

2008 25 17 29.3%

2009 30 4 6.8%

2010 23 10 17.2%

2011 22 1 1.7%

Total 172 58

C. Stage 3. Classifying selected Studies
In the next stage, we divided our studies according into

three categories. In the first category, we classified the
studies according to the research approach used in the
selected primary studies. We divide the research approaches
according to the classification proposed by Weiringa et al.
[10]. The validation research is used for those novel
techniques that have not been implemented and are validated
through experiments in a lab-like environment. The
evaluation research is used to evaluate the techniques that
have been implemented in practice. This research type
explores how well the technique has been implemented. In
the solution proposal either a novel solution is proposed or
an existing solution is extended significantly. The
philosophical papers propose either a conceptual framework
to structure concepts into a new taxonomy. On the other
hand opinion papers express personal opinion of the authors
about a technique and the experience papers explain the
experience of the authors of how a technique has been
implemented in practice.

Figure 1: Mapping of studies according to research types

TABLE 5. RESEARCH TYPE AND SOFTWARE DEV.PHASE FACETS

Context Solution Validation Evaluation Total
Req. 1 1 2 4

Design 32 4 1 37
Imp. 16 1 0 17
Ver. 0 0 0 0

Maint. 0 0 0 0
Total 49 6 3 58

Table 5 shows the distribution of research type facet of

the selected studies. An overwhelming majority of research
approaches in the selected primary studies proposed a new
solution (f=49). The next approach used the most was
validation research (f=6) followed by evaluation research
(f=3). However, we did not find any study that could be
classified into any of the other research type categories. The
results of this classification are summarized in Figure 1.

We also classified the studies on the basis of different
stages of software development. Specifically, we grouped the
software development stages into: requirements, design,
implementation, verification, and maintenance. The
breakdown of the classification of the selected studies is
given in Table 5. The majority of selected primary studies
addressed the Design phase of the software development
(f=37), followed by the Implementation phase (f=17), while
some of the studies were classified under the Requirements
phase (f=4). We did not find any study related to software
Verification and Maintenance phases.

Our next categorization was based on the Markle
Foundation’s privacy principles [9]. The first principle of (1)
Openness and Transparency mandates that there should be
an overall policy of openness regarding personal data. The
individuals should be aware of the nature stored data, its
location and its access control policy. The (2) Purpose
Specification and Minimization principle requires that the
data collection purpose should be defined at the time of
collection and its use should be limited to the intended
purpose. Under the (3) Collection Limitation principle the
personal health information must only be collected lawfully
and with the knowledge and consent of the concerned
individual. The (4) Use Limitation principle states that
personal data must not be disclosed, made available or used
in any manner other than the specified purposes. The (5)
Individual Participation and Control principle requires that
individuals have the right of access and control over their
stored personal information. The (6) Data Integrity and
Quality states that only the relevant data is stored and that
the data is always accurate, complete, and current. The (7)
Security Safeguards and Controls requires there should be
reasonable security safeguards against the risks of loss of
data or unauthorized access. The accountability of entities
responsible for keeping and maintaining the personal data
according to stated principles is covered under the (8)
Accountability and Oversight principle. Lastly, the (9)
Remedies principle states that there are adequate legal and
financial remedies to address any security breaches or
privacy violations.

Table 6 shows the distribution of studies according to the
aforementioned privacy principles. As reflected in the data

168

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 184 / 612

shown in the table, we found many single studies that
address multiple privacy principles. The most coverage was
given to the Use Limitation principle (f=38). This was
followed equally by the Individual Participation and Control,
and Security Safeguard and Control principles (f=24). After
them the most covered principle was Data Integrity and
Quality principle (f=16), followed by the Purpose
Specification Principle (f=14). The next principle covered
the most was the Accountability and Oversight principle
(f=13), whereas, the Remedies and Collection Limitation had
the least coverage with a frequency of 3 and 1, respectively.

TABLE 6. CLASSIFICATION OF STUDIES ACCORDING TO
PRIVACY PRINCIPLES

Principle Req. Design Impl. Total

Openness 2 5 1 8

Purpose Specification 1 9 4 14

Collection Limitation 1 0 0 1

Use Limitation 1 23 14 38

Individual Participation
and Control 1 17 6 24

Data Integrity and
Quality 1 13 2 16

Security Safeguards and
Control 2 17 5 24

Accountability and
Oversight 2 9 2 13

Remedies 0 2 1 3

III. RESEARCH QUESTIONS
Based on the above data, we now answer our two

research questions.
RQ1: Which solutions of patient data privacy and

security have been proposed for software system
development?

In our mapping study we found 58 relevant primary
studies. Out of these studies 63% of the studies were related
to the Software Design. While 27% of the studies
contributed towards Software Implementation and only 6%
aimed at Software Requirements. Therefore, we can
conclude that the most research is being conducted on how
to effectively design software systems related to the
requirements of patient data privacy and security. Similarly,
there is also significant focus in the research community on
how to effectively implement the patient data privacy and
security requirements. Surprisingly, much less studies are
focused on requirements analysis and specification phase of
software development (see Figure 2).

RQ2: Can we categorize these solutions using the Markle
Foundation’s Privacy Principles [9]?

The mapping of selected studies against the Markle
Foundation’s Privacy Principles is given in Figure 3. As
discussed earlier, a single study was often mapped against

multiple principles. But we found the solutions in the studies
mapped reasonably well against the privacy principle. It is
important to note that the Use Limitation was covered in
41.4% of the studies, followed by Individual Participation
and Security Control principles with 41.4% studies. The
other two principles covered in the selected studies were
Data Integrity and Quality, and Purpose Specification with
27.6% and Purpose Specification 24.1%, respectively. The
coverage of rest of the principles was not very significant.

Figure 2: Mapping of studies according to software
development context

Figure 3: Mapping of studies against privacy principles

IV. DISCUSSION
The amount of personal information stored and

exchanged by the health information systems is increasing
by the day. With the increase in the volume of data the
concern about the patient data privacy and security is also

169

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 185 / 612

increasing. The data stored about the patient include
sensitive information like history of diseases and treatments,
history of drugs used, sexual orientation and practices,
results of sexually transmitted diseases, etc. As a result, a
number of rules, regulations and best practices have been
proposed to ensure that the stored data does not violate
individual’s privacy and that the data is never use
inappropriately. Consequently, there has been a steady
increase in research community to ensure that the software
systems deployed must effectively integrate all the
requirements related to patient data privacy and security.

The motivation behind our study was to investigate the
feasibility for conducting a complete Systematic Literature
Review. Here we cover the breadth of patient data privacy
and security presented in the literature. The subsequent SLR
studies can investigate the depth based on the results
presented in our work.

The steady increase in the related primary studies from
the year 2001 to 2010, with a few possible exceptions,
indicates a growing interest in this significantly important
research area (see Table 4). Similarly, the need of
implementation of patient data and security requirements is
reflected from the fact that most of the selected studies are
concerned about the Design and Implementation of the
privacy related requirements and less attention is paid to
critically important phases of Requirements Analysis and
Specification, Verification and Maintenance. This notion is
further reinforced by the fact that the most common research
approach used in the primary studies is Solution Proposal,
with much less studies on validation and evaluation research.
Likewise, we did not find any study based on experience
reports, philosophical papers, or opinion papers.

Perhaps, not surprisingly the most importance is given to
the Use Limitation, Individual Participation and Security
Control principles. However, less coverage is given to the
rest of the privacy principles, without which any software
system cannot effectively implement a complete set of
patient data privacy and security requirements.

We identify the following two limitations of our study:
(1) some studies may have been missed due to the diverse
use of the terms used in the search string; and (2) studies
published in English language were selected in the search.

V. CONCLUSION AND FUTURE WORK
In this study, we have presented initial findings on

solutions available for patient data privacy and security to
develop software system. On this topic, we found 58 papers
published in the years from 2000 to the first quarter of 2011.
We have mapped these solutions against principles of

privacy policy to cover all aspects of patient data privacy and
security. A large number of studies focused on Software
Design as compared to Software Implementation and
Software Requirements while, no study found on testing and
maintenance. The Use Limitation principle along with
Individual Participation and Control, and Security Safeguard
and Control had most coverage in the selected studies. Our
future work includes performing in-depth Systematic
Literature Review on various aspects of Patient Data Privacy
and Security identified in this study.

REFERENCES

[1] U S. Congress, Office of Technology Assessment,” Protecting
Privacy in Computerized Medical Information” OTA-TCT
576. Washington, DC, US Government Printing Office, Sept
1993.

[2] A. Appari and M.E. Johnson., “Information Security and
Privacy in Healthcare: Current State of
Research.”International Journal Internet and Enterprise
Management, vol. 6, pp. 279-314, Oct. 2010.

[3] L.Gostin., “Health Care Information and Protection Privacy :
Ethical and Legal Considerations” in ETATS-UNIS, 1997, pp.
683-690.

[4] C. H. Liu, Y. F. Chung, T. S Chen, and S. D Wang, “The
Enhancement of Security in Healthcare Information
Systems.” International Journal of Medical System”,pp. 1-
16, Nov. 2010.

[5] M.Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B.
Lalecil., ”A Survey and Analysis of Electronic Healthcare
Records Standards. ”Journal ACM Computing Surveys,
vol.37, pp. 277-315, Dec. 2005.

[6] B. Kitchenham and S.Charters., “Guidelines for performing
systematic literature reviews in software engineering”,
Technical Report, EBSE-2007-01, Keele University, 2007.

[7] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.,
“Systematic mapping studies in software engineering.”, in
12th International Conference on Evaluation and Assessment
in Software Engineering (EASE), pp. 71-80 , June. 2008.

[8] W. Afzal, R. Torkar, and R. Feldt., “A systematic mapping
study on non-functional search-based software testing”, in
20th International Conference on Software Engineering and
Knowledge Engineering (SEKE), 2008.

[9] Markle Foundation, Connecting for Health Common
Framework. January 10, 2011.
<www.connectingforhealth.org>

[10] R.Wieringa, N.Maiden, N.Mead, and C.Rolland,
“Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion”, Journal
Requirements Engineering . vol. 11, pp. 102–107, Dec. 2005.

[11] T.Reuters,”EndNote-Your smater refrence assistant”Internet.
June 5, 2010. <http://www.endnote.com/>

170

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 186 / 612

Impact on the inclusion of security in the UPnP protocol within the Smart Home

Alberto Alonso Fernández, Alejandro Álvarez Vázquez, M.P. Almudena García Fuente, Ignacio González Alonso
Computer Science Department University of Oviedo

 Oviedo, Spain
alonsoalberto@uniovi.es, alvarezvalejandro@uniovi.es, agarciaf@uniovi.es, gonzalezaloignacio@uniovi.es

Abstract — This paper describes the impact caused by an
encryption security system on a protocol for interoperability
between robots and home automation. DHCompliant is an
open source interoperability protocol supported by the UPnP
standard. Until today, UPnP does not provide mechanisms for
secure communications, since messages are transmitted over
the network unencrypted and anyone can intercept and read
its contents. The proposed security system is intended to
provide DHCompliant with a dual security mechanism based
on RSA and AES algorithms. The use of these algorithms can
influence the performance of the protocol and the present
work is focused on describing the real impact of the inclusion
of such security mechanisms. Our results show that hiding
information in a Smart Home interoperability protocol by the
inclusion of a security system is viable and does not imply great
consequences in CPU memory consumption.

Keywords – DHCompliant; Security; Data Encryption; UPnP.

I. INTRODUCTION

Security and interoperability are key issues in computer
systems. In a system designed for the Digital Home, in
which several technologies coexist handling data from
devices as well as from the users, it is needed to cover the
security of them as well as the interoperability of the whole
system.

A. Security in the Digital Home

Having smart devices in the Digital Home is very useful.
Once all the devices in a home are automated and connected
through a network, it is important to consider security issues,
authentication and access control [1]. There is a need for
each device and each user to be authenticated in the system
at the same time in order to interact. Regarding the
interoperability protocols into the Smart Home, information
related to its inhabitants and its habits are managed. This
information is confidential and mechanisms, which make it
inaccessible and/or illegible for entities from outside the
Home, must be developed. At the same time, the devices that
compose the system must be validated and accomplish a
group of requisites in order to be part of the web, avoiding
malignant devices to take control of the installation or allow
a leak of information. The information managed in these
environments includes all the values gathered by all the
Smart Home sensors, as well as behavior patterns of the
inhabitants (e.g., daily tasks, timetables and other personal
information).

Without the existence of security in the Smart Home, its
inhabitants’ personal life information is exposed. It is
necessary that this situation does not occur in order to extend
the concept of Smart Digital Home in the society, this way
the users will trust a system with a high level of reliability,
which does not allow situations in which information and
devices can be compromised.

B. Interoperability and security

The development of software systems incorporating
heterogeneous components has a great potential, reducing
costs and increasing productivity and flexibility to future
changes, but on the other hand it is prone to suffer threats in
non functional aspects of the system [2]. One of the
problems identified is how to build a secure system from
components, which may or not be safe by themselves. In this
study, an example of components can be robotic adapters
developed in different programming languages and executed
in different platforms, the OpenID identity supplier or the
software component, which administer the control and
events of the home automation installation inside the Digital
Home. The security of all the system cannot fall on an only
component and the interoperability in the security of
integrated systems is not a trivial problem [3]. It is possible
that each component can implement different policies and
security mechanisms, which may not be interoperable among
them. This is the reason why it is highlighted the need of
providing these systems with security mechanisms common
to all components in order to preserve interoperability among
them with a security guarantee.

Another aspect to be considered is the quality of the
service provided (QoS) [4]. The main concern is the delay
that may occur to access, transmit and display the
information, which is exchanged in the Digital Home
environment. In order to guarantee all the aspects previously
stated, in the present study different options regarding
security issues were evaluated. The principal aim was to
choose a group of security mechanisms and algorithms
already proven that endow a domo-robotic interoperability
protocol with the security needed for preserving
communications and confidential information that can
circulate through the network.

C. Digital Home Compliant (DHCompliant)

DHCompliant [5] project aims to integrate home
automation and robotics in the digital home and media
communications network based on the Universal Plug and
Play (UPnP) technology [6]. DHCompliant proposes a
solution to develop collaborative tasks between robots

171

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 187 / 612

taking into account the information that home automation
devices can provide, such as lighting conditions, humidity
parameters or presence detection. All the information is
handled to perform tasks managed by UPnP. From the
automatic discovery of devices to remote invocations of
robot actions are controlled by the UPnP protocol.

The paper is structured as follows: Section number two
breaks down the current state of the art in the field of
security and it is exposed the main motivation for this work.
Section three describes the methodology used and Section
four describes the experiments that have been included.
Finally, Section five presents the results obtained and
Section six assess all these results to draw conclusions and
propose several future works.

II. MOTIVATION AND STATE OF THE ART

The main motivation of this study is to assess the impact
of the proposed security system for protection of
communications in the digital home. Due to the lack of
security in the UPnP protocol, it has been studied the
mechanisms and security encryption algorithms to choose an
optimal solution to provide the required security system to
safeguard the privacy of users. Today the latest
specifications of the UPnP protocol does not provide any
security mechanism for messages transmitted over the
network or to authenticate users on the network as well as
concepts of privacy.

One of the goals of this study is to provide a safety
mechanism for interoperability protocol DHCompliant based
on UPnP. Another goal is to evaluate how it affects the
security system on the overall performance of the protocol.

In the present section, the main data encryption systems
will be presented, as well as the DHCompliant protocol.

A. Data encryption

1) RSA (Rivest, Shamir y Adleman)
It is a public key cryptographic system developed in

1977. The safety of this algorithm lies in the problem of
factoring integers. Sent messages are represented by
numbers, and the operation is based on the product of two
random large prime numbers in a secret way.

When you want to send a message, the speaker looks for
the recipient's public key, encrypts the message with that
key, and once the encrypted message reaches the receiver,
it´s decrypted using its private key.

RSA was believed to be safe until it was not known the
quick ways to decompose a large number of prime products.
Quantum computing could provide a solution to this
problem of factoring.

RSA is used in multiple applications including electronic
cash, secret broadcasting, secret balloting systems, various
banking and payment protocols, smart cards, and biometrics
[7].

2) AES
Advanced Encryption Standard (AES), also known as

Rijndael is a schematic block cipher adopted as an
encryption standard by the U.S. government.

AES has a fixed block size of 128 bits and key sizes 128,
192 or 256 bits. Rijndael is a block cipher with both a

variable block length and a variable key length. It would be
possible to define versions of Rijndael with a higher block
length or key length, but currently there is no need for it [8].
By design, the DES and TDES are slow algorithms. AES
can be up to 6 times faster and, besides, not vulnerable [9].

AES has multiple libraries for the development of secure
applications in several programming environments as C,
C++, Java, C# o Python. Among all its uses, file
compression, disk encryption, security in local networks
(LAN) or as part of other applications as GPL [10] o Pidgin
[11] are highlighted.

3) DES and 3DES
Data Encryption Standard (DES) is a method for

encrypting information, chosen as FIPS in the United States
in 1976, its use has spread widely throughout the world,
[12].

Today, DES is considered insecure for many
applications. This is mainly because the key size of 56 bits
is short. DES keys have been broken in less than 24 hours.
There are also analytical results, which demonstrate
theoretical weaknesses in the cipher, although they are
unworkable in practice. It is believed that the algorithm is
safe in practice as a variant of Triple DES, although there
are theoretical attacks.

Triple DES is also known as TDES or 3DES, was
developed by IBM in 1998 [13]. The Triple DES is slowly
disappearing, being replaced by the AES algorithm.
However, most credit cards and other electronic payments
have as standard Triple DES algorithm (previously used the
DES) [14]. By design, the DES and TDES algorithms are
slow.

4) BLOWFISH
Is a public domain symmetric block encoder, designed

by Bruce Schneier [15] in 1993 and included a large number
of sets of encoders and encryption products. While no
analyzed Blowfish cipher has been found effective today, it
has been given more attention than decoding blocks with
larger blocks, like AES.

Blowfish was designed as a general purpose algorithm,
which attempted to replace DES and avoid the problems
associated with other algorithms for use in performance-
constrained environments such as embedded systems [16].

5) IDEA
Is a block cipher designed by Lai and James L. Xuejia

Massey of the Federal Polytechnic School in Zurich and was
first described in 1991 [17]. An algorithm was proposed as a
replacement for DES.

The designers analyze IDEA to measure its strength
against differential cryptanalysis and concluded that it is
immune under certain assumptions. Non successful linear or
algebraic weaknesses have been reported. One of the most
popular uses is within the framework of PGP [18].

B. DHCompliant architecture

DHCompliant protocol is divided into a number of
subsystems that can meet existing needs in a home
automation environment. It is a protocol set up over UPnP
and it includes the following subsystems: Groups,
Localization, Intelligence, Energy, and Security & Privacy.

172

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 188 / 612

• DHC-Groups: Is the service that manages the
collaborative tasks. It transmits to the connected robots
the task information to be executed and responds to
requests that they are later made to form a hive of robots
capable of performing a particular task.

• DHC-Localization: Allows obtaining the position of the
robots in the house. The robots take the coordinates of
the location system to navigate to the point where the
task is performed.

• DHC-Energy: Enables power profiles management to
perform collaborative tasks and calculations of costs and
fees for expenditure control.

• DHC-Intelligence: Here are included semantic tagging
capabilities, building and testing user-defined rules and
machine learning. In this module is the Machine
Learning [19] technology that provides the system with
learning capabilities for making decisions in a more
autonomous way.

• DHC-Security&Privacy: Allows the encryption of
communications in the DHCompliant UPnP network
protocol established [20]. Through the RSA asymmetric
encryption algorithm is sent to all devices on the
network a system password to be used by the AES
encryption as its symmetric key. In the next section you
can see the process in a more detailed reflection in a
SysML diagram of sequence (Figure 2).

Figure 1. DHCompliant Architecture.

III. METHODOLOGY

This section describes the tools and elements required for
including a security system into the DHCompliant protocol,
as well as for performing the experiments.

A. Tools

To carry out the tests several tools have been used. A
simple and effective technique has been used for measuring
execution times for the .NET platform. It consists of the use
of the basic classes and methods to measure time like
TimeSpan and the attribute Ticks.

The method consists of the introduction of a Date .Now
instruction in the source code at the beginning of what it is
wanted to measure and a statement at the end of the method
or code section. The two times are subtracted to get how
many milliseconds.

To analyze the performance of the system it has been
chosen a profiler for the NET platform, the YourKit Profiler
[21]. It provides zero-overhead profiling for your .NET
applications and makes code profiling and memory usage
optimization simple and fast. The remote option has been
used in all the experiments because it does not interfere with
measurements. Measuring time and resources usage remotely
is needed to obtain the better results.

B. Items

It can be distinguished two types of elements in
consideration in conducting the experiments, hardware items
and software items.

1) Hardware items
The following table (Table 1) describes the

characteristics of the equipment used to perform all
experiments.

TABLE I. LIST OF HARDWARE COMPONENTS USED FOR EXPERIMENTS

Computer 1 2

OS
Windows XP Profesional 32

bits
Windows Vista Business 64

bits

CPU
AMD Athlon X2 4000+

2,11GHz
AMD Athlon X2 4000+

2,11GHz
RAM 3GB DDR2 2GB DDR2
HD Western Digital 7.200 rpm Western Digital 7.200 rpm

The computer number one is the machine that contains
all the DHCompliant system. The computer number two is
responsible for running an instance of the YourKit profiler
to run tests remotely.

2) Software items. DHCompliant protocol.
DHCompliant protocol modules involved throughout all

the tests are the following:
• GUI: It is the user interface from where the tasks are

created and launched to be performed by the robots. The
interface consists primarily of a form in which the user
enters data for the task as the task name, the number of
robots that are to be used, the target room and other
necessary parameters for the job. It also allows the
creation of user rules, selection of the energy profile for
the task and the cancellation of tasks.

• DHC: Is the main part of DHCompliant. It contains all
the protocol services: DHC-Groups, DHC-Localization,
DHC-Energy, DHC-Intelligence and DHC-Security.

• Adapters: It is the software component that acts as a
link between the physical robot and the DHCompliant
protocol. It implements all the protocol functionality to
perform the tasks sent by the user. It communicates with
the API of each robot to use its features [22]
The experiments described in the following sections

have been carried out to demonstrate what is the real impact
of the inclusion of security and privacy in an interoperability
protocol. The goal is to demonstrate what is the time penalty
and performance when compared with the same protocol
without restraint.

IV. DESIGN OF THE EXPERIMENT

The experiment was performed to study the impact of the
security system consisted in executing a video surveillance
task within the protocol DHCompliant. The objective is to
perform a task from the user interface to be carried out by a

173

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 189 / 612

robot. The DHC module is located between the robot and the
user interface, and is responsible for the tasks management
(choose appropriate robot, location service, energy service
...).

Because the encryption is included in each of the entities
involved in the flow of execution of a task, it was decided to
divide the experiment into three stages to obtain more
accurate results and more data for analysis. One stage was
chosen for the flow of execution in the graphic user
interface, another for the DHC device, and the last one for
the robot adapter.

First, the GUI generates the internal system, which will
be the future symmetric key for the AES encryption
algorithm to encrypt all protocol communications. This key
must be shared with other devices in a safe way, so it is sent
encrypted using the RSA algorithm.

Once the devices (DHC and adapters) are subscribed to
the UPnP security service of the GUI, they perform an
invocation to obtain the system key. The devices also
implement the RSA algorithm so in the previous involution
the GUI sends your public key. Next, the GUI key system
encrypts the public key of each device. The value returned
by the invocation is the key encrypted with the public key of
each device that relies on the security action interface. After
receiving the key, the device decrypts with its private key
and initializes the AES symmetric cipher with the key
obtained.

Once the processing is completed, the devices can
subscribe to other services of the encrypted communications
system.

V. RESULTS

This section describes the results obtained with and
without the inclusion of a security system in DHCompliant.

A. Time measurements

Measure ranges were the following:
• In the interface, time was measured since the

launching of a task until the last change of state
variable (including the specification of the energy
profile).

• In the DHCompliant central system, time was
measured since the detection of the first state variable
change until the last change of variable.

• In the robot adapter, time was measured since the
change in the TaskID variable until it receives the
response from the first request for coordinates to the
location system.

The tables (Tables II and III) show the measurements
obtained, with a system in which the data is unencrypted and
another system in which data is encrypted.

B. CPU and memory consumption

With the profiler it has been taken samples from
memory and CPU consumption during the course of

carrying out the experiment described above. To obtain
more reliable results without interferences, tests have been
carried out with the remote profiler option.

As it has been described in previous sections, the task
was divided in three sections, one for every device involved
and tests have been performed on the system with and
without the encryption system. Samples from memory and

CPU consumption have been taken with the profiler during
the course of carrying out the experiment described above.
To obtain more reliable results without interferences, tests
have been carried out with the remote profiler option.

The pictures above show the most significant results
obtained. Figure 3 and 4 illustrate the task execution flow in

Figure 2. SysML package diagram of the experiment

components.

TABLE II. TIME MEASUREMENT
WITHOUT DATA ENCRYPTION

Iteration
Number

Average
Time (ms)

Interface 49,99696
DHC 462,29

Adapter 17946,77
Total 18459,06

TABLE III. TIME
MEASUREMENTE WITH DATA

ENCRYPTION

Iteration
Number

Average
Time (ms)

Interface 112,492
DHC 1118,722

Adapter 18444,75
Total 19675,96

Figure 3. CPU time consumed in the adapter without encryption

Figure 4. CPU time consumed in the adapter with encryption

174

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 190 / 612

the adapter in each case. This flow starts when the adapter is
started until it receives the last task parameter from the
DHC device.

At the beginning there is no difference between two
systems in terms of CPU load, but in the final moments it is
noticed a small increase in the adapter with encryption
system due to the obtained data from the task. The adapter
ask DHC device for the task parameters so DHC answers
the adapter with those parameters encrypted and the adapter
must decrypt them. This process has a little increase of
about 5% in the CPU load.

Figure 5 and Figure 6 show the results in the DHC
device with and without the encryption system, respectively.
In the first 15 seconds the adapter receives all the task

parameters from the user interface and this information has
to be decrypted. In this case, a peak in the encrypted system
can be seen. This is because DHC receives parameters

encrypted and it has to decrypt and encrypt them again to
send them to the adapter.

At about the twentieth third second a small increase in
CPU load occurs. This stage corresponds to the stage when
the adapter asks DHC for task information.

Figure 7 and Figure 8 shows the memory consumption
in the user interface device with and without encryption
system. All memory generations are shown. The encryption
system consumes 1 MB of memory more than the non-
encrypted.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper it is shown the most widely used encryption

algorithms applied to a Smart Home protocol. Each system
has its advantages and disadvantages but it has been decided
to use RSA and AES systems for several reasons.

In the case of RSA, the main advantage of public key
cryptography is an increased security and comfort, as the
private key is not sent to any network device. In a secret
key, however, the secret keys must be transmitted (either
manually or through a communication channel), because the
same key is used for encryption and decryption. A major
problem is that there may be a possibility that an intruder

can discover the secret key during transmission. This is why
the private key is transmitted using the RSA system. The
function of using a system based on public/private key

encryption is to guarantee transmission of the AES key used
to encrypt communications.

In the case of AES, the National Institute of Standards
and Technology (NIST) with the joint work of Belgian
researchers Vincent Rijmen and Joan Daemen selected
Rijndael in October as a basis for AES. Rijndael was
selected from among five finalists in a process that took
more than three years [23]. Compared with other AES
encryption algorithms, Rijndael had more elegant
mathematical formulas behind, and only requires one pass to

 Figure 5. CPU time consumed in DHC without encryption Figure 6. CPU time consumed in DHC with encryption

Figure 8. Memory usage in the GUI device without encryption system

Figure 7. Memory usage in the GUI device with encryption system

175

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 191 / 612

encrypt the data. AES has been designed from scratch to be
faster, unbreakable and capable of supporting smaller
computing devices imaginable. The big differentiators
between AES and other systems are safety, superior
performance and better use of resources. Another reason to
choose AES is that it provides strong encryption and has
been selected by NIST as Federal Information Processing
Standard in November 2001. In June 2003 the U.S.
Government (NSA) announced that AES is secure enough
to protect classified information up to TOP SECRET level,
which is the highest level of security over the information,
and which disclosure to the public would cause
exceptionally damage to national security.

The experiments performed in this paper show that the
inclusion of an encryption system in a protocol of
interoperability provokes only a slight increase in
consumption of RAM and CPU. Taking this into account, it
can be concluded that the inclusion of a security system in
the interoperability protocol in the Smart Home hides
information is viable.

As future work, it would be interesting to implement
other encryption systems for the DHCompliant protocol and
compare them with the proposed solution of RSA + AES in
order to get real data on the performance of each of the
alternative algorithms. It is advisable to extend the
encryption system to not only to encrypt the contents of the
variables that contain information of the tasks within the
digital home, also to encrypt the names of these variables.

Another aspect is to consider in the future the
implementation of policies and recommendations on privacy
issues. For products made in the European Union, the
system proposed must comply with the Data Protection
Directive 95/46/EC (European Union, 1995) and Regulation
(EC) 45/2001 (European Union, 2001) and according to the
instructions of the European Data Protection Supervisor
(European Data Protection Supervisor, 2010). For products
made in USA, it must comply with the Guide to Protecting
the Confidentiality of Personally Identifiable Information
(PII) (NIST (National Institute of Standards & Technology),
2010) [23]. Finally, Adapter, Robot or DHC service
manufacturer MUST comply with the ISO / IEC 27002
(ISO / IEC - International Standard Organization, 2009) for
information security.

REFERENCES

[1] J. A.-M. Manish Anand and R. C. M. Dennis Mickunas,
«Secure Smart Homes using’ Jini and UIUC SESAME»,
ACSAC ’00 Proceedings of the 16th Annual Computer
Security Applications Conference, 2000.

[2] E. A. O. Lawrence Chung, «Analyzing Security
Interoperability duringComponent Integration», IEEE/ACIS
International Conference on Computer and Information
Science, 2006.

[3] K. M. K. J. Han,, «Composing security-aware software»,
IEEE Software, vol. 19, pág. 34–41, Feb. 2002.

[4] C. L. Samuel Pierre, «Security, Interoperability, and
Quality of ServiceAspects in Designing a

TelecommunicationsPlatform for Virtual Laboratories»,
IEEE Electrical and Computer Engineering, 2000.

[5] Infobotica Research Group, «DHCompliant web site»,
dhcompliant.com, 2010. [Online]. Available:
http://dhcompliant.com/. [Accessed: 04-Mar-2011].

[6] «UPnP Forum», http://www.upnp.org/, Oct-2010. [Online].
Available: http://www.upnp.org/. [Accessed: 10-Nov-2010].

[7] Richard A. Mollin, RSA and Public-Key Cryptography.
Chapman & Hall/CRC, 2002.

[8] Joan Daemen, The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

[9] A. A. H. Abul Ahsan and Md. Mahmudul Haque, «A
Comparative Study of the Performance and Security Issues
of AES and RSACryptography», presented at the Third
2008 International Conference on Convergence and Hybrid
Information Technology, 2008.

[10] gnupg.org, «The GNU Privacy Guard - GnuPG.org», The
GNU Privacy Guard - GnuPG.org. [Online]. Available:
http://www.gnupg.org/. [Accessed: 26-May-2011].

[11] pidgin.im, «Pidgin, the universal chat client», Pidgin, the
universal chat client. [Online]. Available:
http://www.pidgin.im/. [Accessed: 26-May-2011].

[12] Mikael J. Simovits, The Des: An Extensive Documentation
and Evaluation of the Data Encryption Standard. Aegean
Park Pr, 1996.

[13] «IBM Press room - 1998-02-23 IBM Offers S/390
Customers Wider Safety Net to Conduct e-business - United
States», IBM Offers S/390 Customers Wider Safety Net to
Conduct e-business, 1998. [Online]. Available: http://www-
03.ibm.com/press/us/en/pressrelease/2780.wss. [Accessed:
26-May-2011].

[14] William C.Barker, «Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher». NIST, 2008.

[15] «Schneier on Security». [Online]. Available:
http://www.schneier.com/. [Accessed: 09-Mar-2011].

[16] Bill Gatliff, «Encrypting data with the Blowfish
algorithm», Ago-2003.

[17] José M. Granado, Miguel A. Vega-Rodríguez, Juan M.
Sánchez-Pérez, and Juan A. Gómez-Pulido, «IDEA and
AES, two cryptographic algorithms implemented using
partial and dynamic reconfiguration», Microelectronics
Journal, Jul-2009.

[18] «The International PGP Home Page». [Online]. Available:
http://www.pgpi.org/. [Accessed: 27-May-2011].

[19] Nils J. Nilsson, «Introduction to Machine Larning».
Stanford University, Nov-1998.

[20] Infobotica Research Group, «Draft specification for data
protection, user data privacy and access restriction». Dic-
2010

[21] «.NET Profiler - Java Profiler - The profilers for .NET and
Java professionals». [Online]. Available:
http://www.yourkit.com/.net/profiler/index.jsp. [Accessed:
03-Mar-2011].

[22] Alejandro A. Vázquez, Ignacio G. Alonso, and M.P.
Almudena García Fuente, «UPnP adapter for collaborative
tasks development over the open protocol DHCompliant»,
presented at the INTERA 2011, Oviedo, Spain, 2011.

[23] «Goodbye DES, Hello AES», Jul-2001. [Online. Available:
http://www.networkworld.com/research/2001/0730feat2.ht
ml. [Accessed: 07-Mar-2011].

176

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 192 / 612

OntoLog: Using Web Semantic and Ontology for Security Log Analysis

Clovis Holanda do Nascimento¹, Felipe Silva Ferraz²,
Rodrigo Elia Assad², Danilo Leite e Silva¹, Victor Hazin da Rocha²

¹CESAR – Recife Center for Advanced Studies and Systems

{clovishn,daniloleite2}@gmail.com
Informatics Center

²Federal University of Pernambuco (UFPE) Recife – PE, Brazil
{fsf3,rea,vhr}@cin.ufpe.br

Abstract—Along with the growth of available information on
the internet, grows too the number of attacks to the Web
systems. The Web applications became a new target to those
invaders, due to the popularization of the Web 2.0 and 3.0, as
well as the access to the social networks system’s API’s, the
cloud computing models and SaaS. In this context, the
identification of an eventual attack to those applications has
become an important challenge to the security specialists. This
article presents a proposition of using Semantic Web and
Ontology concepts to define an approach to analyze Security
logs with the goal to identify possible security issues.

Keywords-Security; Log Analysis; Ontology

I. INTRODUCTION
Log Analysis to search for information that can provide

data about the process of identifying evidence, events and
user profiles related to the system, consists in an ordinary
and necessary activity for the teams that administer and
manage systems. With the growth and popularization of Web
systems [7] [12], the volume of information generated in
logs has grown considerably.

The growth of generated logs made the most common
techniques used to analyze them, such as looking for
evidence of certain attacks and even compromising those by
finding patterns in the logs, not as effective as they were
before [4]. This scenario become even more complex when
there is the need to identify co-relation between the events
that are in the logs, such as identifying which operations a
determined user in which systems in the last 3 days?

Alongside the problems described, we are maturing the
definition of what can be defined as an attack and how an
eventual attacker would use it [17] [24], what allowed to be
adopted more sophisticated mechanisms, generating detailed
data about the event, but making the log analysis more
complicated.

In this context, the use of Semantic Web technologies,
specifically, the use of ontologies, in the context of security
log analysis, showed itself as a possibility of improving the
results of the searches in the log files. Generally, is expected
that the ontologies can help in the interpretation process of
interpretation of the great diversity of information that are
present in this kind of archive [3] [5] [6].

Fundamentally, the role of ontology is to enable the
construction of a representation model of a given area
through the representation of a terms and relations
vocabulary [21]. According to Gruber [9] , Ontology is a
formal and explicit specification of a shared
conceptualization. Thus, as a formal specification, the
ontology can be processed by computer software with
precision in the analysis, facilitating the search in the log
files and thus improving the efficiency of the results analysis
[8].

This article aims to concisely present the proposal for the
use of ontologies to analyze and process logs generated by
web application firewall [15], identifying the generated types
of information, its importance and the problems related to the
log files.

The remaining sections of this paper are divided as
follows: Section 2 presents the difficulties related to log
analysis and security. Section 3 presents the use of
ontologies for log analysis. Section 4 presents the results of
the experiment. Finally, Section 5 presents the conclusions.

II. LOG ANALYSIS DIFFICULTIES AND SECURITY
The information stored in the logs are invaluable to the
security area, for they have the attacks records, input ports,
IP numbers, evidence of invasion, typed commands, among
others. In addition, logs can be considered as a source in
constant growth, due to the use of systems on a daily basis.
Kimball and Merz [11] present some problems found in the
log files, such as; multiple file formats, dispersed
information, incomplete, inconsistent and irrelevant data,
which makes the analysis and extraction of information from
these files harder to accomplish.

The security auditor or system administrator has as part
of their daily routine duties a rather hard activity, the
research and analysis of logs. This task is considered difficult
and time consuming, because the log files are created
without a semantic description of their format, making the
extracting of the meaning of the data impracticable, showing
only the words typed in the search, resulting in poor quality
results. According to Guarino [10], this limitation occurs
because when the data is generated without the use of
ontology, it can present ambiguities and vagueness of

177

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 193 / 612

elements. This situation becomes more serious when we face
major files with gigabytes of information.

III. THE USE OF THE ONTOLOGY FOR LOG ANALYSIS
There are various definitions found in literature about

what is ontology. Originally the term was born in the field of
philosophy, being a word of Greek origin, which deals with
the nature of being and its existence. In the field of Computer
Science, it was first applied in the artificial intelligence field
to computational representation of knowledge, being
considered an abstract model of a domain. Below are some
of the most used definitions for the term ontology:

 According to Gruber [9], "ontology is a formal and
explicit specification of a shared conceptualization."

 The W3C consortium [25] defines ontology as: "the
definition of terms used to describe and represent an
area of knowledge."

 According to Noy and McGuinness [16], there is no
one correct way to model a domain, meaning that
there is more than one way to develop an ontology.

 The basic components of ontology are classes
(organized in taxonomy), relations (used to connect the
domain concepts), axioms (used to model sentences that are
always true), properties (describe characteristics common to
the instances of a class or relationships between classes) and
instances (used to represent specific data).

Ontologies are used for modeling data from specific
domains and also allow inferences to discover implicit
knowledge in these. Despite the considerable increase in the
use of ontologies, build a complete ontology covering all the
expressiveness of the domain continues to be a hard work,
making the work of a multidisciplinary team a necessity, in
which case it would be an ontology engineer, a security
expert, among others, and acting in a participatory and
integrated [22] [24].

More specifically, in this work, we are interested in
building ontology for the representation of data available in
security logs of web applications. In this context, ontologies
can be useful for improving the classification of the attacks
occurred and the identification of related events.

In the next session, we present an overview of ontology,
and describe the methodology used for its creation.

A. General description of the proposed ontology
The proposed ontology, OntoSeg, has as main objective

the representation of data generated by the application
firewall log ModSecurity on this work. From a detailed
analysis of several samples of the log we identified various
classes and their relations. Table 1 presents a brief
description of the main classes that compose the ontology for
the representation of the security log.

TABLE 1. MAIN CLASSES OF PROPOSED ONTOLOGY

Class Definition
Audit log header

Represents the log header, and contains the
following information: date and time, ID

(transaction ID, with a unique value to each
transaction log), source IP, source port, destination

IP and port of destination.
Request Headers Represents the request Header, contain the

information of the request and the header of the
solicitation that was sent by the client.

Request Body Represents the body of the transaction, contains the
contents of the client request.

Intended Response
Headers

Represents the status line and headers, this part is
reserved for future use, so it is not implemented

Intended Response
Body

Represents the body of the response of the
transaction, the response body contains the actual

case the transaction is not intercepted.
Response Headers Represents the header of the actual response sent to

the the client, contains data and headers
Response Body Represents the body's effective response to the

request, but this part is reserved for future use, so it
is not implemented

Audit Log Trailer Represents additional data, contains additional meta
data of the transaction obtained from the web server

or ModSecurity
Reduced Multipart

Request Body
Represents the body of the request reduced, Part I is
designed to reduce the size of the request body with
irrelevant content from the standpoint of security,

transactions that deal with uploading large files tend
to be big

Multipart Files
Information

Represents information about the files, the objective
of this part is to write the metadata information

about the files contained in the request body, this
part is reserved for future use, so it is not

implemented
Matched Rules

Information
Figure 1. Represents the rules, contains a record

with all the rules that occurred during the
processing of transactions ModSecurity

Audit Log Footer Represents the end of the log, your goal is just to
indicate the end of a log file

Figure 1 represents the relationships proposed in

OntoSeg. As can be noted several branches show the
complexity of the domain.

The basic relationships between the classes are
performed using the property ID (transaction ID, with unique
value to each transaction), derived from the log ModSecurity
[15] that defines the ModSecurity_log main class, and from
this we have the following derived classes:

 Response_header: contains all the information
related to the HTTP header response

 Request_headers: contains all the information related
to the HTTP request header

 Audit_log_header: contains all the information
related to the header of IP and TCP

 There still is a set of information that derive from
ModSecurity_log class that contains information
about the HTTP message body from these subclasses
we have the derivation of other subclasses that
contains each of the basic elements of ontology
OntoSeg.

178

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 194 / 612

Figure 2. Figure 1. Conceptual model of ontology in protégé - radial view. [25]

 Figure 2 represents the definition of the SourcePort, Get,
and SourceIP Content-Type subclasses, with their classes,
respectively, Audit_log_header, Request_headers, and
Request_headers Audit_log_header:

 <owl:Class rdf:ID="SourcePort">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Audit_log_header"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Get">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Request_headers"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Content-Type">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Request_headers"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="SourceIP">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Audit_log_header"/>
 </rdfs:subClassOf>
 </owl:Class>

Figure 2. Excerpt from the code of the ontology developed in the owl
language [13]

B. Creation proccess of the proposed ontology
The experiment with the use of ontologies for log files

analysis was developed using an actual log of Web
applications developed by the company CESAR (Center for
Advanced Studies and Systems of Recife) that contained a
series of attacks by these applications. This server has about
212,000 page views per month from 35,900 different
addresses. The Web server used is Apache running in the
Linux operational system that uses the ModSecurity [15]
program as a firewall of web applications. The filter rules
include several filters and for most of the known WEB
attacks, for security reasons we cannot detail how they are
configured.

From the analysis of logs generated by the application
firewall, it was possible to identify the major classes of the
ontology and their relationships. The universe of terms that
compose the proposed ontology was defined based on the log
of ModSecurity that records all the transaction data from the
CESAR WEB systems. The classes were defined according
to the division of parts of the ModSecurity log and the
subclasses were established based on the configuration of
keywords enabled by the administrator of ModSecurity,
which were 41 words. This amount could be higher or lower
depending on the established configuration; the instances are
data that are part of the logs.

179

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 195 / 612

Figure 3 shows an excerpt of the ModSecurity log, where
you can see that there is no semantic description associated
with its data, thus limiting the expressiveness of the
concepts.

Figure 3. Example of an excerpt from the log of ModSecurity, which
represents a real SQL injection attack (some data has been changed to

preserve confidentiality of the company)

For the creation of the ontology were chosen: a language for
representing ontologies, a specific tool for working with
ontologies, and some methodologies for the constructions of
ontologies with defined roles. The below summarizes the
choices that were made during the creation of ontology:

 Language for definition of the ontology:
In order to create an ontology that can be
semantically processed by computers, the OWL
language was adopted, that has these characteristics,
and currently is the language recommended by the
W3C consortium [1].

 Methodologies for building ontologies:
In the proposal, the following methodologies were
used to develop ontologies [2]:

o 101: Methodology of the simplified and

interactive process, which has the
following steps: Determine the domain and
scope, consider reuse, list relevant terms,
define classes and their hierarchy, define
classes properties, set property values and
creating instances.

o Uschould and King: Methodology
consists in four distinct stages: Identifying

the purpose of the ontology, construction,
evaluation and documentation.

o Methontology: Methodology that
suggests a life cycle of evolutionary
model, composed by the following phases:
planning, specification, knowledge
acquisition, conceptualization,
formalization, integration, implementation,
evaluation, documentation and
maintenance.

 Tool for the creation of the ontology:
The Protégé [20] tool was chosen that allows the
construction and edition of ontologies through a
graphical interface of easy interaction. It also allows
the insertion of new capabilities by installing plug-
ins. In our case the OWL and Jambalaya plug-ins
were installed. Other features of this tool are the
importing and exporting of ontologies, open source
and be developed in Java.
Based on the comparative study of SILVA, Daniel
Lucas; ROCHA SOUZA, Renato; ALMEIDA,
Mauricio Barcelos [2], which presents the
methodologies for building ontologies, three
methods were selected according to the activities
involved in the proposal, as described in Table 2.

TABLE II. METHODOLOGIES USED IN EACH STEP OF THE LIFE CYCLE OF THE
ONTOLOGY

 METHODOLOGY

ACTIVITY Uschould e
King

101 Methontology

Determination of the
propose of the ontology.

Definition of classes,
properties and instances.

Construction of the
conceptual model.

Implementation.

Verification and
validation.

Maintenance.

IV. RESULTS AND TESTS

Among the benefits of using ontologies are: the

classification of the terms of the logs, relationships,
inferences, formalization, reuse, sharing, among others, we
will show some gains in the context of research.

To prove the improvements in research in the generated
logs, was used the ontology described in the previous
sections to analyze the logs. In addition, the ontology is
necessary to use a query language, called SPARQL [18],
which since January 2008 is recommended as the standard
by the W3C Consortium [14] [19].

This language allows querying ontologies through
clauses, which can combine several classes at the same time

180

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 196 / 612

and also make filters in the searches. A compiler for
SPARQL [18] is already integrated in the Protégé tool [20].

To strengthen the evidence of the improvements in
research involving the use of ontology in comparison with
the traditional keyword searches, see below some situations:

1. A security auditor must analyze the log events that
occurred in the 10th day of a month until the 10th
day of the following month, that has the ip address
range of 192.168.0.13 to 192.168.0.97 with
destination ports 3306 and 443, and is on schedule
from 21:30 to 24:00 h.

2. A security auditor wishes to know what IP address
or group of addresses generated more attacks and in
what times.

Considering the situations above, we have one, between
two ways to proceed:

1. Search with the use of Ontology:
It would be enough to use the select command with
the filter clause containing the classes mentioned
above, and be answered with only the desired data
to analyze.

It could also create a search interface using the
language SPARQL query language or another, to
prevent the auditor to need to know and type the
commands queries.

2. Searches without the use of ontologies :

Quite difficult to be generated because that for the
auditor to make the analysis he wants, he would
first have to read many logs manually separating by
keyword and then make de co-relation, with the risk
of losing data, since only the search for information,
he will be ignoring the other data you want.

Below are the consult solutions in SPARQL to the
situations described above:

SELECT ?ID ?DestinationIP ?DestinationPort ?SourceIP
?SourcePort ?Timestamp ?Cookie ?mod_security-message
WHERE { ?ID rdf:type :ID . ?DestinatioIP rdf:type
:DestinationIP .
?DestinationPort rdf:type :DestinationPort . ?SourceIP
rdf:type :SourceIP . ?SourcePort rdf:type :SourcePort .
?Timestamp rdf:type :Timestamp . ?Cookie rdf:type
:Cookie . ?mod_security-message rdf:type :mod_security-
message
FILTER((?TimeStamp > xsd:date(“2010-07-09”) &&
?TimeStamp < xsd:date(“2010-08-11”) &&
(?DestinationIP > 192168012 && ?DestinationIP <
192168098) && (?DestinationPort = 3306 ||
?DestinationPort = 443) && (?TimeStamp >
xsd:time(“21:29:00”) && ?TimeStamp <
xsd:time(“24:00:01”))) }

Figure 4. SPARQL [18] consult in the Ontology, Situation 1

SELECT ?ID ?SourcerIP ?DestinationIP ?Timestamp
WHERE { ?ID rdf:type :ID . ?SourceIP rdf:type
:SourceIP . ?DestinationIP rdf:type :DestinationIP .
?Timestamp rdf:type :Timestamp GROUP BY
?SourceIP } ORDER BY ASC(?SourceIP)

Figure 5. SPARQL Consult in the Ontology, situation 2

In this sense, the implemented ontology fulfilled its role
very well, according to what was previously planned, the
searches were carried out in a simple way in the ontology
producing the most interesting and visible results in
comparison with the traditional consultations using only key
words, obtaining better results for event logs identification.

It is seen that with the approach proposed in this paper,
the activity log analysis was made simple and independent of
the complexity of the log and the generated data volumes
allowing the realization of co-relations between events more
efficiently

V. CONCLUSION AND FUTURE WORKS
This study aimed to take the first steps in using

ontologies for analysis of security logs. For that purpose the
logs generated by the program ModSecurity were initially
used. As a starting point the log that was generated by this
tool on a web server of CESAR (Center for Advanced
Studies and Systems of Recife) was used. The ontology
modeling was accomplished from the understanding of the
logs the model the ontology.

The performed tests proved that there was an easier log
interpretation and analysis, allowing the performing of more
complex consultations and the implementation of co-relation
of events very effectively.

Finally, we proved that the demand for log audits that use
ontologies is very large, for the tools and current research
procedure is very limited, constituting a critical point in
analyzing logs. In this context, this work was made to
contribute to the attending of this demand.

ACKNOWLEDGMENT
This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES
http://www.ines.org.br), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES
[1] D. Allemang and J. Hendler, Semantic Web for the Working

Ontologist, Effective Modeling. in: RDFS and OWL, Cambridge,
Morgan Kaufmann, 2008.

[2] M. B. Almeida and M. P. Bax, Uma Visão Geral sobre Ontologias:
pesquisa sobre definições, tipos, aplicações, métodos de avaliação e
de construção in Cin:Inf., Brasilia, 2003.

[3] A. Grigoris and V. H. Frank, A Semantic Web Primer, Second
Edition. London, The Mit Press, 2008.

[4] T. Berness-lee, J. Hendler, and O. Lassila, The Semantic Web,
Scientific American Publishing, New York, 2001.

181

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 197 / 612

[5] A. Brandão, A. R. A. Franco, F. Lucena and C. J. Pereira, Uma
Introdução à Engenharia de Ontologias no contexto da Web
Semântica, Rio de Janeiro, 2002.

[6] K. Breitnam., Web Semântica, a Internet do Futuro. Rio de Janeiro,
LTC Publishing, 2005.

[7] R Cannings, D. H. Lackey, and H. Zane. Hacking Exposed™ WEB
2.0: Web 2.0 Security Secrets And Solutions. New York: Mc Graw
Hill, 2008. - DOI: 10.1036/0071494618

[8] M. C. Silveira. Um estudo sobre XML, Ontologias e
RDF(S),http://www.inf.pucrs.br/~mchaves/pg_portugues/tc/paperxml
.pdf, Acessed on 01/10/2010.

[9] T. Gruber and R.Toward, principles for the design of ontologies used
for knowledge sharing. In Formal Ontology in Conceptual Analysis
and Knowledge Representation. Kluwer Academic Publishers, 1996.

[10] P. N. Guarino and A. Roberto, Formal ontology, conceptual analysis
and knowledge representation. International Journal of Human-
Computer Studies, Volume 43 Issue 5-6, Nov./Dec. 1995

[11] R. Kimball and R. Merz, The Data Webhouse Toolkit, New York,
John Wiley and Sons, Inc, Wiley Computer Publishing 2000.

[12] M. Lytras, D. Damiani, P. Ernesto and Patricia O. WEB 2.0 The
Business Model. New York: Springer, 2009. ISBN-13: 978-0-387-
85894-4

[13] D. L. Mcguinness and F. V. Harmelen. OWL Web Ontology
Language , http://www.w3.org/TR/owl-guide/, Accessed on
10/10/2011

[14] Overview. W3C World Wide Web Consortium
(http://www.w3.org/TR/owl-features/), 2004. Accessed on
08/16/2011

[15] Modsecurity. Breach, ModSecurity 2 Data Formats, 2009, Copyright
© 2004-2009 Breach Security, Inc. (http://www.breach.com).
Accessed on 08/16/2011

[16] N.F. Noy and D. L. McGuinness, “Ontology Development 101: A
Guide to Create Your First Ontology ,
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-
mcguinness.pdf, Acceed on 10/10/2011

[17] Owasp, 2008, owasp testing guide 2008 v3.0.:
http://www.owasp.org/index.php/category:owasp_testing_project
Accessed on 08/16/2011

[18] E. Prud'hommeaux and A. Seaborne, SPARQL Query Language for
RDF, http://www.w3.org/TR/rdf-sparql-query/ , Acceed on
10/10/2011

[19] W3C- World Wide Web Consortium (http://www.w3.org/TR/rdf-
sparql-query/). Accessed on 08/16/2011.

[20] Protégé; Ontology Editor and Knowledge Acquisition System
(http://protege.stanford.edu/>). Accessed on 08/16/2011

[21] R. Studer, et al., Situation and Perspective of Knowledge
Engineering, Stanford University,
http://infolab.stanford.edu/~stefan/paper/2000/ios_2000.pdf,
Accessed 10/10/2011 .

[22] D. Stuttard and M. Pinto, The Web Application Hacker’s
HandBook:Discovering and Exploiting Security Flaws, 2008.

[23] Us-cert - technical cyber security alerts, 2009. http://www.us-
cert.gov/cas/techalerts/ . Accessed on 08/16/2011

[24] W3C, 2010, http://www.w3.org/. Accessed on 08/16/2011.
[25] Stanford Jambalaya plug-in,

http://protege.stanford.edu/plugins/jambalaya/jambalaya-simple-
backup.htm , Accessed on 10/10/2011

182

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 198 / 612

Intrusion Detection with Symbolic Model Verifier

 Ines Ben Tekaya Mohamed Graiet Bechir Ayeb
 PRINCE Laboratory MIRACL, ISIMS PRINCE Laboratory
 4011 Hammam Sousse, Tunisia BP 1030, Sfax 3018, TUNISIA 4011 Hammam Sousse, Tunisia
 bentekaya.ines@voila.fr mohamed.graiet@imag.fr ayeb_b@yahoo.com

Abstract— Many intrusions came from internal users. This
behavior can cause damage without human intervention:
viruses, worms, trojan horses, etc. This paper describes our
intrusion detection method in Linux/Unix commands using
formal verification. The main features of this work are
twofold. It exploits formal method in the intrusion detection
field. It presents our tool TLID which can transform Linux
code to Symbolic Model Verifier.

 Keywords-attacks; intrusion; security; scenarios; Linux
commands; model verifier.

I. INTRODUCTION

The intrusion field was introduced by Anderson. It was
defined as an attempt or a threat to be the potential
possibility of a deliberate unauthorized attempt to access
information, manipulate information, or render a system
unreliable or unusable [1]. The difference between intrusion
and attack consists of the fact that intrusion is a malicious,
externally or internally induced fault resulting from an attack
that has succeeded in exploiting vulnerability, while a fault is
the adjudged or hypothesized cause of an error, the cause of
which is intended to be avoided or tolerated. An attack is a
malicious technical interaction fault aiming to exploit
vulnerability as a step towards achieving the final aim of the
attacker [2].

A statistical study shows that 98% of enterprises have a
firewall to be protected from external attacks; however, 80%
of attacks came from internal users [3]. Detecting internal
normal user behavior is a difficult problem because a user
can have much dynamic behavior and it will be almost
impossible to create user profiles that determines the normal
behavior. Using a system to distinct normal user from
intruders is necessary. This system is called Intrusion
Detection System (IDS). It is defined as a security
technology attempting to identify and isolate computer
systems intrusions [4].

We choose to work with Unix/Linux operating system
because in people's minds, if it is non-Windows, it is secure
[5]. This hypothesis will be countered here. More details for
Unix/Linux system can be found in [6].

The literature on detection using Linux/Unix commands
offers a variety of methods. Despite their diversity, their
common objective is: to distinguish between a normal
behavior and an intrusive behavior. From an abstract view
point, we organize these work into one main approach:

empirical approach. This classification included methods
based on aggregative, training or experimental past data. The
present work falls mainly within the model approach. The
data are not based in the past event but they compose a
model. It is a theoretical representation of a system which is
composed of elements and relation.

The reminder of the paper is organized as follow. Section
2 deals with intrusion background. Section 3 describes our
method. Section 4 proposes practical tool and experimental
results for intrusion scenarios. Section 5 summarizes the
paper, with concluding remarks.

II. INTRUSION BACKGROUND

The next subsections summarize attacks topology, some
dataset used in the literature for intrusion detection and show
detection methods using Unix commands

A. Attacks topology

Attacks take several forms to break one or more of the
security properties. They can be grouped according to their
functionality as described in the following subsections [7]:

• Gathering Security-relevant Information: Before
experiencing an attack, a hacker tries to obtain
necessary information that is probably sensible about
the targeted system, which can be employed later to
obtain access to this system. Useful information can
be obtained by different ways such as network
scanning and vulnerability scanning or even by using
public search engines such as Google or social
engineering methods.

• Access Gain Attacks: With information gathered by
the above methods, attackers try to obtain a
privileged access on a system by exploiting
vulnerabilities in the services or the applications
installed on this system or a bad configuration of the
network. This kind of attacks primarily grants
unauthorized access to the targeted system. For
example, one of the configuration problems is the
use of weak passwords in systems where a bad
policy of password definition allows users to choose
simple and easy guessable passwords. Otherwise, an
attacker can use cracking tools such as “john the
ripper” [8] to obtain passwords by brute-force.
Buffer-overflow attacks are another example that
allows attackers to execute arbitrary code on the
targeted hosts.

183

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 199 / 612

• Denial of service (DoS): DOS attacks are designed
to overload or disable the capabilities of a machine
or a network, and thereby render it unusable or
inaccessible. An example of denial of service is a
fork bomb. It works by creating a large number of
processes very quickly in order to saturate the
available space in the list of processes kept by the
computer's operating system. If the process table
becomes saturated, no new programs may start until
another process terminates.

• Malware Attacks: This category of attacks can result
in damages as simple as displaying a simple flicker
to catastrophic damages such as completely
formatting hard disks. It groups virus, worm, Trojan
horse, spyware, rootkit [9] and spam.

B. Detection Using UNIX Commands

The object of intrusion can be files, data bases, network
connection, Input/output systems or commands Linux/Unix.
In this paper we are interested about intrusion using
Linux/Unix commands because it can characterize user
behaviour more efficiently than other object. The followings
paragraphs present some works about methods using Unix
commands. These works are classified into two classes: the
class of intrusion detection and the class of masquerade
detection.

Ilgun, et al. present the state transition analysis method
[10][11]. They used the known Unix intrusion to create a
penetration scenario. A penetration is viewed as a sequence
of actions performed by an attacker that leads from some
initial stat on a system to a target compromised state, where a
state is a snapshot of the system representing the values of all
volatile, semi-permanent and permanent memory locations
on the system. The initial state corresponds to the state of the
system just prior to the execution of the penetration. The
compromised state corresponds to the state resulting from the
completion of the penetration. Between the initial and
compromised states are one or more intermediate state
transitions that an attacker performs to achieve the
compromise.

This method is based on sequence matching. The
incoming stream event is segmented into overlapping fixed-
length sequences. The choice of the sequence length, l,
depends on the profiled user. In practical, it’s fixed to the
value l = 10 in the SEA dataset [12]. Each sequence is then
treated as an instance in an l-dimensional space and is
compared to the known profile. The profile is a set, {T}, of
previously stored instances and comparison is performed
between all y∈{T} and the test sequence via a similarity
measure. Similarity is defined by a measure, Sim(x, y),
which makes a point-by-point comparison of two sequences,
x and y, counting matches and assigning greater weight to
adjacent matches.

The maximum of all similarity values computed forms
the score for the test command sequence. Since these scores
are very noisy, the most recent 100 scores are averaged. If
the average score is below a threshold an alarm is raised. The
threshold is determined based on the quantiles of the
empirical distribution of average scores [13].

Another method, used statistical method, is called
uniqueness. It is based on the idea that commands not
previously seen in the training data may indicate an
attempted masquerade. Uniquely used commands account
for 3% of the data. A command has popularity i if exactly i
users use that command. They group the commands such
that each group contains only commands with the same
popularity. They define a test statistic that builds on the
notion of unpopular and uniquely used commands. They
assign the same threshold to all users. This threshold is
estimated via cross validation: They split the original training
data in the SEA dataset into two data sets of 4000 and 1000
commands. Using the larger data set as training data, they
assign scores for the smaller one. This is repeated five times,
each time assigning scores to a distinct set of 1000
commands. They set the threshold to the 99th percentile of
the combined scores across all users and all five cross
validations. For their data, the resulting threshold is 0.2319
[12][14].

Another method is called Bayes 1-Step Markov Model. It
is proposed by Schonlau, et al. The authors use the
information of 1-step command transition probabilities. They
build transition matrices for each user’s training and testing
data. The detector triggers the alarm when there is a
considerable difference between the training data transition
matrix and the testing data matrix. This technique was the
best performer in terms of correct detections, but failed to get
close to the desired false alarm rate [12].

Maxion use Naive Bayes classifiers and detect
masqueraders by looking at the classifiers misclassification
behavior [15]. This method use command occurrence
probability distribution modeling the UNIX sequence. The
goal of the training procedure is to establish profiles of self
and nonself, and to determine a decision threshold for
discriminating between examples of self and nonself. For
each User X in the SEA dataset, a model of Not X can also
be built using training data from all other victims. The
probability of the test sequence having been generated by
Not X can then be assessed in the same way as the
probability of its having been generated by User X. The
larger the ratio of the probability of originating with X to the
probability of originating with Not X, the greater the
evidence in favor of assigning the test sequence to X. The
exact cut-off for classification as X, that is the ratio of
probabilities below which the likelihood that the sequence
was generated by X is deemed too low, can be determined by
a cross-validation experiment during which probability ratios
for sequences which are known to have been generated by
self are calculated, and the range of values these legitimate
sequences cover is examined.

C. Limitations in existing methods

The intrusion detection method in Linux/Unix commands
using formal verification seeks to improve on some of
limitations that the authors observed in the existing methods.
This section briefly identifies some of their characteristics.

The major weakness of these methods is that they depend
on aggregative, training or experimental past data. The
results of statical methods are closed to the training data

184

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 200 / 612

while the result of state transition analysis method is depend
with the defined penetrations attacks which are non valuable
now.

Another limitation is they are based on analysing
command by command (line per line). This local analysis
can not be equivalent to a global analysis (all of lines).

Lastly, they cannot make difference between the orders
of commands in the sequence used. The statical methods are
based on the command frequency while a state transition
analysis method can’t detect the attacks based in frequency
such as deny of service.

In the following, we focus in these limitations to present
our method based on model using formal verification with
Symbolic Model Verifier (SMV).

III. INTRUSION DETECTION IN LINUX/UNIX

COMMANDS WITH SMV

This section presents our method. It combines tests on
the direct and indirect ways to detect the intrusions. It
focuses on global analysis. The following proposition plays a
central role here.

Proposition 1. A global analysis can not be realized in k
local analysis.

Example 1. Let GA is a global analysis and LA={u1, u2,
…, uk} a k local analysis. Suppose that GA can be realized in
k local analysis. In this case, if GA is false, we must have
one or more ui is false.

This supposition is false because we can find GA is false
while LA is true. The example is here: We have two users X
and Y. User X can execute the following actions : modify all
executable files, named F and that he have write permission,
owned by user Y. X append some code to files F. When any
users, that have write permission in these file, execute F, all
F files will be infected. These actions can be:

1. X search all Y executables files, that X have
write permission,

2. X append some legal code to infect files F
3. Any authorised users execute one of F files
4. All F files will be infected

The local analysis for actions 1, 2 and 3 are legal. They
have a true value, but the global analysis gives a false value:
all F files will be infected.

To perform a global analysis we should specify what are
the anti-properties that characterize an attack script.

The anti-properties (AP) are unwanted properties that can
cause damage in our system. They can be:

• AP1: Execute some illegal commands,
• AP2: Change source or command destination,
• AP3: Execute illegal actions (parameters, etc.),
• AP4: Having infinite loop,
• AP5: Having auto-replication,
• AP6: Detain a resource infinitely
• …
The system specification are formalizes using the AP.

They can be expressed in proportional logic or temporal
logic.

Propositional logic is the branch of logic that studies
ways of joining and/or modifying entire propositions,

statements or sentences to form more complicated
propositions, statements or sentences, as well as the logical
relationships and properties that are derived from these
methods of combining or altering statements.

The temporal logic is used within the framework of the
reagent systems, which where the software is supposed to
maintain a relation of coherence between the input flows and
the output flows. The temporal logic allows expressing the
state evolution of a system.

We choose the temporal logic because temporal logic is
an extension of propositional logic. Either in temporal logic,
propositions are qualified in terms of time.

The following paragraph explains how to write the anti-
properties AP to properties (P) using temporal logic.

AP1: Execute some illegal commands
The AP1 consider that user can execute some

commands. For example, if the user is an administrator,
he can execute commands like adduser, userdel, etc.

P1: Do not execute some illegal commands
P1 = {(Ui,,Cj)/Ui ∈ U et Cj ∈ C}
where: U: set of users
C: set of illegal commands
(Ui, Cj): Ui can use Cj
Use(Ui, Cj) → (Ui, Cj) ∉ P1
AP2: Change source or command destination
The AP2 consider that the command path was

modified.
P2: Do not change source or command destination
P2 = {(Ui,,Fj)/Ui ∈ U et Fj ∈ F}
where: U: set of users
F: set of illegal folder
(Ui, Cj): Ui can’t write on Fj
Write(Ui, Fj) → (Ui, Fj) ∉ P2
An example is: write(user1, /bin/cp)
AP3: Execute illegal actions (parameters, etc.),
The AP3 consider that some user can use or modify

objects of other users that he don’t have a permission.
P3: Do not execute illegal actions (parameters , etc.)
P3 = {(Ui,Oj)/Ui ∈ U et Oj ∈ O}
where: U: set of users
O: set of illegal objects.
(Ui,Oj) : Ui can read Oj
Read (Ui,Oj) → (Ui,Oj) ∉ P3
AP4: Having infinite loop
The AP4 consider that user can modify the system

performance. So they consume memory to overload the
system.

P4: Do not have infinite loop
AP4 = G ^¬(ai ^aj)
let:G: always
^: and operator
¬: not operator
ai : loop and aj: loop condition
An example is: while(true), while(i :=i+1), etc.
Some others anti-properties can be formalized such as

having auto-replication detain a resource infinitely, etc.

185

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 201 / 612

The user observed behavior is the possible behavior. It is
deduced from Linux/Unix terminal. We are interested about
a script not about a line of commands.

In this paper, we concentrate on formal verification
technique that is based on temporal logic, because that
allows in general less involvement of the user in the
verification process: model checking.

Our basic idea is to exploit model checking. This model
use algorithms, executed by computer tools, to verify the
correctness of our system. The user inputs a description of a
model of the system (the possible behavior) and a description
of the requirements specification (the desirable behavior) and
leaves the verification up to the machine. If an error is
recognized the tool provides a counter-example showing
under which circumstances the error can be generated. The
counterexample consists of a scenario in which the model
behaves in an undesired way.

In the rest of this paper, we use the term Linux, which
can be interchanged with Unix. Our method is based in the
user's observed behavior and in the system specification. The
user's observed behavior is modeled by a Linux script. It will
be transformed into SMV code. However Linux script differs
from SMV code. We propose LSc2SMV (Linux Script to
Symbolic Model Verifier) tool to do the transformation.

--The user observed behavior is transformed by our
proposed tool, named LSc2SMV (Linux Script to Symbolic
Model Verifier), to SMV code.

We obtain a SMV program containing logical properties
which we verify by SMV tool. The result will be verified
properties if the behavior is normal or violated properties if
the behavior is intrusive. Figure 1 illustrates this schema.

Figure 1. A diagram tracing our method.

The LSc2SMV tool will convert Linux script to an SMV
code. It will be in the form of main module (). We show the
transformation in constant, in variables, in arrays, in
expressions, in functions, and in loops and conditions. Tables
I, II, III, IV and V give this direct transformation.

Table I shows the transformation in constants and

variables.

TABLE I. VARIABLES AND CONSTANTS CASES

Type LSc SMV

Integer variable varname = valeur VAR <signal> : number ;

Variable of an
interval

for i in 0 1 2 3 4 VAR <signal> : 0..4 ;

Constant SIZE=32 #define SIZE 32
Initialisation signal = ready init(signal) := ready ;
Modification signal = busy next(signal) := busy ;

Table II shows the transformation in arrays cases.

TABLE II. ARRAYS CASES

Type LSc SMV

Array declare -a nametab <nametab> : array <x>..<y>
of <type> ;

Matrix char mat[2][2] mat : array 0..1 of array 2..0
of boolean ;

Table III shows the transformation in expressions cases.

TABLE III. EXPRESSIONS CASES

Type LSc SMV

Boolean operators -a (and) -o (or)
!(not)

(“and”,“or”,“not”)

Condition operators if-then-else
case switch

if-then-else
case switch

Arithmetical operators +, -,* , /, % +, -,* , /,mod
Comparison operators -eq , -ne, -lt, -gt,

-le, -ge
“=”,“<”, “>”, “>=”,
“<=”)

Table IV shows the transformation in the function case

form.

TABLE IV. FUNCTION CASE

Type LSc SMV

function function name()
{... } ;

MODULE name(input, output)
{... }

Table V shows the transformation in the condition and

loop cases form.

TABLE V. CONDITIONS AND LOOP CASES

Type LSc SMV

Condition if[<condition>] <stmt1> else
<stmt2> fi

if(<condition>) <stmt1>
else <stmt2>

Case case $variable in
val1) stmt1> ; ;
...... *) <stmtn> ; ; esac

case{<cond1> : <stmt1>
... <condn> : <stmtn>
[default : <dftlstmt>]}

Switch switch(<expr>)
<case1> : <stmt1> breaksw
<casen> : <stmtn> breaksw
default : <dftlstmt> breaksw

switch(<expr>){
<case1> : <stmt1> ...
<casen> : <stmtn>
[default : <dftlstmt>]}

186

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 202 / 612

endsw
for for var in $files ;

do
for(var = init ; cond ; var
= next)

<stmt>
while while condition ; do <stmt>

done

-

The indirect transformation is based on properties to

verify and in Linux script.
Some other conversion in the file name or in the folder

name can be made. This is because SMV cannot support
some character like . or / in the variable name. The Table VI
gives some conversion.

TABLE VI. NAME TRANSFORMATION

Type LSc SMV

File
name

/etc/passwd,/etc/inittab,
/etc/ld.so.conf,
etc/lilo.conf,etc/group

etcpasswd,etcinittab,
etcldsoconf,etcliloconf,
etcgroups

Folder
name

/var,/usr/bin,/dev,
/etc/security,
/var/spool,/etc,
/usr/etc,/usr,/usr/lib,/

var,usrbin,dev,etcsecurity,
varspool,etc,usretc,usr,
usrlib,slash

IV. TLID: TOOL FOR LINUX INTRUSION

DETECTION

There are two solutions to survey a user:
• The first solution consists in using the file

.bash_history. But this file cannot give a
strengthened and real-time history because when you
use other shell, like csh,, this method cannot save the
history. Either when you tape kill -9.

• The second solution is to develop a patch. It consists
to modify file system which are bashhist.c,
histexpand.c, histfile.c, history.h and history.c (to
obtain the patch e-mail : bentekaya.ines@voila.fr).
When a user writes anything in the console, it will be
saved in a file using his name. This patch can be
used in every system to survey a command user.

Figure 2 gives some functionality of TLID. You can
choose a user, a day and we obtain the behavior. It is
composed by time, PID and commands.

After that you can choose a property to verify. In this
example, we choose to verify the use of illegal parameters.
The button LSc2SMV became enabling. When we click
below, we obtain the SMV file. This file contains the
verification of action 1: cd /tmp and action 2: cp
/etc/ld.so.conf /tmp. It consists to verify the permission of
using folder /tmp and /etc/ld.so.conf file. This is given by
SMV file in Figure 4. The two properties we specified are
file confidentiality (conf) and folder confidentiality (confo).
We choose ``Prop|Verify all'' to verify if the properties we
specified in fact hold true or false for all time. The result is
given by Figure 5. The conf property should be false, and a
counterexample appears in the trace page. This because ines
user use a file that he don’t have a permission.

TLID can do a local analysis a global analysis between
users.

Intrusion scenario Sc between users can be defined as:
Sc = {A, V, S} with:
 A: an attacker
V: a victim
S = {s1, s2… sn}: a set of steps
Every step is a sequence of commands with their

parameters. The next paragraph shows an example of
scenario. It have been developed and tested in Linux Red
Hat Enterprise version 5 and we use TLID and SMV for
verification.

Figure 2. TLID

Figure 3. Observed ines behavior in May-10-2011

187

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 203 / 612

Figure 4. SMV file

Figure 5. Verification with SMV

We have two users. The victim is named ‘troismille’
(user-id: 3000) and the attacker is named ‘ines’ (user-id:
5502).

[root@localhost ~]# cat /etc/passwd
Result:ines:x:5502:5502::/home/ ines:/bin/bash
troismille:x: 3000: 3000::/home/ troismille:/bin/bash
This scenario consists of sending many mail from user

ines to user troismille to saturate his mail. In this case, the
user troismille cannot access to his e-mail. The scenario is
given by Figure 6.

Figure 6. An example of scenario

Using TLID, we choose to the anti property: Having
infinite loop. If we don’t know how a property to choose, we
can mark all checkbox. The result is given by Figure 7.

Figure 7. The result

V. CONCLUSION

In this paper, we are interested by attacks using Linux
commands. We have presented their topology. We have
shown that their impact can be inoffensive or can destroy
information system.

 We have proposed a method that exploits model
checking. This model use algorithms, executed by computer
tools, to verify the correctness of our system. It combines
security field with formal verification. The user inputs a
description of a model of the system (the possible behavior)
and a description of the requirements specification (the
desirable behavior) and leaves the verification up to the
machine. If an error is recognized the tool provides a
counter-example showing under which circumstances the
error can be generated. The counterexample consists of a
scenario in which the model behaves in an undesired way.

This method is applied to distinct normal user behavior
from intruders’ behavior. It has lead to the TLID tool
development. We give some experimental results to show
how the TLID works under some attacks.

There is another attacks group which can be named
unknown attacks. In this new group, attacks could cause the
intrusion detection systems crash and thus incomplete
testing. It becomes clear that present approaches to evaluate
intrusion detection system are limited to some known
attacks.

We divide our future work into two main parts: refine
and improve attacker competence and extend scenario to
include multi-attacks and equivalent attacks.

REFERENCES
[1] J. P. Anderson, “Computer Security Threat Monitoring and

Surveillance, ” Technical report, Washing, PA, James P.
Anderson Co., 1980.

[2] D. Powell and R. Stroud, “Conceptual Model and
Architecture of MAFTIA”, Eds., MAFTIA (Malicious and
Accidental Fault Tolerance for Internet Applications) project
deliverable D21, LAAS-CNRS Report 03011, 2003.

188

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 204 / 612

[3] C. Matheï,. (2004) “Ouverture des réseaux IP d’entreprise :
risques ou opportunité ?” [Online]. Available:
http://www.awt.be/contenu/tel/res/IPforum23-04_Réseau
unifié et sécurisé.pdf.

[4] B. E. Cloete and L. M. Venter, “A comparison of Intrusion
Detection systems” Computers & Security, vol 20, Issue 8,
pp. 676-683, Dec. 2001.

[5] A. Patrizio. (2006) “Linux Malware On The Rise. ” [Online].
Available: http://www.internetnews.com/dev-
news/article.php/3601946.

[6] M. Santana, “Chapter 6 - Linux and Unix Security, Computer
and Information Security” Handbook 2009, pp. 79-92.

[7] M. E. S. Gadelrab, “Évaluation des Systèmes de Détection
d'Intrusion,” thèse, Université de Toulouse - Paul Sabatier,
France, Dec. 2008.

[8] M. F. Krafft (2007) “John the Ripper password cracker:”
[Online]. Available: http://www.openwall.com/john/.

[9] G. Hoglund, and J. Butler, “Rootkits: Subverting the
Windows” Kernel, Addison-Wesley Professional, 2005.

[10] Koral Ilgun , Richard A. Kemmerer , Phillip A. Porras.
“State Transition Analysis: A Rule-Based Intrusion Detection
Approach. ” Journal IEEE TRANSACTIONS on Software
Engineering, Vol. 21, No. 3, pp. 181-199, 1995.

[11] K. Ilgun. “USTAT - A Real-time Intrusion Detection System
for UNIX,” Master's Thesis, University of California at Santa
Barbara, Nov. 1992.

[12] M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, M. Theus
and Y. Vardi. “Computer Intrusion: DetectingMasquerades”
Statistical Science, Vol. 16, No. 1,pp 1–17, 2001.

[13] T. Lane and C E. Brodley. “Sequence matching and learning
in anomaly detection for computer security.” In AAAI
Workshop : AI Approaches to Fraud Detection and Risk
Management, pp. 43–49. AAAI Press (1997).

[14] M. Theus and M. Schonlau. “Intrusion detection based on
structural zeroes.” Statistical Computing and Graphics
Newsletter 9, pp. 12–17, 1998.

[15] M. Roy. “Masquerade detection using enriched command
lines.” In: Proceedings of international conference on
Dependable Systems and Networks (DSN-03), pp. 5-14, June
2003.

189

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 205 / 612

Security Quality Assurance on Web Applications

Rodrigo Elia Assad1,2, Felipe Ferraz1,2, Henrique Arcoverde3, Silvio Romero Lemos Meira 1,2
1Centro de Estudos e Sistemas Avançados do Recife(CESAR) - Recife – PE – Brazil

2Centro de Informática
Universidade Federal de Pernambuco (UFPE) – Recife, PE – Brazil

3Tempest Security Inteligence

assad@cesar.org.br, fsf3@cin.ufpe.br, henrique@tempest.com.br, srlm@cesar.org.br

Abstract: Historically, it is well known that issues related to
security of software applications are normally omitted by the
development teams owing to a lack of expertise or knowledge
in security policies. With the emergence of WEB technologies,
this situation became more serious. Entire systems, complex or
not, have outstanding access availability and therefore are
highly vulnerable to threats. This work aims to discuss how the
security requirement, design patterns and tests should be
elaborated in order to making easier the execution of its tests
and consequently improving the quality of the solution
developed.

Keywords-security requirements; design patterns; security tests
validation, quality assurance

I. INTRODUCTION
Since the popularization of the Internet through its

commercial use occurred during the decade of 1990, attacks
on computer systems have become more frequent. Initially
the attacks was more focused on operating systems and
network services, as can be seen in the attacks reports
generated from various institutes such as CERT [47].

With the rapid growth of attacks, companies,
governments, universities invested heavily in security
solutions, such as firewall, intrusion detection systems, anti-
virus, patch management and so on. Also there was
investment on development of security procedures and
processes for managing information, such as ITIL, COBIT
and SOX [46]. And also a definition of specific legislation
to support the security analysts.

All these initiatives, associated with maturation time,
related to security issues comprehension and security
standards adoption, occurred from 1997 to 2007; the rate of
attacks reported to security holes in operating systems and
computer networks have decrease significantly, as shown in
Figure 1.

Analyzing these numbers, we see that the definition of
procedures, comprehension of security flows produces an
improvement on a perceived security quality - QA - Quality
Assurance - in relation to services provided by system
administrators, security consultants and security engineers
that support computer networks and operation system.

Figure 1: Attacks on network operating systems and reported by CERT.br

[47]

The improvement and maturation of Security Quality
Assurance procedures do network and operation systems
resulted in change of security focus, now applications have
become the primary target.

It is undeniable that the security problems still persist,
however, are not only related to flaws in operating systems
or network services, but the major focus has changed and is
currently in web applications, as seen in Figure 2.

Figure 2: Attacks reported on 2010 to Cert.br [47]

The attacks on web applications and began more
popular on 2007. It´s can be evidenced in several ways,
among them, through consultations on Google cache

190

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 206 / 612

showed on Figure 4. As observed before 2007 there are few
records of consultations about web application security.
Using the same methodology shown in Figure 3 queries
related to network security - a subject of greater scope
related to operating system security and network services -
has been decreasing year after year as a result of the quality
assurance process described before.

Figure 3: Query to Google on “network security"[50]

Figure 4: Query to Google on “web application security "[50]

Another fact should be observed that’s collaborate to
attacks migration to web applications, we have in this period
the emergence of applications WEB2.0, Web3.0 [37],
consolidation of the browser as a gateway to all
applications, the emergence of API's development as the
proposed Google apps and Microsoft Live and more
recently the cloud computing [38][44][48].

We can believe that, as happened as with the attacks on
operating systems and network services, to protect web
application we will require efforts on research development,
new product development and procedures specifications,
and consequently the maturation of software developers in
order to improve the code produced for web applications, it
can be called SSQA: Security Software Quality Assurance:.

To define the security Quality Assurance demanded by
an application, it is required experienced and trained
stakeholders with abilities in all disciplines with a focus on
security. Throughout the development of a web application,
it is important that the activities of elicitation and
specification of requirements to be followed by architecture
definition and a process of validation. It is essential to track
and approve if the security requirements are being satisfied
on applications. The traceability of functional and non-
functional security requirements is naturally a complex task,

because in general, they affect the entire system. To carry
out successful safety tests on a application, is necessary to
identify what types of vulnerabilities could enable attacks
on the system. In other words, we must understand where
the flaws may be present to learn how to avoid them.

From this point of view, we identified that one of the
possible causes to security flaws relies on the low quality of
software security requirements and consequently in its
implementation, validation and tests phases.

It should consider the present scenario of IT companies
in relation to technologies used in the development of web
applications, we have the main highlights:

a) Use agile methodologies

b) Software reuse

c) Development framework

This section presents a proposal for the integration of
the above themes, throws specifying a security quality
assurance process that can be used by companies to promote
the development of secure applications on certain
assumptions, keeping the agreed deadlines and focusing on
quality assurance of the safety of software. It´s examines the
possibility of adopting the same methodology used
successfully between 1997 and 2007 that brought a
significant drop in network security problems, they are:

a) Understanding of attacks and its operating mechanism

b) Development of defense models in relation to existing
technology

c) Adopting an agile and reusable

d) Establishment of a pricing mechanism for the easy
development of secure solutions.

II. SECURITY QUALITY ASSURANCE WEB

The proposal of this paper is to guarantee the security
quality assurance of web applications, by defining a
methodology that could be reused and agile. So the first
objective is identifying the main problems of web
application. To do it, we used a real case scenario of a
security company of Brazil called Tempest Security
Intelligence [49] that sales web penetration test service.

The whole universe of the research described here
corresponds to 467 reported vulnerabilities in the Tempest
Security Intelligence analysis projects and web application
ethical hacking of web applications, not considering the
analysis projects of infrastructure. An importantly point is
the vulnerabilities are spread across various customers and

191

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 207 / 612

do not correspond to points of vulnerability to be explored
but real flows on web application. For example, given an
analysis in the foo app, there are 15 points where you can
perform SQL attacks, however, the vulnerability is reported
only once. The numbers represent only the vulnerability in
the application and not the amount of exploitable points in
each application.

The research uses as base the perspective of the
OWASP Top 10 2010 [45] version vulnerabilities, successor
version of OWASP Top 10 2007 version, so the data used
are restricted to projects reported between the years 2008
and 2010. On Figure 5 we present the workflow used.

Data collection corresponds to real cases but to preserve the
client we uses a fictitious names.

Figure 5: Software Security Quality Assurance workflow

The sample profile collected is determined in two
characteristics: year of publication and type of vulnerability.
First characteristic determines the year in which the
vulnerability was discovered and published to the client. As
previously described the data for the years 2008, 2009 and
2010. It was observed that 17% of vulnerabilities were
reported in 2008 (Figure 6), 28% were reported in 2009 and
55% were reported in 2010. (Figure 6)

Figure 6: Vulnerabilities per year [49]

Another information collected was the type of collected
vulnerable applications, showed on Figure 6.

Figure: 7 Types of vulnerabilities [49]

Resuming, it is possible to observe that 10 of
vulnerabilities reported by Tempest Security Intelligence in
the years 2008, 2009 and 2010 are: 15% of XSS
vulnerabilities are observed, session management and access
control are 12% of the vulnerabilities, 8% of the
vulnerabilities are code injection, 7% of the vulnerabilities
are flaws in the configuration, with 7% of the vulnerabilities
are flaws transfer insecure credentials, the reference objects
unsafe to correspond to 5% of the vulnerabilities, 3% of
vulnerabilities are related to arbitrary redirection, 2% of
vulnerabilities are related to direct access to
unauthenticated, 2% for safe storage of sensitive and 2% of
CSRF. The table bellow makes a comparison between
Owasp reports and Tempest results.

TABLE 1: COMMON VULNERABILITY ACCORDING TEMPEST.

Tempest Top 10

2008 2009 2010 General

XSS XSS Session
authentication
management

XSS

Code injection Session
authentication
management

XSS Session
authentication
management

Unsecure Code injection Configuration Code injection

192

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 208 / 612

transmission of
sensitive data

flows

Session
authentication
management

Unsecure
transmission of
sensitive data

Unsecure
reference to
objects

Configuration
flows

Configuration
flows

Configuration
flows

Code injection Unsecure
transmission of
sensitive data

Direct access
with no
authentication

Unsecure
reference to
objects

Unsecure
transmission of
sensitive data

Unsecure
reference to
objects

Unsecure
reference to
objects

Direct access
with no
authentication

Unsecure
sensitive and
storage
information

Arbitrary
redirect

Unsecure
sensitive and
storage
information

Arbitrary
redirect

CSRF CSRF

CSRF CSRF Arbitrary
redirect

Unsecure
sensitive and
storage
information

Arbitrary
redirect

Unsecure
sensitive and
storage
information

Direct access
with no
authentication

Direct access
with no
authentication

III. REQUIREMENTS

The requirements engineering on a business, systems,
applications and components is more than just document
that describes functional requirements of the application.
Even though, most system analysts dedicate the bigger art of
their time to elicit some quality requirements such as
interoperability, availability, performance, portability and
usability, many of them still sin with regard to addressing
issues related to security.

Unfortunately, documenting specific security
requirements is difficult. These tend to cause a high impact
for many functional requirements. Furthermore, security
requirements are usually expressed in a document the terms
of how to achieve security not as the problem that needs to
be resolved [27].

Most system requirements analysts have no knowledge
in Security, the few who received some training had only a
general overview of some security mechanisms such as
passwords and encryption rather than meet real
requirements in this area [5][28][29].

Security requirements deal with how the assets of a
system must be protected against any kind of evil [27][30].
An asset is something within the system, tangible or not,
that must be protected [31]. A threat or harm from which a
system must be protected, is a potential vulnerability that
can reach a well. A vulnerability is a weakness of a system

that tends to exploit an attack. Security requirements are
constraints on the functional requirements in order to reduce
the scope of vulnerabilities [27].

On the Bellow table we make a comparison between
Donald Firesmith [28][29] security requirements proposal:
Identification, Authentication, Authorization, Non-
Repudiation, Privacy, Immunity, Integrity, Intrusion
Detection, Security Audit, Maintenance Systems Security
and Physical Protection; and OWASP Web vulnerability
list, it relates each vulnerability and the correspondent
requirements

TABLE 2: REQUIREMENTS X VULNERABILITIES

Requirement Owasp Test

 Identification OWASP-IG-003, OWASP-IG-004

 Authentication OWASP-AT-001, OWASP-AT-002, OWASP-
AT-003, OWASP-AT-004, OWASP-AT-005,
OWASP-AT-006, OWASP-AT-007, OWASP-
AT-008, OWASP-AT-009, OWASP-AT-0010

 Authorization OWASP-AZ-001, OWASP-AZ-002, OWASP-
AZ-003

 Imunity OWASP-IG-005, OWASP-IG-006, OWASP-
CM-002, OWASP-CM-003,

OWASP-CM-006, OWASP-CM-008, OWASP-
DV-001, OWASP-DV-002,

OWASP-DV-003, OWASP-DV-004, OWASP-
DV-005, OWASP-DV-006,

OWASP-DV-007, OWASP-DV-008, OWASP-
DV-009, OWASP-DV-0010,

OWASP-DV-0011,OWASP-DV-
0012,OWASP-DV-0013,OWASP-DV-0014,
OWASP-DV-0015,OWASP-WS-002,
OWASP-WS-003, OWASP-WS-004, OWASP-
WS-005, OWASP-WS-006, OWASP-WS-007,
OWASP-AJ-002

 Integrity OWASP-SM-001, OWASP-SM-002, OWASP-
SM-003, OWASP-SM-004, OWASP-SM-005

Intrusion Detection OWASP-CM-005

 Non – Repudiation

 Privacity OWASP-IG-001, OWASP-CM-001

Security Audity

Fault Tolerance OWASP-DS-001, OWASP-DS-002, OWASP-
DS-003, OWASP-DS-004,

OWASP-DS-005, OWASP-DS-006, OWASP-
DS-007, OWASP-DS-008

 Physical protection

 Maintenance of
Security Systems

OWASP-CM-004, OWASP-CM-007

Since we have a relation that puts security vulnerability
and system requirements we can elaborate reusable system

193

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 209 / 612

requirements based on security flows that could be
addressed by system analysts during the project conception.

IV. DESIGN PATTERNS

Now, that we have a relation between security
vulnerabilities and system requirements the next step is try
to use a design patterns concept to propose a methodology
to use it, giving to the user a choice to make a latter
implementation of security code. To do it we use a
classification given by the GoF Design Patterns.

Initially, we will consider the following requirements:
Identification, Authentication, Authorization, Non
Repudiation and Privacy. Reviewing these requirements, we
can observe that all of this belongs to the same subject,
identification of an actor, be a user, system or other entity
that interacts with the system in question. All of them deal
with the identification of an actor. Respectively have the
actor ID, proof of ID, permissions of identity, confirmation
of the shares of the entity and finally the secrets or secret
identity. All of these requirements revolve around the
creation of an identity.

Going forward on requirements analysis, we can
separate the requirements for immunity and integrity, as two
conditions that directly affect the structure of the system.
From this viewpoint, the requirements for immunity vision
ensure that the system is immune to contamination by parts
of the actors and the requirements of Integrity vision ensure
that the structure of an integrated system communication
between these actors. Both requirements have a direct
relation with the structure of the system since it will be
necessary to change the structure of the system to adopt
solutions to these requirements.

Following, we have the requirements for Intrusion
Detection, Security Audit and Fault Tolerance, which deal
with issues related to actions taken by the system. In the
first case detection, we have a requirement that works as a
prevention, which aimed to provide a mechanism for
detection and notification in case of unauthorized access,
since the audit comes as a mechanism to work issues in a
more reactive, or attitudes that can be taken from the
evidence and observation of actions, an audit requirement
must include the registration of shares as well as
mechanisms for future reference [11], different fault
tolerance as well as reactive, which defines the behavior of
the system will have in case of failure, is also to ensure that
preventive flaws in system entities do not jeopardize the rest
of the system. Therefore, the requirements of work on the
issue of the conduct taken within the system.

Finally analyzing the requirements for Maintenance of
System Security and Physical Protection have, this is a
requirement that is more than physical matter, as the name
refers, where the concern goes beyond the scope of

software, both outside the scope of our analysis. Since the
requirement for maintenance has a horizontal behavior in
relation to other requirements, since this deals with the
maintenance of the system's other needs related to security,
he is indirectly responsible for such requirements needs.
Appears not a requirement for so considerable in terms of
software and one that is the sum of the other requirements.

Organizing them according to their characteristics are:

1) Requirements Identification, Authentication,
Authorization, Non-Repudiation and Privacy and
related creation.

2) Integrity and Immunity Requirements related to
the structure of the system.

3) Requirements for Intrusion Detection, Audit and
Fault Tolerance-related behaviors of the actors in
the system.

4) Requirements for Maintenance of Security
Systems related to the other requirements.

Under this approach, using some of the classifications
of GoF, we can separate the requirements according to their
purposes. From the characteristics presented, we will
separate them into three groups according to this criterion
purposes, they are, Creation, Structural and Behavioral.

TABLE 3: RELATING PATTERNS AND REQUIREMENTS

Purpose

Creation structural behavioral

Identification
requirement

Immunity
Requirement

Intrusion detection
Requirement

Authentication
Requirement

Integrity
Requirement

Security audit
Requirement

Authorization
Requirement

 Fault tolerant
Requirement

Non-repudiation Requirement

Security Maintenance Requirement

Physical protection requirements that deal with physical
issues related to the physical system are not addressed
within this framework.

V. CASE STUDY

A) Reusable requirements

The tasks described by this article were used on the
development of some IT projects on C.E.S.A.R (Center of
Studies and Advanced Systems of Recife) and UNIMIX.
These IT companies are needing to realize a detailed
analysis of security issues in some projects with the
purpose of making sure that system that are considered
critical be tested and validated. As a consequence, this
ensures that everything agreed on the contract is respected

194

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 210 / 612

by the service provider and cannot be questioned by the
client.

Due to contracts issues, we are not allowed to give any
further information about the context in question. However,
some points must be cited, such as:

a) The process of writing requirements has been
validated in three projects with companies that act
on these sectors: telecommunications and
informatics. In these cases, the objective is only
write the requirements document and the proposed
methodology was employed. As a result, customers
noticed an improvement in the problems
understanding in early stages of the project.

b) During the risk analysis, the suggested changes in
the templates for requirements elicitation indicated
a greater understanding of the problems, possible
solutions for them and mitigating strategies.

c) Preparation of a repository of reusable security
requirements and their test cases based on the
recommendations of tests developed by OWASP.
This was the case with the requirements of P2P
FINEP project, which aims to deploy solutions in
environments peer-to-peer. Their requirements and
test cases were used for decision making in relation
to which requirements and test cases as well as risk
analysis for the management solution descktop
dreams (HTTP: / / www.dreamsweb.com. br)

d) We have a case study in the development of
corporative site of a technology company of
Pernambuco. This scenario was run throughout the
full proposed cycle in this paper. It was observed
that: a) there was significant improvement of the
safety requirements of the portal, b) in the testing
phase were found about 11 flaws in the site that did
not meet the requirements, some of them quite
serious, c) Another project in onset may benefit
from the basic set of requirements, d) Part of the
scripts could also be reused.
Unfortunately for security reasons the company
was not authorized to divulge more details of the
results, as problems are identified security.

e) Observers that the methodology described here is
used with extreme efficiency and trends in the
proposals brought to the development of systems
that must function in an environment of cloud
computing. This is because in this environment
issues of SaaS, PaaS and IaaS introduce the
characteristics of infrastructure as something
bringing programmable horizontal scalability for
applications. It is undeniable that as we have the
scalability of an application being made across the
board problems and new security risks arise. These
problems not previously considered relevant.
Mainly on issues related to security [44]. However,

the proposed solutions have a way to specify and
reuse them efficiently because the strategies do not
vary much scalability.
The main result of this work, we observed an
improved understanding of the technical
requirements and their implementation by software
security engineers and the ability to produce more
accurate tests and that met the needs of customers.
Thus reducing the need for correction of
deficiencies identified in the test phase, which is
one of the main mistakes made in building secure
software [43].

Also as a result it will have a better quality software, on
the point of view of ensuring the functionality specified by
carrying out a process of validation and elaboration.

Another important result presented in this paper is to
provide project managers the ability to quantify risk in
relation to the implementation or not a particular
requirement before starting the coding phase.

As a consequence of this work, we observed a
satisfactory improvement on the comprehension of technical
needs and its implementation by software engineers besides
the ability to produce test more precise that meet clients
need. Consequently, we were able to develop software with
better quality from the point of view of the functionality
assurance through the performance of a validation process
more elaborated.

B) Design Patterns and a late implementation

The purpose of the case study was to validate the
proposed relationship between the GoF design patterns as a
way to represent security requirements. As mentioned in the
work we try to have a more practical assessment of our
study to evaluate the feasibility of using these standards as a
tool in implementing security requirements and to facilitate
the understanding of security requirements for developers in
genera during the software development process.

Initially our study was conducted in a project expected
to last 3 (three) months, we will call this a Test System. This
project would serve initially as a proof of concept for a
larger project, with issues related to client confidentiality
and NDA cannot go into further detail concerning the
applicant, project name and other sensitive information to be
omitted.

In a second moment relationships proposed in this
paper was applied again in the second Test System that time
this system was already in a more consolidated stage
requiring greater attention as we shall see below.

Finally, a third opportunity was presented to us where
we suggest an approach to two related structures created in
this work. Unlike the two previous occasions the third
opportunity is still being implemented.

195

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 211 / 612

For these tree applications at the beginning of the
project the security requirements was not so clear, but once
completed the implementations we could see a positive
result of implementing the proposals made by the job. One
of the best insights that should be observed was that the
changes on requirements were not very intrusive, low
impact and easy modification.

So the opportunity to apply the propositions made in
this initial work in a context outside of the web, mainly
located on the server side, served as an initial validation of a
positive result. Besides these the possibility of making a
second application using a macro context of the application,
addressing GWT, RPC calls, proved satisfactory.

Furthermore the application of the propositions in a
macro context has generated the perception that the
adoption of standards, as related to ambiguous or poorly
written requirements, may present as a data point requiring a
second more detailed approach to understanding how to
address . Still, the approach was extremely valid and
consistent highlighting the importance of future studies
mentioned in the next section.

VI. CONCLUSION

The software quality cannot be measured only by the
assurance of the execution of a process, but by the results of
its execution and necessary validations. Within this context,
this paper aimed to define tasks, recommendations and
process that should be introduced on the cycle of software
development with the purpose of guiding the test and
validation phase to produce more elaborated and precise
results from the point of view of security issues.

The process proposed by this paper is being introduced
on the software cycle development s at C.E.S.A.R as
specific security needs are required.

The adoption of this process allowed making a more
critical analysis of the new features introduction on new
projects as well as the test team comprehension at executing
these tasks thus improving the software quality observed by
the clients.

As a final contribution, we were able to validate the
proposal software security requirements reuse and its test
cases in other projects inside C.E.S.A.R, proving that this
process is extensible as proposed.

ACKNOWLEDGMENT
This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES
http://www.ines.org.br), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] R. Lutz, "Software engineering for safety: a roadmap,"
Proceedings of the Conference on The Future of Software
Engineering, ACM, 2000, pp. 213–226.

[2] B. Matt, "What Is Computer Security?," Computer, 2003, pp.
67-69.

[3] I. Sommerville, T. Rodden, P. Sawyer, R. Bentley, and M.
Twidale, Integrating Ethnography Into the Requirements
Engineering Process, 1993.

[4] D.G. Rosado, C. Gutiérrez, E. Fernández-medina, M. Piattini,
P.D. Universidad, C. Real, D. Grosado, E. Fdez-medina, S.T.
Calle, and M. Tovar, "A Study of Security Architectural Patterns,"
Information Systems, vol. 1, 2006, pp. 2-9.

[5] J. Yoder and J. Barcalow, "Architectural patterns for enabling
application security," Urbana, vol. 51, p. 61801.

[6] P.T. Devanbu and S. Stubblebine, "Software Engineering for
Security: a Roadmap," The future of Software Engineering, ACM
Press, 2000, pp. 227-239.

[7] N. Yoshioka, H. Washizaki, and K. Maruyama, "A survey on
security patterns," Progress in Informatics, 2008, p. 35.

[8] G. Sindre and A.L. Opdahl, "Eliciting security requirements
with misuse cases," Requirements Engineering, vol. 10, 2004, pp.
34-44.

[9] W.C. Summers, "Password Policy: The Good, The Bad, and
The Ugly.", Proceedings of the Winter International
Symposium on Information and Communication
Technologies, 2004

[10] P. Samarati and S.D. di Vimercati, "Access Control: Policies,
Models, and Mechanisms," FOSAD, R. Focardi and R. Gorrieri,
Springer, 2000, pp. 137-196.

[11] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns : Integrating
Security and Systems Engineering (Wiley Software Patterns
Series), John Wiley & Sons, 2006.

[12] F. Khomh and Y.G. Gueheneuc, "Do Design Patterns Impact
Software Quality Positively?," Software Maintenance and
Reengineering, 2008. CSMR 2008. 12th European Conference on,
2008, pp. 274-278.

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series),
Chapman & Hall/CRC, 2007.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented, Addison-Wesley
Professional.

[15] I. 7498-2, Information processing systems -- Open Systems
Interconnection -- Basic Reference Model -- Part 2: Security
Architecture, 1989.

[16] D. Zerkle and K. Levitt, "NetKuang -- A Multi-Host
Configuration Vulnerability Checker," in Proceedings of the 6th
USENIX Unix Security Symposium, 1996.

[17] P. Steiner, "On the internet nobody knows you´re a Dog," The
New Yorker, vol. 69, 1993, p. 61.

196

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 212 / 612

[18] P. Kunyu, "An identity authentication system based," Identity,
2009.

[19] Z. Wang, M. Li, M. Chen, and C. Chang, "A New Intelligent
Authorization Agent Model in Grid," 2009 Ninth International
Conference on Hybrid Intelligent Systems, 2009, pp. 394-398.

[20] G. Dhillon, Principles of Information Systems Security: Texts
and Cases, Wiley, Ed. Virginia Commonwealth Univ March 2006

 [21] H. Peiris, L. Soysa, and R. Palliyaguru, "Non-Repudiation
Framework for E-Government Applications," 2008 4th
International Conference on Information and Automation for
Sustainability, 2008, pp. 307-313.

[22] J. Adikari, "Efficient Non-Repudiation for Techno-
Information Environment," First International Conference on
Industrial and Information Systems, 2006, pp. 454-458.

[23] L.F. Soares, G. Lemos, and S. Colcher, Redes de
Computadores: das LANs, MANs e WANs às redes ATM, Rio de
Janeiro: Campus, 1995.

[24] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern
Language, Oxford University Press.

[25] R.P. Gabriel, Patterns of software: tales from the software
community, Oxford University Press, Inc. New York, NY, USA,
1996.

[26] I. Oliveira, "Uma Análise de Padrões de Projeto para o
Desenvolvimento de Software Baseado em Agentes," 2001.

[27] F. Khomh, Y. Guéhéneuc, and P. Team, "An empirical study
of design patterns and software quality," 2008, pp. 1-19.

[28] P.S. Sandhu, P.P. Singh, and A.K. Verma, "Evaluating
Quality of Software Systems by Design Patterns Detection," 2008
International Conference on Advanced Computer Theory and
Engineering, 2008, pp. 3-7.

[29] M. Bernardi and G. Di Lucca, "Improving Design Pattern
Quality Using Aspect Orientation," 13th IEEE International
Workshop on Software Technology and Engineering Practice,
2005, Ieee, 2005, p. 206–218.

[30] C.B. Haley, R.C. Laney, and B. Nuseibeh, "Deriving security
requirements from crosscutting threat descriptions," AOSD '04:
Proceedings of the 3rd international conference on Aspect-oriented
software development, New York, NY, USA: ACM Press, 2004,
pp. 112-121.

[31] D. Firesmith, "Engineering security requirements," Journal of
Object Technology, vol. 2, 2003, p. 53–68.

[32] D. Firesmith, "Analyzing and Specifying Reusable Security
Requirements," Eleventh International IEEE Conference on
Requirements Engineering (RE’2003) Requirements for High-
Availability Systems (RHAS’03) Workshop, Citeseer, .

[33] C.B. Haley, J.D. Moffett, R. Laney, and B. Nuseibeh, "A
framework for security requirements engineering," SESS '06:
Proceedings of the 2006 international workshop on Software
engineering for secure systems, New York, NY, USA: ACM Press,
2006, pp. 35-42.

[34] nformation Technology - Security Techniques - Evaluation
Criteria for IT Security, Geneva Switzerland: ISO/IEC Information
Technology Task Force (ITTF) .

[35] M. Weiss and H. Mouratidis, "Selecting Security Patterns that
Fulfill Security Requirements," 2008 16th IEEE International
Requirements Engineering Conference, 2008, pp. 169-172.

[36] Structural Patterns at Source Making.",
http://sourcemaking.com/structural_patterns, last accessed
8/10/2011 .

[37] G. Inc, "GWT, Google Web Toolkit,"
http://code.google.com/webtoolkit/, last accessed 8/10/2011.

[38] J. Company, "Hibernate," http://www.hibernate.org/, last
accessed 8/10/2011.

[39] Gilead, Generic Light Entity Adapter,
http://noon.gilead.free.fr/gilead/, last accessed 8/10/2011.

[40] P. Pawlak, B. Sakowicz, P. Mazur, and A. Napieralski,
"Social Network Application based on Google Web," Source,
2009, pp. 461-464.

[41] M. Dhawan and V. Ganapathy, "Analyzing Information Flow
in JavaScript-Based Browser Extensions," 2009 Annual Computer
Security Applications Conference, 2009, pp. 382-391.

[42] E. Ofuonye and J. Miller, "Resolving JavaScript
Vulnerabilities in the Browser Runtime," 2008 19th International
Symposium on Software Reliability Engineering (ISSRE), 2008,
pp. 57-66.

[43] Meier J. Web application security engineering. IEEE Security
& Privacy Magazine. 2006;4(4):16-24.Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnub
er=1667998, last accessed 8/10/2011.

[44] SUN, Introduction to Cloud Computing architecture White
Paper 1st Edition, June 2009

[45] Owasp, 2008, owasp testing guide 2008 v3.0. Disponível em:
http://www.owasp.org/index.php/category:owasp_testing_project,
last access: 06/05/2009

[46] PMBOK, Project Managment Institute (PMI) standards
committee: A guide to the Project Management Body of
Knowledge (PMBOK) Third edition,2008.

[47] Us-cert - technical cyber security alerts, 2009. Disponível em:
http://www.us-cert.gov/cas/techalerts/ . Last access: 29/04/2009

[48] Cloud Computing Use Case Discussion Group Version ;
Cloud Computing Use Cases A white paper produced by the 2.0 30
October 2009

[49] Tempest Security Intelligence, www.tempest.com.br, last
accessed 05/05/2011

[50] Google Trends Service, www.google.com/.trends, last
accessed 8/10/2011.

197

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 213 / 612

On Generating Security Implementations from
Models of Embedded Systems

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin}@mdh.se

Abstract—Designing secure embedded systems is a challenging
task. Many of the challenges unique to embedded systems in this
regard are due to the constraints that these systems have and
thus impacts that security features will have on other properties
of the system. Therefore, security decisions should be considered
from early phases of development and together with other
requirements. In model-driven methods, this means including
security features in the design models. On the other hand, code
generation from models is one of the promises of model-driven
approaches. In this paper, by discussing the impacts of security
design decisions on timing properties, we present the idea of
automatic security code generation. We identify what issues
a model for an embedded system should be able to answer
and cover so that the security implementations that are later
generated from it, will be consistent with the timing constraints
and specifications of the system.

Index Terms—Embedded security; MDA; Code generation;
UML modeling

I. INTRODUCTION

In the design of systems, security should be considered from
early phases of development and along with other aspects of
the system. While this approach to security is important for
consistent and efficient security decisions, it becomes critical
in case of embedded systems. Due to resource constraints in
embedded systems, it is important to perform careful balance
among different properties to satisfy all the requirements.
Therefore, security should not be considered just as an addition
of features but as a new dimension and metric [1].

Regarding design complexity of embedded systems, model-
driven methods are a promising approach in raising abstraction
levels and coping with the complexity of embedded systems.
However, due to the characteristics of embedded systems,
security requirements cannot be considered in separation from
other requirements, and the modeling solutions that are used
should be able to model security aspects along with other
requirements such as timing, performance, and power con-
sumption. This is especially important not to just document
security requirements in the model, but also to enable analysis
of them and their impacts on other requirements of the system,
and generation of code that includes security features and
implementations. The possibility to perform such analyses
is the key to ensure correct design of an embedded system
and that the code to be generated will be consistent with the
specification. However, it should also be noted that the actual
behavior of the generated code at runtime may deviate from

what is specified in the model and expected. One reason is that
some information may only be available at runtime. These
deviations can be detected and controlled by using runtime
verification and monitoring methods [2].

In this paper, considering challenges of designing secure
embedded systems, we discuss what is needed at model level
to enable proper security code generation. We do this by
identifying necessary analyses that are required to realize
implications of security design decisions and therefore predict
the side effects of generated security implementations on other
aspects, particularly timing properties.

The remainder of the paper is structured as follows. Section
II discusses security challenges in embedded systems and
implications of security design decisions in general. In Section
III, we describe automatic payment system for toll roads, and
explain the relation between timing and security requirements
in this system. In Section IV, we will have a look at several
UML profiles for modeling security and discuss their suitabil-
ity for generation of security implementations. We propose a
solution for modeling security by extending MARTE [3], and
present our partial work on that (in the scope of this work, we
focus only on UML profiles and not other ways of defining
domain specific languages). Finally, Section V summarizes the
paper and states how we continue with the work and possible
future directions.

II. SECURITY IN EMBEDDED SYSTEMS

Security is an aspect that is often neglected in the design of
embedded systems. However, the use of embedded systems
for critical applications such as controlling power plants,
vehicular systems control, and medical devices makes security
considerations even more important. This is due to the fact that
there is now a tighter relationship between safety and security
in these systems.

Also because of the operational environment of embedded
systems, they are prone to specific types of security attacks
that might be less relevant for other systems such as a
database inside a bank. Physical and side channel attacks [1]
are examples of these types of security issues in embedded
systems that bring along with themselves requirements on
hardware design and for making systems tamper-resistant.
Examples of side channels attack could be the use of time
and power measurements and analysis to determine security
keys and types of used security algorithms.

198

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 214 / 612

Increase in use and development of networked and con-
nected embedded devices also opens them up to new types of
security issues. Features and devices in a car that communicate
with other cars (e.g., the car in front) or traffic data centers to
gather traffic information of roads and streets, use of mobile
phones beyond just making phone calls and for purposes
such as buying credits, paying bills,and transferring files (e.g.
pictures, music,etc.) are tangible examples of such usages in
a networked environment.

Besides physical and side channel attacks, often mobility
and ease of access of these devices also incur additional secu-
rity issues. For example, sensitive information other than user
data, such as proprietary algorithms of companies, operating
systems and firmwares, are also carried around with these
devices and need protection.

A. Implications of Introducing Security

Because of the constraints and resource limitations in
embedded systems, satisfying a non-functional requirement
such as security requires careful balance and trade-off with
other properties and requirements of the systems such as
performance and memory usage. Therefore, introducing se-
curity brings along its own impacts on other aspects of the
systems. This further emphasizes the fact that security cannot
be considered as a feature that is added later to the design
of a system and needs to be considered from early stages of
development and along with other requirements.

From this perspective, there are many studies that discuss
implications of security features in embedded systems such
as [1]. Considering the characteristics of embedded systems,
major impacts of security features are on the following aspects:
Timing and Performance, Power Consumption, Flexibility and
Maintainability, and Cost.

Considering these points, the security code that is generated
for an embedded system should be from a model that satisfies
the aforementioned criteria. This means that the model should
contain enough information to enable impact analysis of
security features (such as timing and performance), and ensure
that they are in line with the system specification before
generating code from the model. In the scope of this work,
we focus on the timing costs of security mechanisms that
are important for schedulability analysis and performance of
a system, particularly in real-time embedded systems.

III. AUTOMATIC PAYMENT SYSTEM EXAMPLE

Figure 1 shows internal interactions of a real-time embedded
device in vehicles for automatic payment system in toll roads.
The main goal in the design of this system is to allow a
smoother traffic flow and reduce waiting times at tolling
stations. This is an example of systems in which the impact of
security features on timing properties are important and criti-
cal. The sequence diagram shows that when a payment station,
through its camera, detects that a vehicle is approaching, it
starts communicating with the vehicle and sends information
such as the amount to pay to the vehicle. The vehicle, then
shows this information to the driver through its User Interface

Fig. 1. Automatic Payment Systems for toll roads.

Fig. 2. Suggested Approach

(UI). Upon confirmation of this payment by the driver, the
vehicle sends credit card information to the station through a
secure wireless connection. However, in this system, not only
there are several security requirement, but also we have timing
requirements as well. For instance, there is a critical time
window from the moment that the camera detects a vehicle
until the time it reaches the tolling station. It is within this
time window that a successful payment transaction should be
done; otherwise, the vehicle has to stop.

To implement such a system while ensuring the satisfaction
of timing requirements, it is necessary to take into account
the timing costs of security mechanisms that are used to
implement security requirements of the system. For example,
there are operations such as the transfer of CreditCardInfo that
not only require encryption to protect sensitive data, but also
have constraints on their execution times and cannot just take
any arbitrary amount of time to execute.

To achieve this, the approach depicted in Figure 2 is
suggested.

To enable the generation of appropriate security implemen-
tations, with respect to the timing constraints of the system,
the following challenges are identified:

1) Modeling security mechanisms with enough detail to
enable both timing analysis on the model and generation
of the code implementing them,

2) Obtaining timing costs of security mechanisms,

199

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 215 / 612

3) Generating code for security mechanisms and detecting
possible timing violations of the generated code at run-
time.

The first challenge is discussed in the following section. To
get the timing costs of security mechanisms, we rely on studies
such as [4] that have done such measurements. To solve the
third challenge, some hints are provided in the last section,
but we leave its thorough discussion and implementation as a
future work.

IV. MODELING SECURITY MECHANISMS

In this section, we discuss how to model security mecha-
nisms, namely confidentiality, for our example system.

A. Current Solutions for Modeling Security

There are several efforts on defining UML profiles for
security. For example, SecureUML [5] focuses on modeling
role-based access control. AuthUML [6] provides a framework
for analysis of access control requirements. [7] introduces
a set of stereotypes for specification of vulnerabilities that
serve as guidelines for developers to avoid them during im-
plementation. UMLsec [8] offers a broader range of security
concepts and comes with an analysis tool. Article [9] tries
to offer a solution for modeling security along with timing
characteristics of the system using UMLsec and MARTE.

One main issue with these modeling profiles is that model-
ing of security requirements is often considered in separation
from other requirements such as timing [9], [10]. One solution
could be to combine security profiles with other profiles that
enable modeling requirements of embedded real-time systems
and their analysis such as MARTE. However, it should be
noted that combining different UML profiles can be tricky as
these profiles can have overlapping and conflicting semantics
and notations. This issue can be even trickier remembering
that most of available security profiles are limited in the
sense that they usually focus on a certain aspect of security
and several of them may need to be combined as well [10].
Supporting hardware modeling and hardware devices with
built-in security mechanisms is also another issue that is
important for evaluating different deployment scenarios and
is often not covered in security profiles. We have discussed
this issue with more details in [11].

Finally, to generate code that includes implementations of
security mechanisms from a model of an embedded system,
the modeling concepts for security should provide the nec-
essary information to derive code. This level of information
is equally important to enable certain types of analyses at
model level such as performing schedulability analysis by
taking into account execution times of security features (e.g.
encryption/decryption) or energy consumption analysis. For
example, execution time and energy consumption of a block
cipher algorithm can vary depending on the used algorithm,
number of rounds, key size and so on. Therefore, these
influencing parameters are required to be annotated at the
model to enrich and make analysis more accurate. However,
many of the currently available security profiles do not provide

sufficient semantics to model and include the details necessary
to perform these types of analyses and generate code.

B. Modeling Security Using MARTE

In this section, we discuss how MARTE modeling language
can help to include timing costs of security mechanisms and
include them in timing analysis of the system.

In order to alleviate the mentioned issues regarding secu-
rity modeling in embedded systems, we propose extending
MARTE with security concepts and building modeling seman-
tics for security upon it. MARTE offers rich semantics for
modeling non-functional requirements in real-time embedded
systems and provides dedicated packages for schedulability
and performance analysis. It also includes concepts for model-
ing deployment, hardware and annotating models with energy
usage values. By extending MARTE with security concepts,
it becomes possible to include impacts of security design
decisions in the model for timing analysis, and evaluate their
side effects before starting the implementation phase. There-
fore, the code that will be generated from these models will
better satisfy the requirements and constrains of an embedded
system with less unknown and unmanaged side effects on other
properties of the system such as timing, energy consumption,
and memory usage.

Figure 3 shows part of our suggested MARTE extension for
modeling block ciphers.

Fig. 3. Definition of BlockCipher stereotype

Using such concepts we can now annotate the operation of
sending the CreditCardInfo, in the Payment System Example
mentioned before, with the information that follows:
�BlockCipher� CreditCardInfo() {algorithm=AES

, blockSize=(128,bit), keySize=(128,bit), rounds=12,
operationMode=ECB}

C. Introducing Timing Costs of Security Mechanisms

So far, we have managed to annotate sensitive operations in
the model, such as CreditCardInfo, with parameters (type of
algorithm, blocksize, keysize,etc.) of the encryption algorithms
that are selected to protect them. This information is not
only required to generate code that implements each selected

200

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 216 / 612

encryption algorithm, but also enables us now to evaluate their
timing costs at model level by using the result of studies such
as [4] and [12] that have performed measurements of timing
costs of encryption algorithms. We assume the existence of
such measurements for the platform used in the automatic
payment system example, in the form of Table I.

Algorithm Key Size BlockSize Rounds OperationMode Execution Time (Bytes/Sec)
AES 128 128 10 ECB 490
AES 192 128 12 ECB 560
AES 256 128 14 ECB 710

. . .

TABLE I
EXECUTION TIMES OF ENCRYPTION ALGORITHMS

Using this information, execution times of modeled encryp-
tion algorithms can be determined. In [11], we have discussed
in more detail how the model can also be analyzed for energy
costs of security mechanisms using a similar approach. The
result would be similar to what follows:
�GaCommStep� �BlockCipher� CreditCardInfo()

{algorithm=AES , blockSize=(128,bit), keySize=(128,bit),
rounds=10, operationMode=ECB, msgSize=(150,B),
execTime=(306,ms,min,calc) }

GaCommStep is a MARTE concept which is a specializa-
tion of MARTE Step to describe communication workloads
and is used in generic quantitative analysis contexts. Specifica-
tion of execution time values are done here based on MARTE
NFP concepts.

This way, the impact of security requirements on timing
requirements in the system are identified. At this point, it is
now possible to determine whether the chosen security mech-
anism is feasible considering specification and constraints
on the allowed execution times. If not, blocksize, keysize,
number of rounds, operationmode or even the size of the input
message can be tweaked to balance security level with timing
properties. This is done by iterating over steps A, B, C, and D
of Figure 2. That is, timing costs for security mechanisms in
the original model (A) are calculated resulting in a model with
timing values for its security mechanisms using the MARTE
concepts introduced above. These values are then checked
against the timing specifications of the system. If violations are
detected, the user modifies security mechanisms in the original
model and goes through steps B, C and D again. After this
phase, it is feasible to generate implementation of the defined
security features for CreditCardInfo.

While, this approach seems to also enable energy consump-
tion analysis on the model, this topic deserves a separate study;
especially that detecting energy consumption violations later
at runtime is a much bigger challenge than the detection of
timing violations.

V. NEXT STEPS AND FUTURE WORK

In this paper, we presented the idea of generating security
implementations from models of embedded systems. The chal-
lenges of designing secure embedded systems were identified.

We discussed impacts of security on other requirements on
the system, namely timing requirements, and the importance
of trade-off analysis among requirements to predict the side
effects of the generated code. Therefore, to generate security
implementations, it was realized that the main challenge is at
the model level so that the generated code respects the con-
straints of embedded systems. We proposed using MARTE as
the basis for modeling embedded systems to enable necessary
analyses on security decisions before generating code for them.
However, as pointed out, timing violations can still happen at
runtime. Therefore, it is needed to relate requirements in the
model to their corresponding implementations in the generated
code, and report any timing violations back to the user at
the model level. As a solution to develop this feature, we are
investigating suitability of Java Modeling Language (JML) to
annotate the code and define pre/post-conditions for generated
methods as suggested in [13].

REFERENCES

[1] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a
new dimension in embedded system design,” in Proceedings of the 41st
annual Design Automation Conference, ser. DAC ’04, 2004, pp. 753–
760, moderator-Ravi, Srivaths.

[2] S. Colin and L. Mariani, “Run-time verification,” in Model-Based Testing
of Reactive Systems, ser. Lecture Notes in Computer Science, M. Broy,
B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Eds., vol. 3472.
Springer Berlin / Heidelberg, 2005, pp. 525–555.

[3] MARTE specification version 1.0 (formal/2009-11-02), http://www.
omgmarte.org, Last Accessed: June 2011.

[4] A. Nadeem and M. Javed, “A performance comparison of data encryp-
tion algorithms,” in First International Conference on Information and
Communication Technologies, ICICT 2005., 2005, pp. 84 – 89.

[5] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in Proceedings of the
5th International Conference on The Unified Modeling Language, ser.
UML ’02. London, UK: Springer-Verlag, 2002, pp. 426–441.

[6] K. Alghathbar and D. Wijesekera, “authuml: a three-phased framework
to analyze access control specifications in use cases,” in FMSE ’03:
Proceedings of the 2003 ACM workshop on Formal methods in security
engineering. New York, NY, USA: ACM, 2003, pp. 77–86.

[7] K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
security aspects in uml models,” in First International Modeling Security
Workshop, ser. MODSEC08, Toulouse, France, September 2008.

[8] J. Jürjens, “Umlsec: Extending uml for secure systems development,”
in UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language. London, UK: Springer-Verlag, 2002, pp.
412–425.

[9] V. Thapa, E. Song, and H. Kim, “An approach to verifying security and
timing properties in uml models,” in Engineering of Complex Computer
Systems (ICECCS), 2010 15th IEEE International Conference on, 2010,
pp. 193 –202.

[10] R. J. Rodrı́guez, J. Merseguer, and S. Bernardi, “Modelling and
Analysing Resilience as a Security Issue within UML,” in SERENE’10:
Proceedings. of the 2nd International Workshop on Software Engineer-
ing for Resilient Systems. ACM, 2010, accepted for publication.

[11] M. Saadatmand, A. Cicchetti, and M. Sjödin, “On the need for extending
marte with security concepts,” in International Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011),
March 2011.

[12] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in
wireless sensor networks,” Computer Networks, vol. 54, pp. 2967–2978,
December 2010.

[13] J. Lloyd and J. Jürjens, “Security analysis of a biometric authentication
system using umlsec and jml,” in Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 77–91.

201

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 217 / 612

Proposal for Ground Shipping High Volume of Data Parameter in Supersampling
Unmanned Aircraft Through Radio Modem

Manuel Sánchez, Vicente Millet, Neves Seoane
INTA – National Institute of Aerospace Technology,

Madrid, Spain
{sanchezrum;milletcv;seoanevn@inta.es}@inta.es

Luis de-Marcos, José-Javier Martínez
Computer Science Department

 University of Alcalá
 Madrid, Spain

{luis.demarcos; josej.martinez}@uah.es

Abstract—In an unmanned aircraft, large volumes of data are
generated by the various sensors installed on the aircraft. At
critical moments such as take-off, landing, parachute openings,
or when the aircraft performs sudden maneuvers, additional
parameters besides the default need to be sampled in order n
to understand completely the behavior of the aircraft. We
propose different alternatives for sending multiple data to land
at sampling frequencies of up to 10 Hz at critical times
Preliminary results are presented for the most extreme case,
that is using full RS-232 bandwidth for the six most important
parameters resulting in 210 samples per second for each
parameter.

 Keywords-Information retrieval; unmanned aircraft; data
processing; sensors; radio modem

I. INTRODUCTION
INTA is the Institute for Aerospace Technologies in

Spain and flight tests have been part of INTA’s activity
since it was created in 1947. With the objective of
upgrading such activities and modernizing its facilities,
INTA created the Flight Test Area, Area de Ensayos en
Vuelo (AEV) [1], AEV is responsible for providing flight
test support for all current and future programs including
RPV (Remotely Piloted Vehicle), Rocket Launches,
Balloons and Missile Tests.
 The problem is that that during critical moments, data
from several sensors needs to be transmitted at rates in
excess of 10 Hz which is not possible given the limitation of
bandwidth that radio modem communications presents. To
solve this problem, software alternatives are considered.
These are one-dimensional array based on differentiated
values, two-dimensional array with a fix number of rows
and columns and time stamp, two-dimensional array with
time stamp and parameter identification label, and finally
two-dimensional array with time stamp, parameter
identification label, controlling the last value sent. The
paper starts with a description of the problem followed by
the methodology used to arrive at the solution. Finally, a
few preliminary results with the obtained conclusions are
shown.

II. STATE OF THE ART
Currently, INTA is working on various unmanned aircraft

under development such as SIVA (Integrated System for
Aerial Surveillance), ALO (Lightweight Observation Air

Vehicle), DIANA (High speed target drone) and HADA
(Morphing VTOL Aircraft) among others. In large UAV´s
like SIVA (weight 300 Kg and wing span 5.81 m), data
acquisition systems (DAQ) allow sending thousands of data
samples per second of any parameter to ground in pulse
code modulation (PCM) [2] format by using S-band
telemetry frequency. However, in smaller UAV’s like ALO
shown in Figure 1 (weight 50 Kg and wing span 3.48 m), it
is not possible to integrate a DAQ due to small payload. In
such a case, it is necessary send data to ground using radio
modems, with a frequency of ten samples per second for all
sample parameters. The proposal presents alternatives to
allow sending samples at a rate of more than ten times per
second in critical periods for small UAVs that need ot use
radio modems. In such a way, it will be possible to know
the aircraft behavior and validate it using simulation.

Initially, the data types of parameters used for shipping

are 32-bits floating points or 16-bits integers. The input data
for each sensor is written in a memory buffer and then sent
to earth using a specific frequency (ten samples per second).
Parameters are not grouped hierarchically and each one is
sent using the same sample rate [3]. Some data parameters
are sampled by the onboard computer at frequencies up to
450 samples per second, while other parameters are sampled
at a lower rate (e.g., one per second for GPS).

The idea of storing data on the aircraft is not feasible due
to the process for managing interruptions used by the
operating system that could result in a possible loss of data
in real time. The final storage of data on land is the only

Figure 1. ALO unmanned aircraft

202

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 218 / 612

feasible option. Fig. 2 shows a block diagram representative
of the various elements that act on the aircraft, with the
central part based on a control computer, along with their
input chains, demand measures and associated
communications.

III. METHODOLOGY
The objective is to investigate the features of the different
models proposed, which will provide knowledge about what
happens on certain aircraft sensors that suffer substantial
alterations in its physical measures at critical moments. This
process can be broken down into the following steps:

A. Analyze the initial conditions: parameters,
frequencies of transmission, limits of communications, data
storage and display; 280 bytes were sent in parameters 32
and 16 bits length, and 19 bytes of payload (camera) as the
focus or zoom, which makes an approximate size of 300
bytes, every 100 milliseconds. This is a guaranteed rate for a
RS-232, modem, but for reasons of data loss in
communications (distance, weather conditions, etc.), it is not
advisable to exceed this rate.

B. Identify critical moments and the variables
concerned, establishing a proposal for grouping variables
based on objective criteria. As an initial proposal, the
parameters are grouped into three categories, the first (most
important) contains those parameters that require a very
high sampling and also with a high changing capacity on
their values per time unit (e.g., acceleration and angular
velocity). A second group includes those parameters that
may require sampling rates of 10 Hz such as measured
angles of attack, pitch, yaw and roll. The other parameters
would be part of the group with lower necessities of
sampling frequency.

C. Define strategies to establish optimal mechanisms for
approaching the desired goal, which is to obtain more

information about certain parameters at critical moments.
Experimental as well as quantitative methods will be used.
A toolkit that approaches and solves the problem will be
designed. Prototypes will be developed using a specific
programming language for each alternative to allow for a
comparative analysis of the different designs and
techniques.
 The techniques used for this proposal lie in the
combination of the following fields or areas:
• Standards of measurement processes and data
 acquisition [4].
• Transmission of information via radio modem [5].
• Mechanisms of compression techniques based on data
compression standards [6].

According to CVT (Current Value Table) technology,
each sensor stores the sampled value on a cell, overwriting
the previous value, and each sensor has a different sampling
frequency. A process is activated and traverses all the cells,
building an image of the values found at that moment.
Using pointers and information about the order of the
parameters (32-bit floats or 16-bit integers), the pointer
moves through all the parameters to capture in a one-
dimensional array the set of all values that are subsequently
sent to land via radio modem, a transmission format of 8, n,
1 (8 data bits, no parity and one stop bit). This process is
repeated ten times per second; when information is received
on land, decoding is simply done in an analogous way. The
proposed approach entails replacing the one-dimension
array with a two-dimensional array with a variable number
of rows and columns, depending on the different types of
techniques. This array will also contain time stamps that
will indicate the moment corresponding with the value
sampled by the sensor. This is concept missing nowadays,
because of the linearity used for the land consignment of the
resulting array. The variability of a two-dimensional array
can be done in real time, either automatically, so that it can
be integrated into the onboard computer program of the
flight to be done by the aircraft, or manually, by sending
signals from the ground through the radio modem.
Independently of the format of the cell in rows and columns,
land transmitting will be done in the same way as a PCM
(Pulse Code Modulation) stream, going trough the array and
sending the values byte by byte via RS-232.

The approach will start in a basic form and progress to
increasing levels of complexity, reaching the best solutions
for specific needs. For the early stage, the value of the
parameters of the most important category are sent as along
with the average between time units using functions
specifically designed for this purpose (with optional
insertion of timestamps). We can then proceed to defining a
different array, mixing several values of the three
categories, adding more values of the first category and less
parameters of the last category. Each parameter will have a
time stamp (either the measured values or the average
between instances). Finally, at more complex stages,
compression-based techniques for sending data values will

Figure 2. System onboard

203

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 219 / 612

be considered (e.g., using differential values, similar to
sending data using differential PCM).

IV. PRELIMINARY RESULTS AND CONCLUSIONS
As preliminary results, we present a graph obtained in the

initial tests performed on a simulation with data array
generation which corresponds to angular acceleration on the
aircraft x body parameter [7] (cataloged on the first class or
category). Fig. 3 presents the variation of this parameter in a
wide period of the flight. Data circled is the basis for Fig. 4
that presents the values of the parameter every 10
milliseconds, thus offering more detail. Finally the resulting
graph (Fig. 5) is obtained in the most extreme case, that is,
using full RS-232 bandwidth for the six more important
parameters, resulting in 210 samples per second for every
parameter. It can be observed, that some parameter
variations are not obtained using 10 samples per second.
And it is necessary to know that during post-processing,
these unobserved variations can appear using an increased
data rate. Information about 6 parameters has been sent but
there are 33 and therefore, there is not information about the
other 27. Subsequent proposals should have the goal of
sampling all the parameters, at a frequency rate depending
on the category of the parameter, trying to find a balance
between information loss for every parameter and the
additional data variations obtained for more sensitive ones.

Further research is based on an approach using alternative
methods, as to develop 2D array with different sample rate
and timestamps, as explained earlier. At this second stage, it
is necessary to use some techniques similar to those of a
differential PCM for not-so-important important parameters:
sending a first value with 32 bits of accuracy and the next
ones using 16 or even 8 bits, not with the value but with an
offset in relation to the first or previous record. In such a
way some bits could be saved, so that more samples of
important parameters could be obtained.

A final approach could be two-dimensional array with a
fix number of rows and columns. Each row will also contain
timestamps that will indicate the instant that corresponds
with the value sampled by the sensor.

Figure 3. Acceleration in the x-axis (full flight)

Figure 5. Values obtained

 Figure 4. Extension of section marked in Figure 3

204

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 220 / 612

REFERENCES

[1] Gonzalez, R., Millet, V., and Leon, R. “Mobile telemetry
acquisitions system”, International Telemetering Conference 1994,
pp. 443-453.

[2] U.S. Army, “IRIG Standard 106-86,” Telemetry Standard
Appendix C, Secretariat. Range Commanders Council, U.S. Army
White Sands Missile Range, New Mexico 88002, chapter 4 pp. 1-
12.

[3] Parra, S. and Ángel, F. “Interfaz del NGFCS con la
GCS.”Madrid SIV/SPE/51CO/028/INTA/02, 2002, pp. 8-12.

[4] U.S. Army, “IRIG Standard 119-06,” Telemetry
Applications Handbook, Secretariat. Range Commanders Council,
U.S. Army White Sands Missile Range, New Mexico 88002.
chapter 8 pp 12-16.

[5] Electronic Industries Association, “EIA232E”, Engineering
Publications Office, pp. 32-45.

[6] International Organisation for Standardisation MPEG-4
Overview – V.21, ISO/IEC JTC1/SC29/WG11, pp. 52-64.

[7] Stevens, B. and Lewis, F. “Aircraft control and simulation”,
2nd ed., Wiley-Interscience Publication, 1922, pp. 71-72.

205

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 221 / 612

The Smart Persistence Layer

Mariusz Trzaska

Software Engineering

Polish-Japanese Institute of Information Technology

Warsaw, Poland

mtrzaska@pjwstk.edu.pl

Abstract— We present an approach to solve the impedance

mismatch problem caused by incompatibility between two

models: object-oriented and relational ones. We believe that it

cannot be unraveled by creating new Object-Relational

Mappers (ORMs) like most of the software industry does. It is

caused by some inherent differences between those two worlds.

In our method we assume that both a programming language

and a data source should be based on the same data model.

Thus we propose a persistence layer for native data structures

of a programming language. The presented idea is supported

by a working prototype called the Smart Persistence Layer,

which also supports extent management and bidirectional

links. The prototype together with LINQ, the native query

language for the .NET platform, formulates an easy-to-use yet

powerful solution.

Keywords-Impedance mismatch; Databases mapping; Object-

Relational Mappers; ORMs; Persistence; LINQ.

I. INTRODUCTION

The impedance mismatch is a negative software
development phenomenon denoting severe incompatibility
between two models: object-oriented and relational ones. It
is caused by the fact that most modern software is
implemented in object-oriented programming languages, but
its data is persisted using relational databases. Such an
approach forces the necessity of translating a rich object-
oriented universe to a pretty simple relational world and vice
versa.

In 2004, Ted Neward coined the phrase
"Object/relational mapping is the Vietnam of Computer
Science" [1]. His thesis was based on the observation that in
the Vietnam and ORM cases there are less and less hope for
success and unacceptable consequences of giving up. Two
years later the phrase became famous thanks to Jeff Attwood
who published the paper [2]. The paper mainly confirmed
Neward's observations. One of the most important
conclusions is choosing a single model both for the
programming and data. Any other options are vulnerable to
some level of the impedance mismatch.

This approach might be seen as too radical but in our
opinion it is the only right choice. Contrary to the Attwood's
preferences [2] we believe that the better choice is to select
the object-oriented side rather than the relational one.

Unfortunately, a few years have passed since the phrase
was coined, and nothing has changed on the battlefield. Even
worse, it seems that nothing will change in the next few
years. The software industry focuses on improving ORMs

rather than changing the approach to the problem. It looks
like a situation where one is looking for a better and better
medicine rather than eliminating the source of the illness. We
believe that improving ORMs is questionable because there
are too big discrepancies between the models and too big risk
that attempts to match them will cut a lot from their
functionalities. Usually, in such a cases and for large
databases the object model is the victim: object-oriented
qualities are reduced to minor (mostly syntactic) differences
between the object and relational data schemas. The object
model becomes a slave of the relational model. It is not
possible to create a generic mapper, which will be able to
automatically transform object-oriented queries addressing
sophisticated object model into relational queries and
commands (SQL), and vice versa. The main reason of that is
the fact that probably there is no general algorithm that maps
object-oriented queries and updates into SQL and still
ensures good performance. In typical cases (our experience
from other projects [3]) a mapper uses non-standard SQL
features (e.g., traversing tables by cursors), thus the SQL
query optimizer has no chances to work properly. Hence
each case has to be manually designed by the programmer.
In fact, it does not even matter how the mapping is to be
defined: using a configuration file, a DSL or some other way.
The result is still the same: the programmer has to spend
his/her valuable time doing some repetitious and error-prone
work.

The problem is not only related to mapping definitions by
programmers. It is much more extensive and spreads on
query languages, different types, semantics, etc.

There are opinions that solving the impedance mismatch
problem should employ extending programming languages
with declarative specification capabilities like JML [4] or
Spec# [5]. Generally we do not agree with such a solution
mainly because of the complexity, e.g., Spec# requires a
dedicated compiler.

Our proposal is based on replacing both an ORM and a
database with a data source native to a programming
language. As a result, there is no impedance mismatch at all.
The approach is supported by a working prototype for the
.NET platform. The prototype provides a persistence layer
and extent management for objects of a programming
language.

The rest of the paper is organized as follows. To fully
understand our motivation and approach some related
solutions are presented in Section 2. Section 3 briefly
discusses key concepts of our proposal and its

206

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 222 / 612

implementation. Section 4 contains sample utilizations of the
prototype and simple benchmarks. Section 5 concludes.

II. RELATED SOLUTIONS

As we suggested previously, to reduce completely the
impedance mismatch we need to leave the object model and
to eliminate another data model. It means that both business
logic and data store will be on the programming language's
side or the database side. Both approaches have their
advantages and disadvantages. We discuss them shortly.

A. The Programming Language Side

This approach requires that a business logic and a data
source are implemented on the programming language side.
It involves a dedicated data source, which is not only
compatible with the programming language but fully native
to it. The compatibility condition is quite common and
means ability to work with a particular platform. However, it
does not mean common models. The most obvious examples
are relational databases and ORMs. Undoubtedly, the latter
are more convenient for programmers but still require at least
manual mappings.

The nativity condition is fulfilled when plain objects of a
programming language are persisted using an additional tool.
Usually the tool has to be an object-oriented database
management system (ODBMS), i.e., db4o [6], [7] or
Objectivity [8]. Both of them are mature solutions existing
on the market for at least 10 years. However in some cases,
using them could be too complicated. Thus, a more
lightweight solution would be a better choice. Our proposal
follows this idea. More information, comparing the db4o to
our prototype could be found in Section 3.

The reference [9] provides a list of open source
persistence frameworks for the MS .NET platform.
Unfortunately, most of them are implemented as ORMs,
which of course introduces some level of the impedance
mismatch. We have found only two tools, which do not
utilize a relational database: Bamboo.Prevalence [10] and
Sisyphus [11]. However they usually require some special
approaches, e.g., the command pattern utilized for data
manipulation for the Bamboo and necessity of inheritance
from a special class for the Sisyphus.

B. The Database Side

This solution utilizes the database model both for
business logic and data. Thus it requires that the entire
application is implemented in a database programming
language. There are various DBMS and dedicated languages
on the market, i.e., T-SQL, PL/SQL. Both of them have
imperative functionality and PL/SQL has some object-
oriented constructs. There are also fully object-oriented
solutions like SBQL for the ODRA platform [12]. These
seem more appropriate thanks to the more powerful and
flexible model.

The ODRA (Object Database for Rapid Application
development) is a prototype object-oriented database
management system based on SBA (Stack-Based
Architecture). The main motivation for the ODRA project is
to develop new paradigms of database application

development. This goal is going to be reached mainly by
increasing the level of abstraction at which the programmer
works. ODRA introduces a new universal declarative query
and programming language SBQL (Stack-Based Query
Language), together with a distributed, database-oriented and
object-oriented execution environment. Such an approach
provides functionality common to the variety of popular
technologies (such as relational/object databases, several
types of middleware, general purpose programming
languages and their execution environments) in a single
universal, easy to learn, interoperable and effective to use
application programming environment.

III. THE SMART PERSISTENCE LAYER

Programmers use databases for many reasons. One of the
more important are persistence and a query language. A few
years ago Microsoft introduced a query language called
LINQ [13] to ordinary programming languages (e.g., C# and
Visual Basic). The LINQ works with native collections of
the programming language allowing querying them as
regular databases. It is also supported by various ORM
mappers including their own solution called Entity
Framework [14]. Generally speaking, the mapper uses a
relational database for storing data which, of course, causes
some impedance mismatch (especially concerning
inheritance).

Our approach is based on an observation: if we have a
query language (LINQ) natively supported by the
programming language, then we should use native data
structures of the language as well. Such an approach
guarantees that every bit of impedance mismatch simply
disappears. Of course, in real case scenarios a persistency for
the native data is required. At first glance it looks that such a
mechanism already exists for modern programming
languages and is called serialization. Unfortunately, it is not
applicable as a replacement for databases. The main reason is
the fact that the serialization every time stores the entire
graph of objects. This behavior is caused by the way the
serialization works: every saved object is valid, which means
storing all connected objects, objects of connected objects
and so on.

Our proposal focuses on delivering a persistency layer
designed in a totally transparent way for the programmers.
We do not want to make programmers use any kind of super
classes or implementing special interfaces. The prototype is
called The Smart Persistence Layer (SPL) and implemented
for the MS .NET platform. However, it is possible to
implement it for other platforms with the reflection
capabilities, i.e., Java. In this case it would be possible to
reuse significant parts of the source code and data files as
well.

A. The Basic Functionality

The most basic functionality for a mapper is delivering
an extent of objects belonging to a particular class. This
could be achieved using many ways. For instance the db4o
[8] uses the following code:

207

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 223 / 612

IList <Pilot> pilots =

db.Query<Pilot>(typeof(Pilot));

However in our prototype we have simplified that to:

IQueryable<Pilot> pilots =

db.GetExtent<Pilot>();

Please note that our method does not require the
parameter, but the result is still strongly typed.

 There is also a debate how objects belonging to different
classes in the same inheritance's hierarchy should be treated.
We believe that the extent of a super class must also contain
all instances of subclasses. This approach guarantees that we
can work on a higher level of abstraction (i.e., different
subclasses of product processed just like products; see also
Section 4). Of course, this relationship works only in one
direction: extents of subclasses will not contain instances of
super classes. Hence the above code returns a collection of
objects belonging to the given class (as a type parameter) and
all subclasses.

Another area related to an extent, which needs a
clarification is how and when new objects will be
incorporated into extent. Our proposal follows the following
rules:

 an object could be added to an extent by executing
by a programmer a dedicated method;

 every object, which is directly made persistent by a
programmer is added to an appropriate extent.

If a programmer would like to achieve automatic adding
to an extent, then the method could be executed in a
constructor of a class. It is especially easy thanks to our
designing decisions. We have utilized the C#'s extension
method mechanism together with the default instance of the
SPL. An extension method is a method adding a
functionality to a class but defined outside the class. The
listing 1 (due to readability all listing are located at the end
of this paper) presents the mentioned method. Please note

that the method's parameter is of type object, which
means that any object could be added to an extent (and the
extension method could be executed on any existing object).
A dedicated logic adds a given object to appropriate extents
(the current one and all super classes). This is performed
based on the object's type. A similar extension method has

been utilized for the Save operation, which persists a given
object.

Another interesting concept is the default instance of our
prototype layer. In case of many applications a persistence
layer is available via a single object, i.e., a file stream or a
DB instance/connection. Hence, we have introduced a
concept of default instance, which is the first (and in many
cases the only one) instance of the persistence object. The
object has to be properly initialized at the very beginning.
Otherwise, during accessing the default instance, appropriate
exception would be thrown. This solution allows accessing
the data without passing a reference to the object. This is also
the case of the previously mentioned method adding an
object to its extent.

Such an approach does not put any restraints on
programmers i.e., implementing an interface or inheriting
from a super class.

B. Bi-directional Associations

One of the key functionality of every data store is the
ability for creating and persisting connections among objects.
In our opinion, it is especially useful if the connections are
bidirectional allowing navigation in both directions (i.e.,
from a product to its company and vice versa).
Unfortunately, databases usually do not support the feature.
According to [7] the db4o does not have it either. This is also
the case of native references existing in popular
programming languages (e.g., MS C#).

The implementation of the mentioned functionality is
complicated especially if we would like to work with the
POCO (Plain Old CLR Object) objects. This approach means
that we cannot expect implementing a specified interface or
functionality inherited from a super class. Another
disadvantage of putting links into a super class would be
problems with navigation using the LINQ.

Thus our goal was to design it as convenient as possible
but still remembering that it would be extremely hard to find
a perfect (totally transparent to a programmer) solution.

One of the approaches is generating classes based on
same templates. This is the case of one of the options in the
Microsoft Entity Framework [14]. However, this
functionality requires some kind of support from a tool and
in our opinion may not be useful for all programmers.

It seems that creating a bidirectional link requires
defining the following data:

 role name,

 reverse role name,

 target object,

 reverse object.
 We had to choose how and when to put them to

minimize the amount of work required from a programmer.
At the beginning we tried creating special annotations for
classes. But it turned out that some data still has to be passed
as string. After some research we came up with another
solution, which spreads on two different levels (see Fig. 1).

The first one is a dedicated class parameterized with two

types: target objects (TTargetType) and reverse object

(TReverseType). Utilizing a parameterized class makes
possible detecting some errors during a compilation time.
The next level uses information passed to the constructor of
the class. It takes a reverse attribute name, which will store
the reverse link and an instance of the class, which should be
the reverse target. The following listing presents the code,
which should be placed inside a business class (see also
Section 4).

ICollection<Tag> Tags = new

SplLinks<Tag, Product>("Products",

this);

208

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 224 / 612

Tag

<TTargetType>

Product

<TReverseType>

Tags

Products

Figure 1. Explanation of the implemented bidirectional links mechanism.

Types information (fixed size)

A type
entry

A type
entry …

A data location
entry

A data location
entry …

Data location information (growing)

Entries
count

Figure 2. Structure of the file storing types and location information

It may look a bit complicated but it is created only once

for each link. The SplLinks class implements ordinary
.NET interface for accessing collections thus using it is
exactly the same as any other .NET collection. Creating a
bidirectional link requires only executing a single Add
method with the target object. The reverse connection will be
created automatically based on previously defined data. Of
course, all LINQ queries work as well.

C. The Transparent Persistence

The goal of the persistence process is to store data on
some non-volatile media, usually in a disk file. In case of our
solution we need to persist three types of data, namely:

 business content of the objects,

 location of the above,

 information about types (classes).
All of them can change and grow during the run-time.

After some research we have decided to use two files: the
first one will hold business information whereas the second
the rest. Initially we thought about three files but the types
information is usually quite small and repeatable thus can be
stored at the beginning of the second file (Fig. 2). A
programmer can define amount of the allocated space for the
purpose. A default value is 1MB, which makes possible
storing about 3000 entries. It is possible to use just one file

but at cost of more complicated design and possibly worse
performance.

The single entry regarding the location of data (the type
entry from Fig. 2) consists of:

 object identifier;

 identifier of its type;

 location in the data file where the object's content
starts. This entry is updated every time when an
object is saved;

 location in the index file where the location data
starts.

The above information also exists in the memory to boost
performance. It is saved to disk only as a backup and for
reading objects purposes.

As mentioned previously we do not persist classes
(types) in the file. Thus during an object initialization those
classes have to be accessible by the .NET run-time (e.g., as
standard DLL libraries).

The other file, with business data of persisted objects, can
be read only using the location and types information. It is
read at the very beginning. The current prototype reads all
data to the memory. This could be a problem in some cases
but modern computers are usually equipped with a lots of
RAM. However, in the future versions we will probably
introduce some kind of programmer's policy for defining this
kind of behavior.

209

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 225 / 612

Figure 3. A class diagram of the sample implemented using the SPL.

The process of saving and reading objects intensively
uses the reflection mechanism. Currently it is able to deal

with atomic types, lists (classes implementing the IList

interface), ICollection (see Section 3.B) and other types
built using these invariants (see also the sample utilization in
Section 4).

One of the problems related with links, which should be
addressed, is persisting connected objects. When we would
like to persist an object, how should we act with all
referenced objects? There are different approaches, i.e., db4o
[7] uses a concept called update depth. This is simply a
number telling how many levels of connections should be
saved. We have decided to follow another approach. When
we save an object, all referenced unknown (not saved
previously) objects are saved, no matter how deep they are.
Thus the first execution could be costly, but the objects have
to be saved anyway. All next updates will not save known
objects. If a programmer wants to save them, then it has to be

done directly by executing the Save method. The method
should also be utilized every time a single object is modified
(its content will be persisted in the file). This policy
guarantees that persisting an object will not be costly.

IV. THE USE CASE AND SOME BENCHMARKS

Fig. 3 presents a class diagram of the sample created
using our prototype implementation. It describes the
following business case:

 Products have various properties including: a name,
a price and a list of supported languages;

 Every product can be described using various tags;

 A company manufactures many products, but a
product is related to a single company;

 There are various kinds of products with different
properties. Printers contain information about
utilized print technology and laptops store a screen
size.

Although the presented case is quite simple, it contains
different kinds of business information. Thus it allows
verifying the usefulness of our approach.

Listing 2 contains the complete source code of the
Product and Tag classes. The code, aside from normal C#
functionality, together with the SPL provides full
persistency, extents and query capabilities (thanks to the
native LINQ). No additional configuration/mapping files,
known from ORMs, nor special identifiers are required.
Please note utilization of different types of data including the

SplLinks class accessed using a standard C# interface

(ICollection).
Similar simplicity can be observed on listing 3. A

programmer creates instances of the Product and Tag

classes, links them together (the Tags property) and persist

(the Save method) using a few simple steps.
The important aspect of every data management system

is its performance. We plan to perform detailed tests
comparing our solutions to other approaches including
ORMs and raw databases. Currently we have run some
simple tests measuring speed of our prototype (the test
computer configuration: Intel Core i7 2.93GHz, RAM: 8GB,
Windows7 x64). The results are promising.

210

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 226 / 612

The test utilized two classes from the above business

sample: the Product and Company (Fig. 3). They were
connected using our bidirectional link. Table 1 presents
times required by various operations.

TABLE I. RESULTS OF THE SIMPLE PERFORMANCE TESTS (ALL

RESULTS ARE IN SECONDS; LESS IS BETTER)

Number of

objects

and the operation

Products: 50,000

Companies:

5,000

Total: 55,000

objects

Products: 100,000

Companies:

1,000

Total: 101,000

objects

Initializing the

SPL

0.0180 s 0.0180 s

Generating and

persisting data

17.3210 s 31.4018 s

Retrieving entire

extent of Products

0.0100 s 0.0130 s

Retrieving entire

extent of

Companies

0.0040 s 0.0050 s

Opening file,

reading all data

and creating

objects

21.9753 s 58.4323 s

Query Products

for the price

(LINQ)

0.0320 s 0.0550 s

Query Products

with the specified

Company's name

(LINQ)

0.0120 s 0.0330 s

As it can be seen, the results are decent, especially for an
early prototype. Please note short times for executing the
LINQ queries, i.e., finding all products manufactured by a
particular company took only 0.03s (for 100,000 products). It
is probably caused by the fact that in the current prototype all
data is kept in the RAM memory and a disk file is only a
backup. That's why the time of opening the file and reading
all data could be significant in case of bigger data sets (for
101,000 objects it is about 58 seconds). As we mentioned
previously, we plan to add an option for loading data only
when needed.

V. THE CONCLUSION AND FUTURE WORK

The impedance mismatch is a real problem experienced
by many programmers for a very long time. In this paper, we
have presented our approach to solve it. The idea is based on
eliminating the causes rather than improving medicines (in
this case various ORMs). We believe that the best method is
to use the same coherent model both for programming and a
data source. This could be achieved by providing a
persistence layer and extent management for native objects
created in a particular programming language.

The mentioned solution is even more useful if there is an
existing query language natively supported by the

programming platform. This is the case of the .NET and the
LINQ query language. The implemented prototype follows
our proposal by adding persistency and extent functionality
to standard C# objects. Moreover the functionality has been
achieved without imposing on a programmer any special
requirements regarding a super class nor interfaces.

Furthermore, our prototype adds functionality for easy-
to-use bidirectional associations. They are usable as standard

C# collections implementing the ICollection interface.
As a future work we would like to extend our prototype

with some other useful functionalities associated with
databases like indexes or transactions. However, we would
like to implement them (in a way) preserving the lightness
and flexibility of our solution.

Another field, which could be researched is performance.
We are going to conduct dedicated tests comparing our
prototype to other similar solutions like object-oriented
databases or ORMs.

REFERENCES

[1] Neward, T.: The Vietnam of Computer Science,
http://blogs.tedneward.com/2006/06/26/The+Vietnam
+Of+Computer+Science.aspx. Last accessed: 02-04-2011

[2] Atwood, J.: Object-Relational Mapping is the Vietnam of
Computer Science,
http://www.codinghorror.com/blog/2006/06/object-relational-
mapping-is-the-vietnam-of-computer-science.html, Last
accessed: 02-04-2011

[3] Kuliberda, K., Wiślicki, J., Adamus, R., and Subieta, K.:
Object-Oriented Wrapper for Relational Databases in the Data
Grid Architecture, w: On the Move to Meaningful Internet
Systems 2005: OTM 2005 Workshops, Agia Napa, Cyprus,
October 31 – November 4, 2005, Proceedings. LNCS 3762,
Springer 2005, pp. 528-542

[4] Chalin, P., R. Kiniry, J., T. Leavens, G., and Erik Poll.
Beyond Assertions: Advanced Specification and Verification
with JML and ESC/Java2. In Formal Methods for
Components and Objects (FMCO) 2005, Revised Lectures,
pages 342-363. Volume 4111 of Lecture Notes in Computer
Science, Springer Verlag, 2006, pp. 342-363

[5] Barnett, M., Rustan K., Leino M., and Schulte W.: The Spec#
programming system: An overview. In CASSIS 2004, LNCS
vol. 3362, Springer, 2004, pp. 144 - 152

[6] Paterson, J., Edlich, S., and Rning, H.: The Definitive Guide
to Db4o. Springer (August 2008), ISBN: 978-1430213772

[7] db4o tutorial,
http://developer.db4o.com/Documentation/Reference/db4o-
8.0/net35/tutorial. Last accessed: 2011-04-02

[8] The Objectivity Database Management System.
http://www.objectivity.com. Last accessed: 2011-04-02

[9] Open Source Persistence Frameworks in C#. http://csharp-
source.net/open-source/persistence. Last accessed: 2011-04-
02

[10] Bamboo.Prevalence - a .NET object prevalence engine.
http://bbooprevalence.sourceforge.net/. Last accessed: 2011-
04-02

[11] Sisyphus Persistence Framework.
http://sisyphuspf.sourceforge.net. Last accessed: 2011-04-02

[12] Adamus, R., Daczkowski, M., Habela, P., Kaczmarski K.,
Kowalski, T., Lentner, M., Pieciukiewicz, T., Stencel, K.,
Subieta, K., Trzaska, M., Wardziak, T., and Wiślicki, J.:
Overview of the Project ODRA. Proceedings of the First
International Conference on Object Databases, ICOODB

211

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 227 / 612

2008, Berlin 13-14 March 2008, ISBN 078-7399-412-9, pp.
179-197.

[13] Magennis, T.: LINQ to Objects Using C# 4.0: Using and
Extending LINQ to Objects and Parallel LINQ (PLINQ).

Addison-Wesley Professional, ISBN-13: 978-0321637000
(2010)

[14] Lerman, J.: Programming Entity Framework: Building Data
Centric Apps with the ADO.NET Entity Framework. O'Reilly
Media, Second Edition, ISBN: 978-0-596-80726-9 (2010)

LISTING 1. AN EXTENSION METHOD ALLOWING ADDING AN OBJECT TO ITS EXTENT

public static class Helpers

{

 // ...

 public static void AddToExtent (this object objectToAdd)

 {

 NmoDatabaseManager.DefaultInstance.AddToExtent(objectToAdd);

 }

}

LISTING 2. A CODE USED FOR THE PRODUCT AND TAG CLASSES

public class Product

{

 public string Name { get; set; }

 public decimal Price { get; set; }

 public bool IsSpecial { get; set; }

 public IList<string> SupportedLanguages { get; set; }

 internal ICollection<Tag> Tags { get; set; }

 internal Company Company { get; set; }

 public Product() {

 Tags = new SplLinks<Tag, Product>("Products", this);

 }

}

public class Tag

{

 public string Name { get; set; }

 public ICollection<Product> Products { get; set; }

 public Tag() {

 Products = new SplLinks<Product, Tag>("Tags", this);

 }

}

LISTING 3. A CODE USED FOR PERSISTING INSTANCES OF THE PRODUCT AND TAG CLASSES

var tagSpecialOffer = new Tag(){Name="Special Offer"};

var product1 = new Product(){Name="Everyday Desktop VX5000", Price=799.0m,

 SupportedLanguages = new List<string>(){"en",

 "de", "pl"}};

product1.Tags.Add(tagSpecialOffer);

product1.Save();

212

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 228 / 612

UML-Based Modeling of Non-Functional
Requirements in Telecommunication Systems

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin}@mdh.se

Abstract—Successful design of real-time embedded systems
relies heavily on the successful satisfaction of their non-functional
requirements. Model-driven engineering is a promising approach
for coping with the design complexity of embedded systems.
However, when it comes to modeling non-functional requirements
and covering specific aspects of different domains and types
of embedded systems, general modeling languages for real-time
embedded systems may not be able to cover all of these aspects.
One solution is to use a combination of modeling languages for
modeling different non-functional requirements as is done in
the definition of EAST-ADL modeling language for automotive
domain. In this paper, we propose a UML-based solution, con-
sisting of different modeling languages, to model non-functional
requirements in telecommunication domain, and discuss different
challenges and issues in the design of telecommunication systems
that are related to these requirements.

Index Terms—Non-functional requirements; Telecommunica-
tion domain; UML modeling; Real-Time Embedded Systems;
MDA

I. INTRODUCTION

The nature of embedded systems such as resource con-
straints, close integration and interaction with the environ-
ment through sensors and actuators (which can also incur
requirements on safety), timing characteristics and lack of
traditional user interfaces all bring with themselves require-
ments that make the design of these systems complicated [1].
Much of this complexity is due to handling a big range of
different requirements, solving conflicts and finding the right
balance and trade-offs among them. Especially non-functional
requirements such as security usually cross cut organizational
structures and development teams. Thus traditional functional
decompositions do not suit them. However, compared to
functional requirements not much work has been done on
non-functional requirements and lack of proper methods and
techniques for modeling of non-functional requirements and
their integration into the development lifecycle are felt [2].

UML profile for Modeling and Analysis of Real-Time
Embedded systems (MARTE) [3] is one of the recent and
major efforts on modeling Real-Time Embedded Systems
(RTES) and the non-functional properties in these systems.
MARTE enables detailed modeling of RTES and facilitates
their analysis. On the other hand, there is a big variety of
systems in RTES domain and to cover the specific aspects
and needs of each group of those systems (subdomains), a
customized modeling approach is necessary. Such an approach

has been used in the automotive domain, leading to the
definition of EAST-ADL profile [4] for modeling of vehicular
systems.

This paper focuses on telecommunication systems and the
aspects that modeling approaches for such systems should be
able to cover regarding their non-functional requirements. We
propose a UML-profiling approach consisting of features from
different modeling languages to answer broader aspects in
modeling non-functional requirements of telecommunication
systems. One of these aspects is security. We will focus on
security in this paper as an example for one of the intrinsic
characteristics of telecommunication domain that is also not
supported in EAST-ADL. Through an example, we show how
it will be possible to model security requirements along with
other aspects such as power, in one model while establishing
traceability between high requirements and their refinements
(lower level ones).

Regardless of the set of non-functional requirements that a
subdomain in RTES has, modeling approaches for these sys-
tems should provide requirements traceability. This becomes
even more important due to limited resources that systems in
this domain have; while in other systems, it is usually a lot
easier to add extra resources to the system such as additional
memory and that way fulfill a requirement. Therefore, a more
careful balance and trade-off analysis between requirements is
necessary in order to satisfy all of them in RTES domain. Hav-
ing traceability links among requirements and also between
requirements and design artifacts facilitates to perform impact
analysis and identify the effects a change on one requirement
can have on other parts of the system.

To cover different aspects regarding non-functional require-
ments in telecommunication systems, we suggest a UML
profiling solution consisting of concepts from SysML [5] for
traceability, and MARTE for modeling general non-functional
properties and their analysis. For security requirements, which
are inherent in telecommunication domain but are not covered
by MARTE, we adopt from available UML profiles for se-
curity, namely UMLsec [6]. Also since MARTE, SysML and
UMLsec are UML profiles, they are faster for developers using
UML to catch on and they also serve as a possible unifying
factor between development departments. A comparison of
different ways to define Domain Specific Languages (DSL)
and the benefits of each approach are provided in [7], [8]. It
is also important to note here that combining different UML

213

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 229 / 612

profiles is not a trivial task as it may seem and it can incur
different problems such as semantic conflicts. These issues are
discussed in an interesting work in [9].

The contributions of this paper can be summarized in the
following points:

• Showing an approach on how to model non-functional
requirements in telecommunication systems

• Identification of issues that should be taken into account
in modeling those requirements and the modeling con-
cepts to cover them

As a guideline we use our observations during a project we
have done at Ericsson plus the results of other studies such
as [2], [10] to describe the modeling challenges. In Section
2, we provide a deeper understanding of telecommunication
systems, its characteristics and needs, and the problems ob-
served around non-functional requirements in those systems.
We discuss the related work and have a look at some modeling
solutions in automotive domain in Section 3. In Section 4, we
describe the ingredient concepts of our proposed approach for
modeling non-functional requirements in telecommunication
domain by highlighting some key relevant concepts offered
in SysML, MARTE and UMLsec. Section 5 shows the appli-
cation of the method as a usage example. In Section 6, we
compare the features of our suggested approach with those of
EAST-ADL in automotive domain, and finally, in Section 7
we summarize the work and suggest different areas that need
to be studied as future work.

II. MOTIVATIONS

The observations and results in this section are achieved
through collaboration with Ericsson engineers (Stockholm,
Sweden) and gathered through several meetings with different
teams, such as Radio Base Stations (RBS) development group,
during CHESS project [11] at Ericsson.

A. Telecommunication Systems

As a type of real-time embedded systems, telecommu-
nication systems have specific characteristics, which incur
certain requirements and prioritization of some requirements
over the others. These systems need to be secure, are highly
distributed, have a dynamic nature, require massive processing
capacity and high availability (99.999% availability, which is
sometimes referred to as five nines), and need to be scalable.
The distribution in these systems can be regarded in two
perspectives: the distribution inside one node (such as using
multicore solutions and distribution of software functions
among different processing units) and also the geographical
distribution of nodes across different regions and the commu-
nication among them.

Typically, telecommunication networks consist of many
different types of nodes such as Radio Base Stations (RBS),
Radio Network Controllers (RNC), Media Gateways (MGW)
and others that span across a big geographical area and
communicate over different kinds of lines.

Regardless of the integration and interconnection of differ-
ent nodes in the network, design of each node is a big complex

challenge in itself. For example, an RNC can easily contain
between 500 to 700 CPUs, with software functions spanning
across several CPUs. This number, however, is decreasing
as new processors with higher capacities are produced. This
reduction is important for the total cost, power consumption
and heat generation of systems. As for functionality and
services, in a typical telecommunication system a big number
of connections should be established, routed and managed
per second. Besides, cost calculation should also be done
on them. Moreover, a typical telecommunication system can
have a life span of about 20-30 years. Thus upgrade-ability
and maintenance of such systems is also of great importance.
Software upgrade should be done in such a way to have
the least effect on the availability of the system. That is
why requirements such as hot-swapping and plugging and
the ability to perform restarts at different granularity levels
(a single board, collection of boards or a complete node) are
highly desirable and demanded in this domain.

B. Problems with Non-Functional Requirements

Due to the hierarchical and subsystem structure of telecom-
munication systems, first overall non-functional requirements
are defined on the system and then they should be refined
several times and in each step more concrete and design-
decision information is added. However, not all requirements
get refined, and as discussed in [10], this leads to weak
traceability chains. What can happen is that the requirements
that are defined on the system model are consumed (meaning
that they are read and implemented in the system) and no
explicit connection between the design artifact and the require-
ment leading to that design decision gets established. Also for
verification, most of the requirements are tested on a reference
configuration and then if some requirements are not met,
changes are applied on the system model and again a reference
configuration is built with the new requirements. Basically,
there are two general issues with this current approach:

• Poor support for traceability of requirements to design
artifacts

• The feedback loop for analysis of non-functional re-
quirements takes much time and effort and the wish
is to be able to perform verification of non-functional
requirements at earlier phases

The organization in large companies usually have a hier-
archical structure, which suits the actual system hierarchical
structure as mentioned above. According to the study done
in [2], this organizational structure matches the system struc-
ture well, as subsystems tasks and modules are allocated to
specific departments and thus is more suitable for functional
requirements. However, this is not the case for non-functional
requirements. The problem as mentioned in [2] is that the
autonomy of departments at the lowest levels of hierarchy
makes management of non-functional requirements harder and
that the decisions about these requirements should be done at
higher levels of hierarchy and aligned and managed from top
to down. This problem becomes more obvious with certain

214

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 230 / 612

types of requirements such as security, usability and user-
interface characteristics, which should be aligned in differ-
ent subsystems. Thus, non-functional requirements can easily
cross-cut organizational structure of a company and therefore
a methodology that works for functional decomposition may
stop to work for non-functional requirements.

In such organizations, it also happens that different teams
may have different interpretations and definitions for some
non-functional requirements, which can cause problems for
communication between the teams. On the other hand, this
also means that people from different teams may talk about a
specific requirement using different terms. If we can provide a
consistent way of modeling non-functional requirements and
a mechanism to establish associations between a requirement
or a design artifact and its source requirement, such problems
can be mitigated and detected more easily. Also as can be
implicitly noticed from the discussion in previous section,
there are many requirements that have conflict with others,
and trade-off decisions to balance them need to be taken.
However, these compromisations and decisions, which may
be made inside a subgroup, are somewhat unknown to upper
levels and are only known by some engineers working in
that section. For example, it is quite common that specific
tweaking and settings in the code on bandwidth or memory
usage are applied to ensure a certain level of balance between
performance and maintainability of the system. Such decisions
even if documented are hard to follow and track later on,
especially for upper levels in the organizational hierarchy. On
the other hand, some requirements that are decided on higher
levels are lost in the transition to go to development teams in
lower levels of hierarchy. This observation is also in alignment
and confirmed by the study in [10], which states the prob-
lem as non-functional requirements ”are not always available
when needed”. These issues can be alleviated by applying
traceability (which can be traversed back and forth) between
requirements and using a better form for representation and
documentation of non-functional requirements.

III. RELATED WORK

Requirement Modeling: Telecommunication Standardiza-
tion Sector (ITU-T) have offered several languages for sys-
tem modeling in telecommunication domain. Each of these
languages try to target different aspects and phases in sys-
tem development. For example, Message Sequence Chart
(MSC) is used for modeling asynchronous interaction sce-
narios. Specification and Description Language (SDL), which
has both textual and graphical representations, uses block,
process, channel and signal concepts to describe behavior
in communicating real-time systems. At higher abstraction
layers and for modeling requirements, ITU-T has suggested
User Requirements Notation (URN). URN consists of two
notations: Goal-oriented Requirement Language (GRL) to
model goals and non-functional requirements and Use Case
Maps (UCM) to describe functional scenarios. GRL is used
to capture informal system goals, specification and rationals.
We refer interested readers to ITU-T website [12] for more

information on these languages. Some efforts have been done
to define these languages as UML profiles such as [13].

As for general UML-based approaches in RTES domain,
MARTE with its expressive power and formal semantics
enables capturing non-functional requirements in more formal
ways and with necessary details for performing analysis ear-
lier in system development phases. For system engineering,
modeling general requirements and the relationships among
them, SysML offers Requirements model, and semantics and
notations for requirements traceability.

Modeling Security Requirements: There have been efforts
on modeling and analysis of security aspects using UML to
bring them into earlier phases of development . For example,
SecureUML [14] focuses on modeling Role-Based Access
Control (RBAC) by extending UML as a profile, while Au-
thUML [15] is a framework for analysis of access control in
the specification phase and thus less suited for code generation.
UMLsec on the other hand, uses stereotypes and tag values for
modeling general security aspects such as secure links, con-
nections, RBAC, secure information exchange, etc. to enable
analysis and early automatic verification (which also matches
our goal for early analysis of requirements). A comparison
between SecureUML and UMLsec for modeling role-based
access control is done in [16]. The UMLsec analysis tool suite
can help to identify parts of the model that do not match
a specified security requirement. This enables to perform a
level of security analysis on the model and find inconsistencies
before going into implementation phases. As for other works
in this area, the study in [17], for example, introduces stereo-
types to specify vulnerabilities so that developers can notice
them and avoid in implementation. It also claims that these
specifications can be used to generate test cases for security.
Article [18] tries to merge Mandatory Access Control (MAC)
and Discretionary Access Control (DAC) with RBAC. It is
a good work for modeling access control aspects, but lacks
other security aspects of UMLsec and their analysis. Doan and
Demurjian [19], on the other hand, discuss security analysis
based on RBAC and MAC in use-case and class diagrams.
Houmb and Hansen [20] introduce SecurityAssessmentUML,
which is intended to capture and document the results of risk
(i.e., vulnarabiltiies, threats, etc.) identification and analysis.
Discussion and comparisons of different UML-based security
models can be found in the related work sections in [6], [14],
[17]–[19].

Requirement Modeling in Automotive Domain: As an ex-
ample of a UML-based domain-tailored approach, EAST-
ADL has been developed in automotive domain for modeling
software architecture and electronic parts of a system. By
complementing and making use of general available modeling
solutions in RTES domain, EAST-ADL tries to cover the
specific requirements of automotive domain. It adopts concepts
from UML, AADL [21] and SysML to provide modeling
semantics aligned with AUTOSAR [22] specification. AU-
TOSAR focuses on lower design levels such as component
model, software modules, control units, APIs and implemen-
tation parts of automotive systems.

215

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 231 / 612

For modeling requirements, EAST-ADL makes use of
SysML requirements semantics and specializes them to match
automotive domain (e.g., definition of timing, delay and safety
requirements). However, it does not provide enough features to
enable some analyses such as scheduling and timing verifica-
tions earlier than implementation phase [23]. There are studies
such as [23] that suggest decorating EAST-ADL models with
some features from MARTE such as timing and allocation
packages to enable early scheduling analysis. TIMMO project
[24] is one of the efforts using this idea to complement
timing model of EAST-ADL for automotive domain. In gen-
eral, EAST-ADL and its requirement model may not be
appropriate and compatible as a whole for requirements in
telecommunication domain. It does not cover security aspects,
which are important for telecommunication systems, is aligned
with EAST-ADL’s specific abstraction levels, and is based
on concepts like ECU, VehicleFeature, AutosarSystem, and
Sensor which are not relevant for telecommunication systems.
In order to better capture requirements of telecommunication
systems that originate from their specific characteristics such
as intensive performance demands, distribution, use of multi-
core solutions, virtualization and hierarchical schedulers, etc.
a tailored solution for this (sub)domain is required.

IV. SUGGESTED UML PROFILE

Adopting a model-based approach for the development of
telecommunication systems helps to raise the abstraction level
and cope with the design complexity. This also targets the
challenge to shorten the feedback loop and enable analysis in
earlier phases of development.

In this section, the key concepts that a desired UML profile
for telecommunication systems should be able to offer are
discussed. We explain traceability concepts from SysML,
modeling general non-functional requirements with MARTE
highlighting its relevant and interesting features for telecom-
munication domain and how to model security aspects along
with an example of its analysis. Later in section 6, we compare
the features of our suggested UML profile with EAST-ADL.

A. Modeling Traceability Using SysML

For modeling of requirements, SysML provides a specific
diagram, which can be a solution to the issues regarding man-
agement of non-functional requirements of telecommunication
systems identified in previous sections. An important feature
of SysML is to represent requirements as first-class model
elements. So requirements are included as parts of the system
architecture and have semantics [25]. This also enables estab-
lishing relationships between requirements and other model
elements showing, for example, design artifacts implementing
and satisfying a requirement. It is possible to decompose
requirements and create a hierarchy of requirements, which
is needed to cope with the complexity of requirements faced
in telecommunication domain. SysML provides different types
of associations among requirements, which include: copy,
deriveReqt, satisfy, verify, refine and trace.

The counterpart of these associations are derivedFrom, sat-
isfiedBy, refinedBy, tracedTo, verifiedBy and master properties
that a requirement element can have. For example, satisfiedBy
property of a requirement element contains the information of
the model element that satisfies this requirement (counterpart
of satisfy association). This way, SysML facilitates traversing
back and forth between requirements and also model elements
from high level departments in organizational hierarchy to
lower level departments and development teams.

Another feature that SysML provides is requirements table.
Requirements table provides traceability information for re-
quirements in a single view, which is very helpful in managing
the big number of versatile requirements in telecommunica-
tion systems. In this tabular representation of requirements,
information such as requirements properties and types, de-
pendency relationships with other elements/requirements and
other information such as design rationale and test procedures
may be included. By going through this table, it is possible to
analyze the change (e.g., modification, deleting) effect of one
requirement on other requirements in the systems. So basically,
by providing different types of association and dependency and
the tabular representation of requirements, SysML can answer
problems identified for traceability and impact analysis of
requirements in a complex and hierarchical telecommunication
system. Moreover, by using stereotypes it is possible to extend
SysML, which makes it very flexible to add new semantics
such as new types of associations or requirements. An example
of this extension is provided in [25], where three stereotypes
for functional requirements, non-functional requirements and
external interface are defined and used to model a system.

B. MARTE for Non-functional Requirements and Analysis
Support

To represent the properties of non-functional requirements
such as timing constraints in a formal way, MARTE provides
rich modeling semantics. MARTE profile consists of different
subpackages and in this section we try to identify packages and
semantics in them, which serve to represent the type of non-
functional requirements we identified in a telecommunication
system.

MARTE NFP Types, Value Specification Language (VSL)
and the stereotypes defined in NFP package (Non-Functional
Properties) help to define different non-functional properties
specific to different domains. NFP package makes it possible
to define percentage, dimensions, measurement precision and
similar concepts for non-functional properties. Examples of
basic NFP types already defined in MARTE type library can
be power, frequency, duration, energy, weight, length, arrival-
pattern (periodic,aperiodic, sporadic), price, etc. For time spec-
ifications, MARTE offers the time package and representation
of time in MARTE can be in the form of a physical (continuous
or discretized) or logical clocks (processor cycles, engine
rotation, algorithmic steps. . .). The concept of multiform time
provided in MARTE is very useful for telecommunication
domain, which has already started heading for multi- and
many-core solutions. The semantics to model the execution

216

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 232 / 612

platform (operating system, virtual machines, hardware) are
packaged in Generic Resource Modeling (GRM), Software
Resource Modeling (SRM) and Hardware Resource Modeling
(HRM). With SRM it is possible to model concepts such as
resources, services, concurrency and mutual exclusion features
in a Real-Time Operating System (RTOS) as well as virtual
machines, which are used in telecommunication systems. The
stereotypes in HRM package enable modeling of processing
units, different levels of memory, devices and their physical
aspects such as layout in the system, power consumption, and
heat dissipation. These concepts can be used to target non-
functional requirements such as cost sensitivity, execution ca-
pacity, and environmental requirements (layout, size, structure,
etc.).

An interesting feature provided in GRM is the modeling of
primary and secondary schedulers, which enables modeling
of systems having hierarchical schedulers. This is helpful for
telecommunication domain in which, use of hypervisors and
virtual operating systems on top of another operating system
is common.

To model dependability requirements (reliability, availabil-
ity, maintainability, safety), which is an important feature of
telecommunication systems, there is a suggestion for an ex-
tension to MARTE, that is introduced in [26] as Dependability
and Analysis Modeling (DAM) (sub)profile and offers relevant
concepts such as threats (fault, failure, error, hazard, accident),
maintenance, redundancy, etc.

C. Covering Security Aspects

Security in embedded systems is becoming more important
and gaining greater attention. More mechanical parts are re-
placed by computer systems and the use of wireless technolo-
gies for communication between different units is becoming a
dominant trend. In automotive domain for example, features
such as traffic and accidents notification systems, built-in
bluetooth devices and distance calculator between cars are
representatives of such cases that require communication with
other cars and devices. Such features along with electronic
access controls (e.g., access to the vehicle internal bus and
electronic locks) also open up the system for more security
threats.

Due to the nature of systems in telecommunication domain,
which naturally involve long distance communications and at
a big level of distribution and scalability with many nodes and
access points on the way, security aspects have always been
an unavoidable part. A single telecommunication node such as
a Radio Base Station (RBS) can serve different requests from
different sources and these operations should be kept separate
from each other keeping data intact and safe from interference.
It becomes more critical when we add to the picture other
services in the system such as call cost calculation for users
and (recently) data traffic including images, emails, and other
sensitive and personal information. However, in the design of
a system, security considerations should not be considered as
an add-on, but they should be taken into account from early
phases of design.

UMLsec covers a broad scope and has a versatile tool
suite for analysis. Using that we can complement model-
ing of security requirements as first class entities. With the
help of SysML, relationships between them and other non-
functional requirements and also design artifacts can be added
and detailed non-functional properties using MARTE can be
specified for them if necessary. So for example, it becomes
possible to model nodes in a system as resources using
MARTE GRM package, and then define necessary users, roles
and communication security requirements between the nodes
using UMLsec profile. The relation between these elements
and the source requirement element incurring such security
design can be established using SysML requirements concepts.

UMLsec offers several stereotypes such as Internet, wire,
LAN, encrypted for physical links between nodes. These
concepts can be applied on communication links in telecom-
munication systems. Each link type in UMLsec is defined
as prone to different types of threats (read, insert, delete)
from different attackers. For example, a link stereotyped as
LAN or wire, has no threat from a default (external) attacker.
However, an insider attacker can still pose read, insert and
delete threats regarding the packets and information transferred
on such a link. If it is needed to define new types of links,
attackers or threats, UMLsec allows this. The new concepts
can be defined in the UMLsec appropriate format in an XML
file, so that the analysis tool can perform correct analysis
based on these custom concepts on a model that makes use of
them. In this sense, the analysis tool is flexible and extensible.
Secrecy stereotype that is used on dependency relationships
applies a secrecy/confidentiality requirement on the elements
of dependency base class. This way, we specify that there is
a secrecy requirement for the involved elements.

V. MODELING A SECURITY REQUIREMENT USING THE
SUGGESTED PROFILE

In a typical 3G telecommunication network, different groups
of Radio Base Station (RBS), Radio Network Controller
(RNC) and Media Gateway (MGW) nodes are connected
and communicate. When a Mobile Equipment (ME) wants
to join the network, it starts communicating with RBS and
authenticating itself to the system. Security operations such
as key exchange take place through the communication path
from the mobile equipment to the RNC. In our case study, we
have two RBS 3202 nodes that communicate with an RNC.
The output power requirements for RBS 3202 are as follows:
Req1: Optimized Power 15W, Standard Power 20W, High
Power 30W and Dual High Power 60W.
One of the security requirements that exist for the connection
between the RBS and RNC is:
Req2: Data communication between RBS nodes and RNC
should only be readable by inspection group.

The second requirement incurs that no one from outside
and also inside of the network should be able to read the data
traffic on the links between RNC and RBS except users in
the inspection group. Thus the data should be encrypted using
a specific key for this group. We try to violate this in our

217

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 233 / 612

Fig. 1. Security Requirement on RBS Nodes

::::::::Against Default Attacker
=======Here begins the verification
The name of the dependency is RBS2_Dependency
The stereotype of the communication link of the dependency RBS2_Dependency is LAN
The stereotype of the dependency is: secrecy

* The UML model satisfies the requirement of the stereotype secure links.
...
::::::::Against Insider Attacker
=======Here begins the verification
The name of the dependency is RBS2_Dependency
The stereotype of the communication link of the dependency RBS2_Dependency is LAN
The stereotype of the dependency is: secrecy

* The UML model violates the requirement of the stereotype secure links, but
it has been fixed.
...

Fig. 2. Result from UMLsec Analysis Tool

example model by using unencrypted links and then perform
analysis on the model.

As shown in Figure 1, the requirements and the relation-
ships between them and design artifacts are modeled using
SysML concepts. MARTE non-functional concepts (i.e., nfp,
nfpconstraint, PowerUnitKind and NFP Power) are used for
modeling output power requirements of RBS nodes. Security
concepts in our model are represented using UMLsec stereo-
types. The link between RBS1 and RNC is marked with wire
stereotype and the one between RBS2 and RNC is marked
with LAN stereotype (in UMLsec wire and LAN are two
different security stereotypes that can incur different security
characteristics).

Doing analysis using UMLsec analysis tool on the model
yields the result that is shown in Figure 2. The important part
in this analysis output (marked with *) is that LAN and wire
links are not readable by a default (external) attacker thus
the model satisfies the secrecy requirement for this attacker
type, but an insider attacker on LAN or wire can access the
information and therefore the model violates the requirement.
Although UMLsec has a general encrypted stereotype to label
encrypted communications, it is also possible to define a
custom stereotype for example as “Uniquely encrypted by SIM
ID” and define different threats that different attackers can
pose on these links such that only inspection group users can
have access. Then we can use this stereotype on the links
instead of LAN and wire that we used earlier, to create a model
that satisfies the requirement and verify it with the analysis
tool.

VI. DISCUSSION

As mentioned in the related work section, EAST-ADL is a
modeling solution for automotive domain that is built using
a similar approach to what we proposed here by adopting
from several UML profiles. It is successfully accepted in the
automotive domain and its usage together with AUTOSAR is
gaining more momentum. In table I, a comparison of capa-
bilities of our suggested solution using MARTE plus SysML
and UMLsec against those of EAST-ADL is presented, with a
focus on modeling concepts and features that are necessary for
NFRs in telecommunication domain (e.g., processing capacity
and memory consumption that are important for performance
analysis). It summarizes the concepts we discussed and iden-
tified in previous sections. The star mark in the table is used
to indicate that the feature is not enough/fully supported, such
as the dependability modeling in our approach. However, it
can be covered by using the DAM profile introduced earlier,
which is built as an extension to MARTE. Modeling of time
for schedulability analysis support in EAST-ADL needs also
to be complemented (as is investigated in [24]).

TABLE I
COMPARISON OF THE SUGGESTED UML-BASED MODELING SOLUTION

WITH EAST-ADL OF AUTOMOTIVE DOMAIN.

Modeling Feature Our Approach EAST-ADL

Generic NFRs (SysML Style) X X
Traceability of NFRs X X
Timing, Clock, Schedulability Support X *
Memory consumption X 7
Processing capacity X 7
Power consumption X 7
Virtual machines and hierarchical schedulers X 7
Hardware platform X X
Multicore X 7
Allocation and Deployment X X
Communication media X 7
Safety 7 X
Security X 7
Variability (product families) 7 X
Methodology (e.g., abstraction levels) 7 X
Dependability (e.g., fault, error...) * X
Synchronization mechanisms X 7
Arbitrary Non-Functional Properties X 7
Component model X (AUTOSAR)

From the table, it can be seen that by tailoring a UML
profile for telecommunication systems based on the concepts
in the three available profiles we discussed in this paper
(MARTE, SysML and UMLsec), it is possible to better cover
the requirements of telecommunication systems, than just re-
using only EAST-ADL modeling semantics from automotive
domain, which are tailored for the needs of systems in that
domain. Security is one of the specific needs of telecommu-
nication systems that is not supported by EAST-ADL and has
not been in the main focus in automotive domain (so far).
While on the other hand, safety requirements, which are very
important for automotive systems, are explicitly supported
in EAST-ADL. For differences between safety and security
requirements, interested readers can refer to [27].

While in this paper, we discussed a UML-based solution by
adopting and tailoring already existing profiles, other methods

218

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 234 / 612

of defining a specific language for modeling telecommuni-
cation systems are, of course, possible. However, although
designing a domain specific language from scratch may match
the needs of telecommunication systems better, it also implies
the need to design dedicated modeling tools, and additional
costs for training the users to learn the new language. On the
other hand, some of the benefits of a solution based on UML
are that many users are already familiar with UML, and thus,
the learning curve is smaller. Also, there are already many
tools for creating UML models which can be used ’out of
the box’ [7], [8]. One point to remember though is that, as
mentioned before, combining different UML profiles can be
problematic in some cases. For example, there is FlowPort
both in SysML and MARTE. However, the semantics of
FlowPort in SysML are different from those of MARTE. A
systematic approach is suggested in [9] to ensure consistency
in merging UML profiles.

Regarding the management of models, based on the features
of the modeling tool, there can be several scenarios. For
example, different models can be created for different aspects
of the system. This can also help with the analysis, as one
model for each type of analysis can be created. However, main-
taining consistency between different models of the system and
redundant information modeling are some of the challenges of
this approach. Another scenario could be to have one single
model for the system, and then have the modeling tool provide
different views of the core model. This way, a user can just
focus on the aspects of his/her interest in each view, while
modifications are persisted into one single model representing
the system. This method is under development in CHESS
project [11].

As for the analysis of the models, although this topic is not
the main focus of this paper, but we provide some hints here.
Basically, the process of analysis can be different for various
analysis tools, and depending on which types of analysis are
of interest for different end-users. In case of having just one
single model of the system, if an analysis tool can ignore non-
relevant model elements and perform analysis on the relevant
parts, the model can be fed as input to the analysis tool directly.
However, if non-relevant model elements may cause problems
for the analysis, then it is possible to use model transformation
to extract only the relevant ones into a new model appropriate
as input for the analysis tool. Also, if the input model of
any analysis tool has its own specific meta-model, then model
transformation techniques can again be used to transform the
original model into a new model conforming to the meta-
model of the analysis tool.

VII. CONCLUSION AND FUTURE WORK

In this paper, we discussed several challenges in modeling
non-functional requirements in telecommunication domain.
We also suggested a modeling approach for representation
of non-functional requirements and their properties in this
domain. Our approach was to consider telecommunication
systems as a subdomain of RTES and therefore adopt from
available modeling solutions for non-functional requirements

and their analysis that already exist in RTES domain. Some
concepts of MARTE that can cover the requirements of
telecommunication systems were highlighted. For traceability
aspects, SysML and the features it provides in establishing
traceability in modeling of non-functional requirements were
introduced. Finally, as a specific and intrinsic requirement in
telecommunication domain, it was shown how it is possible to
model and analyze security that is addressed in our suggested
approach by adopting UMLsec. This way, we showed not
only how it is possible to model different types of non-
functional requirements, but also how model-based analysis
can help with the need to perform analysis of non-functional
requirements at earlier phases of development and therefore
reduce time and cost. In CHESS European project [11], we are
developing a similar solution by using subsets from MARTE,
SysML and DAM profile (without security considerations yet)
to generate code for telecommunication systems (in this case,
Ericsson platforms) considering and preserving non-functional
requirements modeled using the mentioned subsets.

As further studies, it is necessary to augment the suggested
approach in this paper, such as introducing it as part of a well-
structured methodology similar to the methodology suggested
in [28]. This methodology is more suited for automotive
domain as it makes use of EAST-ADL and its abstraction
levels. Applicability of the same concepts to telecommuni-
cation domain could be an interesting topic to investigate.
Especially that EAST-ADL offers concepts for modeling vari-
ability requirements, which can be very useful in telecommu-
nication domain for modeling product families, targeting cost-
sensitivity non-functional requirements and performing cost
analysis.

Also other challenges that exist regarding non-functional
requirements in a model-based development approach can
be guaranteeing and preservation of these requirements on
the target platform, introducing runtime adaptability and re-
configuration based on the requirements and handling their
violations.

As a last note, in this paper we set the basis for a
UML-based solution for telecommunication systems similar to
EAST-ADL in automotive domain. While it was demonstrated
how we can relate high-level and abstract representation of an
NFR such as security with its lower level realizations and
perform security analysis on it, a full scale solution needs
contributions from different industrial partners active in the
domain as has been done in the process of defining EAST-
ADL and AUTOSAR.

REFERENCES

[1] T. Henzinger and J. Sifakis, “The embedded systems design challenge,”
in Proceedings of the 14th International Symposium on Formal Methods
(FM), Lecture Notes in Computer Science, August 2006.

[2] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl, “The bad conscience
of requirements engineering : An investigation in real-world treatment
of non-functional requirements,” in Third Conference on Software En-
gineering Research and Practice in Sweden (SERPS’03), Lund :, 2003.

[3] MARTE specification version 1.0 (formal/2009-11-02), http://www.
omgmarte.org, Accessed: August 2011.

[4] EAST-ADL Specification V2.1, http://www.atesst.org, Accessed: August
2011.

219

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 235 / 612

[5] OMG SysML Specifcation V1.2, http://www.sysml.org/specs.htm, Ac-
cessed: August 2011.

[6] J. Jürjens, Secure Systems Development with UML, ISBN: 978-3-540-
00701-2. Springer, 2005.

[7] I. Weisemöller and A. Schürr, “A comparison of standard compliant
ways to define domain specific languages.” Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 47–58.

[8] B. Selic, “A systematic approach to domain-specific language design
using uml,” in Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing,
2007.

[9] F. Noyrit, S. Gérard, F. Terrier, and B. Selic, “Consistent modeling using
multiple uml profiles,” in Model Driven Engineering Languages and
Systems, 2010.

[10] A. Borg, M. Patel, and K. Sandahl, “Good practice and improvement
model of handling capacity requirements of large telecommunication
systems,” in RE ’06: Proceedings of the 14th IEEE International
Requirements Engineering Conference, Washington, DC, USA, 2006.

[11] CHESS Project: Composition with Guarantees for High-integrity Em-
bedded Software Components Assembly, http://chess-project.ning.com/,
Accessed: August 2011.

[12] Telecommunication Standardization Sector (ITU-T), http://www.itu.int/
en/pages/default.aspx, Accessed: June 2011.

[13] M. R. Abid, D. Amyot, S. S. Somé, and G. Mussbacher, “A uml profile
for goal-oriented modeling,” in Procs. of SDL’09, 2009.

[14] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in Proceedings of the
5th International Conference on The Unified Modeling Language, ser.
UML ’02, 2002.

[15] K. Alghathbar and D. Wijesekera, “authuml: a three-phased framework
to analyze access control specifications in use cases,” in FMSE ’03:
Proceedings of the 2003 ACM workshop on Formal methods in security
engineering. New York, NY, USA: ACM, 2003, pp. 77–86.

[16] A. Cenys, A. Normantas, and L. Radvilavicius, “Designing role-based
access control policies with uml,” in Journal of Engineering Science
and Technology Review, vol. 2, no. 1, 2009, pp. 48–50.

[17] K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
security aspects in uml models,” Toulouse, France, September 2008.

[18] S. Demurjian, J. Pavlich-Mariscal, and L. Michel, “Enhancing uml to
model custom security aspects,” in Proceedings of the 11th International
Workshop. on Aspect-Oriented Modeling, October 2007.

[19] T. Doan and S. Demurjian, “A.: Mac and uml for secure software
design,” in In: Proc. of 2nd ACM Wksp. on Formal Methods in Security
Engineering. ACM Press, 2004, pp. 75–85.

[20] S. H. Houmb and K. K. Hansen, “Towards a uml profile for security
assessment,” in Workshop on Critical Systems Development with UML,
2003.

[21] AADL, “The Architecture Analysis & Design Language: An Intro-
duction ,” http://www.aadl.info/aadl/currentsite/aadlstd.html, Accessed:
August 2011.

[22] AUTOSAR Home Page, http://www.autosar.org/, Accessed: August
2011.

[23] S. Ansi, A. Albinet, S. Tucci-Pergiovanni, C. Mraidha, S. Gérard, and
F. Terrier, “Completing east-adl2 with marte for enabling scheduling
analysis for automotive applications,” in Embedded Real Time Software
and Systems Conference (ERTS), Toulouse, France, 2010.

[24] TIMMO Project, http://www.timmo.org/, Accessed: August 2011.
[25] M. dos Santos Soares and J. L. M. Vrancken, “Model-driven user

requirements specification using sysml,” Journal of Software, vol. 3,
pp. 57–68, 2008.

[26] S. Bernardi, J. Merseguer, and D. Petriu, “A dependability profile within
marte,” Journal of Software and Systems Modeling, 2009.

[27] E. Albrechtsen, “Security vs safety,” NTNU - Norwegian University
of Science and Technology http://www.iot.ntnu.no/users/albrecht/, Ac-
cessed: May 2011.

[28] A. Albinet, J.-L. Boulanger, H. Dubois, M.-A. Peraldi-Frati, Y. Sorel,
and Q.-D. Van, “Model-based methodology for requirements traceability
in embedded systems,” in Procs. of ECMDA’07, Haifa, Israel, Jun. 2007.

220

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 236 / 612

A Maintenance Approach of a BJI Index Configuration

Saïd Taktak
University of Sfax, FSEGS Faculty, P.O.Box 1088

Miracl Laboratory
Sfax, Tunisia

Said.taktak@gmail.com

Jamel Feki
University of Sfax, FSEGS Faculty, P.O.Box 1088

Miracl Laboratory
Sfax, Tunisia

Jamel.Feki@fsegs.rnu.tn

Abstract— In data warehousing domain, OLAP (On Line
Analytical Processing) queries are complex since they use
several tables with huge cardinalities. Several optimization
techniques have been studied in the literature as materialized
views and bitmap join indexes (BJI). BIJ indexes are useful to
pre-calculate star joins in order to reduce the execution cost.
Current approaches for the selection of BJI define a
configuration that optimizes a beforehand definite workload of
queries. However, this workload can evolve in time and is
likely to make obsolete the configuration of index created. In
order to take into account the evolution of a workload of
queries, we propose, in this article, a maintenance approach
for the recommendation of a new configuration of indexes. Our
approach starts with an evaluation of the current configuration
of indexes and then adapts it to the new workload of queries
with an aim of guaranteeing the stability of performances.
Queries of the new workload are directly extracted from log
files. Furthermore, to validate our approach, we carried out a
series of experimentations on a data warehouse created with
the DWEB benchmark.

Keywords-data warehouse; bitmap join indexes; tuning.

I. INTRODUCTION
Due to the exponential increase in the volume of data,

enterprises focus on the decisional information and, therefore
move from a simple processing of data to a logical analysis
of data. The data warehouse formalized in the early 90s by
Inmon is the appropriate solution [1]. In fact, it
is particularly designed to respond to complex decisional
queries.

At the conceptual level, the data warehouse is usually
modeled by a star schema that highlights the topic analyzed
as a central fact (i.e., the fact table) which is composed of
numerical attributes and connected to dimensions (i.e.,
dimension tables) representing the axes of analyses. The
large volume of data manipulated by analytical queries (i.e.,
decisional) and the high number of tables to be joined raise
the problem of performance [2]. In order to optimize these
queries, taking intensive execution time, the data warehouse
administrator (or designer) has to successfully achieve the
physical design step [3]. This is why, he or she should select
a set of optimization techniques that they consider pertinent
to respond to the decision makers needs (i.e., expressed as a
workload of queries defined beforehand). Several
optimization techniques have been studied for relational data
warehouses, some of which are inherited from traditional

databases. A Database management system (DBMS) offers
techniques such as:

 Materialized views [4] improve the execution time
of queries by pre-computing the most expensive
operations such as joins and aggregations.
Consequently, the execution of some queries OLAP
requires only the access to one materialized view
instead of its original data tables.

 Fragmentation [5] allows dividing the data of a DW
into multiple partitions that can be accessed
separately. It can be either vertical or horizontal (by
projection or selection algebraic operators).

 Parallel query processing [6]. The query is divided
into components that can be treated simultaneously.
The results are combined and delivered to the
customer as a single component.

 Advanced indexes [7], etc.
These optimization techniques can be used in an isolated

manner (i.e., selected independently) or in a combined
way (by exploiting the dependencies between them). The
second way provides good results, because each technique
can compensate the shortcomings of others.

In the data warehouse context, the indexing technique is
an important issue due to the large volume of manipulated
data and to the complexity of processed queries. The bitmap
join indexes (BJI) pre-compute the joins between the fact
and its dimension tables. A BJI index is defined on the fact
table by using the values of one or several attributes
belonging to dimension tables. This increases the number of
possible indexes [8]. Several research studies have proposed
optimal solutions to help the data warehouse administrator to
select a BJI configuration that minimizes the execution cost
of a given workload of queries.

However, the task of the administrator is more
complicated than that. In fact it is not sufficient to establish
the appropriate optimization technique, but it is more
important to adjust the use of this technique in response to
the occurring evolution on the data warehouse to avoid the
performance degradation. This evolution may affect three
things: (1) the schema and the content of the data warehouse
tables, (2) the size of the memory space allocated to the
optimization techniques selected, and (3) the workload of
queries on which the selection of optimization technique has
been established. In this paper, we propose an approach for
the maintenance of a current BJI configuration (e.g., in use)
in order to face the evolution of a workload of queries. This

221

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 237 / 612

evolution may concern many aspects as the frequency of
access of the queries, the addition of new queries or even the
deletion of existing ones, etc.

This article is organized into six sections: Section 2
recalls the definition of the BJI and illustrates it through an
example. Section 3 presents a formalization of the selection
problem of BJI and explores the existing approaches of
indexing and their lacks. Section 4 is devoted to the
presentation of our maintenance approach. Section 5
describes a set of experiments we have done. Section 6
concludes this article and enumerates some perspectives.

II. BINARY JOIN INDEX
A binary join index BJI ("bitmap join index") allows pre-

joining the fact table with its dimension tables in a data
warehouse. A BJI has the same number of tuples as its fact
table and as many columns as the number of distinct values
of the dimension attribute on which the BJI index is built [9].
The bit at row i and column j of the BJI index is set to 1 if
the ith tuple of the fact table can be joined with the tuple of
the dimension table that has the value of the indexed attribute
(i.e., in column j). Otherwise, this bit is set to zero.

Fig. 1 represents the Product_Type BJI built on the fact
table Sales using the Type attribute of the dimension table
Product.

Figure 1. Bitmap join index (BJI).

In these tables, each tuple is identified with a unique

identifier denoted RID (Row IDentifier) generated by the
DBMS. The index of Fig. 1 can be constructed by the
following SQL statement:

CREATE BITMAP INDEX Product_Type
ON Sales (Product.Type)
FROM Sales S, Product P
WHERE S.PID = P.PID

The first tuple of the Sales table is joined with a tuple of
the Product table corresponding to a Type product T1.
Therefore, the bitmap corresponding to type T1 of the first
row of this index is set to 1 and then the remaining bits are
set to zero.

Note that a BJI is particularly useful for star joins; like
conventional binary indexes, it is very beneficial for
Count(*) queries where the response to these requests
requires only access to the binary index. No access to data

tables is necessary; we just need to count the number of 1 in
the bitmap array that results of the requested operations. For
instance, to determine the number of sales for products of
Type T2, we count the number of 1 in column T2 of the BJI.
For more complex queries (i.e., using several indexed
attributes, the logical operators (e.g., AND, OR) are useful.

III. INDEX SELECTION PROBLEM
Index selection is a crucial step in the physical design of

the data warehouse. It consists in building an index
configuration to optimize the execution cost of a workload
(of queries). This optimization can be realized respecting
certain constraints, such as the storage space allocated to the
index configuration or the cost of maintenance.

Generally, the algorithms proposed for index selection
include three steps:

(1) Identification of candidate attributes for indexing.
(2) Pruning.
(3) Construction of an index configuration.
During the first step, a set of candidate attributes can be

built manually by the administrator according to his
expertise, or automatically by using a queries parser. The
step of pruning is necessary to reduce the number of
candidate attributes for indexing; it is done by referring to
certain criteria, for example, by eliminating high cardinality
attributes or those belonging to small tables [10].

The third step builds progressively a final configuration
of BIJ respecting the constraints of execution and the storage
cost. It is often done by selection algorithms (Glouton
algorithms) or directed by data mining techniques [11] [12],
or even genetic algorithms [13]. The quality of the generated
index configuration is measured by its cost which is -
calculated using the optimizer of the DBMS or by a
mathematical cost model. All these approaches of BJI
selection are applied in a static context (i.e., a workload
defined beforehand); however, this workload may evolve in
time and might yield obsolete its associated index
configuration. To the best of our knowledge, the work in [14]
is the only attempt that has tackled the problem of BJI
dynamic selection after a workload evolution. It represents
an extension to the approach of selecting BJI [15] which is
based on data mining technique for the detection of frequent
itemset. In fact, the proposed approach is to increment the
frequent itemset by referring to a knowledge base that stores
information (frequent itemset) of anterior executions. New
frequent itemsets are analyzed to generate new candidate
indexes; declined (now infrequent) itemsets correspond to
indexes to be dropped.

The limited number of algorithms interested in the
problem of dynamic index selection led us to propose a new
approach. Our approach helps the administrator to maintain
the existing index configuration during the evolution of
queries executed on the data warehouse.

IV. MAINTENANCE APPROACH BY RECONFIGURING BJI
INDEXES

In this section, we present our approach of BJI
maintenance which reduces the execution’s cost of a new

Dimension Table:
Product

RID PID Label Type

1 124 L1 T1
2 137 L2 T1
3 154 L3 T2
4 166 L4 T3
5 181 L5 T2
6 209 L6 T1

Fact Table:
Sales

RID PID …. Amount

1 124 1213
2 137 23232
3 166 23244
4 154 4544
5 154 4544
6 166 444534
7 166 33550
8 181 6777
9 209 6555

10 209 4544

Binary Join Index

RID T1 T2 T3

1 1 0 0
2 1 0 0
3 0 0 1
4 0 1 0
5 0 1 0
6 0 0 1
7 0 0 1
8 0 0 1
9 1 0 0

10 1 0 0

222

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 238 / 612

workload. Our approach is placed in a general framework,
which allows illustrating the interest of BJI maintenance.
Since the BJI’s selection is based on a fixed set of queries,
any change in this set may affect the existing
BJI’s configuration. Fig. 2 outlines the general architecture
of our approach. Unlike the proposed approaches of BJI
selection, it is not only based on the optimization process on
a workload, but it also takes into consideration the existing
BJI.

The objective of our approach is to assist the
administrator to maintain an initial configuration of BJI
during the evolution of the initial workload Q to a new one
Q', by proposing a new index configuration which ensures
the reduction of Q' cost. The problem can be formalized as
follows:

 A data warehouse composed of d dimension tables D
= {D1, D2 ..., Dd} and a fact table F.

 A set of n BJI Icurrent ={BJI1, BJI2…, BJIn} created
referring to the initial workload Q.

 fui represents the frequency use of BJIi for a given
period P sufficiently significant, so that it covers a
maximum of treatments.

 Q is a workload of m queries Q = {q1, q2 ..., qm},
extracted from the DBMS log file.

 fqi frequency execution of query qi.

Figure 2. Maintenance approach architecture.

We detail in the following sections, the four steps illustrated
in Fig. 2.

A. Classification of existing indexes
The current configuration of BJI was created specifically

to optimize an initial workload Q of queries. The evolution
of the workload Q to Q' can degrade the global performance
of Q'. In fact, the new queries are not necessarily optimized
compared to the current BJI configuration. In addition, some
indexes may become unexploited if they are built to optimize
queries actually infrequently executed.

To optimize the new workload Q', we proceed to analyze
the utility of the current BJI indexes (Icurrent) based on the
actual frequency of use (fu) of each index during a period of
time and, secondly, on the average frequency fm of all Icurrent
indexes used during the same period. This average frequency
is calculated by formula (1):

This frequency will allow us to classify the Icurrent set in

three subsets:
 Ihigh: represents the subset of indexes heavily used,

that means, those whose frequency of use is higher
than 3*fm/2. The BJI belonging to this group are
considered important and will be retained to be
present in the new configuration BIJ optimizing Q'.

 Imedium: represents the subset of indexes used
moderately, those whose frequency of use is
between fm/2 and 3*fm/2. The relevance of these
indexes will be reviewed during the index’s
selection step to decide whether to keep or reject.

 Ilow: represents the subset of indexes slightly used,
i.e., those whose frequency of use fu is less than fm/2.
These indexes are rarely or completely unused
when running queries from the initial workload. In
addition, they occupy a memory space and require a
maintenance cost without a justified usefulness. So
it is better to remove these indexes and then recover
their storage space.

Table I shows an Icurrent set of 8 indexes to optimize a
given initial workload Q. The total usage of all indexes is 80
and the average of their frequency of use fm is 10 (= 80/8).

TABLE I. EXAMPLE OF A SET OF BJI WITH THEIR FREQUENCY OF USE

Indexes frequency of use

BJI1 20

BJI2 8

BJI3 1

BJI4 6

BJI5 9

BJI6 27

BJI7 2

BJI8 7

Total 80

According to our proposed classification, this set of

indexes will be split into three subsets:

Nouvelle
charge Q’ de

requêtes

Classification des index
Icourant

Configuration
d’IJB courante

Icourant

Evaluation du coût et
classification des requêtes

Q’OpQ’NopIFort IMoyenIFaible

Génération des index
candidats

Index
générés

Définition d’une configuration
Partielle

Nouvelle
configuration
recommandée

Méta-données

Schéma,Statistique

Entrepôt de
données

)1(1

n
fu

fm
n

i i 

223

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 239 / 612

 2
)(

)'(
1

1









 m

i i

m

i ii

fq

qCostfq
QCostAvg

)3(sup iifitness 

 Ihigh = {BJI1, BJI6 }
 Imedium = {BJI2, BJI4, BJI5, BJI8 }
 Ilow = {BJI3, BJI7 }

We find out that both indexes BJI3 and BJI7 are too little
used by the initial workload and, therefore, can be dropped.
The drop of indexes with a low-frequency usage optimizes
the storage constraint, but it does not improve the global
execution’s performance.

In parallel, we study the new workload to examine
whether it is optimized in respect to the current configuration
otherwise we must change this configuration by adding new
indexes. This requires the evaluation of the new workload
(Q’) execution costs and the identification of its non
optimized queries in order to consider them when defining
the new configuration. The next section details how we
examine this workload.

B. Costs evaluation and queries classification
First, this step consists in evaluating the m queries of the

workload Q'. In order to get closer to reality, the study of the
evolution of this workload considers the queries actually
executed on the data warehouse; we extract these queries
from the log file. We note Cost(qi) the execution cost of
query qi, and Iqi all old indexes used by the query optimizer
for qi. Based on these two factors of classification, we
subdivide Q' into two subsets of queries:

 Q'unop : represents non optimized queries from Q';
i.e., those who do not use any index during their
execution or those who have a cost of performance
higher than the average execution cost CostAvg (Q')
of the new charge Q' with:

Q’unop = {qi’  Q' / Cost (qi') > CostAvg(Q') or
Iqi’=Ø}. Queries of this set will be analyzed in the
step called candidate index generation in order to
define a new index configuration.

 Optimized queries (Q'op) is the set of remaining
queries (Q'op=Q' - Q'unop). They don’t interfere in
the definition of a new index configuration.

C. Generating candidate indexes
It is to generate indexes that improve execution

performance of the new workload Q', by focusing on all the
non-optimized queries (Q'unop). We realize this task
throughout the following three steps:
(1) Identification of indexable attributes for Q'unop.
(2) Construction of a BJI configuration per query.
(3) Pruning of indexable attributes.

At the end of these three steps, which we detail below,
we obtain a set of candidate indexes that will be evaluated
(cf. Section D).

1) Identification of indexable attributes
Non optimized queries are handled by a syntactic analyzer

to extract all attributes that may be carried for indexes.
These attributes are those present in the WHERE,

GROUP BY and ORDER BY clauses of queries. For
example, the indexable attributes issued from the following
query are: City, Month and Type.
SELECT AVG (amount)
FROM Sales S, Customer C, Product P, Time T
WHERE S.CID = C.CID AND S.PID = P.PID
AND S.TID = T.TID AND T.Month = ’MARCH’
AND C.City IN ('SFAX', 'SOUSSE')
AND P.TYPE = 'TOY';

2) Construction of a BJI configuration per query
Referring to the attributes extracted in the previous step,

we construct a matrix query-attribute where it lines
represent queries of Q' and columns represent candidate
attributes for indexing. The existence of an indexed attribute
in a query is represented by the integer 1 and its absence by
zero.

Fig. 3 is an example of matrix built on a workload of six
queries and six indexable attributes noted A, B, C, D, E, F.

Figure 3. Matrix Query-Attribute.

3) Pruning
The input of this step is the configuration of candidate

indexes from the previous step. This index configuration is
beneficial for the whole set of queries because each index
has been defined to optimize queries separately. However,
this configuration can be very large: it may include some
attributes which are not suitable for indexing (high
cardinality or belonging to small tables) [16], therefore their
removal is recommended to reduce the cost of storage space
for indexes. This removal operation is the Pruning process; it
is based on a Fitness parameter introduced by [17] in the
context of frequent patterns. We were inspired by this work
to define a simplified formula applicable to each individual
attribute. This Fitness parameter takes into consideration
both the frequency of occurrence of attributes in queries and
the table size.

where supi represents the frequency of occurrence of
attribute i in all queries and αi = |Di|/|F|.
Attributes having a Fitness parameter less than the threshold
minsup are not indexed; minsup in [0, 1] is defined as a
parameter by the administrator.

The generated number of indexes is less than or equal to
the number of the workload queries, firstly because some
queries share the same indexes, secondly, it is unnecessary to
generate indexes that already exist (belonging to an entire
index of the current configuration Icurent). This step generates

A B C D E F

Q1 0 1 0 1 0 0

Q2 0 1 1 0 0 0

Q3 1 0 1 0 1 0

Q4 0 0 1 1 0 0
Q5 0 0 1 0 1 1
Q6 0 0 1 0 0 0

224

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 240 / 612

a set of candidate indexes created referring to Q’unop. This set
will serve together with the moderated used indexes (Imedium)
to recommend a fairly new configuration.

D. Definition of a configuration to recommend
The union of the candidate indexes generated from the

previous step with those belonging to the set of indexes
moderately used (Imedium) forms the set of all indexes to be
selected for the final configuration (Fig. 2). During this
stage, the indexes that do not ensure an important gain of
cost are considered to be useless and therefore eliminated.
We use a Glouton algorithm as in [17] to select the best
indexes among the n candidate indexes. The selection of an
index configuration is an iterative approach by selecting, at
each iteration, the index that most reduces the cost of
queries execution as the storage space constraint is
respected. Finally, the union of the set of selected candidate
indexes with the heavily used ones forms the final index
configuration proposed to the data warehouse administrator
(Fig. 2).

V. EXPERIMENTAL EVALUATION
In order to test our approach, we made an experimental

study on a data warehouse, we have generated under Oracle
11g, with the benchmark DWEB1 (Data Warehouse
Engineering Benchmark) [18]. This data warehouse is
composed of a fact table with 2.043.271 rows, and four
dimension tables with 4000, 100, 10000 and 1000 rows. We
used DWEB1 to generate a workload of 50 star join queries.
Several types of query were considered: Count queries,
queries using aggregate functions (Sum, Avg), queries with
dimensional attributes in the SELECT clause, etc. We
modified the cardinality of the attributes of the dimensions
and certain clauses of query’s restriction (WHERE clause
attributes) to adapt them for indexing. Our approach of
maintenance of BJI configuration is implemented in Visual
Studio 2005 and a Core 2 Duo machine with 3 GB of RAM.
We conducted a series of experiments that take place in three
phases:

 Construction of an index configuration that
optimizes our initial workload of 50 queries.

 Modification of this workload by following an
increasing trend rate and computing the new cost
before maintenance.

 Application of our approach of BJI configuration
maintenance and calculation of the execution cost
of the workload, after maintenance.

 Application of a second approach of maintenance
(naïve) on the same workloads and comparison with
the results of our proposed approach.

The execution of the initial 50 queries gave a total cost of
input-output (I/O) equal to 173 918 without any index. After
building an index configuration, the cost has been reduced to
138 231 thanks to the generation of 10 indexes (4 mono-
attributes and 8 multi-attributes).

Figure 4. Evolution of the cost according to workload.

The next step is to study the effect of the initial query

load evolution on overall performances. For this, we
modified the workload several times, according to a variable
rate of the charge evolution and keeping constant the number
of queries to 50. This modification is to delete some queries
and replace them with others of the same type (i.e., same
tables and aggregate functions with different attributes of
selection) to maintain constant the number of queries. The
choice of query to remove is done randomly. The results
(Fig. 4) show important performance degradation while the
rate of the charge evolution increases. This degradation is
due to the fact that newly added queries exploit, little or
never, the initial index configuration (i.e., Icurrent). So, it’s
necessary to maintain this configuration. The curve of the
execution cost before maintenance according to the evolution
of the workload has generally an ascendant trend but we can
see some times, zones of decline (Fig. 4) like for the
evolution rate 24% and 30 %. This can be due to the fact that
some existing indexes (i.e., present in the initial
configuration) are used by the newly inserted queries. These
used indexes are generally mono-attribute. The application of
our maintenance approach, based on the re-calculation of the
initial BJI configuration, allows the reduction of the
execution cost of the new workload compared to its
execution cost before maintenance. According to Fig. 4, the
gap between costs before (upper curve) and after (lower
curve) the maintenance of indexes becomes more and more
important when the rate of the workload evolution increases,
which is very interesting in practice because the evolution
increases as time goes on.

Figure 5. Incremental Approach Vs Destructive.

The experiments done until now approved the interest of

applying our maintenance approach (incremental), by index
reconfiguration, in order to reduce the execution cost of an

120000

125000

130000

135000

140000

145000

150000

155000

160000

165000

0% 4% 10% 14% 20% 24% 30% 34% 40% 44%

e
x
e

cu
ti

o
n

 c
o

st

Evolution rate of the load

before maintenance

after maintenance

120000

125000

130000

135000

140000

145000

150000

155000

160000

165000

0% 4% 10% 14% 20% 24% 30% 34% 40% 44%

e
x

e
c
u

t
io

n
 c

o
st

Evolution rate of the load

destructive approch

incremental Approach

225

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 241 / 612

evolving query workload. We evaluate in this section another
approach of maintenance (naive) whose principle is to
remove all existing indexes and to create a new index
configuration for each new workload. Certainly, this
destructive approach may give good results in terms of cost
of performance because it processes each workload
independently from the existing one. Fig. 5 shows that the
incremental maintenance approach gives results which are
close to those obtained with the destructive approach, even
equal in some cases, with the additional advantage of
preserving the useful indexes and creating a very limited
number of indexes; that constitutes a gain of time (creation
of new indexes) and avoids fragmentation of disk space
allocated to indexes.

In conclusion, our approach of incremental
reconfiguration provides some stability in overall
performance during the evolution of an initial workload.

VI. CONCLUSION
We proposed in this paper an approach to assist the

administrator of the data warehouse to reconfigure BJI
indexes, initially constructed on a workload of analytical
queries, following its evolution. Our approach is incremental.
It is characterized by the evaluation of the new workload
compared according to the existing configuration of BJI in
order to decide whether to recalculate a new configuration or
to keep the old one. In practice, it proceeds to a classification
of existing indexes in three categories: low, medium or highly
used. Moreover, determining a new configuration eliminates
the slightly used BJI and takes into consideration the old
indexes (moderately and highly used) and the new workload
to optimize. For the new query workload, we determine a set
of candidate BJI indexes according to the conventional
principle (extraction of indexable attributes, pruning, and
construction of a BJI configuration per query). In order to
test our approach, we have developed an iterative algorithm.
It determines the cost of a query from its execution plan
developed by the Oracle DBMS optimizer; it is to evaluate
candidate indexes. The union of selected candidate indexes
set and the highly used ones from the configuration to
maintain forms the new index configuration proposed to the
data warehouse administrator. We tested our approach on a
data warehouse built with the benchmark DWEB by varying
queries of the initial workload. The preliminary results are so
encouraging. However, other experiments will be necessary
for large scaling. Also, it would be interesting to study
performance thresholds that trigger the recommendation
process of reconfiguration.

REFERENCES
[1] W. H. Inmon and R. D. Hackathorn, “Using the Data

Warehouse”, - USA : Wiley-QED Publishing, 1994.
[2] T. Stöhr, H. Märtens and E. Rahm, “Multidimensional

database allocation for parallel”, Proceedings of the

International Conference on Very Large Databases, 2000,
pp. 273–284.

[3] S. Chaudhuri and V. Narasayya, “Selftuning database systems
: A decade of progress”, Proceedings of the 33rd International
Conference on Very Large Databases, 2007, pp. 3–14.

[4] M.Hung, M. Huang, D. Yang, and N. Hsueh, “Efficient
approaches for materialized views selection in a data
warehouse”, Inf. Sci., vol. 177, pp. 1333–1348, March 2007.

[5] S. Agrawal, V. Narasayya and B. Yang, “Integrating vertical
and horizontal partitioning into automated physical database
design”, Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2004, pp. 359–370.

[6] T. Stöhr, H. Märtens and E. Rahm, “Multidimensional
database allocation for parallel”, Proceedings of the
International Conference on Very Large Databases, 2000,
pp. 273–284.

[7] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D, “Ullman.
Index Selection for OLAP”, In Proceedings of the Thirteenth
International Conference on Data Engineering (ICDE '97).
IEEE Computer Society, Washington, DC, USA, 1997,
pp. 208–219.

[8] P. O'Neil and G. Graefe, “Multi-table joins through
bitmapped join indices”, SIGMOD Rec., vol. 24, pp. 8–11,
September 1995.

[9] P. O'Neil and D. Quass, “Improved Query Performance with
Variant Indexes”, in ACM SIGMOD International
Conference on Management of Data (SIGMOD 1997). -
Tucson , USA : 1997. - pp. 38–49.

[10] K. Boukhalfa, L. Bellatreche and Z. Benameur, “Index de
jointure binaires : Stratégies de sélection et étude de
performances ”, 6ème Journées Francophones sur les Entrepots
de Données et Analyse en Ligne (EDA10). - Jerba-Tunisie :
2010. - pp. 175–190.

[11] K. Aouiche and J. Darmont, “Data mining-based materialized
view and index selection in data warehouses”, J. Intell. Inf.
Syst., vol. 33, pp. 65–93, August 2009.

[12] L. Bellatreche, R. Missaoui, H. Necir, and H. Drias, “A data
mining approach for selectingbitmap join indices”, Journal of
Computing Science and Engineering 2, n° 1 (2008): 206–223.

[13] J. Kratica, I. Ljubic et D. Tosic, “A Genetic Algorithm for the
Index Selection Problem”, (EvoWorkshops'03) The 2003
International Conference on Applications of Evolutionary
Computing, 2003, pp. 281–291.

[14] S. Azefack, K. Aouiche and J. Darmont, “Dynamic index
selection in data warehouses”, 4th International Conference
on Innovations in Information Technology (Innovations 07),
2007.

[15] K. Aouiche, J. Darmont, O. Boussaid, and F. Bentayeb,
“Automatic Selection of Bitmap Join Indexes in Data
Warehouses”, 7th International Conference on Data
Warehousing and Knowledge Discovery (DAWAK 05), 2005.

[16] W. Dylan Bitmap Index – when to use it? [Online]//
http://dylanwan.wordpress.com/2008/02/01/bitmap-index-
when-to-use-it/. - 2008.

[17] A. H. Necir, L. Bellatreche and R. Missaoui, “DynaClose :
Une approche de fouille de données pour la sélection des
index de jointure binaires dans les entrepôts de
données”, 3ème Journées Francophones sur les Entrepôts de
Données et Analyse en Ligne (EDA’07), 2007.

[18] J. Darmont, F. Bentayeb and O. Boussaid, “Benchmarking
data warehouses”, International Journal of Business
Intelligence and Data Mining, Vol. 2, 2007.

226

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 242 / 612

Software Cache Eviction Policy based on Stochastic Approach

Stoyan Garbatov and João Cachopo
Software Engineering Group

Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento, INESC-id
Lisbon, Portugal

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract — This work develops an innovative approach for
guiding high-level software caches’ eviction policy. The
decision on which data to keep in the cache is made according
to a stochastic analysis over the application data access
behaviour. This approach shows it is possible to achieve high
cache hit ratios with a reduced cache size. The effectiveness of
the policy is tested and validated through the execution of two
distinct benchmarks – the TPC-W and the oo7 benchmarks.
The newly developed approach is flexible enough to be applied
to any high-level software cache in an object-oriented system.

Keywords-software cache; stochastic approach;
performance; data access.

I. INTRODUCTION

A cache is a small, high-performance memory-buffer
abstraction used to store temporarily data that is deemed to
be important for whatever operations may be taking place
currently or in the near future. Most of the time, the data held
by the cache originates from a (much) larger and (several
orders of magnitude) slower medium, which is either the
source or provides storage for the whole range of existing
data. As a result, caches provide increased system
performance by offering shorter access times to data,
keeping the available processing units busy with work. The
most common restriction of a cache, however, is that it
cannot hold all the existing data. This may happen for
several reasons – the cache may be physically unable to
provide enough storage space for all the available
information, or, even if there is enough space, it may be
better to keep the size of the cache to a minimum because a
bigger volume of data (being held in cache) usually leads to
slower execution times of the lookup operations.

The success of caching mechanisms results from the
“principle of locality”, which was first introduced by
Denning [1]. The principle of locality, also known as locality
of reference, has two basic variants, temporal and spatial.
Over short periods of time, a program distributes its memory
references non-uniformly over its address space, but the
portions of the address space that are favoured remain
largely the same for long periods of time. Temporal locality
implies that the information that will be in use in the near
future is likely to be already in use. Spatial locality states that
the portions of the address space that are in use consist of a
small number of individually contiguous segments of that
address space. As a consequence, locality of space denotes

that the referenced locations of the program in the near future
are likely to be near the currently referenced locations.

Optimizing the design of a cache revolves around four
aspects: maximizing the probability of finding a piece of data
in the cache (the hit ratio), minimizing the access time to
information already in the cache (access time), minimizing
the delay due to a cache miss, and minimizing the overheads
of cache management, such as propagating modifications to
the means that backs the cache, or dealing with consistency
protocols (cache coherence).

The principles upon which the concept of caching is
based are present in many contexts and situations. This
makes it possible to employ them in a variety of different
contexts to improve the system performance. Caching
mechanisms can be divided into two main categories, namely
hardware caching and software caching. Given that the main
purpose of this work is to improve the hit ratios of a high-
level software cache, hardware caches are not considered
here.

Significant research has been carried out in software
caching. As has been pointed out, the four major
characteristics upon which a cache can be improved are its
hit ratio, access times, speed at which update propagations
are performed, and coherence. If we group existing research
according to affinity with these four aspects, a trend becomes
apparent – namely, most cache-related work concentrates on
coherence, as can be seen in [2], [3], and [4]. At the same
time, the hit ratio is an important property, especially for
software caches. It has been systematically identified as
being the main reason leading to poorer performance of
software cache approaches, in comparison with their
hardware counterparts, as has been reported in [4] and [5].

Bennet et al. [6] identified and classified several classes
of shared data accesses, in the context of distributed shared
memory systems. They proposed a number of memory
coherence approaches tailored for these access categories
and demonstrated that specialized approaches can
significantly outperform general ones, whenever the
expected type of access behaviour manifests itself in a
consistent fashion.

Dash and Demsky [7] presented an innovative distributed
transactional memory system that mitigates the effects of
network latency by prefetching and caching domain objects.
The authors developed several extensions to the Java
programming language with the goal of allowing the use of a
distributed transactional memory within any application that
employs their system.

227

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 243 / 612

The objective of this work is to develop an innovative
stochastic approach for guiding high-level software caches. It
consists in using a guided cache policy to decide which data
to keep in memory and which data may be discarded. The
cache policy is guided because it adapts to the behaviour
displayed by the application, and its goal is to provide the
highest possible cache hit ratio, while keeping in memory
(cache) the minimum amount of data.

The article has the following structure. Section II
describes the system. Section III presents the results obtained
through the benchmark execution and evaluates the system
effectiveness. Finally, Section IV derives the concluding
remarks.

II. SYSTEM DESCRIPTION

The system is composed of two parts: a stochastic access-
prediction module and a high-level software cache. The
access-prediction module is responsible for analysing the
behaviour of the underlying application and in identifying
the most common data access patterns performed. This
information is subsequently used to guide the cache policy
with the aim of improving its performance (at the level of its
hit ratio). The software cache consists in a transparent data-
storage component, responsible for supplying with data any
request issued by the overlaying application, with the goal of
improving the performance of an application.

A. Stochastic Behaviour Analysis

The stochastic behaviour analysis module is made up of
three sub-modules: a code-injection module, a data-
acquisition module, and a data-analysis module. An
overview of their functionality is given here, while a detailed
discussion of their implementation and behaviour may be
found in [8], [9] and [10]. The model of Bayesian Updating,
first presented in [8], is employed here for the stochastic
behavioural analysis of the target application. An alternative
model, based on discrete-time Markov Chains, may be seen
in [9], whilst [10] deals with an Importance Analysis model.

The code-injection module is responsible for
transforming the code of the target applications to inject the
calls to the functionality present in the other modules. This
code injection is performed in a completely automatic
fashion by the system. It avoids the need for the application
programmers themselves to perform any modifications
whatsoever to their applications.

The data-acquisition module is responsible for acquiring
behavioural data from the target application. This data
describes how the application behaves, with regard to the
data accesses that it performs. This module records which
(application-domain) data is read and/or written, and in
which contexts (methods, services, etc) this takes place.

Finally, the data-analysis module contains the
implementation of the Bayesian Updating Inference model.
This model corresponds to a stochastic approach for
modelling the behaviour of the target application. The model
uses as input the information collected by the data-
acquisition module, about which domain data has been
accessed by the application, and in which contexts. Initially,
the input information is split into two sets of data. The first

of these data sets is designated as prior and contains
information about the target system behaviour observed in
the past. The second set is called current and includes more-
recent behavioural information. It covers the time period
defined between the moment at which the prior set ends, to
the current point in time. Once these two sets have been
established, the Bayesian Inference model uses the current
data to "update" the posterior, generating thus a third set,
called posterior. The posterior set corresponds to the
prediction generated by the model. It describes the expected
behaviour of the application, in the near future, in terms of
the domain data that it is going to access. This is presented in
terms of the probabilities of reading and writing domain data,
depending on the contexts through which the application
passes during its execution.

B. Software Cache

This section describes the implementation of the high-
level software cache and its policy. It should be noted that
the term “high-level” is used here in the sense that the
objects being cached correspond to actual domain object
instances, rather than a derivate of an SQL result set or some
other lower-level abstraction. The mapping from the format
used by the underlying persistence layer to the domain object
instances manipulated by the application is taken care by the
fenix-framework (Fernandes and Cachopo [11]).

The software cache implements the identity map design
pattern, Fowler [12]. This pattern prevents duplicate loading
of objects from the persistence layer. Consequently, if a
requested datum has already been loaded from the
persistence layer, then the identity map returns the same
instance of the already instantiated object. If it has not been
loaded yet, then the object is retrieved and stored in the map,
before being returned to the request that demanded it.

This cache is implemented on top of Java’s soft
references. A normal Java reference, also known as a strong
reference, guarantees that any object that is reachable
through a chain of strong references is not eligible for
garbage collection (GC). On the other hand, an object that is
only weakly reachable is going to be discarded at the
following cycle of the garbage collect. Soft references are
not required to behave differently from weak references, but,
in practice, softly-reachable objects are generally retained (in
memory) provided that there is enough free space available
to keep them there.

Continuing on to the implementation details, the high-
level software cache keeps two collections into which it
stores the loaded domain object instances. The first
collection keeps soft references to all of its elements. This
collection contains all the instances present in the cache.
From the definition of a softly-referenced object, if the
application does not hold a strong reference to them, the GC
may discard them at will, if it deems it necessary to do so.
However, they are usually kept in memory as long as it is not
strictly necessary to evict them.

The second collection holds strong references to its
elements, and guarantees that these can never be garbage
collected, provided they remain in this collection. Objects
being loaded into the cache are selectively added to the

228

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 244 / 612

strongly-referenced collection. The main idea behind this
collection is to keep only object instances considered to be
important for the execution of the application, and that
should be kept in memory even when they are not currently
being used. The decision of adding an element to this
collection belongs to the caching policy, implemented as
follows.

The cache policy manager considers, on an instance-by-
instance basis, if a given datum should be placed in the
strongly-referenced collection. It employs the results
generated by the stochastic behaviour analysis module to
infer how strongly referenced these should be. The main
criterion is to consider the access probability of the type of
data (class) to which an instance belongs. If this probability
exceeds a certain threshold, then the datum is deemed critical
for the application operation and is inserted into the strongly-
referenced collection, besides being added to the softly-
referenced collection. This approach may be complemented
to take into account further restrictions, such as the available
free memory, space limitations that the software cache
should not exceed, or proportions of different domain data
types kept in memory, among others.

Additionally, due to the fact that the stochastic analysis
model is dynamic, it reveals any behavioural change that
may eventually come to pass within the target application.
This would bring about an updating of the expected
application domain data access probabilities. Furthermore, it
would lead to a change in the data types considered critical
by the cache policy manager, which would be reflected in the
contents of the strongly-referenced collection, resulting,
ultimately, in a caching policy that can adapt itself to deal
adequately with any behavioural patterns the application may
exhibit during its life cycle.

III. RESULTS AND EVALUATION OF THE SYSTEM

For the validation of the system presented in this paper,
we used two distinct benchmarks. The first of these is the
TPC-W benchmark, which was introduced originally by
Smith [13]. This benchmark specifies an e-commerce
workload that simulates the activities of a retail store
website, where emulated users can browse and order
products from the website. The main evaluation metric is the
WIPS – web interactions per second that can be sustained by
the system under test. The TPC-W benchmark execution is
characterised by a series of input parameters that control its
behaviour. Among these is the type of workload simulated
by the benchmark emulated browser clients. The results
presented in the article are associated with the "Shopping
Mix" workload, which is composed of 80% read operations
and 20% write operations. Regarding the main control
parameters, they are as follows: number of emulated
browsers - 10; ramp-up time - 600sec; measurement interval
- 1200 sec; ramp-down time - 300sec; number of items in the
database - 100 000; think time - 0.01 (this value ensures that
the emulated browsers wait between 0.07 sec and 0.007 sec
before making a new request to the server). The emulated
browsers and the benchmark application server were run on
the same physical machine.

The second benchmark is the oo7, firstly presented by
Carey et al. [14]. This benchmark is often used to assess the
performance of object-oriented persistence mechanisms. It
strives to present a broad set of operations, allowing the
building of a comprehensive performance profile. The oo7
benchmark was designed to boast properties common to
different CAD/CAM/CASE applications, although in its
details it does not model any specific application. A run of
the benchmark executes a series of traversals, updates, and
query operations over the underlying object model, and the
performance metric used is the time that these operations
take to execute.

The results obtained with our proposed approach to
implement a cache policy shall be presented next. We omit a
more thorough analysis of the correct behaviour and
precision of the predictions of the stochastic behaviour
analysis module, because this has already been performed in
[8]. There, it is demonstrated that the module is capable of
predicting with high precision the types of data being
accessed by the target application in the contexts through
which it passes during its execution. The term context can be
defined to correspond to a procedure, service, or any other
abstraction deemed appropriate to describe the scope within
which the current operation is taking place. Moreover, the
module is capable of predicting not only the type of data
(domain classes) that is most likely to be accessed in a given
situation, but also the effectively accessed object fields. For
the discussion presented here, only access probabilities at the
level of domain class shall be considered.

As has been explained in Section II.B, whenever a
domain object instance is loaded into cache, it is always
added to the softly-referenced collection. Additionally, the
cache policy manager uses the stochastic access prediction
module to determine what is the global (at the level of the
whole application) access probability of the type of object
being loaded. If the access probability exceeds a certain
threshold, then the object instance is also added to the
strongly-referenced collection, ensuring that it cannot be
garbage collected. This policy shall be referred to as the
DAP (data access pattern) policy for the reminder of this
article.

Due to the fact that it is through the strongly-referenced
collection that the cache policy effectively controls which
objects are kept in memory longer than their actual use by
the application, all cache hit and miss ratio results presented
next are computed based on the contents of the strongly-
referenced collection only.

For evaluating the effects of employing the DAP policy,
the resulting cache hit ratios are compared with those
obtained by the use of three alternative cache policies.

The first of the alternative policies decides whether to
insert a given domain object in the strongly referenced
collection as a function of a randomly generated number.
The random generator employs a uniform distribution.

The second policy adds objects to the strongly referenced
collection whenever they are first loaded by the application
into the cache – the first objects to be loaded into the cache
are the first to be made strongly reachable (this policy shall

229

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 245 / 612

be henceforth referred to as “first load, first strongly
referenced” – FLFSR).

The third alternative corresponds to an LRU (least-
recently used) policy. Its implementation is based on a
synchronized and thread-safe version of the LRUMap
structure of the Apache Commons Collections library.
Because of the significantly different behaviour of an LRU
policy, its comparison against the DAP policy shall be
performed separately.

Furthermore, regardless of which policy is used, the
strongly-referenced collection has an enforced maximum
capacity. As such, for the Random and FLFSR policies,
objects are inserted only if this capacity has not been
reached. Generally, the dynamic nature of the DAP and LRU
policies allows them to change the contents of the cache
without exceeding the above threshold.

The results obtained from the execution of the oo7
benchmark for the DAP, Random, and FLFSR policies are
shown in Fig. 1. The x-axis of the chart indicates the
percentage of objects allowed to be strongly referenced in
the cache, as a function of the total number of domain
objects loaded into the cache during an execution of the
benchmark. It has to be pointed out that due to the fact that
both benchmarks access all of their domain objects during
their operation, all of the existing persistent domain data
ends up being accessed and cached during a single
benchmark execution. The y-axis indicates the overall cache
hit ratio achieved by a certain cache policy when the cache
size is restricted to the value on the x-axis. Each of the dots
presented in the graphs corresponds to the weighted average
resulting from the measurements extracted from ten
independent executions of a benchmark, for a given strongly-
referenced cache size restriction.

As the results of the oo7 benchmark show, the DAP
cache policy achieves better hit rate than both the Random
and FLFSR cache policies, for the whole range of cache
sizes. In particular, with only 3.6% of the total volume of
domain data, the DAP policy achieves a hit rate of
approximately 53%, whereas the Random and FLFSR

policies require caching 76% and 84%, respectively, of the
total volume of existing data to achieve a similar hit rate.

An interesting observation regarding the results from the
DAP policy is that the data considered as important
according to the stochastic analysis module (and thus
suitable to be placed in the strongly referenced collection in
the cache) corresponds to 3.6% of the total volume of
existing domain data. This explains two peculiarities of the
results observed for this policy. The first of these is the high
cache hit ratio achieved for the relatively low volume of
cached data (3.6%). It confirms the belief that the most
frequently used data for a given application corresponds to a
relatively small set of data. The second is the lack of
measurements in the range of 3.7% to 99% along the x-axis.
According to the behaviour prediction module, besides the
3.6% of data considered very important for the operation of
the application, there is no other domain data that is even
closely as likely to be needed by the application.
Consequently, the cache policy cannot place any additional
information in the strongly referenced part of the cache.

The results for the DAP (uninterrupted curves) and LRU
(dotted curves) policies are shown in Fig. 2. The x-axis of
the chart corresponds to a logic time scale, where a single
unit corresponds to the realization of 10,000 lookup
operations in the cache. The y-axis indicates the accumulated
cache hit ratio up to a given point in the logical time scale.
We chose a logic time scale instead of a real time scale
because even though the benchmark is deterministic and
performs all operations in the same order, differences in the
execution time from one benchmark run to another would
cause the different sampled curves to compress or expand
with regards to one another, resulting into a rather deformed
diagram. With a logical time scale, all curves are in synch
with one another.

Fig. 2 presents five sample curves plotted for the DAP
and LRU policies. Each of these is associated with a
different cache size, corresponding to 0.6%, 1.2%, 1.8%,
2.4%, and 3% of the total volume of domain data. This
relatively low percentage of domain data is due to the fact

DAP

Random

FLFSR

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Cache Size (%)

H
it

 R
at

io
 (

%
)

Figure 1. DAP, Random, and FLFSR policies - oo7

LRU 0.6%

LRU 1.2%

LRU 1.8%

LRU 2.4%

LRU 3%

DAP 0.6%

DAP 1.2%

DAP 1.8%

DAP 2.4%

DAP 3%

0

10

20

30

40

50

60

0 25 50 75 100 125 150 175 200 225 250 275

Logic time, [1/10,000]

C
a

ch
e

 h
it

ra
te

, [
%

]

Figure 2. DAP and LRU policies - oo7

230

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 246 / 612

that only a very small part of the domain data is highly likely
to be accessed in run-time. This domain data accounts for a
maximum of 3% of all existing domain data. The results
show that the LRU cache policy presents a better cache hit
ratio for the great majority of cases,. The differences in
average hit ratios between the two policies vary from 1.13%
for 1.2% cache size up to 5.03% for 3% cache size, all in
favour of the LRU policy. The weighted average of all
measurements is 2.55% cache hit ratio difference in favour
of the LRU policy. Regarding the effect on overall
benchmark performance, there were no observable
differences between the DAP and LRU policies.

The results achieved from the execution of the TPC-W
benchmark are discussed next. The hit ratio measurements
for the DAP, Random and FLFSR cache policies can be seen
in Fig. 3. The remarks to be made about these results are
similar to the ones for the oo7 case, namely, the DAP cache
policy presents cache hit ratios that are significantly better
than the ones provided by the Random or FLFSR policies for
any configuration.

Analysing the results of the DAP policy, we observe a
practically linear growth in the hit ratio, starting from a hit
ratio of 4.44% for cache size of 1.47% up to a hit ratio of
97.58% when the cache size corresponds to 30.42% of the
domain data. The lack of measurements in the range of 30%
to 100% of the cache size result from the same reasons
presented for the oo7 benchmark – the domain data
evaluated as important for the operation of the application
corresponds to 30% of all of the existing domain objects; the
remaining 70% of domain data are practically irrelevant, as
they correspond to the remaining 2.42% of cache hit rate.

Considering the results for the uninformed caching
policies, we are faced with a phenomenon not present in the
oo7 benchmark results. This phenomenon consists in the
existence of “plateaus” in the hit rate values achieved for a
given range of cache sizes. For the Random policy, instances
of this are the 30% hit rate in the range of 18% to 30% cache
size and the 65% hit rate for 45% to 60% cache size. For the
FLFSR policy, similar remarks are applicable to the 0% hit

rate in the range of [0%, 15%] cache size and the 99% hit
rate for the range of [59%, 100%] of cache size. These
plateau phenomena may be explained by the caching of
domain data that is practically irrelevant, from the point of
view of the application needs. This leads to an increase in the
volume of cached data without any significant increase in hit
rate, which is what the plateaus effectively correspond to.

The final set of results, comparing the DAP and the LRU
policies, are shown in Fig. 4. In this case, the x-axis
corresponds to a real time scale where the unit corresponds
to 20 seconds, whilst the y-axis indicates the accumulated
cache hit ratio observed up to a given point in the benchmark
execution. There are three curves for each of the two
policies, corresponding to cache sizes of 9%, 12%, and 15%.
For the TPC-W benchmark, the LRU policy displays an even
more accentuated advantage over the DAP policy, with
regards to the hit ratio they achieve. In terms of differences
between average hit ratios, the LRU policy leads with 9.2%
for the 9% cache size, 13.8% for the 12% size, and 9.8% for
the 15% size. This leads to an overall average hit ratio
advantage of 10.9% in favour of the LRU policy. Yet, even
though the average values give a clear advantage to the LRU
policy, the observed behaviour for the LRU hit ratio is rather
irregular, at least when compared to that of the DAP policy,
whose results are very close to flat horizontal lines.

The most-significant difference between the two
approaches in the case of the TPC-W benchmark (unlike
what was seen for the oo7 benchmark) is the performance
variations observed between the versions running with the
DAP and the LRU policy. These variations are due only to
the performance of the policy itself, rather than, for example,
to the contents of the cache, because the contents of the real
cache, which dictates the overall benchmark performance, is
the same for both versions. Only the contents of the strongly-
referenced collections are distinct and it is against those that
the hit ratios are measured.

A comparison of the benchmark’s performance when
using the DAP and the LRU policies is shown in Fig. 5. The
x-axis indicates the number of emulated browsers (EBs)

LRU 15%

LRU 12%

LRU 9%

DAP 15%

DAP 12%

DAP 9%

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Time, [*20sec]

C
ac

h
e

h
it

 r
at

e,
 [

%
]

Figure 4. Using DAP and LRU policies with TPC-W

DAP

Random

FLFSR

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00

Cache Size (%)

H
it

 R
at

io
 (

%
)

Figure 3. DAP, Random, and FLFSR policies - TPC-W

231

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 247 / 612

employed for a given benchmark run and the y-axis shows
the relative throughput gain achieved for a given number of
EBs. The values shown correspond to the speedup relative to
executing the benchmark version with LRU cache policy
with 1 EB. These results show that both versions perform
approximately the same amount of work for 2 EBs, which is
approximately 100% more than the LRU version with 1 EB.
However, as the number of EB increases, the results show a
growing discrepancy in the benchmark performance between
the LRU and the DAP policy versions. For four EBs, the
LRU benchmark version performs approximately 210%
more work than the baseline, whereas the DAP version
manages over 310%. This difference is even more
accentuated for 10 EBs, where the performance of the
benchmark with the LRU policy has remained practically the
same as the one from the 4 EBs configuration, whilst the
DAP version has grown up to over 560%.

The most reasonable explanation for this phenomenon is
that the synchronization present in the LRU policy
implementation causes a bottleneck in multithreaded
scenarios, leading to the poor performance gains observed in
the results. Assuming this is the case, then the DAP policy
would be the preferred alternative for situations where
multithreading is common, while the LRU would be more
appropriate for single threaded configurations.

IV. CONCLUSIONS

This paper presented a new approach for guiding the
cache policy of a high-level software cache. This new
approach employs a stochastic analysis based on Bayesian
Updating Inference, which is responsible for predicting the
behaviour of the target application, regarding its domain data
needs. Based on the generated predictions, the cache policy
is capable of deciding which domain objects are to be
cached, leading to high cache hit rates with relatively low
volumes of cached domain data.

The effectiveness of this approach was tested with two
very different benchmarks – the TPC-W and the oo7 – by

comparing it against three different cache policies. The
results illustrate the usefulness of employing dynamic
adaptive approaches for guiding high-level software caches,
by taking into consideration the behaviour of the target
application.

ACKNOWLEDGMENT

This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT (Fundação
para a Ciência e a Tecnologia) under contract
SFRH/BD/64379/2009.

REFERENCES
[1] Denning, P. J. and Schwartz, S. C., 1972, Properties of the working-

set model, Commun. ACM, 15, (3), pp. 191-198.

[2] Sandhu, H. S., Gamsa, B. and Zhou, S., 1993, The shared regions
approach to software cache coherence on multiprocessors, SIGPLAN
Not., 28, (7), pp. 229-238.

[3] Lilja, D. J. and Yew, P.-C., 1991, Combining hardware and software
cache coherence strategies, Proceedings of the 5th international
conference on Supercomputing, Cologne, West Germany, ACM, pp.
274-283.

[4] Adve, S., Adve, V., Hill, M. and Vernon, M., 1991, Comparison of
hardware and software cache coherence schemes, SIGARCH
Comput. Archit. News, 19, (3), pp. 298-308.

[5] Chen, T., Zhang, T., Sura, Z. and Tallada, M., 2008, Prefetching
irregular references for software cache on cell, Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and
optimization, Boston, MA, USA, ACM, pp. 155-164.

[6] Bennett, J., Carter, J. and Zwaenepoel, W., 1990, Adaptive software
cache management for distributed shared memory architectures, 17th
Annual International Symposium on Computer Architecture, pp. 125-
134.

[7] Dash, A. and Demsky, B., Integrating Caching and Prefetching
Mechanisms in a Distributed Transactional Memory, To Appear in
IEEE Transactions on Parallel and Distributed Systems.

[8] Garbatov, S., Cachopo, J. and Pereira, J., 2009, Data Access Pattern
Analysis based on Bayesian Updating, Proceedings of the First
Symposium of Informatics (INForum 2009), Lisbon, Paper 23.

[9] Garbatov, S. and Cachopo, J., 2010, Predicting Data Access Patterns
in Object-Oriented Applications Based on Markov Chains,
Proceedings of the Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, pp. 465-470.

[10] Garbatov, S. and Cachopo, J., 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented Applications,
Computer Science and Technologies, 1, pp. 37-43.

[11] Fernandes, S. and Cachopo, J. A New Architecture for Enterprise
Applications with Strong Transactional Semantics. Lisbon: INESC-
ID / IST, 2011.

[12] Fowler, M., 2003, Patterns of enterprise application architecture:
Addison-Wesley Professional.

[13] Smith, W. TPC-W: Benchmarking An Ecommerce Solution. Intel
Corporation, 2000.

[14] Carey, M., Dewitt, D. and Naughton, J., 1993, The OO7 benchmark,
ACM SIGMOD International Conference on Management of Data,
pp. 12-21.

LRU

DAP

0%

100%

200%

300%

400%

500%

600%

1 2 3 4 5 6 7 8 9 10
Emulated Browsers

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

Figure 5. DAP and LRU throughput comparison, TPC-W

232

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 248 / 612

Performance Simulation of a System’s Parallelization

Markus Meyer∗, Helge Janicke†, Peter Trapp∗, Christian Facchi∗ and Marcel Busch∗
∗Institute of Applied Research, University of Applied Sciences Ingolstadt, Germany
{markus.meyer, peter.trapp, christian.facchi, marcel.busch.winf}@haw-ingolstadt.de

†Software Technology Research Laboratory, De Montfort University, Leicester, United Kingdom
heljanic@dmu.ac.uk

Abstract—A new approach to simulate the parallelization of
a software function is presented in this paper. The paralleliza-
tion’s effects onto the system’s performance prior to a costly
realization of the parallelization are evaluated, leading to a
more gain-oriented performance optimization. The presented
approach defines a methodology to transform a single-threaded
software function into a multi-threaded simulation. CPU stubs,
simulating both, the performance and functional behavior, are
applied to simulate the expected time slices. The proposed
technique can estimate the expected performance gain for
the whole system. A proof of concept is used to evaluate
the proposed methodology and the simulation results are
compared to a known parallel implementation of the algorithm.
Initial results show our approach can be used to simulate
the performance behavior of a parallelized system with high
accuracy. In addition, the number of threads that result in the
highest performance gain of the system is determined.

Keywords-software performance optimization; performance
simulation; parallelization; dynamic performance stubs

I. INTRODUCTION

Dynamic performance stubs [1] can simulate various op-
timization levels of the component under study (CUS). CPU
stubs [2], replace a software function (CUS) in the system
under test (SUT) and model its CPU performance behavior.
CPU stubs consist of two functionalities, the simulated
software functionality (SSF), that recreates the functional
behavior of the bottleneck, and the performance simulation
functions (PSF) that simulate its performance behavior [3].
PSF are used to simulate different optimization levels and
show the optimization’s effect on the system’s performance.

This paper presents a novel approach to the analysis of
an identified bottleneck with respect to its parallelization
potential. The key contribution of this work is that it allows
for informed decision making to what degree the optimiza-
tion of the bottleneck using parallelization techniques would
impact on the overall performance of the system.

Section II shows the related work. The presented approach
(Section III) is based on a simulation of the bottleneck. It
is an efficient technique that can help to avoid wasted effort
and costs associated with the parallelization of the affected
system component. The described methodology is evaluated
by a proof of concept in Section IV. The simulation of a sys-
tem’s parallelization can be used to estimate the achievable
performance using parallelization techniques.

II. RELATED WORK

The concept of dynamic performance stubs was intro-
duced in [1]. In [3], the usage of CPU stubs to determine
the performance gain of a system’s optimization is shown.
Our approach, extends the dynamic performance stubs to
investigate if this performance gain can be achieved by
parallelization. According to Amdahl [4], not all instruc-
tions that are executed within a system can be performed
concurrently. Amdahl shows that the maximum speedup
of a parallelization is limited by the sequential part of an
algorithm for an infinite number of processors. Gustafson [5]
claims that the speedup that can be obtained by a parallel
execution is not only limited by the remaining sequential
part but increases linearly by the number of used processors.
Both, [4] and [5], determine an upper bound of the speedup
achievable with parallelization. In contrast, our approach
simulates the anticipated system-wide performance benefit.
In our case, the speedup described by Amdahl and Gustafson
can not be used to estimate the runtime of the parallel parts
of the algorithm without modification (see [6]).

The parallelization of a sequential algorithm requires
thread management that reduces the achievable speedup
[7]. Marinescu and Rice [8] introduced the concept of
relative speedup taking sequential and duplicated work,
communication and control and blocking into account. This
paper’s approach also considers the overhead created by
parallelization. By simulating the parallelization, system
influences such as the number of available processors and
the current system load are included.

In [9], an approach to model the influences of the number
of threads and processors on a system’s performance using
Solaris containers is introduced. In contrast, the presented
approach simulates the parallelized software within the real
system in order to get accurate performance measurements.
To the best of our knowledge, no studies have evaluated the
overall performance gain that can be achieved within the
system using parallelization techniques.

III. SIMULATING PARALLELIZATION

This section presents an approach to simulate the par-
allelization of the system in order to obtain measurements
on which decisions to use parallelization as an optimization

233

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 249 / 612

technique can be well-founded. Based on the results the
degree of parallelization can be determined.

performance

problem

improved

system under test

identify potential

bottleneck

apply SSF & PSF

apply PSSP

optimization using

parallelization

system

under test

component

under study

optimization

potential

parallelization

potential

Figure 1. “Performance Simulation of a System’s Parallelization” (PSSP)
- Extension of the CPU Stubs’ Methodology

Figure 1 depicts our approach. The performance sim-
ulation of a system’s parallelization (PSSP) extends the
methodology of CPU Stubs [2]. CPU Stubs determine the
optimization potential of a system that is affected by per-
formance issues. A potential bottleneck (component under
study, CUS) is identified within the system under test (SUT).
The CUS is replaced by a CPU Stub simulating the func-
tional and the performance behavior of the CUS. By varying
the stub’s performance behavior, the optimization potential
for this component is determined. The approach presented
in this section extends the known methodology by the
simulation of the system’s parallelization to decide whether
the parallelization potential within the CUS is sufficient
to reach the performance optimization goals. Hence, the
presented approach helps to transform the measured overall
optimization potential into a gain-oriented realization of the
performance optimization.

A. Objectives

Depending on the accuracy of the known and measured
original performance data, the simulation of the paralleliza-
tion pursues the following objectives:

• Performance potential: Investigate if it is possible to
gain performance within the system when parallelizing
the CUS.

• Determine the expectable performance gain: Deter-
mine the performance gain that can be achieved by par-
allelizing the CUS. The system load and the available
hardware resources limit the possible performance of
the system. Decide whether the performance targets can
be reached by a parallelization.

• Determine the maximum overhead: Parallelizing a
sequential algorithm results in additional effort for
thread management. The overhead needed to manage
the parallelization reduces the achievable speedup.

• Determine the optimal number of threads: The
number of used threads influences the overhead needed
to manage the parallelization. The optimal number of
threads that entails a short thread runtime in combina-
tion with a small amount of overhead is determined by
test series.

B. Approach

The presented approach is based on the simulation of a
concurrent implementation of the system component con-
taining the bottleneck (CUS). It uses a simple fork and
join mechanism to give a first estimation if parallelization
is a valuable way to optimize the CUS. The introduced
method applies the parallelization of the system using do-
main decomposition. Several threads are created within the
simulation using the same thread runtime.

Split Runtime Prepare Simulation Inital Situation

�����

��

��

���

���

�	

��

��

��

��

Figure 2. Steps Towards the Parallel Simulation

In Figure 2, the sequential time is broken down and
replaced by a time estimation of the parallel computation.

Initial Situation A sequential implementation of the CUS
is assumed. Its runtime torig is determined by measurements,
e.g., using real time counters (see [10]).

Step 1: Algorithm Parallelization Potential The original
runtime (torig) is split into a sequential part (ts) and a
parallel part (tp) (see [4]), by carrying out data and control
flow analysis (see [11], [12]).

In the next steps, the parts of the bottleneck that can
be parallelized (tp) as well as the sequential part (ts) are
prepared for multi-threaded execution. For that, the distri-
bution of the sequential part, the threads’ runtime (tx) and
the additional work that is needed to manage the threads (to)
are determined.

Step 2: Sequential Part The control flow analysis,
applied in the first step of this approach, can be used
to determine the distribution of the sequential part to the

234

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 250 / 612

beginning and the end of the simulation. The total sequential
time remains constant at ts = ts1 + ts2 .

Step 3: Threads’ Runtime The parallel time (tp) is
converted into the threads’ runtime (tx) considering that:

• each thread has to execute a subset of the original in-
structions. Therefore, the determined parallel execution
time (tp) will also be split to the various threads. This
has to be captured by the parallel simulation of the
algorithm. The threads’ runtime (tx) is a function of
the number of threads: tx(n) where 0 ≤ n ≤ nth.

• the algorithm in the bottleneck rarely has linear time
complexity. The problem size remains constant for
the test case and is equally split in the nth threads.
However, the threads’ runtime does not change in a
linear way for algorithms with non-linear time com-
plexity when changing the problem size. Due to that,
the threads’ runtime not only depends on the number
of created threads (nth), but also on the parallelized
algorithm’s complexity.

There are two approaches to determine the threads’ run-
time. A complexity analysis of the CUS and the measure-
ment of the algorithm’s time behavior for various problem
sizes can be performed:

Complexity Analysis: A complexity analysis of the
CUS’s algorithm is applied to determine the time complexity
of the algorithm using Big-O-Notation (see [13]). Using
the complexity, the threads’ runtime tx can be calculated
depending on the number of threads. The following example
assumes that an algorithm with a time complexity of O(n2)
is used and that nth = 2 threads are created within the
simulation.

tp ≤ c ∗ n2 (1)

Equation 1 shows the formula for the parallel execution
time (tp). The time complexity given in the Big-O-Notation
defines an upper bound for the time. Therefore, the parallel
execution time is less or equal to a constant time (c)
multiplied by the given complexity.

This paper’s approach uses domain decomposition to
simulate the system’s parallelization. This is realized by a
divide-and-conquer strategy (see [13]). Thus, the presented
approach uses the same algorithm but with an reduced
problem size per thread to simulate the parallelization. As
shown in Equation 2, the reduced problem size is used to
calculate the execution time.

tx ≤ c ∗ (
n

nth
)2 ≤ c ∗ (n

2
)2 (2)

The combination of Equations 1 and 2 shows that in this
example the threads’ runtime (tx) only depends on the
parallel runtime (tp). The upper bound tp = c ∗ n2 of the
parallel runtime is used as a pessimistic estimate to calculate
the threads’ runtime in Equation 3.

tx
tp
≤
c ∗ (n2

2)

tp
≤ c ∗ n2

4 ∗ tp
≤ tp

4 ∗ tp
≤ 1

4
(3)

The upper bound of the calculated thread runtime is tx =
tp
4 .

Measured Time Behavior: Another approach to de-
termine the threads’ runtime is the measurement of the
algorithm’s time behavior. The CUS’s algorithm is available
and can be executed with different problem sizes capturing
the various time behaviors of the algorithm. This data is used
to determine the threads’ runtime for a given problem size.
The measurements’ results strongly depend on the used input
data, as best- or worst-case scenarios of the algorithms can
be triggered. To get the expected timing data, the input data
has to be chosen specifically corresponding to the original
data.

Step 4: Parallelization’s Overhead In addition to the
threads’ runtime (tx) the time used to fork and join the
threads as well as to split and combine the result of
the problem has to be considered within the simulation
as overhead to = to1 + to2 . The overhead is split into
two sections: creation (to1) and synchronization (to2) of
the multi-threaded part (Figure 2). The overhead depends
on the concrete implementation. Two options need to be
considered:

1) An idea about the implementation of the paralleliza-
tion is available. Hence, the effort that is needed for
the thread management can be estimated depending
on the number of created threads.

2) Otherwise, it is possible to simulate the parallelization
without an overhead. In this case, only the maximum
overhead that can be introduced by the parallelization
in order to gain performance can be determined. This
reduces the problem to a thread-management and task
distribution problem that can be solved more easily.

Depending on these considerations, the evaluation of the
results focuses on different objectives (see Step 6).

Step 5: Simulation of the Parallelization The deter-
mined values of ts, to and tx are used to simulate the
performance of a possible parallelization (Figure 2). Each of
these elements has to be rebuild as a system influencing PSF
[2]. To build the multi-threaded behavior of the simulation,
a method to generate the multi-threaded PSF from a textual
description is introduced in [3]. In combination with the
SSF [3], it is possible to simulate the expected performance
behavior of a parallelization. The expected parallel execution
time is tg = ts + to + tx. This theoretical value does not
consider any scheduling or runtime influences. The time
tsimg , measured within the simulation under real conditions
describes the real value of tg . Consequently, the simulation
takes system bottlenecks, as the number of available proces-
sors or other processes running on the system, into account.

Step 6: Evaluation of the Results Depending on the
overhead estimation (Step 4) two results of the simulation
can be evaluated:

• The performance gain by parallelization of the bottle-
neck is defined as tgain = torig− tsimg . The simulation

235

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 251 / 612

is executed with a varying number of threads (nth) to
determine the optimal gain, leading to adjusted values
for tx and to. This is used to determine the optimal
number of threads (noptth).

• If the threads’ administration overhead cannot be esti-
mated (Step 4.2) the determination of maximum over-
head is another objective. In this case the simulation
rebuilds the sequential and parallel execution times,
ts and tx and estimates the maximum overhead by
tmax
o = torig − tsimg . If the parallelization and syn-

chronization of the bottleneck can be performed in less
than tmax

o , the optimization will result in a performance
improvement for the bottleneck.

These results are used to decide whether parallelization
can be applied as an optimization technique to achieve the
performance targets.

IV. PROOF OF CONCEPT

This section evaluates the proposed methodology using a
proof of concept. The threads’ runtime is determined as de-
scribed in Step 3. The measurements are used to simulate the
parallelization for various numbers of threads. Finally, the
simulation’s results are compared to the performance data of
the algorithm’s parallel implementation. All measurements
were performed on a FSC Amilo Si3655 Notebook with an
Intel Core(TM)2 Duo P8400 CPU (Intel 64 architecture). As
operating system Arch Linux, kernel version 2.6.34, is used.
Binaries were build using GCC (version 4.5.1).

A. Overview

The example simulates the parallel execution of a sequen-
tial bubble sort algorithm (see [14]). A parallel implemen-
tation of this algorithm is used to validate the results of the
simulation and uses the same implementation extended by
a merge-sort to combine sorted sublists.

setup list

for sorting

bubble

sort

print

sorted list

ts1

tp

ts2

torig

sequential

setup list

for sorting

bs

print

sorted list

tparallel

parallel

bs

merge

...

Figure 3. Sequential and Parallel Bubble Sort Algorithms

Figure 3 shows the timings of the bubble sort algorithms.
Both algorithms have the same set up. The sequential algo-
rithm processes the whole list, whereas in the parallel case,

the list is split into nth parts that are sorted independently in
different threads. The parallel execution additionally merges
the sorted partial lists. Finally, both algorithms print the
whole sorted list. To guarantee reproducibility of the test
results, the used list is initialized with 4096 random integer
numbers once and used for each test run.

B. Algorithm Parallelization Potential (Step 1)
The original runtime (torig) of the sequential algorithm

was determined using the time stamp counters. Additionally,
the runtime of the parallel part (tp) and the sequential parts
of the algorithm ts = ts1 + ts2 were measured as described
in Step 1.

avg[ms] max[ms] min[ms] sqdcoeff of var
torig 103,66 103,87 103,48 4,06E-07
tp 103,49 103,70 103,31 4,04E-07
ts1 0,152 0,155 0,150 9,87E-05
ts2 0,0177 0,0177 0,0175 1,63E-05

Table I
RUNTIME VALUES OF THE SEQUENTIAL BUBBLE SORT

Table I shows the measurements’ average, maximum and
minimum time of 20 samples taken in milliseconds. The
squared coefficient of variation (see [15]) is applied to
evaluate the deterministic behavior of the measured data.

C. Sequential Part (Step 2)
The sequential time ts was measured (Section IV-B).

Thus, ts1 and ts2 are known and can be simulated.

D. Threads’ Runtime tx (Step 3)
In the next step, the measured parallelizable time of

the sequential algorithm (tp) has to be converted into the
threads’ runtime (tx). As described in Step 3 of Section
III-B, there are two possibilities to estimate tx, complexity
analysis and measurement. To evaluate that both approaches
can be used to determine the threads’ runtime, their results
are compared in this step. The complexity of the bubble
sort algorithm is known as O(n2) [14]. In Section III-B, the
calculation of the estimated thread runtime is shown by an
example. To measure the time behavior of the used bubble
sort algorithm, it is executed with different problem sizes.

Figure 4 presents the comparison of the determined
parallel threads’ runtime tx. As described in Step 3 of
Section III-B, the calculation of the thread’s runtime using
a complexity analysis (crosses) and its determination by
measurements (circles) are drawn. The x-axis shows the
number of threads, whereas, the y-axis depicts the time in
milliseconds. In order to depict the differences of the two
graphs, the y-axis is drawn logarithmically. As can be seen,
both alternatives nearly provide the same results and can
be used to give an estimation about the threads’ runtime. As
described in Step 3 of Section III-B, the complexity analysis
provides an upper bound for the thread’s runtime.

236

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 252 / 612

tx by complexity analysis
tx by measured time behavior

ti
m
e
[m
s]

0,01

0,1

1

10

number of threads
20 40 60 80 100 120

Figure 4. Determination of the Threads’ Runtime

E. Parallelization’s Overhead (Step 4)

The overhead that is needed for thread management has
to be determined in this step. In this example, the parallel
implementation of the algorithm is known. Due to that, the
overhead values to1 and to2 can be estimated. The overhead
to split the initialized list to the single threads is measured
and set to to1 = 5, 2µs, as the additional work that has to be
done here is almost constant. The single bubble sort threads
are just executed with sublists.

The work needed to synchronize the intermediate results
influences the expected performance gain. As described in
Section IV-A, a merge algorithm with a complexity of
O(nth ∗ n) is used to combine the results. In this example
the overall problem size (n) remains constant. Thus, the
time to merge the sublists only depends on the number of
created threads. This overhead increases linearly and can
be determined using the same methods as described for the
calculation of the threads’ runtime in Step 3 of Section III-B.
In this proof of concept, it was determined to an average of
to2 = 28µs ∗ nth.

F. Simulation and Evaluation (Steps 5 & 6)

After all values have been determined, the simulation
was executed. All measurements were performed with the
number of threads increasing from 2 to 128.

ts1
to1
tpar
sim

to2
ts2
tg
sim

ti
m
e
[m
s]

0

5

10

15

20

25

number of threads
20 40 60 80 100 120

Figure 5. Simulation of the System’s Parallelization

Figure 5 presents the simulation’s results. The x-axis
shows the number of created threads and the y-axis depicts
the used time in milliseconds. The graph includes all the
values introduced in Section III-B; the sequential parts ts1
and ts2, the threads’ overhead to1 and to2, as well as the
time needed to run all the created threads tsimpar . Additionally,
the overall simulation time (tsimg) is presented. The small
variations included in the graph occur due to measuring
inaccuracies.

The evaluation of the simulation resulted in a calculated
performance gain of tgain = 100.48ms for the parallel
execution with the optimal number of threads noptth = 35.

nth
opt=35

tg
sim

tparallel

ti
m
e
[m
s]

0

5

10

15

20

25

number of threads
20 40 60 80 100 120

Figure 6. Comparison of Simulation and Parallel Implementation

Figure 6 presents a comparison of the overall simulation
time tsimg and the total execution time tparallel of the parallel
implementation. The y-axis plots the time in milliseconds
against the number of used threads (x-axis). There are only
small differences, probably caused by operating system in-
terruptions. Clearly, the simulation of the parallelization has
given an accurate estimation of the parallelization’s results.
Based on these initial results we are confident that the
proposed methodology can be used to estimate the expected
performance of a system’s parallelization. The application of
the presented approach provides a well founded estimation
of the ideal number of threads without a realization of the
parallel algorithm.

V. CONCLUSION AND FUTURE WORK

We presented a novel approach to simulate the effects of
parallelization on the system’s performance, by obtaining
measurements on which decisions to use parallelization as
an optimization technique can be based. This leads to a more
gain-oriented performance optimization.

The presented approach converts a single-threaded bottle-
neck into a simulation of its parallel execution. Therefore,
the expected bottleneck is split into several parts in order to
simulate the parallel execution of the bottleneck. Especially,
the part that can be parallelized is particularly investigated
to determine the threads’ runtime and the additional over-
head that occurs when synchronizing the threads’ results.

237

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 253 / 612

Complexity analysis and measurements are used to estimate
the timing behavior of the parallel part. The identified time
slices are rebuild by performance simulation functions, and,
thus, enable the performance simulation of the system’s
parallelization. The parallelization’s expected performance
benefit is determined by simulating varying parallelization
degrees.

The described simulation provides more accurate knowl-
edge on the achievable performance gain by parallelizing a
component before spending the effort of a costly realization
of the parallelization. And such, it enables a more gain-
oriented performance optimization than a simple guess of
the parallelization’s effects. The approach is validated by
a proof of concept using a bubble sort algorithm. The
simulation’s results estimate the expected performance of the
parallel implementation with high accuracy. Additionally,
the optimum number of threads that have to be created
in order to achieve the maximum performance benefit is
determined by the simulation. Please note that in a real
environment a comparison of the expected performance
gain and the parallel runtime behavior, as shown in the
presented case study, is not possible until the realization of
the parallelization.

In future work the introduced approach also has to be
validated for other algorithms and in industrial case studies.
Additionally, the CPU load will be taken into account as a
further performance aspect. Upper bounds of CPU loads can
be defined and help to decide whether parallelization of a
system’s component is a viable approach for the system’s
performance optimization.

The presented approach simulates a parallelization of the
regarded bottleneck using domain decomposition. Functional
decomposition as a parallelization technique will also be
investigated, considering the simulation of threads with
differing values of runtime and systems having several
synchronization points of the threads during their execution.
This has to be integrated with the presented approach.

A new methodology regarding the application of the
performance simulation of a system’s parallelization will be
developed and evaluated by case studies. This enables the
simulation of parallelization as a performance optimization
technique. Thus, it reduces the optimization’s effort and
leads to a more gain-oriented performance optimization of
the system.

VI. ACKNOWLEDGMENTS

The authors would like to thank the Software Technology
Research Laboratory (STRL) of the De Montfort University,
especially Francois Siewe and Hussein Zedan for providing
the appropriate environment for research. This research has
been funded by project grants from the German Federal
Ministry of Education and Research (BMBF). Project: Perf-
Boost, FKZ 17034X10.

REFERENCES

[1] P. Trapp and C. Facchi, “Performance Improvement Using
Dynamic Performance Stubs,” Fachhochschule Ingolstadt,
Tech. Rep. 14, Aug. 2007.

[2] P. Trapp, M. Meyer, and C. Facchi, “Using CPU Stubs
to Optimize Parallel Processing Tasks: An Application of
Dynamic Performance Stubs,” in ICSEA ’10. IEEE Computer
Society, 2010.

[3] P. Trapp, M. Meyer, C. Facchi, H. Janicke, and F. Siewe,
“Building CPU Stubs to Optimize CPU Bound Systems: An
Application of Dynamic Performance Stubs,” International
Journal on Advances in Software, vol. 4, no. 1&2, 2011,
accepted for publication.

[4] G. M. Amdahl, “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities,” in AFIPS
’67 (Spring). New York, NY, USA: ACM, 1967, pp. 483–
485.

[5] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun.
ACM, vol. 31, pp. 532–533, May 1988.

[6] S. Krishnaprasad, “Uses and Abuses of Amdahl’s Law,” J.
Comput. Small Coll., vol. 17, pp. 288–293, December 2001.

[7] C. Jeong and M. Shahsavari, “Performance Evaluation of
Multithreading in Concurrent Programs,” in SoutheastCon,
2002. Proceedings IEEE, 2002, pp. 7 –9.

[8] D. Marinescu and J. Rice, “Speedup, Communication Com-
plexity and Blocking-a La Recherche du Temps Perdu,”
in Parallel Processing Symposium, 1993., Proceedings of
Seventh International, apr 1993, pp. 712 –721.

[9] A. Siami Namin, M. Sridharan, and P. Tomar, “Predicting
Multi-core Performance: a Case Study Using Solaris Con-
tainers,” in Proceedings of the 3rd International Workshop
on Multicore Software Engineering, ser. IWMSE ’10. New
York, NY, USA: ACM, 2010, pp. 18–25.

[10] Y. Etsion and D. Feitelson, “Time Stamp Counters Library -
Measurements with Nano Seconds Resolution,” The Hebrew
University of Jerusalem, Tech. Rep. 2000-36, 2000.

[11] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, 2006.

[12] F. Nielson, H. R. Nielson, and C. Hankin, Principles of
Program Analysis. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 1999.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition, 3rd ed. The MIT
Press, 2009.

[14] O. Astrachan, “Bubble Sort: an Archaeological Algorithmic
Analysis,” in Proceedings of the 34th SIGCSE technical
symposium on Computer science education, ser. SIGCSE ’03.
New York, NY, USA: ACM, 2003, pp. 1–5.

[15] R. Srinivasan and O. Lubeck, “MonteSim: A Monte Carlo
Performance Model for In-order Microarchitectures,” ACM
SIGARCH Computer Architectur News, vol. 33, no. 5, pp.
75–80, Dec. 2005.

238

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 254 / 612

Towards Executable Business Processes with the Problem Oriented Engineering
Process Algebra

Dariusz Wojciech Kaminski
Computing Department

The Open University, UK
dariusz.kaminski@gmail.com

Jon G. Hall
Computing Department

The Open University, UK
J.G.Hall@open.ac.uk

Lucia Rapanotti
Computing Department

The Open University, UK
L.Rapanotti@open.ac.uk

Abstract—The paper introduces a process algebra for busi-
ness process models. The algebra is located within Problem
Oriented Engineering, a framework for engineering design, and
is based on a process pattern defined by Hall and Rapanotti
by which Problem Oriented Engineering developments should
be structured. The pattern is a generator for processes being
composable in three ways: in sequence, in parallel and fractally.
In explicating this process algebra, a machine readable and
animatable CSP is used, which forms a semantic basis for
the behaviour modelling of processes. The benefits of this
algebra are: simplicity, support for business process analysis
and synthesis, and explicit recognition of choices (and their
impact) made by agents.

Keywords-process modelling; process algebra; Problem Orien-
tation.

I. INTRODUCTION

Business process analysis and synthesis are greatly facili-
tated by executable models, such as Business Process Execu-
tion Language (BPEL), which can be represented graphically
by Business Process Modeling and Notation (BPMN) [18].
Such approaches provide only the building blocks by which
processes can be built, without any predictive capability of
the properties of processes themselves.

A predictive model is, essentially, one with which “What
if?” questions can be answered. An example question might
be:

What if we asked a stake-holder at this point
whether we have understood their problem well
enough; would the developmental risk we face
change?

Being able to answer such questions may allow us to distin-
guish from all those that solve a business problem, those
business processes best match other criteria such as, for
instance, the availability of resources or our attitude to risk.

In this paper, we provide a model that we have developed
in the context of Problem Oriented Engineering (POE) [6],
[7]. POE has been shown to have predictive capability in
the design of artefacts, and we hope, with this paper, to
begin working towards using POE’s predictive capabilities
for business process design.

The paper is structured as follow. Section II provides a
brief overview of business process modelling and Problem
Oriented Engineering. Section III introduces and explains the
POE Process Algebra, with an example in Section IV. Section
V reflects on the contribution and its potential application.

II. BACKGROUND AND RELATED WORK

POE is motivated by a view of engineering as a problem
solving activity [15]. POE provides many tools for solving
problems, including the POE Process Pattern (PPP) [5],
upon which the treatment of this paper is based. Simply
put, the PPP orders a problem solving activity as iterations
between exploring the problem and exploring the solution,
with interleaved validation activities, whilst recognising that
both problem and solution exploration can also be seen as
problem solving activities.

Under the POE view, business processes are designed
artefacts that solve business problems. We assume that for
any business problem there will be many possible candidate
business process solutions, each with different characteristics
– here we consider cost (or resource use), and risk – in
the solution space. This paper provides the business process
designer with tools that allow the visualisation of business
processes along a ‘risk/resource continuum’, each of which
can then be compared to an organisation’s available resource
and risk appetite, as illustrated in Figure 1.

Business B's risk/
resource capability

Business A's risk/resource
capability

Increasing Risk of
inadequate solution

Increasingly expensive
problem understanding

BP1 BP2 BP3

Figure 1. Two businesses A and B, each with different risk appetites and
available resources, experience the same problem for which three candidate
solutions – BP1, BP2 and BP3 – exist. Plotting each business process along
the risk/resource continuum allows the most appropriate to be chosen.

Thus, whilst consistent with Aguilar-Savén’s definition [2]:
“a business process is the combination of a set of activities

239

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 255 / 612

within an enterprise with a structure describing their logical
order and dependence whose objective is to produce a desired
result”, we provide hooks for the management of the fol-
lowing risk/resource trade-off [5]: although understanding the
problem can be resource intensive in terms of developmental
and stake-holder time, it can mitigate the risk of solving the
wrong problem. For the purposes of this paper, we call this
the “risk/resource trade-off assumption”.

A. Business process modelling

Many analytical frameworks have been considered for the
classification of business process models. Wang et al., for
instance, [17] surveys BPEL4WS (BPEL for Web Services),
BPMN, UML (Unified Modeling Language), XPDL (XML
Process Definition Language), Petri Nets, IDEF0, and IDEF3.

Given their easy representation of concurrency and their
explicit representation of state, Petri Nets have long been as-
sociated with the modelling of Business Processes, including
the work of Van der Aalst [1], and that based on the Petri
Box model of Best et al. Our model shares with Petri Nets a
formal model in POE, but is focussed on on completeness of
representation only on the accurate representation of problem
solving steps that exist within a business process. Moreover,
we aim for synthesis of business processes not just their
modelling for animation.

Aguilar-Savén provides a comprehensive review of a num-
ber of business process modelling techniques and tools, and
also proposes a framework to classify the techniques/models
according to their purpose. The classification proposed in [2]
is done according to the purposes (descriptive, analytical,
enactable), and change model permissiveness (passive or
active). The approach proposed in this paper aims to be active
in regards to permissiveness, and depending on the context
and modelling goals the purpose falls into all four categories.

Other classification emphasising the link between mod-
elling, decision and planning capabilities, but also their
relation to entities (time, resources, causality and authority),
was provided by Macintosh [11].

Mentzas et al. [13] provide an evaluation of alternative
approaches to business process modelling with workflows.
One of the problems, as cited by Mentzas et al., is the hard-
ship in modelling exceptional tasks or processes, and their
advice is to exclude such processes from process models,
“due to uncertainty either in time or in the processing entities
involved”.

Perhaps unsurprisingly, synthetic approaches to business
processes are fewer in number: A formal definition of
structured workflow in terms of activities was provided by
Kiepuszewski et al. in [9], where it was shown how these can
be composed to form arbitrary workflow models, but require
the use of powerful verification engines to help detect whether
a composed process is well-behaved.

B. Problem Oriented Engineering

Problem Oriented Engineering is a framework for en-
gineering design, similar in intent to Gentzen’s Natural
Deduction [16], presented as a sequent calculus. As such,
POE supports rather than guides its user as to the particular
sequence of design steps that will be used; the user choosing
the sequence of steps that they deem most appropriate to the
context of application. The basis of POE is the problem for
representing design problems requiring designed solutions.
Problem transformations transform problems into others in
ways that preserve solutions (in a sense that will become
clear). When we have managed to transform a problem to
axioms1 we have solved the problem, and we will have a
designed solution for our efforts.

Figure 2. The POE Process Pattern: iteration between problem and solution
exploration with interleaved validation (adapted from [5]).

A comprehensive presentation of POE is beyond the scope
of this paper (but can be found in [6], [7]). For this paper it
will be sufficient to consider the structure that POE suggests
for problems solving steps that is illustrated in Figure 2 in
which rectangles are resource consuming activities; diamonds
indicate requests to stake-holders for validation either – on
the left – of problem understanding, or – on the right – of a
candidate solution.

The potential for looping in the POE process pattern
concerns unsuccessful attempts to validate: unvalidated prob-
lem understanding will require problem rework as will an
unvalidated solution. In this way, validation within the pro-
cess has an impact on both (developmental) resources and
risk: resource will vary with validation instances; risk varies
inversely with validation instances.

C. Complex problem solving

Although the POE process pattern provides a structure for
problem solving, in its raw form, a problem will only be
solved when, after iteration, a validated problem is provided
with a validated solution. This ‘bang-bang’ approach is
suitable for simple problems, but is unlikely to form the basis
of any realistically complex problem encountered in software
engineering.

1An axiomatic problem is a problem whose adequate, i.e., fit-for-purpose,
solution is already known.

240

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 256 / 612

To add the necessary complexity, the POE process pattern
combines with itself in three basic ways; in combination, it is
again a process that can be combined. The three ways it can
be combined are in sequence, in parallel and in a fractal-like
manner, as suggested in Figure 3, and as described in the
sequel.

Figure 3. Problem solving can be performed (a) in sequence, and (b) in
parallel. Under POE, problem and solution exploration are problems solving
activities, so that fractal composition is also possible.

Briefly, in sequence, the POE process pattern models
(more or less traditional) design processes in which existing
structures, such as architectures, are used as structure in
the solution space according to significant requirement and
qualities, and according to developmental requirements.

If resources exist, parallel problem solving is possible. Of
course, communications between those involved in parallel
development is a non-trivial issue; we do not consider it here,
though.

Fractal-like Design: [5] explains in detail how problem
and solution exploration can be seen as problem solving
processes: although we do not go into detail, essentially, the
problem to be solved by problem exploration is to find the
problem (or solution) description that satisfies the validating
stake-holder. This allows us to embed within problem and
solution exploration copies of the PPP, making the process
self-similar in the sense that the whole structure resembles
the parts it is made of.

Trusted processes: A POE process is trusted when there
are no validating stake-holders. As argued in [5], trusted
processes exist to ‘bottom out’ problem solving; given that
no validator is involved they do not have a fractal form.

D. Validation

We wish to model the validation relationships that occur
in organisations. In POE, we assume that there are two
types of validation relationship: (i) direct validation, in which
one actor determines whether the problem to solve has
been understood or the solution is adequate; (ii) delegated
validation, in which one actor – the delegator – delegates to
one (or more) actors who then can validate either directly or
through delegation. Of course, delegation does not transfer

the responsibility for the outcomes of a choice, so that at
a future point the delegator may check that the choice has
been made, and also that the outcome and justification of that
choice is suitable.

A delegator can clearly not usefully delegate to themselves,
nor can there be cycles in the delegator/delegatee relation-
ship. The reflexive transitive closure of the relationship is,
therefore, a partial order.

Thus, POE see validation as a social choice [3], which can
be expressed as a partially ordered set, or poset, i.e., (X,<),
where X is the domain set and symbol < is the delegation
relation, which we call the validation structure, or VStruct.

Example 1: Consider three validators – v1, v2 and v3 –
with vi delegates to vj , vi < vj , whenever i > j. The
validation structure is the poset (V,<) with:

V = {v1, v2, v3}, (v1 < v2), (v2 < v3)

We now turn to the modelling of business processes in
POE.

III. POE PROCESS ALGEBRA

The aim is to define a process algebra to describe POE pro-
cesses in terms of simple operations. These operations should
allow for encoding and modelling of distinct exploration
and validation activities. Firstly, they should provide com-
positions for the three basic ways in which POE processes
combine. Secondly, the operations should be sufficient to
express arbitrarily complex process models, whose structure
and behaviour could be modelled and reasoned about.

To this end, we define the POE Process Algebra (PPA).
A process under PPA is formed under the following syntax:

P = β | P ;P | P‖P | P V ./V P

in which a basic POE Process, β, combines to produce
sequence P ;P , parallel P‖P , and fractal processes P V ./V P ,
the latter in combination with validation structures2.

The operators correspond to the possibilities for combina-
tion of POE Processes as described in Section II.

A. Executable semantics of PPA

We provide an executable semantics for PPA terms using
machine readable CSP (CSP-M) [4], as implemented in
ProB tool [10]. ProB was chosen as it provides for the
animation and model-checking of the resulting CSP models
and traces [8] on the trusted processes. A CSP semantics
allows us to reason about processes in terms of the effects
of basic process on resource, and on their relationship to
validation, through fractal composition.

2The astute reader will note the lack of a choice composition, often
included in process algebras that express computation. This is because the
PPP describes the structure of the problem solving process and not the
(creative) choices that are expressed therein: POE makes no comment on
the creativity of the design process, that is contextually determined by the
stake-holders whose notions of adequate apply.

241

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 257 / 612

We have already been able to use ProB’s model checking
and animation functionality to test whether POE processes
(encoded as POE Programs) execute and complete as ex-
pected. Examples follow.

B. POE Programs language syntax

We designed a language for encoding POE processes using
the operators from PPA, and as a function over POE Programs
in this language we created a set of tools to translate PPA
encoded input to CSP-M.

The executable model for POE processes was implemented
in the Ruby programming language [12]. The input POE
Program is translated to CSP-M output, and this in turn can
be directly used in ProB tool. Further technical details of the
implementation are beyond the scope of this paper.

C. A CSP-M semantics of PPA

Our semantics is over the domain of CSP-M expressions
and so we must associate with each POE Process expression
a CSP-M term. Most choices for the semantics are made
simple due to the process algebraic nature of the source and
target languages: CSP is an algebra as is PPA. Below, we
describe in detail only the more difficult encodings.

PPA trusted in CSP: Trusted POE processes are the
building block from which others are built. Their defining
characteristic is that they make no use of validators. As such
they can be, essentially, any piece of CSP-M code.

Sequence: Sequential composition under PPA is, as
might be expected, implemented using CSP’s sequential
operator ;. Simply:

Sequence(Left,Right) = Left ; Right

Parallel: Although there are other choices, in this initial
semantics parallel composition under PPA is implemented
using CSP’s interleaving operator. Other choices would allow
the processes involved to communicate with each other to, for
instance, model the passing of documentation between them.
Such details are left for a fuller description.

Parallel(Left,Right) = Left ||| Right

PPA fractal in CSP: Referring to Figure 3, fractal
composition in our CSP-M implementation must accept
four arguments: Upper for the problem exploration process,
Lower for solution exploration process, and the two respec-
tive validation structures, which we will call VSPID (for
Validation Struct for Problem) and VSSID (for Validation
Struct for Solution). Our semantics simply places the CSP-
M semantics of the operands together through CSP-M’s
interleaving operator.

Fractal(Upper,Lower,VSPID,VSSID) = (Upper |||
ValidateUpper(VSPID) ||| Lower |||

ValidateLower(VSSID))

Table I
SUMMARY OF KEY TERMS

Term Description

Mortgage Servicing Managing mortgage loans – interest accruals,
billing, collecting due payments, redemption
of loans, etc.

Financial Services
Authority (FSA)

Regulatory body for financial institutions

(Mortgage) Servicing
Software

Software used in servicing activities

Triage Document A form used to report details of a production
issue

IV. CASE STUDY EXAMPLE

As an example of the application of our algebra, we model
the process described in [14], from which the following
description is adapted.

The context of the study is a UK based subsidiary of
an American financial organisation (the Company), with
business, systems and technical analysts based in the UK,
technical architects in the US and development staff in India.
Relevant key terms and stake-holders are summarised in
Tables I and II. The company supplies Mortgage Servicing
Software package to its Client, a product that manages loan
accounts once mortgage payments have been made by the
Client’s customers. The software facilitates business tasks
such as payment calculation and processing, account queries,
early redemption, correspondence, interest rate change and
customer billing. The company also provides support and
assists in the resolution of issues that arise during the use
of the supplied software.

Recently, the company lost a number of subject matter
experts but retains a contractual obligation to provide support
to the Client to enhance and maintain the supplied software
stack. This motivated the company to investigate through
this study the capture of design rationale during Client’s
issue resolution. As many organisations face such losses,
the success of our case study takes on increased importance.
The case study also provided opportunities to consider how
the application of POE techniques could improve the current
issue resolution process. Process improvement is also an issue
faced by many organisations.

A. Issue Resolution Process

When an issue is found in the Client’s use of the Com-
pany’s applications, a Triage Document is raised to describe
the problem with information included that may assist in
tracking down its cause. The reported issue is given a priority
by the Client (low, medium, high) that governs the timeline
for response and solutions, based on service-level agreements.
Once the Triage Document is received by the Supplier’s
Production Support Team, an incident number is generated

242

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 258 / 612

Table II
SUMMARY OF KEY STAKE-HOLDERS

Stake-holder Description

Client/Financial Institution The mortgage institution managing cus-
tomer mortgages

Customers Patrons of the client organisation whose
mortgages are being managed

(Servicing) Software Com-
pany

Company that supplies and maintains
mortgage servicing software for the
client. The case study is based in this
organisation

Client Production Support
Team

Client-side team tasked with resolving
application software issues. Understand
the workings of the application system
and its platform, provide initial infor-
mation on issues and communicate with
business decision makers when ques-
tions arise of a business policy nature

Supplier Production Sup-
port Team (SPST)

Supplier-side team tasked with resolv-
ing issues with application software. In
contact with CPST, assign work to the
development and manage releases of so-
lutions to the Client

Application Architect
(AA)

Reviews a solution to assess if solution
complies with standards

Product Assurance Team Ensures the quality of the provided so-
lution

Mort. Bus. Man. Make final sign-off decision
IT Management Make decision whether to implement

solution in production
(Offshore) Development
Team (DT)

Group of individual on the Supplier side
tasked with developing software

and used to track the issue. The information is checked to
see if it is sufficient for the investigation to progress.

Further discussions may be held between the Client and
Supplier Production Support Teams to agree a) which issues
lie with the application software and b) an approach for
dealing with the issue. Additional clarification may be sought
from the Client from which the issue report originated.
The clarification may be in the form of screen shots of
the application error, data extracts, event logs and example
scenarios. When issues are agreed between CPST and SPST,
they are analysed and solution approaches proposed by the
development and architecture resources assigned to the issue.
The proposed solutions are discussed with the CPST. Once
agreement is reached on a solution approach, it is developed
and tested. On completion of development and testing, the
solution is packaged by the SPST with release notes and
a test report, and delivered to the CPST. Subsequently, the
CPST validate the delivered package, perform some further
tests in collaboration with the Client, and may either return
it for rework if it is unsatisfactory or implement it to the
production systems if satisfied with the results.

B. The PPA Model

From this description, we identify four trusted processes,
Report, Raise, Analyse and Deliver, and three frac-
tal instances of Figure 2, here named F1, F2 and F3, with
associated validation structures U; V1 and V2; W1 and W2. We

note that only the problem exploration part of F1 is validated.
The process is illustrated in Figure 4.

Figure 4. Processes; adapted from [14]

LET HiddenPV := (HiddenValidator)
LET U := (SPST1<CPST1<Client1)
LET V1 := (SPST2<AA1)
LET V2 := (CPST2<Client2)
LET W1 := (PA1)
LET W2 := (Client3<CPST3)

F1 := (ElaborateP{HiddenPV}><{U}ElaborateS)
F2 := (Propose{V1}><{V2}Prepare)
F3 := (Impl{W1}><{W2}Package)
P := Report;Raise;F1;Analyse;F2;F3;Deliver

Our tool generates approximately 180 lines of CSP-M to
model the case study process of Figure 4. The part of the
process corresponding to the level of that figure is:

P = Sequence(Sequence(Sequence(Sequence
(Sequence(Sequence(T(pReport),
T(pRaise)), Fractal(T(pElaborateP),
T(pElaborateS), vsHiddenPV,vsU)),
T(pAnalyse)), Fractal(T(pPropose),
T(pPrepare), vsV1, vsV2)),
Fractal(T(pImpl), T(pPackage),
vsW1,vsW2)), T(pDeliver))

V. CONCLUSIONS AND FUTURE WORK

We have described our current model of Hall and Rapan-
otti’s POE Process Pattern. The current model includes initial
executable semantics of all aspects of the process, including
fractal composition from which call-outs to validating stake-
holders take place. Our model is encoded in a new process
algebra, the POE Process Algebra (PPA), introduced here,
and we have defined a semantic function over the algebra,
which maps from CSP-M model that can be analysed in the
ProB tool.

We have illustrated our PPA encoding on a business
process that has appeared in the literature, presented a partial

243

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 259 / 612

CSP-M semantics of it as well as the ProB output of a partial
exploration of its state space.

Our approach contributes to business process modelling by
explicit recognition of choices that can be made by human
agents, and with a devised language for representing POE
Programs in the form of CSP-M, this approach provides
syntax and semantics for behaviour modelling of business
and validation processes in general.

Work that remains will consider how the executable model
can be used to calculate resource usage of the process, and
how risk and resources trade-off under, what we have termed,
the risk/resource trade-off assumption of Section II. For,
with such calculations, comes the possibility of systematic
business process design in POE.

REFERENCES

[1] W.M.P. van der Aalst, “Making Work Flow: On the Applica-
tion of Petri Nets to Business Process Management.” LNCS,
J. Esparza and C. Lakos, Eds. Springer, 2002, vol. 2360, pp.
1–22.

[2] R.S. Aguilar-Savén, “Business process modelling: Review and
framework,” International Journal of Production Economics,
vol. 90, no. 2, pp. 129 – 149, 2004.

[3] G. Brightwell and D. B. West, “Chapter 11: Partially
ordered sets,” in Handbook of Discrete and Combinatorial
Mathematics, K. H. Rosen, J. G. Michaels, J. L. Gross, J. W.
Grossman, and D. R. Shier, Eds. CRC Press, 2000.

[4] M. Butler and M. Leuschel, “Combining CSP and B for
Specification and Property Verification,” in FM 2005: Formal
Methods International Symposium of Formal Methods Europe,
Newcastle, UK, July 18-22, 2005. Proceedings, LNCS, vol.
3582. Springer, 2005, pp. 221–236.

[5] J.G. Hall and L. Rapanotti, “Assurance-driven design in
Problem Oriented Engineering,” International Journal On Ad-
vances in Systems and Measurements, vol. 2, no. 1, pp. 119–
130, 2009.

[6] J.G. Hall, L. Rapanotti, and M. Jackson, “Problem oriented
software engineering: A design-theoretic framework for soft-
ware engineering,” in Proceedings of 5th IEEE International
Conference on Software Engineering and Formal Methods.
IEEE Computer Society Press, 2007, pp. 15–24.

[7] J.G. Hall, L. Rapanotti, and M. Jackson, “Problem-oriented
software engineering: solving the package router control prob-
lem,” IEEE Trans. Software Eng., 2008.

[8] C.A.R. Hoare, Communicating Sequential Processes, ser. Se-
ries in Computer Science. Prentice-Hall International, 1985.

[9] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler,
“On structured workflow modelling.” in CAiSE, LNCS,
B. Wangler and L. Bergman, Eds. Springer, 2000, vol. 1789,
pp. 431–445.

[10] M. Leuschel and M. Fontaine, “Probing the Depths of CSP-
M: A New FDR-Compliant Validation Tool,” in ICFEM ’08:
Proceedings of the 10th International Conference on Formal
Methods and Software Engineering, Kitakyushu-City, Japan.
Springer-Verlag, 2008, pp. 278–297.

[11] A. Macintosh, “The need for enriched knowledge representa-
tion for enterprise modelling,” in AI (Artificial Intelligence) in
Enterprise Modelling, IEE Colloquium on (Digest No.078), 7
1993, pp. 3/1 –3/3.

[12] J. McAnally and A. Arkin, Ruby in practice. Manning
Publications Co. Greenwich, CT, USA, 2008.

[13] G. Mentzas, C. Halaris, and S. Kavadias, “Modelling
business processes with workflow systems: an evaluation of
alternative approaches,” International Journal of Information
Management, vol. 21, no. 2, pp. 123 – 135, 2001.

[14] A. Nkwocha, J.G. Hall, and L. Rapanotti, “Design rationale
capture in the globalised enterprise: An industrial study,” in
Proceedings of Fifth International Conference on Software
Engineering Advances (ICSEA 2010). IEEE, 2010, electronic
proceedings.

[15] G.F.C. Rogers, The Nature of Engineering: A Philosophy of
Technology. Palgrave Macmillan, 1983.

[16] M.E. Szabo, Ed., Gentzen, G.: The Collected Papers of
Gerhard Gentzen. Amsterdam, Netherlands: North-Holland,
1969.

[17] W. Wang, H. Ding, J. Dong, and C. Ren, “A comparison of
business process modeling methods,” in Service Operations
and Logistics, and Informatics, 2006. SOLI ’06. IEEE
International Conference on, 21-23 2006, pp. 1136–1141.

[18] S.A. White, “Introduction to BPMN,” IBM Corporation, May
2004.

244

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 260 / 612

Optimal Functionality and Domain Data Clustering
based on Latent Dirichlet Allocation

Stoyan Garbatov and João Cachopo
Software Engineering Group

Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento, INESC-id
Lisbon, Portugal

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract — This work presents a new approach for clustering
domain data and application functionality, based on the Latent
Dirichlet Allocation. The methodology, developed here,
performs an optimal clustering by identifying input values that
lead to the best possible clustering output. The optimal
solutions are identified through the use of the Silhouette
technique. A validation of the work is performed based on the
TPC-W benchmark. The new approach is flexible enough to be
applied to any object-oriented application where identifying
meaningful clusters of its domain data and functionality is
desired.

Keywords-clustering; Latent Dirichlet Allocation; stochastic
model; Silhouette.

I. INTRODUCTION

The problem of clustering has been considered and
analysed in many different disciplines' contexts, illustrating
its relevance and usefulness in a variety of circumstances.

Clustering corresponds to an unsupervised classification
of patterns (data, observations, etc) into sets or groups
(clusters). Clustering algorithms organize pattern aggregates
based on similarity criteria according to which these may be
classified.

A pertinent situation requiring clustering would be in the
context of large-scale object-oriented applications (e.g
dynamic content web applications). There, it can be
interesting to identify meaningful subsets of application
functionality that display high affinity with regards to the
domain data that is manipulated within their scope. If such
information is available, then it may be feasible to carry out
techniques such as load balancing or partial data replication
to improve the application performance and scalability.

Based on what can be seen from recent research, there
has been some effort spent in this area, but the great majority
of these approaches display only partial automation in their
mode of operation. Many approaches require user
intervention at one, if not more, points of the analysis
procedure, making the approaches more prone to errors and
leading to non-optimal results, due to the subjectivity
induced by the user interaction in the decision making
process.

In contrast to these supervised approaches, we believe
that a wholly automatic approach would lead to better
results, by avoiding the problems identified above. This

paper describes the development and validation of a fully
automated system capable of identifying the domain data
manipulated during the execution of the target system's
functionality and, based on that information, of performing
optimal partitioning of the application's methods/services
according to the domain data used within their runtime
scopes. The partitioning of the application's functionality
(represented by its services and/or methods) is performed by
employing the Latent Dirichlet Allocation [1]. The
optimality of the solutions is guaranteed through the use of
the Silhouette technique, [2].

The article has the following structure. The related works
are discussed in Section II. The description of the system is
covered in Section III. The results and evaluation of the
system are given in Section IV. The concluding remarks are
presented in Section V.

II. RELATED WORK

Based on the nature of the work presented here, it is
possible to identify two related research areas. The first one
covers the development and analysis of clustering
algorithms, whilst the second one encompasses works
seeking to develop performance improvement techniques in
the context of dynamic content web applications.

It was not possible to find any work that takes an at least
comparable approach for the problem at hand. As such, the
discussion of works strictly related to clustering algorithms
will be restricted to the relevant references that are present in
the system description.

It is important to discuss some of what has been done in
the context of dynamic content web applications [3-8], so as
to better appreciate the contribution of the current work. A
rather thorough study and comparison of load balancing and
scheduling strategies, for the type of applications identified
above, can be seen in the work of Amza et al. [9] .

The work of Elnikety et al. [7] introduced a memory-
aware load balancing method for dispatching transactions to
replicas in systems employing replicated databases. The
algorithm uses information about the data manipulated in
transactional contexts with the goal of assigning transactions
to replicas so as to guarantee that all necessary data for their
execution is in memory, thereby reducing disk I/O. For
guiding the load balancing technique, the authors developed
an auxiliary approach for estimating the volume and type of
data manipulated during transactions. An additional

245

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 261 / 612

contribution of their work is an optimization designated
update filtering for decreasing the overheads due to the
propagation of updates between replicas.

The work of Amza et al. [5] presents a novel lazy
replication technique, intended for scaling database back-
ends of dynamic content site applications operating on top of
computer clusters. The approach developed by Amza et al. is
referred to as conflict-aware scheduling and provides
throughput scaling and one-copy serializability. This
technique exploits the fact that, in the context of database
clusters, there is a scheduler responsible for processing all
incoming requests. By making use of information regarding
the domain data accessed within transactions, Amza et al. [3]
developed a conflict-aware scheduler that provides one-copy
serializability, as well as reducing the rate at which conflicts
occur. This is achieved by guiding incoming requests to
nodes based on the data access patterns that are expected to
be performed during the execution of the associated
transactions.

Gao et al. [6] developed an edge service replication
architecture for e-commerce applications using application
specific distributed objects. The authors exploit application
specific behaviour to manage subsets of shared domain data
through distributed objects. Higher system availability and
efficiency is achieved by tolerating lower consistency among
distributed objects.

Shen et al. [4] performed an analysis over the clustering
of replicated services with high ratios of write operations.
With their work, the authors developed an infrastructural
middleware called Neptune, which allows the agglomeration
and replication of a system's service modules. The
middleware supports multiple alternative persistence
mechanisms and is capable of maintaining consistency
dynamically, independently of the location and availability
of a particular replica.

Zuikeviciute and Pedone present in [8] a hybrid approach
for conflict-aware load balancing for systems with database
replication. The authors analyzed the effects of the often
opposing requirements (from an engineering point of view)
of maximizing transaction parallelism and minimizing
conflict ratios. The work led to the development of a load
balancing technique that finds a good compromise between
parallelism and conflict minimization, accomplishing better
results than approaches concentrating solely on one of the
above requirements.

As can be seen from the above works, there are indeed
very promising results for improving the performance and
scalability of large scale applications, through the use of load
balancing, replication techniques, adaptive scheduling, and
other related approaches. Yet, there is still significant room
for improving the full automation of existing solutions, both
at the level of analyzing the behavior of target applications,
as well as in the identification of meaningful functionality
and domain data subsets on which the approaches are to be
applied.

Thus, we believe that a system capable of performing a
completely automated analysis of a target application’s
behavior (with regard to domain data manipulations
performed in runtime), and of performing an optimal

clustering of the application’s functionality and domain data
(through the use of the current state-of-the-art multivariate
clustering algorithm), would constitute an important
contribution within this research area.

III. SYSTEM DESCRIPTION

The system developed with this work is composed of two
parts: a data acquisition and analysis module and an
optimizing clustering module. The first module is
responsible for capturing the target application behaviour, for
analysing it, and for generating predictions about what are
the most likely domain data types to be needed by the
application when it is in a specific execution context (e.g.,
method, service, etc). The full description of the
implementation, functionality, and properties of this module
has already been presented and discussed in detail in [10-12].
The prediction functionality is of no relevance for the work
presented here. The key aspects of this module are that it
provides the input necessary for the optimal clustering
module, and that the data collection task performed is done
with relatively low overheads (an average of 5-8% overheads
in comparison with the original version of the target
application performance), in an online fashion. Moreover, all
modifications necessary for the acquisition of the
behavioural data are performed in a completely automated
manner by the system presented here.

The second module is responsible for identifying the
optimal clustering of the target application's functionality
and domain data, based on the data access pattern behaviour
observed in runtime. For the clustering itself, we use the
Latent Dirichlet Allocation algorithm, while the optimal
clustering solution is guaranteed through the use of the
Silhouette technique. Both of them shall be discussed in
detail in the following subsections.

A. Latent Dirichlet Allocation

The data acquisition module is responsible for supplying
the clustering module with the observed target application
conduct. This corresponds to the application's domain data
access behaviour, and is expressed in terms of the
frequencies of the domain object manipulation operations
observed when executing application functionality. For
simplicity, the abstraction capturing this functionality shall
be referred to as the methods of the application, but any other
appropriate concept can be used instead (e.g., functions,
services, etc).

When supplied with this input, the clustering module
employs the Latent Dirichlet Allocation (LDA) algorithm,
generating a probabilistic description of the contents of the
clusters.

The decision of using LDA as the clustering algorithm
was based on several factors. The first of these is the fact that
LDA corresponds to the current state of the art in terms of
clustering algorithms. Additionally, LDA consists in a three-
level hierarchical Bayesian model. This shall be discussed in
greater detail further on, but suffice it to say that LDA
provides semantically richer results than other alternative
methods, making it thus more useful for the purpose of the
work presented here.

246

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 262 / 612

For this work, the contents of the clusters correspond to
application methods that are strongly correlated in terms of
the domain data manipulated within their runtime scopes. As
such, the LDA will seek to populate the clusters in such a
way as to maximize the intra-cluster similarity and minimize
the inter-cluster similarity. This similarity is, once again,
expressed in terms of the domain data used in the methods
being clustered. It should be noted that the LDA, being a
multivariate clustering model, provides a secondary result.
This secondary result consists of a clustering of the
application domain data. The cluster identities are the same
as the ones for the application methods, with the difference
that they are characterized by a stochastic description built-in
function of the predominant domain data present in them.

The LDA does not estimate the optimal number of
clusters that are to be found in the set of methods composing
the target application. The number of clusters is supplied as
input to the algorithm. The procedure for identifying the
optimal value for the number of clusters shall be discussed at
length in section III.B. In the remaining of this section, the
theoretic bases of the LDA shall be considered.

Latent Dirichlet Allocation was developed and first
presented by Blei et al. [1]. LDA can be generally described
as a generative probabilistic model for collections of discrete
data. In the probability analysis, a generative model
corresponds to a model that can generate randomly
observable data, based on some hidden parameters. The
generative model specifies a joint probability distribution
over observation and label sequences. Keeping this into
account, LDA is a three-level hierarchical Bayesian model.
The hierarchical Bayesian model corresponds to an elaborate
model in modern Bayesian Analysis and allows the
modelling of complex situations in a better way than simpler
models.

Given data x and parameters  , a simple Bayesian
analysis starts with a prior probability (prior)  p  and

likelihood  |p x  to compute a posterior probability:

      | |p x p x p    

The prior on  depends, in turn, on other parameters 
that are not mentioned in the likelihood. So, the prior  p 

must be replaced by a prior  |p   , and a prior  p  on

the newly introduced parameters  is required, resulting in a
posterior probability:

        , | | |p x p x p p       

This procedure may be performed repeatedly, if any of
the parameters employed up until now depends on additional
parameters, requiring its own priors. The process terminates
when priors that do not depend on any further unmentioned
parameters have been reached.

The latent multinomial variables shall be referred to as
clusters. The latent multinomial variables can be associated
without any issue to different concepts.

In the LDA model, each collection item (e.g., method) is
modelled as a finite random mixture over an underlying set
of clusters. The clusters are modelled as an infinite mixture
over a set of underlying cluster probabilities and are
characterized by a distribution over domain data types. From
the point of view of domain modelling, the cluster
probabilities consist in an explicit representation of a
method. The approximation inference techniques employed
for LDA are based on variational methods and an estimation
maximization algorithm for empirical Bayes parameter
estimation.

LDA assumes the following generative process for each
method m in an application A :

1. Choose  N Poisson ξ .

2. Choose  θ Dir α .

3. For each of the N data types nm :

 (a) Choose a cluster  nz Multinomial θ .

 (b) Choose a data type nm from  | ,n np m z  , a

multinomial probability conditioned on the cluster nz .
There are a few simplifying assumptions made in this

model, among which is that the dimensionality k of the
Dirichlet distribution (and the dimensionality of the cluster
variable z) is assumed known and fixed. The Poisson
assumption is not crucial for any part of the model and other
more appropriate method length distribution may be
employed if deemed necessary.

A k -dimensional Dirichlet random variable  can take
values in the  1k  -simplex (a k -vector  lies in the

 1k  -simplex if
1

0, 1
k

i ii
 


 ), and has the following

probability density on this simplex:

  
 

 
1

1 11
1

1

| ... k

k

ii

kk

ii

p 


   


 











 

where the parameter  is a k -vector with components
0i  , and where  x is the Gamma function. The

Dirichlet distribution, as a distribution on the simplex, has
several useful properties that make it easier to develop
algorithms for inferring and estimating parameters for the
LDA. The Dirichlet distribution belongs to the exponential
family; it has finite sufficient dimensional statistics and is
conjugate to the multinomial distribution.

Given the parameters  and  , the joint distribution of
a cluster mixture  , a set of N clusters z , and a set of N
data types m is given by:

        
1

, , | , | | | ,
N

n n n
n

p z m p p z p m z      


   

where  |np z  is simply i for the unique i such that

1i
nz  . By integrating over  and summing over z , the

marginal distribution of a method is obtained:

247

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 263 / 612

        
1

| , | | | ,
n

N

n n n
n z

p m p p z p m z d      


 
   

 
 

Finally, taking the product of the marginal probabilities
of single methods, the probability of the set of application
methods is obtained:

        
1 1

| , | | | ,
d

dn

NM

d dn d dn dn d
d n z

p D p p z p m z d      
 

 
   

 
  

A graphical representation of the probabilistic model of
LDA can be observed in Fig. 1. As can be seen, the LDA
representation has three levels. The parameters  and  are
application-level parameters and are sampled once in the
process of generating an application. The variables d
correspond to method-level variables, which are sampled
once per method. Lastly, the variables dnz and dnm are
variables at the domain data-level. These are sampled once
for each domain datum per method.

With regards to the actual implementation employed for
the work presented here, it is a Java port of the original LDA
implementation presented by Blei et al. [1], with no
modifications or extensions performed over the model itself
here. The contribution of this work, regarding the use of
LDA, resides in the new semantic interpretation given to the
model and its associated concepts. This made possible the
use of the LDA algorithm, for the first time, to the best of
our knowledge, to perform clustering of an object-oriented
application's functionality, based on the domain data
manipulated within its scope.

B. Optimal Clustering Solution

As indicated in the LDA model description, the algorithm
does take some additional input parameters, apart from the
occurrence frequencies of the data being modelled. These
parameters are the number of clusters among which the data
is to be split and the  coefficient value, which is also
known as the Dirichlet parameter. The Dirichlet parameter
controls the shape of the Dirichlet distribution and,
subsequently, the likelihood of a given cluster being selected
during the algorithm execution. In practice, high alpha values
(close to 1) lead to many clusters being associated to each
method, whereas a low value makes it so that few clusters
are associated to each method.

As has been previously stated, what we intend with this
work is an optimal clustering solution. This makes it
necessary to find the additional input parameters' values that
lead to the best clustering solutions. To evaluate the effects
of the parameter values, we resorted to a well-known and
recognized clustering model comparison technique. The
technique is known as Silhouette, as reported by Rousseeuw
[2]. Intuitively, good clusters have the property that cluster
elements are close to each other and far from the elements of
other clusters. The Silhouette technique captures this notion
and provides an indicator value of how good a particular
clustering is.

The Silhouette approach functions as follows. For each
data element i , let ()a i be the average dissimilarity between
i and all other elements belonging to the same cluster. The
approach is independent of the dissimilarity criteria, allowing
any appropriate measure to be employed. The value of ()a i
can be considered as a measure of how well the element i is
matched to the cluster. The smaller the value of ()a i , the
better the matching is.

Afterwards, for every cluster where i does not belong, an
average measure of dissimilarity is calculated, between the
data elements of the cluster and i . The minimum of these
dissimilarity measures is denoted by ()b i . The cluster to
which ()b i is associated with is called the "neighbouring
cluster" of i , because it is the second best cluster where i
could be placed, from among all available clusters. Based on
this, ()s i can be defined as:


 

() ()
()

max (), ()

b i a i
s i

a i b i


  

where 1 () 1s i - . When ()s i is close to 1, this means that
the datum i is properly clustered. When ()s i is close to -1,
the interpretation is that i would have been better placed in
its neighbour, instead of the cluster where it is currently
placed. If ()s i is close to 0, then it means that the datum is

Figure 1. Graphical model representation of LDA

Figure 2. Silhouette coefficient values

248

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 264 / 612

placed somewhere "in between" the two clusters.
The average ()s i of all the data placed in a cluster is an

indicator of how tightly grouped all cluster data is. The
average ()s i for all clusters is a measure of how properly the
data has been clustered.

To find the optimal values of the input parameters for the
LDA, our system calculates the average ()s i from several
executions of the LDA algorithm for every combination of
input parameters, within their valid range of values. Once the

()s i coefficients are available for all the evaluated scenarios,
the pair of input values which produced the closest to 1 ()s i
corresponds to the optimal input scenario that leads to the
best possible clustering.

Regarding the similarity measure employed to calculate
the ()s i , it is based on the gamma values generated by the
LDA itself. The gamma values indicate the affinity between
the data and the clusters where the data is placed. These
affinity coefficients are normalized so that the sum of their
values equals 1 for a given method. The dissimilarity
measure ()a i of a given application method is set to 1 minus
the normalized gamma value for the associated best cluster,
whereas the ()b i is set to 1 minus the normalized gamma of
the second best cluster.

IV. RESULTS AND EVALUATION OF THE SYSTEM

The TPC-W benchmark was selected to serve as a test-
case for the demonstration of the new approach presented in
this paper. The TPC-W benchmark was introduced by Smith
[13]. This benchmark specifies an e-commerce workload that
simulates the activities of a retail store website, where
emulated users can browse and order products from the
website. This particular benchmark was chosen for two main
reasons. First of all, it has a reasonably rich application
domain model and functionality. Secondly, due to the fact
that the benchmark fits well with the type of applications that
are most likely to benefit from optimizations that employ the
results generated by the system developed with the current
work. As previously stated, such optimizations would

include dynamic load balancing schemes, conflict-aware
approaches for partial or full data replication approaches,
among others.

The Silhouette coefficients achieved for the evaluated
range of values for the input parameters of the LDA
algorithm, when applied to the methods and domain data
accessed within them, for the TPC-W benchmark, can be
seen in Fig. 2.

The z axis represents Silhouette coefficients, where the
valid range of values is [-1,1]. Every point of the surface
plotted in Fig. 1 corresponds to an average calculated from
20 independent LDA executions with the same combination
of input values. This was done in order to have
representative results of the non-deterministic behaviour of
the LDA model.

As can be seen from Fig. 2, the input parameter
controlling the number of clusters has been varied from 2 to
7, whilst the alpha parameter was varied from 0.01 to 1.
Even though there are 59 benchmark methods within which
domain data accesses take place, the number of clusters has
been varied only up to 7 because, even though the LDA
algorithm takes as input the maximum number of clusters
among which the methods are to be partitioned, the
algorithm decides by itself what is the optimal solution,
within the possibilities given by its actual input parameters.
Consequently, it is possible for the effective clustering result
to consists in a solution where only a portion of the
maximum number of clusters have been allocated any
elements. This is an increasingly frequent occurrence as the
maximum number of clusters increases, and, to a smaller
degree, for the lower possible limit of clusters as well.

By analysing the results depicted in Fig. 2, we may
conclude that, with regards to the maximum number of
clusters, the best Silhouette coefficients (closest to 1) are
those associated to 2 and 3 clusters. Regarding the optimal
alpha values, even though they do not seem to exert a
significant influence over the Silhouette coefficients, the best
results are achieved when alpha is in the range of]0.4, 0.5[.
The sensitivity analysis study performed by Park in [14]
reached the same conclusion, with regards to the effect of the
optimized alpha value on the general quality of the clustering
results.

0 10 20 30 40 50 60

2

3

4

5

6

7

N
um

be
r

of
 C

lu
st

er
s

Number of Methods

Figure 3. Distribution of average number of methods per cluster

Figure 4. Effective clustering

249

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 265 / 612

The most commonly observed number of methods per
cluster can be seen in Fig. 3. Each histogram bar was
calculated as the average of 20 independent LDA executions,
for the same total number of clusters. The x axis represents
the number of methods present in a given cluster, while the y
axis indicates the total number of clusters among which the
data has been partitioned. These results show that, as the
total number of clusters increases, the "new" clusters tend to
be very small. This is an indicator that a lower total number
of clusters is more appropriate, where the number of
methods per cluster is more balanced.

A summary of the effective ratio of non-empty clusters
can be seen in Fig. 4. The chart represents a 2D projection of
the tri-dimensional surface describing the dependency
between effective cluster number ratio and the LDA control
parameters. The ratio has been calculated as the number of
non-empty clusters divided by the maximum number of
clusters supplied as input. The highest clustering ratios are
achieved for 3 to 4 clusters and alpha values in the range of
]0.4, 0.5[.

Combining the results of Silhouette coefficients with the
effective cluster number ratio, we can deduce that the input
parameter values that most consistently lead to the best
clustering results are alpha in the]0.4, 0.5[range and a total
of 3 clusters.

V. CONCLUSIONS

This work presented an innovative approach for
clustering domain data and application functionality. The
algorithm employed is the current state of the art multivariate
Latent Dirichlet Allocation. The methodology performs an
optimal clustering by fitting input control parameters so as to
achieve the best possible clustering result. The optimal
solutions are identified through the use of the Silhouette
technique. A demonstration of system's capabilities is done
based on the TPC-W benchmark. The approach is flexible
enough to be applied to any object-oriented application
where identifying meaningful clusters of its domain data and
functionality is desired.

ACKNOWLEDGMENT

This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT (Fundação

para a Ciência e a Tecnologia) under contract
SFRH/BD/64379/2009.

REFERENCES
[1] Blei, D. M., Ng, A. Y. and Jordan, M. I., 2003, Latent

dirichlet allocation, Journal of Machine Learning Research, 3,
pp. 993-1022.

[2] Rousseeuw, P. J., 1987, Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis, Journal of
computational and applied mathematics, 20, pp. 53-65.

[3] Challenger, J., Iyengar, A., Witting, K., Ferstat, C. and Reed,
P., 2000, A publishing system for efficiently creating dynamic
web content, IEEE, Vol. 2, pp. 844-853 vol. 842.

[4] Shen, K., Yang, T., Chu, L., Holliday, J. A. L., Kuschner, D.
A. and Zhu, H., 2001, Neptune: Scalable replication
management and programming support for cluster-based
network services, USENIX Association, pp. 17-29.

[5] Amza, C., Cox, A. L. and Zwaenepoel, W., 2003, Conflict-
aware scheduling for dynamic content applications, USENIX
Association, pp. 6-20.

[6] Gao, L., Dahlin, M., Nayate, A., Zheng, J. and Iyengar, A.,
2003, Application specific data replication for edge services,
ACM, pp. 449-460.

[7] Elnikety, S., Dropsho, S. and Zwaenepoel, W., 2007,
Tashkent+: Memory-aware load balancing and update
filtering in replicated databases, ACM SIGOPS Operating
Systems Review, 41, (3), pp. 399-412.

[8] Zuikeviciute, V. and Pedone, F., 2008, Conflict-aware load-
balancing techniques for database replication, ACM, pp.
2169-2173.

[9] Amza, C., Cox, A. L. and Zwaenepoel, W., 2005, A
comparative evaluation of transparent scaling techniques for
dynamic content servers, IEEE, pp. 230-241.

[10] Garbatov, S., Cachopo, J. and Pereira, J., 2009, Data Access
Pattern Analysis based on Bayesian Updating, Proceedings of
the First Symposium of Informatics (INForum 2009), Lisbon,
Paper 23.

[11] Garbatov, S. and Cachopo, J., 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented
Applications, Computer Science and Technologies, 1, pp. 37-
43.

[12] Garbatov, S. and Cachopo, J., 2010, Predicting Data Access
Patterns in Object-Oriented Applications Based on Markov
Chains, Proceedings of the Fifth International Conference on
Software Engineering Advances (ICSEA 2010), Nice, France,
pp. 465-470.

[13] Smith, W. TPC-W: Benchmarking An Ecommerce Solution.
Intel Corporation, 2000.

[14] Park, L. and Ramamohanarao, K., 2009, The sensitivity of
latent dirichlet allocation for information retrieval, Machine
Learning and Knowledge Discovery in Databases, pp. 176-
188.

250

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 266 / 612

Formal Parsing Analysis of Context-Free Grammar using Left Most Derivations

Khalid A. Buragga
College of Computer Sciences and I. T.

King Faisal University
Hofuf, Saudi Arabia

Email: kburagga@kfu.edu.sa

Nazir Ahmad Zafar
Department of Computer Science

King Faisal University
Hofuf, Saudi Arabia

Email: nazafar@kfu.edu.sa

Abstract—Formal approaches are useful to verify the
properties of software and hardware systems. Formal
verification of a software system targets the source program
where semantics of a language has more meanings than its
syntax. Therefore, program verification does not give
guarantee the generated executable code is correct as described
in the source program. This is because the compiler may lead
to an incorrect target program due to bugs in the compiler
itself. It means verification of compiler is important than
verification of a source program to be compiled. In this paper,
context-free grammar is linked with Z notation to be useful in
the verification of a part of compiler. At first, we have defined
grammar, then, language derivation procedure is described
using the left most derivations. In the next, verification of a
given language is described by recursive procedures. The
ambiguity of a language is checked as a part of the parsing
analysis. The formal specification is analyzed and validated
using Z/Eves tool. Formal proofs of the models are presented
using powerful techniques, that is, reduction and rewriting of
the Z/Eves.

Keywords-parsing analysis; context-free language; formal
specification; Z notation; verification.

I. INTRODUCTION
Formal methods are mathematical-based approaches used

for specifying, proving and verifying properties of software
and hardware systems [1]. The process of formal verification
means applying the mathematical techniques to verify the
properties ensuring correctness of a system. Formal
verification of software systems targets the source program
where the semantics of the programming language gives a
precise meaning to the programs to be analyzed. On the other
hand, program verification does not give guarantee that the
generated executable code is correct as described by the
semantics of the source program. This is because the
compiler may lead to an incorrect target program because of
bugs in the compiler and it can invalidate the guarantees
obtained by formal methods to source program. It means the
verification of compiler is more important than verification
of source program to be compiled.

The design, construction and exploitation of a fully
verifying compiler will remain a challenge of twenty first
century in the area of computer science. The main
functionality of compiler is to translate a source code
understandable by programmers to an executable machine
code correctly and efficiently. Although compiler is a mature

area of research but it needs further investigation, as
mentioned above, because bugs in the compiler can lead to
an incorrect machine code generated from a correct source
program. That is why design and construction of a bug free
compiler is an open area of research. Further, as executable
code generated by the compiler is tested and if bugs are
detected it might be due to the source program or compiler
itself. This has led to verification of compiler that proves
automatically that a source program is correct before
allowing it to be run.

In this paper, parsing analyzing of language is presented
using Z notation by left most derivations, which will be
useful in our ongoing project on verification of compiler.
Another objective of this research is linking context-free
grammar with formal techniques to be useful in development
of automated computerized systems. Currently, it is not
possible to develop a complete software system using a
single formal technique and hence integration of approaches
is required. Although integration of approaches is a well-
researched area [2] [3] [4] [5] [6] [7] [8], but there does not exist
much work on formalization of context-free languages. Dong
et al. [9] [10] have described the integration of Object Z and
timed automata. Constable has proposed a constructive
formalization of some important concepts of automata using
Nuprl [11] [12]. A relationship is investigated between Petri-
nets and Z in [13]. An integration of B and UML is presented
in [14][15]. W. Wechler has introduced some algebraic
structures in fuzzy automata [16]. A treatment of fuzzy
automata and fuzzy language theory is discussed in [17].
Some important concepts of algebraic theory and automata
are given in [18].

In [19], preliminary results of this research were
presented by linking context-free grammar and Z notation. In
this paper, first, formal definition of context-free grammar is
given. Then a derivation procedure is described by replacing
non-terminal with a string of terminal and non-terminals.
The derivation procedure is extended to a sequence of
derivations to derive a string form a given string using
production rules of the context-free grammar. Then parsing
analysis is described for word by left most derivations
resulting a parsing tree. The parsing analysis for a language
is specified by introducing recursion using derivations used
in generation of a word. Next, ambiguity of a word is
checked by specifying if there exists more than two left most
derivation trees for a given words. The same concept is
formalized for the language to check if it is ambiguous. The

251

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 267 / 612

formal specification is analyzed and validated using Z Eves
tool set. The major objectives of this research are:

• Identifying and proposing an integration of context-
free grammar and formal methods to be useful in
verification of the compiler

• Providing a syntactic and semantic relationship
between Z and context-free grammar

• Proposing and developing an approach for
supporting an automated tools development

Rest of the paper is organized as: in Section 2, an
introduction to formal methods is given. In Section 3, an
overview of context-free grammar and its applications is
provided. Formal construction of models of context-free
grammar is given in Section 4. Formal analysis for validating
the models is presented in Section 5. Finally, conclusion and
future work are discussed in Section 6.

II. FORMAL METHODS
Formal methods are approaches based on mathematical

techniques and notations used for describing and analyzing
properties of software and hardware systems. These formal
techniques are based on discrete mathematics such as sets,
logic, relations, functions, graphs, automata theory and
higher order logic. Formal methods may be classified in
terms of property and model-oriented methods [20].

Property oriented methods are used to describe software
in terms of properties, constraints or invariants that must be
true. Model-oriented methods are used to construct a model
of a system [21]. Formal methods are being applied
successfully to improve quality by means of describing and
specifying software systems in a well-precise and structured
manner. Although there are various tools, techniques and
notations of formal methods but at the current stage of their
development, it needs an integration of formal techniques
and traditional approaches for the complete design,
description and construction of a system.

Z notation is a popular specification language in formal
methods used at an abstract level. The Z is a model-oriented
approach based on set theory and first order predicate logic
[22]. Usually, it is used for specifying behavior of sequential
programs of systems by abstract data types. In this paper, Z
is selected to be linked with context-free language because of
a natural relationship which exists between both of these
approaches. The Z is based upon set theory including
standard set operators, for example, union, intersection,
comprehensions, Cartesian products and power sets. On the
other hand, the logic of Z is formulated using first order
predicate calculus. The Z is used in our research because it
allows organizing a system into its smaller components
known as schemas. The schema defines a way in which the
state of a system can be described and modified. A
promising aspect of Z is its mathematical refinement that is a
verifiable stepwise transformation of an abstract
specification into an executable code. Once formal
specifications in Z are written, it can be refined into
implemented system by a process of series of stepwise
mathematical refinements.

III. APPLICATIONS OF CONTEXT-FREE GRAMMAR
The context-free grammar (CFG) is important in design

and description of a programming language and its compiler.
Initially, formalism of CFG was developed by Chomsky who
described linguistics in a grammatical form and converted
into mathematical models providing a precise and simple
mechanism of description of languages. The context-free
grammars allow a simple and an efficient way of parsing the
algorithms. Using the grammar, it can be determined
whether a particular pattern can be generated and the way of
generation is also determined.

Inclusion of empty string is always required for
completeness of a language. All context-free grammars
cannot generate the empty string. If a grammar generates the
empty string then it is needed to include some rules
generating the empty string. Every context-free grammar
without null production has an equivalent grammar in
Chomsky Normal Form (CNF). Here by equivalence we
mean that both the grammars generate the same language.
The CNF grammar is important both in theoretical and
practical point of view, it can be constructed from a given
context-free grammar. By using CNF, it can be decided for a
given string if it can be accepted in polynomial time
algorithm. Context-free grammars contain both the decidable
and un-decidable problems. Deciding for a grammar that it
accepts the language of all the strings is an example of un-
decidable problem which can be proved by reduction by
linking it with the Turing machine. Deciding whether two
context-free grammars describe the same language is another
example of the un-decidability.

On the other hand, context-free languages have their own
limitations. Some of the operators which are well-defined in
many other models of automata theory do not behave well in
case of the context-free grammar. For example, the
intersection of two context-free languages, in general, is not
context-free. Similarly, the complement of a context-free
language is not context-free one. However, union,
concatenation and Kleene star operators produce context-free
languages when applied to it.

Context-free grammar can be applied to many areas of
diversity, for example, robotics, speech recognition, software
engineering, and software maintenance [23]. The
applications of CFG in the area of pattern recognition
increase the accuracy of patterns to be recognized. This is
because it can provide a higher level of abstraction by
defining the semantics of patterns as compared to its other
counterparts of specification, for example, strings and
regular expressions. This semantic analysis can be used to
reduce the false identification of the patterns [24]. Further,
the applications of pattern matching can be observed
everywhere from language processing to networks.

In automatic speech recognition system, the spoken
words can be generated by a context-free grammar using
dynamic programming algorithms. As an example of
application of CFG in the area software engineering, the
components in a source code are recognized and re-
generated using context-free grammar [25]. As the output of
parsing are larger and less-ambiguous and have meaning of

252

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 268 / 612

the structures in a sentence, therefore, for question answering
and interactive voice response systems, the use of context-
free grammar can highly be effective and useful in such kind
of systems and applications [26][27].

IV. FORMAL ANALYSIS OF CONTEXT-FREE GRAMMAR
Context-free grammar is a 4-tuple (V, ∑, R, S) where:
• V is a finite set of non-terminal called variables

representing different types of clauses in a sentence.
• The ∑ is a finite set of terminals and final contents

of a string or sentence are based on it.
• The third one R is the start variable used to represent

the whole string or a sentence.
• The last one S is a relation consisting of set of all the

productions or rules of the grammar.
Every production is of the form: S → t, where S is a non-

terminal consisting of a single character or symbol and t is a
string which may contain only terminals or non-terminals or
combination of both. Further, t might me an empty string.
The notations, S → t, are called productions or rules which
are applied one after other producing a parse tree. The tree
ends with terminals called leaves and each internal node is a
non-terminal which produces one or more further nodes. The
left hand side of a production rule of a context-free grammar
is always a single non-terminal. Because all rules only have
non-terminals on the left hand side and it can easily be
replaced with the string on the right hand side of this rule.

Further the context in which the symbol occurs is
therefore not important and hence the grammar is called
context-free grammar. It is to be noted that context-free
grammar is always recognized by finite state machines
having a single infinite taps. For keeping track of nested
units, the current parsing state is pushed at the start of the
unit and it is recovered at the end.

In this section, formal analysis of CFG is presented using
Z notation. We start with the definition of context-free
grammar which is a 4-tuple as defined above. R in the tuple
is a relation from V to (V ∪ ∑)* such that ∃ w ∈ (V ∪ ∑)*,
S ∈ V and (S, w)∈ R. The symbol * represents to any
combination of characters of V and ∑.

In the specification of CFG, we define the sets of non-
terminal by V and terminal by Sigma. The set of terminals
and non-terminals together denoted by vandt and alphabets
of the grammar are of type seq X. The sequence of elements
of X, seq X, denotes the set of all sequences containing
terminals and non-terminals. The notation for rules is defined
by the relation between V and seq X. The production rules
are defined by the relation denoted by rules. Further there
exists exactly one rule, (s0, w) ∈ rules where s0 is the start
non-terminal and w is string s of type seq X. With these
definitions, a formal definition of context-free grammar is
given in terms of a schema CFG. The variables are given in
first part and constraints are defined in the second part of
schema. The V, X and Sigma are defined as sets at an
abstract level of specification.

[X]; V X;

Sigma X

CFG
variables:  V
terminals:  Sigma
vandt:  X
rules: V  seq X
s0: V

variables  terminals = 
vandt = variables  terminals
dom rules  variables
s: seq X s  ran rules ran s  vandt
s0  variables
w: seq X w  ran rules s0 w  rules


Invariants:

• The terminals and non-terminals are disjoint sets.
• The entire set of alphabets is union of terminals and

non-terminals.
• The domain of rules relation is a subset of variables.
• The set of elements in the range of rules relation are

defined based on members of alphabets.
• The variable s0 must be an element of variables.
• There exists at least one rule which contains start

variable on the left hand side of it.

A. Producing Left Most Derivations
In this section, we describe the formal left derivations

procedure using the production rules. The substitution can be
performed recursively to derive new string from a given
string of terminal and non-terminal. First, we specify the
process of generating a string using a single production by
the schema LeftDerivation given below. In the specification,
s1 and s2 are two strings of type seqX. We say s1 yields s2
if ∃ a∈V and b, s3, s4∈ seq X such that s1 = s3  a  s4
and s2 = s3  b  s4. It is to be noted that a is an element in
set of variables, the ranges of sequences b, s3, s4 are subsets
of vandt, (a, b) is a production rule.

LeftDerivation 
CFG
drives: seq X  seq X

s1, s2: seq X ran s1  vandt  ran s2  vandt
 s1 s2  drives  a: V; b: seq X; s3, s4: seq X
 a  variables  ran b  vandt
  a b  rules  ran s3  terminals
  ran s4  vandt s1 = s3  a  s4  s2 = s3  b  s4


Now, we describe a sequence of left derivations using the
approach of single left derivation defined above. The
derivation procedure is described below and is denoted by
the schema LeftDerivations which is an extension of schema

253

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 269 / 612

LeftDerivation. It describes the generation from a string of
terminals or non-terminals to another string of the same type.
In the specification, two strings are considered denoted by s1
and s2 as in the schema which uses the LeftDerivation
recursively by introducing a sequence s3 of sequences
representing an order of the derivations.

LeftDerivations
LeftDerivation
drivess: seq X  seq X

s1, s2: seq X ran s1  vandt  ran s2  vandt
 s1 s2  drivess
  s3: seq seq X
 1  # s3  ss: seq X ss  ran s3 ran ss  vandt
 s1 s3 1  drives
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 s2  drives


B. Verification of Language Generated From CFG
In this section, verification of a language generated from

a context-free grammar is done. First, verifying procedure of
a word is defined then it is extended to the whole language.
For this purpose, the formal procedure is described in the
schema WordLeftDerivation given below. The schema
LeftDerivations and a word are given as input to the schema
and it is checked if the word can be generated from the CFG
using the procedure WordLeftDerivation defined above. The
symbol, ?, is used to represent that word is an input variable.
In the predicate part of the schema, first, it is checked that all
alphabets of the word must be from the set of terminal of
CFG. Secondly, it is verified that in the derivation of the
word the first production used contains the start variable
(non-terminal) on the left hand side of the production.

WordLeftDerivation 
LeftDerivations
word?: seq Sigma

ran word?  terminals
s0 word?  drivess


To verify a language, the approach of word verification is
used. In the schema LanguageLeftDerivation described
below, the schema LeftDerivations and language are given
as input and is checked if the language can be generated
from the CFG by using universal quantifier.

LanguageLeftDerivation 
LeftDerivations
language?:  seq Sigma

w: seq Sigma w  language? ran w  terminals
w: seq Sigma w  language? s0 w  drivess


C. Checking Ambiguity of Language
In this section, ambiguity of a context-free language is

verified. The language is ambiguous if there is a word for
which there exists at least two parsing trees based on
leftmost derivations. First, verification procedure for a word
is defined if it is ambiguously generated using the schema
AmbiguousWord given below. The schema takes
LeftDerivations and a word as input and checks if the word
has more than one left most derivations.

AmbiguousWord
LeftDerivations
word?: seq Sigma

ran word?  terminals
s0 word?  drivess  s3, s4: seq seq X s3  s4
  1  # s3  1  # s4  ran s3  ran rules
  ran s4  ran rules s0 s3 1  drives
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 word?  drives  s0 s4 1  drives
  i:  i  2 .. # s4 s4 i - 1 s4 i  drives
  s4 # s4 word?  drives


To verify if the language is ambiguous, the verification
procedure of a word is reused. In the schema
AmbiguousLanguage described below, it is checked if there
exists any word having more than one derivations by using
the universal quantifier. If this is the case the given language
is ambiguous.

AmbiguousLanguage
LeftDerivations
language?:  seq Sigma

w: seq Sigma w  language? ran w  terminals
w: seq Sigma w  language? s0 w  drivess
  s3, s4: seq seq X s3  s4  1  # s3  1  # s4
  ran s3  ran rules  ran s4  ran rules s0 s3 1  drives
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 w  drives  s0 s4 1  drives
  i:  i  2 .. # s4 s4 i - 1 s4 i  drives
  s4 # s4 w  drives


V. MODEL ANALYSIS
There does not exist any computer tool which may

guarantee about complete correctness of a computer model.
Therefore, even the specification is written using any of the
formal languages it may contain potential hazardous or
errors. It means an art of writing a formal specification never
assures that the developed system is consistent, correct and
complete. On the other hand, if the specification is checked
and analyzed with the computer tool support it certainly
increases the confidence over the system to be developed by

254

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 270 / 612

identifying the potential errors, if exist, in syntax and
semantics of the formal description. The Z/Eves is one of the
most powerful tools which can be used for analyzing the
formal specification written by Z notation. A snapshot of the
formal specification using Z/Eves tool is presented in Figure
1. The first column on left most of the figure shows a status
of the syntax checking and the second one presents the status
of proof correctness. The symbol ‘Y’ shows that
specification is correct syntactically and proof is correct
while the symbol ‘N’ stands that errors are identified. In
schemas, it is checked that specification is correct in syntax
and has a correct proof.

Figure 1. Snapshot of the Model Analysis.

The results of the formal specification are presented in
the Table 1. The schema name represents the name of the
schemas described for specification. These schemas are
analyzed by using the model exploration techniques provided
in the Z/Eves tool. The symbol “Y” in column 2 indicates
that all the schemas are well written and proved
automatically. Similarly, domain checking, reduction and
proof by reduction are represented in column 3, 4 and 5,
respectively. The symbol “Y*” describes that the schemas
are proved by performing reduction on the predicates to
make the specification meaningful.

TABLE I. RESULTS OF MODEL ANALYSIS

Schema Name
Syntax
Type

Check

Domain
Check Reduction Proof

CFG Y Y Y Y
LeftDerivation Y Y Y* Y
LeftDerivations Y Y Y* Y
WordLefDerivation Y Y Y Y
LanguageLefDerivation Y Y Y Y
AmbiguousWord Y Y Y* Y
AmbiguousLanguage Y Y Y* Y

VI. CONCLUSION AND FUTURE WORK
An efficient and correct translation from a programming

language to machine language is an open issue in the area of
computer science and this task is usually done by compilers.
Errors in the compiler can lead to incorrect machine code
from a source program even the source is correct and
verified. Therefore, design and construction of correct
compiler is more important than verifying the source
programs. If the compiler is formally verified it gives
guarantee that the executable code generated behaves exactly
as described in the source program. In this paper, formal
procedure of identification and analysis of ambiguities is
done which is a real challenge in parser development. We
know it is an un-decidable problem but this exercise is useful
for applying it to a simple compiler for academic purpose,
which can be extended to formally verify the compiler.

Both regular expressions and context-free grammars are
widely used in construction of the compiler. Regular
expressions are not powerful enough and are used to identify
token from the source program while syntax is checked by
the context-free grammar. The design of a complier can be
benefited by transforming context-free grammar to Z
specification because Z notation being abstract in nature and
having computer tool support enhances reliability and
correctness providing a context in which important
properties of the system can be formally analyzed and
verified. Further, formal specification helped us to make it
possible describing precise, unambiguous and easier to
understand the resultant model.

An approach is developed by linking context-free
grammar with Z notation defining a relationship between
fundamentals of these techniques. It is observed that a
natural relationship exists between these approaches. This
linkage will be useful in verification of compiler in addition
to many other applications. At first, we have described the
structures of CFG using Z then formal description of
derivation process from a sequence of terminals and non-
terminals is presented. Further, a procedure of derivations is
described by identifying the productions to be used in this
process. Then formal models are defined to check the
generation of the words and language from the context-free
grammar. Finally, ambiguity of the language is verified by
using the left most derivations. Formal proofs of the
relationship are presented under certain assumptions. The
specification is verified and validated using Z/Eves tool.

An extensive survey of existing work was done and
explored before initiating this research. Some interesting
work [28][29][30][31][32][33] [34][35][36] was found but
our work and approach are different because of conceptual
and abstract level integration of Z and CFG. Few of the
benefits of Z are listed as follows. Every object is assigned a
unique type providing useful programming practice. Several
type checking tools exist to support the specification. The
Z/Eves is a powerful tool to prove and analyze the
specification used in this research. The rich mathematical
notations made it possible to reason about behavior of a
specified system more rigorous and effectively.

255

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 271 / 612

Formalization of some other concepts, useful in compiler
verification, is under progress and will appear soon in our
future work. Further, we have taken some assumptions for
simplicity of construction. In future work, a more generic
formal integration will be proposed after relaxing such
assumptions.

REFERENCES
[1] C. J. Burgess, "The Role of Formal Methods in Software

Engineering Education and Industry," Technical Report,
University of Bristol, UK, 1995.

[2] H. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti,
"State/Event-Based Software Model Checking," Integrated
Formal Methods, Springer, vol. 2999, pp. 128-147, 2004.

[3] O. Hasan and S. Tahar, "Verification of Probabilistic
Properties in the HOL Theorem Prover," Integrated Formal
Methods, Springer, vol. 4591, pp. 333-352, 2007.

[4] F. Gervais, M. Frappier, and R. Laleau, "Synthesizing B
Specifications from EB3 Attribute Definitions," Integrated
Formal Methods, Springer, vol. 3771, pp. 207-226, 2005.

[5] K. Araki, A. Galloway, and K. Taguchi, "Integrated Formal
Methods," Proceedings of the 1st International Conference on
Integrated Formal Methods, Springer 1999.

[6] B. Akbarpour, S. Tahar, and A. Dekdouk, "Formalization of
Cadence SPW Fixed-Point Arithmetic in HOL," Integrated
Formal Methods, Springer, vol. 2335, pp. 185-204, 2002.

[7] J. Derrick and G. Smith, "Structural Refinement of Object-
Z/CSP Specifications," Integrated Formal Methods, Springer,
vol. 1945, pp. 194-213, 2000.

[8] T. B. Raymond, "Integrating Formal Methods by Unifying
Abstractions," Springer, vol. 2999, pp. 441-460, 2004.

[9] J. S. Dong, R. Duke, and P. Hao, "Integrating Object-Z with
Timed Automata," pp 488-497, 2005.

[10] J. S. Dong, et al., "Timed Patterns: TCOZ to Timed
Automata," The 6th International Conference on Formal
Engineering Methods, pp 483-498, 2004.

[11] R. L. Constable, P. B. Jackson, P. Naumov, and J. Uribe,
"Formalizing Automata II: Decidable Properties," Technical
Report, Cornell University, 1997.

[12] R. L. Constable, P. B. Jackson, P. Naumov, and J. Uribe,
"Constructively Formalizing Automata Theory," Foundations
of Computing Series, MIT Press, 2000.

[13] M. Heiner and M. Heisel, "Modeling Safety Critical Systems
with Z and Petri nets," International Conference on Computer
Safety, Reliability and Security, Springer, pp. 361–374, 1999.

[14] H. Leading and J. Souquieres, "Integration of UML and B
Specification Techniques: Systematic Transformation from
OCL Expressions into B," Asia-Pacific Software Engineering
Conference, pp. 495-504, 2002.

[15] H. Leading and J. Souquieres, "Integration of UML Views
using B Notation," Proceedings of Workshop on Integration
and Transformation of UML Models, 2002.

[16] W. Wechler, "The Concept of Fuzziness in Automata and
Language Theory," Akademic-Verlag, Berlin, 1978.

[17] N. M. John and S. M. Davender, "Fuzzy Automata and
Languages: Theory and Applications," Chapman & HALL,
CRC, 2002.

[18] M. Ito, "Algebraic Theory of Automata and Languages,"
World Scientific Publishing Co., 2004.

[19] N. A. Zafar, S. A. Khan, and B. Kamran, "Formal Procedure
of Deriving Language from Context-Free Grammar,"
International Conference on Intelligence and Information
Technology, vol. 1, pp. 533-536, 2010.

[20] M. Brendan and J. S. Dong, "Blending Object-Z and Timed
CSP: An Introduction to TCOZ," Proceedings of 20th
International Conference on Software Engineering, pp. 95,
IEEE Computer Society, 1998.

[21] J. M. Spivey, "The Z Notation: A Reference Manual,"
Englewood Cliffs, NJ, Printice-Hall, 1989.

[22] J. M. Wing, "A Specifier, Introduction to Formal Methods,"
IEEE Computer, vol. 23 (9), pp. 8-24, 1990.

[23] J. A. Anderson, "Automata Theory with Modern
Applications," Cambridge University Press, 2006.

[24] H. C. Young, J. Moscola, and J. W. Lockwood, "Context-Free
Grammar based Token Tagger in Reconfigurable Devices,"
Proceedings of International Conference of Data Engineering
(ICDE/SeNS), pp. 78, 2005.

[25] M. v. d. Brand, A. Sellink, and C. Verhoef, "Generation of
Components for Software Renovation Factories from
Context-Free Grammars," Conference on Reverse
Engineering, pp. 144-153, 2001.

[26] M. Balakrishna, D. Moldovan, and E. K. Cave, "Automatic
Creation and Tuning of Context-Free Grammars for
Interactive Voice Response Systems," Proceedings of IEEE
NLP-KE ’05, pp. 158 – 163, 2005.

[27] L. Pedersen and H. Reza, "A Formal Specification of a
Programming Language: Design of Pit," Second International
Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, pp. 111-118, 2008.

[28] D. P. Tuan, "Computing with Words in Formal Methods,"
Technical Report, University of Canberra, Australia, 2000.

[29] S. A. Vilkomir and J. .P. Bowen, "Formalization of Software
Testing Criterion," South Bank University, London, 2001.

[30] A. Hall, "Correctness by Construction: Integrating Formality
into a Commercial Development Process," Praxis Critical
Systems Limited, Springer, vol. 2391, pp. 139-157, 2002.

[31] B. A. L. Gwandu and D. J. Creasey, "Importance of Formal
Specification in the Design of Hardware Systems," School of
Electron & Electr. Eng., Birmingham University, 1994.

[32] D. K. Kaynar and N. Lynchn, "The Theory of Timed I/O
Automata," Morgan & Claypool Publishers, 2006.

[33] D. Jackson, I. Schechter, and I. Shlyakhter, "Alcoa: The Alloy
Constraint Analyzer," Proceedings of The 22nd International
Conference of Software Engineering (ICSE'2000), pp. 730-
733, 2000.

[34] D. Aspinall and L. Beringer, "Optimisation Validation,"
Electronic Notes in Theoretical Computer Science, vol. 176,
pp. 37–59, 2007.

[35] S. Briaisa and U. Nestmannb, "A Formal Semantics for
Protocol Narrations," Theoretical Computer Science, vol. 389,
pp. 484–511, 2007.

[36] L. Freitas, J. Woodcock, and Y. Zhang, "Verifying the CICS
File Control API with Z/Eves: An Experiment in the Verified
Software Repository," Science of Computer Programming,
vol. 74, pp. 197-218, 2009.

256

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 272 / 612

Functional Complexity Measurement: Proposals and Evaluations

Luigi Lavazza

Dipartimento di Informatica e Comunicazione

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it

Gabriela Robiolo

Departamento de Informática

Universidad Austral

Buenos Aires, Argentina

grobiolo@austral.edu.ar

Abstract — Several definitions of measures that aim at

representing the size of software requirements are currently

available. These measures have gained a quite relevant role,

since they are one of the few types of objective data upon which

effort estimation can be based. However, traditional

Functional Size Measures do not take into account the amount

and complexity of elaboration required, concentrating instead

on the amount of data accessed or moved. This is a problem,

when it comes to effort estimation, since the amount and

complexity of the required data elaboration affect the

implementation effort, but are not adequately represented by

the current measures, including the standardized ones.

Recently, a few approaches to measuring aspects of user

requirements that are supposed to be related with functional

complexity and/or data elaboration have been proposed by

researchers. The authors of this paper have also proposed a

measure of the functional complexity as specified in user

requirements. In this paper we take into consideration some of

these proposed measures and compare them with respect to

their ability to predict the development effort, especially when

used in combination with COSMIC measures of functional

size.

Keywords-Functional size measurement; Function Points;

COSMIC function points; effort estimation; functional

complexity measurement.

I. INTRODUCTION

COSMIC function points [8][12] are growingly used for
measuring the functional size of applications, i.e., to measure
the size of functional user requirements. The measure of
functional size is typically used to drive the estimation of the
development effort. To this end, effort models require
several inputs in addition to the functional size, including the
complexity of the software to be [3][7]. In fact, problem
complexity is recognized as one of the elements that
contribute to the comprehensive notion of software size [9].

The need to account for software complexity when
estimating the development effort does not depend on the
functional size measurement method used: for instance,
when more traditional measures of the functional size –like
IFPUG function points [12]– are used, complexity has to be
accounted for as well.

Actually, both COSMIC and IFPUG function points fail
to represent the amount and complexity of data elaboration
required. COSMIC function points concentrate on the
measure of the data movements, neglecting the data

elaboration. More precisely, the model of software used by
the COSMIC method –illustrated in Figure 1–includes data
elaboration, but no indication on how to measure it is
provided. The COSMIC measurement manual [8] simply
assumes that every data movement accounts for some
amount of data elaboration, and that such amount is
proportional to the number of data movements, so that by
measuring data movements one measures also data
manipulation.

 Functional User

Requirements

Sub-process types

Functional
Process Type

Data Movement

Type

Data Manipulation

Type

Figure 1. The COSMIC generic software model.

Before proceeding, it is useful to spend some words on
the fact that throughout the paper we treat the terms
“complexity” and “amount of data elaboration” as
synonyms. This is due to the fact that complexity is an
inherently elusive concept, and also to the fact that at the
functional requirements level it is not clear what should be
the difference between the amount and the complexity of
data elaboration: for instance, in many cases, complexity is
considered proportional to the number of alternatives in a
process execution, but this number is also clearly related to
the size of the process.

When dealing with effort estimation, the most popular
methods require an evaluation of the complexity of the
application. Currently such evaluation is of a purely
qualitative nature. For instance, COCOMO II [7] provides a
table that allows the user to evaluate complexity on an
ordinal scale (from “very low” to “extra high”) according to
five aspects (control operations, computational operations,
device-dependent operations, data management operations,
user interface management operations) that have to be
evaluated in a qualitative and subjective way: e.g., the
characterization of computational operations corresponding

257

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 273 / 612

to the “Nominal” complexity is “Use of standard math and
statistical routines. Basic matrix/vector operations” [7].

It is quite clear that it would be greatly beneficial to
replace such subjective and approximate assessment of
complexity with a real measure, based on objective and
quantitative evaluations, since this would enable the
construction of more objective and accurate models of effort.

Several different possible measures of functional
complexity were proposed. For instance, in [5] the number of
inputs and outputs, the number of decision nodes, the sum of
predicates of all decision nodes, the depth of decision tree
and the length of paths are considered as possible indicators
of complexity.

In [6], Cao et al. propose the usage of the number of data
groups (NOD), the number of conditions (NOC) and entropy
of system (EOS). They also study how these measures (also
in combination with COSMIC FP) are correlated with the
development effort.

Another measure of complexity, the Paths, was defined
on the basis of the information typically available from use
case descriptions [21]. The measure of the complexity of use
cases is based on the application of the principles of
McCabe’s complexity measure [18] to the descriptions of
use cases in terms of scenarios. In fact, use cases are usually
described giving a main scenario, which accounts for the
‘usual’ behaviour of the user and system, and a set of
alternative scenarios, which account for all the possible
deviations from the normal behaviour that have to be
supported by the system. Robiolo and Orosco [21] apply to
the use case textual descriptions the same measure applied
by McCabe to code. Every different path in a given use case
scenario contributes to the measure of the use case’s
complexity. The definition of Paths conforms to several
concepts enounced by Briand et al. [4]: Paths represent “an
intrinsic attribute of an object and not its perceived
psychological complexity as perceived by an external
observer”, and they represent complexity as “a system
property that depends on the relationship between elements
and is not an isolated element's property”. A detailed
description of the Paths measure and its applicability to use
cases described in UML can be found in [15].

Previous work showed that effort models that take into
consideration complexity measures are more precise than
those based on the functional size only. In particular, the
authors of this paper showed that development effort
correlates well with COSMIC function points and Path [15],
and that the inclusion of a Path-based complexity measure
improves the models based on size, whatever size measure is
used (IFPUG Function Points, CFP, or even Use Case
Points) [16].

In this paper we enhance the dataset used in [16] with
some measures that represent potential complexity
dimensions, build effort estimation models that exploit these
measures, and discuss the precision of fit of these models.

The results of the measurements and analyses reported in
the paper contribute to enhancing the knowledge of how it is
possible to measure functional complexity at the
requirements level, and what is the contribution of such
measure to effort estimation.

II. THE EXPERIMENTAL EVALUATION

In the research work reported here, we used measures
that are conceptually very close to those proposed in
previous studies [5][6]. However, we did not stick exactly to
the previous proposals, essentially for practical reasons. We
used Paths instead of NOC because both measures capture
essentially the same meaning, and the measures of Paths
were already available. Similarly, we used the number of
data groups instead of NOD, because –having measured the
size of the applications in CFP, the documentation on the
data groups was already available, thus the measurement
could be performed very easily.

Finally, we decided to use another “by product” of CFP
measurement, namely the number of functional processes, as
a simplified measure of size.

A. The Dataset

In order to evaluate the measures mentioned above with
respect to their usability as effort predictors, we collected all
such measures for a set of projects. We could not use data
from the best known repositories –such as the PROMISE or
ISBSG– because they do not report the size of each project
according to different FSM methods; moreover, the Paths
measure is very recent, and no historical data exist for it.

TABLE 1. THE DATASET

ProjID
Actual

effort
Path CFP

Func.

Proc.

Data

groups

Pers.

DG

P1 410 71 143 39 21 7

P2 473.5 73 118 28 15 9

P3 382.4 60 109 24 15 12

P4 285 49 74 25 14 8

P5 328 34 48 12 17 7

P6 198 35 67 10 15 7

P7 442.02 50 81 16 12 6

P8 722.65 97 115 27 19 10

P9 392 83 105 24 22 11

P10 272 42 73 21 9 9

P11 131 18 51 13 5 5

P12 1042 118 85 30 29 12

P13 348 32 46 12 12 6

P14 242.5 68 96 26 18 9

P15 299.76 33 54 12 12 4

P16 147 20 53 14 15 4

P17 169 17 30 5 10 6

We measured 17 small business projects, which were

developed in three different contexts: an advanced
undergraduate academic environment at Austral University,
the System and Technology (S&T) Department at Austral

258

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 274 / 612

University and a CMM level 4 Company. The involved
human resources shared a similar profile: advanced
undergraduate students who had been similarly trained
worked both at the S&T Department and at the CMM level 4
Company. All the selected projects met the following
requisites:
a) Use cases describing requirements were available.
b) All projects were new developments.
c) The use cases had been completely implemented, and the

actual development effort in PersonHours was known.
The dataset is reported in TABLE 1. Note that we

distinguished the number of persistent data groups (column
Pers. DG) from the total number of data groups, which
includes also transient data groups. Our hypothesis is that
persistent data groups are more representative of the amount
of data being handled by the application.

B. Analysis of the dataset using log-log transformations

As a first approach to evaluating the correlation of effort
with other measures, we used linear regression after log-log
transformation, as is usually done in studies concerning
effort (see for instance COCOMO [3][7]).

We started by checking the correlation between effort
and CFP. The results are not very good: after eliminating
outliers, we got a model featuring adjusted R

2
 = 0.335.

Then we moved to univariate analysis of the correlation
between Effort and each variable mentioned in TABLE 1:
– Path [Path]
– COSMIC Function Points [CFP]
– Functional Processes [FPr]
– Data Groups [DG]
– Persistent Data Groups [PDG]

 We also systematically tested the correlation between
effort and the following density measures:
– Path per Functional Process [Path/FPr]
– Path per CFP [Path/CFP]
– Data Groups per Functional Process [DG/FPr]
– Data Groups per CFP [DG/CFP]
– Persistent Data Groups per Functional Process

[PDG/FPr]
– Persistent Data Groups per CFP [PDG/CFP]

These density measures introduce the concept of
complexity per size unit. The complexity of a system is a
property that depends on the relationships among system’s
elements [4]. So, the measures listed above represent the
density of relationships among elements per unit size. As
size units we adopted both the fine grained CFP and the
coarse grained number of functional processes. In fact, the
number of functional processes is suggested as a reasonable
approximation of the size in CFP in [8].

Quite interestingly, we got significant models only based
on variables involving Paths. The results are synthetically
reported in TABLE 2. For each model, we have also assessed
the precision of the fit by using what are considered the de
facto currently used goodness-of-fit indicators in Empirical
Software Engineering, i.e., the Mean Magnitude of Relative
Error (MMRE) and the percentage of data points whose
actual effort falls within 75% and 125% of the estimated
value (pred(25)) and the error range.

In TABLE 2 are reported only the models that satisfy the
applicability conditions of linear regression (e.g., the
residuals are normally distributed), are statistically
significant (e.g., their p-value is < 0.05), and have coefficient
of determination (Adjusted R

2
) sufficiently high (>0.6).

TABLE 2. CORRELATIONS WITH EFFORT (LOG-LOG UNIVARIATE REGRESSION)

Var.
Adj.

R2
p-value Outl. MMRE Pred(25)

Error

range

Path 0.79 < 10-5 2 22.7 70.6
-35%..

82%

Path/FPr 0.73 < 10-3 5 37.2 58.8
-48% ..

169%

Path/CFP 0.65 < 10-4 0 24.1 52.9
-43% ..

66%

The regression line of the model representing Effort vs.

Paths –which appears as the best univariate model– is
illustrated in Figure 2.

3.0 3.5 4.0 4.5

5
.0

5
.5

6
.0

6
.5

Path

A
c
tu

a
l
E

ff
o

rt

Figure 2. Effort vs. Path: log-log regression line.

The distribution of relative residuals is given in Figure 3.

-4
0

-2
0

0
2
0

4
0

6
0

8
0

%
 r
e

s
id

u
a

ls

Figure 3. Log-log regression of effort vs. Path: distribution of relative

residuals.

259

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 275 / 612

We then proceeded to the analysis via multiple
regression. Again, we systematically tested the correlation of
Effort with any combination of the aforementioned variables.

The statistically significant models obtained are reported
in TABLE 3.

TABLE 3. CORRELATIONS WITH THE ACTUAL EFFORT (LOG-LOG MULTIPLE

REGRESSION)

Var.
Adj.

R2
Pr(>|t|) Outl. MMRE Pred(25)

Error

range

FPr,

Path /FPr
0.71 < 10-3 1 19.4 70.6

-37%..

67%

FPr,

Path /CFP
0.78 < 10-3 0 18.7 82.4

-31% ..

80%

Path/FPr,

PDG/FPr
0.64 < 10-3 1 22.9 64.7

-45% ..

53%

Path/CFP,

DG/FPr
0.69 < 0.03 1 22.6 64.7

-30% ..

73%

Path/CFP,

DG/CFP
0.72 <0.02 1 21.3 64.7

-41%..

69%

Path/CFP,

PDG/FPr
0.75 <0.02 0 18.5 70.6

-35%..

74%

Path/CFP,

PDG/CFP
0.80 < 10-2 0 17.8 82.4

-36%..

72%

DG,

Path/FPr,

DG/FPr

0.75 < 10-2 0 18.6 70.6
-29%..

76%

Path/FPr,

DG/CFP,

PDG/FPr

0.67 <0.05 3 23.9 58.8
-66%..

79%

It is quite interesting to see that none of the obtained

models uses size in CFP as an independent variable. On the
contrary, most of the other variables (including size
expressed as number of Functional Processes, computation
density, amount of data and data density) can be used to
build valid and significant models.

It is also interesting to see that these models appear quite
good both in terms of their ability to explain the variation of
effort depending on the variation of the size and complexity
measures (as indicated by the values of the adjusted R

2
) and

in terms of precision of the fit (as indicated by MMRE,
pred(25) and the relative error range).

Although it is quite clear that some models appear better
than others, e.g., with respect to precision of fit and adjusted
R

2
, it is not so obvious which one is best.
A possible way for identifying the best model is by

comparison of the relative absolute residuals (since we are
considering the ability to predict effort, we have to look at
relative absolute residuals, since an error of, say, two
PersonMonths can be irrelevant or very important,
depending on the total effort). The models that feature the
highest values of the adjusted R

2
 are those based on

a) Paths
b) Path per CFP and PersistentDataGroups per CFP
c) Functional Processes and Path per CFP

The boxplots representing relative absolute residuals of
these models are reported in Figure 4 .

a) b) c)

0
2

0
4

0
6

0
8

0

%
 r

e
s
id

u
a

ls

Figure 4. Model comparison: relative absolute residuals.

The comparison of boxplots does not allow selecting a
model as clearly the best, although it seems that the
univariate model is a bit less precise than both the other two
models. In order to evaluate whether a model can be elected
the best, Kitchenham et al. [14] suggest to use paired tests of
the absolute residuals. We then proceeded to compute the
paired tests. We used t-tests when appropriate (i.e., when the
distributions were close to normal) and the Wilcoxon signed
rank test otherwise. Also the paired tests did not indicate a
clear winner. Therefore, we must conclude that further
research is needed to understand if it is possible to build a
model that explains in the best possible manner the
dependency of effort from size and complexity measures.

C. Analysis of the dataset using plain linear regression

Having performed the analysis on log-log transformed
data, we checked if valid and significant models can be built
using ordinary least squares (OLS) linear regression, i.e.,
without log-log (or any other) transformation.

We found that a linear model linking Effort and Paths
exists: it features adjusted R

2
 = 0.71, p-value < 10

-3
, MMRE

= 23.5%, Pred(25) = 58.8%, Error range = -33% .. 81%.
The models involving two independent variables are

summarized in TABLE 4.

TABLE 4. CORRELATIONS WITH THE ACTUAL EFFORT (OLS MULTIPLE

REGRESSION)

Var.
Adj.

R2
Pr(>|t|) Outl. MMRE Pred(25)

Error

range

CFP,

Path /CFP 0.82 < 10-3 4 18.5% 76.5%

-20%..

84%

FPr,

Path/CFP 0.64 < 10-2 3 20% 76.5%

-31%..

76%

It is interesting to note that in this case the best model
involves the usage of a size measure (CFP) and a complexity
density measure (Paths/CFP).

260

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 276 / 612

III. DISCUSSION

The only models based on a single variable that feature
adjusted R

2
 greater than 0.6 involve either Path or Path

density. Anyway, Path seems to be better than both Path per
CFP and Path per Functional Processes as far as R

2
, MMRE

and Pred(25) are concerned. The reason why Path appears as
a good predictor of effort is probably that this measure
summarizes the needed information concerning both size (a
la COSMIC) and amount of required elaboration.

Concerning models using two independent variables, we
can observe that they appear of similar precision (e.g.,
MMRE ranges from 17.8% to 23.9%).

As already mentioned, there is no statistically evidence
that any of these models features a better fitting that
univariate models.

Also in these models, Path per CFP appears as an
independent variable in several good models, together with
– the density of data (DataGroups per CFP, DataGroups

per FunctionalProcess, PersistentDataGroups per CFP or
PersistentDataGroups per FunctionalProcess);

– the number of functional processes.
Interestingly, the persistent data groups (a concept close

to unweighted data functions in Function Point Analysis)
appear to be a better predictor than the whole number of data
groups (i.e., including transient ones).

Path per Functional Process provides –as Path per CFP–
good models in combination with the density of data
(PersistentDataGroups per FunctionalProcess) or the number
of functional processes.

It should be noted that we found some models based
exclusively on density (such as the second and third in TABLE

2 or the seventh in TABLE 3). These models are rather
unexpected, as they say that the size of the programs is not
important at all. This result is probably due to the fact that
the variation of size was relatively little in the set of projects
that we analysed. Additional research is needed to explore
this point.

Finally, Path per Functional Process appears also as an
argument in models featuring three independent variables.
So, the complexity density (i.e., Paths divided by a size
measure) appears in all the models.

When considering models obtained via OLS regression
(i.e., without log-log transformation) we find again an
elaboration density measure (Path per CFP), this time in
combination with a size measure (CFP or Functional
Processes).

IV. RELATED WORK

A few attempts to account for data elaboration in FSM
have been done.

3D Function Points [22] consider three dimensions of the
application to be measured: Data, Function, and Control. The
Function measurement considers the complexity of
algorithms; and the Control portion measures the number of
major state transitions within the application.

Bernárdez et al. [2] measured the cyclomatic complexity
of a use case in order to validate the use case definition,
while Levesque [17] measured the conditions of inputs in a

sequential diagram in order to add the concept of complexity
to the COSMIC method.

Bashir and Thomson [1] used traditional regression
analysis to derive two types of parametric models: a single
variable model based on product complexity and a
multivariable model based on product complexity and
requirements severity. Generally, the models performed well
according to a number of accuracy tests. In particular,
product complexity explained more than 80% of variation in
estimating effort. They concluded that product complexity as
an indicator for project size is the dominant parameter in
estimating design effort.

Our results are in agreement with those by Bashir and
Thomson, in fact several of our models explain 80% (or just
slightly less) of the variation of effort.

Hastings and Sajeev [11] proposed a Vector Size
Measure (VSM) that incorporates both functionality and
problem complexity in a balanced and orthogonal manner.
VSM is used as the input to a Vector Prediction Model
(VPM) which can be used to estimate development effort
early in the software life cycle. The results indicate that the
proposed technique allows for estimating the development
effort early in the software life cycle with errors not greater
than 20% across a range of application types.

Our results are in accordance with the consideration
expressed by Morasca on the definition of measures [19] as it
appears that the notion of complexity may be represented by
taking into account several basic indicators (size, control
flow, data, ...) that can be used individually (i.e., without the
need to build a derived measure defined as a weighted sum)
in estimation models.

Finally, Gencel and Demirors [10] point out that we still
need a new Base Functional Component (BFC) Types for
the boolean operations of Functional User Requirements,
which are often not considered to be algorithmic operations,
but which are related to complexity. This point of view
highlights the necessity of considering the complexity of
elaboration required in FSM, and they suggested
introducing as a new BFC type which differs from authors’
proposal.

V. CONCLUSIONS

The work reported here moves from the consideration
that development effort depends (also) on the complexity or
the amount of computation required, but no suitable measure
has emerged as a reliable way for capturing such complexity.
In fact, very popular methods like COCOMO II [3][7] still
use just an ordinal scale measure for complexity, based on
the subjective evaluation performed by the user.

We approached the problem of measuring the required
functional complexity by considering (a subset of) the
approaches presented in the literature, and testing them on a
set of projects that were measured according to the COSMIC
FSM.

The results of our analysis do not allow us to draw
definite conclusions about the best set of measures to use for
effort estimation. However, we observed that all the most
significant models obtained were based on a notion of
computation density, which is based on the measure of Paths

261

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 277 / 612

[21], i.e., the number of computation flows in functional
processes.

Since Paths are quite easy to measure [15] and appear as
good effort predictors, we suggest that future research on
COSMIC based effort estimation takes into consideration the
possibility of involving a Path based measure of functional
complexity.

We plan to continue experimenting with measures of
functional complexity. Since in this type of experimentations
a critical point is the difficulty to get measures, we kindly
invite all interested readers that are involved in effort
estimations to perform functional complexity measurement
and share the data with us and the research community.

ACKNOWLEDGMENT

The research presented in this paper has been partially
funded by the IST project QualiPSo [20], sponsored by the
EU in the 6th FP (IST-034763), the project “Metodi e
tecniche per l’analisi, l’implementazione e la valutazione di
sistemi software” funded by the Università degli Studi
dell’Insubria, and the Research Fund of School of
Engineering of Austral University.

REFERENCES

[1] Bashir, H. and Thomson,V. Models for estimating design effort and
time. Elsevier. Design Studies, vol.22, n.2, 2001.

[2] Bernárdez B., Durán A., and Genero M. Empirical Evaluation and
Review of a Me-trics–Based Approach for Use Case Verification.
Journal of Research and Practice in Information Technology, vol. 36
n. 4, 2004.

[3] Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K.,
Steece, B., Winsor Brown, A., Chulani S., and Abts, C. Software Cost
Estimation with Cocomo II. Prentice Hall, 2000.

[4] Briand L.C., Morasca S., and Basili V.R. Property-Based Software
Engineering Measurement. IEEE Transactions on Software
Engineering, Vol. 22, 1996.

[5] Cao, De Tran, Lévesque, G., and Abran, A. From Measurement of
Software Functional Size to Measurement of Complexity, ICSM
2002, Montreal, Canada , 2002.

[6] Cao, De Tran, Lévesque, G., and Meunier, J-G. A Field Study of
Software Functional Complexity Measurement, 14th International
Workshop on Software Measurement, IWSM/METRIKON’04,
Berlin, 3-5 November 2004.

[7] COCOMO II Model Definition Manual. http://
csse.usc.edu/csse/research/COCOMOII/ cocomo_downloads.htm

[8] COSMIC – Common Software Measurement International
Consortium, 2009. The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual (The COSMIC
Implementation Guide for ISO/IEC 19761: 2003), May 2009.

[9] Fenton, N.E. Software Metrics: A Rigorous Approach. Chapman and
Hall, London, 1991.

[10] Gencel, C. and Demirors, O. Functional Size Measurement Revisited.
ACM Transactions on Software Engineering and Methodology,
17(3), 2008.

[11] Hastings, T. and Sajeev, A. A Vector-Based Approach to Software
Size Measurement and Effort Estimation. IEEE Transactions on
Software Engineering, vol.27 n.4. 2001.

[12] ISO/IEC19761:2003, Software Engineering – COSMIC-FFP – A
Functional Size Measurement Method, ISO.

[13] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1 Unadjusted
functional size measurement method – Counting Practices Manual,
International Organization for Standardization, Geneve.

[14] Kitchenham, B., Pfleeger, S.L., McColl, B., and Eagan, S., An
empirical study of maintenance and development accuracy, Journal of
Systems and Software, vol. 64, 2002.

[15] Lavazza, L. and Robiolo, G. Introducing the Evaluation of
Complexity in Functional Size Measurement: a UML-based
Approach, 4th International Symposium on Empirical Software
Engineering and Measurement - ESEM 2010, Bozen, 16-17
September 2010.

[16] Lavazza, L. and Robiolo, G., The Role of the Measure of Functional
Complexity in Effort Estimation, 6th International Conference on
Predictive Models in Software Engineering (PROMISE 2010),
Timisoara, Romania, 12-13 September 2010.

[17] Levesque G., Bevo V., and Cao, De Tran, Estimating Software size
with UML Models. In Proceedings of the 2008 C3S2E conference,
ACM International Conference Pro-ceeding Series, vol. 290, 2008.

[18] McCabe, T.J. A complexity measure. IEEE Transactions on Software
Engineering, vol.2, n.4, 2005.

[19] Morasca, S. On the use of weighted sums in the definition of
measures. ICSE Workshop on Emerging Trends in Software Metrics
(WETSoM '10), Cape Town, South Africa, May 04, 2010.

[20] QualiPSo project portal. http://www.qualipso.eu/

[21] Robiolo, G. and Orosco, R. Employing use cases to early estimate
effort with simpler metrics. Innovations Syst. Softw. Eng, vol.4,
2008.

[22] Whitmire, A., An Introduction to 3D Function Points, Software
Development, vol. 3 n.4, 1995.

262

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 278 / 612

Design Patterns for Model Transformations

Kevin Lano
Dept. of Informatics

King’s College London
London, UK

Email: kevin.lano@kcl.ac.uk

Shekoufeh Kolahdouz-Rahimi
Dept. of Informatics

King’s College London
London, UK

Email: shekoufeh.kolahdouzrahimi@kcl.ac.uk

Abstract—Model transformations are a central element of
model-driven software development. This paper defines design
patterns for the specification and implementation of model
transformations. These patterns are commonly recurring struc-
tures and mechanisms which we have identified in many specific
transformations. In this paper we show how they can be used
together to support an overall development process for model
transformations from high-level specifications to executable
Java implementations.

Keywords—- Design patterns; model transformations;
UML.

I. I NTRODUCTION

Design patterns for software development were introduced
by Gamma et al [5]. Subsequently, many hundreds of pat-
terns have been identified, including patterns for specialised
forms of development such as enterprise information sys-
tems [3]. Patterns for model transformations were proposed
by [1]. In this paper, we consider further patterns, based on
a large number of case studies which we have carried out or
analysed. These patterns are inter-related and can be used
together to support the development of transformations from
high-level specifications as sets of constraints, to executable
implementations in Java. They have been incorporated into
our transformation environment, UML-RSDS [10].

Section II describes related work, Section III defines
a general development process for model transformations.
Section IV describes specification patterns, Section V de-
scribes implementation patterns and Section VI gives con-
clusions.

II. RELATED WORK

General design patterns can be used for model trans-
formations. For example, the Builder and Abstract Factory
patterns are directly relevant to transformation implementa-
tion, in cases where complex platform-specific structures of
elements must be constructed from semantic information in
a platform-independent model, such as the synthesis of J2EE
systems from UML specifications. The Visitor pattern can
be used for model-to-text transformations [4]. The Model-
view-controller pattern is relevant for change-propagating
model transformations, where changes to the source model
are propagated to the target (view).

Patterns specific to model transformations have been
identified and used previously. In [2], specifications of
the conjunctive-implicative form (Section IV) are derived
from model transformation implementations in triple graph
grammars and QVT, in order to analyse properties of the
transformations, such as definedness and determinacy. This
form of specification is therefore implicitly present in QVT
and other transformation languages.

In [14], [15] the concept of the conjunctive-implicative
form was introduced to support the automated derivation of
transformation implementations from specifications written
in a constructive type theory.

In [1], a transformation specification pattern is intro-
duced, Transformation parameters, to represent the case
where some auxiliary information is needed to configure
a transformation. This could be considered as a special
case of the auxiliary metamodel pattern (Section IV). An
implementation patternMultiple matching is also defined,
to simulate rules with multiple element matching on their
antecedent side, using single element matching. We also
use this pattern, via the use of multiple∀ quantifiers in
specifications and multiplefor loops at the design level to
select groups of elements.

Our work extends previous work on model transformation
patterns by combining patterns into an overall process for
developing model transformation designs and implementa-
tions from their specifications. The patterns are an essential
part of the UML-RSDS development process for model
transformations.

III. D EVELOPMENT PROCESS FOR MODEL

TRANSFORMATIONS

In this section, we outline a general development pro-
cess for model transformations specified as constraints and
operations in UML. We assume that the source and target
metamodels of a transformation are specified as class dia-
grams,S andT, respectively, possibly with OCL constraints
defining semantic properties of these languages.

For a transformationτ from S to T, there are three
separate predicates which characterise its global properties,
and which need to be considered in its specification and
design [10]:

263

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 279 / 612

1) Asm– assumptions, expressed in the union language
LS∪T of the source and target metamodels, which can
be assumed to be true before the transformation is
applied. These may be assertions that the source model
is syntactically correct, that the target model is empty,
or more specialised assumptions necessary forτ to be
well-defined. These are preconditions of the use case
of the transformation.

2) Ens – properties, usually expressed inLT, which the
transformation should ensure about the target model
at termination of the transformation. These properties
usually include the constraints ofT, in order that
syntactic correctness holds. For update-in-place trans-
formations, where the source and target languages are
the same,Ens may refer to the pre-state versions of
model data.

3) Cons– constraints, expressed inLS∪T, which define
the transformation as a relationship between the ele-
ments of the source and target models, which should
hold at termination of the transformation. Update-
in-place transformations can be specified by using a
syntactically distinct copy of the source language, for
example by postfixing all its entity and feature names
by @pre.
Conscorresponds to the postconditions of the use case
of the transformation.

We can express these predicates using OCL notation, this
corresponds directly to a fully formal version in the ax-
iomatic UML semantics of [8]. Together these predicates
give a global and declarative definition of the transformation
and its requirements, so that the correctness of a transforma-
tion may be analysed at the specification level, independently
of how it is implemented.

The following should be provable:

Cons,ΓS ⊢
LS∪T

Ens

whereΓS is the semantic representation of the source lan-
guage as a theory.

Development of the transformation then involves the
construction of a design which ensures that the relationship
Cons holds between the source and target models. This
may involve decomposing the transformation intophasesor
sub-transformations, each with their own specifications. By
reasoning using the weakest-precondition operator[] the
composition of phases should be shown to achieveCons:

ΓS ⊢
LS∪T

Asm ⇒ [activity]Cons

whereactivity is the algorithm of the transformation. Each
statement form of the statement language (Chapter 6 of [8])
has a corresponding definition of[].

IV. SPECIFICATION PATTERNS

In this section we describe characteristic patterns for the
specifications of model transformations.

A. Conjunctive implicative form

Synopsis:To specify the effect of a transformation in a
declarative manner, as a global pre/post predicate, consisting
of a conjunction of constraints with a∀ ⇒ ∃ structure.

Forces: Useful whenever a platform-independent spec-
ification of a transformation is necessary. The conjunctive-
implicative form can be used to analyse the semantics of a
transformation, and also to construct an implementation.

The pattern typically applies whenS and T are sim-
ilar in structure, for example in the UML to relational
database mapping of [13], [10], the source structure of
Package, Class, Attribute corresponds to the target structure
of Schema, Table, Column.

Solution: The Cons predicate should be split into
separate conjunctsCn each relating one (or a group) of
source model elements to one (or a group) of target model
elements:

∀ s : Si · SCondi,j implies ∃ t : Ti,j · LPosti,j and GPosti,j

where theSi are source entities, theTi,j are target model
entities, SCondi,j is a predicate ons (identifying which
elements the constraint should apply to), andLPosti,j defines
the attributes oft in terms of those ofs. GPosti,j defines the
links of t in terms of those ofs.

Figure 1 shows a schematic structure of this pattern.

Si

SSub

sr*

Tj

TSub

tr*

{SCond}

{LPost}

{GPost}

Figure 1. Conjunctive-implicative form

We distinguish three cases of constraintsCn:

1) Type 1 constraints:rd(Cn) ∩ wr(Cn) = {} where
rd is the read frame andwr the write frame of the
constraint: the set of features and entities which it
(conceptually) reads and updates.

2) Type 2 constraints:Si 6∈ wr(Cn) and rd(SCond) ∩
wr(Cn) = {} but rd(Cn) ∩ wr(Cn) 6= {}.

3) Type 3 constraints: all other cases.

264

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 280 / 612

For type 2 or type 3 constraints, suitable metrics are
needed to establish termination and correctness of the de-
rived transformation implementation: There should exist a
measureQ : N on the state of a model, such thatQ is
decreased on each step of the transformation (application of
a constraint to a particular domain element), and withQ = 0
being the termination condition of the transformation.

There are also special cases of the pattern forentity split-
ting, when the data of one source entity is used to produce
the data of several target entities, andentity merging, when
data from several source entities is used to produce the data
of a single target entity.

Consequences:The Ensproperties should be provable
directly from the constraints: typically by using theCons
constraints that relate the particular entities used in specific
Ensconstraints.

Implementation:Implementation can be either by the
phased creation or recursive descent implementation patterns
(Section V). For phased creation the constraints can be
individually implemented as phases, with different strategies
being used for each type of constraint.

Individual constraintsCn:

∀ s : Si · SCond implies∃ t : Tj · LPost and GPost

are examined to identify which implementation strategy
can be used to derive their design. This depends upon the
features and objects read and written within the constraint
(Table I).

Constraint type Implementation choice
Type 1 Approach 1: single for loop
constraint

for s : Si do s.op()
Type 2 Approach 2: while
constraint iteration of for loop.
Type 3 Approach 3: while iteration of
constraint search-and-return for loop

Table I
DESIGN CHOICES FOR CONSTRAINTS

Code examples:A large example of this approach for
a migration transformation is in [9]. The UML to relational
mapping is also specified in this style in [10].

A simple example of the pattern is the specification of the
three-cycles graph analysis in Section IV-C.

B. Recursive form

Synopsis:To specify the effect of a transformation in
a declarative manner, as a global pre/post predicate, usinga
recursive definition of the transformation relation.

Forces: Useful whenever a platform-independent spec-
ification of a transformation is required, and the conjunctive-
implicative form is not applicable, because an explicit de-
scription of the transformation relation as a single relation
between the source and target models cannot be defined.

Solution: The Cons predicate should be split into
separate disjuncts each relating one (or a group) of source
model elements to one (or a group) of target model elements:

∃ s : Si · SCondi,j and ∃ t : Ti,j · Posti,j

where theSi are source entities, theTi,j are target model
entities, SCondi,j is a predicate ons (identifying which
elements the constraint should apply to), andPosti,j defines
the mappingτ(s) of s in terms ofs, t and other mapping
forms τ(s′) for somes′ derived froms.

There should exist a measureQ : N on the state of
a model, such thatQ is decreased on each step of the
recursion, and withQ = 0 being the termination condi-
tion of the recursion (no rule is applicable in this case).
Q is an abstract measure of the time complexity of the
transformation, the maximum number of steps needed to
complete the transformation on a particular model. For
quality-improvement transformations it can also be regarded
as a measure of the (lack of) quality of a model.

Consequences:The proof ofEnsproperties fromCons
is more indirect for this style of specification, typically
requiring induction using the recursive definitions.

Implementation:The constraints can be used to define
a recursive function that satisfies the specification, or an
equivalent iterative form. The constraints can also be used
to define pattern-matching rules in transformation languages
such as ATL [6] or QVT [12].

Code examples:Many computer science problems can
be expressed in this form, such as sorting, searching and
scheduling. Update-in-place transformations, which usually
employ a fixpoint iteration of transformation steps, can be
specified using this pattern. For example, a transformation
to remove multiple inheritance from a class diagram can be
specified by constraints:

(∃ c : Class; g : c.generalization·
c.generalization→size() > 1 and

∃a : Association· a.end1 = c and
a.end2 = g.general and
a.multiplicity1 = ONE and
a.multiplicity2 = ZEROONE and

g.isDeleted()) or
(∀ c : Class· c.generalization→size() ≤ 1)

In this case

Q(smodel) =
Σc:Class non root(c.generalization→size() − 1)

C. Auxiliary metamodel

Synopsis:The introduction of a metamodel for auxil-
iary data, neither part of the source or target language, used
in a model transformation.

265

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 281 / 612

Forces: Useful whenever auxiliary data needs to be
used in a transformation: such data may simplify the trans-
formation definition, and may permit a more convenient use
of the transformation, eg., by supporting decomposition into
sub-transformations. A typical case is a query transformation
which counts the number of instances of a complex structure
in the source model: explicitly representing these instances
as instances of a new (auxiliary) entity may simplify the
transformation.

Solution: Define the auxiliary metamodel as a set of
(meta) attributes, associations, entities and generalisations
extending the source and/or target metamodels. These ele-
ments may be used in the succedents ofConsconstraints (to
define how the auxiliary data is derived from source model
data) or in antecedents (to define how target model data is
derived from the auxiliary data).

Figure 2 shows a typical structure of this pattern. The
auxiliary metamodel simplifies the mapping between source
and target by factoring it into two steps.

Si Tj

TSub

Aux1

Aux2

TSub2

1

Source metamodel Auxiliary metamodel Target metamodel

Figure 2. Auxiliary metamodel structure

Consequences:It may be necessary to remove auxiliary
data from a target model, if this model must conform to a
specific target language at termination of the transformation.
A final phase in the transformation could be defined to delete
the data (cf. the construction and cleanup pattern).

Code example:An example is a transformation which
returns the number of cycles of three distinct nodes in a
graph. This problem can be elegantly solved by extending
the basic graph metamodel by defining an auxiliary entity
ThreeCyclewhich records the 3-cycles in the graph (Figure
3).

The auxiliary language elements are shown with dashed
lines.

The specificationConsof this transformation then defines
how unique elements ofThreeCycleare derived from the
graph, and returns the cardinality of this type at the end

GraphEdge

Node ThreeCycle

name : String elements

*

*

cycles*

11

1*
edges

nodes
*src 0..10..1

trg

* *

IntResult

num: Integer

Figure 3. Extended graph metamodel

state of the transformation:

(C1) :
∀g : Graph· ∀e1 : g.edges; e2 : g.edges; e3 : g.edges·

e1.trg = e2.src and e2.trg = e3.src and
e3.trg = e1.src and
(e1.src∪ e2.src∪ e3.src)→size() = 3 implies

∃
1

tc : ThreeCycle·
tc.elements= (e1.src∪ e2.src∪ e3.src)

and tc: g.cycles

(C2) :
∀g : Graph· ∃ r : IntResult· r.num= g.cycles→size()

The alternative to introducing the intermediate entity would
be a more complex definition of the constraints, involving
the construction of sets of sets using OCLcollect.

Tracing is another example, which is often carried out by
using auxiliary data to record the history of transformation
steps within a transformation.

This pattern is referred to asintermediate structurein [4].
Related patterns:This pattern extends the conjunctive-

implicative and recursive form patterns, by allowing con-
straints to refer to data which is neither part of the source
or target languages.

D. Construction and cleanup

Synopsis:To simplify a transformation specification by
separating it into a phase which constructs model elements,
followed by a phase which deletes elements.

Forces: Useful when a transformation needs to create
and delete elements of entities. For example, because an
auxiliary metamodel is being used, whose elements must be
removed from the final target model.

Solution: Separate the creation phase and deletion
phase into separate sets of constraints, usually the creation
(construction phase) will precede the deletion (cleanup).
These can be implemented as separate transformations, each
with a simpler specification and coding than the single rule.

266

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 282 / 612

Consequences:The pattern leads to the production
of intermediate models (between construction and deletion)
which may be invalid as models of either the source or target
languages. It may be necessary to form an enlarged language
for such models.

Code examples:An example is migration transforma-
tions where there are common entities between the source
and target languages [11]. A first phase copies/adapts any
necessary data from the old version (source) entities which
are absent in the new version (target) language, then a second
phase removes all elements of the model which are not in
the target language. The intermediate model is a model of a
union language of the source and target languages.

Another example are complex quality improvement trans-
formations, such as the removal of duplicated attributes
[7]. These can involve addition and removal of elements
in a single step, and can be re-expressed more simply by
separating these actions into successive steps.

Another implementation strategy for this pattern is to
explicitly mark the unwanted elements for deletion in the
first phase, and then to carry out the deletion of marked
elements in the second phase.

V. I MPLEMENTATION PATTERNS

In this section we define patterns to organise the imple-
mentation of model transformations.

A. Phased creation

Synopsis:Construct target model elements in phases,
‘bottom-up’ from individual objects to composite structures,
based upon a structural dependency ordering of the target
language entities.

Forces: Used whenever the target model is too complex
to construct in a single step. In particular, if an entity
depends upon itself via an association, or two or more
entities are mutually dependent via associations. In such
a case the entity instances are created first in one phase,
then the links between the instances are established in a
subsequent phase.

Solution: Decompose the transformation into phases,
based upon theConsconstraints. These constraints should
be ordered so that data read in one constraint is not written
by the same or a subsequent constraint, in particular, phase
p1 must precede phasep2 if it creates instances of an entity
T1 which is read inp2.

Figure 4 shows the schematic structure of this pattern.
Consequences:The stepwise construction of the tar-

get model leads to a transformation implementation as a
sequence of phases: earlier phases construct elements that
are used in later phases.

Implementation:The constraints are analysed to deter-
mine the dependency ordering between the target language
data and entities.T1 < T2 means that aT1 instance is used
in the construction of aT2 instance. Usually this is because

Si Tj

Phase 1

Phase 2

SSub1

SSub2

TSub

Figure 4. Phased creation structure

there is an association directed fromT2 to T1, or because
some feature ofT2 is derived from an expression usingT1
elements.

If the order< is a partial order (transitive, antisymmetric
and irreflexive) then the corresponding ordering of phases
follows directly from <: a phase that createsT2 instances
must follow all phases that createT1 instances, whereT1 <

T2. However, if there are self-loopsT3 < T3, or longer
cycles of dependencies, then the phases creating the entities
do not set the links between them, instead there must be a
phase which follows all these phases which specifically sets
the links.

Code examples:TheThreeCycleexample illustrates the
simple case. HereThreeCycle< IntResult, so the phase
implementingC2 must follow that forC1.

B. Unique instantiation

Synopsis: To avoid duplicate creation of objects in
the target model, a check is made that an object satisfying
specified properties does not already exist, before such an
object is created.

Forces: Required when duplicated copies of objects in
the target model are forbidden, either explicitly by use of
the∃

1
t : Tj ·Postquantifier, or implicitly by the fact thatTj

possesses an identifier (primary key) attribute.
Solution: To implement a specification∃

1
t : Tj · Post

for a concrete classTj , test if ∃ t : Tj · Post is already true.
If so, take no action, otherwise, create a new instancet of
Tj and establishPost for this t.

In the case of a specification∃ t : Tj · t.id = x and Post
whereid is a primary key attribute, check if aTj object with
this id value already exists:x ∈ Tj .id and if so, use the object
(Tj [x]) to establishPost.

Consequences:The pattern ensures the correct imple-
mentation of the constraint. It can be used when we wish
to share one subordinate object between several referring
objects: the subordinate object is created only once, and is
subsequently shared by the referrers. There is, however, an
additional execution cost of carrying out checks for existing
elements.

267

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 283 / 612

Implementation:The executable ‘update form’ in Java
of ∃

1
t : Tj · Post for a concrete classTj is:

if (qf) { }
else
{ uf }

whereqf is the query form of∃ t : Tj · Post, and uf is its
update form.

The pattern is used in a number of model transformation
languages, such as QVT-R, to avoid recreating target ele-
ments with required properties. In QVT-R it is known as
the ‘check before enforce’ strategy.

Related patterns:Object Indexing can be used to
efficiently obtain an object with a given primary key value
in the second varient of the pattern.

C. Object indexing

Synopsis:All objects of a class are indexed by a unique
key value, to permit efficient lookup of objects by their key.

Forces: Required when frequent access is needed to
objects or sets of objects based upon some unique identifier
attribute (a primary key).

Solution: Maintain an index map data structurecmap
of type IndType→ C, whereC is the class to be indexed,
andIndTypethe type of its primary key. Access to aC object
with key valuev is then obtained by applyingcmap to v:
cmap.get(v).

Figure 5 shows the structure of the pattern. The mapcmap
is a qualified association, and is an auxiliary metamodel
element used to facilitate separation of the specification into
loosely coupled rules.

System C

x: IndType
0..1

cmap
cId: IndType

{identity}

Figure 5. Object indexing structure

Consequences:The key value of an object should not
be changed after its creation: any such change will require
an update ofcmap, including a check that the new key value
is not already used in another object.

Implementation:When a newC object c is created,
addc.ind 7→ c to cmap. Whenc is deleted, remove this pair
from cmap. To look upC objects by their id, applycmap.

In QVT-R the pattern is implemented by definingkey
attributes by which objects can be uniquely identified.

VI. CONCLUSION

We have described four specification patterns and three
implementation patterns, which can be used together within
a development process for model transformations. These

have been implemented within the UML-RSDS toolset.
Other patterns which are widely used in model transfor-
mations are theRecursive descentpattern, where an imple-
mentation is structured as a series of recursive operations,
using the hierarchical structure of source and target language
entities [13].

ACKNOWLEDGMENT

This paper describes work carried out in the UK HoRT-
MoDA project, funded by EPSRC.

REFERENCES

[1] J. Bezivin, F. Jouault, J. Palies,Towards Model Transforma-
tion Design Patterns, ATLAS group, University of Nantes,
2003.

[2] J. Cabot, R. Clariso, E. Guerra, J. De Lara,Verification
and Validation of Declarative Model-to-Model Transforma-
tions Through Invariants, Journal of Systems and Software,
preprint, 2009.

[3] J. Crupi, D. Alur, D. Malks,Core J2EE Patterns, Prentice
Hall, 2001.

[4] K. Czarnecki, S. Helsen,Feature-based survey of model
transformation approaches, IBM Systems Journal, vol. 45,
no. 3, 2006, pp. 621–645.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[6] F. Jouault, I. Kurtev,Transforming Models with ATL, in
MoDELS 2005, LNCS Vol. 3844, pp. 128–138, Springer-
Verlag, 2006.

[7] K. Lano, Class diagram rationalisation case study, Dept. of
Informatics, King’s College London, 2011.

[8] K. Lano (ed.), UML 2 Semantics and Applications, Wiley,
New York, 400 pages, 2009.

[9] K. Lano, S. Kolahdouz-Rahimi,Migration case study using
UML-RSDS, TTC 2010, Malaga, Spain, July 2010.

[10] K. Lano, S. Kolahdouz-Rahimi,Model-driven development of
model transformations, ICMT 2011, June 2011.

[11] K. Lano, S. Kolahdouz-Rahimi,Specification of the GMF
migration case study, TTC 2011.

[12] OMG, Query/View/Transformation Specification, ptc/05-11-
01, 2005.

[13] OMG, Query/View/Transformation Specification, annex A,
2010.

[14] I. Poernomo,Proofs as model transformations, ICMT 2008.

[15] I. Poernomo, J. Terrell,Correct-by-construction Model Trans-
formations from Spanning tree specifications in Coq, ICFEM
2010.

268

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 284 / 612

Component-oriented Software Development with UML

Nara Sueina Teixeira
Graduate Program in Computer Science

Federal University of Santa Catarina - UFSC
Florianópolis, Brasil

E-mail: narasueina@inf.ufsc.br

Ricardo Pereira e Silva
Department of Informatics and Statistics - INE
Federal University of Santa Catarina - UFSC

Florianópolis, Brasil
E-mail: ricardo@inf.ufsc.br

Abstract— This paper proposes to automate the process of
structural and behavior analysis of component-oriented
software fully specified in UML. The structural specification
uses component, class and deployment diagrams, and the
behavior specification, state machine diagram. The produced
structural analysis tool analyzes a connection between pairs of
components at a time. The produced behavioral analysis tool
considers the behavior of the system as a whole, leading to
behavioral specification of the application automatically from
the machine state of each connected component. It is
performed the convertion of the state machines of the
individual components and of the application to Petri nets in a
transparent manner to the user. The behavioral assessment is
done by analyzing Petri net properties, considering the context
of the components. Analysis results are produced without
demand effort, allowing early location of design problems.

Keywords-Component-oriented development; structural
compatibility analysis; behavioral compatibility analysis; UML;
Petri Nets.

I. INTRODUCTION

For the component-based software development
approach, software construction consists in an
interconnection of a collection of units: the components. “A
component represents a modular part of a system that
encapsulates its contents and whose manifestation is
replaceable within its environment” [1]. “A component
interface (CI) is a collection of service access points, each
one with a defined semantics” [2]. The latter establishes the
services required and provided by a component, not
considering implementation details.

Some research efforts suggest the automation of
component compatibility analysis evaluating their CIs. Dias
and Vieira [3] use the Argus-I tool integrated to the SPIN
tool [4] for the component compatibility analysis, in which
specifications are produced in ADL (Architecture
Description Language) and state machine diagram is
converted to PROMELA [5]. The architectural analysis
considers the "super state model", but the authors do not
detail how it is generated.

Chouali and Souquières [6] use refinement in B to prove
the compatibility between two interfaces, through the tool
AtelierB [7]. The CI specification is converted to the formal
method B and consists of a data model associated with each
component provided and the required interface. The
interoperability does not cover behavioral aspects, therefore
it does not assess the feasibility of the component-based
application.

Mouakher, Lanoix and Souquières [8] improved the
approach [6] by adding an interface protocol, described in
PSM (Protocol State Machine), to the CI specification and
proposing adapters when incompatible interfaces were
identified. However, the analysis is also performed between
two connected interfaces, disregarding problems associated
with the whole set of application components. In [6] and [8]
the notion of component port is not treated.

Bracciali, Brogi and Channel [9] describe the interface of
components through IDLs (Interface Description Language)
and they use a subset of Lambda Calculus to represent the
behavior of components. This low level solution becomes
difficult to be applied to describe complex systems.

The component compatibility analysis should be
performed based on the CI specification and must consider
three distinct aspects: structural, behavioral, and functional.
“The structural aspect concerns the static features of a
component and corresponds to the set of required and
provided operation signatures of the CI. The behavioral
aspect defines constraints in the invocation order of provided
and required operations. The functional aspect describes
what the component does, not necessarily going into details
of its implementation” [10].

The lack of a widely accepted standard for the
specification of CI makes the analysis of compatibility
between components difficult and hence, their reuse. The
second version of UML, called henceforth UML [1] provides
mechanisms to deal with components, but does not establish
a standard for complete specifications.

In a previous publication [11] were proposed ways of
specifying component-oriented software and CI, in which the
specification is based on the object-oriented paradigm and
uses only UML diagrams. For the CI structural specification
component and class diagrams are used and for the CI
behavioral specification is utilized the state machine
diagram. Thus, each component has its own state machine
(SM) representing its externally observable behavior – being
this observable behavior the sequence of required and
provided operations performed during the component’s
operation. The organization of components of an application
is described by using the deployment diagram.

This paper proposes the automation of the component’s
compatibility analysis process from the component-based
software specification [11]. The approach used in this paper
is implemented in the current version of the SEA
environment [10] [12] [13], which uses UML. SEA is a
development environment in which the object-oriented
paradigm is used for production and use of reusable software

269

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 285 / 612

artifacts. Some tools were built in this environment to
automate the analysis of structural and behavioral
compatibility.

The structural analysis tool (SAT) handles at each time,
pairs of connected ports. The behavioral analysis tool (BAT)
considers not only the individual behavior of each
component, but also the behavior of the system as a whole. It
involves the entire set of application’s interconnected
components at the same time. In this work, the application
SM is automatically obtained from the union of the SMs of
each connected component.

For the behavioral analysis, the UML state machine
diagram is converted in Petri net (PN). This conversion is
done automatically in a transparent way to the user, who
does not need any knowledge of this modeling technique.
Behavioral problems are identified through the
interpretation of PN properties, considering the component
context. The conversion method (of SM to PN) used in this
study is similar to that proposed in [14], however, it only
handles PNs of the ordinary kind and presents particularities
of the treaty context.

Functional compatibility analisys consists in evaluate if
the execution steps of an operation are in agreement with
the need of the component that invokes the operation. This
kind of analisys is not automatable and is beyond the scope
of this work.

The following sections are organized as: Section II
presents concepts related to OCEAN / SEA, and Section III
presents the approach to specify component-based software.
In Section IV, the automated structural compatibility analysis
is described, while in Section V, the behavioral analysis is
presented. Software specification and analysis are supported
by the tools inserted in SEA environment. Section VI
presents how the evaluation of the produced tools occurred.
The article ends with conclusions, in Section VII.

II. OCEAN/SEA IMPLEMENTATION

OCEAN [10] is an object-oriented framework for the
domain of the software development environments. From
this framework, SEA environment, a software development
support, was built.

The software development using SEA starts with the
production of a UML design specification. In this
environment, a design specification is an object that
aggregates models and concepts (that are objects) and
includes relationships between these objects. Each kind of
UML diagram is defined as a class related to the proper
diagram elements, that is, to the classes that model the
diagram elements.

In the SEA environment, tools are also defined as classes
and they are related to one or more kinds of specification –
the ones that can be handled by these tools. The tools can be
produced to be accessed by a menu or to be automatically
called in a specific situation.

Tools of an OCEAN-based environment are produced by
means of framework extension (subclassing). There are three
kinds of tool: editors (such as a diagram editor), converters
(such as a code generator), and analyzers. The analyzers read

a design specification without changing it and produce
reports with the specification features. The tools SAT and
BAT are analyzers.

III. SPECIFICATION OF COMPONENT-BASED SOFTWARE

A. Structural Specification
The structural specification concerns to all the operation

signatures of the CI. “The CI refers to the portion of the
component responsible for communicating with its external
environment. Taking into account the nomenclature of UML,
the CI is composed by a port collection, each one associated
to one or more UML interfaces” [11].

In this approach, producing the CI structural specification
requires the specification of all interfaces associated with the
component (in class diagram) and the definition of the
component ports, associating required or provided interfaces
to each of them in component diagram.

With the establishment of the interfaces related to the
component ports through realization or dependency
relationship, it becomes possible to check what operations
are provided or required from a component’s port.

Figure 1 illustrates the structural specification of a
hypothetical component, CompB, made in the SEA
environment. At the right side there is the class diagram
with the interfaces; at the left side, a component, in a
component diagram, that is related to the declared interfaces.

In the SEA environment, the connection between
components is made in the deployment diagram, linking the
ports of connected components. Figure 2 illustrates a
deployment diagram with a hypothetical software artifact
consisting of the interconnection of three components. All
the components must be declared in component diagram and
all the interfaces, in class diagram.

B. Behavioral Specification
The CI behavioral specification sets restrictions on the

invocation order of operations provided and required by the
component. In this approach, the behavioral specification is
represented by a UML state machine diagram. The basic idea
is that each state represents a situation that occurs during the
operation of a component, which is characterized by the
operations required and provided that can be performed at
the time. Each transition leaving a state represents the
execution of an operation – provided or required – that can
leave the component in the same state or lead to another
state. Some conventions have been established:

Figure 1. Component structural specification in the SEA environment.

270

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 286 / 612

Figure 2. Software artifact consisting of the interconnection of components

CompA, CompB, CompC.

Figure 3. Behavioral specification of components CompA, CompB and

CompC.

- The state identifiers are combinations of letters and
numbers, which only differentiate a state of the others (the
transitions are the elements that define the semantics of the
model).

-The transitions are labeled according to the following
convention: <direction> <port> <operation>, where
<direction> may be <<out>> for the operations invoked by
the component and <<in>> for provided operations.

Figure 3 illustrates the SMs of the components CompA,
CompB and CompC (mentioned in Figure 2).

IV. AUTOMATION OF STRUCTURAL COMPONENTS’S

COMPATIBILITY ANALYSIS

Figure 4 illustrates the SAT performance. Its purpose is
to perform structural analysis, which consists in the
following actions:

A. Structural Specification Consistency Analysis

The structural specification consistency analysis verifies
if the system is specified with all restrictions set forth in
approach, such as:

- All components are specified in a component diagram
with at least one port associated to each one.

- Each port is associated with at least one required or
provided interface.

- Each interface referenced in the component diagram is
described in a class diagram.

Figure 4. Structural Analysis Tool of the SEA environment (SAT).

- Each interface defined in the class diagram has at least

one declared operation.
- At least two components are connected in a deployment

diagram.

B. Connected Port Analysis

The structural compatibility is evaluated for each pair of
connected ports of the application components. “The set of
required operations by a port includes the operations of all
interfaces related to that port by dependency. These
operations should be provided by the port on the other side
of the connection through its set of provided operations,
in other words, the set of operations of all interfaces related
to that port by realization” [11]. Otherwise, structural
incompatibility is identified in the connection.

The analysis of the connected ports compares, for each
pair of connected ports, the operations required in the port of
a component with the operations provided by the port of the
other component attached to it, considering operation name,
return type, number of parameters and parameter type.

At the end of the analysis, SAT reports the results, with
the structural incompatibilities found.

V. AUTOMATION OF THE COMPONENT BEHAVIORAL

COMPATIBILITY ANALYSIS

Figure 5 illustrates the BAT operation in the SEA
environment. In this approach, the behavioral analysis of
components involves the following actions:

A. Behavioral Specification Consistency Analysis

The behavioral specification consistency analysis checks
whether the specification complies with the restrictions
established in the approach, such as those mentioned in
Section III-B.

Figure 5. Behavioral Analysis Tool of the SEA environment (BAT).

271

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 287 / 612

For each analyzed SM, a behavioral specification
evaluation report is generated, assessing the respective
component, with the found errors.

B. Generation of the application behavioral
specification

“Behavioral compatibility is observed between
components if the restrictions on the operation invocation
order of the required and provided operations established in
each component are compatible with the other components
connected to it. This type of evaluation involves the whole
set of connected components” [11].

The method for generating the application SM was
proposed in a previous work [11] and consists of:

1. Identifying pairs of related transitions. Two transitions
are related if they involve interconnected ports and execution
of the same operation, which is required on one side and
provided by the other side;

2. Inserting fork and join pseudostates (a single syntactic
element) that synchronizes the related transitions of the
different machines. This link will convert the set of SMs in a
single one – the component-based application SM – and
synchronizes an operation invocation with its execution;

3. Synchronize the transitions of the initial pseudostates
of various machines with a fork pseudostate (inserting a
single initial pseudostate for the application SM). This step
preserves the initial state of all SMs.

From this algorithm, the application SM will include the
states of all involved components. Figure 6 illustrates the SM
(automatically generated by BAT) of the application,
consisting of the interconnection of components CompA,
CompB and CompC, illustrated in the Figures 2 and 3.

C. Conversion of State Machines in Petri Nets

The user of the SEA environment manipulates only UML
diagrams to specify component-based software. The SMs are
converted into the corresponding PNs automatically, in a
completely transparent way to the user, who never see PN
diagrams.

The algorithm for conversion of the SMs in PNs is
summarized in the following steps:

1. For each state of the SM, create a place in the PN.
2. Identify the states related to the initial pseudostate and

mark the corresponding places with a token at each PN.
3. For each SM transition not related to another, create a

transition and connect it with arcs to its input and output
places (it applies to the SM transitions of the individual
components and the application SM transitions
corresponding to unconnected ports).

4. For each set of SM transitions related to a fork/join in
the application, create a transition with a set of arcs
connecting it to their respective input and output places.

Figure 7 illustrates the PN obtained from the conversion
of the SM showed in Figure 6.

D. Petri net properties analysis

The Pipe analyzer tool – Platform Independent Petri net
Editor 2, version 2.5 [15] – was integrated to the SEA
environment, with adaptations and extensions. Given a PN,

the analyzer, through state enumeration, reports whether or
not it has a certain property. The interpretation of each
property is done for the treated context. The following
properties are considered:

1. Safeness: the PNs that represent component-based
applications must be safe. Otherwise, it denotes behavioral
error.

2. Reversibility: in this study, the conclusion that a PN
that represent component-based applications is not reversible
causes a warning which should be evaluated by the user.

3. Deadlock: a deadlocked PN characterizes a behavioral
error. This can occur for two reasons: one is because the
restrictions associated to the execution order of the
operations, established by a component, are not respected by
other components connected to it. Another reason is the
occurrence of unconnected port(s) in one or more application
components. It occurs when the component requires or
provides operations, through this port, which are essential to
its operation.

4. Liveness: an alive PN representing a component-based
application characterizes a behavioral specification without
errors. However, the absence of this property does not
necessarily denote behavioral error. A not alive PN may
have almost alive or dead transitions and is the user's
responsibility to assess whether or not this is a behavioral
compatibility problem.

5. Almost alive transitions: this characteristic leads to a
warning, because it is necessary that the user evaluates if the
unavailability of an operation, at a certain moment of the
execution, is a behavior compatibility problem.

6. Dead transitions: this feature also requires the user
evaluation, that is, if the permanent unavailability of an
operation is a problem for the application.

7. Transition invariants: In the analysis of the application
PN, the invariants are identified and compared with the
invariants of the individual component PNs, because
possible cyclic sequences of operations of a component may
not be possible when it is connected to others.

The analysis of the PN properties is made for both
application PN and individual component PNs. The
interpretation that occurs to this case is the same as the
application PN, except for the property deadlock:
considering the specification of an individual component,
deadlock means modeling inconsistency. It is necessary to
compare situations that occur in the component behavior, but
that no longer occur in the application, when the component
is connected to others.

VI. PROPOSED APPROACH EVALUATION

Two emphases have been adopted in the evaluation
process: the tools’s ability to identify errors and suspicious
situations (reported as warnings) and the appropriateness of
the analysis approach. The evaluation of the implemented
tools was performed with small applications, with a
maximum of ten components. Specifications without errors
and specifications with purposely inserted errors were
treated by the analysis tools in order to evaluate all
situations in which they should work.

272

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 288 / 612

Figure 6. Behavioral specification corresponding to the application of the figure 2.

Figure 7. Petri net obtained from the conversion of the SM showed in Figure 6.

The analysis approach showed to be adequate when

comparing their results with the conclusions of not
automatic analysis. The tools were not submitted to stress
test. The following are some analysis examples.

Figure 8 shows an exaple of a structural analysis report
with error detection – in this case, operation not provided
and problems with parameteres. Figure 9 shows an example
of behavioral analysis report with errors due to unconnected
port, that is, a deadlock caused by the need of operation
invocation in an unconnected port. Figure 10 shows another
example of behavioral analysis report with warnings due
the possible changes that may occur in the component
behavior when it becomes part of a component connection.
In this case, possible service execution cycles of an
individual component not be preserved when it is connected
to other components. Besides that, operations always
available in the components become temporarily
unavailable in the application that contains the components.

Based on reports like the ones showed, the user can
make decisions and define corrective action related to the
component and application specifications. For situations
that represent warnings, the user must evaluate whether or
not they mean a problem for the application.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented an automatic procedure for the
structural and behavioral compatibility analysis. The
approach was implemented in the SEA environment, using
tools embedded in it.

Component and class diagrams have been used for the
CI structural specification. The behavioral aspect is
defined using the state machine diagram. The component
organization is defined using the deployment diagram.

The structural analysis tool evaluates whether the
operations required on one side of the connection are
provided by the component on the other side.

The behavioral analysis tool generates the application
SM automatically. All SMs are converted into PNs, which
are analyzed and interpreted in the given context.

The main advantages of this proposal are: the
specification is made with just a single language, UML; the
application behavioral specification is generated
automatically, reducing the design effort; the behavioral
analysis considers the behavior of individual components
and application, comparing them and identifies errors and
suspicious situations reported as warnings.

273

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 289 / 612

Figure 8. Connected Port Analysis Report with error.

Figure 9. Behavioral Analysis Report with error.

The developed tools automate the proposed analysis
approach and the tests have shown the ability to
automatically locate structural and behavioral errors.

As future work, we highlight the need of assessing the
produced automatic support in the development of larger
applications, the development of automated support to assist
the creation of component adapters and to find alternatives
to assess functional compatibility. Thus, we expect the
possibility of producing component-oriented software
specification more accurately, less prone to error, and
improve its quality.

REFERENCES

[1] Object Management Group. Unified Modeling Language:
Superstructure version 2.4. Available in:
<http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF>.
Access: 20 January 2011.

[2] C. Szyperski, Component Software: beyond object-oriented
programming, 2.ed. Boston, EUA: Addison-Wesley Professional,
2002.

[3] M. S. Dias, and M.E.R. Vieira, “Software Architecture Analysis
based on Statechart Semantics” in Proceedings of the 10th
Internacional Workshop on Software Specification and Design. [S.1]:
IEEE Computer Society, 2000.p.133.ISBN 0-7695-0884-7.

[4] SPIN. Available in: <http://spinroot.com/spin/whatispin.html>.
Access: 10 November 2010.

Figure 10. Behavioral analysis report with warnings.

[5] PROMELA. Process or Protocol Meta Language. Available in:
<http://www.dai-arc.polito.it/dai-
arc/manual/tools/jcat/main/node168.html>. Access: 10 November
2010.

[6] S. Chouali, M. Heisel, and J. Souquières, “Proving Component
Interoperability with B Refinement,” in International Workshop on
Formal Aspect on Component Software, H. R. Arabnia and H.Reza,
Eds. CSREA Press, 2005, to appear in ENCTS 2006.

[7] Atelier-B. Available in: <http://www.atelierb.eu/index-en.php>.
Access: 10 November 2010.

[8] I. Mouakher, A. Lanoix, and J. Souquières, “Component Adaptation:
Specification and Verification,” in Proceedings of the International
Workshop on Component-Oriented programming, (WCOP). 2006

[9] A. Braccialia, A. Brogi, and C. Canal, "A formal
approach to component adaptation", in Journal of Systems and
Software Volume 74, Issue 1, 1 January 2005, Pages 45-54.

[10] R. P e Silva, “Suporte ao Desenvolvimento e Uso de Frameworks e
Componentes,” PhD Dissertation , Porto Alegre, UFRGS/II/PPGC,
march 2000.

[11] R. P e Silva, Como Modelar com UML 2, Florianópolis: Visual
Books, 2009. ISBN: 978-85-7502-243-6.

[12] A. Coelho, “Reengenharia do Framework OCEAN,” M.Sc. Thesis,
Florianópolis, UFSC. 2007.

[13] T. C. de S. Vargas, “Suporte à Edição de UML 2 no Ambiente SEA,”
M.Sc. Thesis, Florianópolis, UFSC. 2008.

[14] J. A. Saldhana and S. M. Shatz, “UML Diagrams to Object Petri Net
Models: An Approach for Modeling and Analysis,” in International
Conference on Software Engineering and Knowledge Engineering.
Proc. of the Int. Conf. On Software Eng. and Knowledge Eng.
(SEKE), Chicago, 2000.

[15] Pipe. Platform Independent Petri net Editor 2, versão 2.5. Available
in: <http://pipe2.sourceforge.net/>. Access: 20 January 2011.

274

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 290 / 612

Metrics in Distributed Product Development

Maarit Tihinen and Päivi
Parviainen

Software Technologies
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract— Nowadays the products are increasingly developed
globally in collaboration between subcontractors, third party
suppliers and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional one-site
development. From the viewpoint of project management, the
measurements and metrics are important activities for
successful product development. This paper is focused on
describing a set of metrics that is successfully used in industrial
practice in distributed product development. Based on the
experiences, the reasoning for selecting these metrics was
similar: they are easy to capture and can be quickly calculated
and analysed on a regular interval. One of the most important
reasons for choosing these metrics was that they were aimed
especially to provide early warning signals, i.e., means to
proactively react to potential issues in the project. This is
especially important in distributed projects, where specific
means to track project status are needed.

Keywords-metrics; measurements; global software
development; distributed product development

I. INTRODUCTION
Globally distributed software development enables

product development to take place independently of the
geographical location of the individuals or organizations. In
fact, nowadays the products are increasingly developed
globally in collaboration between subcontractors, third party
suppliers and in-house developers [1]. In practice distributed
projects struggle with the same problems than single-site
projects including problems related to managing quality,
schedule and cost. Distribution only makes it even harder to
handle and control these problems [2][3][4][5]. These
challenges are caused by various issues, for example, less
communication – especially informal communication –
caused by distance between partners, and differences in
background knowledge of the partners. That’s why, in
distributed projects the systematic monitoring and reporting
of the project work is especially important, and measurement
and metrics are an important means to do that effectively.

Management of a distributed product development
project is more challenging than traditional development [6].

Based on an industrial survey [7], one of the most important
topics in the project management in distributed software
development is detailed project planning and control during
the project. In global software development (GSD), this
includes, e.g., dividing work by sites into sub-projects,
clearly defined responsibilities, dependencies and timetables,
along with regular meetings and status monitoring.

The main purpose of measurements and metrics in
software production is to create means for monitoring and
controlling and this way to provide support for decision
making [8]. Traditionally, the software metrics are divided
into process, product and resource metrics [9]. In the
comprehensive measurement program, all these dimensions
should be taken into consideration while interpreting
measurement results, otherwise, the interpretation may lead
to wrong decisions or incorrect actions. Successful
measurement program can prove to be an effective tool for
keeping on top of development effort, especially, for large
distributed projects [10]. However, many problems and
challenges have been identified that reduce and may even
eliminate all interests to the measurements. For example, not
enough time is allocated for measuring and metrics during a
project, or not enough benefit is visibly gained by the project
doing the measurement work (e.g., data is useful only at the
end of project, not during the project). In addition, the
“metric enthusiasts” may define too many metrics making it
too time consuming. Thus, it’s beneficial [10] to define core
metrics to collect across all projects to provide benchmarking
data for projects, and to build on measures that come
naturally out of existing processes and tools.

This paper is focused on describing a metrics set that are
successfully used in distributed product development. The
main purpose of the paper is to offer a set of essential metrics
with experiences of their use. The amount of the metrics is
knowingly kept as limited as possible. Also, the metrics
should be such, that they provide online information during
the projects, in order to enable fast reaction to potential
problems during the project. The metrics and experience
presented in the paper are based on metrics programs of two
companies, Philips and Symbio. Royal Philips Electronics is
a global company providing healthcare, consumer life-style

275

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 291 / 612

and lighting products and services. Digital Systems &
Technology is a unit within Philips Research that develops
first of a kind products in the area of healthcare, well-being
and lifestyle. The projects follow a defined process and are
usually distributed over sites and/or use subcontractors as
part of product development. Symbio Services Oy provides
tailored services to organizations seeking to build tomorrow's
technologies. Well-versed in a variety of software
development methodologies and testing best practices,
Symbio's specialized approaches and proprietary processes
begin with product design and stem through globalization,
maintenance and support. Symbio has built a team of
worldwide specialists that focus on critical areas of the
product development lifecycle. Currently Symbio employs
around 1400 people and their project execution is distributed
between sites in the US, Sweden, Finland and China.

The paper is structured as follows. Firstly, an overview of
related work – literature studies and their limitations related
to measurements and metrics of distributed product
development – is introduced in Section II. Then, proposed
metrics are presented using Rational Unified Process (RUP)
[11] approach as a framework. After that, industrial
experiences of using the metrics are discussed. Finally, the
conclusions are drawn in Section V.

II. MEASUREMENTS IN GSD
There are several papers that discuss globally distributed

software engineering and its challenges, for example, [10],
[12] and [13]. Also, metrics in general and for specific
aspects have been discussed in numerous papers and books
for decades. However, little global software development
(GSD) literature has focused on metrics and measurements
or even discusses the topic. Da Silva et al. [6] report similar
conclusion based on analysis of DSD literature published
during 1999 – 2009: they state as one of their key finding
that the “vast majority of the reported studies show only
qualitative data about the effect of best practices, models,
and tools on solving the challenges of distributed software
development (DSD) project management. In other words,
our findings indicate that strong (quantitative) evidence
about the effect of using best practices, models, and tools in
DSD projects is still scarce in the literature.”

The papers that have discussed some metrics for GSD
usually focus on some specific aspect, for example,
Korhonen and Salo [13], discuss quality metrics to support
defect management process in a multi-site organization.
Simmons and Ma [14] discuss a software engineering expert
system (SEES) tool where the software professional can
gather metrics from CASE tool databases to reconstruct all
activities in a software project from project initiation to
project termination. Misra [15] presents a cognitive weight
complexity metric (CWCM) for unit testing in a global
software development environment. Lotlikar et al. [16]
propose a framework for global project management and
governance including some metrics with main aim to support
work allocation to various sites. Peixoto et al. [12] discuss
effort estimation in global software development, and one of
their conclusions is that “GSD projects are using all kinds of

estimation techniques and none of them is being consider as
proper to be used in all cases that it has been used”, meaning,
that there is no established technique for GSD projects.

Some effort has also been invested in defining how to
measure success of GSD projects [17], and these metrics
mainly focus on cost related metrics and are done after
project completion. The focus of this paper is to discuss
metrics for monitoring ongoing GSD projects and that way
identify needs for corrective actions early.

A. Traditional metrics and project characteristics
Software measurements and metrics have been discussed

since 1960’s. The metrics have been classified many
different ways, for example, they can be divided into basic
and additional metrics [18] where basic metrics are size,
effort, schedule and defects, and the additional metrics are
typically metrics that are calculated or annexed from basic
metrics (e.g., productivity = software size per used effort).
The metrics can be divided also into objective or subjective
metrics [18]. The objective metrics are easily quantified and
measured, examples including size and effort, while the
subjective metrics include less quantifiable data such as
quality attitudes (e.g., excellent, good, fair, poor). An
example of the subjective metrics is customer satisfaction.
Furthermore, software metrics can be classified according to
the entities of product, processes and resources [9]. Example
metrics of product entities are size, complexity, reusability
and maintainability. Example metrics of process entities are
effort, time, number of requirements changes, number of
specification/coding faults found and cost. Furthermore,
examples of resource entities are age, price, size, maturity,
standardization certification, memory size or reliability.
These classifications, various viewpoints and the amount of
examples merely prove how difficult the selection of metrics
really can be during the project.

In addition to different ways of metrics classification,
development projects can also be classified. Typically, the
project classification is used as a baseline for further
interpretation of the metrics and measurements. For example,
all kind of predictions or comparison should be done within
the same kind of development projects, or the differences
should be taken into account. Traditional project
characteristics are, e.g., size and duration of a project, type of
a project (development, maintenance, operational lifetime
etc.), project position (contractor, subcontractor, internal
development etc.), type of software (hardware-related
software development, application software, etc.) or used
software development approaches (agile, open source,
scrum, spiral-model, test driven development, model-driven
development, V-model, waterfall model etc.). Furthermore,
different phases of development projects have to be taken
consideration while analyzing gathered measurement data.

B. Metrics and measurements during product development
A phase of lifecycle of development project affects to the

interpretation of the metrics. Thus, in this paper, proposed
metrics are introduced by using commonly known approach
of software development Rational Unified Process (RUP).
RUP is a process that provides a disciplined approach to

276

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 292 / 612

assigning tasks and responsibilities within a development
organization. Its goal is to ensure the production of high-
quality software that meets the needs of its end-users, within
a predictable schedule and budget [11].

The software lifecycle is divided into cycles, each cycle
working on a new generation of the product. RUP divides
one development cycle in four consecutive phases [11]: 1)
inception phase, 2) elaboration phase, 3) construction phase
and 4) transition phase. Furthermore, there can be one or
more iterations within each phase during the software
generation. The phases and iterations of RUP approach are
illustrated in following Figure 1.

Figure 1. Phases and Iterations of RUP approach [11].

From a technical perspective the software development is

seen as a succession of iterations, through which the software
under development evolves incrementally [11]. From
measurement perspective this means that some metrics can
be focused on one or two phases of the development cycle,
and some can be continuous metrics that can be measured in
all phases, and can be analysed, e.g., in iterations.

C. Measurements and metrics in GSD
Software measurement is defined by [19] as follows:

“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. In the daily software development work, the
measurements are still seen as unfamiliar or even an extra
burden for projects. For example, project managers feel it as
time consuming to collect metrics for the organization (e.g.,
business-goal-related metrics) while they need to have
metrics that are relevant to the project. Furthermore, they
have impressed that there has not been budgeted enough time
for measurements, and that’s why it’s really difficult to get
approval from stakeholders for this kind of work [10].

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools or their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective

evaluations. In addition, distributed projects are often so
unique (e.g., product domain and hardware-software balance
vary, or different subcontractors are used in different phases
of the project) that their comparison is impossible. Thus, the
interpretation of measurements data is more complicated in
GSD than one site projects. That’s why it’s recommended to
select moderate amount of metrics. In this paper we will
present a set of metrics to use during GSD. Also industrial
experiences about the metrics will be discussed.

The common metrics (effort, size, schedule etc.) are also
applicable for GSD projects. However, special attention may
be needed in training the metrics collection, to ensure
common understanding of them (e.g., used classifications).
Also, as measurements also tend to guide people’s behavior,
it’s important to ensure that all are aware of the purpose of
the metrics (i.e., not to measure individual performance),
specifically in projects distributed over different cultures.

III. EXAMPLES OF INDUSTRIAL PRACTICES
In this Section the metric set used in the companies is

introduced. The metrics are introduced according to the RUP
phases where the metric is seen most relevant to measure.
For each metric, a name, a notation and a detailed definition
is introduced. The main goal is to offer a useful, yet a
reasonable amount of metrics, for supporting the on-time
monitoring of the GSD projects. Thus, the indicators are
supposed to be leading indicators rather than lagging
indicators, for example, planned / actual schedule
measurements should be implemented as milestone trend
analysis: measure the slip in the first milestone and predict
the consequences for the other milestones and project end.

A. Metrics for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the core project's requirements, main
constraints, an initial use-case model (10% -20% complete),
and a project plan, showing phases and iterations [20].
Proposed metrics to be taken consideration in this phase are
introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel are

mostly needed for comparison with actual schedule and

277

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 293 / 612

personnel, in order to identify lack of available resources as
well as delays in schedule quickly. The amount of Proposed
Requirements tells about the progress of the product
definition.

B. Metrics for Elaboration Phase
During the elaboration phase a majority of the system

requirements is expected to capture. The purpose of the
phase is to analyze the problem domain, establish a sound
architectural foundation, develop the project plan, and
eliminate the highest risk elements of the project. The final
Elaboration phase deliverable is a plan (including cost and
schedule estimates) for the construction phase. Example
outcomes of the elaboration phase are a use-case model (at
least 80% complete), a software architecture description,
supplementary requirements capturing the non-functional
requirements and any requirements that are not associated
with a specific use case, a revised risk list and a revised
business case, and a development plan for the overall project.
Proposed metrics to be taken consideration in this phase are
introduced in Table II.

TABLE II. METRICS FOR THE ELABORATION PHASE

Metric Notation Definition
Schedule:
Planned
/Actual Schedule

DPLANNED
DACTUAL

The planned/actual Date of
delivery (usually the
completion of an iteration, a
release or a phase)

Staff:
Planned
/Actual Personnel

#FTPLANNED

#FTACTUAL

The planned/actual number
of Full Time persons in the
project at any given time

Requirements
-Proposed
-Accepted
-Not implemented

#Reqs PROP.

#Reqs ACCEP.
#Reqs NOT_IMPL

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs

Tests
-Planned

#Tests PLANNED

The number (#) of
- planned tests

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED
#Docs ACCEPTED

The number (#) of
planned /proposed /accepted
documents to be reviewed
during the project.

The metrics related to requirements, tests and documents

indicate the technical progress of the project from different
viewpoints. Staffing metric may explain deviations in the
expected progress vs. the actual progress, both from
technical as well as from schedule viewpoint. Note that those
metrics that are more relevant to measure by iterations (e.g.,
effort and size) are introduced later (in Section E).

C. Metrics for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken consideration in this phase are introduced in Table III.

Note that those metrics that are continuously measured are
introduced later (in Section E).

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED

DACTUAL
#FTPLANNED
#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Accepted
-Not implemented
-Started
-Completed

#Reqs PROP.
#Reqs ACCEP.

#Reqs NOT_IMPL
#Reqs STARTED
#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED
#Tests FAILED
#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED
#Docs ACCEPTED

Defined in the elaboration
phase.

The metrics related to requirements, tests and documents

indicate the technical progress of the project from different
viewpoints. Metrics related to changes indicate both on the
stability of the project technical content, and can explain
schedule delays, and unexpected technical progress. Defect
metrics tell both of the progress of testing, as well as
maturity of the product.

D. Metrics for Transition Phase
The final project phase of the RUP approach is transition.

The purpose of the phase is to transfer a software product to
a user community. Feedback received from initial release(s)
may result in further refinements to be incorporated over the
course of several transition phase iterations. The phase also
includes system conversions, installation, technical support,
user training and maintenance. From measurements
viewpoint the metrics identified in the phases relating to
schedule, effort, tests, defects, change requests and costs are
still relevant in the transition phase. In addition, customer
satisfaction is generally gathered in the transition phase.

E. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines (e.g.,

278

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 294 / 612

requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics to be taken consideration in this
phase are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED
SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET
COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN
#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity:

ACTUALPTS#
EACTUAL

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indication of the project

progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain
comprehensive picture of the status.

IV. EXPERIENCES AND DISCUSSION
The metrics presented in previous section were common

for both of the companies. Although the metrics were chosen
independently by both companies, the reasoning behind
choosing these metrics was similar. An important reason was
to come from a re-active into a pro-active mode, i.e., to
introduce ‘early warning’ signals for the project and
management. Specifically these metrics have been chosen as
they indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but needs special effort,
distributed over sites and companies. Accordingly, the
metrics set can be seen as a ‘balanced score card’, on which
management can take the right measures, balancing insights
from time, effort (e.g., staffing), cost, functionality
(requirements) and quality (tests) perspective.

An important aspect was also that the metrics are easy of
capture and that they can be captured from the used tools
“for free”, or can be quickly calculated at regular intervals.
Costs and budgets are good examples of metrics that can be
easily captured from the tools. This is also important from
GSD viewpoint, as automated capturing reduces the chance
of variations caused by differences in recording the metrics

data in different sites. Neither of the companies use metrics
based on lines-of-code as they did not find it to be a reliable
indicator of progress, size or quality of design.

As can be seen, the metrics are quite similar as in single
site development. However, the metrics may be analysed
separately for each site, and comparisons between sites can
thus be made in order to identify potential problems early.
Also, while interpreting or making decisions based on the
measurement results the distributed development
implications need to be taken into account. Distributed
development requires ‘super-balancing’: how to come to the
right corrective action if for instance, in one side the % of
not accepted requirements is high, and in the other side the #
of passed tests is lagging behind. Distributed development
may also affect the actual results of the measurements. For
example, relating to subjective metrics, such as effort
estimation, differences between backgrounds of the people
(e.g., cultural or work experience) in different sites may
affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. Furthermore, the
challenges in communication and dynamics of distributed
teams mean that working practices need to be addressed
continuously. However, in addition to metrics results, paying
close attention and acting on feedback from retrospectives is
as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that these metrics are
the right ones. Easy implementation and by that easy
acceptance is the most crucial thing to get these metrics as
established practice within the company.

Both companies are careful in introducing new metrics,
as it’s well known that too many metrics leads to overkill
and rejection by the organization, and does not provide the
right insights and indication for control measures. However,
a potential measurement to be added to the set specifically
from distributed development viewpoint, could be
measurements related to time spent idling, i.e., waiting for
something, and the time blocked because of the impediments
elsewhere in the team as these affect productivity and
highlight when a team is not performing. These additional
metrics should be focused on measuring the project
performance, especially task and team performance in GSD.

V. CONCLUSION

The management of the increasingly common distributed

product development project is proven to be more
challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and

279

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 295 / 612

there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools or their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, especially interpretation and
decision-making based on the measurement results require
that the distributed development implications are taken
carefully into consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in distributed product
development. These metrics, are aimed especially to provide
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status.

The metrics presented in the paper were common for
both of the companies. Based on experiences, the reasoning
for selecting these metrics was similar: they are easy to
capture and can be quickly calculated and analysed at regular
interval. Also, one of the most important reasons was that
these metrics were aimed especially to provide means to
proactively react to potential issues in the project. The
balancing insights from time, effort, cost, functionality and
quality was also seen as very important aspect.

ACKNOWLEDGMENT
This paper was written within the PRISMA project that is

an ITEA 2 project, number 07024 [21]. The authors would
like to thank the support of ITEA [22] and Tekes (the
Finnish Funding Agency for Technology and Innovation)
[23].

REFERENCES

[1] J. Hyysalo, P. Parviainen, and M. Tihinen, "Collaborative
embedded systems development: Survey of state of the
practice," 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems
(ECBS 2006), IEEE, 2006, pp. 1-9.

[2] J. D. Herbsleb, "Global software engineering: The future of
socio-technical coordination," In Proceedings of Future of
Software Engineering FOSE '07, IEEE Computer Society,
2007, pp. 188-198.

[3] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
"Distance, dependencies, and delay in a global collaboration,"
In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, ACM, 2000, pp. 319-328.

[4] M. Jiménez, M. Piattini, and A. Vizcaíno, "Challenges and
improvements in distributed software development: A
systematic review," Advances in Software Engineering, 2009,
pp. 14.

[5] S. Komi-Sirviö and M. Tihinen, "Lessons learned by
participants of distributed software development," Knowledge
and Process Management, vol. 12, (2), 2005, pp. 108-122.

[6] F. Q. B. da Silva, C. Costa, A. C. C. França, and R.
Prikladinicki, "Challenges and solutions in distributed
software development project management: A systematic
literature review," In Proceedings of International Conference

on Global Software Engineering (ICGSE2010), IEEE, 2010,
pp. 87-96.

[7] S. Komi-Sirviö and M. Tihinen, "Great challenges and
opportunities of distributed software development - an
industrial survey," 15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San
Francisco, USA, 2003, pp. 489-496.

[8] V. R. Basili, "Software modeling and measurement: The
Goal/Question/Metric paradigm," 1992.

[9] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co.
Boston, MA, USA, 1998.

[10] M. Umarji and F. Shull, "Measuring developers: Aligning
perspectives and other best practices," IEEE Software, vol.
26, (6), 2009, pp. 92-94.

[11] P. Kruchten, The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2004.

[12] C. E. L. Peixoto, J. L. N. Audy, and R. Prikladnicki, "Effort
estimation in global software development projects:
Preliminary results from a survey," In Proceedings of
International Conference on Global Software Engineering,
IEEE Computer Society, 2010, pp. 123-127.

[13] K. Korhonen and O. Salo, "Exploring quality metrics to
support defect management process in a multi-site
organization - A case study," In Proceedings of 19th
International Symposium on Software Reliability Engineering
(ISSRE), IEEE, 2008, pp. 213-218.

[14] D. B. Simmons and N. K. Ma, "Software engineering expert
system for global development," In Proceedings of 18th IEEE
International Conference on Tools with Artificial Intelligence
(ICTAI'06), IEEE, 2006, pp. 33-38.

[15] S. Misra, "A metric for global software development
environment," In Proceedings of the Indian National Science
Academy 2009, pp. 145-158.

[16] R. M. Lotlikar, R. Polavarapu, S. Sharma, and B. Srivastava,
"Towards effective project management across multiple
projects with distributed performing centers," In Proceedings
of IEEE International Conference on Services Computing
(CSC'08), IEEE, 2008, pp. 33-40.

[17] B. Sengupta, S. Chandra, and V. Sinha, "A research agenda
for distributed software development," In Proceedings of the
28th International Conference on Software Engineering,
ACM, 2006, pp. 731-740.

[18] K. H. Möller and D. J. Paulish, Software Metrics: A
Practitioner's Guide to Improved Product Development.
Institute of Electrical & Electronics Enginee, London, 1993.

[19] R. Van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill, 1999.

[20] P. Kruchten, "A rational development process," CrossTalk,
vol. 9, (7), 1996, pp. 11-16.

[21] PRISMA, Productivity in Collaborative Systems
Development, PRISMA project (2008-2011) homepage,
URL: http://www.prisma-itea.org/ (Accessed 1.6.2011).

[22] ITEA 2, Information Technology for European Advancement,
ITEA 2 homepage, URL: http://www.itea2.org/ (Accessed
1.6.2011).

[23] Tekes, the Finnish Funding Agency for Technology and
Innovation, Tekes homepage. URL: http://www.tekes.fi/eng/
(Accessed 1.6.2011).

280

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 296 / 612

Edola: A Domain Modeling and Verification Language for PLC Systems

Hehua Zhang
School of Software, KLISS, TNLIST

Tsinghua University
Beijing, China

Email: zhanghehua@gmail.com

Ming Gu
School of Software, KLISS, TNLIST

Tsinghua University
Beijing, China

Email: guming@tsinghua.edu.cn

Xiaoyu Song
Dept. ECE

Portland State University
Oregon, USA

Email: song@ee.pdx.edu

Abstract—Formal modeling and verification of PLC systems
become paramount in engineering applications. The paper
presents a novel PLC domain-specific modeling language
Edola. Important characteristics of PLC embedded systems,
such as reactivity, scan cycling, real-time and property patterns,
are embodied in the language design. Formal verification meth-
ods, such as model checking and automatic theorem proving,
are supported in Edola modeling. The TLA+ specification
language constitutes an intermediate language layer between
Edola and the verification tools, enhancing a large degree
of reusability. A prototype IDE for Edola and its seamless
integration of a model checker TLC and an automatic theorem
prover Spass are implemented. A case study illustrates and
validates the applicability of the language.

Keywords-domain-specific modeling language; formal verifi-
cation; PLC; TLA+.

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are widely used
in industry for embedded systems [1]. A PLC interacts
with its environment, following a so-called scan cycling
mechanism. It starts with inputting environmental data, then
performs a local computation, and finally outputs the results
to the environment [2]. With their increasing use, PLC
systems become more and more complex. Formal modeling
and verification becomes paramount in PLC engineering
applications to ensure the correctness.

There are several expressive formal modeling languages
that has been adopted in the modeling and verification of
PLC systems, such as timed automata [3], timed Petri net [4],
SMV [5] and TLA+ [6].

Many PLC modeling work focus on a high level of
abstraction, so that a small model can be obtained for
verification. However, the characteristics like scan cycling
are not considered, and a wide gap exists between the
abstract models and their PLC implementations. To get a
suitable level of abstraction to model PLC systems, their
characteristics like reactivity, scan cycling, real-time and
property patterns should be embodied in the modeling
language. Although the existent formal modeling languages
are powerful, the characteristics of PLC applications are not
directly supported.

In this paper, we presented a novel PLC domain-specific
modeling language Edola, which provides notations for

better understanding and easier modeling of applications in
the PLC domain. Formal verification methods, like model
checking and automatic theorem proving are supported in
Edola modeling. Edola provides a suitable level of abstrac-
tion to model PLC systems, which can express features of
PLC systems and also rule out unnecessary details. We adopt
the TLA+ specification language as an intermediate layer
between the Edola language and the verification tools, to
enhance a large degree of reusability. With the inherent logic
of TLA+, it is possible to verify an Edola model with a state
based method like model checking and also a logic based
reasoning method like theorem proving. A prototype IDE
for Edola has been implemented, which provides both the
user-interface for modeling and the seamless integration of
two verification tools: TLC [7] and Spass [8].

The paper is organized as follows. We introduce the
syntax, the intuitive semantics of Edola in Section III. The
formal semantics is illustrated in Section IV. Section V
explains the verification method of Edola models, including
the transformation rules and the optimization strategies taken
in the procedure. Section VI introduces the prototype IDE
tool. A case study is illustrated in Section VII to validate
the applicability of the language. Finally, we conclude our
work in Section VIII.

II. AN EXAMPLE: FIRE-FIGHTING PLC CONTROL
SYSTEM

To better explain the language Edola and its tool, we first
introduce a fire-fighting PLC control system which is used
in ship docks. We will take part of the case now and then, to
explain the syntax, semantics and our design considerations
of Edola.

This running case is a system used to fight fire that may
happen at ship docks. It operates the fire-fighting cannons
under the control of a user and displays information about
the current operating state. The cannons are used in some
specified fire cases and are connected with several valves.
When there is a fire-fighting request, the user can control
the equipments in the control panel. A possible designed
control panel with two cannons and two fire-fighting cases
are sketched in Figure 1. The preparatory steps of the
operations are as follows: (1) powering up the system; (2)

281

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 297 / 612

cancel confirm

berth1 berth2

power openpump closepumpberth1 berth2

confirmed

cannon1 cannon2

hand-handle
alarm

pump power

Figure 1. A sketch of the control panel of the system

opening the pump; (3) selecting the firing place (case);
(4) confirming the selection; (5) controlling the direction
of the cannon by the hand-handle. After the fire fighting,
the user proceeds as follows to shut down the system: (6)
closing the pump; (7) canceling the current fire-fighting case;
(8) restarting the system for another fire-fighting case or
powering down the system to finish. Note that because of
the technic requirement, only one cannon can be used at the
same time. On the other hand, the system should consider
the case when the controlled devices or the communication
network go wrong, and the users should be alarmed. In this
example, we consider a typical alarm, that is, when the PLC
program sends the command to open the pump, while the
pump does not open in 5 seconds, the beeper in the control
panel rings 3 seconds and the control system goes to the
initial state.

III. THE SYNTAX OF EDOLA

An outline of the Edola syntax is shown in Figure 2.
Details are omitted for the sake of space limitation. The
Edola language is composed by modules. The main body
includes module extensions, static declarations, dynamic
definitions and verification requests. An EXTENDS statement
can extend standard modules like Naturals, Reals in Edola
or user-defined modules.

The auxiliary symbols are declared by a series of Edola
formulas (GeneralDef).Taking the fire-fighting case as an
example, we can use Direction == {“up”, “down”, “left”,
“right”, “none”} to denote the possible moving directions of
a cannon, where Direction is defined as a enumeration type
with 5 elements.

Constant declarations start with CONSTANT , denoting the
parameters of a module. The declared parameters cannot be
changed in the latter dynamic definitions.

Variable declarations are classified by the input variables
(INPUTVAR), output variables (OUTPUTVAR) and system
variables (SYSTEMVAR), according to the PLC scan cycling
mechanism. Input variables denote the environment of a
PLC software, including the commands from users by the
control panels and the signals from the physical devices.
The values of input variables are unchanged during a single
scan cycle. Output variables denote the output signals of a
PLC software, controlling the moving of physical devices or

EDOLA-module ::= AtLeast4("-") MODULE ModuleName (AtLeast4("-")

 (nil | EXTENDS CommaList(Name))

 GeneralDef

Declarations

ActionDef

 Constraints

 (nil | Properties)

 AtLeast4("=")

GeneralDef ::= nil | (formula)*

Formula ::= LeftF '= =' Exp

LeftF ::= Name | Name “(” CommaList(ID) “)”

Declarations ::= ConstDeclarations VarDeclarations

ConstDeclarations ::= nil | CONSTANT CommaList(OpDec)

OpDec ::= ConstName | ConstName “(” CommaList(“_”) “)”

VarDeclarations ::= INPUTVAR varDecList

 OUTPUTVAR varDecList

 SYSTEMVAR varDecList

ActionDef ::= INIT formula

 ACTION ActionList

ActionList ::= (Formula)+

Constraints ::= EnvConstraint

 (nil | TimeConstraints)

EnvConstraint ::= ENV TOTAL

 | ENV (Formula)*

TimeConstraints ::= TIME (Duration | Interval | Delay | Deadline | Timeout | Waituntil) +

Properties ::= PROP PropName “: ”

(Respond | Compete | Sequence | Priority | Inv | ActInv)+

Respond ::= (nil | Quantif) RESPOND “(” Actname, SysStateExp, EnvStateExp “)”

Quantif ::= (\A | \E) Name \in SetName

……

Figure 2. The excerpt of the Edola syntax

displaying the status of the system in control panels. System
variables are used by the PLC software to implement the
controlling functionalities. The values of system variables
are usually changed during a scan cycle. The variables are
defined by their name and type. For example,

INPUTVAR realPump ∈ BOOLEAN
OUTPUTVAR alarm ∈ BOOLEAN ,

s handle ∈ [Cannon–>Direction]
SYSTEMVAR state ∈ SysState

(1)

declares an input boolean variable realPump, which de-
notes the opening state of the water pump; an output boolean
variable alarm to denote the beeper rings or not , the other
output variable s handle representing the control commands
to the water cannons, which is an array represented in the
functional style. A system variable state is also declared to
represent the current state of the PLC software.

The dynamic definitions describe how the PLC software
works in a specified environment. The behaviors of PLC
software are defined by an initial state and a series of actions
in Edola. The initial state is represented by the keyword INIT

282

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 298 / 612

following an Edola formula, to assign the initial value for all
the variables. The keyword ACTION starts the definition of a
series of actions. Each action is represented by an Edola
formula, to define the next-state action of PLC software
in the current system state. Edola permits the definition of
parameterized actions. For example, the following formula

SelectCase(i) == (2)
(∀j ∈ UnlockedButton : j#i ⇒ u button[j])
i ∈ FireCase
∧ u button[“power”]
∧ s sysState ∈ {“pumpopened”, “selected”}
∧ u button[i]
∧ s buttonLight ′ = [j ∈ ButtonLight 7→

IF j /∈ FireCase THEN s buttonLight [j] ELSE
IF j = i THEN TRUE ELSE FALSE]

∧ s sysState ′ = “selected”

defines the on-fire case selecting action, which means that,
for any fire case, if the power is on, the system is in the
expected state, only the button for fire case i is pushed down,
the case i is successfully selected. Only the corresponding
light for case i is set to on and the system state is modified
accordingly. The type of the parameter should be specified in
the formula definition, which will be checked by the Edola
compiler.

PLC applications are reactive, thus the environment
should also be specified besides the behaviors of a PLC
software. Edola provides two possibilities for environmen-
tal modeling. Users can define the specific behaviors of
the environment by a series of formulas starting with the
keyword ENV or use the keyword ENV TOTAL to leave the
environment modeling work to Edola compiler. In the latter
case, the compiler will generate a complete environmental
model automatically, which covers all the possibilities of the
environmental inputs.

When there are time constraints on system behaviors,
they can be described in Edola by the part starting with
the keyword TIME . We provide several time operators for
describing the constraints on an action (Duration) or on
the interval between actions (Interval), respectively. Four
advanced operators Delay, Deadline, Timeout and WaitUntil
are also supported for the usability. For example, the opening
pump time limit 5 can be represented in Edola by applying
the Timeout operator on the action OpenPump and the ac-
tion BeeperRing : TIMEOUT (OpenPump,BeeperRing , 5).

The verification requests are represented in Edola by a
series of properties, and start with the keyword PROP . The
given properties should be checked whether they are satisfied
by the PLC software behaviors under the specified envi-
ronment and the requested time constraints. Edola provides
six property patterns: the responding properties (with the
keyword RESPOND), the competing properties (COMPETE
), the sequential properties (SEQUENCE) , the priority
properties (PRIORITY) and two patterns more general: state

invariants (STATEINV) and action invariants (ACTINV).
For example, in a fire-fighting application, the correctness
property

CannonUsedOnlyOne : (3)
\A i \in Cannon, j ∈ Cannon :

COMPETE (i#j ,Selected [i],Selected [j])

denotes the competing requests among selection of can-
nons: at any moment, at most one cannon can be selected.
Note that all the provided property patterns are safety
properties, which denotes in general that something bad will
never happen.

IV. THE FORMAL SEMANTICS OF EDOLA

In this section, we give the formal semantics of Edola by
the transformational method with the specification language
TLA+.

A. Preliminaries of TLA+

TLA+ [9] is a formal specification language based on
the Temporal Logic of Actions TLA, first-order logic and
Zermelo-Fränkel set theory. It is un-typed, abstracted and
widely used in the high-level specification of concurrent and
reactive systems.

The characteristic form of the TLA+ specification of a
transition system is a formula of the form Spec , Init ∧
2[Next]vars ∧ L, where vars is a tuple containing all state
variables of the system. The first conjunct Init describes the
possible initial states of the system. The second conjunct
of the specification asserts that every step (i.e., every pair
of successive states in a system run) either satisfies Next
or leaves the term vars (and therefore all state variables)
unchanged.The third conjunct L is a temporal formula
stating the liveness conditions of the specification, and in
particular can be used to rule out infinite stuttering.

B. Module extensions and static declarations

The semantics of an Edola module is given by a TLA+

module. The EXTENDS and CONSTANT statements of Edola
are assigned the same semantics with the ones in TLA+.
The input variables, output variables and system variables
are explained by the variables declarations in TLA+ together
with a type invariant to be ensured, since TLA+ is an un-
typed language.

C. Dynamic definitions

The definition of the PLC behaviors in Edola includes
the INIT part and the ACTION part. The two components
are illustrated by the corresponding TLA+ components,
intuitively. The INIT part in Edola corresponds the initial
state formula in TLA+, which is composed by the whole
INIT definition in Edola with the conjunction of the initial
value of the variable aux, that is, zero. An action definition

283

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 299 / 612

in the ACTION part of Edola corresponds an action definition
in TLA+, with the conjunction of an UNCHANGED statement.

The value changing of the variables in TLA+ is total,
which requests the explicit statements of all the variables that
are unchanged. This feature is good for mathematical reason-
ing, but is unintuitive and tedious for writing a model [10].
Edola then possesses the advantages on both modeling and
mathematical reasoning by the transformational semantics.
The semantics of the complete Edola specification (based on
TLA+) depends on the time description. We will explain it
in the end of this section.

The semantics of the environmental model lies on whether
it’s a total one generated by the Edola compiler or not.
The former is illustrated by an TLA+ action EnvInput
which changes the input variables randomly on condition
of the type invariant is satisfied. The latter corresponds to
the TLA+ action definitions, similar to the ones for PLC
actions , except that the UNCHANGED statement denoting
the unchanged value for the input variables that are not
defined instead. The transformation for ENV TOTAL is shown
in Table I.

Table I
THE FORMAL SEMANTICS OF ENV TOTAL IN EDOLA

Edola definitions The formal semantics with TLA+

ENV TOTAL EnvInput
∆
=

∧
i ∈ ni

invar ′i ∈ ValRangei

A real-time TLA+ module RealTimeNew is provided to
interpret the time operators in Edola. The time in Edola is
logical and continuous, which was interpreted with a real
type variable now in TLA+. A time constraint in Edola is
then interpreted on an action denoting the constraints of
its enabling time with the running of real time now. Each
time pattern in Edola corresponds a defined time action in
RealTimeNew. The details of the time module are introduced
in our work [11].

Finally, we define the formal semantics of the Edola
dynamic behaviors. When there isn’t any time constraint in
a Edola module, the whole Edola specification is interpreted
as the formula SpecName , Init ∧ 2[Next]vars , where
SpecName is needed in TLA+, so it is generated by the
Edola compiler according to the module name. Init is the
formula name used for defining the initial state in Edola and
Next is defined by

Next
∆
= ∨ ∧ aux = 0

∧ EnvInput ∧ UNCHANGED SOV
∧ aux ′ = 1

∨ ∧ aux = 1
∧ SystemAction ∧ UNCHANGED IV
∧ aux ′ = 0.

(4)

EnvInput denotes the environment model we introduced
above. SOV denotes the system variables and the output
variables declared in Edola, while IV denotes the declared
input variables. SystemAction defines a complete set of pos-
sibilities for PLC responses, which includes all the expected
actions defined in the ACTION part, and the case when none
of them are enabled.

When there are time constraints in an Edola module, the
Edola specification is interpreted in a module RTModule ,
which extends a FuncModule for the functional modeling.
The specification is then illustrated by SpecName

∆
=

BigInit ∧ 2[BigNext]RTvars ∧ RTL, where the functional
semantic interpretations of Edola like Init , Next are same as
the former introduced ones, but encapsulated in the module
FuncModule . The initial state BigInit and the next-state
action BigNext of the timed specification is composed by
the functional parts and the settings of the variable now and
the n timers t1, . . . , tn appeared in the TIME part of the
Edola model.

D. Verification requests

The property definitions provided in Edola are illustrated
by the property definitions with temporal logic of actions
(TLA) in TLA+ language. The excerpt of the translation is
shown in Table II.

Table II
THE FORMAL SEMANTICS OF PROPERTY DEFINITIONS IN EDOLA

Edola Property definitions The formal semantics with TLA+

RESPOND (Act ,EnvS ,SysS) 2(EnvS ∧ ¬SysS
⇒ ¬(ENABLED Act))

COMPETE (Cond ,S1,S2) 2(Cond ⇒ ¬(State1 ∧ State2))
SEQUENCE (Act ,SysS) 2[Act ⇒ SysS]vars
PRIORITY (Act ,SysS) 2(SysS ⇒ (ENABLED Act

∧¬ENABLED (OtherActs)))
STATEINV (SysS) 2(SysS)
ACTINV (Act) 2(Act)vars

V. THE VERIFICATION OF EDOLA MODELS

Providing the automatic verification support for the Edola
language is important to improve its usability. Model check-
ing and automatic theorem proving are the two dominant
automatic verification methods. The Edola compiler imple-
ments the support for both model checking and automatic
theorem proving, with the intermediate language TLA+. To
make the verification procedure pragmatically efficient, we
took two major optimization strategies in the transformation
procedure.

First, when the environmental model is specified by the
ENV TOTAL keyword, the compiler will generate the formula
for EnvInput with the input clearing action ClearEnvInput
added, which resets the values of all the input variables
to the initial value. According to the PLC scan cycling
mechanism, PLC gathers the new values of its environment
at the beginning of each cycle, so the values of the input

284

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 300 / 612

variables in the last cycle are discarded. It ensures the logical
correctness of adding a ClearEnvInput action in the end of
each cycle. The new definition of Next saves much state
space and search space for verification and thus improves
the efficiency.

Second, when all the verification requests are functional
properties (which means that none of the timer variables
appears in the PROP part of Edola), even though some time
constraints are described in the TIME part, the compiler
will generate a un-timed TLA+ model for it. The reason
is that the timed model RTModule refines its functional
part FuncModule: RTModule ⇒ FuncModule , so that for
each property P , if it holds on the functional model, say
FuncModule ⇒ P , with the transitivity of logic implication,
it also holds for the timed model RTModule . As a result,
we can check the functional properties on the functional part
instead of the complete one, thus a better space and time cost
can be saved in the verification.

The model checking of the Edola model is achieved by
the transformation and the TLC model checker. As to the
automatic theorem proving support, we can prove inductive
invariants with the reasoning rule in TLA+:

Init ⇒ P , P ∧ Next ⇒ P ′, P ∧ v = v ′ ⇒ P ′

Init ∧2[Next]v ⇒ 2P
. (5)

The verification is then reduced to the first-order logic level
without temporal operators.

VI. THE EDOLA TOOL

We implemented a prototype IDE to model and verify
PLC systems with the Edola language, see Figure 3. The
tool includes an editor to write the model, and a compiler
to check, transform and verify the model. It is implemented
with Java 1.6. The interface is developed with Netbeans IDE
6.7 and the compiler is implemented with the scanner/parser
generator JavaCC 4.2 with the JJTree preprocessing func-
tionality. The compiler implements syntax and semantic
checking, and then the seamless integration of the model
checker TLC and the automatic theorem prover Spass to
verify an Edola model.

Beside the general semantic checking same with other
language compilers, the Edola compiler provides also se-
mantic checking specific to PLC applications. We check
whether the actions defined in ACTION part are possible to
execute one by one. If an action can never be executed,
an alarm information is provided. We also check whether
the disjunction of conditions for all the actions defined in
ACTION part is TRUE. If not, an alarm is provided.

The semantic checking and the later model checking
and automatic theorem proving provides strong verification
of Edola models. The checking procedure is completely
automatic.

Figure 3. The prototype IDE of Edola

VII. CASE STUDY

The Edola language and its IDE has been applied in
several medium-scale PLC applications,like the answering
machine problem, the steeves control in a theater and the
fire-fighting controls in a dock. In this section, the case
about a fire-fighting PLC system used for the docks is
chosen and presented to further illustrate and validate the
Edola language and its tool. We introduce the Edola model,
the TLC model checking and the Spass automatic theorem
proving of it, respectively.

In the Edola model, we set the physical connections
of the fire-fighting system as parameters. They are de-
clared as: FireCase for the set of fire cases, Cannon
for the set of used cannons, Valve for the set of valves,
CannonInCase() denoting which cannon is used in which
fire case, and BelongTo() representing which valve belongs
to the connection of which cannon.

The operations are described in the ACTION part of
Edola by a series of actions: PowerUp, OpenPump,
SelectCase(i), Confirm , HandleControl , ClosePump,
Cancel and PowerDown . The environmental model is cho-
sen to be generated automatically through the keyword ENV
TOTAL in the Edola model. No time constraint is needed in
the simplified case.

The 8 requested properties are specified in the TOPROVE
part. For example,

C losePumpNotRespond : RESPOND (ClosePump, (6)
s sysState = “cannonOnUse”, u button[“closepump”]).

asserts that the action ClosePump is disabled unless the

285

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 301 / 612

user has pressed the button closepump as well as the current
system state is “cannonOnUse”.

Model checking technique can be used to verify the
finite instances of a parameterized model. As a result, when
choosing TLC model checker as the verification tool in the
Edola IDE, a window is popped up to config the parameters.
We instantiate the model by 2 fire cases, 2 cannons, and 4
valves. The TLC model checker is then called automatically
to check the 8 properties. It generates 66, 713 different states
in total and verifies that all the 8 properties hold in 10.0
seconds.

We can also try to prove the 8 properties with the
integrated automatic theorem prover Spass. It can prove
the properties (if and only if they are inductive invariants)
directly on a parameterized Edola model, without the need
of instantiation. The result of proving the 8 properties are
shown in Table III. The two popular verification methods
complement each other and provide the powerful verification
capability for Edola.

Table III
THE SPASS PROVING RESULT OF THE 8 PROPERTIES IN EDOLA IDE

Properties Spass result Time
1. ClosePumpNotRespond Proof found. 12.4s
2. SelectCaseNotRepsond Proof found. 10.6s
3. CaseSelectOnlyOne Proof found. 1m33s
4. CannonUsedOnlyByOne Proof found. 39.2s
5. ValveMutex Proof found. 18m33s
6. OpenPumpAfterPower Proof found. 1m37s
OpenPump ⇒
s buttonLight [“power”] Completion found. 17.2s
�Inv Proof found. 1m26s
OpenPump ∧ Inv
⇒ s buttonLight [“power”] Proof found. 10.3s

7. SelectAfterOpenPump Proof found. 1m49s
8. ClosePowerAlwaysRespond Proof found. 16.2s

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel PLC domain-specific
modeling language Edola. It provides useful notations to
denote the features of PLC like reactivity, scan cycling,
real-time and property patterns. As a result, with the Edola
language, we can get a better understanding and easier
modeling of PLC applications. It is noteworthy that both the
two popular automatic verification methods: model checking
and automatic theorem proving are supported in Edola
modeling. To implement this functionality, we adopt the
TLA+ specification language as the intermediate language
between Edola and the verification tools, enhancing a large
degree of reusability. A prototype IDE for Edola has been
implemented, which provides the user-friendly interface for
modeling and the seamless integration of two tools TLC and
Spass for verification.

As to the future work, we will enrich the Edola language
with module compositions, action priorities, etc. to increase
its expressiveness. The support of other verification tools like

the model checker UPPAAL [12] and the theorem prover
CVC3 [13] will also be considered.

ACKNOWLEDGMENT

This research is supported in part by NSFC Pro-
grams (No.91018015, No.60811130468) and 973 Program
(No.2010CB328003) of China.

REFERENCES

[1] R.W. Lewis. Programming industrial control systems using
IEC 1131-3,volume 50 of Control Engineering Series. The In-
stitution of Electrical Engineers, Stevenage, United Kingdom,
1998.

[2] F. Bonfatti, P.D. Monari, and U. Sampieri. IEC 1131-
3 Programming Methodology. CJ International, Fontaine,
France, 1999.

[3] R.Wang, X.Song, and M. Gu. Modelling and verification
of program logic controllers using timed automata. IET
Software, 4:127–131, 2007.

[4] Hehua Zhang, Ming Gu, and Xiaoyu Song. Modeling and
analysis of stage machinery control systems by timed colored
Petri nets. In Proceedings of the 3rd International Symposium
on Industrial Embedded Systems, (SIES 2008), pages 103–
110, 2008.

[5] G. Canet, S. Couffin, J. J Lesage, A. Petit, and Ph. Schnoebe-
len. Towards the automatic verification of PLC programs writ-
ten in instruction list. In Proceedings of IEEE International
conference on Systems, Man and Cybernetics (SMC’2000),
pages 2449–2454, 2000.

[6] Hehua Zhang, Stephan Merz, and Ming Gu. Specifying and
verifying plc systems with TLA+. In Proceedings of the
3rd IEEE International Symposium on Theoretical Aspects
of Software Engineering (TASE 2009), pages 293–294, 2009.

[7] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model
checking TLA+ specifications. In Proceedings of Correct
Hardware Design and Verification Methods (CHARME’99),
volume 1703, pages 54–66. Springer Verlag, 1999.

[8] The SPASS homepage: http://www.spass-prover.org/index.
html[Accessed: 13 Aug. 2011].

[9] Leslie Lamport. Specifying Systems. Addison-Wesley,
2002. See also http://research.microsoft.com/users/lamport/
tla/tla.html.

[10] Leslie Lamport and Lawrence C. Paulson. Should your
specification language be typed. ACM Trans. Program. Lang.
Syst., 21(3):502–526, 1999.

[11] Hehua Zhang, Ming Gu, and Xiaoyu Song. Specifying
time-sensitive systems with TLA+. In 34th Annual IEEE
International Computer Software & Applications Conference
(COMPSAC 2010), pages 425–430, 2010.

[12] The UPPAAL homepage: http://www.uppaal.com/[Accessed:
13 Aug. 2011].

[13] The CVC3 homepage: http://www.cs.nyu.edu/acsys/
cvc3/[Accessed: 13 Aug. 2011].

286

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 302 / 612

A Practical Method for the Reachability Analysis of Real-Time Systems Modelled as
Timed Automata

Abdeslam En-Nouaary and Rachida Dssouli
ECE Department, Concordia University

Montreal, Canada
{ennouaar,dssouli}@ece.concordia.ca

Abstract—Real-time systems (RTSs) interact with their en-
vironment under time constraints. Such constraints are so
critical because any deviation from the specified deadlines
might have severe consequences on both the human lives and
the environment. To develop reliable RTSs, formal methods
should be used along the development life cycle. Verification is
one of these formal methods, which aims at ensuring that the
system is correct before its deployment. This paper presents a
new verification method for the reachability analysis of real-
time systems modelled as timed automata (TA) [1]. The paper
basically addresses two main issues: are all the transitions of
the system executable? Are all the locations reachable from
the initial location of the system? In order to answer these
questions, our method uses a metric that gives the minimum
delay between any state and all the transitions leaving that
state.

Keywords-Real-Time systems, Formal Methods, Timed Au-
tomata, Verification, Reachability Analysis.

I. I NTRODUCTION

Over the past two decades, many researchers have been
investigating the verification and validation of real-time
systems with different backgrounds. As a result, several
verification methods have been devised to make sure that
the system functions properly before its deployment. These
verification techniques attempt to check if the specification
of the system satisfies some desirable functional and
performance properties. All the verification and validation
techniques rely on the use of formal models to describe the
behaviour of the systems being investigated (see for instance
[2], [3], [4], [5], [6], [7], [8], [9]). In the case of real-time
systems, timed automata model [1] is intensively used by
researchers to develop verification and testing techniques.
Although, existing verification methods and tools (see for
instance [2], [3], [4], [5]) provide successful results for
RTSs, most of them suffer from the state explosion problem
and are a bit complicated to use. This is mainly due to
the fact that most of the proposed techniques are based
on either the region graph [1] or the zone graph [10] as
semantics for timed automata. So, the need for practical
verification and validation methods still exists.

In this paper, we present a new method for the reachability

analysis of RTSs modelled as timed automata. We are
basically addressing two main issues: are all the transitions
of the system executable? Are all the locations reachable
from the initial location of the system? In order to answer
these questions, our method uses a metric that gives the
minimum delay between any state and all the transitions
leaving that state. Our method presents two advantages.
On the one hand, it automatically calculates on the fly the
paths that ensure the reachability of the transitions and
locations. On the other hand, it avoids the costly operation
of constructing the region graph of the timed automata.

The remainder of this paper is organized as follows.
Section 2 presents the timed automata model and its related
concepts. Section 3 introduces our contributions. Section4
concludes the paper and presents future work.

II. BACKGROUND

This section presents the definitions and concepts required
for introducing our method. We basically present the timed
automata model and the related theoretical results illustrated
with simple examples.

Definition 1: Timed Automata (TA)
A TA A is a 5−tuple (Σ, L, l0, C, T), where :

• Σ is a finite set of inputs and output messages. In this
paper, inputs begin with ”?” while outputs start with
”!”.

• L is a finite set of locations. A location represents
the ”status” of the system after the execution of a
transition. The term location is used instead of the
term ”state”’ because the latter is used to define the
operational semantics of the TA.

• l0 ∈ L is the initial location where the execution of the
TA starts.

• C is a finite set of clocks, all initialized to zero inl0.
A clock is a time variable that counts how much time
has elapsed since the clock was (re-)initialized to zero.

• T ⊆ L×Σ×Φ(C)×P(C)×L is the set of transitions,
whereΦ(C) andP(C) denote the set of clock guards
and the power set ofC, respectively.

A transition in a TA, denoted byt : l
m,G,R
−→ l′, consists of

a source locationl (i.e., source(t) = l), an input or output

287

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 303 / 612

messagem, a clock guard (or time constraint)G, which
should hold to execute the transition, a subset of clocksR
to be reset when the transition is fired, and a destination
location l′ (i.e., destination(t) = l′). Each clock inR
(R ⊆ C) is used to record, when not reinitialized to zero,
how much time has elapsed since the execution of the
transition. Such clocks are mainly used to set clock guards
between the transition where they are reset and future
transitions.

A sequence of consecutive transitions that starts at a
location l and ends at a locationl′ is called a path froml
to l′; we write path(l, l′) = t1.t2...tn, where ti ∈ T for
1 ≤ i ≤ n, and source(t1) = l, destination(tn) = l′

and source(ti) = destination(ti−1) for 2 ≤ i ≤ n.
Since paths in TA are made of transitions with clock
guards that could be conflicting (i.e., they cannot be
satisfied by the same values of clocks) one can easily see
that a path might not be executable. Hence, finding an
executable path from one location to another requires, as
explained later on in this paper, a systematic approach
and a deeper investigation as to how messages and clock
values should be chosen to fire the transitions of the system.

We assume that the transitions in a TA are instantaneous
(i.e., they don’t take time to execute). Also, the clock
guards of the transitions are supposed to be conjunctions
of atomic formulas of the form(b1 op1 x op2 b2), where
x ∈ C, (op1, op2) ∈ {<,≤, =}, and b1 and b2 are
natural numbers. Multiple clocks are used in the TA to
express time constraints between more than two transitions.
Each clock,x ∈ C, in a TA takes real number values
and has a bounded domain[0, Bx] ∪ {∞}, as stated
by Springintveld et. al. [11], whereBx is the largest
integer constant appearing in the time constraints over
clock x in the automaton. This means that each clock
x is relevant only under the integer constantBx, and
all the values ofx greater thanBx are represented by
∞; Hence, we write :∀ε > 0, Bx +ε =∞ and∞+ε =∞.

For a clockx and a clock guardG of a transition in a TA,
we define the projection ofG overx, writtenProj(G, x), by
the condition(b1 op1 x op2 b2) in G, obtained by removing
the conditions over all the clocks exceptx; if clock x is not
involved in G thenProj(G, x) = true.

Example 1:Figure 1 shows a TA for a specification of
a simple telephone system. The system waits for the user
to hang up, get the dial tone and dial two digitsDigit1
andDigit2; then the system issues the outputConnect, to
indicate that the connection has been established and the user
can start talking. At the end, the user lifts the phone to allow
the system to go back to its initial location. The behaviour
of the system is subject to several time constraints. On the
one hand, the user should type the first digit1 to 3 time-

Figure 1. An Example of TA.

units after getting the tone and the second digit no more
than2 time-units after the first digit; the dialling operation
(from getting the tone until dialing the last digit) should not
exceed5 time-units. On the other hand, the system must
respond with the signalTone within 1 time-unit after the
user hangs up, and withConnect within 1 time-unit after
the last digit has been typed. Whenever the time constraint
of an input is not respected, the system times out, issues an
error message and goes back to its initial location.

The TA model introduced thus far is an abstract model
because it does not explain the execution of the system
it describes. The executions, also called the operational
semantics or the region graph of the TA, can be informally
stated as follows. The TA starts at its initial location
with all clocks initialized to zero. Then, the values of
the clocks increase at the same speed and measure the
amount of time elapsed since the last (re-)initialization.

At any time, the TA can execute a transitionl
m,G,R
−→ l′

if the input/output messagem takes place, its current
location is l, and the values of its clocks satisfy the
clock guard G. After this transition, all the clocks in
R are reset and the TA changes its location tol′. To
formalize the operational semantics of the TA, we need to
define the concepts of clock valuations and states for the TA.

Definition 2: Clock valuations
Let A = (Σ, L, l0, C, T) be an−clocks TA (i.e., an TA with
n clocks),R≥0 be the set of non-negative real numbers.

• A clock valuation ofA (or over C) is a functionv :
C → [R≥0 ∪ {∞}]n, which assigns a positive value
to each clockx ∈ C. A clock valuation is simply
the binding of clocks to their actual values. In this
paper, a clock valuation is represented by a vector
(vx1

, vx2
, .., vxn

), wherev(xi) = vxi
is the value of

clock xi, 1 ≤ i ≤ n. The set of all clock valuations of
A is referred to byV (C).

• For any clock valuationv ∈ V (C) and any non-
negative real numberd, v + d is a clock valuation that
assigns the valuev(x) + d to each clockx ∈ C. v + d

288

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 304 / 612

is the clock valuation reached fromv by letting time
elapse byd time units.

• For any clock valuationv ∈ V (C) and any subset of
clocks R ⊆ C, [R := 0]v is a clock valuation that
assigns the value0 to each clockx ∈ R and v(x) to
any other clock (i.e.,y ∈ C and y /∈ R. [R := 0]v
is the clock valuation obtained fromv by resetting the

clocks inR when a transitionl
m,G,R
−→ l′ is executed.

• A clock valuationv ∈ V (C) satisfies the clock guard

G of a transitionl
m,G,R
−→ l′, denoted byv |= G, if and

only if G holds underv.

Informally speaking, a clock valuation is an interpretation
of clocks, which allows us to know at any time the value of
each clock used in the TA. In other words, a clock valuation
can be used to determine how much time has elapsed since
the execution of each transition that has last reinitialized a
clock. The combination of a clock valuation and a location
defines a state of the TA. The formal definition of such
states follows.

Definition 3: States of the TA
Let A = (Σ, L, l0, C, T) be a TA.

• A state of A is a pair (l, v) consisting of a location
l ∈ L and a clock valuationv ∈ V (C). Intuitively, a
state ofA is a configuration that indicates the current
location ofA and the current value of each clock used
in A.

• The initial state ofA is the pair(l0, v0), wherev0(x) =
0 for each clockx ∈ C. Intuitively, the initial state
of A is the configuration ofA in the beginning of its
execution (i.e., the location isl0 and all clocks are set
to 0 as stated in Definition 1).

• The set of states ofA is denoted byS(A).

Example 2:To illustrate the concepts of clock valuations
and states, let us consider again the TA of Figure 1. The
number of clocks in this TA is2, namely clocksx and
y. So, a clock valuation, here, consists of assigning a
non-negative real number or∞ to each of the clocksx
and y. Examples of such clock valuations arev0 = (0, 0),
v1 = (1

4
, 1

4
) and v2 = (1

2
, 3

2
). The set of the states of this

TA is the set of all the pairs obtained by combining the
locations and the clock valuations of the TA. Examples of
such states ares0 = (l0, v0), s1 = (l1, v1) ands2 = (l3, v2),
where l0, l1, and l3 are the locations of the TA, andv0,
v1, andv2 are the clock valuations explained in this example.

Formally, the operational semantics of a TA is described
by a state machineM = (S, s0, A, T), whereS is the set of
states of the TA,s0 is the initial state,A is the set of actions,
andT is the set of transitions. The actions ofM are made
up of the input and output messages of the TA as well as the
time delays (i.e.,A = Σ∪[R≥0 ∪ {∞}]n). Hence, there are

two categories of transitions inM : The explicit transitions
on input and output messages, and the implicit transitions
on time delays. The explicit transitions are obtained from
the transitions of the TA and they describe the interactions
of the system with its environment. The explicit transitions
do not contain time constraints because the clock valuations
of their source states do satisfy their clock guards. On the
other hand, the delay transitions describe the progressionof
time but they do not appear in the transitions of the TA.
The operational semantics of timed automata helps us define
the concepts of traces for real-time systems as follows. A
trace for a real-time system is a sequence of input and
output messages as well as time delays that starts at the
initial state of the system and ends at one of its reachable
state. It basically reflects an execution of the system on
some input and output messages when the clock guards
of the corresponding transitions are satisfied by the values
of the clocks upon the occurrence of the messages. For
instance, the trace?m1.

1

2
.?m2.3.!m3 means that when the

system starts its execution it immediately accepts the input
messagem1, waits 1

2
time-unit before accepting the input

m2, and then waits3 time-units before responding with an
output messagem3.

III. O UR METHOD FOR THEREACHABILITY ANALYSIS

OF TIMED AUTOMATA

This section introduces our method for the reachability
analysis of real-time systems modelled as timed automata.
The two main issues dealt with in this paper are: the
reachability of the locations from the initial location of
the system and the executability of the transitions of the
system. The objective of the former issue is to check if every
location of the system is reachable from its initial location.
However, the objective of the latter issue is to check if every
transition of the system is executable. To address these
issues, we propose a metric that determines the minimum
delay between each state and each of its outgoing transitions.
We also present an algorithm to implement the metric in
order to decide the reachability issues automatically. The
minimum delay between a state and a transition represents
the minimum waiting time required at the state in order to
execute the transition. It basically reflects the point of time
right after the execution of the transition was impossible (i.e.,
as soon as the transition becomes executable). Formally, the
minimum delay between a states = (l, v) and a transition

t = l
m,G,R
−→ l′, written delaymin(s, t), is calculated as

follows:
delaymin(s, t) = Maxx∈C{0, delaymin(v(x), φ(x))},

where:
• φ(x) = Proj(G, x) is the projection of the transition’s

guard over the clockx, as explained in Section II,
• v(x) is the value of the clockx at states, and
• delaymin(v(x), φ(x)) is the minimum waiting time at

states for clock x to satisfy its time constraintφ(x):

289

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 305 / 612

delaymin(v(x), φ(x)) =























m1 − v(x) + ε if φ(x) is
(m1 < x ≤ m2)
m1 − v(x) if φ(x) is
(x = m1) or (m1 ≤ x ≤ m2)
0 if φ(x) is true

ε is a small positive real value chosen by the designer.
It is a parameter, which helps him/her specify how
far from the lower bound of the open clock guard the
transition should be executed.

Example 3:Let us consider again the telephone system of
Figure 1 and suppose that the designer choosesepsilon = 1

4
.

For the statess0 = (l0, (0, 0)) ands1 = (l2, (
1

4
, 1

4
)), and the

transitionst1 and t3, we have:

• delaymin(s0, t1) = Max{0, delaymin(0, true), delaymin

(0, true)} = Max{0, 0, 0} = 0.
• delaymin(s1, t3) = Max{0, delaymin(1

4
, 1 < x <

3), delaymin(1

4
, 0 < y < 5)} = Max{0, 1

2
, 0} = 1

2
.

Now, we explain how we address the reachability is-
sues aforementioned. To deal with the reachability of
the locations of the system, we proceed as follows. Let
A = (Σ, L, l0, C, T) be a TA andl be a location ofA (i.e.,
l ∈ L). l is said to be reachable from the initial location
of the TA if and only if there exists an executable path,
path(l0, l), from l0 to l in A. There are at least three
different ways to find an executable path from the initial
location l0 to another locationl in the TA:

• The first method consists of first extracting all the paths
from l0 to l and then choosing the shortest one (i.e.,
the path with the least number of transitions).

• The second method consists of, as the first method,
extracting all the paths froml0 to l and then choosing
randomly one of them.

• The third method consists of extracting on the fly only
one path froml0 to l according to some metrics that
minimize either the number of the transitions in the
path or the time it takes to execute the path.

The first two methods have the disadvantage of being
costly because they have to extract all the paths froml0
to l. Moreover, the chosen path (either the shortest one
or the randomly selected one) might not be executable
because of the conflicting clock guards of its transitions
and hence the resulting path could be useless. The third
method is less costly than the two others because it does
not rely on the extraction of all the paths froml0 to l.
However, if the minimization adopted is with regard to the
number of the transitions in the selected path then we will
have no guarantee about the executability of the path, all
as for the first and the second methods. Hence, the best
way to choose and ensure an executable path froml0 to l
is to extract it on the fly by minimizing the time it takes

to execute the path. This can be done by using the metric
delaymin() introduced so far. More precisely, to get an
executablepath(l0, l), we have to start at the initial state
(l0, v0) and calculate the minimum time delay to execute
each transition leavingl0 and decide which one should be
added to the path. Then, we compute the resulting states
and repeat the process on the new states until we reachl.

Similarly, to address the executability of a transition we
have to find an executable path from the initial location to the
source location of the transition, and use the minimum time
delay in order to calculate at least one time point that makes
the transition executable from the last reached state from the
path. In order to ensure an executable path froml0 to the
source location of the transition, we follow the same process
described previously when dealing with the reachability of
the locations of the TA. Regarding the time point that makes
the transition executable, we calculate it using the minimum
time delay between the last reached state in the path for
the transition, and the transition being checked. Formally

speaking, letA = (Σ, L, l0, C, T) be a TA andt = l
m,G,R
−→ l′

be a transition ofA. t is said to be executable if and only
if:

• source(t) is reachable from the initial locationl0 and
the resulting state iss = (source(t), v), and

• (v + delaymin(s, t)) satisfies the clock guard oft (i.e.,
(v + delaymin(s, t)) |= G).

It should also be noted that a locationl is reachable if
and only if there existst ∈ T such thatdestination(t) = l
andt is executable. Likewise, if a locationl is not reachable
then all the transitions leavingl are non-executable (i.e.,
for all t ∈ T such thatsource(t) = l the transitiont is
non-executable).

The algorithm used to check the reachability of the
locations and transitions of the TA is shown below. The
algorithm takes as input the TA and returns a Boolean
value for each location and each transition that says
whether or not the location (respectively the transition) is
reachable (respectively executable). The algorithm starts by
calculating the initial state of the TA and initializing all
the variables to be used, namelyRS (the set of reachable
states) andHS (the set of the handled states amongRS).
Then, it goes through all the states inRS and handles all
the outgoing transitions from each of these states. Indeed,
for each reachable state, the algorithm checks all of the
outgoing transitions from the location of the state and
verifies if they are executable by calculating the minimum
delay between the state and each of the transitions. If the
clock guard of a transition is satisfied by the clock valuation
of the current state plus the minimum delay calculated
previously then the transition (respectively its destination

290

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 306 / 612

location) is marked as being executable (respectively
reachable), and the resulting state is calculated and added
to RS if it is not already there. When the algorithm
terminates the handling of all the reachable states (i.e., all
the states inRS), it goes through all the locations and
transitions to check if they have been marked so far. If a
location has not been marked then the location is declared
unreachable. Likewise, if a transition has not been marked
then the transition is declared non-executable. It should be
noted that the algorithm does not construct the region graph
[1] of the TA but calculates on the fly only one state for
each transition in the TA. That state is obtained using the
metric delaymin(s, t) introduced in the beginning of this
section. Hence, the proposed approach has the advantage
of being scalable and rapid compared to existing methods
that are based on the construction of either the region graph
[1] or the zone graph [10] of the TA. We implemented the
algorithm in Java and promising results are obtained for
specifications with different sizes. The presentation of the
tool and the analysis of the experimentation results are left
for a future publication.

Algorithm 1 : Our Algorithm for the Reachability Anal-
ysis of a TA.
ReachabilityAnalysis(INPUT: TA)
s0 ← (l0A, v0) // (v0(x) = 0 for every clockx in the
TA).
RS ← s0. // RS is the set of reachable states of the
TA.
HS ← ∅. // HS is the set of handled states of the TA.
while (RS 6= HS) do

Pick one state(s : (l, v) ∈ RS) not yet processed.
Add s to HS.
foreach (transition t : l

m,G,R
−→ l′ in the TA)do

Calculateδ = delaymin(s, t).
if ((v + δ) |= G) then

Add the state(l′, [R := 0](v + δ)) to RS if
not yet there.
Mark the locationl′ and the transitiont in
the TA as they are reached.

foreach (location l ∈ L) do
if (l is not marked)then

l is not reachable

foreach (transition t ∈ T) do
if (t is not marked)then

t is not executable

The complexity of the algorithm isΘ(|L| × |T |), where
|L| is the number of locations and|T | is the number of
transitions. Indeed, the algorithm goes through all the
reachable states whose number is at most equal to|L|× |T |.

Each reachable state is handled only once and requires the
processing of only the transitions leaving the location of
the state. By adding up the number of these iterations we
get an order ofΘ(|L| × |T |).

Example 4:Let us consider again the telephone system
of Figure 1. By applying our algorithm, withε = 1

4
,

we get the results shown in Figure 2. The first table
gives for each location if it is reachable or not while the
second table determines for each transition if it is exe-
cutable or not. When a location (respectively, a transition)
is reachable (respectively executable) the tables show one
of the traces that make it possible. By examining the
results in Figure 2, one can easily see that all the locations
(respectively all the transitions) of the system modelled in
Figure 1 are reachable (respectively executable). For each
reachable location, the corresponding trace is obtained by
extracting an executable path from the initial location to
the location. Similarly, for each executable transition the
corresponding trace is obtained by extracting an executable
path from the initial location to the source location of the
transition plus the time delay and the message to execute
the transition. The executability of any path is ensured
based on the metricdelaymin(), introduced so far. For
instance, the locationl4 is reachable and the transition

t4 : l3
?Digit3 ,0<x<2∧0<y<5,{x}

−→ l4 is executable because
the trace?HangUp.1.!Tone.5

4
.?Digit1.

1

4
.?Digit2 makes

it possible for the system to move from its initial state
(l0, (0, 0)) to (l4, (0, 3

2
)); the corresponding executable path

then ist1.t2.t3.t4.

Example 5:Let us now change the specification of Figure
1 by changing the clock guards of the transitionst3 t4 andt8
to ((2 < x < 3)∧(0 < y < 3)), ((2 < x < 3)∧(0 < y < 3))
and (x = 3), respectively. Is it really easy to guess the
reachability analysis of the new system? It is not that simple!
By applying our algorithm, withε = 1

4
, we can see that the

transitionst4, t5, t9, t10 andt11 are non-executable, and the
locationsl4 and l5 are non-reachable. Let us say why. The
minimum executable path to reach the locationl3 (the source
location of the transitiont4) is t1.t2.t3 and the corresponding
trace is ?HangUp.1.!Tone.9

4
.?Digit1. Hence, the state

that should be considered to execute the transitiont4 is
s4 = (l3, (0, 9

4
)), which givesdelaymin(s4, t4) = 9

4
. But,

by adding 9

4
to (0, 9

4
) (i.e., the clock valuation ofs4) we

obtain the clock valuation(9

4
, 18

4
) that does not satisfy the

clock guard((2 < x < 3) ∧ (0 < y < 3)) (i.e., the clock
guard of t4). Hence, the transitiont4 is non-executable
and sincet4 is the unique transition betweenl3 and l4
then the locationl4 is not reachable. Consequently, all
the transitions leavingl4 are non-executable, namely the
transitiont5. Sincet5 is the unique transition betweenl4 and
l5 then the locationl5 is not reachable and all the transitions
leaving l5 become non-executable, namelyt9, t10 andt11.

291

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 307 / 612

Loc. Reach. Corresponding Trace
(Y/N)

l0 Y ε (the empty sequence)

l1 Y ?HangUp

l2 Y ?HangUp.1.!Tone

l3 Y ?HangUp.1.!Tone. 5
4
.?Digit1

l4 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2

l5 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect

Trans. Exec. Corresponding Trace
(Y/N)

t1 Y ?HangUp

t2 Y ?HangUp.1.!Tone

t3 Y ?HangUp.1.!Tone. 5
4
.?Digit1

t4 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2

t5 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect

t6 Y ?HangUp.1.!Tone.3.!Error

t7 Y ?HangUp.1.!Tone.5.!Error

t8 Y ?HangUp.1.!Tone. 5
4
.?Digit1.2.!Error

t9 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect. 1
4
.?Talk

t10 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect.4.!Error

t11 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect.?Drop

Figure 2. The Reachability Results for the TA in Figure 1.

IV. CONCLUSION

We presented in this paper a new verification method for
the reachability analysis of real-time systems modelled as
timed automata. Our method addresses the reachability of
the locations and transitions of the system by calculating a
trace that allows the system to go from its initial state to
the location or transition being investigated. To this end,
the method uses a metric that gives the minimum delay
between any state and all the transitions leaving that state.
Our method has at least two advantages. On the one hand,
it automatically calculates on the fly the paths that ensure
the reachability of the transitions and locations. On the
other hand, it avoids the costly operation of constructing
the region graph of the TA, which makes the method more
scalable than the others. To help us quantify precisely the
gain of the method with respect to existing methods, we
implemented the method to conduct more experimentation
on TA specifications with different sizes. The tool and the
analysis of the experimentation results will be discussed in
a future paper.

We are currently working on two extensions of the

proposed method. On the one hand, we would like to
make it incremental to adjust to successive evolutions of
the specification either when designing the system the first
time or later when maintaining the system. On the other
hand, we are investigating the possibility of adopting the
incremental method to the area of testing real-time systems
modelled as TA.

REFERENCES

[1] R. Alur and D. Dill. A Theory of Timed Automata.Theo-
retical Computer Science, 126:183–235, 1994.

[2] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool Kronos. In R. Alur, T.A. Henzinger, and E.D. Sontag,
editors,Hybrid Systems III, volume 1066 ofLecture Notes in
Computer Science, pages –. Springer-Verlag, 1995.

[3] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL - a tool suite for automatic verification of
real-time systems. In4th. DIMACS Workshop on Verification
and Control of Hybrid Systems, New Brunswick, New Jersey,
October 1995.

[4] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic model checking for real-time systems.Information
and Computation, 111:193–244, 1994.

[5] K.G. Larsen, P. Pettersson, and W. Yi. Model-checking
for real-time systems. InProceedings of Fundamentals of
Computation Theory, pages –, Dresden, Germany, August
1995.

[6] Osmane Koné, Patrice Laurencot, and Richard Castanet.
On the Fly Test Generation for Real-Time Protocols. In
International Conference on Computer Communications and
Networks, Lafayette, Louisiana, USA, pages 378–387, 1998.

[7] Brian Nielsen and Arne Skou. Automated Test Generation
from Timed Automata. In5th International Symposium on
Formal Techniques in Real-Time and Fault Tolerant Systems
FTRTFT’98, Lyngby, Denmark, pages 59–77, September
1998.

[8] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-
Method: Testing Real-Time Systems.IEEE Transactions on
Software Engineering, 28(11):1023–1038, November 2002.

[9] A. En-Nouaary. A Scalable Method for Testing Real-Time
Systems. Software Quality Journal, Springer, 16(1):3–22,
March 2008.

[10] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and
H. Wong-Toi. Minimization of Timed Transition Systems.
pages 340–354, 1992.

[11] J. Springintveld and F. Vaandrager. Minimizable Timed
Automata. In B. Jonsson and J. Parrow, editors,Proceedings
of the 4th International School and Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems,Uppsala,
Sweden, volume 1135 ofLecture Notes in Computer Science.
Springer-Verlag, 1996.

292

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 308 / 612

Reverse Engineering of Graphical User Interfaces
Work partially supported by FCT under contract PTDC/EIA/66767/2006

Inês Coimbra Morgado, Ana C. R. Paiva
Department of Informatics Engineering,

Faculty of Engineering, University of Porto,
Porto, Portugal

{ei07040, apaiva}@fe.up.pt

João Pascoal Faria
Department of Informatics Engineering,

Faculty of Engineering, University of Porto
INESC Porto

Porto, Portugal
jpf@fe.up.pt

Abstract—This paper describes a dynamic reverse engineering
approach and the correspondent tool, ReGUI, developed to
reduce the effort of obtaining visual and formal models of
both the structure and the behaviour of a software application’s
graphical user interface.

This paper describes the tool’s architecture, the exploration
process it follows, the outputs it generates and the rules used
to generate a Spec# model, which can be used in the context of
Model-Based Graphical User Interface Testing. The case study
presents the results obtained by applying the tool to the Microsoft
Notepad application.

Keywords—ReGUI, Reverse Engineering, GUI testing

I. INTRODUCTION

This research work is part of a wider ongoing project called
AMBER iTest. The main goal of this project is to “develop
a set of tools and techniques to automate specification based
Graphical User Interface (GUI) testing, solving the shortco-
mings found in previous work, and show their applicability
in industrial environments” [1]. Model-Based Testing (MBT)
can contribute to increase the systematisation and automation
of the testing process. However, the manual construction of a
formal model (required as input by MBT techniques) is a too
time consuming and error prone activity. The challenge to be
tackled in this research work is the automatic construction
of part of the software model using reverse engineering
techniques, easing the process of creating visual and formal
models. To build these models, both structural and behavioural
information are required. This information is extracted by the
ReGUI tool. The visual models help to quickly understand
the GUI. The formal model is written in Spec# [2] and it
is necessary to automatically generate test cases inside the
AMBER iTest project.

Once extracted, the formal model needs to be verified, com-
pleted and validated. This process is of the utmost importance
in order to ensure the model describes the intended behaviour.
In addition, the extracted model may reveal errors that must
be fixed. In that case, the model should be updated in order
to describe the intended behaviour and identify, later on, the
conformance errors with the application under test. If this
validation process is not performed, the extracted model may
describe the implemented behaviour, which may be different
from the intended behaviour, and be useless as a test oracle.
The validated model is then used by the Spec Explorer Tool

[3] to generate test cases. These tests are afterwards run over
the GUI of the application under test using the GUI Mapping
Tool [4].

This paper is divided as follows. Section II describes the
state of the art on reverse engineering and Section III presents
the developed tool, ReGUI, focusing on its architecture, func-
tioning and artifacts produced. Finally, Section IV presents a
case study and Section V presents some conclusions about this
research work, along with the limitations of the approach.

II. STATE OF THE ART

“Reverse engineering is the process of analysing a subject
system to create representations of the system at a higher level
of abstraction” [5]. This representation is usually presented as
a model, which can help to better understand an application,
can be used by a code generation process to change the
platform of legacy systems and can be used to check if
the system has the required properties. There are two types
of reverse engineering: static and dynamic, depending on
whether the model is extracted from the source code or from
the program in execution, respectively [6]. Both approaches
follow the same three main steps: collect the data, analyse it
and represent it in a legible way, and both allow obtaining
information about control and data flow [7].

A. Static Reverse Engineering

Static reverse engineering tries to extract information about
an application through its source code or through its byte code.
Static reverse engineering techniques may be useful during the
development of a software system as a way of ensuring the
correctness of the implementation or as a way of being aware
of the current stage of the development [8].

There are several studies on static reverse engineering [9],
[10], [11], [12], [13]. Bouillon et al. implemented a set of
derivation rules in ReversiXML [9] to enable model extraction
from web pages. Instead of extracting a single model it is
also possible to extract several models of different abstraction
levels or perspectives and it is even possible to obtain models
in different abstraction levels from a previously extracted
one. In order to support this, some graph grammars were
implemented in TransformiXML [9], [14].

Vanderdonckt et al. describe a reverse engineering process,
which enables the extraction of a model from a web appli-

293

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 309 / 612

cation, VAQUISTA [10]. This method was developed in order
to enable the automatic migration of the web application into
other platforms, such as pocket computers or mobile phones.

B. Dynamic Reverse Engineering

Dynamic approaches extract information from the Appli-
cation Under Analysis (AUA) in run-mode. Unlike static
techniques, dynamic approaches are able to extract information
about concurrent behaviour, code coverage and memory mana-
gement [6]. Initially, the data is collected by running the AUA
under a debugger or a profiler. There are several strategies to
analyse and represent this data [7].

Even though dynamic approaches are not as common as
static ones, there are still some important works, which need
to be mentioned.

Shehady et al. propose a reverse engineering method to
automate part of the interface testing activity. It extracts the
user interface’s model representing it as a Variable Finite
State Machine, which is later on transformed into a Finite
State Machine (FSM) for testing purposes [15]. On top of
the FSM, the Wp algorithm [16], which assumes the FSM
is fully specified, is applied. This algorithm generates tests,
which allow the identification of any discrepancies between
the FSM and a model specifying the expected output values.
The error diagnosis process is manual.

Chen and Subramaniam developed VESP (Visual Envi-
ronment for manipulating test SPecifications) that works on
GUI based applications in Java [17]. The VESP’s purpose
is to obtain a FSM representation of a GUI coded in Java.
Black box test cases [18] are generated from the FSM and
afterwards executed on the GUI of the AUA. One aspect that
differentiates this approach from more common processes is
that the graphical environment provided enables the tester to
modify the test specification by modifying the FSM itself,
without needing to know any internal representation details.

Atif Memon developed a framework, GUITAR, which ge-
nerates and runs test cases on a GUI, using both reverse
engineering and model-based testing techniques [19]. GUI
Ripper, a component of this framework, extracts a GUI model,
representing the structure of the GUI as a Forest (graph,
which relates the different windows to be opened in the
AUA) and the behaviour as an event flow graph (EFG, graph,
which relates the different events, which may take place in
the AUA) and as an integration tree (tree, which relates the
different components of the AUA) [20]. These are used by the
remaining framework tools to generate and run the tests.

C. Conclusions

Some information can only be extracted using a dynamic
reverse engineering approach, such as concurrency and mem-
ory management. Besides, when working with object oriented
programs, it is hard to understand the behaviour and even
which objects are instantiated through a static analysis, in
which case a dynamic approach may be useful [8].

Most of the dynamic approaches presented in this Section
generate a FSM model. However, such models lack data like

the navigation map (the set of windows that it is possible
to open and the actions needed to open such windows),
information about whether or not a window is modal and
dependencies among GUI elements.

GUITAR generates a GUI Forest, an EFG and an integration
tree. GUI forest represents all the windows of the application.
However, it does not describe the interaction steps required to
open such windows. In the EFG, two events e1 and e2 are
connected when e2 can occur after e1. However, this graph
does not describe when an event is initially disabled and when
an event makes another event possible. So, the behaviour that
test cases generated from such models may check during test
execution is somehow limited.

III. REGUI

The problem at hand in this research work is to diminish
the effort of producing visual and formal models of the GUI
of a software application for testing purposes. The approach
followed by this work is to extract the necessary information
from the application while it is running, i.e., dynamic reverse
engineering the AUA.

A. Architecture

Figure 1 depicts the architectural organisation of all the
components used by the ReGUI tool.

Fig. 1. Architecture of ReGUI

ReGUI uses UI Automation in order to interact with the
GUI. UI Automation [21] is the accessibility framework for
Microsoft Windows, available on all operating systems that
support Windows Presentation Foundation. This framework
represents all the applications opened in a computer as a
tree (a Tree Walker), whose root is the Desktop and whose
nodes are the applications opened at a certain moment. The
GUI elements are represented as nodes, which are children of
the application to which they belong. In the UI Automation
framework each of these elements is an Automation Element.

At the end of the execution, the ReGUI tool generates
six documents: one to represent the structure of the GUI
(ReGUITree.xml) and five others to represent its behaviour.

294

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 310 / 612

Four of these files are GraphML [22] files: Navigation-
Graph.xml, which represents the navigation map of the GUI,
WindowGraph.xml, which represents the window graph, Disa-
bledGraph.xml, which represents the disabled graph, and De-
pendencyGraph.xml, which represents the dependency graph.
These files are used as inputs for NodeXL [23], which is a
template for Microsoft Excel, that enables the visualisation
of the graphs. There is another specification file, written in
Spec#, which is input of the test case generation within the
AMBER iTest project, and is a specification model read by a
MBT tool. These files are described in more detail in Section
III-D.

B. Front-End

The ReGUI front-end is shown in Figure 2. This tool is
based on the development of a previous one presented in
[24]. ReGUI Tool v2.0 is fully automatic and uses a different
approach from the previous version of the tool so the results
achieved, such as dependencies and graphs produced, are
different.

Fig. 2. ReGUI front-end

In order to start the extraction process, it is necessary to
identify the GUI to be analysed. In order to do so, it is
necessary to drag the Spy Tool symbol and drop it on top
of the GUI. Following, the user must press the button Play,
which will start the exploration process. The name of this
button changes to Playing during the execution and to Again
at the end. Finally, the user may press the Generate Spec#
Model button in order to generate the Spec# model. If, for
some reason, the user intends to run the ReGUI on the same
AUA once more, pressing the button Again (button Play at the
end of the execution) will restart the process.

C. Exploration Process

The exploration process is divided in two phases. The first
one navigates through every menu option in order to verify
which GUI elements are enabled and which are disabled in
the beginning of the execution, i.e., the initial state of the
GUI. The second phase also navigates through all the menus
but this time the ReGUI tool interacts with all the menus that
are enabled at that point. After interacting with each menu
item, the ReGUI tool verifies if any window opened, closing
it afterwards. Following, ReGUI opens all the menus again
in order to verify if any state changed, i.e., if an element
previously enabled became disabled or vice-versa.

During the development of the ReGUI tool, it was necessary
to face some challenges that are described next:

1) Identification of GUI elements: GUI elements may
have dynamic properties, i.e., properties which vary along
the execution, such as the automationId and the RuntimeI-
dProcess. During the exploration process, the identification
of an element is performed through an heuristic based on
different properties of the element. This heuristic assigns a
percentage of similarity to the different elements according
to the ressemblance between their properties. The properties
to be compared may be configurable at the beginning of
the execution. Nevertheless, there are properties that allow
to differentiate two GUI elements. For instance, when two
GUI elements have a different ControlType value, they are
undoubtedly different. These properties are very useful for the
identification.

2) Exploration order: In general, the extracted information
depends on the order by which the GUI is explored. Currently,
ReGUI follows a depth-first algorithm, i.e., all the options of
a menu are explored before exploring the next menu and the
exploration of each node’s children follows the order in which
they appear on the GUI. However, if the exploration followed a
different order, the dependencies extracted could be different.
An example of such may be found in Microsoft Notepad v6.1.
The menu item Select All requires the presence of text in the
main window in order to produce any results. Since, in the
beginning, there is no text in the main window, interacting
with this menu item does not have any effect. After interacting
with the Time/Date menu item, that writes the time and date
in the main window, the Select All menu item would produce
visible results (selecting the text and enabling the menu items
Cut, Copy and Delete and disabling the menu item Select All
itself).

3) Synchronisation: To automatically interact with a GUI,
it is necessary to wait for the interface to respond after each
action. One way to solve this problem is to add a waiting time
long enough to ensure the GUI is able to respond. However,
this would make the exploration process too slow. In order
to surpass this problem, ReGUI checks (with event handlers)
when any changes occurred in the UI Automation tree (which
reflects the state of the screen in each moment) and continues
after that. It is yet possible to assign a waiting time to any
action, in order to check if the correspondent result could
eventually take more time to occur. However, this approach
does not allow the detection of a sequence of timely spaced
events that are the result of the same action.

4) Closing a Window: During the execution it is necessary
to close windows that are eventually opened, in order to
continue with the exploration process. However, there is no
standard way of closing them. Windows usually have a top
right button for closing purposes but when this is not available
it is necessary to interact with another button, which would
close the window. The selection of such button is done
according to configurable guidelines.

D. Outputs

A tree (ReGUI tree) and four graphs are used internally to
store and represent the extracted information. Every node of

295

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 311 / 612

these four graphs corresponds to a node in the ReGUI tree.
The information stored in these structures is used to generate
the formal model in Spec#. The outputs are:

1) ReGUI Tree: The ReGUI tree merges all the UI Automa-
tion trees produced during the exploration process. Initially,
the ReGUI tree has only the elements visible at the beginning
of the exploration and, at the end, it has every element which
has become visible at some point of the exploration, such as
the content of the windows opened along the process and sub-
menu options.

2) Window Graph: The window graph shows which win-
dows may be opened in the application. Figure 5 is a visual
representation of this graph, in which each node is a window.
A window may be modal or modeless, being modal if it
does not allow interaction with other windows of the same
application while opened and modeless otherwise. An egde
between two nodes w1 and w2 means that it is possible to
open w2 by interacting with elements of w1.

3) Navigation Graph: The navigation graph represents the
nodes which are relevant to the navigation, i.e., this graph
stores information about which user actions must be performed
in order to open the different windows of the application. The
visual representation of this graph is depicted in Figure 6. A
solid edge between a window w1 (represented by a square)
and a GUI element e1 (represented by a circle or a triangle)
means e1 is inside of w1 whilst a dashed edge between two
GUI elements e1 and e2 means it will be possible to interact
with e2 after interacting with e1.

4) Disabled Graph: The disabled graph’s purpose is to
show which nodes are accessible but disabled in the the first
phase of exploration process described in Section III-C, i.e.,
which nodes are disabled (represented by a filled triangle) at
the beginning of the exploration. An example of this graph is
depicted in Figure 7.

5) Dependency Graph: A dependency between two ele-
ments A and B means that interacting with A modifies the
value of a property of B. After interacting with an element
ReGUI looks for any changes in the properties of the different
elements (dependencies), as described in section III-C.

Figure 8 is the visual representation of the dependency
graph obtained during the exploration process. A solid edge
between a window w1 and a node n1 means n1 is inside w1
and a dashed edge between two nodes n1 and n2 means there
is a dependency between n1 and n2.

6) Spec# file: The Spec# model is obtained by applying
the rules of Figure 3 to the navigation graph. Each window
generates a namespace and each edge generates a method
annotated with [Action]. Action methods in Spec# are methods
that will be used as steps within the following generated test
cases. Methods without annotations are only used internally.
An example of such model is shown in Figure 9.

IV. CASE STUDY

In this Section, the results of running the ReGUI tool on
Microsoft Notepad v6.1 are presented. For this execution, the
properties taken into consideration to compare the elements

Fig. 3. Rules for the Spec# generation

were the ControlType, the Name, the AcceleratorKey, the
AccessKey, the HelpText, the ProcessID and the position. In
order to sucessfully close the windows, ReGUI looked, in this
order, for buttons whose name was Cancel, No, Close, Ok,
Continue or X.

Figure 4 is a simplified representation of the ReGUI tree
after exploring the first menu, the menu File.

Fig. 4. Part of the ReGUI tree when exploring the menu item File

The visual representation of the window graph is repre-
sented in Figure 5. In this case, it is possible to conclude that
the window Open, which is modal, and the window Windows
Help and Support, which is modeless, may both be opened
from the main window of the AUA.

Figure 6 shows the visual representation of the navigation
graph. In this example, it is possible to depict that to open
the Save As window, it is necessary to interact with the menu
item File and then interact with the menu item Save or with the
menu item Save As. Clicking on the button Close, belonging
to the window Save As, this window is closed and the main

296

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 312 / 612

Fig. 5. Visual representation of the window graph

window gets the focus again.

Fig. 6. Visual representation of the navigation graph

Analysing Figure 6 it is possible to verify the window Find
is not opened during the exploration process as it requires
previous insertion of text in the main window.

Figure 7 is the visual representation of the disabled graph,
obtained during the first step of the exploration process. In
this Figure, the set of menu items Paste, Undo, Cut, Delete,
Find Next, Find... and Copy are initially disabled. The menu
item Edit is represented only because it is the father of these
menu items.

Fig. 7. Visual representation of the disabled graph

Figure 8 shows the visual representation of the dependency
graph. When interacting with the menu item Time/Date, the

menu item Undo, which was initially disabled, as depicted in
Figure 7, becomes enabled. Thus, there is a dashed arrow from
Time/Date to Undo in the graph.

Fig. 8. Visual representation of the dependency graph

Finally, Figure 9 depicts a small sample of the generated
Spec# model. The rules applied to generate this Spec# model
are in comments. The first namespace corresponds to the main
window of the Notepad software application. The two methods
within this namespace describe the behaviour when interacting
with the menu item File and with the menu item Save. The
second namespace corresponds to the window Save As and its
method describes the interaction with the button Close inside
that window.

Fig. 9. Sample of the Spec# formal model generated

For this sample of the Spec# model, no modifications should
be necessary upon the manual verification.

V. CONCLUSIONS

The ReGUI tool is capable of extracting important infor-
mation about the behaviour of the AUA, such as navigational
information and which GUI elements become enabled or di-
sabled after interacting with another element. The exploration

297

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 313 / 612

process is fully automatic. The user just has to point out the
AUA.

ReGUI generates graphs, which are useful to quickly vi-
sualise the structure and behaviour of the AUA in order to
understand its functioning. Also, an important part of the
Spec# model is already generated by the tool.

When comparing with the GUITAR framework described in
Section II-B, it is possible to verify that there is a similarity
between the information stored in its GUI Forest and the
information stored in both the Window graph and the ReGUI
tree as the GUI Forest has information about which window
may be opened from another window, along with the structure
of each of those windows. The main advantage of the approach
described in this paper is that it collects important behavioural
information, such as dependencies, and the actions needed to
open the several windows of the AUA.

ReGUI has still some limitations. For instance, currently, it
only supports interaction through the invoke pattern [21] but
it may evolve to interact through other patterns. In addition, it
just tries to open windows from the main window and there are
still other dependencies that may be explored. Nevertheless,
these limitations could be overcome in a following version
of the tool. It is yet objective of the authors to analyse the
tools response to more complex systems in order to accurately
evaluate the quality of the extracted dependency model.

One of the main difficulties faced during the development of
ReGUI was the lack of GUI standards. For example, generally,
an opened window is, in the UI Automation tree, child of the
main application. However, there are some which are siblings
of the application. Furthermore, although each window should
have an element called system menu bar, which corresponds to
the top bar where you can usually find the minimise, maximise
and close buttons, some windows do not have that element.

This research work was developed on the context of a
project with testing purposes, the AMBER iTest. However,
once the model is generated and verified it is possible to use it
for other purposes. For instance, to use this model to generate
code in languages different from the original one, such as
transforming a C# application into a Java application or the
other way around.

REFERENCES

[1] S. E. Group, “Amber itest - an automated model-
based user interface testing environment,” October 2008,
http://paginas.fe.up.pt/s̃ofteng/wiki/doku.php?id=projects:
amber itest:start, last access on December 2010.

[2] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in CASSIS International Workshop, March 2004.

[3] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Formal methods and testing,” R. M. Hierons, J. P.
Bowen, and M. Harman, Eds. Berlin, Heidelberg: Springer-Verlag,
2008, ch. Model-based testing of object-oriented reactive systems with
spec explorer, pp. 39–76.

[4] A. C. R. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M. Vidal,
“A model-to-implementation mapping tool for automated model-based
gui testing,” in 7th International Conference on Formal Engineering
Methods, November 2005.

[5] E. J. Chikofsky and J. H. Cross II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Softw., vol. 7, pp. 13–17, January 1990.

[6] T. Systä, “Dynamic reverse engineering of java software,” in Proceed-
ings of the Workshop on Object-Oriented Technology. London, UK:
Springer-Verlag, 1999, pp. 174–175.

[7] M. J. Pacione, M. Roper, and M. Wood, “A comparative evaluation
of dynamic visualisation tools,” in Proceedings of the 10th Working
Conference on Reverse Engineering, ser. WCRE ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 80–.

[8] T. Systä, “Static and dynamic reverse engineering techniques for java
software systems,” Ph.D. dissertation, Faculty of Economics and Admin-
istration of the University of Tampere, Kalevantie 4, FI-33014 University
of Tampere, Finland, 2010.

[9] L. Bouillon, Q. Limbourg, J. Vanderdonckt, and B. Michotte, “Reverse
engineering of web pages based on derivations and transformations,”
in Proc. of 3 rd Latin American Web Congress LA-Web2005 (Buenos
Aires, October 31-November 2, 2005), IEEE Computer Society Press,
Los Alamitos, 2005, 2005, pp. 3–13.

[10] J. Vanderdonckt, L. Bouillon, and N. Souchon, “Flexible reverse en-
gineering of web pages with vaquista,” in Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01), ser. WCRE
’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 241–
248.

[11] J. C. C. J. C. Silva and J. A. Saraiva, “Gui inspection from source code
analysis,” Electronic Communications of the EASST, 2010, to appear.

[12] Y. farn R. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach, “Ciao:
A graphical navigator for software and document repositories,” in In
International Conference on Software Maintenance. IEEE Computer
Society, 1995, pp. 66–75.

[13] M. P. Chase, S. M. Christey, D. R. Harris, and A. S. Yeh, “Manag-
ing recovered function and structure of legacy software components,”
in Proceedings of the Working Conference on Reverse Engineering
(WCRE’98), ser. WCRE ’98. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 79–.

[14] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. Lpez-
Jaquero, “Usixml: A language supporting multi-path development of
user interfaces.” in EHCI/DS-VIS, ser. Lecture Notes in Computer
Science, R. Bastide, P. A. Palanque, and J. Roth, Eds., vol. 3425.
Springer, 2004, pp. 200–220.

[15] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface
testing using variable finite state machines,” in Proceedings of the 27th
International Symposium on Fault-Tolerant Computing (FTCS ’97), ser.
FTCS ’97. Washington, DC, USA: IEEE Computer Society, 1997, pp.
80–.

[16] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,” IEEE Trans.
Softw. Eng., vol. 17, pp. 591–603, June 1991.

[17] J. Chen and S. Subramaniam, “A gui environment to manipulate fsms
for testing gui-based applications in java,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences (HICSS-
34)-Volume 9 - Volume 9. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 9061–.

[18] L. Williams, “Testing overview and black-box testing techniques,” 2006.
[19] D. R. Hackner and A. M. Memon, “Test case generator for guitar,” in

Companion of the 30th international conference on Software engineer-
ing, ser. ICSE Companion ’08. New York, NY, USA: ACM, 2008, pp.
959–960.

[20] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
The 10th Working Conference on Reverse Engineering, Nov. 2003.

[21] R. Haverty, “New accessibility model for microsoft windows and cross
platform development,” SIGACCESS Access. Comput., pp. 11–17, June
2005.

[22] U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” April
2007, http://graphml.graphdrawing.org/primer/graphml-primer.html, last
access on July 2011.

[23] Microsoft, “Nodexl: Network overview, discovery and exploration for
excel,” March 2011, http://nodexl.codeplex.com/, last access on May
2011.

[24] A. M. P. Grilo, A. C. R. Paiva, and J. P. Faria, “Reverse engineering
of gui models for testing,” in 5a Conferencia Ibrica de Sistemas y
Tecnologias de la Informacin, July 2009.

298

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 314 / 612

Towards Design Method Based on Formalisms of Petri Nets, DEVS, and UML

Radek Kočı́ and Vladimı́r Janoušek

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—Software system development uses specific de-
velopment techniques and processes to reach desired goals,
whereas different kinds of systems usually need to use different
approaches. Obviously, there are used different techniques,
tools, and formalisms in each development process and the
designed models should be automatically or manually trans-
formed to the next development step. The paper is aimed
at such development processes, which work with formalisms
allowing to design architecture and functionality, analysis
of design, testing and system run with no need to change
this formalism. Nevertheless, there can be useful to combine
more different formalisms and model languages because of
developers are used to use these formalisms or there are already
created models using these formalisms. The paper deals with
UML, Petri Nets, and DEVS application in the systems design
and sketches a method how to use the formalisms for mod-
eling a system architecture and its behavior. Its combination

decreases a number of transformations of models and makes
the architectural description well-arranged.

Keywords-Simulation-Based Design, Object-Oriented Petri
Nets, DEVS, UML.

I. INTRODUCTION

The key activities in the system development are specifi-

cation, testing, validation, and analysis (e.g., of performance,

throughput, etc.). Most of the methodologies use models

for system specification, i.e., for defining the structure and

behavior of developed system. There are different kinds

of models, from models of low-level formal basis to pure

formal models. Each kind has its advantages and disad-

vantages. The most popular modeling language in software

engineering is UML [1]. It serves as a standard for analytics,

designers and programmers. But, own phraseology of UML

does not have enough power allowing to realize some

fundamental relationships and, in particular, rules, that are

branch of every modeled system. For example, how can we

define a condition that at least one item has to be at a stack

when the operation pop is called? The pure UML language

does not offer suitable tools. Although the UML language

can be completed by OCL (Object Constraint Language),

stereotypes, etc., which makes the system description more

precise, it makes the checking of system correctness or valid-

ity by means of testing or formal methods very complicated.

Therefore, the new methodologies and approaches are

investigated and developed for many years. They are com-

monly known as Model-Driven Software Development or

Model-Based Design (MBD) [2], [3], [4]. An important

feature of these methods is the fact that they use exe-

cutable models, e.g., Model Driven Architecture (MDA)

and Executable UML [5], allowing to simulate models,

i.e., to provide simulation testing. The pure formal models

(e.g., Petri Nets, calculus, etc.) allow to use formal or

simulation approaches to complete the testing, verification,

and analysis activities. There is no need of model generation

or transformation due to simulation purposes. We only add

simulated inputs and expected results and can change any

model element for its simulated version [6].

The development methods such as MDA [7] allow for

semi-automatic translation of designed models to implemen-

tation language (i.e., the code generation). Nevertheless, the

result has to be finalized manually, so it entails a possibility

of semantic mistakes or imprecision between models and

transformed code. In comparison with semi-formal models,

formal models bring the clear and understandable modeling

and the possibility to check correctness with no need for

model transformation. The design technique, which is taken

into account in this paper [8] derives benefit from formalisms

of Object Oriented Petri Nets (OOPN) [9], [10] and DEVS

[11]. These formalisms can be directly interpreted and,

consequently, integrated into the target system [12].

The paper is organized as follows. First, we briefly intro-

duce used formalisms of OOPN, DEVS, and UML and the

design technique. The next chapter deals with architectural

description using different formalisms and the fourth section

deals with description of behavior.

II. MODELING FORMALISMS

A. UML

The UML modeling uses a notion view. A view of a

system is a projection of the system on one of its relevant

aspects. Such a projection focuses on certain aspects and

ignores others. Therefore it is useful to have different views

of a system. UML uses multiple notations (tools) for exhibit-

ing different views of the system. We can distinguish four

main views: The structural view describes layout between

objects and classes, their associations and their possible

communication channels. The behavioral view describes,

299

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 315 / 612

how the system components interact, and characterizes the

response to external system operations. The data view

describes the state of the system units (objects) as well

as their relationships. The interface view focuses on the

encapsulation of system parts, and the possible usage from

outside.

UML currently has as many as eleven different notations,

which constitute different views of UML designs. In the

following, we briefly discuss several notations and their

usage to describe certain aspects. Use case diagrams display

the relationship among actors and use cases. A use case is a

set of scenarios describing an interaction between a user and

a system. The two main components of a use case diagram

are use cases and actors. Use case diagrams deal with an

interface and behavioral view at the border of the system. Se-

quence diagrams can be used to demonstrate the interaction

of objects in a use case. They generally show the sequence

of events that occur. Sequence diagrams therefore clearly

define behavioral aspects but are based on structural and

interface views. They do not describe an internal behavioral

of objects. Class diagrams are widely used to describe the

types of objects in a system and their relationships. Class

diagrams model class structure and contents using design

elements such as classes, packages and objects. They are

the central notion for structural aspects. State Diagrams are

used to describe the behavior of a system. State diagrams

describe all of the possible states of an object as events

occur. Each diagram usually represents objects of a single

class and tracks the different states of its objects through the

system. Activity Diagrams are defined as a special case of a

state diagrams. They could be useful for describing internal

processing of operations or use cases. Activity diagram

models a dynamic flow controlled by internal stimuli.

B. OOPN

An OOPN is a set of classes specified by high-level Petri

nets. An object-oriented Petri net is a triple (Σ, c0, oid0)
where Σ is a system of classes, c0 an initial class, and

oid0 the name of an initial object from c0. A class is

mainly specified by an object net and a set of method

nets. Object nets describe possible autonomous activities of

objects, while method nets describe reactions of objects to

messages sent to them from the outside.

Object nets consist of places and transitions. Every place

has its initial marking. Every transition has conditions (i.e.,

inscribed testing arcs), preconditions (i.e., inscribed input

arcs), a guard, an action, and postconditions (i.e., inscribed

output arcs). Method nets are similar to object nets but,

in addition, each of them has a set of parameter places

and a return place. Method nets can access places of the

appropriate object nets in order to allow running methods

to modify states of objects, which they are running in.

Synchronous ports are special (virtual) transitions, which

cannot fire alone but only dynamically fused to some other

transitions, which activate them from their guards via mes-

sage sending. Every synchronous port embodies a set of

conditions, preconditions, and postconditions over places of

the appropriate object net, and further a guard, and a set of

parameters. Parameters of an activated port s can be bound

to constants or unified with variables defined on the level

of the transition or port that activated the port s. Negative

predicates are special variants of synchronous ports. Its

semantics is inverted—the calling transition is fireable if the

negative predicate is not fireable.

The OOPN dynamics is based on high-level Petri net dy-

namics, but the semantics of a transition is little bit modified.

A transition is fireable for some binding of variables, which

are present in the arc expressions of its input arcs and in

its guard expression, if there are enough tokens in the input

places with respect to the values of input arc expressions

and if the guard expression for the given binding evaluates

to true. A state of the running OOPN model has the form of

a marking of a system of net instances. Each net marking

consists of places and transitions marking.

C. DEVS

DEVS is a formalism, which can represent any system

whose input/output behavior can be described as sequence

of events. DEVS is specified as a structure

M = (X,S, Y, δint, δext, λ, ta)

where X is the set of input event values, S is the set of

state values, Y is the set of output event values, δint is the

internal transition function, δext is the external transition

function, λ is the output function, and ta is the time advance

function. At any time, the system is in some state s ∈ S.

If no external event occurs, the system is staying in state

s for ta(s) time. If elapsed time e reaches ta(s), then the

value of λ(s) is propagated to the output and the system

state changes to δint(s). If an external event x ∈ X occurs

on the input in time e ≤ ta(s), then the system changes its

state to δext(s, e, x).

This way we can describe atomic models. Atomic models

can be coupled together to form a coupled model. The later

model can itself be employed as a component of larger

model. This way the DEVS formalism brings a hierarchical

component architecture.

D. DEVS and OOPN Wrapping

The DEVS formalism, especially its composite model

concept, is suitable as a component platform for multi-

paradigm modeling and simulation where atomic models are

specified by other formalisms. On the other hand, OOPN

is a powerful language allowing a high-level description of

model dynamics. The OOPN formalism can be wrapped in

the DEVS formalism. In such a case, the OOPN models are

atomic components of a hierarchical DEVS model.

300

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 316 / 612

Let MPN = (M,Π) be a DEVS component M , which

wraps an OOPN model Π, c0 is an initial class of the model

Π, and oid0 is an initial object of the class c0. Then we

define a set of places of the object net oid0 as P (oid0),
a set of input places Pinp ⊆ P (oid0), and a set of output

places Pout ⊆ P (oid0), where Pinp ∩ Pout = ∅.

Sets X , Y from DEVS formalism are to be specified

as structured sets. It allows to use multiple variables for

specification of state and we can use input (VX) and output

ports (VY) for input and output events specification. Then we

can define a mapping of OOPN places into DEVS ports as

bijections mapinp : Pinp → VX and mapout : Pout → VY .

Informally, if an OOPN model is defined as a DEVS

component, then an object net of initial class defines input

and output places, this class is instantiated immediately the

component is created, and the defined places serve as input

or output ports of the component.

E. Design Techniques

As in every design techniques the most problem at its

usage is by estimation to abstraction level. Primarily there

have to be found essential objects of a modeled system

and their relationships. There we can successfully employ

resources of UML such us Use Case, Sequence, Class dia-

grams. As UML, the development processes based on OOPN

use the concept of view. The basic view is the data view,

the structure encapsulating data and basic behavior on them.

The data view can have different roles in the system, whereas

each role is described by another view, which encapsulates

the original view. Therefore, views create a hierarchical

structure where the higher view encapsulates the view on

the lower level. The communication and synchronization

between views are provided by means of synchronous ports

and negative predicates (more details will be demonstrated

in the chapter IV-B).

III. SPECIFICATION OF SYSTEM ARCHITECTURE

The system design should be structured into units,

whereas each unit is responsible to serve relatively inde-

pendent activities. The unit can be an object, a package,

a component, etc. These units communicate each other

by means of specified interfaces. The interface is usually

formed by the protocol offered by the object, by the class of

component, etc. The units communicate by message passing

whereas this communication is usually synchronous.

A. UML-based Specification

Let us have the units U1 and U2, the unit U1 has an

interface which is specified by the class CU1

1
. If the object

from unit U2 wants to use the unit U1, it sends a message

M1 to an object OC1

1
, which is derived from the class

CU1

1
. It means that there has to be instances of classes,

which constitute the unit interface. If there is a special

request to interface (just one class instance, asynchronous

communication, etc.), it should be handled in a special

way. The system architecture is obviously specified by class

diagrams and package diagrams in UML language. The

example of this situation is shown in the Figure 1.

Figure 1. The architectural design using UML.

B. OOPN and DEVS-based Specification

Now, let us have the similar situation, but we use the

formalisms DEVS and OOPN for specification of the system

architecture. This approach considers the unit as a com-

ponent based on the DEVS formalism. It means that the

interface is established by ports, components are connected

via their input and output ports. Let us have the unit U1

having one input port PU1

I1 and the unit U2 having one output

port PU2

O1
. If the component U2 wants to communicate with

the component U1, it puts the data into the port PU2

O1
. The

data are then transferred to the port PU1

I1 and the component

can react. This communication is asynchronous (the sender

does not wait for the answer). This situation is shown in the

Figure 2a), which depicts the connection between two units

U1 and U2 and the Figure 2b), which depicts implementation

in the initial object of the unit U2. There is the place PO1

representing the output port PU2

O1
. After the data is put in this

port, the next operation of the component U2 represented by

the transition t2 can execute.

U1U2

PO1 PI1

InitU2 is_a PN

x y

PO1datat1

t2

InitU2 is_a PN

PO1

x

(o, d)

(o, d)

t1

t2

o

o

sync

a)

b) c)

data

data

Figure 2. The architectural design using DEVS and OOPN.

Of course, the different requests to interface (e.g., syn-

chronous communication) should be handled, but it can be

modeled by a simple way as it is shown in the Figure 2c).

The specific identification (object, symbol, etc.) is joined

301

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 317 / 612

to transferred data and the next operation represented by

the transition t2 will be executable after the respond is

accepted, i.e., the data joined with the identification is put

in the input port x (place x).

Test PNAgent

sonars

bumpers

position

rotateTo

move

sonars

bumpers

position

rotateTo

move

reqreq

Figure 3. The architectural design using DEVS and OOPN: real example.

The Figure 3 shows a real example of using DEVS

and OOPN. There are two units (components) representing

one agent (the component PNAgent) and its simulated

environment (the component Test). PNAgent receives

input from the environment (actual data from sensors) and

react by putting commands into its output ports.

IV. SPECIFICATION OF SYSTEM BEHAVIOR

There are a number of techniques in UML to model

dynamic aspects of a system. If these techniques are used,

the designer statically describes a behavior of a system in a

design phase and he cannot make certain of his partial ideas

about the system behavior. Next, there can be a problem

with understanding to models (diagrams), which arise from

graphical whatness of these notions. We could describe this

situation by following words: The nice thing about graphical

description techniques is that everyone understands them,

the bad thing is that everyone understands them in a different

way. Therefore, the given notions lack a formal foundation,

which would make possible understand the model in a only

way and also make possible analysis and verifications of the

system.

For demonstration purposes, we have chosen a part of

the PNtalk system. PNtalk is the tool intended to model

a simulate systems using OOPN. We will model a PNtalk

processor, which is a central part of the PNtalk system and

execute an OOPN model. We will keep an experimental

implementation from 2008 [13] in view. First, we use UML

to model a chosen part. Second, we adapt these models into

OOPN-based models to show how they can be used together.

A. UML-based Modeling

The PNtalk model specifies an OOPN. The OOPN is a

set of classes of objects; objects are instances of classes.

These classes are translated into an internal representation

of the PNtalk processor. An internal representation consists

of objects corresponding to classes defined by a model.

These objects are derived from special classes PNClass

and PNSuperClass, as we can see in the Figure 4.

There we can see that both classes and objects of OOPN

are represented by instances of PNtalk classes PNClass

Figure 4. Class diagram of the PNtalk core.

Figure 5. Sequence diagram of the method invocation.

(or PNSuperClass) and PNObject. Objects whose name

starts with Class represent classes of an OOPN model. An

object named object O represents an instance of OOPN

class C2 during a simulation of OOPN model. An OOPN

class Class PN, derived from class PNSuperClass, is

a special object, which always stays at the top of an

inheritance hierarchy of OOPN classes. The inheritance

of OOPN classes are represented as an association be-

tween appropriate objects, instances of the class PNClass

(respectively PNSuperClass). The object of the OOPN

super class plays the role of superClass. The relationship

between OOPN object and its OOPN class is represented

by an association between appropriate object. The object

of OOPN class plays the role of myClass. Summary, the

Figure 4 shows one object (it is derived from a class

PNObject), two OOPN classes (they are derived from a

class PNClass) and one OOPN class, which is derived from

class PNSuperClass.

We depict functionality by a part of the PNtalk

processor—calling methods of OOPN objects. Because

classes of the OOPN model are translated into internal-

representation objects in implementation environment, there

cannot be applied natural inheritance of given environment

there. On that account there must be implemented own

inheritance hierarchy direction. Let us specify a letter O

as an OOPN object, which is derived from a OOPN class

C. Remember these two elements are objects in the PNtalk

processor internal-representation. Now, if we attempt to call

302

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 318 / 612

an OOPN method M of an object O, the object O devolve

this requirement upon a class C. The class C looks for an

object, which represents a called method M. If this object has

been found, the class C gives it back; if does not, the class C

generates a fault. This have been a simple variant without an

inheritance. As soon as we add an inheritance, the scenario

of an unsuccessful search is changed. The class attempt

devolve a requirement upon a superior class (if exists), which

process this requirement in the same way like there have

been already said. Only if a top class in inheritance hierarchy

does not find a called method, there is generated a fault.

If we take a look at the Figure 5, we can see a sequence

diagram of an object behavior based on external events. A

filled arrow-head stands for an invocated event, the dashed

one stand for a returned result of event processing.

find a method
object (MO)

put on a
superior class

[no MO]

return MO

a fault

[found MO]

[found MO]

[no MO]

[there is not SC]

[there is SC]

Figure 6. Activity diagram of the method invocation.

Now we focus on an internal behavior of an object rep-

resenting a PNtalk class close to a method invocation. This

is depicted at the Figure 6 subscribing with a description,

which has been already depicted there. The letters SC at the

picture means a shortcut of a super class.

B. OOPN-based Modeling

We have dealt with UML modeling of our chosen part

of a system so far. Now we pay attention to OOPN-based

modeling. We create the OOPN model according to previous

diagrams and designed methodology [8].

Figure 7. Class diagram of the PNtalk core in the SBD methodology.

The model consists of three classes (see the Figure 7)—

PNBasicClass representing a data view, PNClass rep-

resenting a view of the OOPN class, and PNSuperClass

representing the first class in the OOPN inheritance hierar-

chy. The first class has a bit different behavior, hence it is

modeled as a special case. The views modeled by classes

PNClass and PNSuperClass represent roles what the

basic subject can play in the system. We can see, that the

inheritance in design is replaced by object composition, each

new view creates a new composition of objects.

superClass

supClass: cc cnoSupClass

c = nil
nil

c ~= nil

methods

findMethod: m named: n

(n, m)

(n, m)

noMethodNamed: n

Figure 8. OOPN model representing the class PNBasicClass.

The Figure 8 shows an object net of the class

PNBasicClass representing a view of data. There are

modeled two places, which store information about the super

class (the place superClass) and defined methods (the

place methods). The super class is always represented

by some of defined view—in this examples it can be

view derived from the class PNClass or PNSuperClass.

There are defined a pair of synchronous port and negative

predicate for each place. Synchronous ports (supClass:

and findMethod:named:) allows for finding and getting

appropriate data, i.e., the super class or method with given

name. If such a method exists (is stored in the place

methods), the object representing such a method is bound

to the variable m and the calling transition is able to work

with it (see the Figure 9). Similarly, if the super class is not

equal to nil and the synchronous port is called, the super

class is bound to the variable c. The negative predicates

(noSupClass and noMethodNamed:) are true if there

is no super class or no method with given name. Of course,

there should be methods for setting the super class and for

adding methods, but they are not shown due to simplicity.

class

n

n

return

m

evokeMethod: n

t1

t2

cls findMethod: m named: n

cls noMethodNamed: n.

cls supClass: supCls

cls

n

m := supCls evokeMethod: n

m

Figure 9. Method evokeMethod: of the view (class) PNClass.

The Figure 9 shows the method evokeMethod:

of the view PNClass, which encapsulates the class

PNBasicClass (the encapsulated object is stored in the

place class). The method has one parameter (a name of

the method, which is to evoked). This method process a

303

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 319 / 612

requirement to a method invocation of OOPN object (and

its relevant OOPN class).

If any OOPN method is invocated, the method

evokeMethod: of the relevant view PNClass is called.

The method is processed as follows. The transitions t1

and t2 are tested. The system of pairs of synchronous

port and negative predicate ensures that just one of these

transition can be fired. If the encapsulated object of the class

PNBasicClass contains a method matching given name

n, the synchronous port findMethod:named:, together

with the transition t1, is fired and the found method (the

object representing the method, respectively) is bound to the

variable m and returned as a result of the method.

If there is no such a method, the negative predi-

cate noMethodNamed: called from the transition t2

is true. After firing this transition, the synchronous port

supClass:, placed as a second condition in the guard,

binds the super class to the variable cls. Then the method

evokeMethod: is called on the super class and its result

is returned.

class

n

n

return

nil

evokeMethod: n

t1 cls

Figure 10. Method evokeMethod: of the view (class) PNSuperClass.

If the view on the super class is derived from the class

PNSuperClass, the search of a method object is unsuccessful

and its method evokeMethod: give back an object nil (see

the Figure 10). There should be only one view derived

from this class representing the first class PN in the OOPN

inheritance hierarchy.

V. CONCLUSION

The paper dealt with formalisms of OOPN, DEVS, and

UML used in the system design. In comparison with UML,

using formalisms of DEVS and OOPN for the architectural

specification decreases a number of communication points

and makes the architectural specification well-arranged.

Moreover, selected models in UML can be transformed

to DEVS component described by OOPN formalisms in a

simple way. The presented approach is a part of the devel-

opment methodology, which allows to use formal models in

all phases of system development including as basic design,

analysis and also programming means with a vision to allow

to combine simulated and real components and to deploy

models as the target system with no code generation. In the

future, we plan to formalize outlined approach and to present

complex case study.

Acknowledgment: This work was partially supported by

the BUT FIT grant FIT-S-11-1 and the Ministry of Educa-

tion, Youth and Sports under the contract MSM 0021630528.

REFERENCES

[1] J. Arlow and I. Neustadt, UML and the Unified Process:
Practical Object-Oriented Analysis and Design. Addison-
Wesley Professional, 2001.

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer-Verlag, 2005.

[3] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi,
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, 2004.

[4] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engi-
neering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute. Kluwer Academic
Publishers, 2005.

[5] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie,
Model Driven Architecture with Executable UML. Cam-
bridge University Press, 2004.

[6] R. Kočı́ and V. Janoušek, “OOPN and DEVS Formalisms
for System Specification and Analysis,” in The Fifth Interna-
tional Conference on Software Engineering Advances. IEEE
Computer Society, 2010, pp. 305–310.

[7] D. S. Frankel, Model Driven Architecture: Applying Mda to
Enterprise Computing, ser. 17 (MS-17). John Wiley & Sons,
2003.

[8] R. Kočı́ and V. Janoušek, “System Design with Object
Oriented Petri Nets Formalism,” in The Third International
Conference on Software Engineering Advances Proceedings
ICSEA 2008. IEEE Computer Society, 2008, pp. 421–426.

[9] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a Com-
puterized Tool for Object Oriented Petri Nets Modelling, ser.
Lecture Notes in Computer Science. Springer Verlag, 1997,
vol. 1333, pp. 591–610.

[10] V. Janoušek and R. Kočı́, “PNtalk Project: Current Research
Direction,” in Simulation Almanac 2005. FEL ČVUT, Praha,
CZ, 2005.

[11] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling
and Simulation. Academic Press, Inc., London, 2000.

[12] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[13] V. Janoušek and R. Kočı́, “Embedding Object-Oriented Petri
Nets into a DEVS-based Simulation Framework,” in Proceed-
ings of the 16th International Conference on System Science,
ser. volume 1, 2007, pp. 386–395.

304

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 320 / 612

Invariant Preservation by Component Composition
Using Semantical Interface Automata

Sebti Mouelhi, Samir Chouali, Hassan Mountassir
Computer Science Laboratory (LIFC),

University of Franche-Comté, Besançon, FRANCE
Email: {sebti.mouelhi, samir.chouali, hassan.mountassir}@lifc.univ-fcomte.fr

Abstract—Component assembly is based on the verification
of the compatibility between the component interface speci-
fications. In general, these specifications do not combine the
three levels of the compatibility check: behavioral protocols,
signatures, and semantics of operations. In this paper, we
enrich the formalism of interface automata, used to specify
component protocols, by the signatures and semantics of
operations. We propose a new formalism, called “semantical
interface automata” (SIAs), endowed with a stronger compo-
sitional semantics than interface automata. The semantics of
operations is specified by pre and post-conditions stated over
their parameters and a set of variables reflecting the behavioral
conduct of components interoperability. First, we show how the
component compatibility is checked at the signature, semantic,
and protocol levels. Second, we establish a formal methodology
to check the preservation of invariants by composition of SIAs.

Keywords-software components; interface automata; action
semantics; formal correctness; invariants.

I. INTRODUCTION

An individual component is a software unit of a third-
party composition and deployment that encapsulates a set of
implemented offered services and asks for a set of required
ones [1]. The component interfaces depict its access points
and it must be associated to a contractual specification that
specify the necessary sufficient of its functional behavior at
the levels of the signatures and the semantics of operations
and the behavioral protocol, etc. [2], [3].

In this paper, we focus on assembling components whose
behaviors are described by interface automata [4] enriched
by the semantics of actions. The new formalism combines
the protocol and the semantic levels of interface specifica-
tions, hence the name semantical interface automata. The
actions of a semantical interface automaton are annotated
by pre and post-conditions stated over the parameters of
their correspondent operations and a set of interface vari-
ables shared by the automaton and its environment. The
compatibility check of SIAs takes into account the action
constraints specified by these conditions. Furthermore, we
found a formal methodology to check correctness properties
thanks to the rich interface description of SIAs. Correctness
properties are typically invariants written in terms of the
interface variables. The invariance properties are assessed at

all the states of a labeled transition system representation of
a SIA. In particular, we study the invariant preservation by
component composition.

The paper is organized as follows. In Section II, we
present the SIAs formalism features and how we check their
composability and compatibility. In Section III, we explain
how LTS representations are extracted from SIAs and how
we check the preservation of invariants by composition
of SIAs. Related works are presented in Section IV. The
conclusion and future works are presented in Section V.

II. SEMANTICAL INTERFACE AUTOMATA

Interface automata (IAs) [4], [5] have been introduced
to model both the output behavior and the environment
assumptions of software components. These models are
non-input-enabled I/O automata [6], which means that at
every state some input actions may be non-enabled. Every
component interface is described by one interface automaton
where input actions are used to model methods that can
be called, the end of receiving messages, and the return
values from such calls, as well as exception treatment.
Output actions are used to model method calls, message
transmissions, exceptions, and sending return values. Hidden
actions represents local operations. The alphabet of an
interface automaton is built of its action names annotated
by “?” for input actions, by “!” for output actions, and by
“;” for hidden actions.

Before defining semantical interface automata, we start
by giving some preliminaries. The signature of an action a
is the signature of its correspondent operation implemented
or solicited by the component that provokes the action. It
has the form a(i1,...,in) → (o) where n ≥ 0. The set P i

a =
{i1, ..., in} represents the set of input parameters of a. The
set P o

a is defined by the singleton {o}. The absence of input
or output parameters is denoted by (). We suppose that an
action has no signature if it corresponds to a return value.

Given a set of components C, a SIA Ac of a component
c in C is defined in relation to the other components in
C\{c}. This relation is based on a set of variables VC
shared between them. We denote, by Dw, the domain of
a variable or a parameter w. Given a set of variables V,

305

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 321 / 612

1 2 3 4

5

login!

notlogged?
logged?

addToPanel!

rentValid?

valdRental!

logout!

addToPanel!

logout!

Client AC

login

notLogged

logged

addToPanel valdRental logout

rentValid

rentNonValid

1 2 3 4 5 6

login?

notLogged!
logged!

addToPanel?

valdRental?

setDuration!

rentNonValid!

rentValid!

logout?

addToPanel?

logout?

Services AS

login

notLogged

logged

logout

addToPanel valdRental setDuration rentValid rentNonValid

Figure 1. The semantical interface automata of the components Client and Services

Preds(V) represents the set of first order predicates whereof
free variables belong to V. We denote by p′ the predicate
obtained by replacing v by v′ in p ∈ Preds(V). The set
Preds′(V) is equal to {p′ | p ∈ Preds(V)}.

Definition 1: Given a component c ∈ C, a semantical
interface automaton Ac = 〈SAc , iAc , ΣI

Ac
, ΣO

Ac
, ΣH

Ac
, δAc ,

LAc
, VAc

, InitAc
, ΨAc

〉 of c consists of

• a finite set SAc
of states containing an initial state iAc

.
A is called “empty” if SA = ∅;

• three disjoint sets ΣI
Ac
,ΣO

Ac
and ΣH

Ac
of inputs, output,

and hidden actions;
• a set δAc

⊆ SAc
× ΣAc

× SAc
of transitions;

• a set LAc
of local variables and a set VAc

⊆ VC of
shared variables. The set LVAc

= VAc
∪LAc

represents
the set of all variables of Ac;

• ΨAc is a function that associates for each action
a ∈ ΣAc

a tuple 〈PreΨAc (a), PostΨAc (a)〉 such that
PreΨAc (a) ∈ Preds(VAc

∪ P i
a) and PostΨAc (a) ∈

Preds(VAc
∪ P i

a ∪ P o
a);

According to Definition 1, the pre and post-conditions are
defined only in terms of parameters and shared variables.
They are used to verify the compatibility of two semantical
interface automata, then they should be defined only on what
is shared between them. The presence of local variables can
be problematic because the local variables of one automaton
are unknown to the others.

Example 1: As an example, we will consider a simple
distributed multi-tier application that allows object leasing
between users. The component Services is a server side
component that plays the role of the mediator between the
Client and the database. It provides the operations login
that returns a reference to a persistent component User
(the output action logged!) that represents the authenticated
user or provokes an exception (notLogged!). It provides
also, for the registered users, the operations addToPanel,
valdRental, and logout. The first method makes an object
to lend in the member panel, the second one validates its
request to rent the objects saved in his panel if the operation
addToPanel is called at least once, and the third one allows
the member logout. The component Services requires the

operation setDuration that affects a default rental duration
for the chosen resource and validates totally the rental
(rentValid!). An exception rentNonValid is detected if the
rental validation cannot be made. In Figure 1, we show the
SIAs AC and AS of the two components Client and Services.

The signatures of Services’s provided operations are lo-
gin(id,pass)→(user), logout()→(), addToPanel(res)→(), val-
idateRental(ren)→(), and setDuration(beg,end)→(). The pa-
rameters id, beg, and end are integers. The parameter pass
is a string. The parameters user, res, and ren, which are
references to the persistent components, are records.

According to AS, Client can make at most two connection
attempts. Elsewhere, the client connections fail. The set C
of components is defined by {Client,Services}. The set of
shared variables VC is defined by {sess,panel}. The variable
sess indicates the status of the client session, and the variable
panel indicates the panel status. We assume that VAC = VAS

= VC , LAC = ∅, and LAS = {satt}. The local variable satt
represents the number of connection attempts accorded to
clients by the component Services. We assume that Dsatt =
N, Dsess = {active,inactive}, and Dpanel = {empty,nonempty}.

The semantics ΨAC
(login) and ΨAS

(login) of the action
login are given in Table I as an example of the action
semantics. �

A. Composability
Before defining the composability conditions of two SIAs,

we introduce the notion of action effects, which are essential
to define the concepts of full and partial control of variables
by a component. Mainly, effects are used later in Section III
to define the LTS representation of SIAs, but we need to
introduce them at this stage to define the criteria by which
the composability of two SIAs can be decided.

An effect of an action intervenes its pre and post-
conditions and changes the values of shared and local
variables because they are needed to check the correctness
properties. We define by ChgAc

: ΣAc → 2LVAc the function
that associates for each a ∈ ΣAc , the set of variables
ChgAc

(a) ⊆ LVAc
modifiable by a.

Definition 2: An effect of an action a is defined by

eAc
(a) =

∨
k≥1

(grdk ∧ cmdk ∧ Unchgk)

306

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 322 / 612

Table I
THE SEMANTICS OF THE SHARED ACTION login

Client AC Services AS

PreΨAC
(login) ≡ id > 0 ∧ 8 ≤ pass.length() ≤ 10 PreΨAS

(login) ≡ id ≥ 1 ∧ 6 ≤ pass.length() ≤ 10
∧ sess = inactive ∧ sess = inactive
PostΨAC

(login) ≡ user.getId() = id PostΨAS
(login) ≡ user.getId() = id

Table II
THE EFFECTS OF ACTIONS IN AC AND AS

Action eAC
eAS

login sess = inactive ∧ Unchanged(LVAC
) sess = inactive ∧ ((satt ≥ 0 ∧ satt′ = satt− 1∧

sess′ = sess ∧ panel′ = panel) ∨ Unchanged(LVAS
}))

notLogged sess = inactive ∧ Unchanged(LVAC
) sess = inactive ∧ Unchanged(LVAS

)
logged sess = inactive ∧ sess′ = active sess = inactive ∧ 0 ≤ satt < 2 ∧ sess′ = active

∧Unchanged({panel}) ∧Unchanged({satt, panel})
addToPanel sess = active ∧ ((panel = vide sess = active ∧ ((panel = vide

∧panel′ = nonvide ∧panel′ = nonvide ∧ satt′ = satt
∧sess′ = sess) ∨ Unchanged(LVAC

)) ∧sess′ = sess) ∨ Unchanged(LVAS
))

valdRental sess = active ∧ Unchanged(LVAC
) sess = active ∧ Unchanged(LVAS

)
setDuration not defined sess = active ∧ panel = nonvide

∧panel′ = vide ∧ satt′ = satt
∧sess′ = sess

rentNonValid not defined sess = active ∧ Unchanged(LVAS
)

rentValid sess = active ∧ Unchanged(LVAC
) sess = active ∧ Unchanged(LVAS

)
logout sess = active ∧ sess′ = inactive sess = active ∧ sess′ = inactive ∧ satt′ = 2

∧Unchanged(LVAC
\ {sess}) Unchanged(LVAS

\ {sess, satt})

such that

• the predicate grdk ∈ Preds(LVAc
), for k ≥ 1, is a one

of the guards of a ;
• cmdk ∈ Preds′(Vk), where Vk ⊆ ChgAc

(a), is a com-
mand predicate defined in terms of primed variables v′

that represents the variables v ∈ Vk after the execution
of a, if grdk is satisfied;

• Unchgk = Unchanged(LVAc
\ Vk) is a predicate

defined in terms of variables in LVAc
\ Vk that still

unchanged after the execution of a. The predicate
Unchanged(V), for a set of variables V, is∧

v∈V
v′ = v.

The pre and post-conditions of an action a are not
sufficient to define the full semantics of an action because
they ignore local variables. The effect eAc(a) of a imposes
guards grdk on the local and shared variables and, for each
guard, defines a modification cmdk on variables LVAc

.

Example 2: Consider the previous example, the effects of
actions in AC et AS are defined in Table II. The reader can
easily deduce ChgAC

and ChgAS
. �

The fully-controlled variables by Ac are the shared vari-
ables in VAc whereof Ac is conscious of all the environment
actions that can modify them. This requirement states that a
specification must include all the actions that can modify its
shared fully-controlled variables. This condition is crucial in

component-based assembly, it ensures that the composite of
two SIAs is consistent with both of them.

The set of partially-controlled variables by Ac are the
shared variables that can be modified by the environment
actions unknown to Ac. We denote by Σext

A = ΣI
A ∪ ΣO

A the
external actions of A.

Definition 3: The set V fc
Ac

of fully-controlled variables by
Ac is defined by {v ∈ VAc | (∀c′ ∈ C \ {c}, a ∈ ΣAc′ | v ∈
ChgAc′

(a) ⇒ a ∈ Σext
Ac

)}. The set of partially-controlled
variables is V pc

Ac
= VAc

\ V fc
Ac

.

Example 3: The variable sess is fully-controlled by AC

and AS . Contrariwise, the variable panel is fully-controlled
by AS and partially-controlled by AC because setDu-
ration /∈ Σext

AC
and it changes the variable (panel ∈

ChgAS
(setDuration)). �

Given two SIAs Ac1 and Ac2 , Shared(Ac1 ,Ac2) = (ΣI
Ac1
∩

ΣO
Ac2

)∪ (ΣI
Ac2
∩ΣO

Ac1
) is the set of shared input and output

actions of Ac1 and Ac2 . The external shared actions should
have the same signatures in both Ac1 and Ac2 .

Definition 4: Two semantical interface automata Ac1 and
Ac2 of two components c1 and c2 in C are composable iff
• ΣI

Ac1
∩ ΣI

Ac2
= ΣO

Ac1
∩ ΣO

Ac2
= ΣH

Ac1
∩ ΣAc2

=

ΣAc1
∩ ΣH

Ac2
= ∅;

• LAc1
∩ LAc1

= ∅;
• ∀a ∈ Shared(Ac1 ,Ac2), φ ∈ IVAc1

∩VAc2
| eAc1

(a) ∧
eAc2

(a) is satisfiable;

307

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 323 / 612

• for all a ∈ Shared(Ac1 ,Ac2) whereof the signature is
given by a(i1,...,in) → (o) in Ac1 and by a(i′1,...,i′n)
→ (o′) in Ac2 for all n ∈ N

– if a ∈ ΣO
Ac1

, then Dik ⊆ Di′k
for 1≤k≤n

and Do ⊆ Do′ ;
– if a ∈ ΣI

Ac1
, then Dik ⊇ Di′k

for 1≤k≤n
and Do ⊇ Do′ .

The composition of two semantical interface automata
Ac1 and Ac2 may take effect if (i) their actions are disjoint
except shared input, output, hidden ones, (ii) their shared
input and output actions have the same effect on variables in
VAc1

∩VAc2
(eAc1

(a)∧eAc2
(a) is satisfiable), (iii) the param-

eter sub-typing [7] property of actions in Shared(Ac1 ,Ac2)
is satisfied, and (iv) their local variables are disjoint.

Example 4: We have Shared(AC ,AS) = ΣAC
. According

to Definition 4 and the indications given in the previous
examples, AC and AS are composable. �

B. Compatibility

The semantical compatibility [8] of external shared ac-
tions and the synchronized product of two composable SIAs
is defined as follows.

Definition 5: Given an action a ∈ Shared(Ac1 ,Ac2), if
one of the following conditions is satisfied then the action a
in Ac1 is semantically compatible with the action a in Ac2 ,
denoted by SCompa(Ac1 , Ac2) ≡ true (false otherwise):

• if a ∈ ΣO
Ac1

, then (1) PreΨAc1
(a) ⇒ PreΨAc2

(a), and
(2) PostΨAc1

(a) ⇐ PostΨAc2
(a),

• if a ∈ ΣI
Ac1

, then (1) PreΨAc1
(a) ⇐ PreΨAc2

(a), and
(2) PostΨAc1

(a) ⇒ PostΨAc2
(a).

We assume that the name of parameters are the same in
the semantics of actions in Ac1 and Ac2 .

The definition of the synchronized product is defined as
follows.

Definition 6: Given two components c1, c2 ∈ C whose the
semantical interface automata Ac1 and Ac2 are composable,
their product Ac1 ⊗Ac2 is defined by

• SAc1⊗Ac2
= SAc1

× SAc2
; iAc1⊗Ac2

= (iAc1
, iAc2

);
• ΣI

Ac1
⊗Ac2

= (ΣI
Ac1
∪ ΣI

Ac2
) \ Shared(Ac1 , Ac2);

• ΣO
Ac1
⊗Ac2

= (ΣO
Ac1
∪ ΣO

Ac2
) \ Shared(Ac1 , Ac2);

• ΣH
Ac1⊗Ac2

= ΣH
Ac1
∪ ΣH

Ac2
∪ {a ∈ Shared(Ac1 , Ac2) |

SCompa(Ac1 , Ac2) ≡ true};
• LAc1

⊗Ac2
= LAc1

∪ LAc2
; VAc1

⊗Ac2
= VAc1

∪ VAc2
;

• ((s1, s2), a, (s′1, s
′
2)) ∈ δAc1

⊗Ac2
iff

– a /∈ Shared(Ac1 , Ac2)∧(s1, a, s′1) ∈ δAc1
∧s2 = s′2,

– a /∈ Shared(Ac1 , Ac2)∧(s2, a, s′2) ∈ δAc2
∧s1 = s′1,

– a ∈ Shared(Ac1 , Ac2) ∧ (s1, a, s′1) ∈ δAc1
∧

(s2, a, s′2) ∈ δAc2
∧ SCompa(Ac1 , Ac2) ≡ true;

• ΨAc1⊗Ac1
is defined by:

– ΨAci
for a ∈ ΣAci

\ Shared(Ac1 , Ac2) for i ∈
{1, 2};

– 〈PreΨAc1
(a),PostΨAc2

(a)〉 for a ∈ Shared(Ac1 ,

Ac2)∩ ΣO
Ac1

such that SCompa(Ac1 , Ac2) ≡ true;
– 〈PreΨAc2

(a),PostΨAc1
(a)〉 for a ∈ Shared(Ac1 ,

Ac2)∩ ΣI
Ac1

such that SCompa(Ac1 , Ac2) ≡ true.

We assume that eAc1
⊗Ac1

is defined by eAc1
(a)∧eAc2

(a)
for all a ∈ Shared(Ac1 , Ac2), by eAc1

(a) for all a ∈
ΣAc1

\Shared(Ac1 , Ac2), and by eAc2
(a) for all a ∈ ΣAc2

\
Shared(Ac1 , Ac2).

The incompatibility between Ac1 and Ac2 is due to (i)
the existence of some illegal states (s1,s2) in the set of
transitions δAc1⊗Ac1

where one of the two SIAs Ac1 and
Ac2 outputs a shared action a from s1, which is not accepted
as input from s2 or vice versa, or (ii) from that states they
synchronize on the action a but SCompa(Ac1 , Ac2) ≡ false.

Definition 7: The set of illegal states Illegal(Ac1 , Ac2) ⊆
SAc1

× SAc2
is defined by {(s1, s2) ∈ SAc1

⊗Ac2
| (∃ a ∈

Shared(Ac1 , Ac2) | (C1 ∨ C2 holds))}

C1 =

(
(a ∈ ΣO

Ac1
(s1) ∧ a 6∈ ΣI

Ac2
(s2)) ∨ (a ∈ ΣO

Ac1
(s1)∧

a ∈ ΣI
Ac2

(s2) ∧ SCompa(Ac1 , Ac2) ≡ false)

)

C2 =

(
(a ∈ ΣO

Ac2
(s2) ∧ a 6∈ ΣI

Ac1
(s1)) ∨ (a ∈ ΣO

Ac2
(s2)∧

a ∈ ΣI
Ac1

(s1) ∧ SCompa(Ac1 , Ac2) ≡ false)

)

The reachability of states in Illegal(Ac1 , Ac2) do not
implies that Ac1 and Ac2 are not compatible. The existence
of an environment E (a semantical interface automaton)
that produces appropriate inputs for Ac1 ⊗Ac2 ensures that
illegal states are not reached. The compatible states, denoted
by Comp(Ac1 , Ac2), are states in which Ac1 ⊗ Ac2 avoids
reaching illegal states by enabling output or internal actions
(optimistic approach) [4].

Definition 8: Ac1 and Ac2 are compatible iff the initial
state of Ac1 ⊗Ac2 is compatible.

The verification steps [4] of the compatibility between
Ac1 and Ac2 without considering the semantics of actions
are listed below.

Algorithm
Input : Two SIAs Ac1 and Ac2 .
Output : Ac1 ‖ Ac2 .
Algorithm steps :

1) compute the product Ac1 ⊗Ac2 ,
2) compute Illegal(Ac1 , Ac2),
3) compute the set of incompatible states in Ac1 ⊗ Ac2 :

the states from which the illegal states are reachable
by enabling only internal and output actions,

4) compute the composition Ac1 ‖ Ac2 by eliminating
from the automaton Ac1 ⊗ Ac2 , the illegal state, the

308

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 324 / 612

incompatible states, and the unreachable states from
the initial state,

5) if Ac1 ‖ Ac2 is empty then Ac1 and Ac2 are not
compatible, therefore c1 and c2 can not be assembled
correctly in any environment. Otherwise, Ac1 and Ac2

are compatible.
Our approach increases the complexity1 of the previous

proposed one by taking into account the semantic com-
patibility check of actions in Shared(A1, A2), whereof the
complexity is determined by the logic and the context
theories within the formulas are defined.

Example 5: According to Table I and II and the previous
definitions and examples, AC and AS are compatible if
SCompa(AC ,AS) ≡ true for all a ∈ Shared(AC ,AS). �

Theorem 1: The composition ‖ between SIAs is a com-
mutative and associative operation.

Proof: The proof is based on that presented in [5] by
considering the action semantics.

III. CHECKING INVARIANCE PROPERTIES

In this section, we found formal methodology to design
and check the correctness properties of semantical interface
automata thanks to their rich semantics based on the use
of variables. The correctness properties, as said in the
beginning of the paper, are invariants. Commonly, specifiers
have to model a system by a transition system to check
invariants and other types of system temporal properties.
The states of a such transition system are associated to
a set of atomic propositions stated on a set of modifiable
variables. Our contribution follows a similar procedure. A
SIA A is translated to a labeled transition system LTS(A)
whose states are the variable valuations. Starting from an
initial valuation, the effects of actions update the variables
and LTS(A) is generated.

A. LTS representation

Before defining the LTS representations of a SIA, we
start by defining some preliminaries. A valuation of a set
of variables V is defined by

φ : V →
⋃

vi∈V
Dvi

that associates to each vi ∈ V a value in Dvi . We denote
by φ〈V ′〉 the restriction of φ to the set V ′ ⊆ V . The set IV
is the set of all possible valuations φ in V. Given an action
a ∈ ΣA, we denote by E(φ, eA(a)) ∈ ILVA

the valuation of
variables LVA after the execution of a for a valuation φ of
LVA.

The LTS representation of a SIA A transforms its set of
transitions to a labeled transition system whereof the states

1The complexity of checking the compatibility between two interface
automata A1 and A2 is in time linear on |A1| and |A2| [4].

belong to ILVA
and the labels are the actions in ΣA. The LTS

representations of SIAs allows the separation between the
task of checking interoperability and that of the correctness
properties check. It’s clear that a SIA has fewer states than
its LTS representation, which allow to reduce the complexity
of the interoperability checking. The LTS representations are
devoted to check correctness properties.

Definition 9: The LTS representation LTS(A) =
〈SLTS(A), ILTS(A), ΣLTS(A), δLTS(A)〉 of a semantical
interface automata A is a labeled transition system defined
by

• SLTS(A) ⊆ ILVA
;

• ILTS(A) = InitA where InitA is the initial valuation of
LVA;

• ΣLTS(A) = ΣA;
• (φ1, a, φ2) ∈ δLTS(A) iff φ1 ∈ ILVA

, for s ∈ SA, a ∈
ΣA(s), and φ2 = E(φ1, eA(a)).

{sess 7→inactive,
panel7→empty}

{sess 7→active,
panel7→empty}

login!

notLogged?

logged!

valdRental!

rentValid?

addToPanel! {sess 7→active,
panel 7→n-empty}

addToPanel!

{sess 7→inactive,
panel 7→n-empty}

login!

notLogged?

logout?

logged!

logout?

Figure 2. The LTS representation LTS(AC) of AC

Example 6: The LTS representation LTS(AC) of the
semantical interface automaton AC of the component
Client is shown in Figure 2 where InitAC

= {sess 7→
inactive, panel 7→ empty}. �

Given two SIAs A1 and A2, the following property
establishes that for each state φ ∈ SLTS(A1‖A2), only the
valuations of fully-controlled variables of both A1 and A2

are the same in A1, A2 et A1 ‖ A2. These variables are
modifiable exclusively by actions in Shared(A1, A2). We
denote by LV fc

A , the set V fc
A ∪ LA of a SIA A.

Property 1: Given W = LVA1‖A2
, V = LV fc

A1
∩ LV fc

A2
,

V ′ = LV fc
A1
∪ LV fc

A2
, V1 = LV fc

A1
\ LV fc

A2
, and V2 =

LV fc
A2
\ LV fc

A1
where A1 and A2 are two compatible SIAs

309

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 325 / 612

and InitA1
〈VA1

∩ VA2
〉 = InitA2

〈VA1
∩ VA2

〉, for all φ ∈
SLTS(A1‖A2), there exists φ1 ∈ SLTS(A1) and φ2 ∈ SLTS(A2)

such that
1) φ〈V 〉 = φ1〈V 〉 = φ2〈V 〉 knowing that (V = LV fc

A1
∩

LV fc
A2

= V fc
A1
∩ V fc

A2
);

2) φ〈V ′〉 is defined as follows : φ〈V 〉 for all v ∈ V ;
φ1〈V1〉 for all v ∈ V1;
φ2〈V2〉 for all v ∈ V2.

B. Invariant specification

Given an LTS representation LTS(A) of a SIA A, we
denote by ϕ[V] ∈ Preds(V), a first order formula whose free
variables belong to V ⊆ LVA. A formula ϕ[V] is satisfied at
the state φ ∈ SLTS(A) iff φ satisfies ϕ[V], i.e., the following
condition is satisfied:

(
∧

v∈LVA

v = φ(v))⇒ ϕ[V].

Definition 10: Given an LTS representation LTS(A) of a
SIA A and a set V ⊆ LVA, an invariant ϕ[V] of LTS(A)
(written LTS(A) |= ϕ[V]) is a first order formula such that
for all φ ∈ SLTS(A), φ〈V 〉 satisfies ϕ[V] (φ〈V 〉 |= ϕ[V])
and φ satisfies ϕ[V] (φ |= ϕ[V]).

Example 7: The predicate ϕ[LVAS
] = ¬(satt = 2 ∧ sess

= active) is an invariant of LTS(AS) shown in Figure 2. �

C. Invariant preservation by composition

The following theorem establishes that only invariants
stated on local and fully-controlled variables can be pre-
served by the LTS representations of the composition A1 ‖
A2 of two compatible SIAs A1 and A2 because they are
aware of all the environment actions that can modify these
variables. An invariant stated on partially-controlled vari-
ables of A1 (resp. A2) cannot be preserved by composition
because it is possible that A2 (resp. A1) modifies the values
by actions unknown to A1 (resp. A2) in such way the
invariant is violated. Corollary 2 can easily be deduced from
that theorem.

Theorem 2 (Invariant Preservation by SIA Composition):
Given two LTS(A1) and LTS(A2) respectively of two
compatibles SIAs A1 and A2 and InitA1

〈VA1
∩ VA2

〉 =
InitA2

〈VA1
∩ VA2

〉, for all ϕ1[LV fc
A1

] and ϕ2[LV fc
A2

], if
LTS(A1) |= ϕ1[LV fc

A1
] and LTS(A2) |= ϕ2[LV fc

A2
], then

LTS(A1 ‖ A2) |= (ϕ1[LV fc
A1

] ∧ ϕ2[LV fc
A2

]).

Proof: We have the following assumptions:
1) ∀φ1 ∈ SLTS(A1) | φ1〈LV fc

A1
〉 |= ϕ1[LV fc

A1
] and φ1 |=

ϕ1[LV fc
A1

];
2) ∀φ2 ∈ SLTS(A2) | φ2〈LV fc

A2
〉 |= ϕ2[LV fc

A2
] and φ2 |=

ϕ2[LV fc
A2

];
We have to prove that, for all φ ∈ SLTS(A1‖A2), φ〈LV fc

A1
∪

LV fc
A2
〉 |= (ϕ1[LV fc

A1
] ∧ ϕ2[LV fc

A2
]) and φ |= (ϕ1[LV fc

A1
] ∧

ϕ2[LV fc
A2

])? According to the property 1(2), we have for
all φ ∈ SLTS(A1‖A2), there exists φ1 ∈ SLTS(A1) and φ2 ∈
SLTS(A2) such that φ〈LV fc

A1
∪ LV fc

A2
〉 is equal to


φ〈LV fc

A1
∩ LV fc

A2
〉 ∀v ∈ LV fc

A1
∩ LV fc

A2
;

φ1〈LV fc
A1
\ LV fc

A2
〉 ∀v ∈ LV fc

A1
\ LV fc

A2
;

φ2〈LV fc
A2
\ LV fc

A1
〉 ∀v ∈ LV fc

A2
\ LV fc

A1
.

We can deduce, according to the property 1(1), that

φ〈LV fc
A1
∪ LV fc

A2
〉 =

{
φ1〈LV fc

A1
〉 for all v ∈ LV fc

A1
;

φ2〈LV fc
A2
〉 for all v ∈ LV fc

A2
.

We have φ1〈LV fc
A1
〉 |= ϕ1[LV fc

A1
] (assumption 1) and

φ2〈LV fc
A2
〉 |= ϕ2[LV fc

A2
] (assumption 2), then we can deduce

that φ〈LV fc
A1
∪LV fc

A2
〉 |= ϕ1[LV fc

A1
] and φ〈LV fc

A1
∪LV fc

A2
〉 |=

ϕ2[LV fc
A2

]. Consequently, φ〈LV fc
A1
∪ LV fc

A2
〉 |= (ϕ1[LV fc

A1
] ∧

ϕ2[LV fc
A2

]) and φ |= (ϕ1[LV fc
A1

] ∧ ϕ2[LV fc
A2

]).

Corollary 1: Given two LTS(A1) and LTS(A2) of two
compatibles SIAs A1 and A2 such that the assumptions of
Theorem 2 are satisfied, for all ϕ[V fc

A1
∩V fc

A2
], if LTS(A1) |=

ϕ[V fc
A1
∩V fc

A2
] and LTS(A2) |= ϕ[V fc

A1
∩V fc

A2
], then LTS(A1 ‖

A2) |= ϕ[V fc
A1
∩ V fc

A2
].

Example 8: The predicate ϕ[LV fc
AS

] = ¬(satt = 2 ∧ sess
= active) is an invariant of LTS(AS). We can deduce that
LTS(AC ‖ AS) |= ¬(satt = 2 ∧ sess = active). �

IV. RELATED WORKS

Luca de Alfaro and al. [9] has proposed “sociable”
interface modules SIMs to specify component interfaces.
The formalism communicates via both actions and shared
variables and the synchronization between actions is based
on two main principles: (i) the first principle is that the same
actions can label both input and output transitions, and (ii)
the second is that global variables can be updated by multiple
interfaces. The authors show that the compatibility and the
refinement check of SIMs can be made thanks to efficient
symbolic algorithms implemented in the tool TICC [10]
(Tool for Interface Compatibility).

The main differences between SIMs and our proposed
approach can be identified in the following points. First, in
SIMs, internal actions are not considered. They concertize
the local behaviors of components and the synchronization
of shared input and output actions. Internal actions are nec-
essary to develop closed systems composed of a prefixed set
of components. They can be also useful when a component
instance is associated with a specific client. For example, the
EJB stateful session beans cannot be composed with many
clients. Shared input and output actions disappear (become
internal) in the composition between a stateful the session
bean instance and its client in such way other clients cannot
be connected to the bean using the same shared actions.
Thus, SIAs can be applied to specify both closed and open

310

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 326 / 612

component-based systems by cons, SIMs are rather relevant
to specify only open systems.

Second, in SIMs, a component could require and offer
the same service (an action can label both input and output
transitions). In our approach, this type of components is not
considered. Furthermore, in our approach, we explicitly de-
fine to what input and output actions correspond (operation
calls, receiving return values, exceptions, etc) which is not
the case in SIMs.

Third, we demonstrate that only invariants stated on
fully-controlled variables (history variables in SIMs) can be
preserved by composition. The authors in [9] do not take
into account this issue. Finally, SIAs unifies the use of oper-
ation parameters and variables to describe the compositional
semantics of components. In addition, we show that we
can separate protocols, used commonly to verify component
compatibility and composition from models used to check
correctness. SIAs (simple states, actions, and semantics)
are used to check the component compatibility and their
LTS representations are used to check correctness properties
preservation by composition.

Ivana Černá and al. [11] have founded “Component-
interaction automata” (CoIN) to reason about the behavioral
aspects of component-based systems by respecting a given
architecture. They also proposed methods to check com-
ponent assembly correctness by verifying properties, like
consequences of operation calls and fairness without using
variables. These properties are expressed in an extended
version of the linear temporal logic called CI-LTL and
verified using model-checking techniques [12].

The approach proposed in [13] is a formal methodology
for describing behavioral protocols of interacting, concurrent
components with data states. The authors describes com-
ponent protocols by means of labeled transition systems,
which specify the scheduling of operation calls and the
data states updates by using of pre and post-conditions.
Furthermore, they endow protocols with a model-theoretic
semantics describing the class of all correct implementations
(refinement) of an abstract protocol.

In [14], the authors have proposed an approach endowing
Sun’s Enterprise JavaBeans (EJB) component by behavioral
protocols. The proposed framework provides a set of mech-
anisms allowing the automated extraction of protocols from
EJB components and the verification of coherence between
these protocols. Protocols are represented by particular la-
beled transition systems.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a formalism based on interface
automata enriched by the use of the action semantics to
describe behavioral protocols of components and to check
their compatibility and safety. In particular, We study the
problem of invariant preservation by composition. In the
future, we intent to adapt the alternating simulation approach

used to refine interface automata to support the treatment
of the action semantics and to ensure the requirement of
invariant preservation also by refinement.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented
Programming. Boston, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[2] D. Konstantas, Interoperation of object-oriented applications.
Hertfordshire, UK: Prentice Hall International Ltd., 1995, pp.
69–95.

[3] P. Wegner, “Interoperability,” ACM Comput. Surv., vol. 28,
pp. 285–287, March 1996.

[4] L. de Alfaro and T. A. Henzinger, “Interface automata,”
SIGSOFT Softw. Eng. Notes, vol. 26, no. 5, pp. 109–120,
2001.

[5] L. d. Alfaro and T. A. Henzinger, “Interface-based de-
sign,” in Engineering Theories of Software-intensive Systems.
Springer, 2005, pp. 83–104.

[6] N. A. Lynch and M. R. Tuttle, “Hierarchical correctness
proofs for distributed algorithms,” in PODC ’87: Proc. of
the 6th ACM Symp. on principles of distributed computing.
New York, USA: ACM, 1987, pp. 137–151.

[7] B. H. Liskov and J. M. Wing, “A behavioral notion of
subtyping,” ACM Trans. Program. Lang. Syst., vol. 16, pp.
1811–1841, November 1994.

[8] S. Heiler, “Semantic interoperability,” ACM Comput. Surv.,
vol. 27, pp. 271–273, June 1995.

[9] L. d. Alfaro, L. D. d. Silva, M. Faella, A. Legay, P. Roy, and
M. Sorea, “Sociable interfaces,” in The Proc. 5th Int. WS.
on Frontiers of Combining Systems, LNAI 3717. Springer-
Verlag, 2005, pp. 81–105.

[10] L. d. Alfaro, L. D. d. Silva, M. Faella, A. Legay, V. Raman,
and P. Roy, “Ticc: A tool for interface compatibility and
composition,” in The Proc. 18th Int. Conf. on Computer Aided
Verification (CAV), volume 4144 of LNCS. Springer, 2006,
pp. 59–62”.

[11] B. Zimmerova, P. Vařeková, N. Beneš, I. Černá, L. Brim,
and J. Sochor, “The common component modeling example.”
Berlin, Heidelberg: Springer-Verlag, 2008, ch. Component-
Interaction Automata Approach (CoIn), pp. 146–176.

[12] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and
P. Šimeček, “Divine - a tool for distributed verification,” in
Computer Aided Verification, ser. LNCS. Springer Berlin /
Heidelberg, 2006, vol. 4144, pp. 278–281.

[13] S. S. Bauer, R. Hennicker, and S. Janisch, “Behaviour pro-
tocols for interacting stateful components,” Electron. Notes
Theor. Comput. Sci., vol. 263, pp. 47–66, June 2010.

[14] A. Farı́as and M. Südholt, “On components with explicit
protocols satisfying a notion of correctness by construction,”
in Confederated Int. Conf. DOA, CoopIS and ODBASE 2002.
London, UK: Springer-Verlag, 2002, pp. 995–1012.

311

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 327 / 612

Method for CMMI-DEV Implementation in

Distributed Teams

Tiago da Cunha Oliveira

Departamento de Engenharia Informática

Instituto Superior Técnico, Universidade Técnica de Lisboa

Lisboa, Portugal

tiagocoliveira@ist.utl.pt

Miguel Mira da Silva

Departamento de Engenharia Informática

Instituto Superior Técnico, Universidade Técnica de Lisboa

Lisboa, Portugal

mms@ist.utl.pt

Abstract—Organizations tend to perform their work in off-

shore sites to become more competitive. But managing these

teams is not an easy task because it is needed a great level of co-

ordination. So, some organizations adopt maturity models as

CMMI-DEV to normalize and coordinate the tasks across the

different sites. But it faces difficulties due to the different work

practices and cultures in the distributed teams, which can imply

a great resistance to change. Thus, when an organization wants to

put their development process in compliance with CMMI-DEV,

we propose that a first assessment should be done by an under-

standing of the development processes in each location, making it

possible to normalize/standardize the work processes with small-

er changes, reducing the cost and resistance to change. This pro-

posal was evaluated by applying these methods in a distributed

organization with two development branches. One branch has

ISO 9001:2008 certification and works in two countries, and the

other branch in three countries. The data below supports the

objectives of our proposal, pointing to a careful analysis of the

different teams, and therefore easier to adopt models such as

CMMI-DEV.

Keywords- Development Process, CMMI-DEV, Geographically

Distributed Teams, Organizational Change.

I. INTRODUCTION

Software projects management has been and remains as one of

the crucial problems of computing. Although there have been

several efforts to make project management more effective

and efficient, it still has several problems such as [1] [2]: ob-

jectives of the project unrealistic or disorganized; inaccurate

estimations of the resources necessary to implement the pro-

ject; requirements of the system ill-defined; weak monitoring

of the status and progress of the project; risks poorly or inade-

quately managed; lack of communication between stakehold-

ers (customers, users and developers); immature use of tech-

nology; lack of capacity to deal with the complexity of the

project; careless and poorly formalized development practices;

poor project management; politics of stakeholders; commer-

cial pressures; inadequate quality control; ineffective control

of change.

In addition to these problems outlined above, organizations

must be much more effective and efficient due to the high

competitive environment in the market where they perform

their work [16].

So, resulting from that fact, a solution that has grown and

tended to become more popular, is the outsourcing of infor-

mation technology services in offshore sites [16]. (According

to an IDC market research report [23], the estimated market

size of IT offshoring reached US$29.4 billion by 2010).

It holds, as the key benefits, the product launch to market

sooner, with lower development costs through access to

skilled manpower and specialized resources [3] [4].

Over the past ten years, emerged a series of facts that must be

taken into consideration when selecting suppliers of computer

services such as [4]:

 Globalization - opening the borders to the interna-

tional market;

 Business environment - growing interest of countries

in developing the economy, creating mechanisms for

attracting foreign investment through tax incentives,

reduction of bureaucracy and building technology

parks;

 Decrease the cost of telecommunications;

 Standardization of methodologies and tools in soft-

ware development.

To these facts, join two more important ones as the large dif-

ference in wages in different locations around the globe to

perform the same function and the increasing standardization

of the culture of companies that are increasingly multinational.

As managers have to make commitments, most often based on

price/quality of service rather than patriotic or emotional fac-

tors, the choice of suppliers began to be increasingly made

outside the country of origin of the company - offshoring [4].

When the managers of organizations opt for the offshoring

choice, they rely on two key factors [5]:

1. Reduction of development costs

2. Rapid increase of skilled labor

Despite all the benefits resulting from offshoring, managing

distributed teams is not an easy task, because these teams fre-

quently suffer crises of trust and coordination problems [12].

312

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 328 / 612

So, many organizations choose to do the alignment between

operations and processes based on maturity models, which

suggest the best practices in the industry, giving the organiza-

tion a competitive advantage [6] [7].

Traditional maturity models as Carnegie Mellon's Capability

Maturity Model Integration (CMMI) [21] help organizations

find their state of optimization, providing a structure that al-

lows alignment between process areas suggested by the model

and process management. CMMI-DEV enables organizations

to achieve a high level of process optimization, following the

goals suggested by the model, considered as best practices

within the development branch. With the adoption of the mod-

el, the organization takes deep knowledge of their processes

and patterns of behavior that should be established [8].

In this paper, we present geographically distributed teams and

organizational change in distributed team’s related work.

Thereon, we approach the problem of CMMI-DEV implemen-

tation in distributed teams, and its resolution proposal. Addi-

tionally, we will be present and evaluate the preliminary re-

sults in an organization that has its workforce distributed, by

the application of the proposal.

II. RELATED WORK

Aiming to achieve a better control, coordination and monitor-
ing, a first analysis of the distributed teams and the organiza-
tional changes is in order. To point out the main details, issues
and implications became our main goal in Section II.

A. Geographically Distributed Teams

These teams are located in countries where manpower is
cheaper, usually with additional time zone with the country of
origin of the organizations in order to take advantage of 24
hours of daily work [9].

The distributed teams were the result of globalization, but this
has no implication as the standardization of cultures, as they
continue to be diversified with different values and beliefs that
result in different behaviors [11]. Since organizations are de-
pendent on people, all these differences in the context of dis-
tributed teams become of utmost importance when one wants
to maximize and make use of distributed teams to a competi-
tive advantage [11].

Organizations must cope with challenges such as conflicts aris-
ing from their employment relationship between their teams.
Conflicts at the completion of tasks [13] are due to differing
views and opinions regarding the tasks of the team. These reso-
lutions are more complicated due to lack of physical meetings,
which means that the agreement between different views is
complicated due to limitations in terms of trust arising from the
singularities of distributed teams [10] Conflicts also arise in
terms of processes [13], i.e., teams use different ways of work-
ing to accomplish the same result.
Hence, understanding the differences urges as an extreme need
in the help in improving relations of trust between teams [11]
this understanding should be done by [12]:

 Sharing identity, so that the effects of geographical
dispersion are reduced

 Sharing context, i.e., the team members can access

the same information, using the same tools

 Possibility of spontaneous communication through

access to tools [10] that allow informal, unplanned

interactions between members, thereby strengthening

the relations of trust [14].

Understand and respect the particularities of the distributed

teams is essential to get the maximum benefits and reduce its

complications and shortcomings. The problems that most

commonly affect these teams are not technical problems as

they become salient faster than the non-technical [15].

B. Organizational Change in Distributed Teams

The CMMI-DEV can have implications as a process of

change, since there may have to be redefinitions of procedures

performed, in order to conform to the model.

This process of change reaches further complexity in the con-

text of offshoring, i.e., put all organizational units under the

objectives suggested by the model. Once alone, the offshoring

originates process of change [17].

The framework of change processes must be studied very

carefully as they can be influenced by three contexts that in-

fluence change in organizations [17]:

 External Context: Factors of legislation, commercial

and social

 Internal Context: social aspects of the organization,

technical infrastructure, management style

 Individual Background: actors who develop their

roles in the organization with their views of working

methods.

So it has to be taken into account in the phenomena of change,

the surrounding environment, processes and people in order to

avoid negative aspects for the organization and for business.

Understanding this framework of change processes is im-

portant for this to an end, thus reducing the resistance to

change that tends to increase with the number of different or-

ganizational units. (Figure 1)

Figure 1 - Relation between the change resistance impact with the number of

different locations

During the process of change there are other factors (hard fac-

tors) also important to be taken into consideration [18]:

313

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 329 / 612

 Duration: The time it takes for the changing process

to be implemented

 Integrity of the performance of the development team

to complete a task on time. This factor depends on

the skills of employees in respect of a project compo-

nent

 Commitment among top managers and employees af-

fected by the change

 Efforts caused by the change process

All these factors must be taken into account, since the inten-

tion is that the change generated by the adoption of CMMI-

DEV is less abrupt as possible so that implementation is done

with greater adherence by all participants in the process, in

order to reduce resistance to change.

III. PROBLEM

To take advantage from offshoring, organizations must have an

effective coordination in the different locations, which have

great influence on productivity and performance [24].

There are different opinions related with the coordination be-

tween these teams. One relates with standardization of process-

es to reduce the conflict and differences between the sites, and

another, which refers that its normalization can generate suspi-

cion and resentment at offshore sites embedded in different

cultures and ways to execute their work.

So, there are organizations, which adopt CMMI-DEV to be

enabled to benefit from greater control, coordination and moni-

toring, resulting in improvements in the development process

[5]. However, this model still suffers from significant short-

comings regarding the best practices that should be followed to

organizations whose work focus is based on distributed teams

[6].

When an organization decides to adopt CMMI-DEV has to be

very careful, as its adoption usually involves a standardiza-

tion/normalization of processes. However, the maturity mod-

els are poorly adapted to the reality of offshoring [6], and it

might not make sense that distributed teams run processes in

the same way as they have different frameworks. From these

frameworks emerge some of the limitations of offshoring as

[6] [16] [22]:

 Difficulty for clarification of requirements for lack of

physical meetings;

 Failure of coordination due often to failures of com-

munication;

 Large differences in experience among staff, with

implications on the performance of the project;

 Time zone Difference, which can influence the time

to solve problems;

 Different infrastructures, such s unstable Internet

connections or electricity;

 Cultural differences.

Some of the problems posed by distributed teams still do not

have the best response from the CMMI-DEV, such as the lack

of communications in person, redundant information, lack of

motivation, conflict resolution. This model is still based on

traditional working practices and does not take into account the

growing trends of global organizations and distributed teams

[6]. The adoption of CMMI-DEV can imply the existence of

organizational change processes, difficult to manage.

In the different locations, there are various formal and informal
rules that have predominance in the interaction of the work-
space, since there may be differences in organizational politics,
in government legislation for human resources, stability and
efficiency in economic and political environment. These fac-
tors are often not taken into account, since what usually hap-
pens is the definition of new processes without giving suffi-
cient attention to its implementation, hoping that the new pro-
cedures and technologies make by themselves the change of
processes. This situation means that there is misalignment,
since the teams change their practices but not its definition. The
resultant misalignments of these facts make it difficult to share
the best practices across the organization.

The problem arises since the adoption of CMMI-DEV already
tends to standardize the business processes, which in a distrib-
uted organization with various implementations of the same
process, face great resistance to change (Figure 2).

Figure 2 - Applying CMMI-DV in different locations

IV. PROPOSAL

We believe that only through a detailed analysis of the particu-

larities of each of the distributed teams, understanding their

differences, taking advantage of its strengths and identifying

its limitations, we are able to first know their work processes,

to boost and improve them afterwards.

Understand the current processes of the teams also allows to

assess the level of adherence that their methods of work al-

ready have with the CMMI-DEV model, thereby finding the

areas in, which no change is necessary, reducing the difficul-

ties inherent in the processes of change. So our objective is to

archive a great level of coordination between the different

sites, based in the model CMMI-DEV, but respecting the local

work processes and cultures.

Thus, in order to meet the objectives outlined above this paper

proposes a method to implement CMMI-DEV trying to keep

the various implementations of processes in the distributed

organization, reducing risks and costs of implementation. It is

314

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 330 / 612

also expected a decrease in resistance to change by stakehold-

ers in the processes.

To evaluate this proposal, it will be use in an organization that

works with teams distributed in Canada, Guatemala, Portugal

and India and wants to implement CMMI-DEV.

V. PRELIMINARY RESULTS

Under this project, some work was already done in order to

better understand the processes undertaken in an organization

that uses distributed teams. This organization intends to evalu-

ate and put their processes in accordance with CMMI-DEV, so

they can improve their work processes and have a better coor-

dination and control between the different sites. The choice

stood by this model because, in their opinion, it is the most

famous in development area and with better known results.

In this company there are two distinct branches of develop-

ment. One (branch A), which makes maintenance and minor

improvements to an old product, and is certified with ISO

9001:2008 headquartered in Canada, with team members also

in Portugal. The software development is done between Portu-

gal and Canada, the definition of requirements and quality

analysis is performed in Canada. There is another (branch B)

to develop a product, which is not yet in production with the

software development done in Guatemala, Portugal and India,

with the respective definition of requirements and quality

analysis performed in Guatemala.

Thus, in an early stage of this work, there was an incorpora-

tion in the team of internal auditors of ISO 9001:2008 of the

organization, This analysis led to better understand the pro-

cesses carried out and based on existing work in the area done

by Mutafelija and Stromberg [19] [20] it was possible to per-

form a mapping between the ISO 9001:2008 and CMMI-DEV

1.3. This mapping aims the notion of taking advantage of the

resources and synergies between the two models, having no

influence in the SCAMPI of the CMMI-DEV.

There was thus a first survey of the faults to cover so that the

branch (A) can converge with CMMI-DEV model. An exam-

ple of the mapping between ISO 9001:2008 and CMMI-DEV

is in Table 1, with the process area project planning.

TABLE 1- GAP IDENTIFICATION BASED ON ISO/CMMI-DEV MAPPING

Project Planning

 Required Improvement based on Typical work
products suggested by CMMI documentation.

SG 1 – Establish Estimates

SP 1.1 - Estimate the

Scope of the Project

Task descriptions;

Work package descriptions; WBS;

SP 1.2 Establish Estimates

of Work Product and Task

Attributes

Technical approach;
Size and complexity of tasks and work prod-

ucts;

Estimating models;
Attribute estimates

SG 2 – Develop a Project
Plan

SP 2.2 Identify Project

Risks

Identified risks;
Risk impacts and probability of occurrence;

Risk priorities;

SP 2.3 Plan for Data Man-

agement

Data management plan;

Master list of managed data;
Data content and format description;

Data requirements list for acquirers and for

suppliers;
Privacy requirements;

Security requirements;

Security procedures;
Mechanism for data retrieval, reproduction, and

distribution;

Schedule for collection of project data;
Listing of project data to be collected;

SP 2.5 - Plan for Needed

Knowledge and Skills

Inventory of skill needs;

Staffing and new hire plans;

Databases (e.g., skills and training);

SP 2.6 - Plan Stakeholder

Involvement

Stakeholder involvement plan

SG 3 – Obtain Commit-
ment to the Plan

SP 3.1 Review Plans That

Affect the Project

Record of the reviews of plans that affect the

project

SP 3.2 Reconcile Work

and Resource Levels

Revised methods and corresponding estimating

parameters (e.g., better tools and use of off-the-

shelf components)
Renegotiated budgets

Revised schedules

Revised requirements list
Renegotiated stakeholder agreements

SP 3.3 Obtain Plan

Commitment

Documented requests for commitments
Documented commitments

In branch B, for each process area there has been made a first

survey of the practices, which are followed, against the specif-

ic practices of CMMI-DEV in order to have a first iteration of

the flaws to cover. This work was already made to all process

areas of CMMI level 2. Please note that this survey of flaws is

based on interviews with top managers.

An example of this more detailed survey for Project Planning

is in Table 2.

TABLE 2- GAP IDENTIFICATION BASED ON INTERVIEWS WITH TOP MANAGERS

OF THE ORGANIZATION

Project Planning

 Required Improvements

SG 1 – Establish Estimates

SP 1.1 – Estimate the Scope of the project Stakeholder Form; Mile-
stones Form;

Meetings Form

SP 1.2 – Establish Estimates of Work Prod-
uct and Task Attributes

Metrics Spreadsheet

SP 1.3 – Define Project Lifecycle Phases In conformity

SP 1.4 – Estimate Effort and Cost In conformity

SG 2 – Develop a Project Plan

315

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 331 / 612

SP 2.1 – Establish the Budget and Schedule Schedule and Project Cost

Form

SP 2.2 – Identify Project Risks Risks Form

SP 2.3 – Plan Data Management In conformity

SP 2.4 – Plan the Project’s Resources Needed Ressources Form

SP 2.5 – Plan Needed Knowledge and Skills Employees Skills Form;
Relation Skills/Needed Re-

sources Form

SP 2.6 – Plan Stakeholder Involvement Involvement Plan

SP 2.7 – Establish the Project Plan In conformity

SG 3 – Obtain Commitment to the Plan

SP 3.1 – Review Plans That Affect the Pro-

ject

Revision Plans Definition

SP 3.2 – Reconcile Work and Resource

Levels

In conformity

SP 3.3 – Obtain Plan Commitment Establish commitments

Based on mapping already done by Mutafelija and Stromberg,

for each section of ISO there were a percentage of conformity

related with the specific practices of CMMI-DEV (0%, 30%,

60% and 100%). So, our analysis of the branch A, based on

this mapping, applies for the branch B, since the assessment

was supported with the same percentages, resulting the follow-

ing graphics.

The graphic below (Figure 3) is an example of the conformity

analysis that the two branches have with each of the process

areas, based on the assessment done, so, it was possible to

know how far away each branch is to have their processes in

compliance with CMMI-DEV.

Figure 3- Percentage of confrmity with the process area project planning

VI. EVALUATION

In this first analysis of a case of practical application of our

proposal, it was possible to make a first evaluation.

Although the two branches of the same organization make

development and want to adopt the same CMMI-DEV model

across the organization, both branches and the teams are very

different and work in dissimilar way.

This fact is a result not only from the particularities of the dis-

tributed teams, which have been discussed in this report but

also from other factors more related to their work processes.

Therefore, the initial factor, with a branch certified ISO

9001:2008 and the other not, raises great differences with re-

gard to working methods. The adoption of CMMI-DEV, alt-

hough not directly, allows it to become easier through the

work already done, the mapping between ISO-CMMI (Figure

4).

Figure 4- Total percentage of conformity with CMMI-DEV level 2

It was also possible to denote that although a branch being

certified ISO 9001:2008, is not, in some cases, closer to the

objectives of the model CMMI-DEV (Figure 5). We can, for

example, remove that stance from the tables of preliminary

results section, noting that the SP 2.3, which has no ISO

9001:2008 certification in the branch, already is consistent

with the model, while the other branch certified resulting from

the analysis made of the mapping done with CMMI-DEV, has

some flaws that should be covered.

Figure 5- Percentage of conformity for each specific practice in process area

project planning

Another factor that makes completely different the work prac-

tices is related to the development of the products of these two

branches, which use different processes and tools. Conse-

quently, its development cycle has also wide disparities in

both the type and the manner of tasks to perform.

VII. CONCLUSION

This study proposed a method to evaluate the compliance that

an organization has with CMMI-DEV, to enable their easier

implementation in the nearest future. We propose that the dif-

ferences between sites should be taken into account, respect-

ing the distributed practices and culture, reducing the conflict

between the various processes performed by geographically

distributed teams. These allow a better knowledge of organiza-

tional processes, often unknown by top managers. This

knowledge is essential to an organization in order to define the

adjustments to apply to their processes.

316

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 332 / 612

So, in our work we study an organization with distributed

teams. First it was done an assessment to know the compliance

or each branch with CMMI-DEV, and after that there were

proposed improvements to the processes, in order for them to

be in accordance with the model.

Thus, it is expected that the proposed method contributes to

solving the problem of organizational adaptability to CMMI-

DEV. Expected to reduce the impact of the change processes

through a deep understanding of current processes of the or-

ganization, allowing us to find the flaws in order to develop an

action plan. It is believed that this would make the compliance

with CMMI–DEV easier to implement even in work per-

formed with resource to distributed teams.

REFERENCES

[1] Charette, R.N., 2005, Why Software Fails. Journal IEEE Spectrum,
Volume 42, Number 9

[2] Jones, C., 2004, Software Project Management Practices: Failure Versus
Success, Crosstalk, Citeseer Volume 17, Number 10

[3] Rao, N.M., 2009, Challenges in Execution of Outsourcing
Contracts,Proceedings of the 2nd India Software Engineering
Conference, ACM, 75-79

[4] Blinder, A.S., 2006, Offshoring: The Next Industrial Revolution?,
Foreign affairs, Volume 82, Number 2, 113-128

[5] Carmel, E. and Agarwal, R., 2002 Tactical Approaches for Alleviating
Distance in Global Software Development, Journal IEEE, Volume 18,
Number 2, 22-29

[6] Azderka, M. and Grechenig, T., 2009, Project Management Maturity
Models: Towards Best Practices for Virtual Teams, Engineering
Management Conference, 2007 IEEE International, 84-89

[7] Jugdev, K. and Thomas, J., 2002,Project Management Maturity Models:
The silver Bullets of Competitive Advantage, Project Management
Journal, Volume 33, Number 4, Proquest ABI/INFORM, 4-14

[8] Wang, Q. and Li, M., 2006, Software Process Management: Practices in
China, Unifying the Software Process Spectrum, Springer, 317-331

[9] Edwards, H.K. and Sridhar, V., 2003, Analysis of the Effectiveness of
Global Virtual Teams in Software Engineering Projects, IEEE Computer
Society

[10] Al-Ani, B. and Redmiles, D., 2009, Supporting Trust in Distributed
Teams Through Continuous Coordination, IEEE Software, Volume 99,
Number 1, 35-40

[11] Siakas, K., Maoutsidis, D. and Siakas, E., 2006, Trust facilitating good
software outsourcing relationships, Springer, 171-182

[12] Hinds, P.J. and Mortensen, M., 2005, Understanding conflict in
geographically distributed teams: The moderating effects of shared
identity, shared context, and spontaneous communication, Organization
Science, Volume 16, Number 3,Institute for Operations Research and
the Management Sciences, 290-307

[13] Huang, H. and Ocker, R, 2006,Preliminary Insights Into the In-
Group/Out-Group Effect in Partially Distributed Teams: An Analysis of
Participant Reflections, Proceedings of the 2006 ACM SIGMIS CPR
Conference on Computer Personnel Research: Forty Four years of
computer personnel research: achievements, challenges in the future,
ACM, 264-272

[14] Suchan, J. and Hayzak, G., 2002, The Communication Characteristics of
Virtual Teams: A case study, vol 44, Number 3, IEEE, 174-186

[15] Akbar, R. and Hassan, M.F., 2010, Limitations and Measures in
Outsourcing Projects to Geographically Distributed Offshore Teams,
2010 International Symposium in Information Technology
(ITSim),Volume 3, IEEE, 1581-1585

[16] Chatfield, A.T. and Wanninayaka, P., 2008, IT Offshoring Risks and
Governance Capabilities, IEEE Computer Society

[17] Ramanathan, TR., 2009, The Role of Change management in
Implementing the Offshore Outsourcing Business Model: A Processual
View

[18] Sirkin, H.L., Keenan, P., and Jackson, A., 2005, The Hard Side of
Change Management,Harvard Business Review, Volume 83, Number 10

[19] Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S. and Wu, C., 2006,
A Unified Model for the Implementation of Both ISO 9001: 2000 and
CMMI by ISO-Certified Organizations, Journal of Systems and
Software, Volume 7, num 7, Elsevier, 954-951

[20] Mutafelija B. and Stromberg H., 2009 Mappings of ISO 9001:2000 and
CMMI Version 1.2

[21] CMMI Produt Team., 2010, CMMI for Development , Version 1.3
(available online at http://www.sei.cmu.edu/reports/10tr033.pdf ,
accessed in May 2011)

[22] Guzman, G., Ramos, S., Seco, A. and Esteban, S., 2010, How to Get
Mature Global Virtual Teams: A Framework to Improve Team Process
Management in Distributed Software Teams Volume 18, Number 4,
Software Quality Journal, Springer, 409-435}

[23] IDC. IDC Executive Market Watch Market Research, 2006 available at
http://cdn.idc.com/uk/downloads/events/idc_executive_market_watch.pd
f , accessed in May 2011).

[24] Sidhu, J.S. and Volberda, H.W.2011, Coordination of globally
distributed teams: A Co-Evolution Perspective on Offshoring,
International Business Review, Elsevier

317

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 333 / 612

Advanced Object Oriented Metrics for Process Measurement

Shreya Gupta

Indian Institute of Information Technology

Deoghat, Jhalwa, Allahabad, India

gupta.shreya29@gmail.com

Ratna Sanyal

Indian Institute of Information Technology

Deoghat, Jhalwa, Allahabad, India

rsanyal@iiita.ac.in

Abstract— Process improvement requires measurement of

specific attributes of process. Measurement of a process gives

us a clear insight into the system. It provides effective ways of

estimation and evaluation. Then, it is essential to develop a set

metrics covering the attributes. Computed measures are used

as indicators for process improvement areas. These indications

if incorporated into the software development, will lead to

development of an effective and reliable system. Mood metrics

has defined some indicators for inheritance like Attribute

Inheritance Factor (AIF), Method Inheritance Factor (MIF),

and for hiding are Attribute Hiding Factor (AHF), Method

Hiding Factor (MHF). We are proposing extensions to these

metrics. These extensions are more specific and give a better

hint towards inheritance and hiding properties.

Keywords-Mood Metrics; Attribute Inheritance Factor;

Method Inheritance Factor; Attribute Hiding Factor; Method

Hiding Factor.

I. INTRODUCTION

Object orientation aims to model a system [1]. They
reflect a natural view and understanding of the system.
Using object modeling, a system is represented as number
of objects and their interaction. Objects are categorized into
classes along with their respective behavioral properties [2].
Inheritance provides the facility for classes to inherit the
behavioral properties of other classes. Encapsulation
packages functions and data in a class. Representing
essential features with exclusion of background
explanations is called abstraction [3].

Object Oriented Software Paradigm gives the way for
effective reuse of program components. The process of
reuse expedites the software development and thereby
resulting in high quality work in minimum time. They are
easy to understand, adapt and scale because of modular
structure, relatively low coupling and high cohesion. Merely
applying object oriented programming will not reap great
results. It is the combination of object oriented domain
analysis, requirement analysis, object oriented design,
database systems and computer aided software engineering
that will lead to best results.

If software is developed without any proper
measurement activities, the resulting product could be
unreliable, inefficient and non-maintainable. We need to
realize the ideology that software needs to be engineered.
For this, standard engineering principles and guidelines are

to be established. Software metrics come into play as
quantify the attributes in the development. Errors undetected
in a development phase are passed in the next phase.
Relative cost of fixing it increases many times. Therefore,
tracing errors early in lifecycle and fixing them are
essential.

Second section describes the prior work in the field of
software metrics particularly C.K. Metrics and Mood
metrics. Since the research paper is proposing an extension
to the AIF, MIF, AHF and MHF, a detailed explanation of
these metrics has been provided with reference to published
research papers. Third section of the paper proposes the
extension to AIF, MIF, AHF and MHF computation along
with the extended formulas for the same. Fourth section is
Result and Analysis section for AIF, MIF, AHF and MHF,
considering a system and showing the variation in values
obtained by the original formulas and the extended ones.
Furthermore, a case study has been taken to validate the
results of these metrics.

II. PRIOR WORK

Six software metrics were proposed for object oriented
design, known as C. K. Metrics [4]. These metrics are
Response of a Class (RFC), coupling between the objects
(CBO), Weighted Methods per Class (WMC), Number of
Children (NOC), Lack of Cohesion Methods (LCOM) and
Depth of Inheritance Tree (DIT). The empirical evidence
specifies how object oriented metrics determine software
defects is described [5].

Mood Metrics (Metrics for Object Oriented Design)
were proposed by Abreu as described [6]. These metrics aim
to evaluate object oriented principles in the software code. It
considers inheritance factor which computes attribute
inheritance factor and method inheritance factor,
encapsulation factor which computes attribute hiding factor
and method hiding factor. All of these metrics result in the
probability value between 0 and 1.

In the following subsections, we have explained and
mentioned the formulas of the existing parts of MOOD
metrics.

A. Attribute Inheritance Factor (AIF)

Attribute Inheritance Factor (AIF) is the ratio of two
measurements. Numerator represents the sum of number of
inherited attributes of all classes in system and denominator
represents sum of number of available attributes which may

318

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 334 / 612

be local or inherited for all classes in system. It expresses
the level of reuse in the system. A threshold is maintained
for AIF measure that is roughly around 50%. Higher values
of AIF indicate high inheritance level thereby leading to
greater coupling and reducing the possibility of reuse.
MOOD Metrics propose the computation of AIF [6] as
given below:

AIF = 


TC

i

ii CA
1

)(/ 


TC

i

ia CA
1

)((1)

where Aa(Ci) = Ad(Ci) + Ai(Ci)
Ai (Ci) is the count of attributes that are inherited.
Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier.
Aa(Ci) is the count of attributes that can be referenced by
class Ci

TC - total count of classes in system/ package.

B. Method Inheritance Factor (MIF)

Method Inheritance Factor (MIF) is the ratio of two
measurements. Numerator represents the sum of number of
inherited methods of all classes in system and denominator
represents sum of number of available methods which may
be local or inherited for all classes in system. Method
Inheritance Acceptable range is 20% to 80%. It highly
depends on the design pattern that we follow. High values of
MIF indicate superfluous inheritance and low values
indicate heavy use of overrides or lack of inheritance.
MOOD Metrics propose the computation of MIF [6] as
given below:

MIF = 


TC

i

ii CM
1

)(/ 


TC

i

ia CM
1

)((2)

where Ma(Ci) = Md(Ci) + Mi(Ci)
Mi (Ci) is the count of methods that are inherited. These
methods should not be overridden.
Md (Ci) is the count of defined non-abstract methods. These
methods can be of any access modifier.
Ma (Ci) is the count of methods that can be called by class
Ci.
TC - total count of classes in system/ package.

C. Attribute Hiding Factor (AHF)

AHF measures the extent of encapsulation of attributes
in a system. Firstly, it will calculate the visibility of each
attribute with respect to each class. Visibility function
assigns 1 for each class, if the attribute is visible from those
classes and 0 if not visible. Visibility measure for class in
which attribute is present itself is considered to be 0. It sums
up the visibility for a particular attribute and then divides by
the (total no. of classes minus 1). Likewise, the visibility of
each attribute is calculated and then values are substituted in
AHF formula. Thus, AHF represents the average amount of
hiding of attributes among all classes in system. Visibility of
private attributes is always zero. Protected attributes act as a
public attribute in the package to which the attribute
belongs, and are visible only in the subclasses in other

packages. Public attributes are visible to all classes in the
system. If all the attributes are private, then AHF=100% and
if all the attributes are public, AHF is 0%. MOOD Metrics
propose the computation of AHF [6] as given below:

AHF = 


)(

11

CiAd

m

TC

i

(1-V(Ami)) / 


TC

i

id CA
1

)((3)

where

V(Ami) = 


TC

i

jmi CAvisibleis
1

),(_ / (TC – 1)

and

is_visible(Ami,Cj)=







 

otherwise

AreferencemayCandijiff mij

 0

 1

Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier. They should not be inherited
ones.

D. Method Hiding Factor (MHF)

It measures the extent of encapsulation of methods in a
system. Firstly, it will calculate the visibility of methods
with respect to each class. Visibility function assigns 1 for
each class, if the method is visible from those classes and 0
if not visible. Visibility measure for the class in which
method is present itself is considered to be 0. It sums up the
visibility for a particular method and then divides by the
(total no. of classes minus 1). Likewise the visibility of each
method is calculated and then values are substituted in MHF
formula. Thus, MHF represents the average amount of
hiding of methods among all classes in system. Visibility of
private methods is always zero. Protected methods act as a
public method in the package to which the method belongs,
and are visible only in the subclasses in other packages.
Public methods are visible to all classes in the system. If all
the methods are private, then MHF=100% and if all the
methods are public MHF is 0%. MOOD Metrics propose the
computation of MHF [6] as given below:

MHF = 


)(

11

CiMd

m

TC

i

(1-V(Mmi)) / 


TC

i

id CM
1

)((4)

where

V(Mmi) = 


TC

i

jmi CMvisibleis
1

),(_ / (TC – 1)

and

is_visible(Mmi,Cj)=







 

otherwise

MreferencemayCandijiff mij

 0

 1

Md(Ci) is the count of methods and constructors. These
methods can be of any access modifier. They should not be
abstract or inherited.

319

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 335 / 612

III. PROPOSED EXTENSION

A. Extension in AIF and MIF

Problem with the AIF/MIF formula is that it considers
the count of members a class can reference in a system or a
package. But, when we calculate AIF/MIF for each class,
members outside the class (except for the members that are
inherited) are not to be considered. Justification is that
denominator of the formula of AIF and MIF states that
“Total no. of members that a class Ci can reference”, all the
members that are public can be referenced by a class, no
matter whether it is in its same package or outside the
package. Even protected members act as public members in
their own package. Thus, while calculating AIF, MIF the
count of uncoupled members in the denominator should not
be considered, because access to public, protected members
does not reflect the measure of inheritance factor.

Thus, an extension to the empirical formula is proposed
by us. For denominator, consider the members of ancestor
classes of class Ci and the members defined inside class Ci
only.If a class “x” is present in same package as that of class
Ci and has public members, but has no interaction with the
class Ci, then members of class “x” are not considered.

When a class inherits considerable number of members
from the ancestor classes, it will contribute to a high
measure of AIF, MIF. When a class redefines the ancestor
members and adds the new members will always contribute
to a low measure of AIF, MIF. The extended equation for
AIF is given below:

AIF extended = 


TC

i

ii CA
1

)(/ 


TC

i

iex CA
1

)(

 (5)

where Aex(Ci) = Ad(Ci) + Ai(Ci)

Ai (Ci) is the count of attributes that are inherited.
Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier.
Aex(Ci) is the extended variable. It is the count of attributes
that can be referenced by class Ci considering the attributes
of ancestor classes of class Ci and the attributes defined
inside class Ci only.

The extended equation for MIF is given below:

MIF extended = 


TC

i

ii CM
1

)(/ 


TC

i

iex CM
1

)(

(6)

where Mex(Ci) = Md(Ci) + Mi(Ci)

Mi(Ci) is the count of methods that are inherited. These
methods should not be overridden.
Md(Ci) is the count of defined non-abstract methods. These
methods can be of any access modifier.

Mex(Ci) is the extended variable. It is the count of methods
that can be called b class Ci considering the methods of
ancestor classes of class Ci and the methods defined inside
class Ci only.

Thus, AIF extended and MIF extended give an accurate
idea about the actual level of inheritance that exists in the
code. If the level of inheritance is high, then it is a hindrance
to the reusability, maintainability and understandability of
system. It will be difficult to reuse the modules of code into
some other system because of its dependency on other
modules.

B. Extension in AHF and MHF

Original AHF equation consists of visibility function
that checks that if class may reference the attribute in
consideration. But, in the extension that I have proposed, it
checks whether actually the class has referenced the
attribute or not. This extension in AHF is more specific in
nature and gives a clear hint of the hiding factor. It also
checks for a good design characteristic that attributes of a
class should accessed by methods of the class only. If they
are directly accessed by the objects of some other class, then
design is not stable. The extended equation for AHF is
given below:

AHF extended= 


)(

11

CiAd

m

TC

i

(1-V(Aex)) / 


TC

i

id CA
1

)((7)

where

V(Aex) = 


TC

i

jex CAvisibleis
1

),(_ / (TC – 1)

and

is_visible(Aex,Cj)=







 

otherwise

AreferencedidCandijiff mij

 0

 1

Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier. They should not be inherited
attributes.

Original MHF equation consists of visibility function
that checks that if class may reference the method in
consideration. Same extension goes with MHF. We check
whether actually the class has referenced the method or not.
The extended equation for MHF is given below:

MHF extended = 


)(

11

CiMd

m

TC

i

(1-V(Mex)) / 


TC

i

id CM
1

)((8)

where

V(Mex) = 


TC

i

jex CMvisibleis
1

),(_ / (TC – 1)

 and

320

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 336 / 612

 is_visible(Mex,Cj)=







 

otherwise

MreferencedidCandijiff mij

 0

 1

Md(Ci) is the count of methods and constructors. These
methods can be of any access modifier. They should not be
abstract or inherited.
TC - total count of classes in system/ package.

Thus, AHF extended and MHF extended propose a
change in the visibility function of their respective
calculations. This visibility function ensures that whether
the members of a class have been actually referenced by
outside members or not. This helps us in understanding the
amount of abstraction in the system thereby giving clarity in
estimation of actual hiding factors.

IV. RESULTS ANALYSIS

To demonstrate the variation in AIF and AIF extended
values, MIF and MIF extended values, we have used a small
example considering a design for university database.

Figure 1. University Database

We have calculated the AIF values [6] and proposed
extended AIF for each class as well as MIF values [6] and
proposed extended MIF. The class diagram of the example
system along with tabulated results and graph of AIF and
AIF extended, MIF and MIF extended is given below.

A. AIF Analysis

A threshold value of 0.5 is maintained in order to
determine whether level of inheritance is acceptable or not.
For AIF values greater than 0.5, extent of inheritance is high
Classes employee, student, undergraduate, postgraduate
have “AIF extended” values greater than 0.5 and “AIF”
values less than 0.5. Class diagram in Fig. 1 shows us
effectively that these classes inherit large number of
attributes from ancestor classes than the attributes they
actually contain, thereby depicting unacceptable level of
inheritance.

TABLE I. ANALYSIS OF AIF

Classes AIF for each

class

(Farooq,2005)

AIF Extended

for each class

(Proposed)

Person 0.00 0.00

Employee 0.36 0.67

Staff 0.54 0.86

Faculty 0.54 0.86

Student 0.36 0.67

Undergraduate 0.45 0.83

Postgraduate 0.45 0.83

Main 0.00 0.00

Total AIF of the system can be calculated using (1):

AIF= (0+4+6+6+4+5+5) / (11+11+11+11+11+11+11)

 = 0.39

Here, the numerator is the number of attributes inherited

from ancestor classes for each class. As “person” is the base
class, it does not inherit any attribute, “employee” class
inherits four attributes, “staff” class inherits six attributes in
total from person class and employee class, “faculty” class
six, and so on for rest of the classes. Sequence of classes
used in the formula is same as the sequence given in the
table I. Denominator is number of attributes that can be
referenced by each class. Attributes in the class diagram are
protected in nature, but we know that protected members are
public in their own package. Therefore, each class can
reference all the public and protected members in the
system. Denominator is eleven for each class.

We compute AIF extended using (5). The numerator

remains the same as that of AIF but denominator changes as
we consider the attributes of ancestor classes of class Ci and
the attributes defined inside class Ci only. For example,
“person” class is base class; we consider only the four
attributes defined inside it. “Employee” class is inheriting
from person class, so the attributes in consideration are six,
out of which four are from person class and two from
employee class. Similarly, denominators are determined for
rest of the classes.

AIF extended = (0+4+6+6+4+5+5) / (4+6+7+7+5+6+6)
 = 0.73

Therefore, AIF extended is giving a clear idea that level
of inheritance in the system is not acceptable as it is greater
than 0.5.

B. MIF Analysis

Same extension is followed in MIF extended but with

respect to the methods. Classes staff, faculty, undergraduate,

Person

#name
#dob
#address
#ssn

#set_person_detail()
#display()

Employee

#emp_id
#salary

#set_emp_detail()
#display_emp_detail()

Student

#student_id

#set_student_id()
#display_student_detail()

Staff

#rank

#set_staff_detail()
#display_staff_detail()

Faculty

#designation

#set_faculty_detail()
+display_faculty_det()

Undergraduate

#class

#set_undgrad_det()
#display_undgrad_det()

Postgraduate

#degreeprogram

#set_pstgrad_det()
#display_pstgrad_det()

321

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 337 / 612

postgraduate have “MIF extended” values greater than 0.5

and “MIF” values less than 0.5.

TABLE II. ANALYSIS OF MIF

Classes MIF for each

class

(Farooq,2005)

MIF Extended

for each class

(Proposed)

Person 0.00 0.00

Employee 0.14 0.5

Staff 0.29 0.67

Faculty 0.29 0.67

Student 0.14 0.5

Undergraduate 0.29 0.67

Postgraduate 0.29 0.67

Main 0.00 0.00

Total MIF of system is calculated using (2):

MIF = (0+2+4+4+2+4+4+0)/ (14+14+14+14+14+14+14+14)
 = 0.18

Sequence of the classes in the formula remains same as
given in table II. Numerator is number of methods inherited
by each class from ancestor classes. Denominator is number
of methods that can be referenced by each class. As
mentioned earlier that protected members are public in their
own package, each class can reference all public and
protected methods in system. Denominator is fourteen for
each class. Now, we calculate MIF extended of system
using (6).

MIF extended = (0+2+4+4+2+4+4+0)/ (2+4+6+6+4+6+6+1)

 = 0.57

Numerator remains the same as that of MIF.
Denominator changes according to the proposed work. We
need to consider methods of ancestor classes of a class Ci
and the methods defined inside class Ci only. “Person” is a
base class and has two methods of its own. “Employee”
class is inheriting two methods from person class and has
two methods of its own, therefore a count of four. Likewise,
we do the calculation. Therefore, MIF extended is giving a
clear idea that level of method inheritance in system is not
acceptable as it is greater than 0.5.

C. AHF Analysis

We have considered a code to demonstrate the hiding

factor. The sample code is as follows:

322

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 338 / 612

On the basis of above code, we check the current
references made to attributes and methods. First we
calculate AHF. Consider the attributes of Account_bank
class, they are balance_amt, acc_no. Attribute balance_amt
may be referenced by rest of the two classes, i.e.
Interest_Account_bank and Account as it is a public
variable. Therefore, using (3), visibility (bank_amt) is 2/(3-
1), that is 1. Thus, value of (1-V(bank_amt)) is 0. Similarly,
for the attribute acc_no, (1-V(acc_no)) is 0. Now, we
consider the attributes of class Interest_Account_bank, they
are interest_default, rate-int.

TABLE III. ANALYSIS OF AHF

Classes Attributes (1-V(Ami))
in

AHF

(1-V(Aex))
in

AHF ext.

Account_bank balance_amt

0 0.5

Account_bank acc_no

0 0.5

Interest_Account_bank interest_default

1 1

Interest_Account_bank rate-int

1 1

Both the attributes are private; therefore none of the classes
can access them. Visibility is 0 for both the attributes, (1-
V(Ami)) is 1. Now, we apply the formula for AHF from (3).

AHF = (0+0+1+1) / (4) = 0.5

Now, we calculate AHF extended. For the attributes
balance_amt and acc_no of Account_bank class, they are
actually referenced by the object of Interest_Account_bank.
Thus, only one class has made an access to these attributes.
Visibility for these attributes is 1 / (3-1), i.e. 0.5. Therefore,

 (1-V(Aex)) is (1-0.5) i.e. 0.5. Similarly, for interest_default
and rate-int attributes, none of the classes has accessed
them, therefore visibility is 0 and (1-V(Aex)) is 1. Now, we
apply the formula for AHF extended from (7):

AHF extended = (0.5+0.5+1+1) / (4) = 0.75

Higher value of AHF extended indicates that attributes
are not actually referenced, thereby imparting a private
attribute behavior to them. Visibility of attributes is not
properly used by the design of the system.

D. MHF Analysis

First, we calculate MHF. Consider the methods of

Account_bank class. This class has three public methods,

namely initialize_data, deposit_bank and withdraw_bank.

All three methods are public, and can be accessed by rest of

the two classes. Therefore, using (4) visibility of all four

methods is 2/(3-1), that is 1. Thus, value of (1-V(Mmi)) is 0

for all three methods. Class Interest_Account_bank has

three methods, namely initialize_interest,

add_interest_monthly, and get_balance. Getbalance method

is a private method that cannot be referenced by outside

classes. Therefore, its visibility is 0 and (1-V(Mmi)) is 1.

TABLE IV. ANALYSIS OF MHF

Now, we apply the formula for MHF from (4):
MHF= (0+0+0+0+0+1) / (6) = 0.17

Now, we calculate MHF extended. For methods
initialize_data, deposit_bank and withdraw_bank of
Account_bank class have been actually referenced by the
object of Interest_Account_bank class. By using (8),
visibility of these methods is 1/(3-1) i.e. 0.5. Therefore, (1-
V(Mex)) is (1-0.5) i.e. 0.5. Methods of
Interest_Account_bank have not been referenced by any
other class, therefore, their visibility is 0 and (1-V(Mex)) is
1. Now, we apply the formula for MHF extended from (8):

MHF Extended= (0.5+0.5+0.5+1+1+1) / (6) = 0.75

Such a high value of MHF extended indicates that most of
methods are not being actually referenced by the outside
classes.

E. Case Study Analysis

Library Management system for a college is used as a

case study. It has separate java files for books, catalogue,

members, librarian etc. Books may be reference book or

issuable book. Members may be student or a faculty

member. All the four metric i.e. AIF, MIF, AHF and MHF

were applied on the case study. Also, the proposed

extensions to these metrics were applied.

TABLE V. CASE STUDY RESULT

Metric (Farooq,2005) Extended Versions

AIF 0.25 0.52

Classes Methods (1-

V(Mmi))

in

MHF

(1-

V(Mex))

in

MHF

ext.

Account_bank Initialize_data

0 0.5

Account_bank withdraw_bank

0 0.5

Account_bank deposit_bank

0 0.5

Interest_Account_bank Initialize_interest

0 1

Interest_Account_bank add_interest_monthly

0 1

Interest_Account_bank get_balance

1 1

323

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 339 / 612

MIF 0.18 0.59

AHF 0.52 0.98

MHF 0.94 0.11

There was variation in results, confirming the extensions

were specific and gave a hint about design of the system.

Metric values are capable to comment on stability of design

and actual hiding factors. In all the cases, extended metrics

resulted in values higher than the original metrics. Extended

AIF and extended MIF gave values higher than threshold

indicating the system has higher inheritance. Classes are

highly coupled in system. Extended AHF and extended

MHF also result in higher values than original metric

showing greater hiding factor.

CONCLUSION AND FUTURE WORKS

The extensions in AIF and MIF are more accurate than

previous definitions as they give a better idea about usage of

inheritance property in the code. Results are accompanied

with analysis part showing the variation in the values.

Clearly, classes that have AIF, MIF values greater than

threshold value needs some modification in their design.

Extensions in AHF and MHF check whether a member (data

or method) has been actually referenced or not. This gives

clarity in estimation of actual hiding factors. Therefore,

proposed extensions give accurate estimation of inheritance

and hiding factor. Regarding future works, developed tool

must have a provision for suggesting corrections to user,

based on result of metrics. Developed tool analyses java

source files and class files. Thus, tool can give results only

after coding phase. An approach may be developed to apply

metrics in earlier phases of development.

ACKNOWLEDGMENT

The authors highly acknowledge the immense support of
Indian Institute of Information Technology, Allahabad, for
providing the adequate resources to carry out this research
work.

REFERENCES

[1] Jacobson I., Christerson M., Jonsson P., and Overgaard G.

Object-Oriented Software Engineering, Pearson Education,

Singapore, Ninth Indian Reprint, 2004.

[2] Pressman R. S., Software Engineering: A Practitioner's

Approach, McGraw Hill Publication, Singapore, Sixth edition,

2005.

[3] Balagurusamy E., Programming with Java: A Primer, McGraw

Hill Publication, New Delhi, Thirtieth reprint, 2006.

[4] Shyam R. C. and Chris F. K. “A Metrics Suite for Object

Oriented Design “IEEE Transactions on Software Engineering,

Vol. 20, No. 6, June 1994.

[5] Subramanyam R. and Krishnan M.S. “Empirical Analysis of

CK Metrics for Object-Oriented Design Complexity: Implications

for Software Defects” IEEE Transactions on Software

Engineering, Vol. 29, No. 4, April 2003.

[6] Farooq A., Braungarten R., and Dumke R.R. “An Empirical

Analysis of Object-Oriented Metrics for Java Technologies” 9th

International Multitopic Conference, pp. 1-6, IEEE INMIC 2005.

324

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 340 / 612

Quality Issues in Global Software Development

Sanjay Misra
Dept. of Computer Engineering, Atilim University

Ankara, Turkey
smisra@atilim.edu.tr

Luis Fernández-Sanz
Dept. of Computer Sciences, Universidad de Alcalá

Alcalá de Henares, Spain
luis.fernandezs@uah.es

Abstract— The most advantageous features of Global Software
Development (GSD) are its cost saving benefits and the easily
availability of resources. Also the technological advancement
especially in Information and Communication Technology
(ICT) makes GSD a common practice in software industry. But
GSD is also facing a lot of challenges. Maintaining quality in
software development processes and products in GSD
environments is one of the major challenges. This paper
presents a survey on the challenges and factors which impact
on the quality of the products in GSD environments. This
report identifies that most of the factors which affect the
quality of software product appear as part of two major
challenges: requirements and coordination. We further
demonstrate that how these two challenges are affected by
several factors. Finally, we present the possible solution to
reduce the complexity of those various factors.

Keywords-Global Software Development; process quality;
product quality; requirement and coordination challenges.

I. INTRODUCTION
The last decade is the evidence for the changing trends

from the traditional software developments process, which
was mainly confined on in-house software development, to
the Global Software Development (GSD), where whole
development process is distributed at different locations all
around the world. In fact, advancement in tools and
techniques in software development process has allowed
geographically and culturally diverse groups to come
together in global software development teams [1]. Further,
the technological improvement in Information and
Communication Technology (ICT) helps GSD to become a
common practice in software industry. More specifically,
Internet changed the whole society set up and; also make
GSD as one of the most popular trends amongst software
community.

There are several benefits of GSD. The most important
ones which attract to the companies are cost and easy access
to human resources. Although these are major advantages,
several challenges also exist in GSD which makes difficult
maximizing the benefits. One of the major challenges is how
can one control the quality, while assigning the task at
different locations where the actual work on project or sub
projects are going to be performed. In fact, a unique feature
of software product is that different parts cannot be
developed as isolated activities. This is because there are
complex dependencies between several tasks/parts of
project; therefore development team members communicate
with each other to fulfill their tasks during the whole

development process [2]. In case of GSD, tasks are carried
out at different locations distributed all around world, so
communication suffers [3], and, as a result, the quality of
product is also affected.

One can find several papers which address the different
types of challenges in distributed software development such
as contextual, cultural, organizational, geographical,
temporal, and political [4]. However, the particular work on
quality issues involved in GSD has not been researched yet
to the appropriate extent. There are only few papers which
addresses quality issues specifically. Ivček et al. [4] have
presented a paper ‘Aspects of Quality Assurance in Global
Software Development Organization’ in which the authors
reported a case study of a project developed in two offshore
countries. In their work they explained the way for applying
quality assurance techniques in GSD environments. In
another paper [5], the authors have explored whether
working with others in GSD environment really matters for
the quality of the software that is produced in global settings.

The lack of proper works for quality issues in GSD
environments motivate us to work in this area. In this paper,
we focus more particularly into quality issues: especially
how quality of the final product is affected by the different
factors involved in GSD. The observations reflect that, in
general, the most of the challenges and issues of GSD
seriously affect the quality of product. This paper presents a
systematic study on how these challenges affect the quality
and the ways to cope with these challenges. This paper is
primarily a survey report which tries to identify the quality
issues and their possible solutions in a GSD environment.

The paper is organized as follows. In the following
sections, we start our investigation of quality challenges in
software process and product in a GSD environment. In the
same section, we also discuss and identify the several issues
which affect process and product qualities. The solutions for
the common problems which are responsible for quality are
given in Section 3. The discussion on the work and the
conclusion are given in Section 4 and Section 5, respectively.

II. QUALITY OF SOFTWARE PRODUCT IN A GSD
ENVIRONMENT

IEEE defines the software quality as the degree to which
a system, components or processes meet the specified
requirements [6]. A modified form of this definition is: the
degree to which a system, component or process meets
customer or user needs or expectation [7]. In other words,
quality means conformance to fulfilling the customers’
requirements [8]. Juran [9] defined quality as “Quality

325

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 341 / 612

consists of those product features which meet the needs of
customers” and thereby provide product specification.
Further, Pressman [10] defines the software quality as
conformance to explicitly stated functional and performance
requirements, explicitly documented development standards
and implicit characteristics that are expected of all
professional developed software. If we combine and analyze
all these definitions, we can observe that quality is mainly
concerned with conformance to requirements. In general, the
quality in requirements is achieved by using proper and
effective elicitation techniques, which can provide the
correct requirements.

The quality in product in a GSD environment is also
affected by the type of software process as well as the
existence of proper control of different activities within the
software development process. However these, above
activities i.e., collecting requirements and proper control of
software process activities are not easy tasks in GSD
environments. In globally distributed environment, several
factors such as intercultural factors language barriers (i.e.,
the communication problems) reduce the chances of
collecting the proper and sufficient requirements and make
more difficult the coordination amongst the distributed team.
As a result, it becomes difficult to control the quality in the
processes at different locations of the world. Bartelt et al. [2]
also support our claim that the key challenge of global
software engineering is to establish appropriate
communication and coordination habits in a global project
environment [11]. However, in our opinion, communication
is the main for proper coordination.

If we analyze how to achieve the quality objectives in
global software distributed environment, firstly we have to
evaluate how we can achieve the quality in eliciting the
correct requirements. This, which is really not an easy job in
distributed environment where customers and developers
might be physically far away to each others. Secondly, we
have to control quality in the software development process.

In summary, we can conclude that:
1. Quality in software product in GSD environment is

challenged by the two major factors (Table 1).
a. The lack of sufficient and correct requirements

(due to several factors of GSD) and
b. The lack of proper coordination in software

development process.

TABLE I. QUALITY AND CHALLENGES IN GSD

 Quality in Product in GSD Environment

 Requirement Quality Processes Quality
Identified

Challenges
Requirement

[12]
[13]

Coordination [11]
[2]

The conclusion of above discussion is that the collection

of proper requirements and coordination are main challenges
in achieving quality in software development process in
GSD environment. There are several factors which are
responsible for these challenges. We will discuss these
challenges and factors in more detail in the next section.

III. CHALLENGES FOR QUALITY IN GSD: THE
REQUIREMENT AND COORDINATION AND THE FACTORS
EFFECTING THEM

In the previous section, we have concluded that quality in
GSD environment is challenged by requirement-related
issues and problems in coordination. There are other factors,
which impact the quality of the process and product in GSD
environment. We treat them as factors of these two main
challenges.

Gathering requirements from customers is always a
challenge for software engineers. The quality of the product
is highly affected by the absence of clear requirements.
Guzman et al. [14] stated that normally there is a lack of
common understanding of goals and requirements amongst
development team members in GSD environments. Further,
the growing number and the volatility of requirements also
create additional challenges. Lormans et al. [12] stated that
the evolution of requirements is usual: no matter how
thorough the requirements specification has been set up, the
requirements for any non-trivial system will change not only
after the system has been built but also during the process of
implementing the system. Further, the paper highlighted that
the evolution of requirements appears due to a great variety
of reasons [13]. In fact, requirements change and evolve
mainly due to changing the requirement of business needs
and also due to change in technology. Requirements are also
modified in the process of designing, implementing, and
writing test cases for requirements. These all examples show
that there is always a need of modification of the initial set of
requirements throughout the lifecycle of the project: and, if
customers are far away from the development site, it
becomes a challenge.

 The agile software development approach appears in
practice as a way to overcome the above problem. However,
the principles of GSD are contradictory with the philosophy
of agile development: in GSD, teams are distributed all
around the world and customers are not necessarily be at the
same site of development while agile promotes development,
where the software is developed through iterative process
with close involvement of the customers representatives.
Agile approach is a widely accepted practice in software
development and it claims getting more successful process in
comparison to other practices. One of the reasons for this
success rate is that customers and the development team
members’ work together more affectively. This technique
reduces the understanding of customer’s requirements up to
maximum level. In case of any ambiguity in requirements
they can solve the problems immediately and therefore
reduce the time to take decisions [15]. In an opposite
situation, the customers and development team members in
GSD work in distant places from each other. This distance
creates lots of problems in development, e.g.,
communication, language, time zone, etc. In the case of
changes, modifications, or clarification of any requirement, it
is not very easy to have an agile and effective action.
Therefore, one cannot pretend the goal of agility in GSD
except if the agile development processes are used separately
at the nodes of the software development team.

326

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 342 / 612

International Standard Organization (ISO) also correlates
software quality with the requirements and defines the
software quality assurance activity [16] as a set of activities
designed to evaluate the processes by which the software
products are developed in order to satisfy stated or implicit
requirements. IEEE [17] also focuses in satisfying
requirements for Software Quality Assurance (SQA). It
provides uniform and minimum acceptable requirements for
preparation and contents of SQA plans [18]. These standards
emphasize that satisfying requirements is the prime objective
in quality assurance. On the other hand, the general problems
involved in GSD (e.g., languages, cultural and time zone
differences and lack of proper knowledge management) are
responsible of arising difficulties in requirement engineering
tasks. Further, the physical distance between stakeholders
and group members limit their face-to-face interaction and
thus create special challenges in the communication. As a
consequence, this directly reduces the quality of
requirements and therefore the quality of the product [19].

Coordination and control of the software development
sites, distributed all around the world is also a major
challenge in GSD. Quality of the development process is
highly affected by the lack of proper coordination amongst
the team members. There are several issues, which make this
job as one of the most challenging in GSD. For example,
ambiguities in understanding the organizational processes,
the management practices, the requirements and/or the
design, may arise in some of the distributed teams [20]. If
these ambiguities are not solved in time it may cause long
delays, leaving teams idle and frustrated, and reducing final
quality of the project. Furthermore threats, threat of
opportunism, security [21], trust, cultural issues and
languages barrier are other factors which make the
coordination management more difficult and challenging.
The communication issues (e.g., distance, time zone
difference, infrastructure support, distinct backgrounds, and
lack of informal communication) may cause the loss of
control over the teams located far away. If the company
appoints a manager at the remote site and manager is not
from their own vicinity, the manager might face a lot of
problems. The employees behave as a “loose cannon” or
shows excessive defensiveness or negativity [22]. The
employees also feel these managers as a micromanager or
‘put on the spot’. In fact these reflections of employees
towards the manager may occur due to differences in
intercultural factors [23].

One major issue, which is responsible for controlling the
quality of product, is the criteria for the distribution of the
tasks amongst several companies or teams involved in the
development of single project. So deciding which task is
given to which company and what should be the criteria for
selection of those companies distributed around the world is
a difficult problem to be solved. However, the answer of the
question might be very simple. Based on the expertise of the
company or the developers, one manager can decide. But, is
this sufficient? For example, if one outsourcing company is
in India then should the testing be performed there or should
be at customers site? [24] These are examples of questions
that, if not properly solved, would directly affect the low

quality of the product. Further, less obvious issues in task
assignments also influence the quality of product. For
example, an assignment decision may fail due to a high staff
turnover rate. If people leave the company every year, then
you get no knowledge and no return on investment.

Cross cultural issues [23], [25], [26] impact heavily in
achieving quality objectives. MacGregor et al. [24]
identified that intercultural factors [27] manifest themselves
on a variety of levels in technical professions, all of which
potentially impact the success of a project in GSD. The
authors [24] gave examples of several researchers’ works
and argued that the intercultural factors impact very seriously
in GSD projects. Neglecting these factors may cause low
quality of process/development and, therefore may cause the
failure of the project. Several intercultural factors were
identified, e.g., need for cross-cultural sensitivity [28],
communication challenges in mediated communication [29],
difficulty with planning and management of global
innovation [30], differences in work-style [31], and power,
hierarchy and agency [32] These all factors directly or
indirectly impact on the quality of process and projects. In a
case study of a GSD project distributed in three continents:
North Europe, Asia and South America. Gibbs [33] observed
that the global team was loosely coupled due to team
members’ multiple cultural identifications, geographical
dispersion, time differences and electronic rather than face-to
face communication [33]. The loose coupling may be
advantageous up to some extent but it seriously affects on the
quality of process and product.

If we organized all the above factors, which are
responsible for quality issues in development process and
final product, we can conclude that the quality is affected by
two major challenges: Requirement and Coordination. The
factors affecting these two challenges can be summarized as
follows:

Requirements challenges:
1. Communication: affected by several sub factors:
1.1 Distance between stockholders and team members.
1.2 Languages ([34]).
1.3 Culture and time zone differences [34].
2. Ambiguity in understanding the requirements.

Coordination Challenges:
Coordination challenges are affected by the following

factors:
1. Communication [35][36].
2. Lack of Trust [37].
3. Intercultural issues [38].
4. Work allocation assignments [24].
5. Ambiguity in understanding:

a. Organizational process,
b. Management practices
c. Requirement and design

6. Project planning and follow up [30]
7. Loss of control

327

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 343 / 612

IV. POSSIBLE SOLUTIONS
In the previous sections, we have shown the factors

which are responsible for increasing the complexity in
achieving the quality in both process and product in GSD. In
this section, we are suggesting possible solutions, which are
extracted from various sources. In fact, the different
solutions available in literature for the problems of GSD are
not normally concentrated on the quality aspect. In this
paper, we have concentrated only on those ones which
impact on quality aspects of GSD. We have indentified them
and then unified and presented as possible solutions for
quality issues in GSD. Further, it is observed that the quality
of a software product is impacted by most of the problems of
GSD. However, we do not find any paper in which all those
issues are unified for the evaluation of both the quality of
process and product. The following list is the results of our
work:

 1. QA strategies should be applied: To control the
quality in software process and product in GSD environment,
these QA strategies should include a quality management
network, change control, active risk management, quality
audits, inspection strategy, delivery strategy and reporting
and measurement [4]. The authors have applied these
practices in GSD environment and tested on a real project [4]
and found that these are very effective in achieving quality in
both process and project.

2. Well defined process. The type of development
processes should be clearly defined. Requirements should be
presented in such a way that it can be understood easily. One
of the ways for clear understanding of requirement is
modeling. Furthermore, the architecture design and its
dependencies should also be elaborated with full care.
Components and their interfaces should be well and
precisely defined. Assignment of the task should be clear-cut
to independent teams. There should not be any ambiguity in
the task assignment. At remote sites, some particular person
should be accountable for any query and conversations from
outside.

The coordination and requirement challenges can be
overcome adopting the following practices:

1. Proper planning and scheduling of all activities as a
way to overcome the coordination and requirement problems
[39][40].

2. Near shoring. One of the major problems in cross
cultural environment is the behavior of people which varies
from place to place and also increases the perception of lack
of trust. Development should be done as near to the
customers as possible i.e., it should be in close proximity of
the parent company. It will reduce the cultural and language
related problems. In this way, we can also solve the problems
related to requirement challenges. Due to common/similar
languages and close time zone, the development team can
interact with customer(s) not only more frequently but also
understanding the customers’ requirements and problems in
more fruitful way. Some of the typical examples for near
shoring are: South Korea, Eastern European counties,
Middle and South American countries as recommendable
places for outsourcing for China, West European countries,

and US respectively [41][42]. The sites in the same time
zone are better options [34]. Of course, this may also be
solved by extending the working hours at the different sites
[43].

3. Strategic choice. Only those components which are not
cultural sensitive should be outsourced reducing the risk of
cross-cultural problems [25]; e.g., middleware or a
component to be embedded in an Operating System (OS). In
fact, the software for the middleware and for OS are not
strongly affected by the surrounding environment and
possible cultural issues because generally independent
software and the specifications are clear from the beginning.
Another suggestion was to outsource only those projects
whose benefits are expected to outweigh the risks [23].

4. Transfer of knowledge and people. In [25], it is
suggested that acceptance of the project in distributed
environments should be made on the basis of some transfer
of knowledge in exchange for the cultural risks. The quality
suffers, if the staff at remote sites is not knowledgeable or
expert. The authors also suggested that effective in-depth
working relationships should be achieved amongst the
development team throughout the project. Another
suggestion for reducing the negative impact of intercultural
factors is to create a “negotiated culture” [3]. Furthermore, a
small number of the staff members should also be trained in
other sites language [34]. Some staffs should also be
exchanged for short periods of time. This practice will
dramatically improve the working environment [11].
 5. Synchronization in organization, processes, or
technology in all the locations of the project is an effective
technique for improving collaboration [44].

V. DISCUSSION
The acceptance of outsourcing in software development

is increasing very rapidly. Only in India, Outsourcing to
India has been increased 10 times in 10 years (1998-2007)
and it is expected to increase on the annual rate of 28 percent
for IT projects [45]. Additionally, not only outsourcing but
global in-sourcing (i.e., development with own subsidiaries
in foreign countries [24]) is also growing rapidly. For
example, IBM has increased its staff in India from 53,000 to
73,000 in just one year in 2007 [46]. Naturally, if the rate of
outsourcing is increasing to fulfill the demand of market,
several new companies are also entering to the software
market. However, it is not easy to control the quality at
remote sites. Besides several other reasons, evaluating the
capability and the talents at remote sites [47] are challenging
job [47]. Additionally, it is not unusual to observe the lack
of experts at the remote site: even they exist, it is usual that
the number is not sufficient to fulfill what it is required. It is
observed through surveys and studies, it is observed that
these are the reasons why; the work assigned at distributed
sites normally takes significantly longer time than what it is
usual in other environments [35]. Again, the challenges for
the requirements management and the project coordination
are the causes. Further, several factors which contribute to
these challenges (e.g., communication [35] [36], lack of trust
[27], intercultural factors, lack of qualified and experienced
professionals etc.) reduce the quality of the process and

328

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 344 / 612

product. These all factors increase the costs and reduce the
probability of success.

 Many works have been carried out by different
researchers (e.g., [48], [49], [50]) to identify the problems,
issues or challenges and solutions for GSD. If we analyze the
majority of the available literature, we can easily find out
that, only few of them have given emphasis on the quality
aspect of GSD. By keeping all these issues, we conclude that
there is still a need of investing more thinking and work to
establishing procedures and methods for achieving the
quality product in distributed environments.

VI. CONCLUSIONS
In this paper, we have focused more particularly into

quality aspect of the product in global distributed
environments. The quality of a software product developed
in GSD environment is heavily impacted by problems of this
type of environments. We have identified two major
challenges responsible of causing most of the problems:
requirements management and project coordination. Several
issues and several factors which are responsible for these two
challenges have been also suggested. We have shown how
these challenges finally affect the quality of the product.
Since all mentioned issues can become serious obstacles to
quality of software products and they are not properly
researched yet in point of view for quality aspects in GSD,
our work may create attract the attention of the academic
community towards this important issue. In this sense we
consider this paper as a valuable contribution to the software
engineering community.

REFERENCES
[1] D.W. Karolak, Global Software Development: Managing Virtual

Teams and Environments, New York: Wiley-IEEE Computer
Society Press, 1998.

[2] C. Bartelt, M, Broy, C., Herrmann, E., Knauss, M., Kuhrmann, A.,
Rausch, B., Rumpe, and K. Schneider, “Orchestration of Global
Software Engineering Projects - Position Paper” Proceedings of the
2009 Fourth IEEE International Conference on Global Software
Engineering (ICGSE '09). IEEE Computer Society, Washington, DC,
USA, 2009, pp. 332-337.

[3] G.M. Olson and J.S. Olson “Distance Matters” Human‐Computer
Interaction, 15, 2000, pp. 139‐178.

[4] M. Ivček and T. Galinac, “Aspects of Quality Assurance in Global
Software Development Organization”, Proceedings of the 27th
International Conference on Telecommunications and Information of
the 31th International Convention MIPRO 2008, 2008, pp. 150-155.

[5] O., Gotel, V., Kulkarni, M., Say, C. Scharff, and T. Sunetnanta,
“Quality Indicators On Global Software Development Projects: Does
‘Getting To Know You’ Really Matter?” Proceedings of the 2009
Fourth IEEE International Conference on Global Software
Engineering (ICGSE '09), 2009, pp. 3-7.

[6] IEEE, IEEE Std 610.12-1990-IEEE Standards Glossary of Software
Engineering Terminology , IEEE Computer Society, 1991.

[7] D. Galin, Software Quality Assurance, From theory to
implementation, Pearson Addison Wesley, 2004.

[8] P.B. Crossby, Quality is free, New York: McGraw-Hill, 1979.
[9] J.M. Juran, Juran’s Handbook Quality control, New York, McGraw

Hill, 1988.
[10] R.S. Pressman, Software Engineering, NewYork: McGraw-Hill,

2008.

[11] J.D. Herbsleb, “Global Software Engineering: The Future of Socio-
technical Coordination”. Proceedings of the 2007 Future of Software
Engineering (FOSE '07), 2007, pp. 188-198.

[12] M., Lormans, H., van Dijk, A., van Deursen, E. Nöcker, and A. de
Zeeuw, “Managing Evolving Requirements In An Outsourcing
Context: An Industrial Experience Report”. Proceddings of the Int.
Workshop on Principles of Software Evolution (IWPSE'04), 2004 ,
pp. 149-158.

[13] M. M. Lehman, “Software's future: Managing evolution” IEEE
Software, vol. 15, 1998, pp. 40-44.

[14] J., García Guzmán, J., Saldaña Ramos, A., Amescua Seco and A.
Sanz Esteban, “Success Factors for the Management of Global
Virtual Teams for Software Development”, International Journal of
Human Capital and Information Technology Professionals, vol. 2,
2011, pp. 48-59.

[15] A. Cockburn, and J., Highsmith, “Agile Software Development:The
People Factor”, Computer, vol. 34, November 2001, pp. 1-3

[16] ISO, ISO/IEC 9126-1Software Engineering - Product quality - Part 1:
Quality model, Geneve: International Standards Organization, 1997.

[17] IEEE, IEEE std. 730-2002 Standard for Software Quality Assurance
Plans, Washington: IEEE Computer Society, 2002.

[18] A. Abram and J. W. Moore, Guide to Software Engineering, Body of
Knowledge, Washington: IEEE Computer Society, 2004,.

[19] R. Ahmad, Analysing Requirements Issues in Global Software
Development, Dissertation, Honours Programme of the School of
Computer Science and Software Engineering, The University of
Western Australia, 2010.

[20] R., Sangwan, M., Bass, N., Mullick, D.J.Paulish, and J. Kazmeier,
Global Software Development Handbook, Boston: Auerbach
Publications, 2007.

[21] P. Mohagheghi, Global Software Development, Inssue , Solution And
Challenges, Trial lecture, Dept. Computer and Information Science
(IDI), University of Science and Technology (NTNU),Trondheim,
Norway, 2004.

[22] L. Laroche, Managing Cultural Diversity In Technical Professions.
Burlington: Butterworth-Heinemann, 2002,.

[23] G. Hofstede, Culture’s consequences. 2nd Ed., Thousand Oaks: Sage,
2001.

[24] A. Lamersdorf, Towards a Global Software Development
Distribution Model: Empirically-based Model Building for
Distributed Software Development, Master thesis, University of
Kaiserslautern, 2008.

[25] S, Krishna, S. Sahay, and G. Walsham, “Managing cross-cultural
issues in global software outsourcing”, Communications of the ACM,
vol. 47, 2004, pp. 62-66.

[26] G. Borchers, “The software engineering impacts of cultural factors
onmulti-cultural software development teams”, Proc. of 25th
Intl.Conference on SW Engineering,, 2003, pp. 540-545.

[27] P. Kruchten, “Analyzing intercultural factors affecting global
software development – A position paper”, Proceedings of GSD2004
3rd International Workshop on Global Software Development, 2004,
pp. 59-62.

[28] M. L. Maznevski and K. M. Chudoba, “Bridging Space Over
Time:Global Virtual Team Dynamics and Effectiveness”,
Organization Science, vol. 11, 2000, pp. 473-492.

[29] S. Whittaker, “Theories and Methods In Mediated Communication”
In The Handbook Of Discourse Processes, Graesser A.C.,
Gernsbacher M.A. and Goldman S.R. (eds), LEA, Mahwah, NJ.
2003, pp. 243-286.

[30] P. Banerjee, “Narration, Discourse and Dialogue: Issues in
theManagement of Intercultural Innovation”, AI & Society, vol. 17,
2003, pp. 207-224.

[31] G. Walsham, Globalization and ICTs: Working across cultures, WP
8/2001 Research Papers In Management Studies, University of
Cambridge, 2001.

329

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 345 / 612

[32] B.Nicholson, and S. Sahay, Some Political And Cultural Issues In
The Globalisation Of Software Development: Case Experience From
Britain and India, Information and Organization, vol. 11, 2001, pp.
25-43.

[33] J. L. Gibbs, Loose coupling in global teams: tracing the contours of
cultural complexity, Ph. D. dissertation, University of Southern
California, Los Angeles, 2002.

[34] E. Carmel, and R. Agarwal, “Tactical Approaches for Alleviating
Distance in Global Software Development.”, IEEE Software, vol. 18,
2001, pp. 22-29.

[35] J.D., Herbsleb, A., Mockus, T.A. Finholt, and R.E. Grinter, “An
Empirical Study Of Global Software Development: Distance and
Speed” Proceedings, International Conference on Software
Engineering, Toronto, Canada, 2001, pp. 81-90.

[36] J.D. Herbsleb and A. Mockus, “An Empirical Study of Speed and
Communication in Globally-Distributed Software Development”.
IEEE Transactions on Software Engineering, vol. 29, 2003, pp. 481-
494.

[37] N. B. Moe and D. Smite, “Understanding a Lack of Trust in Global
Software Teams: A Multiple-Case Study”, Software Process, vol. 13,
2008, pp. 217-231.

[38] G. Hofstede, Culture and organization – software of the mind. 3rd Ed.,
New York: McGraw-Hill, 2010.

[39] H. Kerzner, Project Management: A System approach to Planning,
Scheduling and Controlling, New York: John Wiley & Sons, 2003.

[40] PMI, PMBOOKA Guide to the Project Management Body of
Knowledge (PMBOK Guide), Pennsilvania: Project Management
Institute, 2004.

[41] D. Dubie, “Outsourcing Moves Closer to Home”, CIO Today,
December 18th, 2007.

[42] C. Zarley, “7 Reasons the Bloom is Off Asian Outsourcing”. The
Channel Wire, December 12th, 2007.

[43] G. Lee, W. DeLone, and J. A. Espinosa, “Ambidextrous Coping
Strategies In Globally Distributed Software Development Projects”,
Communications of the ACM, vol. 49, 2006, pp. 35-40.

[44] R., Heeks, S., Krishna, B. Nicholson, and S. Sahay, “Synching or
Sinking: Global Software Outsourcing Relationships”. IEEE
Software, vol. 18, 2001, pp. 54-60.

[45] M. Kobayashi-Hillary, “India faces battle for outsourcing” BBC
news, August 17th, 2007,
http://news.bbc.co.uk/2/hi/business/6944583.stm, Last accessed
August 2011.

[46] J. Ribeiro, “IBM expects $1 billion in India revenue this year”,
InfoWorld, December 17th , 2007.

[47] W. Kobitzsch, H.D. Rombach, and R.L. Feldmann, “Outsourcing in
India”, IEEE Software, vol. 18, 2001, pp. 78-86.

[48] J.D. Herbsleb and D. Moitra, “Global software development”, IEEE
Software, vol.18, 2001, pp.16-20.

[49] J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software
development at siemens: experience from nine projects”, Proceedings
of the 27th international conference on Software engineering (ICSE
'05). 2005, pp. 524-533.

[50] R. Prikladnicki, J.L. Nicolas Audy and, R. Evaristo, ``Global software
development in practice: lessons learned''. Software Process:
Improvement and Practice, vol. 8, 2003, pp. 267-281.

330

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 346 / 612

A Systematic Review of Self-adaptation in Service-oriented Architectures

M. Pilar Romay

Dept. Inf. & Com. Syst. Engineering (DISIT)

St. Paul-CEU University

Boadilla del Monte, Madrid, Spain

pilar.romayrodriguez@ceu.es

Luis Fernández-Sanz, Daniel Rodríguez

Dept. of Computer Science

University of Alcalá (UAH)

Alcalá de Henares, Madrid, Spain

luis.fernandezs@uah.es, daniel.rodriguezg@uah.es

Abstract—The study of adaptivity, i.e., the capability to react to

changes in the environment, is becoming ever more important

in many fields of study, and in the development of software in

particular. This paper presents a systematic review in which

both the extension and complexity of this notion are examined.

After studying the influence from external fields, this review

checks the hypothesis of using the scope of service-oriented

architecture as a comparable model for the whole field. As part

of the systematic review, the influence of the most relevant

bibliography is considered, and the terminology is clarified.

Keywords – adaptivity; self-adaptation; service architecture;

autonomic systems; SOA; systematic review.

I. INTRODUCTION

The growing complexity, along with continuous
operation, of software systems –not only conventional ones,
but also the next complexity level, so-called large-scale
software systems [1] – has greatly increased the interest of a
series of techniques for self-managing system features. These
techniques make possible for them to guarantee a wide range
of properties, all by themselves. Traditionally, these
properties had been dealt with manually, or had to be
developed from specific requirements. Instead of that, the
new approach considers them as intrinsic system properties,
and thus they should be dealt with automatically, and
considered as just another issue in conventional software
systems development.

Systems conceived in such a way are generically known
as adaptive systems or, more specifically, as self-adaptive
systems [2].

Therefore, we have systems able to deal with faults and
critical situations (self-healing), able to control their own
behavior (self-managing) [3], able to observe and evaluate
their own performance (self-monitoring), able to modify their
own configuration to react to changes in their environment
(self-configuring), or even to automatically guarantee certain
system-level properties, such as protection, fault tolerance,
etc. (autonomic systems) [4] [5], among many others.

The wide range of systems which could make use of
these adaptive properties causes a great variability; therefore
many different approaches could be conceived. For this
reason, it is reasonable to focus our efforts on a specific area
of study: in our case, software services. This area has been
chosen because it still covers a wide range of systems and
shows a great variability itself, and therefore it can be
considered as a representative, even a lower-scale analog, for

the whole of the field of adaptive systems. The goal of this
work is, therefore, to study self-adaptive software services.

Software services define, due to their own properties, an
area of a great potential to describe and use adaptive (or
adaptation-related) features. Moreover, service and service-
oriented architectures are among the systems where the need
for these features is clearer, and more compelling: the nature
of services is inherently dynamic, and this implies the need
for adaptation; and also the structure of service architectures
requires the flexibility that self-adaptation provides. In short,
this make our specific goal (consider adaptation in services,
rather than in general systems) even more pragmatic. Finally,
considering the growing, relevance and broad dissemination
of service ecosystems, this is also the environment in which
this approach is currently pertinent and more interesting.

Adaptivity is often described at different levels, namely
at service level or the wider system level [6], but this will not
be the main interest of our study. Instead of that, we will
focus on exploring and analyzing adaptivity and all its
related properties, a set which is often generically known as
self-*.

Moreover, this paper will also consider the impact of
self-organization (considered as a related notion, rather than
as an adaptive feature) within the specific area of service-
oriented architecture. Our main goal is to determine which
properties are implied in adaptive systems, with a special
focus on service architectures – i.e., to be able to evaluate
adaptivity in services.

For this purpose, this paper presents an initial study of
the field, which will be used to delimit the boundaries of the
area and to check the reliability of the hypothesis about the
service-oriented approach and its applicability to evaluation.
The core of this study is structured as a systematic review:
after defining a set of goals and the corresponding research
questions, and discussing the background on the field, the
review makes an extensive bibliography review, which is
carefully examined and analyzed in order to achieve the
corresponding conclusions.

The paper is structured as follows: first, we present the
context of our study, including the definition of four primary
goals and the method of our systematic review. Then, we
provide some background justifying the interest of this study,
as well as the implicit connections between its areas. After
that, we characterize the revised information, and outline the
method we have used to locate and classify this information,
describing the performed searches and their results. We end
by summarizing the conclusions from several perspectives.

331

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 347 / 612

II. CONTEXT OF THE STUDY

Though it might seem a secondary issue, the relevance of
adaptivity is such that even well-known authors as Kramer &
Magee have claimed [7] that “a significant advance in the
techniques which are required for the effective development
of adaptive systems would imply an advance of an order of
magnitude in every fundamental aspect of Software
Engineering”.

Having this relevance in mind, the main goal which has
driven the conception of this study is focused in finding a
model which makes possible, by using a set of attributes, to
define and assess adaptivity in the context of services. This
model could alternatively take the form of a framework, or
even a methodology.

Then, this paper intends to provide a characterization of
the field of adaptivity. For this purpose, it lays out a set of
specific goals to drive the study, which should make possible
to measure and digest the breadth of the field, and to confirm
the need of the study itself. Moreover, it also intends to value
the most important contributions in the process.

From these goals, the paper follows a methodological
approach based on [8] with the purpose to achieve a greater
soundness than a traditional narrative description. The more
important limitations of such a study are also considered:
publication limitations (publishing bias), and selection
limitations (selection bias). The first one refers to the relative
impact of negative studies –i.e. which have not significant
differences with previous proposals–, when these have not
been published, or are only rarely referenced in the literature.
Also, there could be interesting studies written in another
language, or even duplicate references which could later
influence the metanalysis. The second one is related to the
definition of inclusion and exclusion criteria: the purpose is
to avoid to neglect the inclusion of relevant work, and also to
include misleading papers, which hinder dealing with the
relevant topics in an objective way.

The systematic review will be developed in the next
sections. First, we will describe the main goals of the study,
and outline our methodological approach. Next, we will
briefly explore the background on service-oriented
architectures and their relationship to adaptivity, focusing on
the need for evaluation and the influence of dynamic service
composition models. Then the systematic review itself is
unfolded: after presenting the main data sources, the search
strategies and selection criteria are described – to later
present the results of the review and discuss the conclusions.

A. Goals of the Study

Therefore, the goals of our systematic study are: (1) To
confirm the breadth and applicability range of adaptivity. (2)
To verify the novelty of this field of study within the context
of Software Engineering. (3a) Related to the previous one, to
evaluate adaptivity in service-oriented architectures. (3b) To
assess interesting contributions which could be applied to the
study’s primary goal (i.e., to determine the properties which
characterize adaptive systems). (4) By exploring the previous
four points, to identify the used terminology.

B. Methodological Approach in the Study

This (systematic) study begins by planning the review,
then conducting the review, and finally reporting the review.
The first activity of this process is a bibliographic search.
Based on a set of research questions related to context
definition, modelling, and management, we defined a list of
keywords and search strings used for our investigation.

The defined searches will be oriented to cover the goals
of the study, as proposed in section II.A. In this part of the
process, the selected keywords and their synonyms are of a
great relevance: the obtained results strongly depend on a
good selection of these terms.

For this reason, we also designed and realized an specific
search, focusing on articles and papers which tried to provide
a wider vision of the field, such as (other) research reviews,
overviews, state-of-the-art articles, etc.

The initial terminology search should just be considered
as an approximation, and it will be later tuned and adjusted,
to be refined by means of the obtained results during all the
process. To some extent, the process itself serves as the main
control in this initial search phase, and it could cause an
additional iteration within the systematic review process – it
just depends on the actual extension and variability of the
terminology in the field.

After the search, we proceed to select and evaluate the
obtained information. For this purpose, as already noted, the
study defines acceptance and rejection criteria related to its
specific goals, and in particular to the main goal – which was
the reason to do the study, in the first place.

To finish, the obtained results will be analyzed and
interpreted. In this phase, the process will make possible to
synthesize the results with regard to the proposed goals.

III. BACKGROUND: ADAPTIVITY IN SERVICE-ORIENTED

ARCHITECTURES

Nowadays, the notions of service orientation (or service-
oriented computing, SOC) [9] and service-oriented
architectures (SOA) have been totally integrated in the
current conception of software. This is the reason why they
define a perfect workbench to assess adaptive properties in
generic software systems.

Therefore, this section reviews the context of work in
both fields, focusing in the assessment of adaptivity, and
service-oriented architectures.

A. Adaptivity Assessment & Evaluation

Adaptive systems can be defined as “systems able to
react to automatically adapt themselves to changes in their
environment”. This reaction can be specifically programmed,
or could rise from an emergent behavior. This category of
systems has been globally designated with the name of self-*
systems [10], which explicitly refers to the variability of the
concrete aspect to consider. However, in recent times most
authors prefer to designate them with the generic name of
adaptive (or self-adaptive) systems, like this paper did also in
the Introduction.

332

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 348 / 612

Adaptivity is a complex field of study. First, because the
term has explicitly been conceived to be generic, so we must
first decide which specific feature (“attribute”) are we going
to consider every time. And second, because too often we
lack a clear reference model which could serve as the basis
to compare to the system’s degree of adaptivity. Therefore, it
is necessary to have some kind of model to make possible to
assess those capabilities, either quantitatively (in the ideal
case) or at least roughly, by approximation.

In general, the development of adaptive systems, as well
as the more concrete development of adaptive services, lacks
a clear set of methods and metrics able to assess the actual
capabilities of a specific implementation. That is, it is really
difficult to even decide if a given system is “adaptive” or not.
In fact, this particular distinction is almost intuitive; however
the increasing importance of this features, and the difficulties
in their implementation, highlight the relevance of achieving
the definition of a quantitative approach, able to deal with
concrete values. For this reason, one of the main goals of this
study focuses in checking existing references, which enable
or guide the process to obtain either the model or relevant
metrics, to be able to assess the level of adaptivity, even in a
qualitative way.

B. Service-Oriented Architecture: Service Composition

Mechanisms

A well-known definition of service-oriented architecture
(SOA), as given by Michael Papazoglou [11] states that it is
“a meta-architectural style, based in loosely coupled
services, which provides flexibility to business processes in
an interoperable way, and independently from the
technology”. Therefore, its main goal is interoperability,
which is itself a consequence of loose coupling.

However, a standard definition of SOA is still debated, in
spite of the popularity of the term – probably because it has
been used with different meanings in different contexts, and
referring to different technological aspects. Beyond those
details which distinguish the many variants of the concept of
service (web services, RESTful services, grid systems, etc.),
there are still several intrinsic features in its definition. These
features imply that service-oriented architectures are a priori
more dynamic and flexible than many “traditional” ones, in
particular component-based architectures – and this can be
considered inherent to its own nature.

From this point of view, it is interesting to note at least
two of these features, which suggest this kind of architecture
as a good evaluation workbench for adaptivity:

1) External Composition Mechanisms. First, services are

always part of a modular system – they are conceived to be

used as part of a larger structure. However, there is a subtle

difference to more traditional approaches: service systems

are designed to be composed at runtime.
Services cannot assume anything about the rest of the

elements in the composition. First, their interface is separated
from the rest of the service, and therefore services never
interact directly to the rest of the system. Second, they are
not designed as part of a concrete compound: instead of that,
once they are implemented and deployed, they are included
in some composite system, which was later conceived.

These are the reasons why the well-known composition
models for services (choreography and orchestration) must
be conceived as external compositions. Thus a service does
not even need to know if it is contained in a composite: the
business logic (the “intelligence” of the system) belongs in
the structure itself, not in its individual components. Within
an orchestration, it is in the orchestrator; but choreographies
are even more complex, as the composition schema is
distributed along the composite – i.e. it is decentralized.
Every individual service receives just a “local” subset of
instructions, without a perspective of the global plan. Even
service mashups, a promising approach, are again an external
composition model – in fact, essentially an orchestration.
Another consequence is crosscutting. Unlike traditional
composition, service models do not preclude that the same
service is simultaneously a part of more than one composite.
This implies that every service composition is orthogonal to
any other which is performed later [6].

2) Instrinsically Open Architecture. Of course, many

existing systems, and distributed systems in particular, have

claimed to define an open architecture. In practice, an open

system is every system which, by defining or using an

standard interface, is able to compose any external element

defined as a client of that interface. However, if constraints

imposed by this interface are too strict, the limits they define

hinder the capture of information about the different clients

– i.e. it would present an homogeneous architecture,which is

exactly the opposite of our goal.
Services use a different approach: the interface is defined

at the beginning, to offer a concrete functionality (a service),
and to guarantee a certain quality level (i.e. QoS). But apart
from that, services are conceived, even at the technical level,
to be composed to any other element able to interact to them.
Therefore, they are presented as the ultimate open system: in
the specific case of RESTful web services, for instance, the
only actual constraint is the use of the HTTP protocol, which
was conceived using the REST architectural style itself - and
this is not an actual constraint, nowadays.

Also, we have to consider that the current evolution of
service systems has a clear trend towards a significant rise of
the scale. The original “XML web services” were in general
small modules, of a scale comparable to that of objects, or
even smaller. Currently, the concept is clearly shifting to be
equivalent to so-called Software as a Service (SaaS) – where
the scale of a service is similar to that of a complete
application. In fact, the approach itself is evolving from the
potential provided by a concrete technology which focused
on interoperability, to the design of a new, generic software
distribution model (shifting from “product” to “service”).

In any case, current service-oriented architectures, when
this term is understood in the wider sense [12], present the
same features of flexible and open composition we have
already noted – and this makes them adequate as a
workbench for adaptivity evaluation in software systems.

IV. REVISED INFORMATION & METHODOLOGY

This study is based on information obtained from several
digital bibliography search engines. Specifically, we have

333

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 349 / 612

used search engines from the best known and most widely
recognized publishers in the fields of Computer Science &
Information Technology, as well as Google Scholar.

To have a preliminary structuring of the area, we first
considered the results provided by Google Scholar. The goal
was to assess the research activity on adaptive systems in the
period 2000-2011, including every potential environment,
and comparing these results to those in the specific subarea
of service-oriented architectures in section A .

The remaining searches followed a more systematic
approach, guided by specific goals (in the form of questions),
specifically those which were proposed in section II.A.

Throughout all this search process, we have considered
the possibility of evaluating the used terminology, with the
purpose of extending the search to a wider scope – but still
within the parameters of the study. This evaluation has made
possible to change and evolve the initial searches, to the final
form we will describe in the following.

After performing those search processes, our inclusion
and exclusion criteria were used to select the most relevant
articles. Then we also examined the references cited in these
papers, with the purpose to select other relevant papers,
which were not located previously due to their publication
stage, or which have been published by some additional
publisher. This way, the publishing bias we mentioned in
section II.B.

A. Search Strategy and Selection of Areas

The search strategy has been guided by our goals, by

answering to a set of questions.
The questions were bound to specific terminology. The

variety of meanings of some of the terms used in our search
made necessary to apply an iterative, evolutionary approach,
in which those search terms were finely tuned. At the end of
the process, our study has made possible to obtain a specific
terminology summary, which covers goal (4). This specific
terminology, obtained from multiple sources in the revised
information, has been represented using a pyramidal mesh,
which will be detailed in section IV.C. Therefore the most
significant terms and notions related to our field of study
have been collected, also emphasizing their similarities and
differences, something which is not always completely clear.
This way, in our iterative process we have refined concepts
such as autonomic vs. autonomous, adaptation vs. self-
adaptation, adaptive, self-organization, self-monitoring, etc.

The definition of these terms, as part of the results for our
goal (4), is briefly explained in section IV.C, where it also
explains the aforementioned pyramidal structure.

Within these terms, we should emphasize those which
were considered for our search, namely:

 Adaptation, adaptive, adaptivity, self-*

 “Software service”, service-oriented, SOA

 Evaluation, “quality model”
In order to fulfill our first and second goals, we

performed a series of searches on Google Scholar, as well as
other databases. In the final search on Scholar, the questions
related to these goals were the following:

 Assessment of the number of articles dealing with
adaptivity, against the number of those doing the
same in the service-oriented architecture area.

 Which disciplines (research areas) are dealing with
and applying adaptation?

The first search, which intends to identify the different fields

of study related to adaptivity, is driven by the following

queries, referring to the compared subsets:

 Query #1: (("autonomic" OR adaptive OR
adaptation OR autonomous OR adaptivity OR self)
AND (evaluation OR quality))

 Query #2: (("autonomic computing" OR adaptive
OR adaptation OR autonomous OR adaptivity OR
self) AND (evaluation OR quality)) AND
(("software service") OR ("service-oriented
Architecture") OR ("Service Oriented
Architecture"))

These queries, on the Google Scholar engine, resulted in

about 7.806.600 references for query #1 and a total of 17.565

for query #2. The refined search provides roughly about

1500 results every year, from 2000 to 2011. The scope of the

study is very wide, covering almost any scientific area –

which is not surprising and confirms our intuition.

2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000

770

2980

3180

3050

2630

1980

1410

668

379

243

189

86

Figure 1. References for Query #2 from 2000 to 2011 (1-12)

The most representative areas for query #1 are: Life Science,

Engineering, Social Science and Law, Mathematics and

Statistics, Medicine and Computer Science (e.g. Ubiquitous

Computing, Grid Environments [13], mobile systems and

services [14] [15], Domotics [16], etc.)

Goals numbered as (3) are essential in the context of this

study – i.e. the evaluation of adaptivity in service-oriented

architectures. Related searches have been more specific, and

they have already been performed in bibliography databases

from the publishers themselves. The purpose was to obtain a

more accurate list of articles, trying to reach all the relevant

information – without any accidental loss. We also have used

2; 2980; 18%

3; 3180; 19%

4; 3050; 17%

5; 2630; 15%

6; 1980; 11%

7; 1410; 8%

8; 668; 4%

12; 86; 0%
11; 189; 1%

9; 379; 2% 10; 243; 1%

1; 770; 4%
1

2

3

4

5

6

7

8

9

10

11

12

334

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 350 / 612

references from the selected articles, and in relevant cases we

have also searched for the corresponding citations.

For instance, a representative query could be:

 Query #3: ((("autonomic computing" or self) and
(adaptive or adaptation or adaptivity)) and
(evaluation or quality)) and (("software service") or
("service-oriented Architecture") or ("Service
Oriented Architecture"))

B. Inclusion and Exclusion Criteria.

1) Related to goals (1) and (2): Neither inclusion nor

exclusion criteria were defined – this search was delimited

just by query clauses themselves, i.e. queries #1 and #2. This

could seem less “systematic” than the remainder of the study.

However, we did not intend to do a detailed classification of

areas and fields of study, but to assess if our suggestion (to

focus on service architectures) was reasonable. This goal

alone could be used to justify a specific systematic study,

which would be even more complex than the one presented

here. The reason to include this goal is to perform a shallow

examination of some of the areas suggested by many search

engines, with the purpose of perceiving the actual extension

of the field, as well as its growing rate. A systematic study

on this specific aspect would be of great interest to detect

methods or tools (from other fields) which could be applied

in the context of adaptive software.

2) Related to goals numbered as (3). In this search

process, queries are quite more specific, and they mainly

focus in evaluating adaptivity by means of self-properties.

Therefore it considers papers including models, frameworks,

metrics and evaluations on the topic. This study excluded

papers not dealing with self-properites, and those which did

not focus on assessing adaptivity/autonomic features.

3) Related to goal (4): The resulting terminology has

been extracted from papers selected in the previous phase.

Therefore their inclusion and exclusion criteria are the same.

However, some additional selection criteria are also added;

specifically, articles which define or clarify terminological

aspects, or which perform reviews in which terminological

features are also clarified.

C. Results

1) Related to goals (1) and (2): The range and scope of

the many fields of study which apply adaptivity is too wide

to be considered in this paper – in fact, it would require an

specific study itself. Therefore, for this purpose we refer to

the results outlined in section IV.A, and to the conclusions

summarized in sections V.B and V.C, which expose a global

vision for this part of our study.

2) Related to goal (3): This goal, together with results

about terminology from goal (4), provides a characterization

of adaptivity. The following table summarizes briefly this

part of the study. It describes representative categories of

existing work, indicating for each one of them references,

goals, projects, metrics and their organization.

TABLE I. EVALUATION OF ADAPTIVITY

Ref
Evaluation of Adaptivity

Goal/ Project/ Context Metrics/ Organization

[28]
[29]

Metrics to evaluate Self-*

systems criteria

/ -- /
Web-based C/S, E-learning

(AHA!), Videoconference,

Multiagent Systems

The many metrics for each
Propierties (reuse, genericity…)

/methodological, architectural,

intrinsic characteristic and
runtime

[30]

Metrics for restarting

strategies in WS Reliable

Messaging (WSRM)
/ -- / WSRM

Effective Transmission Time

(ETTi), Unnecessary Resource

Consumption (URCi),
Savings (SAVi)

/ Adaptation parameters

 (structures, payoff,
 environments, time)

[34]

Quality Model for the

software architecture of
self-healing applications

(based on ISO 9126)

/Attribute-based

architectural styles
(ABAS)

/ --

Traditional quality attributes

(Maintainability –Modifiability,
Extensibility-, Reliability –Fault

tolerance, Robustness-)

Specific Autonomic Quality
attributes (Support for detecting

anomalous system behavior,

Failure Diagnosis, Simulation of
expected behavior, Differencing

between expected and actual

behavior, Testing of correct
behavior). Autonomic Metrics:

Detection ratio, Detection time,

Fault Model Observability,
Awareness, Coupling

/ Traditional and Autonomic

attributes

[35]

User-level Quality of

 Service (QoS)

(Context awareness)
/ PLASTIC, model PFM

/ Pervasive Networking

 Environment

Performance evaluation

[36]

Quality model to evaluate
Self-* attributes (adopts 6

features of ISO 9126:

Reliability, Efficiency,
Maintainability, Usability,

Functionality, Portability)

/ --
/ --

The autonomic maturity of each

level in complex software

(Complexity of development,
business domain and

management)

/ Three-level Autonomic
Evaluation Model

(Software Complexity, Relative

Quality Factor, Autonomic
features).

Fuzzy comprehensive evaluation

(qualitative factors)

3) Related to goal (4): These results are summarized in

Fig. 2, which shows the wide spectrum of so-called self-

properties, ranging from very generic properties which can

be applied in many systems (such as context-awareness) to

specific attributes which are only found in some approaches

(like emergence). Apart from these, there are several other,

less frequent, properties – also, many of them are referred to

using different names and variants (self-managing vs. self-

management). All these issues have been considered in the

study, and they are implicitly included in this paper.
Fig. 2 represents three pyramids rather than one – they

are conceptually related, but they must be studied separately.
Pyramid #1 represents environmental adaptation, i.e. the

335

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 351 / 612

capability of a system to perceive its own environment and
integrate in it. Pyramid #2 represents behavioral adaptation,
i.e. the capability of a system to modify its behavior to adapt
to different conditions, ranging from pure observation to full
self-management. And pyramid #3 depicts self-adaptation,
i.e. the capability of the system to manage its own adaptivity,
possibly including its own emergent behavior. Together, this
triple representation describes the full range of adaptation.

Figure 2. The spectrum of self-properties: a pyramidal representation

This (triple) pyramid represents a gradient, rather than
strict layers – i.e. each level is more complex than the one
below itself (at least inside its own pyramid), but it is not
necessarily using its services, though it is probably supported
by some of the layers below. The same applies to the three
pyramids – their separation depicts a gradient, but they can
be considered independently. For example, an autonomic
system is in the cusp of pyramid #2 – this means it is more
complex than a self-healing system, but not necessarily that
there is an emergent behavior (from pyramid #3) above it.

Therefore the pyramidal representation must not be
understood literally – its purpose is to give an idea of their
relative conceptual scope and size. As noted, some of these
properties are built on top of the previous step (for instance,
self-management should always rely on self-healing), but
this is not always true (for instance, self-organization is not
necessarily based on context adaptation).

This representation also helps to outline the distinction
between similar but different terms: for instance, adaptation
(i.e. the full range in the triple pyramid) vs. self-adaptation
(i.e. just the range in pyramid #3). A similar conflict appears
to differentiate autonomous (i.e. the capability of a system to
act independently) from autonomic (understood here as the
combination of several self-properties [4][22]). Indeed, there
is an intimate relationship between adaptation and autonomy;
though they describe different features, to fully achieve each
one of them, the other is also required, at least partially.

V. CONCLUSIONS

We present our conclusions in the following, structured as

the next four sections.

A. Adaptivity and self-properties

Regarding adaptation, there are significant differences in
the way in which these autonomous changes in the system
must be performed. This is mainly related to the way they are
managed [17]. The range covers from the ad hoc way, in
which adaptation (or the adaptors) needs the intercession of
some stakeholder [18], to the automatic way, in which
adaptation (and the adaptors) is fully generated by tools [19].

Self-organization can also be studied within the context
of adaptivity [20], as we have already done in the previous
section (Fig. 2). It should be considered nevertheless as an
independent property, with the same level or complexity and
interest than adaptation itself – of course, the same applies to
the evaluation process [21]. This feature can also be
considered in relation to several self-properties (such as self-
adaptation or self-assembly, in particular), though it is more
basic (and at the same time, can be more complex) than the
majority of the properties listed in Figure 2. This reflection
also requires a discussion of the terminology.

In many cases, the evaluation of adaptivity needs to have
into account the specific context to deal with – some systems
require to be adaptive even when their flexibility is minimal.
This relative scale must also be considered.

B. Adaptivity in different areas

The wide scope of the field suggests that there could be
methods and techniques designed for the evaluation of
adaptivity [2] [4] [5] [22] which could be applied at the
software architecture level. Several techniques have also
been inspired in other fields, such as the Control Loop Model
[2], and some others can still be transferred – much of them
in the context of natural systems, in particular in the context
of self-organization.

The growing relevance of this field is even more apparent
in the context of “new” kinds of applications which are
appearing right now and in the near future. An obvious
example is adaptation in the context of mobile systems,
where context-awareness, which includes a wide range of
techniques, has been an active line of research.

C. Adaptivity in Software Engineering

An immediate conclusion, with respect to the field of
software engineering, is that the evaluation and assessment
of adaptivity is still a relatively new area. A review of the
existing literature shows that there are still several aspects to
define, such as languages or methods [23][24][25], etc. Once
this is done, the quality of service (QoS) could be influenced
by adaptivity, just like it is now by interoperability – this
would be used as the criteria to select and use certain
systems [17]; in summary, this could provide soundness to
autonomous systems. There is already some amount of work
in this direction, but these are still proposals under
discussion, the first contributions which must be refined.

Adaptive systems also begin to be considered within the
specific subfield of Requirements Engineering, for instance
[26]. But, besides deciding when to adapt (adaptation time),
we are also interested in the nature of adaptive capabilities,
and how to define generic models which could determine our
adaptive systems.

336

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 352 / 612

D. Evaluation of Adaptivity

In summary, we can conclude that currently there is not
any effective method able to evaluate the adaptivity of a
software system [27][28] [29][30][31][32][33][34][35][36] –
not even when we refer to this property not in the wider
sense, but focusing on a concrete feature.

Also, as deduced from section IV.B, the scope of service-
oriented architecture is comparatively much smaller than the
general scope of adaptivity. But while the size of the field
has maintained constant, the importance of services has
increased – therefore, we can conclude that our hypothesis is
reasonable, and then, that adaptive services can be used as a
model for generic adaptivity.

REFERENCES

[1] L. Northrop, Ultra Large-Scale Systems: The Software Challenge of
the Future, SEI Books, Software Engineering Institute, 2006.

[2] B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
Software Engineering for Self-Adaptive Systems, Lecture Notes in
Computer Science 5525, Springer, 2009.

[3] B.H.C. Cheng, et al, “Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2010),” 32nd International Conf. on
Software Engineering (ICSE 2010), ACM Press, 2010, pp. 447-448.

[4] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, 2003, pp. 41-50.

[5] M.C. Huebscher and J.A. McCann, “A Survey of Autonomic
Computing -- Degrees, Models and Applications,” ACM Computing
Surveys, vol. 40, 2008.

[6] C.E. Cuesta and M.P. Romay, “Elements of Self-Adaptive Systems -
A Decentralized Architectural Perspective,” Self-Organizing
Architectures, Lecture Notes in Computer Science, vol. 6090:
Springer, 2010, pp. 1-20.

[7] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” Future of Software Engineering (FoSE 2007), IEEE
Computer Society, 2007, pp. 259-268.

[8] B. Kitchenham, “Procedures for performing systematic reviews,”
Joint Technical Report, Keele University and National ICT, 2004.

[9] M.P. Papazoglou and D. Georgakopoulos, “Introduction to the
Special Issue on Service-Oriented Computing,” Communications of
the ACM, vol. 46, 2003, pp. 24-28.

[10] O. Babaoglu, M. Jelasity, et al, Self-star Properties in Complex
Information Systems: Conceptual and Practical Foundations, Lecture
Notes in Computer Science 3460, Springer, 2005, pp. 1-20.

[11] M.P. Papazoglou, Web Services: Principles and Technology,
Prentice-Hall, 2007.

[12] NEXOF Reference Architecture Specification, Version 1.0, 2010.
http://www.nexof-ra.eu/?q=node/695. Last access: 07/15/2011.

[13] D. Ardagna, S. Lucchini, R. Mirandola, and B. Pernici, “Web
Services Composition in Autonomic Grid Environments,” Business
Process Management Workshop, Springer, 2006, pp. 375-386.

[14] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S.O. Hallsteinsen, J.
Lorenzo, A. Mamelli, and U. Scholz, “MUSIC: Middleware support
for self-adaptation in ubiquitous and service-oriented environments,”
Software Engineering for Self-Adaptive Systems, Springer, Lecture
Notes in Computer Science 5525, 2009, pp. 164-182.

[15] G. Wrzesinska, J. Maassen, and H.E. Bal, “Self-adaptive applications
on the grid,” Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, New York, NY,
USA: ACM, 2007, pp. 121-129.

[16] J. Ferreira, J. Leitão, and L. Rodrigues, “A-OSGi: A Framework to
Support the Construction of Autonomic OSGi-Based Applications,”
Autonomic Computation and Communication Systems: Autonomics
2009, Lecture Notes of the ICST 23, Springer, 2010, pp. 1-16.

[17] C. Canal, J.M. Murillo, and P. Poizat, “Software Adaptation,”
L’Objet: logiciel, bases de données, réseaux, vol. 12, 2006, pp. 9-31.

[18] C. Peper and D. Schneider, “On runtime service quality models in
adaptive ad-hoc systems,” 2009 ESEC/FSE workshop on Software
Integration and Evolution @ runtime, ACM, 2009, pp. 11-18.

[19] A. Bottaro and R. Hall, “Dynamic Contextual Service Ranking,”
Software Composition, Springer 2007, pp. 129-143.

[20] M. Randles, A. Taleb-Bendiab, and D. Lamb, “Cross Layer
Dynamics in Self-Organising Service Oriented Architectures,” Self-
Organizing Systems, Springer, 2008, pp. 293-298.

[21] L. Liu, S. Thanheiser, and H. Schmeck, “A Reference Architecture
for Self-organizing Service-Oriented Computing,” Architecture of
Computing Systems (ARCS 2008), U. Brinkschulte, T. Ungerer, C.
Hochberger, and R. Spallek, eds., Springer, 2008, pp. 205-219.

[22] P. Lin, A. MacArthur, and J. Leaney, “Defining Autonomic
Computing: a Software Engineering Perspective,” Proceedings
Australian Conference on Software Engineering (ASWEC 2005),
IEEE Computer Society Press, 2005, pp. 88-97.

[23] M. Wolski, C. Mazurek, P. Spychała, and A. Sumowski, “The
architecture of distributed systems driven by autonomic patterns,”
Software Engineering Techniques: Design for Quality, K. Sacha, ed.,
Springer Boston, 2007, pp. 49-60.

[24] Y. Liu, M. Tan, I. Gorton, and A. Clayphan, “An Autonomic
Middleware Solution for Coordinating Multiple QoS Controls,”
Service-Oriented Computing (ICSOC 2008), A. Bouguettaya, I.
Krueger, and T. Margaria, eds., Springer, 2008, pp. 225-240.

[25] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “SASSY: A
Framework for Self-Architecting Service-Oriented Systems,” IEEE
Software, Early Access article, IEEE, in press.

[26] K. Welsh and P. Sawyer, “When to Adapt? Identification of Problem
Domains for Adaptive Systems,” Proceedings of the 14th
international conference on Requirements Engineering: Foundation
for Software Quality, Springer-Verlag, 2008, pp. 198-203.

[27] J.A. McCann and M.C. Huebscher “Evaluation issues in autonomic
computing”. Proceedings of Grid and Cooperative Computing
Workshops (GCC), IEEE CS Press, 2004, pp. 597-608.

[28] L. Masciadri and C. Raibulet, “Frameworks for the Development of
Adaptive Systems: Evaluation of Their Adaptability Feature Through
Software Metrics,” 4th International Conference on Software
Engineering Advances (ICSEA 2009), 2009, pp. 309-312.

[29] C. Raibulet and L. Masciadri, “Evaluation of Dynamic Adaptivity
through Metrics: an Achievable Target?,” Joint Working IEEE/IFIP
Conference and European Conference on Software Architecture
(WICSA/ECSA 2009), IEEE CS Press, 2009, pp. 341-344.

[30] P. Reinecke, K. Wolter, and A. van Moorsel, “Evaluating the
adaptivity of computing systems,” Performance Evaluation, vol. 67,
2010, pp. 676-693.

[31] D. Robinson and G. Kotonya, “A Self-Managing Brokerage Model
for Quality Assurance in Service-Oriented Systems,” High-Assurance
Systems Engineering, IEEE, 2008, pp. 424-433.

[32] G. Feuerlicht, “Simple Metric for Assessing Quality of Service
Design,” Service-Oriented Computing, Springer, 2011, pp. 133-143.

[33] Luqi and G. Jacoby, “Testing Adaptive Probabilistic Software
Components in Cyber Systems,” Foundations of Computer Software.
Modeling, Development, and Verification of Adaptive Systems (16th
Monterey Workshop), LNCS 6662, Springer, 2011, pp. 228-238.

[34] S. Neti and H.A. Muller, “Quality Criteria and an Analysis
Framework for Self-Healing Systems,” Proc. Software Engineering
for Adaptive and Self-Managing Systems (SEAMS’07, ICSE), IEEE
Computer Society, IEEE Digital Library, 2007, p. 6.

[35] M. Autili, P. Inverardi, and M. Tivoli, “Run Time Models in
Adaptive Service Infrastructure,” Run-time mOdels for Self-
managing Systems and Applications, Springer, 2010, pp. 125-152.

[36] H. Zhang, H. Whang, and R. Zheng, “An Autonomic Evaluation
Model of Complex Software,” International Conference on Internet
Computing in Science and Engineering, 2008, pp. 343-348.

337

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 353 / 612

A Formal Specification of G-DTD:

A Conceptual Model to Describe XML Documents

Zurinahni Zainol
*,^

, Bing Wang
*

*
Department of Computer Science

University of Hull
UK

^
School of Computer Sciences

Universiti Sains Malaysia

Penang, Malaysia

z.zainol@2007.hull.ac.uk, b.wang@hull.ac.uk

Abstract – This paper provides a formal specification in Z of

a conceptual model for an XML document called Graph-

Document Type Definition (G-DTD). This model has been

used for describing XML documents at the schema level and

also assists the user to arrange the content of XML

documents. More importantly G-DTD can be used as a tool

to simplify the XML document design in a simple and

precise way. The specification presented here provides a

formal account of the state and operation of this model and a

sound basis for instantiations of the model to be built.

Keywords – XML model and design; graphical notation;

DTD; formal methods

I. INTRODUCTION

 It is well known that XML documents can be

regarded as a new type of database, and such data are

particularly good for information exchange on the

internet. Like relational databases, poorly designed

documents may contain too many unnecessary

redundancies and these redundancies may contain update

anomalies [2, 7, 14, 15]. Data redundancies and anomalies

can occur in XML documents if the schema that is DTD

(Document Type Definition) [11] or XML Schema [13] is

not well defined. In order to avoid these problems, it is

very important to have a well defined schema for XML

documents. To achieve this aim, a conceptual model

Graph Document Type Definition (G-DTD) [16] is

proposed to describe XML documents at the schema

level. G-DTD has richer syntax and structure which

incorporates attribute entity, simple data types, complex

element data types, relationship types, hierarchical

structure, cardinality, sequence and disjunctions between

elements or attributes. The benefit of the G-DTD data

model is that, it can be used to capture the syntax and

semantics of XML documents in a simple but precise

way. Having G-DTD as a tool helps the user to arrange

the content of XML documents in order to give a better

understanding of DTD structures, improves XML design

and assists the normalization process as well. The

conceptual model G-DTD is a first layer of an XML

document design system which we have formally

constructed.

 The benefits of having such a formal specification are

firstly, to make a precise description of the complete G-

DTD model at the conceptual level in order to remove

ambiguity that may arise from its graphical

representation. Secondly, to make G-DTD itself a

modelling notation so that it can be used as the basis for a

rigorous tool for XML design and finally, to eliminate

inconsistencies in XML design at a schema level. This

formal specification is used to describe a fundamental

framework of what the system can do and also as an

abstraction of a full complete system which can serve as a

reliable blueprint for those who want to implement the

program later. This formal specification is important

before the implementation of the real system is developed,

as its allows a designer to understand the big picture of

the system and helps to discover error early in the

development process.

 There is a related work by Anutariya et al. [1], which

has proposed a formal data model for an XML database

using XML Declarative Description (XDD) theory.

However, the most related work using a formal method to

present formally a data model for semistructured data

called Object Relational Atribute for Semistructured

(ORA-SS) is done by Lee et al. [8,9]. They used different

types of formal method languages to present the syntax

and semantics of the model. For instance, Lee at al [8]

used Z formal language to validate the syntax and

semantics of the ORA-SS model. They also validated the

model to check the correctness of ORA-SS at both

schema and instance levels. Similar to this work, the

formalization of ORA-SS using OWL was presented to

338

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 354 / 612

improve verification performance. Recently, Lee et al [9]

have used a different approach to define a formal

specification for ORA-SS using Prototype Verification

System (PVS) language. However, to the best of our

knowledge, no formal specification has been developed to

define an XML document design system. This paper

describes the first layer of the system.

 The rest of the paper is organized as follows: Section

II provides background knowledge on G-DTD notations,

structure and operations. Section III presents the Z formal

specification of G-DTD. In Section IV, we demonstrate

the formal specification of G-DTD operations defined in

Section II. We conclude the paper with our future work in

Section V.

II. BACKGROUND

 DTD is commonly represented as textual

representation. In practice, it often causes difficulties

when designing even a simple XML document. More

importantly, in DTD, the semantic constraints and

relationship between the elements in the XML document

cannot be represented precisely and clearly. For instance,

as shown in Figure 1, the relation between course and

student is not defined explicitly. The semantic relation

between the elements presents only one-to-many

relationships, while other relationships such as many-to-

many or many-to-one relationships cannot be defined.

However, G-DTD overcomes the above problems by

using a graphical notation to visually represent an XML

document structure at the schema level. This notations

are shown clearly in the example provided in Figure 2. In

this way, we believe the user can have a better

understanding of XML document structure. Indeed, Mok

and Embley [10] make the argument that “the graphical

conceptual modelling languages offer one of the best

human–oriented ways of describing an application”

 Representation of G-DTD is slightly different from

the DTD. Firstly, we distinguish explicitly the difference

between complex elements, simple element and attribute.

We emphasise that a simple element is an element with no

child elements, while an attribute is a key or candidate

key of a complex element. The reason for this is to make

the normalization process easier. Secondly, we present

the G-DTD structure as a hierarchical structure of

elements which is similar to XML document structure, to

provide an accurate picture of the XML document. The

advantages of G-DTD over DTD are: it allows users to

define explicitly the structure of attribute nodes, simple

element nodes and complex element nodes in a

hierarchical way and also allows the user to determine the

relationship dependency between the nodes.

A. Syntax and Semantics of G-DTD

 Some of the notations of G-DTD have been adopted

and improved upon from the current data model ORA-SS

[5] notations and conventional ER model [4]. G-DTD [15]

consists of six basic components:

(1) Complex element node. A complex element node

is used to represent an ‘ELEMENT‟ in DTD. The complex

element node is illustrated as a labelled rectangular box.

This notation is adopted from the ER model [4] which is

similar to entity. The label is written in the rectangle as a

tuple <name, level>, where name represents the name of

the node and level represents the depth of the node in G-

DTD.

(2) Simple element node. A simple element node is

used to represent an ‘ELEMENT‟ associated with

#PCDATA or #CDATA. It is illustrated as a labelled

rounded rectangular box with the form <name,level,type>

where name is the name of the simple element, level is the

depth of the node in the G-DTD and type represents

PCDATA or CDATA or string 'S' . All simple element

nodes are assumed to be mandatory and single valued,

unless the node contains the symbol „?‟ which signifies it

is single valued and optional, or + which signifies that it is

multi-valued and required, or an * which shows that it is

optional and multi-valued. This notation is similar to

ORA-SS [6]. The symbol is written in front of the tuple

<name, level, type> to differentiate among them

accordingly.

(3) Attribute node. An attribute node is used to

represent an attribute defined in ATTLIST. The attribute

node is an identifier for a complex element node. It is

represented as an ID which is unique and mandatory

among the instances of complex elements. Attributes can

be classified as single attributes and composite attributes.

A single identifier attribute has an atomic value and

composite attributes have more than one identifier

attributes. A single identifier attribute is represented as an

oval and a composite attribute as a double oval.

(4) Set relationship type. Three types of relationship

are used in G-DTD: Hierarchical link, part_of link and

has_a link. The Hierarchical link is a relationship between

complex element nodes. This link shows the relationship

between parent node to child node or ancestor node to

descendant node. For Hierarchical link, a relationship

dependency, which is indicated by the connectivity

between complex element occurrences, is important. Basic

constructs for connectivity are: one-to-one (unary or

binary relationship), one-to-many (unary or binary

relationship), many-to-one and many-to-many (unary or

binary relationship). All these types of relationship are

indicated by directional arrows. The notation is presented

as (name, d, cp, cc) where name represents the name of the

relationship, d is the degree of relationship, cp and cc are

cardinality constraints for parent and child respectively.

This notation is similar to ORA-SS [6]. The degree can be

two, three or n-ary. The cardinality of cp and cc in a

relationship is represented as 2 tuple (min: max). The

constraint (0:N), (0:1)and (1:N) is represented as the

339

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 355 / 612

operators *, ? and + respectively, except the cardinality

constraint (1:1) is presented as 1. For instance, the

diagram in Figure 2 illustrates a binary Hierarchical link

between complex element student and complex element

courses, where a student can take zero or many courses

while many courses can be taken by zero or many

students. Part_of link is a relationship between a complex

element node and an attribute node. It is illustrated as a

bold double arrow. Has_a link is a relationship between

complex element node and a simple element node. It is

illustrated as a single double arrow.

(5) Semantic constraint between set relationships.

There are two types of set relationships: First, sequence

between a set of child element nodes. We emphasize in

our notation that the attribute node(s) must be located in

the first position in the sequence. To express such ordering

in a G-DTD, we draw a directed upwardly curving arrow

labelled with {sequence} across all the set of relationships

involved. Second, is disjunction between the set of sibling

nodes. To illustrate this, we draw a line labelled with

{XOR} across all the set of relationships involved.

(6) Root node. A root node is used to represent

DOCTYPE. Its notation is similar to complex element

notation, as it is a special case of a complex element node

and its level is always zero.

Figure 2 shows a G-DTD describing the structure of an

XML document corresponding to the DTD in Figure 1.

The root node Department has a binary hierarchical link

with the complex element node course. The semantic

relationship between them reveals that the Department can

have one-to-many courses at one time. The complex

element course has a sequence of attribute cno, simple

element node title and complex element node student.

<!DOCTYPE department[

 <!ELEMENT department(course*)>

 <!ELEMENT course(title, student*)>

 <!ATTLIST course cno ID #REQUIRED>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT student(fname|lname?,lecturer)>

 <!ATTLIST student Sno ID #REQUIRED

 <!ELEMENT fname(#PCDATA) >

 <!ELEMENT lname(#PCDATA) >

 <!ELEMENT lecturer (tname)>

 <!ATTLIST lecturer tno ID #REQUIRED>

 <!ELEMENT tname (#PCDATA)>

]>

Figure 1. A DTD for the university database

The part-of link attribute is a mandatory relationship

where the attribute node cno is required and unique for

every course in the XML document. The simple element

node title is part-of the complex element courses. One

course can be taken by many students while the complex

element student consists of a sequence of attribute node

sno, simple elements fname, lname and complex element

lecturer. Attribute node sno is required for the complex

element student. Complex element node student requires

only one of its subelements, either fname or lname, to

appear in the XML document while the simple element

lname is optional. The semantic relationship between

course, student and lecturer is indicated as a ternary

relationship since each student is assigned to a lecturer

who is teaching the course.

 As shown in Figure 2, the semantic relationships

between the complex element nodes have been added at

the hierarchical link to present more semantics at the

schema level. The reason we add this type of semantics is

to make the relationship between the nodes more explicit,

which will help during the normalization process.

Figure 2. G-DTD

(CS,2,*,*)

cno,2,ID

Department,0

(DC,2,1,*)

title,2,S

fname,3,S
?lname, 3,S

tname,4,S

course,1

student,2

lecturer,3

tno,4,ID

sno,3,ID

(CST,3,1,*)

340

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 356 / 612

B. G-DTD Operations

 The operations of the G-DTD model describe the

dynamic properties of the model. G-DTD model

operations are classified into five main parts. Query

Operations, Insert Operations, Delete Operations,

Searching Operations, and Update operations. An

operation to determine the root and leaves of the G-DTD

is also required. Later, these operations will be used in

normalizing the G-DTD into normal forms. In the

following description, we will conceptually discuss the

semantic connection of these operations according to this

classification.

(1) Query Operations

 Query operations allow the user to query the node

types and information, related nodes and links

information defined in G-DTD.

 (a) Query a Node Type and Information

 The operations of querying node types allow the user

to query different types of node stored in G-DTD such as

complex element, simple element or attribute nodes. The

user can also query information of a particular node, such

as name, level and node type. If the queried node does not

exist, an error message is given.

 (b) Query a Related Node

 Since the structure of G-DTD is like a tree structure,

the query operations allow the user to query the related

node that links to a particular node using a path through

an existing link such as a Hierarchical, Part_of or Has_A

link. For instance, the user can detect the parent of a

complex element node by using the hierarchical link

between two complex element nodes. Another example,

the simple element for a particular complex element node

can be determined through the has-a link.

 (c) Query a Hierarchical Link

 Hierarchical links are the most important links in G-

DTD. This operation allows the user to query the instance

of a hierarchical link, such as name of link, degree of

relations and parent and child constraint.

 (2) Insert Operations

 Insert operations allow the user to add new nodes to

the G-DTD. When a new node is being inserted in the G-

DTD model, the following situations are possible:

 A new node of type complex element node,

simple element node or attribute node is created

 A new hierarchical link is built between the

complex element node and created complex

element node

 A new has-a link is built between the created

complex element node and a simple element node

 A part-of link is built between the created

complex element node and an attribute node

 To ensure the new node is not redundant with any

node in the given G-DTD, it must be checked whether the

node already exists. Then the proper location of the new

node needs to be determined before it can be inserted into

the G-DTD. More importantly, it must satisfy the data

integrity constraint of the given G-DTD.

 (a) Inserting a Node

 In this case a new node is inserted into the G-DTD.

Whether the new node is a complex element, simple

element or attribute node, the properties of the inserted

node such as ID, level and types are inserted and stored

together in the G-DTD. The operation implies that when

the node is inserted, related nodes such as parent node or

child node should be reported to the user since the

structure of the G-DTD is changed. If the newly inserted

node is a complex element node, the position of the new

complex element node is based on the rules provided in

the normalization procedure [17]. In such a situation, a

hierarchical link is created with its parent node. In this

case, the parent node may be a root node or another

complex element node based on the normalization rules

provided. However if the created node is a simple element

or an attribute node, a Part_of link or Has_A link is built

between it and the parent node, which is a complex

element node.

 (b) Inserting an Instance of a Hierarchical Link

 Inserting an instance of a hierarchical link means that

the semantic relation between two complex element nodes

has to be created. The user needs to know the semantic

relationships before he/she can insert them to the G-DTD.

The user can make links and insert the corresponding link

information such as name, degree, parent constraint and

child constraint. In contrast, for a Part_of link or Has-A

link, the user is not required to put any instance for the

links.

(3) Delete Operations

 Delete operations result in the corresponding data

being removed from the G-DTD. Since the structure

defined in the G-DTD is a tree structure, deleting will

affect the location of the existing nodes in the G-DTD,

especially the parent node and child node. The delete

operation in G-DTD must satisfy the conditions and

constraints given in the normalization rules [17]. In the

following, we will discuss the different situations of

delete operations in the G-DTD.

 (a) Deleting a Complex Element Node

 Deleting a complex element node is a complex

deletion process in G-DTD. This is because every

complex element node is related to its parent node and

child node. Before the deletion process of a complex

341

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 357 / 612

element node is started, it is important for the user to find

its related nodes such as its parent node and child nodes.

Eventually, by deleting a complex element node, its

attribute and simple element nodes with the relevant,

Part_of and Has_A links are automatically deleted as

well. Then, new links are built up with its new parent

node and child node.

 (b) Deleting a Hierarchical Link type and its Instance

According to the hierarchical link type definition, each

instance of a hierarchical link type represents a semantic

relationship between two complex element nodes. When

such an instance is deleted, the specific relationship

between the two nodes has no further semantic link

between them.

(4) Update Operations

 Update operations change the location of the current

node. A complex element node or simple element node

can be moved around from one location to another. In the

process of moving a node, all the related nodes including

complex element nodes and simple element nodes should

be notified if the moving node has a relationship with

them. The only case we consider here is moving a

complex element node. It may be necessary to move a

complex element node up to another level when there

exists dependency between an attribute node and simple

element node of a complex element node. In this

situation, it is not necessary to create a new element node

but rather to restructure the G-DTD by moving up the

complex element node at level n (nn) to level n-1 (nn-1)

along with its corresponding children.

(5) Determine the root node and last node

 This operation will determine the root node and last

node (last level) in the G-DTD. The last node may be a

simple element node or attribute node. These operations

are very important because in order to avoid duplication,

we need to move the corresponding node to a position as

close as possible to the root node.

III. THE SPECIFICATION OF G-DTD

 In this paper we provide a formal specification of the

G-DTD which represents a formal, concise and readable

definition of the G-DTD and its operations. The

specification can be used as the basis for implementation,

as well as a framework for further XML document design.

We choose the language Z [11] to formalise our model for

a number of reasons. First, the language is based upon

primitive mathematical notation such as set theory and

first order predicate logic, making it accessible to

researchers from variety of different backgrounds.

Second, it is expressive enough to allow consistent,

formal and unified representation of a system and its

associated operations. Third, it is model oriented [3]. A

model-oriented specification language seems more

appropiate to specify an XML design model and it is

easier to understand. Finally, in particular, we have found

that Z is an established language, widely accepted and

appropiate for building formal frameworks [9]. A

specification written in Z is a mixture of formal

mathematical statements and informal explanatory text.

Both have their importance: the formal part gives a

precise definition of the system being specified, while the

informal text makes the specification more

comprehensive and readable, linking the abstract

definition of the system to the real world. In this paper

we present only some basic components and operations,

due mainly to space limitations; other results will be

published in a forthcoming paper.

A. Basic types

 We use the basic types [ID, Element_Name,

Attribute_Name, Relation_Name] as a given set which

will be used in the later schema definition. ID represents

each nodes identifier, which is unique; both

Element_Name and Attribute_Name are used to represent

the set of all possible XML element nodes and attribute

nodes respectively. Relation_Name is a set for

relationship names.

B. The Data Structure of G-DTD

 As described in Section II(A), we captured the

characteristics of each type of node such as simple

element, complex element and attribute nodes using the

following schema type. There is no constraint we need to

add in each of the declarations

(1) Simple Element Node

 The type definition for a simple element is defined as

follows:

Simple_Element_Type::=singlevalue| multivalue| op_singlevalue|
op_multivalue

 SimpleElementNode
identity:ID

name:Element_Name

level:ℕ

elemType: Simple_Element_Type

(2) Attribute Node

 The AttributeNode schema captures the properties of

an attribute node as follows:

Attribute_Type::= composite| required|reference

 AttributeNode
identity:ID

name: Attribute_Name

level:ℕ

AttType: Attribute_Type

 (3) Complex Element Node

The ComplexElementNode schema represents the

properties of a complex element node with its identity,

name and level.

342

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 358 / 612

 ComplexElementNode
identity:ID

name: Element_Name

level:ℕ

(4) Parent for Complex Element Node, Simple Element

Node and Attribute Node

 Because the structure of the G-DTD is a tree

structure, it is important to define a parent for each

complex element node, simple element node and attribute

node to describe precisely the relationship between them.

The functions parent_ce, parent_se and parent_att are

defined using the axiomatic function as a total function

because every complex element node, simple element

node and attribute node must have its own parent node

and no node can have more than one parent.

parent_ce: ComplexElementNode →ComplexElementNode

parent_se: SimpleElementNode →ComplexElementNode

parent_att:AttributeNode →ComplexElementNode

∀ce1,ce2: ComplexElementNode ⦁

 ce1↦ce2 ∈ parent_ce ⇔ (ce1 ≠ ce2 ∧

 ce2.level < ce1.level ∧

 ce2.level −ce1.level = 1) ∨

 (∀se:SimpleElementNode; ce: ComplexElementNode ⦁

 se↦ce ∈ parent_se ⇔ (ce.level < se.level ∧

 se.level −ce.level = 1)) ∨

 (∀att:AttributeNode; ce: ComplexElementNode ⦁

 att↦ce ∈ parent_att ⇔ (ce.level < att.level ∧
 att.level −ce.level = 1))

 In the state invariant, it is stated that complex element

ce1 ↦ ce2 ∈ parent_ce means that ce2 is the parent of ce1

if and only if ce1 is not the same as ce2 and the level

position of ce2 must always be less than the level position

of ce1 by one level difference only. The same meaning is

applied for the second and third predicates associated with

the parent for a simple element node and parent for an

attribute node, respectively.

(5) Relationship

 We define three types of relationship which are

Hierarchical_Link, Part_of_Link, and HasA_Link using

the following schemas.

 (a) Hierarchical_Link

 The Hierarchical_Link schema consists of a relation

hierarchical_link which is used to define a homogeneous

relation between complex element nodes. The first and

second predicates of the schema state that an ordered pair

of complex element nodes ce1↦ce2 is an element of

hierarchical_link if and only if ce2 is an immediate parent

of ce1 or ce2 is a hierarchical parent of ce1, ce1↦ce2 ∈

hierarchical_link
 +

,

that to say, it is a transitive closure

relation. The third predicate of the schema defines that the

child complex element should not be the same set as the

parent complex element node and finally the relation must

be cycle free, which means no complex element node is

mapped to itself. This is defined using transitive closure

to capture the idea of some complex element nodes

(homogeneous binary relation) can be directly reached in

the same link. The relation hierarchical_link is known as

a homogeneous relation [4] since the complex elements

are from the same set. One of the benefist of this relation

is that it can be composed among such links themselves.

Thus, we can form the relation

hierarchical_link;hierarchical_link. This can also be

written as hierarchical_link
2
. The hierarchical_link can

be repeated as many times as desired. The constraint

relationship on the hierarchical_link must be a positive

number. The properties of the schema also consist of

name, degree of relationship, parent cardinality and child

cardinality constraints.

 Hierarchical_Link
hierarchical_link:ComplexElementNode↔ComplexElementNode
degree:ℕ1

parentconstraint: ℕ..ℕ1

childconstraint: ℕ..ℕ1

name: Relation_Name
(∀ce1: ComplexElementNode ; ce2: ComplexElementNode
⦁ ce1↦ce2∈ hierarchical_link
⇔ parent_ce (ce1) = ce2
 ∧ ce1↦ce2 ∈ hierarchical_link +
 ∧ ce1≠ ce2
 ∧ (∃ce:ComplexElementNode ⦁
 ce ↦ ce ∉ hierarchical_link +))
 ∧ (∀ n1,n2 : name ⦁ n1≠ n2)
 ∧ (∀ d: degree ⦁ ≠ d ≥ 2)
 ∧ (∀ card : ℕ..ℕ1 ⦁ second(card) ≥ first(card))

 (b) Part_of Link

 The Part_of link is a binary relationship rather than n-

ary relationship. It consists of Attribute_key function and

Composite_key relation. The Attribute_key function is a

total and injective type because each complex element

node has a unique attribute node. The Composite_key

relation is a relation between a complex element and

attributes. In the first predicate, ce ↦att ∈ Attribute_key

if and only if the attribute type is required. The second

predicate states that, ce↦attcom ∈ Composite_key if and

only if the attribute type is composite. The last predicate

indicates that the domain for the Attribute_key function

and Composite_key relation is a member of a complex

element node.

 Part_of
Attribute_key:ComplexElementNode↣AttributeNode
Composite_key:ComplexElementNode ↔AttributeNode

∀ce:ComplexElementNode;att: AttributeNode ⦁
(ce↦att) ∈Attribute_key ⇔ att.attType = required ∧ parent_att (att)
= ce
∀ce:ComplexElementNode;attcom: AttributeNode ⦁
(ce↦attcom)∈ Composite_key ⇔ attcom.attType =composite
∧ parent_att (attcom) = ce
dom Attribute_key ∪ dom Composite_key ∈ComplexElementNode

(c) Has_A Link

 The schema Has_A consists of a has_a relation which

describes that a complex element node has a relation with

a simple element node where a simple element can be a

single value, multivalue, optional single value or optional

multivalue and must have a complex element node as a

parent.
 Has_A

has_a:ComplexElementNode ↔SimpleElementNode

∀ce:ComplexElementNode; se: SimpleElementNode ⦁
(ce↦se) ∈ has_a ⇔ se.seType = singlevalue ∨ se.seType =
multivalue ∨ se.seType=op_singlevalue ∨ se.seType =op_multivalue
∧ parent_se (se) = ce

343

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 359 / 612

C. The State Space of Schema G-DTD

 To finally organize the structure of the G-DTD, all

the above-defined node types and relationship types are

used in the schemaGDTD definition.

The SchemaGDTD consists of seven variables which

include a root node type, set of ComplexElementNode, set

of SimpleElementNode, set of AttributeNode and set of

relation Hierarchical_Link, Has_A and Part_of types.

The first predicate of the SchemaGDTD states that there

must exist one root node. The second, third and fouth

predicates indicate that at any point in time, each complex

element node, simple element node and attribute node

must have a unique name. The last four predicates ensure

that all types of nodes and relationships defined exist in

SchemaGDTD.

SchemaGDTD__________________________________
root:ComplexElementNode
Cnodes: ℙComplexElementNode
Snodes: ℙSimpleElementNode
Attnodes:ℙAttributeNode
HierarhicalLink: ℙHierarchical_Link
HasA:ℙHas_A
Partof: ℙPart_of

∃1root:ComplexElementNode ⦁ root.level = 0
∀ce1,ce2: Cnodes | ce1≠ce2⦁ce1.name ≠ ce2.name
∀se1, se2: Snodes | se1≠se2⦁ se1.name ≠ se2.name
∀att1, att2: Attnodes | att1≠att2⦁att1.name ≠ att2.name
∀ partlink:Partof ⦁ partlink.AttributeKey ≠ ∅
∀ hl:HierarchicalLink ;haslink: HasA ; partlink: Partof ⦁
dom partlink.Attribute_key = dom partlink.Composite_key
∧ ran haslink.hasa = Snodes ∧ ran partlink.Attribute_key = Attnodes

D. Initial State of Schema G-DTD

 Before any operation can be performed on the model,

we must define the initial state of the G-DTD. In our

case, the initial state of the G-DTD refers to the situation

in which there are no elements existing in the schema.

This schema describes the InitialG-DTD in which the sets

of simple element nodes, complex element nodes and

attribute nodes are empty: in consequence, the

HierarchicaLlink, HasA and Partof relations are empty

too. This is characterized by the following schema

definition:

 _InitialG−DTD
ΔSchemaGDTD

Snodes =∅
Cnodes =∅
Attnodes =∅
Partof = ∅
HasA = ∅
HierarchicalLink =∅

IV. OPERATIONS SPECIFICATION IN G-DTD

The operations defined in schema G-DTD describe the

behaviour or state change of the G-DTD during editing

and manipulating nodes. We present some of the

operations which are query operations, create, insert and

delete operations. However, before we present these

operations we must first define the following functions.

(1) Create Complex Element Node

Create_NewComplexElementNode:(ID×Element_Name×ℕ)
→ComplexElementNode

∀newid:ID; newname: Element_Name; l: ℕ1; schema:
SchemaGDTD ⦁ (∃ce, newnode:ComplexElementNode;
schema′:SchemaGDTD|
newnode = ce ⦁

 (ce.identity = newid ∧ ce.name = newname ∧ ce.level=l)∧
 newnode ∉ schema.Cnodes ∧
 schema′.Cnodes = schema.Cnodes ∪ {newnode}
 ⇒ Create_NewComplexElementNode
 (newid,newname,l) = newnode)

The first predicate of the function assigns an instance of a

new complex element node. The second predicate gives a

pre-condition for the success of the operation. The new

complex element to be added must not already be one of

the members of complex element nodes in G-DTD. This

is because only one unique complex element is allowed in

the G-DTD schema. If this condition is satisfied, the new

complex element node is added to the set of complex

element nodes.

(2) Create Attribute Node

 The description of the Create_AttributeNode function

is similar to the Create_ComplexElementNode function

Create_AttributeNode: (ID×Attribute_Name×ℕ1× Attribute_Type)
→AttributeNode

∀newid:ID;newname:Attribute_Name;l:ℕ1;type: Attribute_Type;
schema:SchemaGDTD ⦁
(∃att, newnode: AttributeNode; schema′:SchemaGDTD|
newnode = att ⦁
 (att.identity = newid ∧ att.name = newname ∧
 att.level=l ∧att. attType = type) ∧
 newnode ∉ schema. Attnodes ∧
 schema′.Attnodes = schema.Attnodes ∪ {newnode}
 ⇒Create_AttributeNode(newid,newname,l,type)= newnode)

(3) Create Has_a link

 Create_Has_a_Link is a function to create a new

HasA link between a complex element node and a simple

element node. The first predicate of the function maps

both of the given complex element node and simple

element node and assigns between them a new has link.

Then the new has link is added to the set of new has links

in SchemaGDTD.

create_Has_a_Link: (ComplexElementNode ×
SimpleElementNode)→ HasA

∀ ce:ComplexElementNode; se: SimpleElementNode;
schema:SchemaGDTD ⦁
(∃new_Haslink, newlink: HasA; schema′:SchemaGDTD|
new_Haslink = newlink ⦁
 ce↦se ∈ newlink.has_a
 ∧ schema′.HasA = schema.HasA ∪ { new_Haslink}
 ⇒ create_Has_a_Link (ce,se) = new_Haslink)

 Create_Hierarchical_Link is a function to create a

new Hierarchical_Link between two complex element

nodes. The first predicate of the function maps both of

given complex element node and complex element node

and assigns between them a new Hierarchical_Link if and

only if it is satisfied that the relation of these complex

element nodes is not a cyclic one. The remaining

predicate is used to assign a new relation name, new level,

parent constraint and child constraint to the new

Hierarchical_Link. The last predicate ensures that the

new has link is added to the set of new Hierarchical_Link

in SchemaGDTD.

344

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 360 / 612

 (4) Create Hierarchical link

Create_Hierarchical_Link: (ComplexElementNode ×
ComplexElementNode) → HierachicalLink

∀ ce1,ce2:ComplexElementNode; schema: SchemaGDTD ⦁
(∃new_HierarchicalLink, newlink: HierarchicalLink; level: ℕ1;
pc, cc : ℕ×ℕ1;
newname: Relation_Name; schema′:SchemaGDTD|
new_HierarchicalLink = newlink ⦁
 ce1↦ce2 ∈ newlink. hierarchical_link ⇔
 (ce1 ↦ ce2 ∉ newlink. hierarchical_link +
 ∧ ce2 = parent_ce(ce1)
 ∧ name (newlink) = newname
 ∧ degree (newlink =level
 ∧ parentconstraint (newlink.hierarchical_link) = pc
 ∧ childconstraint (newlink.hierarchical_link) = cc)
 ∧ schema′.Hierarchical_Link=
 schema.Hierarchical_Link ∪
 { new_HierarchicalLink }
 ⇒ Create_Hierarchical_Link (ce1,ce2) =
 new_HierarchicalLink)

(5) Create Partof link

 The function Create_partof_Link is used to create

part-of links between complex element nodes and

attribute nodes. The argument of this function is a relation

between a complex element node and attribute node and

return a partof link. The new part_of link can be either

Attributekey or Compositekey and the parent of the

attribute node must be a complex element node. Finally,

a new partof link is added to the set of partof links in

SchemaGDTD.

create_Partof_Link: (ComplexElementNode×AttributeNode)
→partof

∀ce: ComplexElementNode; att: AttributeNode; new_partoflink ,
partoflink: partof; schema: SchemaGDTD ⦁
 ∃ schema′: SchemaGDTD |
 new_partoflink = partoflink⦁
 ce↦att ∈ partoflink.AttributeKey ⇔
 att.attType = required ∧ parent_att(att) = ce
 ∨ ce↦att ∈ partoflink .CompositeKey ⇔
 att.attType = composite ∧ parent_att(att) = ce
 ∧ schema′.Partof= schema.Partof ∪{new_partoflink }
 ⇒ create_Partof_Link(ce, att) =new_partoflink

A. Query Operations

 Before manipulating the structure of any complex

element node in the G-DTD, we should be aware of its

related nodes. Since the structure of the G-DTD is like a

tree structure, a child or descendants and parent or

ancestor of a given complex element node needs to be

queried in some cases. The status of a queried node is

defined using a set of messages. It is defined by

enumeration type

Report::= Existence| Nonexistence| Inserted| Created

 Based on this set, we define the following schema

Success to output a confimatory message that the

operation being performed has been succesfully

completed.

 Success
report! Report

report! = Existence

 The following Get_AttributeKey shows how to get an

attribute key of complex element node using the part_of

link

 Get_AttributeKey
ΞSchemaGDTD
ce?: ComplexElementNode
attkey!: AttributeNode

∀part_of: Partof ⦁
attkey! = part_of.AttributeKey (ce?)

 Get_SimpleElement schema captures how to get a

simple element node by using has_a link

 Get_SimpleElementNode
ΞSchemaGDTD
ce?: ComplexElementNode
se!: ℙSimpleElementNode

∀has_link: HasA ⦁
se! = has_link.hasa ⦇{ce?}⦈

 Each operation can only go wrong if the complex

element ce? is not in SchemaGDTD. This case is captured

by means of the schema UnknownNode.

 UnknownNode
ΞSchemaGDTD
ce?: ComplexElementNode
report!: Report

ce? ∉ dom has_link.hasa ∨
 ce? ∉ dom HierarchicalLink.hierarchical_link
report!= Nonexistence

 Based on the schema definition above, we can finally

define the following schemas, which describe the state in

which a simple element node or attribute node has been

successfully queried.

Do_Query_AttributeKey ≙ Get_AttributeKey ∧ Success ∨
UnknownNode

Do_Query_SimpleElementNode ≙ Get_SimpleElementNode ∧ Success ∨
UnknownNode

The following schema is used to capture the query

operation for a complex element node. This schema

means that the existing complex element node whose

name is equal to the input name is found.

 Get_ComplexElementNode
Ξ SchemaGDTD
ce_name?:Element_Name
ce!: ComplexElementNode
found_ce: Element_Name ⇸ ComplexElementNode

∃ce: ComplexElementNode ⦁
ce.name =ce_name? ⇒ found_ce ce_name? = ce!

Do_Query_ComplexElementNode ≙ Get_ComplexElementNode ∧
Success ∨ UnknownNode

A query about the ancestor or descendants of complex

element node can be made by using a Hierarchical_Link.

We achieve this by forming the transitive closure of

Hierarchical_Link

 Anchestors
ΞSchemaGDTD
ce?: ComplexElementNode
anchestor_ce!:ℙ ComplexElementNode

∀hl: HierarchicalLink ⦁
anchestor_ce! = (hl. hierarchical_link+)∼⦇{ce?}⦈

 Do_Query_AnchestorNode ≙ Ancestors ∧ Success

 Descendants
ΞSchemaGDTD
ce?: ComplexElementNode
descendant_ce!:ℙ ComplexElementNode

∀hl: HierarchicalLink ⦁
descendant_ce! = (hl. hierarchical_link+)⦇{ce?}⦈

 Do-Query_Descendants ≙ Descendants ∧ Success

B. Insert Operation

 Insert_NewComplexElement_Node schema is used to

insert a new complex element node into G-DTD. In the

345

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 361 / 612

signature of the schema, the declaration ΔSchemaGDTD

alerts the user to the fact that the schema is describing a

state change. The functions Create_New_ComplexElement

and Create_Hiearachical_Link are used to create a new node

and create a new link respectively. Before the node can be

inserted, a pre-condition is given to check whether its

exists already. The new complex element to be inserted

must not already be one in the G-DTD. This is because

only one unique complex element is allowed in the G-

DTD schema. If this condition is satisfied, the new

complex element node is inserted and a hierarchical link

is created between the new node and its parent node.

When the operation is successful, the output will take a

value inserted.

 Insert_NewComplexElement_Node
ΔSchemaGDTD
level?: ℕ
newname?: Element_Name
newid?:ID

∀newnode : ComplexElementNode ; newlink: HierarchicalLink⦁
 newnode=
Create_New_ComplexElement(newid?,newname?,level?) ∧
 newlink =
Create_Hierarchical_Link(newnode,parent_ce(newnode))

 The schema success just outputs a confirmatory

message that the operation being performed has been

successfully completed.

 Success

rep!: Report

rep! = Inserted

 To capture the condition where the simple element

node is already a member of G-DTD, the following

schema is used:

 AlreadyExisted
Ξ SchemaGDTD
se_name?: Element_Name
se!: SimpleElementNode
found_se: Element_Name ⇸ SimpleElementNode
report! = Report

∃se: SimpleElementNode ⦁se.name=se_name?
⇒found_se se_name? = se! ∧ report! = Existed

 To perform Do_Insert_NewComplexElementNode

operation the following is used.

Do_InsertNewComplexElementNode ≙

Insert_NewComplexElementNode ∧ Success ∨ AlreadyExisted

C. Delete Operation

 The operation to delete a simple element node from

the G-DTD is specified by the following schema:

 Delete_SimpleElements_Node
ΔSchemaGDTD
Get_SimpleElementNode
se?: ℙSimpleElementNode

se? ∈ Snodes
∃parent: complexElementNode; link: hasa |
parent_se= link∼⦇{se?}⦈ ⦁
delete_partoflink(parent_se,link,schema)
Snodes′ = Snodes ∖{ se?}

 Before the node can be deleted, it must be checked

that the given node is a member of simple element nodes

in the G-DTD and the parent of the simple element node

needs to be determined. The node can be deleted from the

G-DTD if the input node is present in the G-DTD. If this

pre-condition is not satisfied, then this will be captured by

the following schema:

 UnknownNode
ΔSchemaGDTD
se?: ℙSimpleElementNode
report!:Report

se? ∉ Snodes
report! = Nonexistence

 The complete specification of the operation to delete

a simple element node from SchemaGDTD is given by the

schema:

Do_DeleteSimpleElementNode ≙ Delete_SimpleElement ∧ success ∨
UnknownNode

V. CONCLUSION

 We have presented a formal specification of a G-

DTD model using Z notation style which gives precise,

mathematical meaning to basic conceptual structures.

The formalization of the G-DTD model is required for a

deeper understanding of modelled syntax, structure, and

semantics of model properties. The use of formal

specification techniques contributes to the clarity and

conciseness of the model, and enables formal derivation

of model properties to be performed easily. Obviously,

this paper has reported only the beginning of formal

development of an XML document design model, since it

includes just a description of the G-DTD model structure

and its basic operation. Currently we have constructed a

complete formal specification for an XML document

design model using G-DTD by applying those functions

and schemas (defined in Sections III and IV). This

specification includes finding of various functional

dependencies, checking the G-DTD normal forms and

normalization procedure operation. However, these results

will be the subject of another paper.

REFERENCES

[1] Anutariya, C., Wuwongse, V., Nantajeewarawat, E., and

Akama, K., "Towards a Foundation for XML Document

Database, Electronic Commerce and Web Technologies",

LNCS, Springer, Vol. 1875, pp. 324 -333 (2000).
[2] Arenas, M. and Libkin, L., "A Normal Form for XML

Documents", ACM Transaction on Database System, Vol.

29(1), pp. 195-232 (2004).
[3] Bottaci, L., and Jones, J. "Formal Specification using Z".

London: International Thomson Publishing Inc(1995).

[4] Chen, P. P., "The entity-relational model: Towards a

unified view of data", ACM transaction on Database

System, 14 (1976).

[5] Diller, A. Z., "An Introduction to Formal Methods",

England, John Willey (2001).

[6] Dobbie, G., Xiaoying, W., Ling. T.W. and Lee, M.L.,

"ORA-SS: An Object-Relationship-Attribute Model for

Semi-Strucured Data". Technical Report, Department of

Computer Science, National University of Singapore

(2000).

[7] Kolahi, S., "Dependency-preserving normalization of

relational and XML data", Journal of Computer and

System Sciences, pp. 636-647 (2007).

346

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 362 / 612

[8] Lee, S.J., Sun, J., Dobbie, G., and Groves, L., "Formal

Verification of Semistructured Data in PVS", Journal of

Universal Computer Science, Vol. 15(1), pp. 241-272

(2009).

[9] Lee, S.J, Sun, J., Dobbie, G. and Li, Y.F. "A Z Approach

in Validating ORA-SS Data Models", Electronic Notes in

Theoretical Computer Science, Elsevier, Vol. 157, pp. 95-

109 (2006).

[10] Mok, W.Y., Ng Y., Embley, D.. A Normal Form for

Precisely Characterizing Redundancy in Nested Relations.

ACM Transaction on Database System, 21(1), pp. 77-

106(1996)

[11] Powell, G., "Beginning XML databases", Inidianapolis,

Indiana, Willey Publishing (2007).

[12] Spivey, J., "Understanding Z". Cambridge: University

Press, Cambridge (1988).

[13] Tompson, H. S., Beech, D., Moloney, and Meldensohn,

Noah, "XML Schema W3C Recommendation". Retrieved

on January 7, 2011 Accessed http://www.w3.org/TR/

xmlschema-1 (2011).

[14] Wang, J. and Topor, R., "Removing XML data

redundancies using functional and equality-generating

dependencies", 16th Australasian Database Conference,

pp. 65-74 (2005).

[15] Yu, C. and Jagadish, J.H., "XML schema refinement

through redundancy detection and normalization", The

VLDB Journal, pp. 203-22 (2008).

[16] Zainol, Z. and Wang, B., "GN-DTD: Graphical Notation

for Describing XML Documents", In Preceeding of 2nd

International Conference on Advances in Databases,

Knowledge, and Data Applications, DBKDA, IEEE, pp.

214-221 (2010).

[17] Zainol, Z. and Wang, B., "XML Document Design via

GN-DTD", European Journal of Scientific Research, Vol.

44(2), pp. 314-336 (2010).

347

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 363 / 612

Formal Specification of Software Design Metrics

 Meryem Lamrani

Laboratoire Conception et Systèmes

University Mohammed V Agdal

Department of Computer Science

BP 1014 RP Rabat, Morocco

 lamrani@fsr.ac.ma

Younès El Amrani

Laboratoire Conception et Systèmes

University Mohammed V Agdal

Department of Computer Science

BP 1014 RP Rabat, Morocco

elamrani@fsr.ac.ma

Aziz Ettouhami

Laboratoire Conception et Systèmes

University Mohammed V Agdal

Department of Computer Science

BP 1014 RP Rabat, Morocco

touhami@fsr.ac.ma

Abstract—Given the significant interest in applying formal

methods to object oriented paradigms, this paper presents a

formal approach to define software design quality metrics

upon a formal specification of the UML metamodel using the

Z language. This multi-level formalization benefits greatly to

design metrics as it allows a non ambiguous interpretation

and a more rigorous definition, which, in turn, can assist the

implementation of tools to measure the software design

quality for industrial application. Our achievement gives

precise meaning to software design metrics definitions in

order to facilitate verification and validation. We, especially,

applied our approach to one of the most well known set of

metrics: the CK metrics.

Keywords-formalization; UML metamodel; Z; CK metrics;

I. INTRODUCTION

“Door meten tot weten” [24] is a famous saying of the

Dutch physicist and Nobel laureate Kamerlingh Onnes

(1853 - 1926) literally translated as “Through

measurement to knowledge”. It attests that the quantifying

process leads to a better insight and understanding over

the measured element. The software engineering area is

no exception. It has been widely recognized that the use

of software metrics, for being considered as quality

indicators, can accurately help improve the final results

and keep time and cost estimation under control while

assuring quality according to the desired properties.

At first, code metrics such as cyclomatic complexity

measure or lines of code measure were defined and

applied to track faultiness during software development

but have soon shown a weak side for being measured till

the implementation phase, which is already a very late

phase considering the whole software life cycle. Since

then, many software metrics concerned with the design

phase were defined and commonly known as design

metrics. A combination of both code and design metrics

has also been explored with positive results [25].

Several authors have proposed various design metrics

such as the MOOD and MOOD2 (Metrics for Object-

Oriented Design) [28], MOOSE (Metrics for Object-

Oriented Software Engineering) also known as the CK

metrics [5], EMOOSE (Extended MOOSE) [29] and

QMOOD (Quality Model for Object-Oriented Design)

[30]. Most of them are lacking rigor and formalism in

their definition.

This paper addresses the problematic lying in software

measurement area due to the lack of formalization.

Therefore, we present an approach to define formally

software design metrics using the Z language [1, 2] over

our proposed formal specification of the UML metamodel

[3] based on the Laurent Henocque [4] transformation of

UML class structures concept. This approach is intended

to provide precise and complete formalized definition of

software design metrics.

The rest of this paper is organized as follows: Section 2

discusses related work. Section 3 presents a brief

overview of the Z language. Section 4 illustrates the Z

formalization of the UML metamodel. Section 5

introduces an approach to formalize software design

metrics definition and finally, conclusions are drawn in

Section 6.

II. RELATED WORK

Measurement has always been a fundamental step to

understandability and control. When it comes to quality,

measurement is obviously more difficult to obtain due to

its subjectivity, however, some of its aspects can be

measured and verified and thus be considered as

objective. Software engineering, for being a very recent

field and especially a more human-intensive discipline

[26], suffers from a lack of measurement which,

undeniably, leads to an out of control in delivery and cost

estimation of the software production.

With a massive research concerns, measurement has

reached an early stage of the software life cycle.

Therefore, the software design metrics were defined

according to the commonly approved properties

considered as quality indicators.

Many software metrics exist nowadays [5-7] however

their practical use remains unpopular in the software

348

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 364 / 612

industry mostly because of their ambiguity and non

reliability [8]. Knowing that measurements have to be

standard to mean the same thing to everyone, metrics

should enforce their definitions using formal methods to

become more useful, convenient and trust worthy.

Among authors who attempt to give a formal definition

of software metrics, Baroni et al. [10], which proposed a

Formal Library for Aiding Metrics Extraction (FLAME)

[9] that uses OCL [11] as a metric definition language. El-

Wakil et al. [12] built metric definitions using XQuery

[13] language. McQuillan et al. [14] based their work on

Baroni’s approach and extended the UML metamodel 2.0

to offer a framework for metric definitions. Harmer and

Wilkie [15] expressed metric definitions as SQL queries

over a relational schema. Goulao et al. [16] also used the

Baroni’s approach for defining component based metrics

and used the UML 2.0 metamodel as a basis for their

definitions. In all related approaches, the UML

metamodel is described in a subset of UML itself,

supplemented by a set of well-formedness rules provided

in OCL and natural language (English). Unfortunately,

these approaches neither offer the possibility to check

certain system properties nor they exclude the ambiguous

use of UML itself to express the UML metamodel.

Whereas in this article, there are two main contributions:

the first contribution is to express UML metamodel in a

formal language without any reflexive reference to UML,

it results in more clarity. The second contribution is to

express the CK metrics in a rigorous definition that

enables to check certain system properties involving

metrics. This could not be achieved with previous

definitions using OCL.

In this paper, a Z formal model of UML metamodel is

described. The model is enough general to express any set

of metrics defined upon the UML metamodel 2.3. Then

the authors provide a formal definition of the CK metrics.

Expressing, for the first time, the CK metrics in a state-

based formal method.

III. Z OVERVIEW

Z [1, 2] is a formal specification language originally

created by J.-R. Abrial and then developed by the

Programming Research Group at Oxford. Its notation is

based upon set theory and mathematical logic, which

consists in a first-order predicate calculus.

One aspect of the Z notation is the schemas. The notion

of schema in Z is closely related to a class structure in

Object-oriented concept. It combines two parts: a

declaration part and a predicate part. Another particularity

of Z is the use of types. Types in Z can be either basic or

composite.

We used Z notation to build our formalization because

of its maturity and the ability to check consistency of the

design using proof theorems unlike the Object-Z [17]

language, which was specifically developed to gain

facilities with object oriented specification aspects to the

detriment of formalization advantages mentioned earlier

for Z language.

Some authors proposed a formalization of UML class

constructs using PVS specification language (PVS-SL)

[31], a language based on higher-order logic, where

relationships and other constituents of UML diagrams are

represented as PVS theories. Other approaches suggested

the use of Description Logics (DLs) [32-33] where

Object-oriented concepts are modeled in means of

concepts (unary relations) and relations (n-ary relations).

However, most attempts were done using Z. Among

them, there are Hall [18-19] and Hammond [20], which,

in their approaches, supported class, association and

inheritance. Malcolm Shroff and Robert B. France [21-

22] based their approach on the Hall and Hammond’s Z

formalization approach of the class structures with the

particularity of introducing inheritance relationship as an

attribute in the inheriting class. We disgarded Hall’s

original approach because it predates UML definition and

it does not consider aggregation which is used in the core

backbone of the UML metamodel. We also disgarded

France’s modeling because it uses a global system

approach, he models properties of objects as functions

from identities to property values. This approach is less

appealing than the intuitive encapsulation of each object’s

state which is more natural to object-oriented thinking.

After investigating these different methods, we choose

the Laurent Henocque approach [4], which was elaborated

to give a formal specification to Object Oriented

Constraint Programs. This choice is mostly justified by

the approach to represent inheritance and aggregation

relationships and also its responds to our need for a

formalization of the object system as part of the

specification.

Since the objective of this paper is to present a

formalization of design metrics, we settled for providing a

description of the Henocque approach [4], gradually

through our formalization of the UML metamodel.

IV. Z FORMALIZATION OF THE UML METAMODEL

The UML metamodel is the result of many years of

effort to standardize software engineering practices. Itself

defined in UML, it is considered as the standard model to

represents object models using UML. The following

transformation concerns the core backbone of the UML

metamodel, captured and reconstituted from the UML

metamodel 2.3.

A. Different Level of Abstractions of the Metrics

Definition of each metric considered in the

formalization is done upon the UML metamodel at

different levels of abstraction:

349

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 365 / 612

Element

NamedElement

Namespace

+namespace
0..1

Feature

StructuralFeature BehavioralFeature

Classifier

Parameter

+parameter*

0..1

Property

Class

Operation

RedefinableElement

Package

Method

1 *

1

*

*

+feature

0..1

*

Figure 1. A fragment of the core backbone of the UML metamodel

B. Z Transformation

The following formalization is analyzed and validated

using Z/EVES tool [23].

At the beginning, Laurent Henocque [4] defines an

uninterpreted dataType [ObjectReference] considered as

a set of object references and [ReferenceSet] as a finite

set of object references later used to model object types.

ReferenceSet  ObjectReference

For practical reasons, a global class names is defined

using free type declaration syntax:
CLASSNAME ::= ClassElement | ClassNamedElement | ...

A function instances describes the mapping between class

names and the set of instances of that class

instances: CLASSNAME  ReferenceSet

And then, he defines ObjectDef as a predefined super

class for all future classes. This class will be used to

bijectively map each object to a unique individual from

the set ObjectReference.

An instance of each class presented is identified by its

respective object identifier ident which is of type declared

as a basic type.

ObjectDef
ref: ObjectReference

class: CLASSNAME



For our metrics transformation, we extend the ObjectDef

with a NIL object to represent a undefined object.

NIL: ObjectDef

According to Henocque [4], each class is implemented via

two constructs:

 A class definition: a schema in which we find, in its
invariant part, both the class attributes and the
inheritance relationships and in its predicate part,
specification of class invariants.

ClassDefElement
name: seq CHAR



with [CHAR] being a given set containing all
characters. The attribute name was introduced in this
transformation because the Z/EVES tool [23] does not
allow the construction of an empty class. In the following,
even though the UML metamodel class constructs
contains attributes and predicates, we will only focus on
the relationship between classes in order to simplify
readability of our metrics transformation.

 A class specification: a combination of a class
definition extended with the ObjectDef and class
references.

ClassSpecElement ClassDefElement  ObjectDef

class = ClassElement

The symbol offers a different way to define a schema

and the logical operator allows the extension.

As stated in the first part of the class constructs,

inheritance relationship is defined in the class definition:

ClassDefNamedElementClassDefClassifier 
ClassDefElement ClassDefNamespace

 ClassDefRedefinableElement


In both cases, simple inheritance or multiple inheritance,

the inheritance relationship is built simply by importing

the schema definition of inherited superclasses into the

class that inherit from them.

Beside the inheritance relationship, we are also concerned

with the aggregation and relations with multiplicities.

General relations are free of constraints, which mean that

every tuple can be accepted. The multiplicity is naturally

stated in the predicate part as the cardinal of related target

objects for each source object.

pc: Parameter  Classifier


 c: Classifier # pc  c   1

350

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 366 / 612

The aggregate relation is more constrained than a general

one, thus we have to change the type of relation to make a

distinction between both. In the different aggregate

relations given in our UML metamodel fragment, the

multiplicity is of 0..1 which means that each component

occurs in at most one composite. Consequently, its

relational inverse is an injective partial function.

hasNamedElement: Namespace  NamedElement


hasNamedElement ~  NamedElement  Namespace

The  symbol represents the partial function and the
~

stands for the relational inverse.

And finally, we define class types for a better

understanding of what the types really represent. They are

defined using an axiomatic definition:

Element, NamedElement, Namespace, … : ReferenceSet


Element = instances ClassElement  NamedElement

NamedElement

 = instances ClassNamedElement  Namespace 

RedefinableElement  Feature


instances ClassElement

 =  o: ClassSpecElement o.class = ClassElement o.ref
instances ClassNamedElement

 =  o: ClassSpecNamedElement o.class = ClassNamedElement

o.ref
. . .
 i: instances ClassElement  x: ClassSpecElement x.ref = i

 i: instances ClassNamedElement  x: ClassSpecNamedElement

x.ref = i



The type sets defined in the declaration part

correspond to the existing classes of our given model.

Each type is defined as a finite set of object references.

The predicate part describes the properties of these sets.

First, we have a type equal to the union of the

corresponding class instances and the type of all its

subclasses. And then, that each object reference is used at

most once for an object which means that no two distinct

object bindings share the same object reference.

V. AN APPROACH TO FORMALIZE DESIGN QUALITY

METRICS DEFINITIONS

Among existing metrics, we will discuss the CK

Metrics [5] proposed by Chidamber and Kemerer, one of

the most well known suites of Object-oriented metrics.

These metrics help measuring different aspects of an

Object-Oriented design including complexity, coupling

and cohesion. Several studies [26-27] have confirmed

their usefulness as quality indicators.

An OCL formalization of the CK metrics was proposed

by the authors Baroni et al. [10], defined using functions

formalized in FLAME [9]. Although, OCL is based on

mathematical logic, it still does not provide a formally

defined semantics, furthermore, its syntax is given by a

grammar description and no metamodel is available

unlike the metamodel of UML which means that it suffers

from an absence of well-formedness rules.

Considering that most metrics formalization efforts are

made in OCL but yet still unpopular in the software

industry, we argue that a more rigorous method of

formalization should be explored in order to overcome

OCL limitations.

As a simple example, the expression iterate, used in the

OCL formalization of the DIT metrics, is known to be

potentially non-deterministic since there is no precision

on order evaluation leading to different possible

results[34].

Classifier:: DIT(): Integer

= if self.isRoot() then 0

else if PARN() = 1 then

1 + self.parents() -> iterate(elem:

GeneralizableElement; acc: Integer = 0

| acc + elem.oclAsType(Class).DIT())

else

self.parents() -> iterate(elem: GeneralizableElement;

acc: Integer = 0

| acc + elem.oclAsType(Class).DIT())

endif

endif

Also, in each metrics defined with OCL, we could find

many OCL keywords (self, asSet…) and predefined

functions (OclAsType, OclIsKindOf…) that are not

precise enough semantically. Therefore, we propose a

formal definition for those frequently used predefined

functions in order to obtain a complete and precise

definition of the CK metrics.

A. Formalizing OCL Predefined Functions

OclIsTypeOf and OclIsKindOf have the same

signature. They are both applied to an object, take a type

as parameter and return a Boolean as a result. The only

difference is that the first one deals with the direct type of

the object when the second one determines whether the

type given in parameter is either the direct type or one of

the supertypes of the object.

When it is certain that the actual type of the object is

the subtype, the object can be re-typed using the

OclAsType operation. Otherwise, the expression is

undefined.

We propose a Z-formalization of these predefined

operations using the Henocque approach [4].



351

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 367 / 612

oclIsTypeOf: ObjectDef  ReferenceSet  Boolean


 o: ObjectDef; t: ReferenceSet instances o.class = t oclIsTypeOf

o t = TRUE

 o:ObjectDef; t: ReferenceSet instances o.class  toclIsTypeOf

o t = FALSE

The formalization is given as an axiomatic function. It

takes the ObjectDef and a ReferenceSet as parameter and

it returns a Boolean. When instances of o.class referering

to the object’s type is equal to the type given in parameter

the expression of OclIsTypeOf is true. When both types

are not the same, the operation return false.

oclIsKindOf: ObjectDef  ReferenceSet  Boolean


 o: ObjectDef; t: ReferenceSet instances o.class  t oclIsKindOf

o t = TRUE

o:ObjectDef;t:ReferenceSet instances o.class  toclIsKindOf

o t= FALSE

When the type of the object given in parameter (expressed

as instances o.class) is part of the ReferenceSet given in

parameter, the expression oclIsKindOf returns true.

Otherwise, it returns false.

oclAsType: ObjectDef  ReferenceSet  ObjectDef


 o: ObjectDef; t: ReferenceSet instances o.class = t oclAsType

o t = o

 o: ObjectDef; t: ReferenceSet  instances o.class  t oclAsType

o t = NIL

 o: ObjectDef; t: ReferenceSet instances o.class  t

  r: ObjectDef r.ref = o.ref  instances r.class = t oclAsType

o t = r

With oclAsType operation we distinguish between three

cases:

The first one is when the type given in parameter

corresponds to the object’s type, which means the result

of applying oclAsType is the object itself.

The second one is when the object’s type is not the

same nor is it a part of the ReferenceSet given in

parameter, which means that the expression is undefined

and in that case we return the NIL value defined earlier as

an extension to ObjectDef.

Finally, the third one is when the object’s type is part of

the ReferenceSet given in parameter. In that case, the

expression OclAsType returns an object which has the

same reference as the object in entry (that means it is the

same object) but having as type the ReferenceSet in

parameter.

B. Formalizing the CK metrics

Each of the above metrics refers to an individual class and

not to the whole system.

 Weighted Methods Complexity: the sum of the

complexity of all methods for a class. If all method

complexities are considered to be unique, WMC is

equal to the number of methods.

WMC: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; S:  Operation S = allOperations o
c
 WMC o c = # S

 Number of Children: counts the number of children

classes that inherit directly from the current class.

NOC: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; n:  n = CHIN o c NOC o c =

n

 Depth of Inheritance Tree: measures the length of the
inheritance chain from the current class to the root.

DIT: ObjectDef  RedefinableElement  


 o: ObjectDef; r: RedefinableElement isRoot o r = TRUE DIT

o r = 0

 o: ObjectDef; r: RedefinableElement; R:  RedefinableElement; n:

; S:  

 PARN o r  1

  R = parents o r
  S =  depth:   r': R depth = DIT o r'
  n = max S DIT o r = n

 Coupling Between Classes: the number of coupling

with other classes.

CBO: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; C:  Classifier C = coupledClasses

o c
 CBO o c = # C

 Response for Class: the number of methods in the

current class that might respond to a message received

by its object, including methods both inside and

outside of this class. It can be defined as | RS | where

RS is the response set for the class expressed as:

RS = { M all i { R i }

with:

- { Ri} = set of methods called by method i
- { M } = set of all methods in the class.

352

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 368 / 612

RFC: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; m, mc:  Operation

 m = allOperations o c  mc = allClientOperations o c
 RFC o c = # m + # mc

 Lack of Cohesion of Methods: The degree of

similarity of methods in the current class. This metric

was first improved by Chidamber and Kemerer

themselves, calling it LCOM2, then by Henderson-

Sellers by proposing the following expression:

LCOM3 = (m-sum(mA)/a)/(m-1)

with:

- m: number of methods in a class.

- a: number of attributes in a class.

- mA: number of methods that access the attribute a.

- sum(mA): sum of all mA over all the attributes in the

class.

LCOM3: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; m:  Operation; a:  Property; n: 

 m = allOperations o c
  a = allAttributes o c
   A: a n = n + sum mA A m
 LCOM o c = # m - n div # a div # a - 1

VI. CONCLUSION AND FUTURE WORK

 In this work, we were mainly concerned about the

formal definition of the CK metrics as a restricted

application of our formalization approach, which consists

on expressing formally the UML metamodel and then

giving a formal definition of software design quality

metrics for the sake of validation and verification.

 As future work, we plan to extend our contribution to

MOOD and MOOD2 - Metrics for Object-Oriented

Design [28], EMOOSE- Extended MOOSE [29] and

QMOOD Quality Model for Object-Oriented Design [30].

We, also, plan to build a support tool that will, first,

automate the formal Z representation of design models

according to our UML metamodel formalization and then,

implement already formalized metrics expressions to

automate their calculation and compare results.

REFERENCES

[1] M. Spivey, “The Z Notation,” Prentice-Hall, 1992.

[2] J. Woodcock and J. Davies, “Using Z: Specification, Proof
and Refinement,” Prentice Hall International Series in
Computer Science, 1996.

[3] The Object Management Group, UML 2.3 superstructure
specification, 2010 http://www.omg.org/spec/uml/2.3/

[4] Laurent Henocque, “Z specification of Object Oriented
Constraint Programs,” RACSAM , 2004.

[5] Shyam R. Chidamber and Chris F. Kemerer, “A metric
suite for Object Oriented Design," Journal IEEE
Transactions on Software Engineering Volume 20 Issue 6,
1994, pp. 476 – 493.

[6] Lorenz M. and Kidd J., “Object-Oriented Software
Metrics,” Prentice Hall Object-Oriented Series, 1994.

[7] Norman E. Fenton and Lawrence Peeger S., “Software
Metrics: A Rigorous and Practical Approach,”
International Thompson Computer Press, 1996.

[8] L. Briand, J. Daly and J.Wüst, “A unified framework for
coupling measurement in object-oriented systems,” IEEE
Transactions on Software Engineering 25, 1999.

[9] Aline L. Baroni and F. Brito e Abreu, “An OCL-Based
Formalization of the MOOSE Metric Suite,” In
Proceedings of the 7th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering (QUAOOSE'2003) , Darmstadt, Germany,
2003.

[10] Aline L. Baroni and F. Brito e Abreu, “A Formal Library
for Aiding Metrics Extraction,” International Workshop on
Object-Oriented Re-Engineering at ECOOP, 2003.

[11] The Object Management Group, Object Constraint
Language 2.2, 2010 http://www.omg.org/spec/OCL/2.2/

[12] Mohamed M. El-Wakil, A. El-Bastawisi, Mokhtar B. Riad,
and A. Fahmy., “A novel approach to formalize Object-
Oriented Design,” 9th International Conference on
Empirical Assessment in Software Engineering (EASE
2005), April 2005.

[13] XQuery 1.0 Standard by W3C XML Query Working
Group. http://www.w3.org/TR/2010/REC-xquery-
20101214/

[14] Jacqueline A. McQuillan and James F. Power, “Towards
re-usable metric definitions at the meta-level,” In PhD
Workshop of the 20th European Conference on Object-
Oriented Programming (ECOOP 2006), Nantes, France, 3-
7, July 2006.

[15] F. Wilkie And T. Harmer, “Tool support for measuring
complexity in heterogeneous object-oriented software,” In
Proceedings of IEEE International Conference on Software
Maintenance, Montreal, Canada, 2002.

[16] M. Goulao and F. Brito e Abreu, “Formalizing metrics for
COTS,” In Proceddings of the ICSE Workshop on Models
and Processes for the Evaluation of COTS Components,
Edinburgh, Scotland, 2004.

[17] D. Duke, P. King, G.A. Rose, and G. Smith, 1991. The
Object-Z Specification Language, version 1, Technical
Report 91-1, Department of Computing Science, University
of Queensland, Australia.

[18] J. A. Hall, “Specifying and Interpreting Class Hierarchies
in Z,” In Bowen and Hall, pp. 120-138.

[19] J.P. Bowen and J.A. Hall, editors, Z User Workshop,
Cambridge 1994, Workshops in Computing. Springer-
Verlag, New York , 1994.

[20] J. A. R. Hammond, “Producing Z specifications from
Object-Oriented Analysis,” In Bowen and Hall, pp. 316-
336.

[21] Robert B. France, J.-M. Bruel, M. M. Larrondo-Petrie, and
M. Shroff, “Exploring the Semantics of UML Type
Structures with Z”, In: Proceedings of the Formal Methods
for Open Object-based Distributed Systems (FMOODS'97),
Springer, pp. 247-257.

[22] M. Shroff and Robert B. France, “Towards a Formalization
of UML Class Structures in Z”, In Proceedings of the 21st
Computer Software and Application Conference (COMP-
SAC'97), IEEE Press, 646-651.

353

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 369 / 612

[23] I. Meisels and M. Saaltink, The Z/EVES 2.0 Reference
Manual. Technical Report TR-99-5493-03e, ORA
Canada, October 1999.

[24] 'The Significance of Quantitative Research in Physics',
Inaugural Address at the University of Leiden (1882). In
Hendrik Casimir, Haphazard Reality: Half a Century of
Science (1983), 160-1.

[25] Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow:
“Comparing Design and Code Metrics for Software quality
Prediction”: PROMISE (2008).

[26] Sandro Morasca: Software Measurement (2007).

[27] Victor R. Basili, Fellow, IEEE, Lionel C. Briand, and
Walcelio L. Melo: “A Validation of Object-Oriented
Design Metrics as Quality Indicators”: In IEEE
Transactions on Software Engineering, vol. 22, NO. 10,
October 1996, pp. 751 – 761,

[28] F. Brito e Abreu and R. Carapuça, “Object-Oriented
Software Engineering: Measuring and Controlling the
Development Process," 4th Int. Conf. on Software Quality,
McLean, VA, USA, 3-5 October 1994.

[29] W. Li, S. Henry, D. Kafura and R. Schulman, “Measuring
object-oriented design,” Journal of Object-Oriented
programming, vol. 8, NO. 4, pp. 48-55. July/August 1995.

[30] J. Bansiya and C. Davids: “Automated metrics and object-
oriented development,” Dr. Dobbs Journal, pp. 42–48,
December 1997.

[31] Demissie B. Aredo, I. Traore, and K. Stølen: “Towards a
formalization of UML Class Structure in PVS,” Research
Report no. 272, Department of Informatics, University of
Oslo, August 1999.

[32] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini:
“Reasoning on UML Class Diagrams in Description
Logics,” In Proceedings of IJCAR Workshop on Precise
Modelling and Deduction for Object-oriented Software
Development (PMD 2001). 2001.

[33] L. Efrizoni, W.M.N Wan-Kadir and, R. Mohamad:
“Formalization of UML Class using Description Logics,”
In the International Symposium in Information Technology
(ITSim), 2010.

[34] M. Richters and M. Gogolla: “On Formalizing the UML
Object Constraint Language,” In Proceedings of the 17th
International Conference on Conceptual Modeling.
Springer-Verlag, London, UK, 1998.

Appendix:

The whole specification, of 426 lines in Latex, was

entirely written and verified using the Z/EVES tool but

for space reason, this appendix does not contain all of it.

The following is a description of the previously

declared functions in the metrics formalization chapter.

%Subset of Properties (from one set of Features) belonging to the
current Classifier.

feature2AttributeSet: ObjectDef   Feature   Property


 o: ObjectDef; S:  Feature

 instances o.class = Feature

  S =  f: Feature oclIsKindOf o Property = TRUE
 feature2AttributeSet o S =  f: S oclAsType o Property =

o

%Subset of Operations (from one set of Features) belonging to the
current Classifier.

feature2OperationSet: ObjectDef   Feature   Operation


 o: ObjectDef; S:  Feature

 instances o.class = Feature

  S =  f: Feature oclIsKindOf o Operation = TRUE
 feature2OperationSet o S =  f: S oclAsType o Operation =

o

%Set of Features declared in the Classifier, including overridden
Operations.

definedFeatures: ObjectDef  Classifier   Feature


 o: ObjectDef; c: Classifier; p:  Feature

 instances o.class = Feature  p =  f: Feature f  Classifier
 definedFeatures o c = p

%Set of Classes from which the current GeneralizableElement derives
directly.


parents: ObjectDef  RedefinableElement   RedefinableElement


 o: ObjectDef; r: instances ClassRedefinableElement

 instances o.class = RedefinableElement

 parents o r
 =  r': RedefinableElement

 instances ClassRedefinableElement  instances o.class

%Set of directly derived Classes of the current GeneralizableElement.

children: ObjectDef  RedefinableElement   RedefinableElement


 o: ObjectDef; r: RedefinableElement instances o.class =

RedefinableElement

 children o r
 =  r': RedefinableElement

 instances o.class  instances ClassRedefinableElement

%Number of directly derived Classes.

CHIN: ObjectDef  RedefinableElement  


 o: ObjectDef; r: RedefinableElement; S:  RedefinableElement

 S = children o r CHIN o r = # S

354

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 370 / 612

%Number of Classes from which the current RedefinableElement
derives directly.

PARN: ObjectDef  RedefinableElement  


 o: ObjectDef; r: RedefinableElement; S:  RedefinableElement

 S = parents o r PARN o r = # S

%Indicates whether the RedefinableElement has ascendants
or not.

isRoot: ObjectDef  RedefinableElement  Boolean


 o: ObjectDef; r: RedefinableElement PARN o r = 0 isRoot o
r = TRUE

 o: ObjectDef; r: RedefinableElement PARN o r  0

 isRoot o r = FALSE

%Set containing all Features of the Classifier itself and all its inherited
Features.

allFeatures: ObjectDef  Classifier   Feature


 o: ObjectDef; c: Classifier; r: RedefinableElement

 allFeatures o c =  allFeatures oclAsType o Classifier
c

% Set containing all Properties of the Classifier and all its inherited
Attributes (directly and indirectly).

allAttributes: ObjectDef  Classifier   Property


 o: ObjectDef; c: Classifier; S:  Property

 S = feature2AttributeSet o allFeatures o c
 allAttributes o c = S

% Set containing all Operations of the Classifier itself and all its
inherited Operations.


allOperations: ObjectDef  Classifier   Operation


 o: ObjectDef; c: Classifier; S:  Operation

 S = feature2OperationSet o allFeatures o c
 allOperations o c = S

% Types (Classifiers) of all attributes that are accessible within the
current Classifier.

typesOfAllAccessibleAttributes: Classifier   Classifier


 o: ObjectDef; c: Classifier; S:  Property; F:  Feature; T: 

Classifier

 S = allAttributes o c  feature2AttributeSet o F = S  F  T

 typesOfAllAccessibleAttributes c = T

% True if the first Classifier has an accessible attribute of type given as
second Classifier.

hasAttribute: Classifier  Classifier  Boolean


 c, c': Classifier c'  typesOfAllAccessibleAttributes c

 hasAttribute c c' = TRUE

 c, c': Classifier c'  typesOfAllAccessibleAttributes c

 hasAttribute c c' = FALSE

% Set of Classifiers to which the current Classifier is coupled
(excluding inheritance).

coupledClasses: Classifier   Classifier


 c: Classifier; S:  Classifier

 S =  c': Classifier hasAttribute c c' = TRUE
 coupledClasses c = S

% Set of Operations that might respond to a message received by its
object.

allClientOperations: ObjectDef  Classifier   Operation


 o: ObjectDef; c: Classifier; C:  Classifier; M:  Operation

 coupledClasses c = C  M =   c': C allOperations o c'
 allClientOperations o c = M

355

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 371 / 612

E-FOTO: Development of an Open-Source Educational Digital Photogrammetric

Workstation

Jorge Luís Nunes e Silva Brito, Rafael Alves de Aguiar, Marcelo Teixeira Silveira, Luiz Carlos Teixeira Coelho
Filho, Irving da Silva Badolato, Paulo André Batista Pupim, Patrícia Farias Reolon, João Araújo Ribeiro, Jonas

Ribeiro da Silva, Orlando Bernardo Filho, Guilherme Lucio Abelha Mota
School of Engineering

Rio de Janeiro State University
Rio de Janeiro, Brazil

jsilvabr@gmail.com, rafael.kamui@gmail.com, marts@ele.puc-rio.br, luizcoelho@luizcoelho.com,
irvingbadolato@gmail.com, pandreengineer@gmail.com, patricia.reolon@gmail.com, joao.araujo@gmail.com,

jonas.xiko.ribeiro@gmail.com, orlandobernardof@yahoo.com.br, guimota@gmail.com

Abstract—The E-FOTO project aims to develop an

educational, digital photogrammetric workstation, under the

General Public License (GNU/GPL). E-FOTO software does

not intend to overcome commercial software solutions in its

field. Its main purpose is to provide a software solution that
could be used by anyone who is interested in learning digital

photogrammetry. E-FOTO users are offered access to practical

software applications of theoretical issues and concepts in the

field of Digital Photogrammetry. The project also has an

Internet home page from which aerial photographs, camera

calibration certificates and other technical data can be
downloaded, thus allowing users to fully experience the

software. The webpage also provides access to different articles

and publications derived from the project development. This

paper will report the experiences and results of the

development of E-FOTO, which is, to the best of our

knowledge, the only academic, GNU/GPL software

development initiative for Digital Photogrammetry in the
world.

Keywords-Digital Photogrammetry; Digital Photogrammetric

Workstation; Education in Photogrammetry; Open-source code

for geospatial applications; Extreme Programming; Agile

Methods.

I. INTRODUCTION

Photogrammetry is the science that studies methods for
reconstructing 3D objects, e.g., Earth's surface, from a set of
2D stereoscopic images. Remote Sensing techniques are
typically used for the acquisition of photogrammetric
imagery. Currently, it is possible to find a reasonable number
of imaging satellites orbiting around the Earth. These devices
have achieved spatial resolutions as low as 0.50m per pixel.
Airborne remote sensors which use optical devices coupled
with Global Navigation Satellite Systems (GNSS) receivers
and Inertial Measurement Units (IMU) also play a very
important role in topographic mapping activities. Those
activities include the production of digital surface models
(DSM), the production of ortho-images, and the generation
of 3D spatial databases. These products are typically named
“cartographic products”.

A digital photogrammetric workstation is a set of
hardware and software that is able to generate cartographic

products. Hardware components include a digital computer
and other devices such as topomouses, digitizing tablets and
stereoscopic glasses. Some examples of computer software
developed for a digital photogrammetric workstation are
photogrammetric algorithms for automatic DSM extraction
and digital ortho-image rectification.

The cost of a digital photogrammetric workstation ranges
from US$ 25,000.00 for educational versions up to US$
100,000.00 for professional solutions. These prices are too
expensive for educational institutions in developing
countries.

As a response to such high prices, Coelho Filho [1],
proposed the development of a digital photogrammetric
softcopy kit for educational purposes. His solution was
designed and implemented under the General Public License
(GNU/GPL) of the Free-Software Foundation. The kit was
named “E-FOTO”, which stands for “Educational Digital
Photogrammetric Workstation” in Portuguese.

There were many free software solutions for geospatial
applications. One could mention POSTGRES,
MAPSERVER, GvSIG and GRASS GIS, among others.
However a digital photogrammetric workstation with a free
GNU/GPL license did not exist yet. In addition to providing
users free access to photogrammetric software, a free
softcopy kit would allow developers to examine and improve
its source code and produce derived projects. Consequently,
users would be able to understand photogrammetric
algorithms and techniques, while also using their code for
various purposes.

It is worth mentioning that the E-FOTO Project was not
designed for competition with its commercial counterparts.
E-FOTO's main objective is to provide access to Digital
Photogrammetry to anyone who is interested in learning
about that subject. As a result, E-FOTO users will better
understand and practice the theoretical concepts taught in
formal classrooms.

A paperback book on Digital Photogrammetry [2] was
published parallel to E-FOTO's project development. This
book, which is available only in Portuguese, covers most
theoretical concepts used for the development of the E-
FOTO software. It is currently in its first edition, published

356

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 372 / 612

in 2007, even though a provisional e-book version of it had
been available since 2002, when the project started.

The development of Photogrammetric software is a
complex task. In fact, it involves a multidisciplinary team of
professionals with different backgrounds and skills, mostly
dealing with Geomatics and Computer Science. In 2004, the
project was granted sponsorship by the National Council for
Scientific and Technological Development of Brazil (in
Portuguese, CNPq), which allowed it to be reallocated to the
School of Engineering of The Rio de Janeiro State
University. With proper funding, its software development
was carried out in a more consistent way. It was supported
by both Masters Dissertations and Undergraduate Final
projects. In 2008, after having completed all of its modules,
the E-FOTO development team started their integration.
Finally, in November 2010, the first fully integrated version
of E-FOTO was published on the project's website
(www.efoto.eng.uerj.br).

This article is organized according to the following
structure: Section II presents experiences of the E-FOTO
team during the development of the aforementioned
software; Section III reports the project's benefits; Section IV
envisions future work to be done and Section V concludes
this paper.

II. THE E-FOTO DEVELOPMENT EXPERIENCE

E-FOTO's team has dealt with many issues which arose
from the development of such a complex system. This
section reports E-FOTO's development approaches and
experiences.

A. Academic Work and the development of E-FOTO's

Photogrammetric Modules

E-FOTO was originally designed in 2002 as a system
composed of eight modules: (a) image rectification, (b)
interior orientation, (c) exterior orientation, (d) bundle block
adjustment, (e) image normalization, (f) photogrammetric
stereoplotting, (g) extraction of digital elevation models and
(h) ortho-rectification.

In accordance with free software principles, a free digital
photogrammetric workstation should not contain any part of
its code based upon proprietary solutions. Thus, it was
decided that the project would be developed using free
environments such as GCC/G++ (C++) and the Qt graphic
user interface for easy multiplatform porting. At first, an
interior orientation module was implemented as a proof of
concept in 2002.

After E-FOTO was granted sponsorship in 2004, an
official schedule was proposed, which aimed to complete the
proposed modules in two years, with the possibility of a one
year extension. Development effectively began at its new
venue, The Rio de Janeiro State University.

Initially, photogrammetric modules were developed as
part of undergraduate and graduate students' academic work,
often counting on proprietary software, such as Mathcad and
Matlab. This step allowed the team to test if algorithms were
fully functional and correctly produced desired results. The
digital image rectification [3][15][20], exterior orientation
[4][22] and bundle block modules [5][22] were developed in

the Mathcad environment. An image ortho-rectification
module [8][22] was developed with Matlab.

Some other modules were implemented from the
beginning in C++. For example, a digital airborne imagery
stereo-visualization and measurement module [7][14][24]
was developed and used for stereoplotting and digital
elevation model extraction. An image normalization module
[6][20] was also developed. Figure 1 shows
photogrammetric stereoplotting using E-FOTO.

Figure 1. The photogrametric stereoplotting module.

Modules initially developed with mathematical software
were gradually reprogrammed by team members. The first
rewritten module was the image rectification module. Next,
the stereoplotting module was integrated with an ortho-
rectification solution. With the release of these first modules,
it was possible to assign students to test the software and
write down their impressions about its ease of use. This
helped find bugs and adapt E-FOTO's interface so it would
be more user-friendly. New modules were built based on
these impressions. So, programs for exterior orientation,
bundle block adjustment and normalization were developed
according to this new philosophy and look and feel while
earlier models were adapted to conform to an easier graphic
interface. Figure 2 shows the exterior orientation module
after the proposed modifications.

In early 2007, the deadline for the creation of the
modules was successfully met by the team. However, their
integration was not yet desirable. Thus, the need for
integration among these modules using techniques of
systems analysis became evident. Additionally, another
problem arose: in early 2006, Trolltech (Qt's former
developer) migrated it from version 3 to version 4. The latter
introduced several changes which turned it incompatible
with earlier Qt versions. The project's development team
decided that porting all modules from Qt3 to Qt4 would be
counterproductive at that moment. So, it was decided that all
modules would continue to be implemented in Qt3, and then
ported as a whole to Qt4.

357

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 373 / 612

Figure 2. The exterior orientation module.

B. Migration from Qt3 to Qt4

After Trolltech stopped providing support for its Qt3
framework, in July 2007, E-FOTO developers were forced to
start porting its code to Qt4, to continue benefiting from
future Qt updates. Initially, it was expected that the
conversion could be done without major problems, by using
automated migration tools provided by Trolltech. However,
due to certain incompatibilities between the two versions,
this migration has been very difficult. The main problems
experienced throughout the porting process were related to
interface and graphic content conversions, since the main
resources used for these developments in the previous
version, such as bit block transfer (bit-blt), were
discontinued. Thus, modules that used these resources, such
as the photogrammetric stereoplotting module, had to be
more intensely reworked. As a consequence of this migration
process, interfaces for currently finished modules had their
appearance and functionality slightly changed. Drastic
changes were minimized in order to reduce their impact to
the end user [12].

 One of the most unexpected changes the Qt4 graphics
engine brought was the adoption of the Scalable Vector
Graphics (SVG) format as the basis for its main graphic
elements display system. Even though this format has been
widely used in the development of graphics applications,
especially as the basis of the widely-used Flash format, it
has a notable disadvantage: it needs some support from the
operating system to deliver expected results. This does not
pose a problem when using a Windows OS, but when a
Linux distribution is used, serious performance issues can be
experienced, especially when working with images displayed
outside of their standard resolution, i.e. with a different scale
factor than 1:1.

Since one of the main goals of the E-FOTO project is to
provide an easily portable software, both in terms of
operating system and hardware resources, the development
team sought alternatives to Qt4's native graphics display
system. OpenGL was finally picked as the ultimate solution,
both because of its performance, since it was created

specifically for the direct use of the resources present in
commercially available graphics cards, and because of its
easy integration with most frameworks for developing
graphical user interfaces (GUIs). Qt provides support for
displaying processed graphics through the OpenGL standard,
so the team chose to keep it for other graphical elements
(windows, menus, buttons, etc.), thus avoiding the extra
effort of adapting the code to redraw those elements. Also, it
helped keep the look and feel of the programs similar to their
earlier versions [13].

E-FOTO's 1.0 version already had a couple models fully
converted to Qt4: interior and exterior orientation modules.
Those two were picked not only because they are central to
implementing the first stages of the photogrammetric
process, but also because they were the ones in which users
were not commonly able to work with their own set of data,
being limited to examples already provided by the software.
The remnant modules are currently being ported from Qt3 to
Qt4. Figure 3 shows the results of the interior orientation
module migration from the Qt3 to Qt4.

Figure 3. Interior orientation module after having been ported to Qt4.

C. The Integration of E-FOTO Modules

An important characteristic of the photogrammetric
process is its division into smaller, sequential steps. This
makes software organization in modules fairly intuitive.
Therefore, the implementation of initial versions of E-FOTO
followed that modular architecture. But, in these versions,
the sequential characteristic of the process was overlooked,
and so each module was developed independently of the
others, without any concern about data exchange among
them. Since it was known that the software would get a
major overhaul due to the porting from Qt3 to Qt4, the
development team took this opportunity to restructure the
entire system architecture, and to offer a solution according
to which all modules would be able to communicate through
a common language.

This common language was implemented through a
specification of the XML (eXtensible Markup Language)

358

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 374 / 612

standard created by the project's development team, called E-
FOTO Photogrammetric Project, and given the ".epp" file
extension [9][10][23]. The choice for this implementation
was based upon the extensibility offered by the language and
the possibility to view and audit the project without the need
to develop complex solutions, since most Internet browsers
can understand XML files. To interpret these files, the
development team implemented a solution based on the
DOM (Document Object Model) approach, and incorporated
it in all re-factored modules so that they are able to obtain the
information required for their part of the process from a
common data source [12][19].

Concerning the general structure of the software, the
whole process required one change in relation to the older
versions: the addition of another module to the system. Until
then, the software contemplated all the stages of the
mathematical process, but lacked a module to represent the
stage of structuring the photogrammetric project. To solve
this problem, a photogrammetric project management
module was created, with a set of registration forms [11] and
the duties of giving the user an overview of the current state
of software and allowing the selection of the next step to be
executed. Figure 4 shows the main window of the photo-
grammetric project management module.

Figure 4. The E-FOTO project management module.

To finish the basic architecture of the system, a "central"
manager to the whole system was developed, responsible for
memory management and the main control flow. The
existence of this manager is what actually characterizes the
software's integration, since it is this manager which ensures
that the various modules are accessing the same data set, thus
keeping the integrity of the project throughout the execution
of the software.

III. LESSONS LEARNED

Due to some of E-FOTO's characteristics, such as the
constant presence of a client-like figure in the development
team (in this case, the project's lead manager) and the

experimental research scenario in which it is included, the
developers decided to try out a different approach to the
development process during this new phase of the project's
development cycle. After some research, it seemed
reasonable to adopt a development process based on the agile
methods [17], since their foundations apparently fit very well
into the project's context. Out of all the agile methods, the
developers chose to adopt the basis of agile modeling [18]
and eXtreme Programming [19], mainly due to the fact that
some of the developers already had some experience with
them.

At first, everything seemed to run smoothly as expected.
However, as time passed, the project's own development
environment proved itself a big problem to be solved. Since
E-FOTO is developed inside a University, with many of its
working hands being teachers and students, it became
increasingly harder to keep up with XP's so-called "good
practices". Everyone had their own schedules, making
whole-team meetings very hard; this affected the whole
communication effectiveness very badly, since more
meetings were needed, costing much more of the developer's
time, and not everyone was always to pairing with the latest
decisions. This even managed to get worse during exam
periods - the teachers needed to design and grade exams, and
the students needed to study, effectively slowing down the
development to almost a halt. After these periods, the
production rate slowly started to rise again, eventually
reaching the ideal point, just to be ruined again by another
battery of exams. This cycle went on until the first concrete
results were achieved - much later than the developers
thought they would.

As such, one of the project's greatest lessons learned in
the last few years is that developing software in an academic
context is very different from the scenario usually found
outside the university walls. Sure, enterprise workers also
have other things to do, and some of them could even be
students or teachers. However, inside the academy these
problems present themselves in much higher levels, possibly
reaching the point where some of today's more well-known
development processes lose much of their effectiveness. The
project's development team still tries to apply some of the
Agile concepts into their everyday work, but is still trying to
find the point where the academic context will present itself
not as a problem, but as one of E-FOTO's major advantages
in its development process.

Another big lesson that the project's development team
learned came from the troubles experienced in the migration
from Qt3 to Qt4. As a defensive move to avoid having
similar problems in the future, the project received a major
architectural overhaul: not only was it to be developed
according to the photogrammetric process' modularity, but
also following some architecture that could minimize the
effects that another framework change could have. The
solution found was to follow a scheme based on MVC
(Model-View-Controller), where the whole Model and
Controller layer were to be developed without the aid of any
external libraries/frameworks, isolating these on the View
layer. Even then, the communication between the Controller
and View layers should be done according to a pure-C++

359

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 375 / 612

interface, so that any "low-level-code" changes in the View
implementation would not affect the other layers at all.

So far, this architecture has proven itself very successful
at its job, allowing the developers to meddle with many of
the software's "high-level" aspects while keeping the core
business intact, such as the addition of different image
visualization components. As a bonus, the development of
new modules has proven to be very simple, since the
modules are now connected to the same model, with the
addition of a new controller and user interface to interact
with it. Therefore, it can be said that this MVC-based
structure is the greatest reason for the success of E-FOTO's
integration process.

IV. BENEFITS OF THE PROJECT

E-FOTO has been tested mainly in Digital
Photogrammetry classes, both in the Masters program in
Geomatics, and in the undergraduate program of
Cartographic Engineering at the Rio de Janeiro State
University. It has also been used in many academic
institutions over the world. Anyone can access the E-FOTO
software by downloading its versions from the E-FOTO ś
home page on the Internet [16]. The software runs in both
Windows and Linux environments. The following
photogrammetric data and training material is also available
in the E-FOTO´s home page: (a) a set of three digitized-
frame, 9”x9” aerial images; (b) a pdf file containing a
photogrammetric camera calibration certificate; (c) a set of
twelve ground control point coordinates for photogrammetric
processing; (d) a set of seven tutorials about the
functionalities of the E-FOTO solutions, and (e) the
academic works and the publications generated as a
consequence of the E-FOTO development. Another point
that is worth mentioning is the statistics about the visits to
the E-FOTO´s home page: those statistics show the daily and
monthly accesses to the E-FOTO´s Home page. It also has
the tracking of the geographical source of the accesses.
Figure 5 shows examples of such statistics.

Figure 5. E-FOTO home page accesses statistics. Source: ShinyStat.

The graphic at the top of Figure 5 shows the visits to the
E-FOTO home page in May 2011, with an average of 30

visits. The pie chart on the bottom of Figure 5 depicts the
percentage of visits to the E-FOTO home page by country in
the same period.

V. FUTURE PLANS

E-FOTO's educational software is being currently used in
many different countries, which brings to the development
team great responsibility. There is still much work to be
done. In fact the team is currently preparing a new integrated
version of the software with many improvements. These
improvements deal with the correction of systematic effects
from earth curvature, lens distortions, and atmospheric
refraction. Another improvement is the extension of the E-
FOTO´s source code for dealing with optical satellite
imagery, through the use of the Rational Polynomial
Functions model. The development of the bundle adjustment
phototriangulation algorithm is undergoing. Stereoscopic
visualization capabilities with either passive or active shutter
glasses is another topic of research. The E-FOTO team is
also translating the tutorials about the use of the integrated
version of the software into English and Spanish.

VI. CONCLUSIONS

Digital Photogrammetry has manifold applications of
potential interest for users of geographical information. In
developing countries, such as Brazil, there is a great need of
proper formation of new professionals who will work in this
field. The motivation and goal of the E-FOTO project is to
make available a GNU/GPL free software platform for
education in Digital Photogrammetry. E-FOTO does not
intend to replace commercial photogrammetric solutions.
However, it does intend to provide a software solution that
could be used anytime, anywhere by anybody who is
interested in learning about photogrammetric principles.
Because of that, E-FOTO could be extremely useful for
those people and institutions that cannot afford to acquire
digital photogrammetry software solutions, even when
purchased for educational purposes.

ACKNOWLEDGMENTS

We would like to thank the Brazilian National Council
for Scientific and Technological Development (CNPq),
which provided financial support to the E-FOTO project.
Also, we would like to thank those who have contributed
voluntarily to E-FOTO's development, especially Prof.
Eddison José Araya Morales, from Costa Rica, who
translated E-FOTO tutorials into Spanish.

REFERENCES

[1] L. C. T. Coelho Filho, "Estação Fotogramétrica Digital
Educacional," Undergraduate Technical Report, Instituto
Militar de Engenharia, Brazil, 2002.

[2] L. C. T. Coelho Filho and J. L. N. S. Brito, Fotogrametria
Digital, 2nd ed. Brazil: EdUERJ, 2007.

[3] S. A. Lima, "Estratégias para Retificação de Imagens
Digitais," Undergraduate Technical Report, Universidade do
Estado do Rio de Janeiro, Brazil, 2003.

360

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 376 / 612

[4] F. J. C. Silveira, "Fototriangulação pelo Método dos Feixes
Perspectivos," Undergraduate Technical Report, Universidade
do Estado do Rio de Janeiro, Brazil, 2004.

[5] F. J. C. Silveira, "Fototriangulação Pelo Método dos Feixes
Perspectivos com Auto-calibração," Master Thesis,
Universidade do Estado do Rio de Janeiro, Brazil, 2007.

[6] G. J. Sokal, "Normalização de Imagens Fotogramétricas
Digitais," unpublished.

[7] M. T. Silveira, "Visualização e Medição Estereoscópicas de
Imagens Fotogramétricas Digitais," Master Thesis,
Universidade do Estado do Rio de Janeiro, Brazil, 2005.

[8] G. J. Oliveira and F. Cardoso, "Ortorretificação de Imagens
Digitais," Undergraduate Technical Report, Universidade do
Estado do Rio de Janeiro, Brazil, 2004.

[9] R. J. M. Fonseca, "Estação Fotogramétrica Digital: Uma
abordagem Sistêmica sob as Óticas de Aspectos de objetos,"
Master Thesis, Universidade do Estado do Rio de Janeiro,
Brazil, 2008.

[10] R. P. Silva, "Arquivo XML de Projeto Fotogramétrico e sua
Auditoria no Ambiente E-FOTO," Undergraduate Technical
Report, Universidade do Estado do Rio de Janeiro, Brazil,
2008.

[11] M. V. Meffe, "Adaptação da Arquitetura Model-View do Qt
para a Apresentação e Edição de Dados Compostos na GUI da
EFD E-Foto," Undergraduate Technical Report, Universidade
do Estado do Rio de Janeiro, Brazil, 2010.

[12] I. S. Badolato and R. A. Aguiar, "A Integração do Software
E-Foto em um Ambiente de Desenvolvimento XP,"
Undergraduate Technical Report, Universidade do Estado do
Rio de Janeiro, Brazil, 2010.

[13] S. L. C. Santos, "Reengenharia da Visualização de Imagens
de Alta Resolução no Projeto E-Foto," Undergraduate
Technical Report, Universidade do Estado do Rio de Janeiro,
Brazil, 2010.

[14] V. Silva and R. M. A. Fonseca, "Módulo de Visualização da
Modelos Numérico de Superfície da EFD E-Foto,"
Undergraduate Technical Report, Universidade do Estado do
Rio de Janeiro, Brazil, 2009.

[15] D. L. Bastos, "Uma Métrica para Dimensionamento de
Software Científico Aplicada à Fotogrametria Digital,"
Master Thesis, Universidade do Estado do Rio de Janeiro,
Brazil, 2007.

[16] E-FOTO, "E-FOTO: A free GNU/GPL educational digital
photogrammetric workstation", available at
<http://www.efoto.eng.uerj.br>. (Retrieved: August 2011).

[17] K. Beck et al., "Manifesto for Agile Software Development"
Available at <http://agilemanifesto.org>. (Retrieved: August
2011).

[18] S. Ambler, Modelagem Ágil: práticas eficazes para a
programação eXtrema e o processo unificado, 1st ed. Brazil:
Bookman, 2004.

[19] K. Beck and C. Andress, Extreme Programming Explained:
Embrace Change, 2nd ed. USA: Addison-Wesley, 2004.

[20] T. Schenk, Digital Photogrammetry, 1st ed., vol.1. USA:
Terra Science, 1999.

[21] E. M. Mikhail, J. S. Bethel, and J. C. McGlone, Introduction
to Modern Photogrammetry, 1st ed. USA: Willey, 2001.

[22] K. Kraus, Photogrammetry: Fundamentals and Standard
Processes, 1st ed. vol.1. Germany: Dümmlers, 1993.

[23] J. Blanchette and M. Summerfield, C++ GUI Programming
with Qt4, 1st ed. USA: Prentice Hall, 2006.

[24] T. Lillesand, R. W. Kiefer, and J. Chipman, Remote Sensing
and Image Interpretation, 6th ed. USA: Willey, 2007.

361

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 377 / 612

Vitalizing Local ICT-industry by Acceleration of FLOSS-based Software Product
Development: A Case Study of the ICT-industry in Okinawa

Jun Iio
Mitsubishi Research Institute, Inc.

Chiyoda-ku Tokyo, Japan
iiojun@mri.co.jp

Yasuyuki Minei
OCC Corporation

Urasoe Okinawa, Japan
minei@occ.co.jp

Masato Kubota
E-Sir, Inc.

Naha Okinawa, Japan
kubota@e-sir.co.jp

Kazuhiro Ooki
NEC Corporation

Minato-ku Tokyo, Japan
ooki kazuhiro@bc.jp.nec.com

Abstract—Occupational condition differentials between ma-
jor enterprises in areas around central Japan and small-
medium-enterprises in rural area are caused by hierarchical
structure in Japanese industries on the information com-
munication technologies (ICT). In order to remove this in-
adequate situation, we have drawn a blueprint to reform
the ICT-industry by proposing a reference model to develop
Free/Libre/OpenSource-based software products and a system
that can support the development. The system has been imple-
mented in an organization to help the local ICT-enterprises in
Okinawa and the reference model is also now provided by that
organization. This paper reports an outline of the system and
that of the reference model. A result of test-run of software
products development along with the reference model, using
the support system, is also shown in this paper.

Keywords- OSS-based software products; local ICT-industry;
development support.

I. INTRODUCTION

The industrial structure of the information and commu-
nication technologies (ICT) industry in Japan is similar
to that of construction industry. That is, it is organized
in a pyramid structure, where a main contractor exists at
the top of the hierarchical structure. In the pyramid, not
only sub contractors but also sub-sub contractors, and often
much deeper degree of contractors can be members of the
hierarchical structure. In such an industrial structure, only
contractors in upper layers have opportunities to perform
creative activities, because they play roles in upper pro-
cess, such as requirement analysis and/or system conceptual
design. Small-medium enterprises (SMEs) located at the
bottom of the hierarchical structure are usually associated
with lower process of system development. Hence, they
mainly take charge of coding or relatively smaller unit-
function development, and tend to accept relatively non-
challenging work.

The occupational condition differential between major en-
terprises in the Tokyo area and SMEs in rural areas is caused
by these hierarchical structures of Japanese ICT-industry. To
eliminate these differentials and to vitalize the local ICT-
industry, this industry structure should be modified, or more
specifically, it should be corrupted and restructured. In order
to break the dependencies in the hierarchical structure, it is

important for bottom members to have their own products.
As the first step to rebuild the structure, we have designed a
reference model of work process to develop Free/Libre/Open
Source Software (FLOSS) based products and a development
support system for the SMEs in the rural ICT-industries.

The ICT-industry in Okinawa is also embedded in this
typical problematic pyramid structure. In the ICT-industry
in Okinawa, many of ICT-enterprises are SMEs and main
customers of them are sub contractors and/or sub-sub con-
tractors in a large project. They seldom close a contract with
neither user enterprises nor public sectors directory. That is
one of the reasons why the ICT-related SMEs in Okinawa
have an occupational wage problem. Three years ago, we
have drawn a blueprint of an organization for industrial
reform to solve this problem. This organization is now
realized as an institute, named Ryukyu software business
support center.

II. OKINAWA SOFTWARE DEVELOPMENT
ACCELERATION PROJECT

Based on the blueprint, “Okinawa software development
acceleration project” has been conducted from the fiscal year
2009. The aim of this project was to transform the local
ICT-industries in Okinawa from commission-based business
model into production-based business model. Because the
production-based business can help SMEs to make contract
directly with end-users, this transformation was considered
to be needed to vitalize the local ICT-industries.

The goal of the project was to establish the standardized
software development method based on FLOSS project and
to implement the supporting system environment which
developers were able to utilize for developing their software
products. These functions are consolidated in the Ryukyu
software business support center in order to develop their
own software product based on FLOSS and its resources.

A. Background and Objective

In the Internet, there are varieties of software database
called “FLOSS repository,” where many FLOSS projects are
registered by developers from FLOSS communities. Such
software can be used with no expense. Furthermore, we

362

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 378 / 612

Figure 1. An overview of the Okinawa software development acceleration project and activities around the Ryukyu software business support center
located at the center of this figure.

can use, modify, and redistribute freely under the condi-
tion of licenses bundled with software. Many of FLOSS
are equipped attractive functions for users and they have
potential capacity to be commercial software products. How-
ever, there is always a possibility that the software quality
of FLOSS cannot satisfy appropriate level as commercial
product. For example, it can be considered hard to use for
novice users due to lack of install-function to install software
into different environment, non-Japanese messages shown
by non-internationalized software prevent average Japanese
users from operating the software easily, and so on.

In our project, we have established the reference model
of work process to develop FLOSS-based software products,
which has several steps starting with searching FLOSS,
screening, evaluating, and applying internationalization in-
cluding localization, if needed. We designed not only the
reference model but also implementation of the system
environment that can be used to support the work process
of software development. In addition, the framework for
operating these systems efficiently was considered. These
services can be provided to ICT-enterprises in Okinawa
prefecture by Ryukyu software business support center so
that the ICT-industry in Okinawa will be vitalized and be
activated.

B. Overview of the Project

This framework is expected to help the ICT-enterprises
in Okinawa to acquire material as the basis of software

product development, several data, and other resources. ICT-
enterprises in Okinawa can put extra effort only to develop
additional functions that are considered to be needed in order
to suit it as their software product. This framework supports
ICT-enterprises to accelerate their software development
much rapidly and efficiently, that results in an establishment
of effective software business infrastructure in the local ICT-
industry.

A basic concept of the project is shown in Figure 1. It
also illustrates a series of validation processes, an overview
of supporting system, and an image of acceleration of soft-
ware development by participants from the ICT-industries in
Okinawa. The whole validation process contains screening,
evaluating, testing, internationalizing, and localizing.

III. SUPPORT SYSTEM AND REFERENCE MODEL OF
PRODUCT DEVELOPMENT

The system environment for the FLOSS-based software
product development and the reference model are explained
in this section.

A. Support System for FLOSS-based Software Product De-
velopment

Ryukyu software business support center provides its
working guidelines for FLOSS-based software development,
and members of the center can use the supporting system
for their development activities, which is implemented in the
center.

363

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 379 / 612

Figure 2. An overview of the software development support system
provided by the Ryukyu software business support center.

An overview of the system is shown in Figure 2. The
system is roughly divided into two parts. The public part
of the system shown in the left half of the Figure 2 can be
accessed by everyone via the Internet and the restricted part
of the system shown in the right half of the Figure 2 can be
accessed by authorized members, which are ICT-enterprises
in Okinawa prefecture. In either case, user has to access “the
web portal” at first.

Main content of the public part consists of a catalogue
and demonstration function for software products which
are developed and offered by ICT-enterprises in Okinawa.
The information provided only by the software catalogue is
considered insufficient to present a whole image of software;
thus demonstration system is prepared so that user can
figure out usability of the software as a practical manner.
Optionally, software can be exhibited by operation movies.

Restricted part of the system helps ICT-enterprises to
develop their software products which can be registered
into the software catalogue. Firstly users have to log into
“development portal” and then carry on process manage-
ment, member assignment and progress management, using
the project management function that is implemented within
the restricted part of the system. For the practical work in
software development process, developers can use working
environment for their software product development. For
the evaluation, internationalization, and localization process,
users can access adjunctive environment provided as a func-
tion of the system. Results of development are registered into
product material database. After the registration of product
materials, if some ICT-enterprises proceed with additional
development by themselves and decide to make a sale
of the software as their own products, they can register

Figure 3. Work steps in the FLOSS-based software product development
project, begin with marketing process and end with registering materials
into portal database.

their products into the product catalogue and demonstration
environment and they will be public to the consumer.

B. Reference Model of Work Process

Participants in the FLOSS-based software product devel-
opment project execute tasks up to the work steps shown in
Figure 3.

Before starting the software product development process,
a person in charge conducts market research to make clear
that what type of software is required and what type is not
required. This market survey is conducted on a regular basis
to catch up with market trends. The result of the market
research would be used for deciding what area should be
focused on and which software should be tailored as a soft-
ware product by each enterprise. This decision is made in the
first product planning step. Next step is to extract FLOSS-
based product candidates. To find the candidates, FLOSS
repositories such as SourceForge.net will be explored. In
this step, at least five or more FLOSS projects should be
selected, because these candidates will be filtered at the
following steps and will be dropped depending on results
of successive evaluations.

The software quality of each candidate is roughly es-
timated in the screening process, from the standpoint of
development stability, the number of current users, activity
of its community, and so on. In this step, every evaluation
is judged by their information delivered from the web-
site of the candidate projects. Note that FLOSS installation
and/or source-code analysis are not required. These practical
evaluations are performed in the subsequent evaluation step.
The second product planning step that is optional will be
conducted. In this step, what problems will be faced with
in the process of making FLOSS into software products is
discussed. The decision whether this action is taken or not
is depending on business strategies of ICT-enterprises. From
a practical perspective, this step will be started after the
screening process, and it will be being performed simulta-

364

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 380 / 612

neously with the other subsequent processes.
The FLOSS candidates filtered by the screening step are

subjects of evaluating-and-test step. In this step, software
quality and license condition are investigated in details. Es-
pecially in desktop applications, localization is an important
issue for the end-users. If FLOSS is not internationalized
nor localized for Japanese, it is not familiar with Japanese
users. Validating whether the software is internationalized
and localized for Japanese or not is very important for
the Japanese users. This work will be done in testing
requirement for the internationalization and localization step.

Finally, development process will be shifted into compre-
hensive decision making phase. In this step, possibility of the
attractive software products with the candidates is examined
based on the results of the sequential steps of screening,
evaluating, and considering the needs of internationalization
and localization. The results are registered into the database
if the candidates have some possibilities to make a business
contract. In a practical sense, the development requires
several developing steps on the internationalization and lo-
calization for the Japanese users. After that, considering the
second product planning step, developed software products
can be published via the web portal in the public part of the
system.

IV. EVALUATION OF THE SYSTEM AND OPERATION

For the purpose of validating the efficiency of the system
and reference model of operation, preliminary test-run was
designed and conducted from the middle of December 2010
to the end of February 2011.

The trial validation was conducted along with following
steps:

1) Interviews with key persons in higher educational
institutes in Okinawa

2) Workshop on the overview of the test-run
3) Workshop on the practical work in the marketing step
4) Workshop on the practical work in the screening step
5) Workshop on the practical work in the evaluation-and-

test step
6) Workshop on the practical work in the international-

ization and localization step
7) Briefing session on how to operate the Protex IP to

check licensing issues

A. Implementation Structure of the Validation

The trial had twenty two participants from eight com-
panies that are the member companies of this project. All
participants were divided into five groups in order to evaluate
the proposed system and the working model.

There were two types of groups; the one was single-
membered group and the other one was hybrid group.
“Single-membered” represents that all the members in the
group work for the same company and they work in the same
office. On the other hand, the members in the hybrid group

Table I
THE SCREENING RESULTS OF THE TEST-RUN.

FLOSS Score in the screening step Result

magento 41 NG
prestashop 70 OK
zabbix 59 NG
Simple Groupware 51 NG
Open Atrium 55 NG
Concursive 38 NG
]project-open[60 OK
vtiger CRM 63 OK
ERP 5.0 36 NG

were gathered from different companies. In addition, design-
ers in charge of each step of the reference working model
were participated in the training phase of the trial validation,
as lecturers teaching the details of each procedure.

The reason why these two types of working groups is
because the Ryukyu software business support center is
located in the rural area of Okinawa and it is far from
Naha, the central region of Okinawa prefecture. Thus many
of engineers will use the system remotely, and sometimes
they will work in cooperation. The hybrid group can be
considered as an emulation of practical use of the functions
provided by the support center.

Table I illustrates the results of the screening process
during the test-run. Scores were calculated from 0 to 100 in
conformity with evaluation criteria in the screening process.
At the end of this procedure, the final result was decided
to OK if evaluation score is 60 or over. On the other hand,
if the final score was under 60, which is the case of NG
in the Table I, evaluation process for the FLOSS candidate
stopped.

After finishing the test-run, only the “prestashop” shown
in the Table I has been reached to the final judgement and
the other factors has increased its final score up to 74 points,
which results in the conclusion that it has possibility to be
a software product sold by the ICT-enterprise in Okinawa.
Note that ERP 5.0 got lower score than expected. The reason
of the low score is considered that the software has been
already famous enough in Japan and there is a company
supporting localization and promotion for the software in
Japan. That is, ERP 5.0 has already been well-suited for
Japanese market and there seems no room for developing in
our project. Thus, the score of ERP 5.0 is relatively low.

Participants in this validation process have contributed
their comments to improve the reference model and sup-
porting system.

Followings are selected reviews:
• Although there are many difficult points to be not able

to make a decision in each process, appropriate advices
from instructor help me to solve the questions.

• I did not have opportunities to evaluate the tools pro-

365

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 381 / 612

vided in the evaluation-and-test process, because the
period of validation process was too short.

• It can be difficult unless the participants in the evalua-
tion process have enough skills.

• The idea and method to narrow the list down to
effective products are considered valuable when we
have to struggle with FLOSS projects in the future.

V. RELATED WORK

Many FLOSS and its community evaluation methods have
been proposed so far, like Open BQR[1], Open Source
Maturity Model (OSMM)[2], method for Qualification and
Selection of Open Source software (QSOS)[3,4], Open BRR
(Business Readiness Rating for Open Source)[4], SQO-OSS
Quality Model[5], and QualiPSo[6]. Evaluation criteria used
in our screening process are based on a mixture of the
criteria defined in those evaluation methods.

In our evaluation-and-test process, check items are
arranged in accordance with the international standard,
ISO9126[7] quality standards. As described in this standard,
the operator works on checking three categories of the
software quality: inner quality, outer quality, and quality-in-
use. The inner quality and the outer quality are separately
defined as six quality features and twenty seven sub-quality
features. Also the quality-in-use is defined as four quality
features.

The evaluation-and-test process has an additional function
to verify the risk of license violation. According to Monden
et al.[8], about ten percent of FLOSS has contained reused
code in its source code. To avoid GPL violation, it should be
confirmed that the software product does not have any GPL
contaminated code. Thus, Black duck software’s Protex IP
has been introduced in order to make sure of compliance
with the FLOSS licenses.

VI. CONCLUSION

In this paper, the reference model and the system for
developing software product based on prospective FLOSS
are described. The model and the system are provided by
the Ryukyu software business support center in order to
transform the structure of the local ICT-industry in Okinawa.

Implementing the system using well-known FLOSS, such
as MySQL, Track, PHP, Zend, and Subversion, has reminded
us that the FLOSS products were helpful to construct a
specific system quickly and efficiently. With the help of
these FLOSS products, we could develop the highly practical
system in a short development period. The system has
also its web-based user interface and it is provided by the
combination of Linux, Apache, MySQL, and PHP; that is
the LAMP system. The decision to use LAMP stack resulted
in quick development and stable operation at present.

In the reference model using the system, working pro-
cesses for screening and evaluating FLOSS products are
needed to be managed by administrators. However, since

those processes are complicated enough and there has some
room to modify in instruction of the working process, those
two working processes have been designed as independent
on the system.

Practically, the reference model is described with two
documents. One is system operation manual and the other
is a guidance document on the reference model. Several
methods were discussed and refined through the design of
the reference model; it is composed of a method to focus on
a specific area in the software classification as market survey,
a method to extract FLOSS according to the result of the
market survey, a method to apply screening process onto
FLOSS candidates, a method to derive evaluation items in
accordance with the (sub-) quality features that are suitable
to validate the candidate software, and so on.

Regular operations of the Ryukyu software business sup-
port center have just started after preliminary discussion
phases. The ICT-enterprises in Okinawa prefecture should
bring forward their activities on developing their own soft-
ware products with the help of the functions provided by the
center. Promotion on the center’s operation remains as our
future work.

REFERENCES

[1] D. Taibi, L. Lavazza, and S. Morasca, OpenBQR: a framework
for the assessment of OSS, Open Source Development, Adop-
tion and Innovation, IFIP International Federation for Informa-
tion Processing, Vol. 234/2007, pp. 173–186, 2007.

[2] B. Golden, Succeeding with Open Source, Addison-Wesley
Professional, 2004.

[3] A. Origin, Method for Qualification and Selection of Open
Source software (QSOS), version 1.6, April 2006, http://www.
qsos.org/download/qsos-1.6-en.pdf

[4] J.C. Deprez and S. Alexandre, Comparing Assessment Method-
ologies for Free/Open Source Software: OpenBRR and QSOS,
Product-Focused Software Process Improvement, Lecture
Notes in Computer Science, Vol. 5089/2008, pp. 189–203,
2008.

[5] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, The
SQO-OSS Quality Model: Measurement Based Open Source
Software Evaluation, Open Source Development, Communities
and Quality, IFIP International Federation for Information
Processing, Vol. 275/2008, 2008.

[6] V. Bianco, L. Lavazza, S. Morasca, and D. Taibi, Quality of
Open Source Software: the QualiPSo Trustworthiness Model,
Open Source Ecosystems: Diverse Communities Interacting,
IFIP Advances in Information and Communication Technol-
ogy, Vol. 299/2009, pp. 199–212, 2009.

[7] ISO/IEC 9126-1:2001 Software EngineeringProduct Quality-
Part 1: Quality model, June 2001.

[8] A. Monden, S. Okahara, Y. Manabe, and K. Matsumoto, Guilty
or Not Guilty: Using Clone Metrics to Determine Open Source
Licensing Violations, IEEE Software, Vol.28, No.2, pp. 42–47,
Mar./ Apr. 2011.

366

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 382 / 612

Empirical Case Study of Measuring Productivity of Programming Language Ruby
and Ruby on Rails

Tetsuo NDOA
Information-processing Center

Shimane University
Matsue, Japan

nodat@soc.shimane-u.ac.jp

Chi JIA
Faculty of Law and Literature

Shimane University
Matsue, Japan

jiachi@soc.shimane-u.ac.jp

Abstract— This short paper is intended as a trial balloon of the
evaluation of open source software, by measuring the
productivity of programming language Ruby and web
application framework Ruby on Rails, compared with other
open source software.

Keywords-component; Open Source; Ruby; Ruby on Rails;
Productivity; Programming Languag

I. INTRODUCTION

Ruby is the Object-oriented Script Language released by
Mr. Yukihiro Matsumoto, called "Matz" in open source
communities, and was opened to the public in 1993. Matz
lives in Matsue City in Japan and has been developing Ruby
with many open source developers all over the world through
the Internet. The number of core committers of Ruby is
about seventy in 2011, and the two-third of them are
Japanese. So Ruby is one of very few open source projects
that Japanese engineers are mainly engaged in developing.

At first, though Ruby commanded attention through
geeks, it had not been spread in business uses. But, in 2005,
David Heinemeier Hansson – a programmer in Denmark,
released Ruby on Rails, web application framework
constructed by Ruby. Hence, Ruby came to attract attention
and to be used also in enterprise areas. According to TIOBE
Programming Community Index, which announces the
ranking based on the retrieval by keyword of the search
engine, the share of Java is 18.5% in the investigation of in
2010, and PHP is confronted to 7.8%, and Ruby is at level of
1.9% (ranking 10th place) [1]. But the number of Ruby’s
engineers has been increasing remarkably. It is forecast that
the engineer who will use Ruby by 2013 reaches four million
people according to the investigation of United States
research company Gartner [2].

Then IPA (Information-technologies Processing Agency)
[3], the Japanese government agency, started to support the
Ruby project. It has been driving forward the standardization
of Ruby. Because Ruby is open source, there are many
implementations of Ruby. Besides the Ruby 1.8 affiliate
(implemented by C language) and this Ruby 1.9 affiliate
(implemented by virtual machine YARV), IronRuby
(implemented to operate Ruby on .NET Framework),
MacRuby(implemented to operate Ruby on Mac OS X), and
Rubinius (bytecode interpreter on a virtual machine), etc.
Thus there are variety of implementations. But the standard

specifications of Ruby language had not existed. So, IPA
started standard specifications making, first domestically
based on standard specifications in 2008, and constituted it
as JIS (Japanese Industrial Standards) in 2011. Now, Ruby is
proposed to ISO (International Standard).

This process will improve the interconnectivity of the
portability and external systems by making it in accordance
with this standard. Moreover, it will develop the foothold of
the specification when the server environments to execute
the program written with Ruby. The reason why IPA, the
Japanese government agency, is bringing forward this
process is to increase the market of Ruby, Japanese-Oriented
Programming Language, in enterprise areas.

However, the reason why Ruby and Ruby on Rails have
been used recently is the productivity of them. The
productivity of Ruby and Ruby on Rails has been said
tendentiously as such “The productivity of Ruby is ten times
higher than that of Java”. But we must proof the productivity
of them empirically and scientifically, if Ruby and Ruby on
Rails are good for enterprise areas. So, we measured the
productivity of them compared with other script languages.
In this context, the term of “productivity” means software
productivity by man-hours, including experience years of
using language. In this paper we mention the method and the
result of the productivity’s comparison, and we also hope
this method will be an “active pointer” of measuring
software’s productivity.

II. PRODUCTIVITY OF RUBY

The script languages like Ruby have to be compiled the
source codes to object codes at each execution, so that the
processing speed of them tends to slow extremely. The
simpler the characteristic of language is, the slower the
processing speed of it becomes. However, due to faster grow
of the information processing abilities symbolized in the
Moore's Law, the improvement of the processing speed has
become to be owed to computer hardware, mainly the power
of CPU. And as for the service of Web, prompt (agile) and
flexible development and release is required.

The amount of the description of codes by Ruby is less
than that of other programming languages, and the grammar
expresses man's imagination similarly near human language,
so that the its productivity of development becomes higher as
a result. Therefore, the productivity of Ruby is evaluated in

367

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 383 / 612

the development of the Web application from which quick
release and a frequent change are required. If the domination
of such productivity is actually proven, introducing Ruby
into the production site of development will be able to not
only raise the productivity of development, but also decrease
the stress of engineers. So we measured the productivity of
Ruby compared with other programming languages.

We compare the productivity among Ruby, Java, and
Perl cooperated with an IT company [4]. We developed the
Web applications that have the same functions (Message
board systems that have functions of comments contribution,
multiple contribution prevention, indispensable check, and
the automatic deletion) by Ruby, Java and Perl, daringly
without using web application frameworks. TABLE I is the
result of the comparison of each programming language’s
productivity.

TABLE I. COMPARISON OF PRODUCTIVITY (2010)

Languages Java Ruby Perl
Lines 177 46 42

Man-Hour
(Coding and Test)

Coding : 8
hours

Test: 1 hours

Coding and
Test: 2 hours

Coding and
Test: 0.75

hours
Require Modules 19 2 4 (uses)

Operating
Condition

Servlet Http Server Http Server

Operating
Checking Server

Tomcat Apache Anhttp Apache Anhttp

Experience Years
of Using Language

7 years 0 years 5 years

Experience Years
of Development

7 years 7 years 7 years

As a result, Ruby exceeded both amounts of the codes
and the manufacturing time greatly compared with Java in
productivity. Ruby was proven to be as several times
productive as Java at the manufacturing time (4.5 times if it
simply compare). But it was proved that Ruby is not more
productive than Perl. However, in spite of the first
manufacturing in Ruby engineers could write the same
amount of codes that Perl engineers, who need five years’
experiences, write. Though, the speed manufacturing time
of Ruby engineers is slower than that of Perl engineers, if
they are trained coding, the productivity will be expected
much higher.

III. PRODUCTIVITY OF RUBY ON RAILS

As has been previously described, Ruby became to attract
attention since the release of Ruby on Rails. So we
continuously measured the productivity of Ruby on Rails
compared to Java’s developing framework cooperated with
an IT company [5]. We tried combustion and additional
function requirement of 70% of the Working management
system by Ruby on Rails. The system had previously (in
2007) developed by Java and JBoss Seam, web application
framework.

To compare the amount of source codes, we divided the
system into three elements, Model which is the kernel of

processing of the software design, View which rules display
and output, and Controller: which receives input and controls
View and Model according to the content And we compared
each number of steps for these three elements. TABLE II is
the result of the comparison.

TABLE II. TABLE TYPE STYLES (2010)

Elements
Ruby on Rails Java + Jboss

Seam
Java + Jboss Seam
/0.7

Controller 5.1K 18.4K 26.3K
Model 1.2K 12.6K 38.1K
View 4.2K 4K 5.7K
Totla 10.5K 35K 50K

If we simply compare the numbers of steps, the
productivity of Ruby on Rails is three times of that of Java
and its web application framework. Moreover, if we
consider that the development by Ruby on Rails was 70% of
that by Java, the productivity is five times of Java. And, by
the function point method (FP/man-hour comparison),
which is an unit of measurement to express the amount of
business functionality an information system provides to a
user. The cost (in dollars or hours) of a single unit is
calculated from past projects, the productivity of Ruby on
Rails is 1.4 times of that of Java.

IV. ISUUES AND FORESIGHT

Though the productivity of Ruby and Ruby on Rails was
measured by these case studies, the number of cases is
obviously few. So we must continue to study much more
cases. And, it will be difficult to compare productivity under
the same developing condition. However, as the method of
comparison of productivity was put on a firm footing,
continuance of this study will enable us to compare the
productivity of software empirically and scientifically.

Moreover, the performance of software must be measured
by considering the effective speed in processing. For this
reason, IPA is driving forward the standardization of Ruby.
At the same time, in this study we compared the
productivity in developing. Then we must measure and
evaluate the performance of software totally. This process
will be conducible to the evaluation of open source software
which does not receive baptism of market pricing.

[1] TIOBE Programming Community Index
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[2] Ruby is Fastest-Growing Web Development Language: Gartner

http://www.pdfzone.com/cp/bio/Darryl-K.-Taft/

[3] IPA (Information-technologies Processing Agency)
http://www.ipa.go.jp/index-e.html

[4] Central Information Coorporation in Hiroshima

http://www.cis-net.co.jp/outline.html

[5] TOSCO Coorporation in Okayama

http://www.tosco.co.jp/

368

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 384 / 612

Querying Source Code Using a Controlled Natural Language

Oleksandr Panchenko Stephan Müller Hasso Plattner Alexander Zeier
Hasso Plattner Institute for Software Systems Engineering

PO Box 900460, 14440 Potsdam, Germany
Email: {panchenko, stephan.mueller, office-plattner, zeier}@hpi.uni-potsdam.de

Abstract—Source code documents are of dual nature: they
are in fact texts containing information for developers and they
have an explicit structure for compilers and other tools. Several
representations for the structured information of source code
exist: abstract syntax tree, call graph, data flow graph, and
others. Although the questions developers ask about source
code seem easy to formulate, the complex code structure
requires writing intricate queries. Developers use both, lexical
and structured information for queries, though they dislike
writing complex queries. Querying source code is an important
activity in software development and maintenance. But often it
cannot rely on predefined queries alone and requires writing
more intricate queries. There is a need for a simple, user-
friendly querying interface. This paper discusses an imple-
mentation of such a user interface based on a controlled
natural language which is an unambiguous subset of the
English language. When the developer enters the query, the
source code grammar and the actual search results are used
to automatically propose possibilities for query refinement and
further navigation on the result set. The controlled natural
language queries are then transformed to structured queries
to retrieve data from a source code repository. The proposed
approach provides a better expressiveness compared to simple
keyword-based queries and enables consideration of complex
structured relations between source code elements.

Keywords-Source code repository; source code query lan-
guage; development tools; controlled natural language.

I. INTRODUCTION

The availability of efficient software development tools
leads to lower development and maintenance costs, better
code quality, and better organization of the development
process. An important area of activities to be supported
by tools is information gathering: searching source code,
navigating through code and investigating related entities,
performing various code inspections, calculating metrics,
and mining code repositories. Source code repositories have
been developed to enable code search using structured
information contained in it. In general, this representation
is based on a graph or a tree, whose vertices represent
source code entities and whose edges represent relationships
(implicit or explicit) between entities. Depending on the
selected granularity level, entities can be single tokens in
source code, modules, or entire subsystems. Examples of
such structures are abstract syntax trees (ASTs), call graphs,
data flow graphs, and module dependency graphs. Since each
node contains lexical information, queries against such a

data structure should be able to combine both types of data:
keyword-based search and structured queries.

Usually, the repositories require some structured query
language: e.g., SQL, XPath, XQuery, Relation Manipulation
Language [1] or Datalog [2]. Given a complex grammar
of a programming language and complex relations between
entities in the repository, even simple developers’ questions
require writing complex queries. Although developers use
both, lexical and structured information for queries, they
refuse formulating complex queries. For certain kind of
tasks (metrics calculation, code inspections, etc.) a complex
notation is acceptable, because the queries are written once
and the developer can reuse them. Other scenarios, however,
require more interaction and the possibility to enter a query
manually with an easily understandable syntax and semantic
of the query language.

This paper introduces a user-friendly interface for flexible
source code querying that allows for queries up to high com-
plexity using a controlled natural language (CNL). Further,
we use XPath as the underlying structural query language.
XPath expressions are evaluated on tree representations of
ASTs. In our previous work we have shown that AST-
based representation of source code can leverage querying of
syntactical patterns in source code [3]. While we started with
a query language that is similar to the surface programming
language, in this project we investigate CNL as a query
language.

Instead of using keywords or code snippets, the developer
can compose queries using a CNL. Queries in CNL are
transformed into a suitable query language to retrieve data
from a code repository. This paper exemplifies the proposed
approach based on a repository which contains detailed
structured information in the form of abstract syntax trees
and uses XPath as a structured query language.

The following section relates our approach to existing
research. An introduction of controlled natural languages is
given in Section 3, and Section 4 introduces a simple use
case. Section 5 describes our implementation details. We
conclude the paper in Section VI and give an overview of
possible directions for future work.

II. RELATED WORK

Traditionally, regular expressions have been used to search
source code. Although this simple method is useful for many

369

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 385 / 612

tasks, the relations between source code entities are disre-
garded. Moreover, the search scope is limited to few files
because of performance issues. To overcome performance
limitations, Marcus et al. proposed to use an information
retrieval approach to store lexical information in an inverted
index [4]. However, structured information of the source
code was not included in the index.

There is a large body of research on source code repos-
itories and query languages. Bull et al. proposed to com-
bine regular expressions with structured queries [5]. The
approach works well for simple structured queries, but has
limitations because of restricted expressiveness. A set of
query languages (e.g., Relation Manipulation Language [1]),
which are based on predicate calculus, have been used
to query software artifacts. Hajiyev et al. have proposed
to use safe Datalog, a query language based on the use
of logic programming. Their tool, CodeQuest, maps safe
Datalog queries to a relational database system [2]. JQuery
is a tool supporting exploration of source code [6], [7].
The flexibility of the exploration views is achieved by
a query-based customization of the content presented in
the views. CodeQuest and JQuery aim at supporting high-
level navigation and understanding software systems. Since
existing source code querying systems store only coarse-
grained software artifacts, the complexity of possible queries
remains limited. But, as soon as the source code data model
gains in complexity, queries become unwieldy.

The idea of providing a natural language interface for
developers is not new. Würsch et al. presented a framework
based on an OWL ontology to present data extracted by
classical software analysis tools [8]. They used knowledge
processing technologies from the Semantic Web and a
guided-input natural language to answer questions about
static source code information. The approach presented in
our paper addresses developers’ questions of the similar
type. However, we focus on smaller syntactic code patterns
based on AST representation of code. The major difference
to the existing approaches is the capability of automatic
generation of refinement proposals.

Further, there is a need for a flexible interface that
enables keyword-based search over source code and takes
into account its fine-grained and complex structure.

III. CONTROLLED NATURAL LANGUAGE

A controlled natural language is an unambiguous sub-
set of a natural language with a restricted grammar and
a domain-specific vocabulary. As a subset of the natural
English language, CNL can be read and understood by a
human user without any training. Although writing requires
some training, it can be efficiently used to express formal
statements, lowering the entry barrier to formal languages.
Instead of learning a new language, the user is simply
trained which subset of the ordinary language to apply. The
writing process can be further supported by corresponding

intelligent authoring tools. Among many available CNL
implementations, Attempto Controlled English (ACE) stands
out due to high research activity and a wide range of
available tools [9] and is thus used in this project. The ACE
Editor is an example of a menu-based editor that facilitates
the construction of ACE sentences with no need to explicitly
know the syntactical restrictions [10].

Being effectively a formal language, ACE is unambigu-
ously translated to first-order logic, that is appropriate for
reasoning about the expressed contents by the machine.
Since many formal languages use first-order logic as a
logical foundation, transformations to those languages are
possible. In the ACE implementation, sentences are trans-
lated to discourse representation structures (DRS) which is
a syntactical variant of first-order logic [11].

A CNL is applicable in a variety of areas. It can be used
for software specifications, documentation, ontology author-
ing, rules and policy formulation as well as an interface
to other formal languages. The idea of transforming CNL
into a query language is not new. The tool LingoLogic is
an implementation that translates a CNL to SQL [12]. The
contribution of this paper is the use of the structure of the
underlying data model and actual search result to generate
refinement proposals and offer these to developers.

Opposed to plain keywords, a sentence written in CNL is
capable of carrying more semantics. The words relate to one
another and enable the construction of complex sentences
with higher expressivity.

IV. EXAMPLE USE CASE

Generally speaking, many of the programmers’ queries
reported so far [13] can be answered by our approach. This
paper illustrates the approach with several simple examples.
In the test scenario, a developer wants to find all references
to a variable xyz, where the variable is assigned a value.
The structured query to answer this trivial question is quite
complex: all references to the variable should be found; it
should be ensured, that no other variable with the same
name, but from another namespace, pertains to the result set.
Finally, the references should be selected, where the variable
is placed in the left side of the assignment operator. Since
the query is supposed to be used ad hoc, developers expect
the tool to provide this functionality at their fingertips. On
the other hand, since there are thousands of such questions,
it is not possible to prepare a list of queries for developers to
select from. A simple, user-friendly query language would
allow a flexible, handy interface to a complex information
repository.

The proposed interactive approach guides the developer
from a very simple keyword-based query to the required
result by refining the query step by step selecting one of
the proposed alternative queries. The developer starts with
a simple keyword query:

370

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 386 / 612

xyz (1)

In the background, this query is automatically extended
to a correct CNL sentence that conforms to the ACE
construction rules [9]:

Which entities are named xyz? (2)

Then, the CNL form is translated into an XPath statement,
which is executed by the source code repository. The result
set is presented with alternatives for refinement, which are
proposed by the query generator:

Which classes are named xyz? (3)
Which entities are named xyz

and are methods? (4)
Which variables are named xyz? (5)
Which entities are named xyz

and are parameters? (6)

At this point it is important to mention that the query
generator checks if the proposed queries may return non-
empty result set. In our example queries 3 and 4 will be
hidden if there is no class or method called xyz.

The developer chooses the query 5 and hereupon the query
generator proposes a set of further possibilities:

Which statements define a variable

that is named xyz (7)
Which statements use a value of a variable

that is named xyz? (8)
Which statements read a value of a variable

that is named xyz? (9)
Which statements change a value of a variable

that is named xyz? (10)

By selecting the query 10, the developer gets the intended
query and the desired result set. XPath statements created
and executed by the source code repository are as follows
while query 11 corresponds to 2, 12 to 5, and 13 to 10:

//[. =′ xyz′] (11)
//IDENT [. =′ xyz′] (12)

//COMPUTE/RESULT/IDENT [. =′ xyz′] (13)

This example demonstrates how a query is interactively
created with just a few clicks. Figures 1 and 2 illustrate
the transformation of the query 10 into query 13. Figure 1
represents the query tree of the original CNL expression
generated by the ACE parser. The phrase structure parsing
approach decomposes the query into its elements. The query
which is effectively a question consists of a noun phrase (np)
and a verb phrase (vp), which are each refined recursively.

While the noun phrase is made up of a question determiner
(qt) and a noun (n), the verb phrase consists of a verb (v)
and another noun phrase, decomposing it further.

Figure 2 shows the resulting query tree in which the CNL
parse tree was transformed. For simplicity reasons, a XPath
query tree, which is the main part of the 13, is shown. The
description of each vertex in the query tree includes the
type of the vertex (in the Figure 2 it is reflected as the name
of the corresponding Java class in the upper box) and the
local name of the instance of the class, as shown in the
bottom box. Each edge corresponds to a movement along
an axis and is labeled by the name of the corresponding
axis. Some transformation patterns can be recognized: e.g.,
the vertex rel cl (Figure 1) is transformed into the vertex
PredicateNodeTest (Figure 2). Nevertheless, the complete
list of transformation rules is still to be designed.

Figure 1. CNL parse tree of query 10

Figure 2. XPath query tree of query 13

V. PROPOSED ARCHITECTURE

The proposed architecture is presented in Figure 3. The
client part is implemented as an Eclipse plugin that enables

371

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 387 / 612

Figure 3. Prototype architecture

indexing of the local workspaces, which are sent to a
central repository, and provides a user interface for querying.
Eclipse Java development tools are used to parse source code
and to construct ASTs. The server side is responsible for re-
ceiving developers’ requests formulated in CNL, translating
these requests into XPath, generating proposals for the query
refinements, and returning the result set. As a database of
the source code repository, MonetDB/XQuery is used which
natively supports XQuery as a method for accessing data.

The central source code repository stores code in the form
of ASTs. The indexer parses code into ASTs, annotates the
vertices of the trees with meta data (class name, responsible,
last editor, data and time of the last modification, etc.), and
stores the trees in the index.

The primary function of the query translator is the trans-
formation of CNL statements as provided by the developer,
or selected from the proposed ones, into a logical form. The
logical form is the DRS and can be regarded as the actual
system language for information integration. The parsing is
done by the Attempto parsing engine, though CNL grammar
and CNL lexicon containing domain-relevant words and
their grammatical categories are prepared in advance to
describe a certain programming language. The resulting
DRS of the query 10 is depicted below:

[A, B, C, D, E, F]

object(A, xyz, named, na, eq, 1)-1

query(B, which)-1

object(B, statements, countable, na, geq, 2)-1

object(C, value, countable, na, eq, 1)-1

object(D, variable, countable, na, eq, 1)-1

predicate(E, named, D, A)-1

relation(C, of, D)-1

predicate(F, change, B, C)-1

For querying the index, this logical form is transformed
into the XPath query. The implementation of corresponding
transformations is subject to the ongoing research. The
logical form from the CNL parser can serve domain-

independently as the integrative platform.
In order to represent the result of the query in a user-

friendly way, it has to be structured appropriately and to
yield functionality for further activities. For this purpose,
once the query has been entered by the developer, the
source code grammar and the actual search results are used
to automatically propose possibilities for query refinement
and further navigation on the result set. In this example
to generate queries 7-10, source code grammar should re-
flect that a variable has a definition, variables are used in
statements, and statements can read or change the value
of a variable. All this information is already available in
language specifications and should be made available to the
CNL parser. Thus, a set of CNL queries are generated and
proposed to the developer. This is facilitated through the
ACE verbalization that takes the logical form, which is the
DRS, and generates valid English sentences [14].

VI. CONCLUSION

The utilization of user-friendly interfaces for flexible
information exploration in complex software environments
leverages an indispensable contribution to a top-quality
development framework, allowing for precise formulation
of information needs. This leads to accurate information
access, easy-to-use handling, flexibility and extensibility of
interface functionality, high reusability in other domains, and
significant lower development costs.

This paper discusses the usage of controlled natural lan-
guage for querying source code. This approach is comple-
mentary to the keyword-based search and is a simple par-
lance that enables expression of complex relations between
source code entities. Due to the fact that CNL is a subset of
natural language, it can be read without any training.

The syntactic restrictions that have to be considered in the
writing process are handled by a smart query authoring tool.
Moreover, in most of the cases developers have only to select
the query out of few automatically generated proposals.

The AST is not the only information to be indexed. There
is a lot of relevant information available that is gathered
in the development or maintenance process: test coverage
measurements, code convention checks, change frequency,
organizational metadata, customer complain messages, hot
fixes, etc. This data can be made available as search criteria
in the index.

REFERENCES

[1] D. Beyer, A. Noack, and C. Lewerentz, “Efficient relational
calculation for software analysis,” IEEE Transactions on
Software Engineering, vol. 31, no. 2, pp. 137–149, 2005.

[2] E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest: Scal-
able Source Code Queries with Datalog,” in Proceedings of
the European Conference on Object-Oriented Programming,
ser. LNCS, vol. 4067. Springer, 2006, pp. 2–27.

372

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 388 / 612

[3] O. Panchenko, J. Karstens, H. Plattner, and A. Zeier, “Precise
and Scalable Querying of Syntactical Source Code Patterns
Using Sample Code Snippets and a Database,” in Proceed-
ings of the 19th IEEE International Conference on Program
Comprehension, 2011, pp. 41–50.

[4] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An In-
formation Retrieval Approach to Concept Location in Source
Code,” in Proceedings of the Working Conference on Reverse
Eng., 2004, pp. 214–223.

[5] R. I. Bull, A. Trevors, A. J. Malton, and M. W. Godfrey,
“Semantic grep: regular expressions + relational abstraction,”
in Proceedings of the 9th Working Conference on Reverse
Engineering, 2002, pp. 267–276.

[6] E. McCormick and K. D. Volder, “JQuery: Finding Your
Way through Tangled Code,” in Proceedings of the Conf.
on Object-oriented programming systems, languages, and
applications. ACM, 2004, pp. 9–10.

[7] D. Janzen and K. D. Volder, “Navigating and querying code
without getting lost,” in Proceedings of the international
conference on Aspect-oriented software development. ACM,
2003, pp. 178–187.

[8] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall, “Supporting
Developers with Natural Language Queries,” in Proceedings
of the International Conference on Software Engineering.
IEEE Computer Society, 2010.

[9] N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto Controlled
English for Knowledge Representation,” in Reasoning Web,
Fourth International Summer School, ser. LNCS, C. Baroglio,
P. A. Bonatti, J. Małuszyński, M. Marchiori, A. Polleres, and
S. Schaffert, Eds., no. 5224. Springer, 2008, pp. 104–124.

[10] T. Kuhn and R. Schwitter, “Writing Support for Controlled
Natural Languages,” in Proceedings of the Australasian Lan-
guage Technology Association Workshop, 2008, pp. 46–54.

[11] H. Kamp and U. Reyle, From Discourse to Logic: Introduc-
tion to Modeltheoretic Semantics of Natural Language, For-
mal Logic and Discourse Representation Theory. Dordrecht:
Kluwer, 1993.

[12] C. W. Thompson, P. Pazandak, and H. R. Tennant, “Talk to
Your Semantic Web,” IEEE Internet Computing, vol. 9, no. 6,
pp. 75–78, 2005.

[13] B. de Alwis and G. C. Murphy, “Answering Conceptual
Queries with Ferret,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE. New York,
NY, USA: ACM, 2008, pp. 21–30.

[14] N. E. Fuchs, “Verbalising Formal Languages in Attempto
Controlled English,” University of Zurich, deliverable I2-D5,
2005.

373

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 389 / 612

Towards Complementing User Stories

Christian Kop
Institute of Applied Informatics

Alpen-Adria-Universitaet Klagenfurt
Klagenfurt, Austria

chris@ifit.uni-klu.ac.at

Abstract—User stories are well established in agile software
development processes. However, user stories should not be
seen as detailed requirements specifications. In agile processes
it is accepted that the end users do not know all the
requirements at once. Therefore, user stories only give hints
about the expectations of an end user. In order to get more
details in a communications process, a computer supported
strategy is proposed in this paper. This strategy focuses on the
agile development of information systems. Namely, it is
proposed that additional information (not found in a user
story) is extracted from natural language queries. Afterwards,
this information is compared with the already existing work in
progress model. Thus, the natural queries should help to find
gaps and misunderstandings in the current work in progress
model.

Keywords-agile process; user stories; domain models; natural
language queries;

I. INTRODUCTION
In agile processes, user stories are a common way to

gather the necessary information from the end user (e.g., an
on-site customer). In a user story, the end user typically
specifies what a certain actor (i.e., a system or person, which
plays a role with respect to the system under development)
can do with the system. Though, user stories are a well
established technique in the early phase of agile software
development, a user story is not a finished and well defined
requirement or written contract. Instead, user stories are seen
as short description of a piece of functionality, which act as a
reminder for a communication process between end users
and developers. In this process, details have to be negotiated
[27]. So, the question is: How can this communication and
negotiation process look like? Usually, developers can use
questionnaires to ask for further information. They can make
observation. If a first prototype is already developed, the
communication is based on the prototype implementation.
The software developers might ask what end users can do
wrong if they are in a certain state of the prototype.

For information system development (ISD) an additional
information gathering technique will be introduced here.
Namely, natural language queries will be used. It will be
shown how both steps
• extraction of model information from user stories and
• extraction of additional details from queries

can be supported by a tool.

The paper is therefore structured as follows. Firstly, an
overview of the related work is given (Section II).
Afterwards, an overall description is given, of how an agile
process can be achieved in domain modeling. The next two
sections (Section IV and Section V) focus on the two
important parts of this agile process (user stories and natural
language queries) and focus on computer supported
information extraction. In Section VI, it will be argued, that
this approach fits into the Agile Software Development
Manifesto. Afterwards, it will be described how the
computer support was tested. Finally, this section gives an
overview of the prototype implementation. In Section VII
conclusions and an outlook to future work are drawn.

II. RELATED WORK
Apart from user stories, some other research fields must be
considered in the context of this work. These research topics
will be described in the following sections.

A. Quality of Conceptual Models
The validation of artifacts in requirements engineering is

always based on several techniques like inspections,
walkthroughs, scenarios, verbalization, prototype evaluation,
[16][21] or colored Petri Nets [22].

In [17] three dimensions for conceptual model quality are
defined. They are syntax, semantics and pragmatics. If the
model follows the rules and grammar defined in its meta-
model then it is syntactically correct. Semantic quality is
given if the model only contains true statements of the
domain and is complete (no important concepts or statements
are missing). Lastly, pragmatic quality relates the model to
the interpretation of the user. A pragmatic quality is given, if
it is understandable to the user.

An extensive research on quality of models was also
made in [19]. It was proposed that conceptual modeling must
shift from an art to an engineering discipline. Any
engineering discipline aims at continuous quality checks of
products and intermediate products.

There are also many other research results how to check
and improve model quality [1], [4], [5], [8], [18]. The several
research activities focused on model transformations [1],
graphical aspects on conceptual models [18], verbalization
strategies of conceptual models [4] [8] and viewpoints [5].

374

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 390 / 612

B. Queries
Rumbaugh et al. use queries for checking model

completeness [35]. In their book [35], the authors give the
exercise to check a partially completed object model with
natural language queries. However, no computer support was
found for this kind of task.

Current research on natural language query processing
[2], [9], [12], [14], [13], [20], [23], [24], [15], [7],[26] only
focuses on the retrieval of data or the generation of SQL.
That means, these approaches expect that a finished and
stable database already exist. A work in progress model and
the consequences for natural language query processing was
not the focus of these approaches. In these approaches, it is
thus not the task of the natural language query to validate if
something in the model is missing. Research works that
describe visual queries [3], [10], [11] and form based query
languages [6], [25] are based on the same assumption (i.e.,
existing and finished conceptual model or database). In
visual query languages an SQL statement is generated by
navigating through a final conceptual model.

C. Test Driven Development
Test driven development [31] is another agile method. The
main idea is to write a first test case before a requirement is
implemented. Afterwards, the developer tries to develop an
implementation, which can pass the test case. Both the test
cases and implementations to successfully pass the test cases
are refined and improved iteratively in test driven
development. The paradigm behind this is pointed out by
Kent Beck: “Failure is progress” (see [31] p. 5).

User stories and natural language queries match very
well to this paradigm. User stories represent the initial
expectations (“requirements”) of the end users. Natural
language descriptions represent the test cases.

D. Linguistic Instruments
In the succeeding sections and sub sections the linguistic

instruments tagging and chunking are needed. A tagger is a
tool, which takes as input a text and returns a list of
sentences with tagged (categorized) words (i.e., words
categorized as noun, verb, adjective etc.). The chosen
Stanford Tagger categorizes the words according to the
Penn-Treebank Tagset [32]. In this tagset the word
categories together with some important syntactical features
of a word are encoded. For instance if a noun is in plural then
the category NNS is chosen. If a proper noun is detected then
NNP is used. Current taggers can achieve about 97 %
percent correctness [30]. This means, that in at least 3% of
the categorization cases, a word is wrongly categorized. This
has to be considered if a tagger is used.

Chunking is based on the tagger result. Chunking is
useful to group words to so called chunks that can be seen as
a phrase (e.g., a verb phrase or a noun phrase). This grouping
is based on patterns found in the preceding tagging result.
For instance the following groups of word categories can be
subsumed to a noun phrase: Noun + noun; article + noun;
article + adjective + noun. Details of chunking are described
in [32].

III. OVERVIEW OF THE AGILE DEVELOPMENT SCENARIO
Before details of the domain concepts extraction and the

completion process will be explained, this section gives an
overview. The main idea is to combine user stories and
natural language queries. Whereas user stories are needed to
get a first initial model, natural language queries are used as
test cases.

A. User Stories
A user story is a small piece of text. According to [27] it

describes a functionality that will be valuable to either an end
user or purchaser of a system or software. A user story
follows a certain pattern. Currently two patterns are
discussed and used. The first pattern is a declarative sentence
in active voice that follows the SPO (subject, predicate,
object) style. Examples for the first pattern are: “A user can
fill out a resume”; “A customer can place an order”. A
possible tool support for such a pattern is mentioned in [36].
The second pattern [34] emphasizes that in a user story
sentence an actor is involved. Therefore, the pattern looks as
follows “As a(n) <role/actor> , I can <feature>. The above
examples would look as follows in the second style: “As a
user, I can fill out a resume”; “as a customer, I can place an
order”. With the words “as a”, the speaker makes it more
explicit, that with customer or user respectively not a
concrete thing inside the system is described. Instead, the
role of an external thing with respect to the future system is
defined. Although, user stories are well accepted in agile
processes, they provide minimal information. The developer
must either strongly communicate with the end user or he
has to rely on his personal experiences in a certain domain.
Since it is always good that an end user is involved, the focus
of agile development processes is on communication! In this
paper a natural way of doing this in the area of information
system development (ISD) and data centric applications is
proposed. Namely, additional natural language queries
should help to get more information about the model.

B. Completing the Story with Natural Language Queries
User stories help to get a first impression of what the user

wants. For instance, for the user story “a customer can place
an order” the following information can be extracted:
• The noun “customer” might be an actor in this story
• The noun “order” might be the domain class
• The verb “to place” is an operation or service, which

probably belongs to order.
In agile processes, the developer now has to design and

implement this user story. In order to implement this
properly, additional information is necessary. For instance:
Which attributes does order have? Can the notion customer
be treated only as an actor or can it be treated as a full
domain class? Usually this information is collected in a
communication process with an end user. The question now
is: Can this communication process be somehow supported?
Here, it is proposed to use natural language queries.
Continuing the given scenario with the user story “A
customer can place an order”. The developer can now ask the
end user, which queries should be executed later on in the

375

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 391 / 612

information system. Particularly, he should ask, which
queries will be needed later for a database table, which is
currently only represented as the domain class “order”. Since
it cannot be expected that the end user knows SQL, natural
language queries should be used instead.

Now let us suppose that only “order” is currently
collected as a domain class. At the moment, customer is only
seen as an (external) actor, which can communicate with the
system. Furthermore let us assume that the end user states
the following natural language queries:
• Which customer has placed Order 123
• Tell me the order items that belong to an order.

From these queries, the following can be learned.
Customer is not only an actor. Since he is mentioned in a
query, which will be later on used as a database query,
customer information is also needed in the database. In other
words the information about customers represented by the
word customer must be also modeled as a domain class.
Since both words “customer” and “order” are mentioned in
the query, a path between them must exist. In its simplest
form an association between customer and order must be
modeled. Not any order is mentioned in the first query but a
special order, which has a certain value. Since order is a
class and values are instances of attributes the developer
must ask the right attribute. An answer of the end user can be
a revised and improved query (e.g., which customer has
placed the order with order number 123). With this
information the first domain model, which only contains
“order” can be extended. Order gets the attribute order
number. Furthermore “customer” is inserted as a domain
class in the model. An association can be created between
order and customer. The same procedure is applied on the
second query. From this query, the developer can derive the
information, that there will be a domain concept (i.e., the
domain class “order item”), which can be related to order.
Hence, the initial model, which had only “order” as its model
element is iteratively refined.

C. Summary of the Overview
In the above two subsections it was explained how an

initial domain model was generated using a user story. Since,
such a model is still very incomplete; natural language
queries can be used to complete it.

In the next Sections IV and V it will be shown how
certain needed information (e.g., concepts) can be extracted
automatically from user stories and natural language queries.
Section IV focuses on the automatic extraction of actors and
domain concepts (domain classes and attributes) from user
stories. Section V will focus on the domain concept
extraction from natural language queries.

IV. EXTRACTING CONCEPTS FROM USER STORIES
Domain concepts can be extracted from user stories by

using the linguistic instruments tagging and chunking.

A. Tagging
At the first level, a tagger analyzes the user story text. The

several word tokens are analyzed. Since taggers do not work
100 % correctly and a failure rate of 3 % must be considered,

the result of the tagger is analyzed once again for failures.
This is done by broadening the context window. In this step
a certain categorized word is compared with its previous and
its succeeding neighbors. If a certain pattern appears, which
can be seen as a wrong combination of word categories (i.e.,
the tagger has detected a noun but in this context a verb is
the correct categorization), then the categorization is
changed.

B. Chunking
After the tagging step, the chunking reanalyzes the tagger

output. Chunking subsumes certain combination of
categorized words (e.g., noun + noun; article + noun;
article + adjective + noun) to noun phrases. Chunking helps
to reduce the pattern variations and therefore is a good basis
for the next step (interpretation).

C. Interpretation
In the interpretation step the concepts are extracted from

the linguistically analyzed user story. The SPO pattern that is
introduced in Section III looks like follows with the support
of the chunker: <noun phrase> <verb phrase> <noun
phrase>. After chunking, the second mentioned pattern (“as a
<actor/role>, I can <feature>”) follows the linguistic pattern:
<preposition> <noun phrase>, <personal pronoun> <verb
phrase> <noun phrase>. The interpretation collects the noun
phrases of the sentence. Since a user story itself is based on
patterns, the interpretation can consider this for noun phrase
selection and categorization. The first <noun phrase> is
always treated as the actor/role that is mentioned in the user
story. The second <noun phrase> contains the domain
concept (class or attribute). The domain concept and the
actor respectively are extracted from the noun phrases by
ignoring the article.

V. EXTRACTING CONCEPTS FROM NATURAL LANGUAGE
QUERIES

The query analyzer that extracts concepts from natural
language queries is also based on the linguistic instruments
tagging and chunking. Upon these, an interpretation and
matching component is built.

A. Tagging
The same tagger that is used for analyzing user stories, is

also used for analyzing the queries. In addition to the general
optimizations which were introduced, the query tagger also
have some additional optimization rules. These rules are
necessary since query sentences might start with a verb.
Furthermore, noun phrases are more complex than noun
phrases which appear in the user story patterns.

B. Chunking
The chunker module has also an extra mode for query

sentences. If this mode is switched on, one exception exists
regarding the grouping of words and word categories. If the
words “many” or “much” follow the word “how” (e.g., “how
many persons”) then the implemented chunker behaves
slightly different. A word like “many” is not chunked with
“person” to a noun phrase but it is grouped with “how”.

376

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 392 / 612

Hence, instead of the output [how] [many persons] the query
chunker generates the output [How many] [persons].

C. Interpretation
Interpretation of linguistically analyzed query sentences

is a combination of noun phrase extraction and more refined
parsing of specific patterns.

In a first step the query interpreter extracts all the noun
phrases. This guarantees that at least query notions can be
extracted, even if a more specific pattern cannot be detected.
The found query notions are used to check if they match
against existing concepts, views or examples (see subsection
D).

More specific patterns are constraint sentences (e.g.,
“The age must be greater than 20”). These sentences can be
used within a query text to constrain the concept. Such
constraint sentences can also have adjectives at the end (e.g.
“must be old”). If such adjectives are found, then these
adjectives are collected as value descriptor candidates.
Constraint patterns can also appear within a query (e.g.,
“Which customer has placed Order 123”). In this example
not any order is meant but a specific order (Order 123).

 Another task of the interpretation module is to filter out
most often used meta-information (e.g., “list of …”, “set of
… “).

D. Matching
If all the notions are extracted the system tries to match

the notions found in the query with elements in the model.
The matching procedure also checks if a constraint is applied
on an attribute in the model. If this is not the case (e.g.,
Order 123), a warning is given to the user. If all the notions
in the queries are found in the model or in model related
information, then the query is successful. To achieve this,
the extracted notions are firstly compared with the concepts
in the model (i.e., can the extracted notion, or its singular
form be found in the model). If this does not work then the
extracted notion is searched in the list of similar words or
examples which can be stored during modeling as additional
information. Since the similar notions as well as the
examples are related to a model concept, these notions can
be traced back. Therefore, in any of the above mentioned
cases, the notion found in the query can be replaced by the
concept in the model to accomplish the next step (path
finding). If all the notions extracted from the query are found
in the model, then the tool can determine a path between
these model concepts. Path finding is done by checking if all
the concepts, which are necessary for the query belong to the
same connected component within the conceptual model
graph.

VI. DISCUSSION, TEST AND PROTOTYPE

A. Discussion
The four important factors of agile software development
are [33]

1. Individuals and interactions over process and tools.
2. Working software over comprehensive

documentation.

3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

Comparing the approach with the above manifesto, the
following can be said. Yes, there is a tool and tool support
was one aim of this approach. However, it should be clear
from the previous sections, that the tool does not dictate any
process. In contrary, the aim of the tool is to enforce the
interaction between individuals (stakeholders). If a query is
not successful, then the stakeholders must discuss the
failures and the communication process between them is
improved!

Natural language queries are created for a very special
purpose. From natural language queries, developers can
manually and easily derive SQL queries, which can be
embedded into an implementation of the future information
system. Hence, these natural language queries represent
parts of the future software. Thus, this approach fulfills
“working software over comprehensive documentation”.

Since the queries represent expectations of the customers,
these customers will not understand themselves as a part in
a contract negotiation but as an important part of a
collaboration.

Finally, the need for responding to a change request is not
restricted by using natural language queries as test cases.

B. Tests
Natural language queries, which were found in literature

and own created queries were taken as test cases to test and
improve the linguistic instruments. Among these test cases,
the greatest set of natural language queries came from the
Geo Query Project [28]. In this project 880 query sentences
are used. Theses sentences can be categorized in queries
starting with “What”, “How”, “Which”, “Where” and other
queries. These other queries do not start with an interrogative
but start with a verb (e.g., “list”, “give me”, “name the”, etc.)
or they neither start with a verb nor with an interrogative
(e.g., only a noun phrase is used for the query). The majority
of query sentences is provided for queries starting with
“What” followed by “How” and “Which”. With the Geo
Query Corpus a substantial test set was used. This high
number of test cases is also important to get a good
impression about the several different possibilities to express
queries. All the queries in the test sets were applied on the
query analyzer.

The user story interpreter currently accepts the two user
story patterns as described in Section IV.

C. Tool Prototypes
 The tools are implemented in Java. Currently, there are

three sorts of tools. The first tool accepts a user story and
extracts the actors and domain concepts (e.g., customer,
order, order number, order item, etc). It stores this extracted
concepts into an XML file, which can then be imported to
the second tool, the concept editor. The concept editor
graphically displays domain concepts (i.e., domain classes
and attributes) but not actors. The third tool is the query
analyzer tool. It is an add-on of the concept editor. A query
analyzer window is opened if the user presses the Q-Button

377

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 393 / 612

in the concept editor. The query analyzer tool has a text area
for the query and an error and warnings display area. Figure
1 and Figure 2 show the concept editor and the query
analyzer interface. Figure 1 shows the model after the end
user has stated the user story example: “As a customer, I can
place an order”. Since “customer” firstly is seen as an actor
and not as a domain class, it does not appear in the model
presented by the concept editor. Only “order” is presented.
Let’s continue with the already known natural language
query examples and suppose, the end-user would like to
execute the following two queries:
• Tell me the order items that belong to an order.
• Which customer has placed Order 123.

Figure 1: Initial model

Figure 2: Applying Query on the model

Figure 3: Result of an interaction process after 2 queries

After applying the first query on the query analyzer, the
query analyzer returns failures (Figure 2). In addition, also
the query “which customer has placed Order 123” is applied
on the initial model. For the second query, the tool returns
the information, that a constraint can only be defined on an
attribute. The stakeholders must discuss what is missing
(e.g., order number). If afterwards a refinement step is done,
then the improved model might look as follows (see Figure
3). This iterative refinement by testing with natural language
queries is similar to the paradigm of test driven development.

VII. CONCLUSION AND FUTURE WORK
In this paper the tool supported extraction of concepts out of
user stories were described. Since such user stories are not
detailed requirements but should give an idea what an end
user might expect from the future systems, these stories must
be complemented by additional information. In this paper
one strategy of gathering additional information was
presented. Particularly, natural language queries can be used
even in an early phase of information system development. It
was also shown how this strategy itself can be supported by a
tool using linguistic instruments.

This work will be continued with a technical refinement of
the query analyzer. Beside the explained interactive mode
(see Figure 2), a batch mode will be implemented. In the
batch mode many queries will be executed on the actual
model. All problems will be stored in a report file.

 Refinement of the user story interpreter is another future
task. Though, the above two mentioned patterns are the most
famous ones and are very often mentioned in the context of
user stories, variations of these patterns exist. For instance,
the “As a <role> I can <feature>” pattern can be extended to
“As a <role> I can | want <feature> (so that | because)
<reason>. Attention will also be paid on these variations and
automatic extraction of necessary information from these
variations.

REFERENCES
[1] P. Assenova and P. Johannesson, “Improving the Quality in

Conceputal Modelling by the Use of Schema
Transformations,” Proceedings of the 15th International
Conference on Conceptual Modeling, Cottbus, Germany,
Lecture Notes in Computer Science (LNCS), Vol. 1157.
Springer Verlag Berlin Heidelberg New York, 1996, pp. 277
– 291.

[2] H. Berger, M. Dittenbach, and D. Merkl, “Quering Tourism
Information Systems in Natural Language,” Information
Systems Technology and its Applications – Proceedings of
the 2nd Conference ISTA 2003, GI Lecture Notes in
Informatics, Vol. p-30, Koellen Verlag,, Bonn, 2003, pp. 153
– 165.

[3] A.C. Bloesch and T.A. Halpin, “ConQuer: A Conceptual
Query Language,” Proceedings of the 15th International
Conference on Conceptual Modeling, Cottbus, Germany,
Lecture Notes in Computer Science (LNCS), Vol. 1157.
Springer Verlag Berlin Heidelberg New York, 1996, pp. 121
– 133.

[4] H. Dalianis, “A method for validating a conceptual model by
natural language discourse generation,” Proceedings of the
Fourth International Conference CAiSE’92 on Advanced

378

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 394 / 612

Information Systems Engineering, Lecture Notes in Computer
Sciences (LNCS) Vol. 594, Springer Verlag, pp. 425 - 444.

[5] St. Easterbrook, E. Yu, J. Aranda, Y. Fan, J. Horkoff, M.
Leica, and R.A. Quadir, “Do Viewpoints Lead to Better
Conceptual Models? An Exploratory Case Study,”
Proceedings of the 13th IEEE Conference on Requirements
Engineering (RE’05). IEEE Press, pp. 199 – 208.

[6] D. W. Embley, “NFQL: The Natural Forms Query
Language,” ACM Transactions on Database Systems, Vol.
14(2), 1989, pp. 168 – 211.

[7] R. Ge and R.J. Mooney, “A Statistical Semantic Parser that
Integrates Syntax and Semantics,” Proceedings of the Ninth
Conference on Computational Natural Language Learning,
Ann Arbor, MI, 2005, pp. 9-16.

[8] T. Halpin and M. Curland, “Automated Verbalization for
ORM 2,” Proceedings of OTM 2006 Workshop - On the
Move to Meaningful Internet Systems 2006, Lecture Notes in
Computer Science (LNCS 4278), Springer Verlag, pp. 1181 –
1190.

[9] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide,
“Exploring Fact Verbalizations for Conceptual Query
Formulation,” Proceedings of the Second International
Workshop on Applications of Natural Language to
Information Systems, IOS Press, Amsterdam, Oxford, Tokyo,
1996, pp. 40 – 51.

[10] H. Jaakkola and B. Thalheim, “Visual SQL – High Quality
ER Based Query Treatment,” Proceedings of Conceptual
Modeling for Novel Application Domains, Leture Notes in
Computer Science (LNCS), Vol. 2814, Springer Verlag,
Berlin, Heidelberg, New York, 2003, pp. 129 – 139.

[11] K. Järvelin, T. Niemi, and A. Salminen, “The visual query
language CQL for transitive and relational computation,”
Data & Knowledge Engineering, Vol. 35, 2000, pp. 39 – 51.

[12] Z.T. Kardovácz, “On the Transformation of Sentences with
Genetive Relations to SQL Queries” Proceedings of the 10th
International Conference on Applications of Natural
Language to Information Systems (NLDB 2005), Lecture
Notes in Computer Science (LNCS), Vol. 3531, pp. 10 – 20.

[13] M. Kao, N. Cercone, and W.-S. Luk, “Providing quality
responses with natural language interfaces: the null value
problem,” IEEE Transactions on Software Engineering,
Volume 14 (7), 1988, pp. 959 – 984.

[14] E. Kapetainos, D. Baer, and P. Groenewoud, “Simplifying
syntactic and semantic parsing of NL-based queries in
adavanced application domains,” Data & Knowledge
Engineeing Journal , Vol. 55, 2005, pp. 38 – 58.

[15] R.J. Kate and R.J. Mooney, “Using String-Kernels for
Learning Semantic Parsers,” COLING/ACL Proceedings,
Sydney, 2006, pp. 913-920.

[16] G. Kotonya and I. Sommerville, Requirements Engineering,
Wiley Publ. Company, New York, 1998.

[17] O. Lindland, G. Sindre, and A. Solvberg, “Understanding
Quality in Conceptual Modeling,” IEEE Software, March
1994, pp. 29 – 42.

[18] D. Moody, “Graphical Entity Relationship Models: Towards a
More User Understandable Representation of Data,”
Proceedings of the 15th International Conference on
Conceptual Modeling, Cottbus, Germany, Lecture Notes in

Computer Science (LNCS), Vol. 1157. Springer Verlag Berlin
Heidelberg New York, 1996, pp. 227 – 245.

[19] D. Moody, “Theoretical and practical issues in evaluating
quality of conceptual models: current state and future
directions,” Data & Knowledge Engineering Volume 55,
2005, pp. 243 - 276.

[20] V. Owei, H-S. Rhee, and Sh. Navathe, “Natural Language
Query Filtration in the Conceptual Query Language,”
Proceedings of the 30th Hawaii International Conference on
System Science, Vol. 3. IEEE Press , 1997, pp. 539 – 550.

[21] K. Pohl, Requirements Engineering, Grundlagen, Prinzipien,
Techniken, dPunkt Publ. Company, Heidelberg, 2007.

[22] O. R. Ribeiro and J. M. Fernandes, “Validation of Scenario-
based Business Requirements with Coloured Petri Nets,”
Proceedings of the 4th International Conference on Software
Engineering Advances, IEEE Press (IEEE Digital Library),
2009, pp. 250 – 255.

[23] N. Stratica, L. Kosseim, and B.C. Desai, “Using semantic
templates for a natural language interface to the CINDI virtual
library,” Data & Knowledge Engineering Volume 55, 2005,
pp. 4 – 19.

[24] L.R. Tang and R.J. Mooney, “Using Multiple Clause
Constructors in Inductive Logic Programming for Semantic
Parsing,” Proceedings of the 12th European Conference on
Machine Learning (ECML-2001), 2001, pp. 466 - 477.

[25] J.F. Terwillinger, L.M. Delcambre, and J. Logan, “Querying
through a user interface,” Data & Knowledge Engineering,
Volume. 63, 2007, pp. 774 – 794.

[26] Y.W. Wong and R.J. Mooney, “Learning for Semantic
Parsing with Statistical Machine Translation,” Proceedings of
the Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics (HLT/NAACL-2006), New York, 2006, pp. 439-
446.

[27] M. Cohn, “User Stories Applied – for Agile Software
Development”, Addison Wesley Publ.Company, 2004.

[28] Geo Query Project
http://www.cs.utexas.edu/users/ml/geo.html (last access: 31.
May .2011)

[29] Penn-Treebank TagSet: http://www.cis.upenn.edu/~treebank
(last access: 31. May 2011).

[30] C. Manning and H. Schütze, “Foundations of Statistical
Natural Language Processsing,” MIT Press, 2003.

[31] K. Beck, “Test Driven Development by Example,” Addison
Wesley Publishing Company, 5th Printing, 2004.

[32] E.F.T. K. Sang, and S. Buchholz, “Introduction to the
CoNLL-2000 Shared Task: Chunking,” Proceedings of
CoNLL-200 and LLL-2000, 2000, pp.127-132.

[33] Manifesto for Agile Software Development:
http://agilemanifesto.org/ (last access: 31. May 2011)

[34] User Stories: http://www.codesqueeze.com/the-easy-way-to-
writing-good-user-stories/ (last access 31. May 2011)

[35] J. Rumbaugh, M. Blaha, W. Premelani, F. Eddy, and W.
Lorensen, “Object-Oriented Modeling and Design,” Prentica
Hall Internatianal Inc. Publ. Company, 1991

[36] M. Smialek, J. Bojarski, W. Nowakowski, and T. Strazak,
“Writing Coherent User Stories with Tool Support,” H.
Baumeister, M. Marchesi, M. Holcombe (eds), 6th
International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2005), LNCS, Vol.
3556, 2005, pp. 1217 – 1221.

379

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 395 / 612

Performance Evaluation of a Generic Deployment

Infrastructure for Component-

based S/W Engineering

Abdelkrim BENAMAR

Department of computer sciences

University of Abou Bekr Belkaid

Tlemcen, Algeria

a_benamar@mail.univ-tlemcen.dz

Noureddine BELKHATIR

Adele S/W Eng. Team,

LIG Laboratory

University of Grenoble, France

Noureddine.Belkhatir@imag.fr

Abstract—We present a generic deployment infrastructure for

distributed component-based applications. This infrastructure

is based on OMG’s deployment and configuration specification

and model driven architecture paradigm. Even though our

approach is experimented for enterprise Java beans model, it

can be extended to other specific models. We suggest the use of

a classical measurement method in decision making for the

proposed generic deployment platform of component-based

applications. This method is based on graph theory and k-

median algorithm. It allows optimization of the cost of any

transaction in component deployment planning.

Keywords-deployment and configuration specification; model

driven architecture; computer network graph.

I. INTRODUCTION

Software deployment [6] is a very complex and
important process covering many activities. This complexity
becomes more significant with the evolution of networks and
component based systems. Many component based systems
[13] are used both by industries and academics. We illustrate
our approach on currently used industrial component
systems, such as Enterprise Java Beans (EJB), Microsoft
corporation .Net and OMG‟s CORBA Component Model
(CCM).

In the following, we present a generic deployment
infrastructure for distributed component-based applications.
Furthermore, we layout a general method to design made-to-
measure distances for any given deployment transactions.
The optimal distances are computed with classical graph
algorithms such as, k-median and contribute to the
improvement of the decision making process for deployment
of component-based applications.

The remainder of this paper is structured as follows:
section II presents the state of the art on deployment of
component-based systems. Section III focuses on the state of
the practices. In section IV we synthesize our previous work
[3] [17] on defining a generic deployment framework for
component-based applications. In Section V, the main
approaches to assessing the performance of distributed
applications are reviewed. They are followed by a
measurement method we apply to the deployment
specifically for deployment planning. Finally the main

achievements and perspectives are summarized in the
concluding section.

II. STATE OF THE ART

Recently, due to the availability of high-speed networks
and advances in packaging and interface technologies, there
has been considerable interest in building deployment
platforms for component-based applications [8] and
evaluating the performance of distributed applications [9].

A. Building Deployment Platforms

Hnětynka [13] introduces the Deployment Factory (DF)
and model-oriented environment, based on Deployment and
Configuration (D&C) specification for deploying software
components. Since the DF is based on a plug-in thought, the
deployment of the existing component technologies becomes
more easer.

Merle and Belkhatir [17] propose a distributed
environment called ORYA, for deploying ordinary
applications. In fact, ORYA supports the basic stages of
deployment process, such as install, configure, reconfigure
and uninstall. Nevertheless, the planning stage of ORYA is
very simple, because it supports only the deployment of
ordinary applications.

Deng et al. [7] introduce a deployment engine called
DAnCE based on D&C specification. This environment is
now under construction and supports just the deployment of
CCM components. However, it does not provide
functionalities of D&C specification.

III. STATE OF THE PRACTICE

In this section we survey the main deployment platforms
for component-based applications (e.g., EJB, .Net and CCM)
developed by industrials and used in practice. The complete
comparative study presented in our previous work [3] proves
the robustness of these models and therefore the rationality
of selecting only them.

A. Corba Component Model (CCM)

CCM [20] is a component specification proposed by the
international consortium called OMG. The objective of CCM
is to facilitate the development of heterogeneous distributed

380

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 396 / 612

components. In fact, the first specification of Corba was
entirely oriented towards interoperability, so that all features
related to the deployment were omitted. Nevertheless, the
CCM 4.0 standard supports all the functionalities of software
deployment and distribution. Precisely, this specification
includes four models that are summarized hereafter:

 Abstract model: it designs the component interfaces
and their interactions.

 Programming model: it designs the component code
sources and their non-functional properties (e.g.,
transaction, persistence and security).

 Deployment model: it defines the component system
assemblies.

 Execution model: it is represented by containers.

B. Enterprise Java Bean (EJB)

The EJB [18] is a framework developed by Sun
Microsystems. The purpose of EJB is to allow the
development of distributed and object-oriented applications
in the Java language. Components in EJB are called beans.
The bean interface is directly implemented in Java language.
Each bean has two interfaces (e.g., remote, home). The
remote interface allows performing the component business.
The home interface allows the production of a novel
component, or getting an existing component. Unlike CCM,
the EJB specification includes two models that are
summarized above:

 Abstract model: It represents the specification of
component interfaces.

 Deployment model: It allows to assemble a
component-based application, pack it into a package,
and install it on selected sites.

C. Microsoft’s .Net

The .Net is a framework developed by Microsoft
Corporation. The objective of this framework is to provide
the development of distributed applications. The .NET
framework is based on the concept of class that is also called
component. The class code is developed in classical
programming languages (e.g., C#, visual Basic, Java…).
The manifest file is created thanks to the classes‟
compilation process. All these files are packaged into
another file called assembly that is manually deployed
through network. In fact, the concept of assembly was
introduced by Microsoft. They try to determine the
versioning and deployment problems that were cause by the
DLLs. Those one were known as DLL hell. The versioning
problem appears like when a new application installs a new
version of a shared component that is not backward
compatible with the version already installed on the machine.

IV. TOWARD A GENERIC DEPLOYMENT PLATFORM

Although there are many environments for making
unified the deployment of software component. None of
them is generic sufficiently, and they do not perform
automatically the deployment of heterogeneous applications.
Furthermore, we suggest to use a generic methodology that
makes unified the deployment component systems. More
precisely, this methodology is based on a model

transformation approach that employs suitable Platform
Independent Model (PIM) and Platform Specific Model
(PSM).

A. Model Transformation Overview

There are several projects aiming to make generic the
deployment of software component. None of them fulfills
completely the required features (e.g., release, install,
activate, update, adapt) [6]. OMG contributes to the
resolution of this problem with its D&C specification [19].
This specification matches the Model Driven Architecture
(MDA) paradigm. This paradigm proposes a methodology to
software development through modeling and transformation
of models to code implementations. Among other
approaches to model transformation, providing tools, we can
mention VIATRA [23], Tefkat [10], AMW [5], ATL [14][4],
Kent [1], and C-SAW [12].

B. Implementation

We outline in this section some implementation details.
The prototype we developed relies on the D&C application
meta models as PIM and EJB meta model as PSM. We use
the Eclipse SDK,

In the following, we summarize the main tools (see
Figure 1) used in the prototype. More details are given in [3]

 The Eclipse Modeling Framework (EMF) is used to
develop the main project named „EJB2DnC‟.

 The Atlas Transformation Language (ATL) is EMF
plug-in that is used for mapping meta models of EJB
to D&C application.

 The Eclipse Web Tools Platform (WTP) is used to
develop a specific EJB application named stock
management.

 The Ant Build Tool (ABT) is tool used in EMF to
run java applications.

Figure 1. Project explorer view.

381

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 397 / 612

V. PERFORMANCE EVALUATION

This section highlights the currently used measurements
to determine the performance of generic deployment
platform. It proposes to use a classical measurement
methodology for component-based applications, and proves
the utility in decision making for deployment planning.

A. Motivation

As stated in [3] [6] [13], the deployment is a complex
process constituted of many steps and activities, starting with
the installation stage. Generally, the component is inserted
into the target site (i.e, repository). The configuration stage
succeeds the installation stage, and provides several
configurations for further utilizations. During this stage, no
deployment decisions (i.e, optimal placement and instance
number) for components are performed. Naturally, these
decisions are achieved in the planning stage. Therefore, we
will contribute in planning stage by using measurement
methodology in decision making for component deployment.
Within the scope of this methodology, several decisions are
carried out:

 Which component instance will be used?

 How many component instances will be deployed ?

B. Related works

There are several projects aiming to use end-to-end
distances to achieve decision-making in computer networks.
Nevertheless almost these works represent the end-to-end
distance thanks to raw network metrics measurement. In
below, we survey briefly some relevant examples:

Wolski et al. [25] present the Network Weather Service

(NWS), which capture the condition of both network and
hosts. It can provide the raw measurements of the classical
metrics (e.g., bandwidth, latency, connection time, CPU
availability) as well as forecasts based on aggregations of the
set of raw measurements.

In AppLes project, Berman et al. [2] assume that each
application is integrated with its own AppLes agent, which
uses the performance model and dynamic information
regarding resources to predict the run-time of its application
on a given set of resources. Among a set of available
possible candidate schedules, AppLes agent selects the one
that is predicted to provide the best performance.

In Network Measurements Working Group (NMWG),
Lowekamp et al. [16] highlight the used measurements to
determine network performance for grid applications. They
focus on a set of indicators as bandwidth, latency, throughput
and CPU availability. They present also the characteristics of
several measurement methodologies.

Seymour et al. [22] build a NetSolve infrastructure for
providing domain-specific high-end network services.
NetSolve provides a complete run-time infrastructure, as
well as server management tools and client interfaces to
languages as C, Fortran, Java, and MATLAB.

Karlsson and Mahalingam [15] present an illustration of

using raw metric (e.g., latency and number of hops) for
decision-making. More precisely, they propose an evaluation

framework for replication algorithms. Moreover, they
present a survey on replica placement algorithms with
comparison study. Nevertheless, the used raw metrics seem
to be quite irrelevant for monitoring the performances of
high-level applications.

Qiang Xu [21] presents a use case of other raw metrics
(e.g., latency and Round Trip Time) in grid environment.
Furthermore, he proposes an approach for automatic hosts
clustering, by mapping them to a geometric space. Even
though the used raw metrics have advantages which are their
stability and easiness of its measurement, they appear to be
insufficient to supervise the performance of computer
networks.

Gossa and Pierson [11] propose a novel technique to
represent derived distances (e.g., computation task cost and
data transfer cost) for any transaction in pervasive grid
environment. The computation of these distances is based on
the measurement of different raw metrics (e.g., latency and
bandwidth) that can be provided by any monitoring systems.
This work is set apart because it uses the derived metrics
which are hard and expensive to measure. They appear to be
pertinent on the topic of to data transfer concerns. In
addition, the metric computation has been implanted in a grid
service, called Network Distance Service (NDS) and
developed with Globus Toolkit 4.

Therefore, we were very motivated by the last work [11]
because authors use a derived distances which are well-
suited with decision making for deployment planning.

C. Overview of Measurement Representation

Since networks are constituted of hosts and links, they
can be represented in graph form. We define a network as a

graph G = (, ) where:

  is a set of vertices representing the hosts.

  is a set of edges representing paths between
vertices that are labeled with measurements from
source to destination hosts.

According to Lowekamp et al. [16], a metric is a quantity
corresponding to the performance of computer networks.
There are kinds of measurements (e.g., raw or derived). Raw
measurements are something that can be measured easily
such as measuring latency using pings. Derived
measurements might be an aggregation on a set of low-level
measurements. The main useful metrics are:

 the bandwidth (BW) in Megabits/second,

 the latency (L) in Milliseconds,

 the CPU availability (CPUa) in percents,

 the free memory space (RAM) in Megabytes.
These observations can be represented by matrices called

BW, L, CPUc, CPUa and RAM. We note mi,j the
measurement of the metric m from the host i to the host j.

Here, we assume that: BWi,i =  and Li,i = 0 (i.e, the cost of
local data transfer is null).

D. Experimentation

The objective of this section is to take the best decision
for components placement related in the generic deployment
platform (presented in the previous section). More precisely,
our experimentations are made on a test network which is

382

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 398 / 612

composed of four hosts (e.g., H1, H2, H3 and H4) and that is
shown in Figure 2. We have evaluated our proposition on a
classic planning scenario of component deployment. We
forecast the effect of component data size with respect to
their locations. Therefore, we consider different component
sizes increasing from 1 (or 10

0
) to 10

10
 with multiplier factor

equal to 10.

Figure 2. Deployment infrastructure.

Besides, we will assume that:

 all network hosts (e.g., H1, H2, H3 and H4) undertake
the deployment of components,

 the component software is deployed on three hosts
(e.g., H1, H2, and H3)

These hypotheses are illustrated in Figure 3.

Figure 3. Graph of deployment infrastructure.

In order to optimize the time of component deployment,
we only opt for transfer time. Thus, we use a compound
metric called the Data Transfer Cost (DTC) [9], and
represented by the formula:

)LL3(
BW

dataSize
)dataSize(DTC i,jj,i

j,i

j,i  

We use two measurement matrices corresponding to
bandwidth (BW) and latency (L) (as shown in the Table 1)
for computing the matrices DTC with respect to component
sizes (as shown in the Table 2).

TABLE I. MEASUREMENT MATRICES































87.193.243.44

87.683.273.36

3.143.175.37

2.172.481.56

 BW























00.615.710.0

15.2015.79.8

15.215.6016.5

9.510.016.50

L

TABLE II. REPRESENTATIVE RESULTS OF DTC CONPUTATION.























0.0470.0920.058

00.0930.059

0.09300.099

0.0590.0990

DTC(1)























0.0470.0950.060

00.0960.061

0.09600.100

0.0620.1040

)DTC(103























0.0560.3390.291

00.3380.297

0.34600.247

0.3810.6110

)DTC(105























0.96424.7823.31

024.5523.86

25.33014.99

32.3151.380

)DTC(107























917.582469123255

02446423809

25236014897

32258512820

)DTC(1010

We will present distance computation which is based on

graph algorithm, in addition of that, we will implement the
classical algorithm to solve the k-median problem. The k-
median problem (its implementation is designed in the
subsequent Algorithm) is simply stated as:"Given a graph

G=(, ), find k such that |k|=k, where k may either be
variable or fixed, and that the sum of the shortest distances

from the vertices in {/k} to their nearest vertex in k is
minimized".

Algorithm kmedians (k, , , d): best_solution

383

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 399 / 612

Input data
k: integer (number of hosts)

: set of source vertices

: set of destination vertices

Pk(): sub-set of source vertices such that |Pk()| = k

d: matrix of ||| | real (DTC in our case)

Ouput data
best_solution: set of vertices (k best locations)

Method
best_criterion ← ∞

for all solution  Pk() do
criterion ← 0

for all hs = 1 to || do
min_dist ← ∞
for all hd = 1 to k do

if d(hs, solution(hd)) < min_dist then
min_dist ← d(hs, solution(hd))

end if
end for
criterion ← criterion + min_dist

end for
if criterion < best_criterion then

best_criterion ← criterion
best_solution ← solution

end if
end for
return best_solution

E. Synthesis

The optimal values of DTC related to component
deployment are computed using the k-median algorithm,
then we forecast their variations according component
locations (see Figure 4).

Here are some observations based on these graphs:

 The performances should be as expected improved
with more instances of components.

 If we want to limit the network to a single host, H3
appears to be the best location for components.

 The DTC with k=2 is roughly the half of the DTC
for k=1. But the value with k=3 corresponds to a real
improvement.

 If we consider all the sizes together, a real impact of
DTC appears from 107. This is obvious because the
cost of the transfer of very small data is negligible
face to the cost of a large data transfer.

Therefore, we decide to place the component on the three
hosts H1, H2 and H3, since it is the best solution to ensure
good performances of the generic deployment platform.

Figure 4. Variation of Component DTC According to their Locations.

0

0,5

1

1,5

2

2,5

3

Ho st s

D T C

size =

size =

size =

size =

size =

size =

10
5

10
4

10
3

10
2

10

1

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

0

20

40

60

80

100

120

Ho st s

D T C

size =

size =

10
7

10
6

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

0

2000

4000

6000

8000

10000

12000

Ho st s

D T C

size =

size =

10
9

10
8

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

0

20000

40000

60000

80000

100000

120000

Ho st s

D T C

size = 10
10

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

384

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 400 / 612

VI. CONCLUSION

With the evolution of networks and software component,
the deployment process becomes more complex and must
cover the classical deployment activities (e.g., release,
install, activate, update, adapt, de-install, de-release). Many
component systems (e.g., EJB, .Net and CCM) currently
exist. Therefore, a generic deployment model that wraps all
these component systems would be indispensable. The main
contributions of this study are twofold:

 Proposing a generic deployment infrastructure based
on D&C specification and MDA approach. The
proposed approach is tested with EJB model, but it
can be obviously extended to other specific model.

 Applying a method designed to define made-to-
measure distances for any given transaction network.
The relevance of this provided distance is clearly
enhanced by using graph algorithm.

Actually, experimentation is made by testing and
evaluating the performance of EJB model deployment.
Future research can be performed in various viewpoints.

We selected the most interesting ones:

 Integration of new component software and
application architectures such as (e.g., CCM, service
oriented architecture…).

 A

 Extending to others performance parameters such as
Computation Task Cost (CTC) which take into
account the complexity of the computation
according to the request data size, the provider
capacity and load.

REFERENCES

[1] D. H. Akehurst and S. J. H. Kent, “A Relational Approach to
Defining Transformations in a Metamodel”, Proc. Unified Modelling
Language (UML 05), Springer Berlin/Heidelberg, 2005, pp. 243-258.

[2] F. Berman, “Adaptive Computing on the Grid using AppLes, ” IEEE
Transactions on parallel and distributed systems, vol. 14, 2003, pp.
369-82.

[3] A. Benamar, N. Belkhatir, and F. T. Bendimerad, “A Proposition of
Generic Deployment Platform for Component-based Applications, ”
Journal of Software Engineering, Academic Journals Inc, vol. 2,
2008, pp. 23-38.

[4] J. Bézivin and F. Jouault, “Using ATL for checking models,” Proc.
Graph and Model Transformation (GraMoT 06), 2006, pp. 69-81.

[5] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez, “Modelling in
the Large and Modelling in the Small,” Proc. MDA Workshops
Foundations and Applications (MDAFA 04), Springer
Berlin/Heidelberg, 2004, pp. 33-46.

[6] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van der
Hoek, and A. L. Wolf, “A Characterization Framework for Software
Deployment Technologies, ” Technical Report CU-CS-857-98,
University of Colorado, 1998.

[7] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A.
Gokhale, “DAnCE: A QoS-enabled Component Deployment and
Configuration Engine, ” Proc. Component Deployment (CD 05),
Springer Berlin/Heidelberg, 2005, pp. 67-82.

[8] M. Dibo and N. Belkhatir, “Defining an Unified Meta Modeling
Architecture for Deployment of Distributed Components-based
Software Applications, ” Proc. International Conference on Enterprise
Information Systems, (ICEIS 10), SciTePress, vol. 1, 2010, pp. 316-
321.

[9] M. Faerman, A. Su, R. Wolski, and F. Berman, “Adaptive
Performance Prediction for Distributed Data-Intensive Applications, ”
Proc. High Performance Networking and Computing (HPNC 99),
ACM/IEEE, 1999.

[10] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood, “
Transformation, the Missing Link of MDA, ” Proc. Graph
Transformation (GT 02), Springer Berlin/Heidelberg, 2002, pp. 90-
105.

[11] J. Gossa and Jean-Marc Pierson, “End-To-End Distance
Computation In Grid Environment by NDS, the Network Distance
Service, ” Proc. European Conference on Universal Multiservice
Networks (ECUMN 07), IEEE Computer Society, 2007, pp. 210-222.

[12] J. Gray, Y. Lin, and J. Zhang, “Automating Change Evolution in
Model-Driven Engineering, ” Special issue on Model-Driven
Engineering, IEEE Computer Society, vol. 39, 2006, pp. 51-58.

[13] P. Hnětynka, “Making Deployment of Distributed Component-based
Software Unified, ” Proc. Automated Software Engineering (ASE
04), Computer Society, 2004, pp. 157-161.

[14] F. Jouault and I. Kurtev, “Transforming Models with ATL, ” Proc.
Model-Driven Engineering Languages and Systems (MoDELS 05),
Springer Berlin/Heidelberg, 2005, pp. 128-138.

[15] M. Karlsson and M. Mahalingam, “We Need Replica Placement
Algorithms in Content Delivery Networks? ” Proc. Web Content
Caching and Distribution Workshop (WCW 02). Boulder Editions,
2002, pp. 117-128.

[16] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T.
Kielmann, and M. Swany, “A Hierarchy of Network Performance
Characteristics for Grid Applications and Services, ” Proposed
Recommendation Global Grid Forum (GGF), Network Measurement
Working Group (NMWG), 2004.

[17] N. Merle and N. Belkhatir, “Open Architecture for Building Large
Scale Deployment Systems, ” Proc. Software Engineering Research
and Practice (SERP 04), 2004, pp. 930-936.

[18] R. Monson-Haefel and B. Burke, Enterprise JavaBeans 3.0, O'Reilly
Media, Inc, 5th Edition, USA, 2006

[19] OMG, “Deployment and Configuration of Component-based
Distributed Applications Specification, ” 2004,
http://www.omg.org/docs/ptc/04-08-02.pdf

[20] OMG, “CORBA Component Model: CCM version 4.0, ” 2006,
http://www.omg.org/spec/CCM/4.0/PDF

[21] J.S. Qiang Xu, “Automatic Clustering of Grid Nodes, ” Proc. Grid
Computing (GC 05), IEEE/ACM, 2005, pp. 227-233.

[22] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra, NetSolve:
Grid Enabling Scientific Computing Environments, Grid Computing
and New Frontiers of High Performance Processing, Lucio
Grandinetti eds., Elsevier, Advances in Parallel Computing, vol. 14,
2005.

[23] D. Varró, G. Varró, and A. Pataricza, “Designing the automatic
transformation of visual languages, ” Science Computing
Programming, vol. 44, 2002, pp. 205-227.

[24] A. J. A. Wang and K. Qian, Component-oriented Programming, 1st
edition, John Wiley and Sons Inc., Chichester, UK, 2005.

[25] R. Wolski, N. T. Spring, and J. Hayes, “The Network Weather
Service: a Distributed Resource Performance Forecasting Service for
Meta-computing, Future Generation, ” Computer Systems, vol. 15,
1999, pp.757-768.

385

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 401 / 612

A Proof-based Approach for Verifying Composite
Service Transactional Behavior

Lazhar Hamel
MIRACL, ISIMS, TUNISIA

lazhar.hamel@gmail.com

Mourad Kmimech
MIRACL, ISIMS, TUNISIA

mkmimech@gmail.com

Mohamed Graiet
MIRACL, ISIMS, TUNISIA

mohamed.graiet@imag.fr

Mohamed Tahar Bhiri
MIRACL, ISIMS, TUNISIA

Tahar_bhiri@yahoo.fr

Walid Gaaloul
Computer Science Department Télécom SudParis

walid.gaaloul@it-sudparis.eu

Abstract— Web services are software components accessible
via Internet. Web services are defined independently from any
execution context. A key challenge of Web service compositions
is how to ensure reliable execution. Due to their inherent
autonomy and heterogeneity, it is difficult to reason about the
behavior of service compositions especially in case of failures.
In this work, we propose an approach to formalize a model of
Web services composition to check and ensure reliable
execution. To achieve this, we propose a proof oriented
approach for the formalization and verification of
transactional behavior of web services composition using
Event-B.

Keywords-web service composition; Event-B; transactional
web service; proof; verification.

I. INTRODUCTION

Web services are emergent and promising technologies
for the development, deployment and integration of
applications on the internet. One interesting feature is the
possibility to dynamically create a new added value service
by composing existing web services, eventually offered by
several companies. Due to the inherent autonomy and
heterogeneity of web services, the guarantee of correct
composite services executions remains a fundamental
problem issue. An execution is correct if it reaches its
objectives or fails properly according to the designer’s
requirement or users needs. The problem, which we are
interested in, is how to ensure reliable web services
compositions. By reliable, we mean a composition where all
the executions are correct.

Some web services are used in a transactional context,
for example, reservation in a hotel, banking, etc.; the
transactional properties of these services can be exploited in
order to answer their composition constraints and the
preferences made by designers and users. However, current

tools and languages do not provide high-level concepts for
express transactional composite services properties. The
execution of composite service with transactional properties
is based on the execution of complex distributed transactions
which eventually implements compensation mechanisms. A
compensation is an operation the goal of which is to cancel
the effect of other transaction that failed to be successfully
completed. several transactions models previously proposed
in databases, distributed systems, collaborative
environments. In order to manage with this focus many
specifications proposed to response to this aspects. WS-
Coordination [1], WS-AtomicTransaction [2] and WS-
BusinessActivity [3]. Many research in this field aiming for
instance to guarantee that an activity is cancellable and / or
compensable. The verification step will help ensure a certain
level of confidence in the internal behavior of an
orchestration. Several approaches have been proposed in this
direction, based on work related to the transition system [4],
process algebras [5], or the temporal theories [6].

Our work deal with the formal verification of the
transactional behavior of web services composition. In this
paper, we propose to address this issue using proof and
refinement based techniques, in particular the Event-B
method [7] used in the RODIN platform [8]. Our approach
consists on a formalism based on Event-B for specifying
composite service (CS) failure handling policies. This formal
specification is used to formally validate the consistency of
the transactional behavior of the composite service model at
design time, according to users’ needs. We propose to
formally specify with Event-B the transactional service
patterns. These patterns formally specified as events and
invariants rule to check and ensure the transactional
consistency of composite service at design time. Most
previous work is based on the model checking technique and
does not support the full description of transactional web
services. Refinement and proof techniques offered by Event-

386

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 402 / 612

B method are used to explore it and in section 5 we discuss
this approach.

This paper is organized as follows. In Section 2, we
introduce a motivating example. Section 3 presents the
Event- B method, its formal semantics and its proof
procedure and introduces our transactional CS model. In
Section 4, we present how we specify a pattern-based of the
transactional behavior using the Event-B. An overview of the
validation methodology is given in Section 5.

II. MOTIVATING EXAMPLE

In this section, we present a scenario to illustrate our
approach we consider a travel agency scenario (Figure 1).
The client specifies its requirement in terms of destinations
and hotels via the activity “Specification of Client Needs”
(SCN). After SCN termination, the application launches
simultaneously two tasks “Flight Booking” (FB) and “Hotel
Reservation” (HR) according to customer's choice. Once
booked, the “Online Payment” (OP) allows customers to
make payments. Finally travel documents (air ticket and
hotel reservations are sent to the client via one of the services
“Sending Document by Fedex” (SDF) ,”Sending Document
by DHL” (SDD) or “ Sending Document by TNT” (SDT).
To guarantee outstanding reliability of the service the
designers specify that services FB, OP and SDT will
terminate with success. Whereas on failure of the HR
service, we must cancel or compensate the FB service
(according to his current state) and in case of failure of the
SDF, we have to activate the SDD service as an alternative.

The problem that arises at this level is how to check /
ensure that the specification of a composite service ensures
reliable execution in accordance with the designer’s
requirements. To do so, the verification process should cover
the composite service lifecycle. Basically, at design time the
designer should respect the transactional consistency rules.

SCN
SDD

SDT

SDF

OP

HR

FB

Activate SDD

when SDF fail
Cancel or

compensate FB

when HR fail

Figure 1. Motivating example

III. FORMALIZING TRANSACTIONAL COMPOSITE SERVICE

WITH EVENT-B

To better express the behavior of web services we have
enriched the description of web services with transactional
properties. Then we developed a model of Web services
composition. In our model, a service describes both a
coordination aspect and a transactional aspect. On the one
hand it can be considered as a workflow services. On the
other hand, it can be considered as a structured transaction
when the services components are sub-transactions and
interactions are transactional dependencies. The originality

of our approach is the flexibility that we provide to the
designers to specify their requirements in terms of structure
of control and correction. Contrary to the ATMs [9], we start
from designers specifications to determine the transactional
mechanisms to ensure reliable compositions according to
their requirements. We show how we combine a set of
transactional service to formally specify the transactional CS
model in EVENT-B.

A. Event-B

B is a formal method based on he theory of sets, enabling
incremental development of software through sequential
refinement. Event-B is a variant of B method introduced by
Abrial to deal with reactive system. An Event-B model
contains the complete mathematical development of a
discrete system. A model uses two types of entities to
describe a system: machines and contexts. A machine
represents the dynamic parts of a model. Machine may
contain variables, invariants, theorems, variants and events
whereas contexts represent the static parts of a model .It may
contain carrier sets, constants, axioms and theorems.

Refinement: The concept of refinement is the main
feature of Event-B. it allows incremental design of systems.
In any level of abstraction we introduce a detail of the
system modeled. A series of proof obligations must be
discharged to ensure the correction of refinement as the
proof obligations of the concrete initialization, the
refinement of events, the variant and the prove that no
deadlock in the concrete and the abstract machine.

Correctness checking: Correctness of Event-B machines
is ensured by proving proof obligations (POs); they are
generated by RODIN to check the consistency of the model.
For example: the initialization should establish the invariant,
each event should be feasible (FIS), each given event should
maintain the invariant of its machine (INV), and the system
should ensure deadlock freeness (DLKF). The guard and the
action of an event define a before-after predicate for this
event. It describes relation between variables before the
event holds and after this. Proof obligations are produced
from events in order to state that the invariant condition is
preserved. Let M be an Event-B model with v being
variables, carrier sets or constants. The properties of
constants are denoted by P(v), which are predicates over
constants, and the invariant by I(v). Let E be an event of M
with guard G(v) and before-after predicate R(v, v’). The
initialization event is a generalized substitution of the form
v: init(v). Initial proof obligation guarantees that the
initialization of the machine must satisfy its invariant: Init(v)
⇒I(v). The second proof obligation is related to events. Each
event E, if it holds, it has to preserve invariant. The
feasibility statement and the invariant preservation are given
in these two statements[10].
• I(v) ∧G(v) ∧P(v) ⇒∃v’ R(v, v’)
• I(v) ∧ G(v) ∧ P(v) ∧ R(v, v’) ⇒ I(v’)

An Event-B model M with invariants I is well-formed,
denoted by M |= I only if M satisfies all proof obligations.

387

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 403 / 612

B. Transactional web service model

By Web service we mean a self-contained modular
program that can be discovered and invoked across the
Internet. Each service can be associated to a life cycle or a
statechart. A set of states (initial, active, cancelled, failed,
compensated, completed) and a set of transitions (activate(),
cancel (), fail(), compensate (), complete()) are used to
describe the service status and the service behavior. A
service ts is said to be retriable(r) if it is sure to complete
after finite number of activations. ts is said to be
compensatable(cp) if it offers compensation policies to
semantically undo its effects. ts is said to be pivot(p) if once
it successfully completes, its effects remain and cannot be
semantically undone. Naturally, a service can combine
properties, and the set of all possible combinations is {r; cp;
p; (r; cp); (r; p)}[11].

The initial model includes the context ServiceContext and
the machine ServiceMachine. The context ServiceContext
describes the concepts SWT which represents all
transactional web services and STATES represents all the
states of a given SWT. These states are expressed as
constants. A set named STATES is defined in the SETS
clause which represents the states that describe the behavior
of such a service. A set named TWS is defined in the SETS
clause which represents all transactional web services.

The service state which is represented by a functional

relation service_state defined in VARIABLES clause gives
the current state of such a service. The transactional behavior
of a transactional web service is modeled by a machine. Inv1
the invariant specifies that service_state is a total function,
and that each service has a state.

In our model, transitions are described by the event. For

instance the event activate changes the status of a service and
pass it from initial status to active. The event compensate
enables to compensate semantically the work of a service
and pass it from completed status to compensate. The event
retry changes the status of a service and activate it after his
failure and pass it from failed status to active. The event

complete enables to finite the execution of a service with
success and pass it from active status to completed.

C. Transactional composite service

A composite service is a conglomeration of existing Web
services working in tandem to offer a new value-added
service [12]. It orchestrates a set of services, as a composite
service to achieve a common goal. A transactional composite
(Web) service (TCS) is a composite service composed of
transactional services. Such a service takes advantage of the
transactional properties of component services to specify
failure handling and recovery mechanisms. Concretely, a
TCS implies several transactional services and describes the
order of their invocation, and the conditions under which
these services are invoked.

To formally specify in Event-B the orchestration we
introduced a new context CompositionContext which extends
the context ServiceContext that we have previously
introduced. The first refinement includes the context
CompositionContext and the machine CompositionMachine
which refine the machine introduced at the initial model. In
this section we show how formally the interactions between
CS are modeled. We introduce the concept of
dependencies(depA, depANL, depCOMP...).

Dependencies are specified using Relations concept. It is
simply a set of couples of services. For example depA
represents the set of couples of services that have an
activation dependency.

These dependencies express how services are coupled and
how the behavior of certain services influences the behavior
of other services. Dependencies can express different kinds
of relationships (inheritance, alternative, compensation, etc.)
that may exist between the services. We distinguish between
“normal” execution dependencies and “exceptional” or
“transactional” execution dependencies which express the
control flow and the transactional flow respectively. The

AXIOMS
Axm1: STATES= {active, initial, aborted, cancelled, failed,
completed, compensated}

CONTEXT ServiceContext
SETS
SWT
STATES

Activate ≙ ANY s WHERE

grd1 : s∈SWT

grd2 : service_state (s) =initial

THEN

act1 : service_state (s):=active

END

Compensate ≙ANY s WHERE

grd1 : s∈SWT_C

grd2 : service_state (s) =completed

THEN

act1 : service_state (s):=compensated

END

MACHINE CompositionMachine

REFINES ServiceMachine

SEES CompositionContext

Axm1 : depA∈SWT↔SWT

Axm2 : depAL∈SWT↔SWT

…

MACHINE ServiceMachine
SEES ServiceContext
VARIABLES
Service_state
SWT_C
SWT_P
SWT_R
INVARIANTS

Inv1: service_state∈SWT→STATES

Inv2: SWT_C ⊆ SWT

Inv3: SWT_R ⊆ SWT

Inv4: SWT_P ⊆ SWT

388

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 404 / 612

control flow defines a partial services activations order
within a composite service instance where all services are
executed without failing cancelled or suspended. Formally,
we define a control flow as TCS whose dependencies are
only “normal” execution dependencies. Alternative
dependencies allow us to define forward recovery
mechanisms. A compensation dependency allows us to
define a backward recovery mechanism by compensation. A
cancellation dependency allows us to signal a service
execution failure to other service(s) being executed in
parallel by canceling their execution. Activation
dependencies express a succession relationship between two
services s1and s2.But it does not specify when s2 will be
activated after the termination of s1. The guard added to the
activate event which refines the activate event of the initial
model expresses when the service will be active as a
successor to other (s) service (s) (only after the termination
of these services). For example, our motivating example
defines an activation dependency from HR and FB; to OP
such that OP will be activated after the completion of HR
and FB. That means there are two normal dependencies:
from HR to OP and from FB to OP.

At this level, the refinement of the compensate event is a
strengthening of the event guard to take into consideration
the condition of compensation of a service when a service
will be compensated. The guard grd4 in the compensate
event in expresses that the compensation of a service s is
triggered when a service s0 failed or was compensated and
there is a compensation dependency from s to s0. Therefore
compensate allows to compensate the work of a service after
its termination, the dependency defines the mechanism for
backward recovery by compensation, the condition added as
a guard specifies when the service will be compensated.

IV. TRANSACTIONAL SERVICE PATTERNS

The use of workflow patterns [13] appears to be an
interesting idea to compose Web services. However, current
workflow patterns do not take into account the transactional
properties (except the very simple cancellation patterns
category). It is now well established that the transactional
management is needed for both composition and
coordination of Web services. That is the reason why the
original workflow patterns were augmented with
transactional dependencies, in order to provide a reliable
composition [14]. In this section, we use workflow patterns
to describe TCS’s control flow model as a composition
pattern. Afterwards, we extend them in order to specify
TCS’s transactional flow, in addition to the control flow they
are considering by default. Indeed, the transactional flow is

tightly related to the control flow. The recovery mechanisms
(defined by the transactional flow) depend on the execution
process logic (defined by the control flow).

The use of the recovery mechanisms described throw the
transactional behavior varies from one pattern to another.
Thus, the transactional behavior flow should respect some
consistency rules(INVARIANT) given a pattern. These rules
describe the appropriate way to apply the recovery
mechanisms within the specified patterns. Recovering
properly a failed composite service means: trying first an
alternative to the failed component service, otherwise
canceling ongoing executions parallel to the failed
component service, and compensating the partial work
already done. The transactional consistency rules ensure
transactional consistency according to the context of the used
pattern. In the following we formally specify these patterns
and related transactional consistency rules using Event-B.

s0

sn

…….

s2

s1

AND-split

s0

sn

…….

s2

s1

XOR-split

s0

sn

…….

s2

s1

AND-join
Figure 2. Studied patterns

Our model introduces a new context And-patternContext
which extends the context Composition-Context and a
machine transactional patterns which refines the machine
CompositionMachine. To extend these patterns we introduce
new events that can describe them. For example, to extend
the pattern AND-split the machine introduces a new event
AND-split which defines the pattern AND-split. Due to the
lack of space, we put emphasis on the following three
patterns AND-split, AND-join and XOR-split to explain and
illustrate our approach, but the concepts presented here can
be applied to other patterns.

An AND-split pattern defines a point in the process
where a single thread of control splits into multiple threads
of control which can be executed in parallel, thus allowing
services to be executed simultaneously or in any order.

Compensate ≙ REFINES Compensate

…

grd4:∃s0·s0∈SWT∧s0↦s∈depCOMP⇒((service_state(s0)=failed)

∨ (service_state(s0) = compensated))

THEN

act1 : service_state (s) ≔compensated

END

AND-split ≙

ANY

S0

SWToutside

WHERE

grd1 : SWToutside⊆SWT_AS

grd2 : S0∈SWT_AS

grd3 : S0∉SWToutside

grd4 : service_state(S0)=complete

THEN

act1 : stateSWTout≔activated

END

389

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 405 / 612

The SWToutside represent the set of services (s1,…,sn)
and s0 is represented by sAS.

To verify the transactional consistency of these patterns
we add predicates in the INVARIANT clauses. These
invariants ensure transactional consistency according to the
context of use. These rules are inspired from [14] which
specifies and proves the potential transactional dependencies
of workflow patterns. The transactional consistency rules of
the AND-split pattern support only compensation
dependencies from SWToutside (Inv 23).

• Inv 23: ∀s.s∈SWToutside⇒sAS↦s∉depCOMP
The compensation dependencies can be applied only over

already activated services. The transactional consistency
rules supports only cancellation dependencies between only
the concurrent services. Any other cancellation or alternative
or compensation dependencies between the pattern’s services
(Inv 11, 12) are forbidden.

• Inv 11: ∀s.s∈SWT_AS⇒s↦sAS∉depANL
• Inv12:∀s, s1.s∈SWT_AS∧ s1∈SWT_AS⇒s↦ s1∉

depAL
Our example illustrates the application of AND-split

pattern to the set of services (SCN, HR, FB) and specifies
that exist a dependency of compensation from HR to FB and
a cancellation dependency also from HR to FB. The guard of
the AND-split event represents the conditions of activation of
the pattern. In our example SCN must terminates its work
before activating the pattern. In order to ensure a normal
execution of the event an invariant must be preserved by
AND-split event that express that all SWToutside services
have an activation dependency from sAS

• Inv 13: ∀s.s∈SWToutside⇒sAS↦s∉depA
An AND-join pattern defines a point in the process where

multiple parallel subprocesses/services converge into one
single thread of control, thus synchronizing multiple threads.
To extend the pattern AND-join, the machine introduces a
new event AND-join which defines the control flow of the
AND-join pattern.

Our example illustrates the application of AND-join

pattern to the set of services (HR, FB, OP). The guard of the
AND-join event represents the conditions of activation of the
pattern. HR and FB must terminates its work before
activating the pattern. The termination of HR is necessary
and not efficient to activate the pattern. All SWToutside , HR
and FB, services must complete their work.

The transactional consistency rules of the AND-join
pattern supports only compensation dependencies for
SWToutside, sAJ can not be compensated by SWToutside
services as they are executed after (inv 24).

• Inv 24: ∀s.s∈SWToutsideAJ⇒s↦sAJ∉depCOMP
 The transactional consistency rules of the AND-join

pattern support also cancellation dependencies between only
the concurrent services. Any other cancellation or alternative
or compensation dependencies between the pattern’s services
are forbidden.

• Inv25:∀s.s∈SWToutsideAJ⇒s↦sAJ∉depANL
An XOR-split pattern defines a point in the process

where, based on a decision or control data, one of several
branches is chosen. To extend the pattern XOR-split, the
machine introduces a new event XOR-split which defines the
pattern XOR-split.

The XOR-split pattern supports alternative dependencies

between only the services SWToutside, as the alternative
dependencies can exist only between parallel and non
concurrent flows. The XOR-split pattern support also
compensation dependencies from SWToutside to sXS.

• Inv18:∀s.s∈SWT_XS∖{sXS}⇒s↦sXS∈depCOMP
Any other cancellation or alternative or compensation

dependencies between the pattern’s services are forbidden.
• Inv15: ∀s.s∈SWT_XS⇒s↦sXS∉depAL
• Inv22:∀s.s∈SWT_XS∖{sXS}⇒sXS↦s∉depCOMP

Our example illustrates the application of XOR-split
pattern to the set of services (OP, SDD, SDF, SDF) and
specifies that exist an alternative dependency from HR to
FB. The guard of the XOR-split event represents the
conditions of activation of the pattern. The execution of OP
service must be completed for activate XOR-split pattern.
After the activation one service from (SDD, SDF, SDF) will
be active.

V. VALIDATION

In the previous section, we showed how to formally specify
a TCS using Event-B. The objective of this section is to
show how we verify and validate our model using proof and
ProB animator[15]. In the abstract model the desired
properties of the system are expressed in a predicate called
invariant, it has to prove the consistency of this invariant

AND-join ≙

ANY

S0

SWToutside

WHERE

grd1 : SWToutside⊆SWT_AJ

grd2 : S0∈SWT_AJ

grd3 : S0∉SWToutside

grd4 : ∀s•s∈SWToutside⇒service_state(s)=complete

THEN

act1 : service_state(S0) ≔ active
END

XOR-split ≙

ANY

S0

SWToutside

sw

WHERE

grd1 : SWToutside⊆SWT_XS

grd2 : S0∈SWT_XS

grd3 : S0∉SWToutside

grd4 : service_state(S0)=complete

grd5 : sw∈SWToutside

THEN

act1 : service_state(sw)≔active

END

390

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 406 / 612

compared to system events by a proof. We find many proof
obligations (Figure 3). Each of them has got a compound
name for example, « evt / inv / INV ». A green logo situated
on the left of the proof obligation name states that it has
been proved (an A means it has been proved automatically).
In our case shown in Figure 3 the tool generates the
following proof obligations « activate / inv1 / INV » and «
compensate / inv1 / INV » . This proof obligation rule
ensures that the invariant inv1 in the CompositionMachine is
preserved by events activate and compensate. Figure 4 show
also the proof obligations «compensate / grd2 / WD ». This
proof obligation rule ensures that a potentially ill-defined
guard is indeed well defined.

Figure 3. Proof obligations and animation

Our work is proof oriented and covers the transactional web
services. All the Event-B models presented in this paper
have been checked within the RODIN platform. The proof
based approaches do not suffer from the growing number of
explored states. However, the proof obligations produced by
the Event-B provers could require an interactive proof
instead of automatic proofs. Concerning the proof process
within the Event-B method, the refinement of transactional
web services Event-B models can be performed. This
refinement allows the developer to express the relevant
properties at the refinement level where they are
expressible. The refinement is a solution to reduce the
complexity of proof obligations.
In our example the designer can initially specify, as CS
transactional behavior, that FB will be compensated or
cancelled if HR fails, SDD is executed as alternative of SDF
failure. The Event-B formalization of our motivating
example defines a cancellation dependency and
compensation dependency from HR to FB and alternative
dependency from SDF to SDD. For example, by checking
the compensation dependency between SCN and HR the
RODIN platform mentioned that the proof obligations has
not been discharged (Figure 4). As HR is executed after, it

can not exist a compensation dependency from SCN to HR.
A red logo with a ”?” appear in the proof tree and it means
that is not discharged. This basic example shows how it is
possible to formally check the consistency of transactional
flow using Event-B. To repair this error we can refer to the
initialization of the machine and verify the compensation
dependencies.
After the initialization of the ServiceMachine the
compensate event is disabled and after the termination of the
execution of a service the event will be enabled. ProB offer
to the developer which parameter is used in the animation
by clicking right on the event.

Figure 4. A red logo indicates that the proof obligations is not discharges

In the development of our model some proof obligations
are not discharged but the specifications is correct according
to our work in [6] which is specified and validated using
Event Calculus. To do so, we use ProB animator to verify
our specification of transactional web services. This case
study has shown that the animation and model-checking are
complementary to the proof, essential to the validation of
Event-B models. In other case, many proved models (proof
obligations are discharged) still contain behavioral faults,
which are identified with the animators. The main advantage
of Event-B develop that can repair errors during the
development. It allows the backward to correct specification.
With refinement, the complexity of the system is distributed;
the step by step proofs are more readily. Event-B offers more
flexibility and expressivity than the input languages of model
checkers.

VI. CONCLUSION AND FUTURE WORKS

The paper addresses the formal specification, verification
and validation of the transactional behavior of services
compositions within a refinement and proof based approach.
The described work uses Event-B method, refinement for
establishing proprieties. This paper presents our model of
web service enriched by transactional properties to better
express the transactional behavior of web services and to
ensure reliable compositions. Then we describe how we
combine a set of services to establish transactional
composite service by specifying the order of execution of
composed services and recovery mechanisms in case of
failure. Finally we introduced the concept of composition

391

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 407 / 612

pattern and how we uses it to specify a transactional
composite service.
 In our future works we are considering the following
perspectives:

• Using automation approach of MDE type to verify
transactional behavior of services compositions.

REFERENCES
[1] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T.

Freund, J. Johnson,S. Joyce, C. Kaler, J. Klein, D.
Langworthy, M. Little, A. Nadalin, E. Newcomer,D. Orchard,
I. Robinson, J. Shewchuk, and T. Storey. Web
servicescoordination(ws-coordination), 2005.

[2] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T.
Freund, J. Johnson, S. Joyce,C. Kaler, J. Klein, D.
Langworthy, M. Little, A. Nadalin, E. Newcomer, D.
Orchard,I. Robinson, T. Storey, and S. Thatte. Web services
atomic transaction (wsatomictransaction), 2003.

[3] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T.
Freund, S. Joyce,J. Klein, D. Langworthy, M. Little, F.
Leymann, E. Newcomer, D. Orchard, I. Robinson,T. Storey,
and S. Thatte. Web services business activity framework(ws-
businessactivity), 2003.

[4] R. Hamadi and B. Benatallah, “ A petri net-based model for
web service composition,” Fourteenth Australasian Database
Conference (ADC2003), 2003.

[5] G. Sala¨un, A. Ferrara, and A. Chirichiello, “Negotiation
among web services using lotos/cadp,” European Conference
on Web Services (ECOWS 04), 2004.

[6] W. Gaaloul, S. Bhiri, and M. Rouached, “Event-Based Design
and Runtime Verification of Composite Service Transactional
Behavior ,” IEEE Transactions on Services Computing, 02
Feb. 2010. IEEE computer Society Digital Library. IEEE
Computer Society.

[7] J.R. Abrial: Modeling in Event-B: System and Software
Engineering, cambridge edn. Cambridge University Press
(2010).

[8] J.R. Abrial., M. Butler, and S. Hallerstede, “ An open
extensible tool environment for Event-B,” .ICFEM06, LNCS
4260, Springer, pp. 588-605, 2006.

[9] A. K. Elmagarmid, Database transaction models for advanced
applications. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992.

[10] C. Metayer, J. Abrial, and L. Voisin , “Event-B Language.
Technical Report D7,” z RODIN Project Deliverable, 2005.

[11] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, “A
transaction model for multidatabase systems.” in ICDCS,
1992, pp. 56–63.

[12] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu,
and A. K. Elmagarmid, “Business-to-business interactions:
issues and enabling technologies,” The VLDB Journal, vol.
12, no. 1, pp. 59–85, 2003.

[13] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede,
and B. Kiepuszewski, “Advanced Workflow Patterns,” in 5th
IFCIS Int. Conf. on Cooperative Information Systems
(CoopIS’00), ser. LNCS, O. Etzionand P. Scheuermann, Eds.,
no. 1901. Eilat, Israel: Springer-Verlag, September 6-8, 2000,
pp. 18–29.

[14] S. Bhiri, C. Godart, and O. Perrin, “Transactional patterns for
reliable web services compositions,” in ICWE, D. Wolber, N.
Calder, C. Brooks, and A. Ginige, Eds. ACM, 2006, pp. 137–
144.

[15] M.Leuschel and M.Butler, “ProB: A Model Checker for B,”,
in K. Araki, S. Gnesi, D. Mandrioli (eds), FME 2003: Formal
Methods, LNCS 2805, Springer-Verlag, pp. 855-874, 2003.

392

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 408 / 612

Certification of MDA Tools: Vision and Application

Oksana Nikiforova, Natalja Pavlova, Antons Cernickins , Tatjana Jakona

Department of Applied Computer Science

Riga Technical University

Riga, Latvia

{oksana.nikiforova, natalja.pavlova, antons.cernickins, tatjana.jakona}@rtu.lv

Abstract—Currently software system development is under the

conversion, where traditional code oriented software

development is transformed into model driven approach. A lot

of methods and tools are proposed to support main statements

of the model driven software development. However, there do

not exist mechanisms for notification of how much valuable are

the Model Driven Architecture (MDA) support tools and how

close they are to the main idea of model usage for software

development. One of the possible solutions how to solve the

problem of selection of appropriate MDA tool can be

certification process similar to that in other industries. The

paper proposes the framework for such certification and shows

an application of it for several MDA support tools.

Keywords-MDA; CASE-tools; certification; modeling.

I. INTRODUCTION

The complexity of software systems permanently
increases. It requires from developers carefully select
technologies and tools, which will be used during software
development process. Researchers and developers try to
automate software development process in order to minimize
human and material resource costs. Therefore in one hand a
big number of CASE-tools were created, each of which
support some part of software lifecycle. Functionality of the
CASE-tools may be duplicated. The concurrence occurs on
this market. Unified opinion which tool is the best and how
tools could be evaluated does not exist.

In other hand there are developed different processes,
approaches and methods to software development. For
example such processes as Rational Unified Process (RUP)
[1], Microsoft Solutions Framework (MSF) [2], SCRUM [3],
Extreme Programming (XP) [4], etc. exist. Model Driven
Architecture (MDA) [5] proposed by Object Management
Group (OMG) is popular approach to software development
and can be applied within any software development process.
Therefore a set of CASE tools, which support also several
activities defined by MDA, also appear on the tool market.
And it became much more complicated to examine CASE-
tools, which also support model and transformation chain of
MDA.

The area of the described here research is software
development using CASE-tools in the framework of MDA.
Software market is crowded with a variety of CASE-tools
that automate stages of the development in the framework of
MDA. Not developed any standardized procedures or criteria

for how to assess compliance of CASE-tool to standards of
MDA, to evaluate what part of the MDA chain considered
CASE-tool supports. The goal of this paper is suggest the
possibility of certification of CASE-tools based on a
considered here evaluation criteria of compliance to the
MDA.

The second section describes the difference between the
term of Model Driven Software Development (MDSD) and
principles of MDA applied for the software development.
The third section describes existing researches in the area of
MDA tool certification. The fourth section shows example of
CASE-tool evaluation for functionality and portability
aspects. In the last section the described research is
concluded.

II. MODEL DRIVEN APPROACH IN SOFTWARE

DEVELOPMENT

Requirements of customers and hence the software
becomes more sophisticated and complex with the time.
Therefore, developers should be more qualitative and should
have tools to satisfy the needs of quality of the software on
the level, required by clients, to respect deadlines and to
deliver software that functions properly. According to
Standish Group [6], only 29% of projects have been
succeeded in 2004 (i.e. done in time, met client’s
expectations, while being not over budget). Paying attention
to the development processes of the typical software
development company, similar steps, tools and tests will be
seen [6]. In order to optimize these activities, model-based
approaches may be used, providing manipulations with
models under meta-modeling process, as well as the usage of
CASE tools for model transformation and generation. This
approach to software development is realized with MDD [7].

Model Driven Development appears because there was a
necessarily to decrease efforts, to create and use analysis and
design models at each stage of the software development
process and to automate the transformation of the models [6].
The separation of concerns is another foundation of MDD
that provides the separation of high-level business logic from
system’s architecture and deployment platform. MDA
initiative, the primary example of MDD, was introduced by
OMG in 2001 to satisfy the needs of the modern software
industry [5], [8].

MDA proposes to use models on every stage of software
development, specifying a set of tools that supports

393

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 409 / 612

construction of models with design and architectural patterns
[8]. According to traditional software development life cycle,
the application of Model Driven Development should
consider the modeling approach as such. Unlike MDD, the
MDA approach considers models as central part of the
development process (assuming that model represents a set
of diagrams, used to express the whole software system) [9].
MDA may be considered as a next stage in the evolution of
software development process, which tends to bring some
improvements into each step of the software development
life cycle [8]. MDA is a framework, which contains technical
standards developed in the supervision of OMG (in this case,
OMG provides the guidelines of MDA application to
software development) [8]. There are four principles that
underlie the MDA approach [10]:

1. Models constructed with a well-defined notation are a
milestones of system representation for enterprise-scale
solutions;

2. System development is performed with construction
of a set of models and execution of model transformations;

3. Models and transformations among them are
described in a formal form with meta-models on MOF this
description could serve as a basis for automation through
different CASE tools;

4. The broad usage of model-based approaches requires
standards to provide satisfaction of costumers and highest
qualification of developers.

One of the milestones of MDA considers the text
description of the models, formal descriptions of a system,
models and code and possibility to apply the formal
transformations on every model of a system, to refine it and
obtain model, which is closest to user needs [10].
Considering the resources needed for software development,
there is a need to reduce the overall production costs, making
the software development process more profitable [11].
Here, the reuse of the existing models, patterns or code may
be used (thought, it may be a way too complex or
impossible). MDA proposes the following set of activities,

which may improve the software development process and
make an easier reuse of some components [11]:

1. Choose application model that corresponds with a
problem domain;

2. Subset the model as necessary;
3. Choose models in accordance with the implementation

technology platform;
4. Define the interconnection between models;
5. Generate the program code for software system.
In many cases, the necessity of introducing some changes

into developed system (or system under development)
appears. From this point, changes are introduced into the
application model only (1) — changes will be automatically
provided to the lower models. When the environment of
system development should be changed, models for the new
environment should be selected (3); program code should
also be regenerated (5) [12]. Therefore, the application
models are not changed, meaning that costs are lower,
productivity is higher, as well as the maintenance of the
system becomes much cheaper. With this approach each
model, which is constructed in the framework of MDA
guidelines, can be subsequently reused [11]. Fig. 1 shows the
supporting component model of Model Driven Architecture.
Components in Fig. 1 are depicted into the framework of
MDA models and its transformations within the authors
defined levels for system domain abstractions [9].

The MDA proposes to construct four basic models for
developed system (Fig. 1):

1. Computation Independent Model (CIM) that reflects
to business and its models— defined at problem domain
level in Fig. 1;

2. Platform Independent Model (PIM) that reflects to
analysis and design models of software system to be
developed—defined at solution domain level in Fig. 1;

3. One or many Platform Specific Models (PSM) that
reflect to detailed design models of software system under
construction—defined at software domain level in Fig. 1;

Figure 1. The component model of MDA (adopted from [13])

394

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 410 / 612

4. One or many Implementation Specific Models (ISM)
that reflect to implementation and runtime models – defined
at implementation domain level in Fig. 1.

Also, MDA components may be reflected to the main
blocks of Model Driven Development. These blocks are the
following [14]:

1. A model repository;
2. One or more domain modeling languages;
3. One or more workbench environments;
4. One or more modeling tools;
5. One or more transformation tools.
The components of MDA, shown on Fig. 1 are

representing all of the activities included in the MDA-driven
software development process. Dependence on information
exchange, which is imported/exported from one component
to another, is written on the arrows between components on
Fig. 1.

Regular font on arrows between components means that
the ability of import/export of models is possible. Transitions
between components, which can be performed only by the
human at this time, are expressed in italic. Authors’ research
[15] discusses different types of model transformations (e.g.
formal, semi-formal, based on hints or manual) to satisfy the
statements of MDA on model transformations. Up to the
year 2006 the conclusion stated that there is no solution
available to define the complete transformation CIM-to-
PIM-to-PSM-to-Code. The weakest link here is exactly the
construction of PIM or transformation from CIM to PIM.
Solutions focused on construction of CIM and CIM-to-PIM
transformations cannot insure that PIM is containing all the
necessary information, as well as that the presentation of
PIM is formal enough to be able to transform it into correct
PSM [15]. Authors’ efforts to find CASE tools up to date for
CIM-to-PIM transformation and to state the component to
support that activity carry to the point, that still there is no
guarantee result of CIM-to-PIM transformations. Also, the
verification of model consistency is under investigations and
the role of model interchange and interchange standards
become more and more important.

III. MAIN CONCEPTS OF MDA TOOLS CERTIFICATIONS

The idea lying behind the research is to provide a set of
guidelines on the actual implementation of the MDA for the
purpose of promoting it as a holistic approach for software
development across the IT community. A branch of
standards provided within MDA is defined in a form of
specification, meaning that the specification-based testing
may be used as a basis for compliance assessment [16]. In
particular, the conformance statement for CORBA provided
by The Open Group [17] is done this way. In fact, the
compliance itself is nothing else but the satisfaction of
software implementation to the standard specification [16].
[16] comes with an idea of considering the compliance test
suite generation as a branch of constraint satisfaction
problem, in which the first-order predicate is given and
processed to find models that satisfy it. Following this work,
instead of starting from a concrete set of constraints and
trying to find the appropriate models, the construction (as

well as the further classification) of all possible models is
considered.

When it comes to development of a new certification
scheme, the first and the foremost task is to define the object
of certification [18]. According to [18], the following types
of certification are possible:

• Product certification (accordance with particular
technical standard);

• Process certification (accordance with ISO 9000 or
similar standard);

• Personnel certification;

• Accreditation of certification bodies (the
certification of certifiers).

[18] summarizes the study on various certification
schemes and categorizes them into several groups, also
providing a general structure of certification process itself, as
well as presenting a new certification scheme used in space
technology.

In fact, the type of certification procedure for current
research can be determined as a combination of both the
product and the process certification. Such a mixture of types
will provide a more detailed outlook on various options to be
considered in the certification scheme.

Basically, the former type of certification is considered,
as software development tools (i.e., software products) are
involved in the research. This may also include the
specification of the most common features and options
defined to clarify the accordance level of each tool from
various perspectives (discussed in [19]).

As far as MDA-oriented software development life cycle
represents the process, the latter type of certification should
also be considered.

In order to provide a solid background for the
certification scheme, as well as to clarify the means of the
MDA tool as such, [20] is considered. [20] reviews the MDA
approach within the variety of the CASE tools, which are
proposed as supporting for MDA activities. The provided
specification of MDA tools consists of seven categories,
which definition and details are described in [20]:
1. Accordance with MDA-oriented life cycle—the

accordance level of software development life cycle
supported by a tool, which includes MDA-oriented activities
combined into such subcategories as knowledge
formalization (CIM), system model refinement (PIM), PIM-
to-PSM mapping, system model implementation (PSM), and
transformation support;
2. Functional capabilities—the functional capabilities of a

tool in such fields as environment, modeling,
implementation, testing, documenting, project management,
configuration management;
3. Reliability—the capability of a tool to maintain the

appropriate level of performance under certain conditions for
a certain period of time, including repository management,
automatic backup capabilities, data access management,
error processing capabilities, as well as fault analysis
capabilities;
4. Usability—usage efforts and individual assessments of

such usage, including user interface, licensing and

395

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 411 / 612

localization options, ease of use, quality of documentation
etc.;
5. Efficiency—the amount of resources needed to

maintain the appropriate level of performance under certain
conditions, including technical requirements, workload
efficiency, as well as performance;
6. Maintainability—efforts needed to make specified

modifications;
7. Portability—ability of a tool to be transferred to another

environment.
The mentioned criteria involve several aspects of the

features of the CASE-tool, such as usability and application.
Current research is devoted to evaluation of CASE-tools
regarding to modeling and implementation capabilities as it
is important development property in the framework of
MDA [21].

In order to clarify a vision on a certification scheme to
assess the compliance of MDA tools, a conceptual
framework is proposed. In fact, this framework should be
used to verify the output produced by MDA tools. Whereas a
wide variety of the tools intended for specific purposes (e.g.,
mapping definition) may be used [19], an additional
specification-based assessment of these tools is considered
(discussed in [19]).

In short, models defined by MDA are used to describe
the MDA-oriented software development life cycle [11],
[19], [5], namely they are CIM, PIM , PSM and ISM .

However, the only models to be specified and promoted
by OMG (i.e., described in details) are PIM and PSM [11].
In fact, OMG does not provide any specific requirements for
CIM (meaning that it is not “computational,” not formal
enough, etc.), as well as ISM itself — the actual source code
generated from PSM—from modeling perspective looks out
of scope. Despite this, all four layers are somehow covered
by various software development tools.

The conceptual framework considers these four models
as individual blocks, each of them having their own input
and output. The origin of this idea has come from black box
testing [22]: whereas software system is considered as a
black box, the only thing to be analyzed is the output
produced by specific input. Therefore, developer does not
need to understand why the compiled code does what it does;
here, the requirements are used to determine the correct
output of black box testing.

In fact, the main artifacts for the conceptual framework
are inputs and outputs. As far as CIM and ISM are out of
scope from the perspective of OMG standards, the
conceptual framework does not cover the according artifacts.
The actual tool use in each block (i.e., what operations are
performed) is also not the matter of high importance.

However, the main concern for each tool is the support of
XMI standard [23]. In order to perform a transition from raw
output to qualified input, the conceptual framework assesses
the output from each tool. If tool conforms to OMG
standards, then the output from this tool should be opened in
other tool with no problems. If not, the conceptual
framework would provide an appropriate suggestion on
where the root of the problem lies.

While OMG does not provide any constraints (i.e., does
not restrict) on the modeling language notation used with
MDA (however, the use of UML is strongly recommended)
[11] [5], the use of XMI for assessment of software
development tools seems to be the only valuable option. This
assessment is considered to be formal: a specification is said
to be formal when it is based on a language that has a well-
defined semantic meaning associated with each of its
constructs [24]. It is this formalism, which allows the model
to be expressed in a format such as XML, in accordance with
a well-defined schema (XMI).

The specification of XMI standard as such is used to
create the XML Schema of XMI standard [25], which
provides a means by which the syntax and the semantics of
an XMI document can be validated. XMI Schemas must be
equivalent to those generated by the XMI Schema
production rules specified in [23]. Equivalence means that
XMI documents that are valid under the XMI Schema
production rules would be valid in a conforming XMI
Schema; in turn, those XMI documents that are not valid
under the XMI Schema production rules are not valid in a
conforming XMI Schema [23].

After the XML Schema of XMI standard is created, the
developed tool creates a document data model, which
consists of [25]:

• Vocabulary (element and attribute names);

• Content model (relationships and structure);

• Data types.
This model is used for further validation of XMI

documents. Validation can determine whether the XML
elements required by [23] are present in the XML document
containing model data, whether XML attributes that are
required in these XML elements have values for them, and
whether some of the values are correct.

IV. EXAMPLE OF TOOL CERTIFICATION PROCESS

In order to examine the modeling and implementation
capabilities of tools, a scope of correspondence should be
defined first. Considering the information from previous
Sections, the main concern is concentrated on PIM, its
refinement, as well as further transition to PSM with similar
concentration, accordingly. In addition, the specification of
MDA tools provided in Section 3 should also be considered.

Based on [26], the following tools have been selected for
evaluation:

• ArgoUML 0.28;

• Altova UModel 2009;

• Sparx Systems Enterprise Architect 7.5.843;

• IBM Rational Enterprise Architect 7.0.0;

• MyEclipse Enterprise Workbench 7.1.1.

• MS Visual Studio 2010
[26] considers these tools as UML tools, which provide

source code generation capabilities from UML diagrams, as
well as reverse engineering capabilities. However, the only
use of UML does not guarantee that tool is “MDA
complaint”. That is why the most important features of UML
tools should be mapped to the appropriate features of the
MDA tools.

396

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 412 / 612

The compliance to MDA is defined in Section 3 with 7
view points: accordance with MDA-oriented life cycle;
functional capabilities; reliability; usability; efficiency;
maintainability and portability. Currently selected CASE-
tools are evaluated according some of functional capabilities,
namely, modeling and implementation, which are
represented with UML support and programming languages
support. As well as for portability, this is presented with
supporting of different platforms, interchange format and
programming languages in source code generation and
reverse engineering. Therefore, a model defined in
appropriate modeling notation (as was mentioned before, the
use of UML is suggested), a model enrichment (transition) to
meet the specifics of selected platform, generation of
platform-specific source code, as well as support for
MOF/XMI should be considered as the most important
features of these tools.

Other features like configuration management, testing,
project management, etc. are the matter of secondary
importance.

These tools feature a source code generation approach
based on template definition, meaning that a file (i.e.,
template) describing the use of meta-data information should
be defined first. If several tasks are considered, it is possible
to define a set of templates, where each template deals with
an appropriate task (here, a nested hierarchy is considered,
where main template contains information about
complementary templates). Certain tools (such as UModel
and Enterprise Architect, namely) provide an ability to
redefine the set of supplied generation templates, whereas
other tools are unable to provide such a feature.

Table 1 provides an outlook on several features declared
by tool vendors that are important for correspondence with
the proposed approach (based on [26]).

TABLE I Declared features of corresponding UML tools (based
on [26])

A
rg
o
U
M
L

A
lt
o
v
a
U
M
o
d
el

S
p
ar
x
 S
y
st
em

s

E
n
te
rp
ri
se

A
rc
h
it
ec
t

IB
M
 R
at
io
n
al

R
o
se
 E
n
te
rp
ri
se

M
y
E
cl
ip
se

E
n
te
rp
ri
se

W
o
rk
b
en
ch

M
S
 V
is
u
al

S
tu
d
io
 2
0
1
0

Common features

UML 1.4 2.2 1.3, 1.4,

2.0, 2.1

1.4 2.1 2.0

UML Profiles • • • • •

MOF/XMI 1.1,
1.2

2.1 1.1, 1.2,
2.1

 1.0 2.1

XMI

import/export

• • • • •

UML Diagram support

Class • • • • • •

Component • • • • • •

Composite

structure

 • • •

Deployment • • • • •

Object • • • • • •

Package • • • •

Profile • • • •

Activity • • • • • •

State machine • • •

Statechart UML 1.x • • •

Use case • • • • • •

Communication • •

Collaboration
UML 1.x

• • •

Interaction

overview

 • •

Sequence • • • • •

Timing • •

Source code generation capabilities

CORBA IDL • •

Java • • • • •

C++ • • • • •

C# • • • • •

VB.NET • • • •

PHP • •

Other

A
d
a,
 P
y
th
o
n
,

A
ct
io
n
S
cr
ip
t

J#
,
JS
cr
ip
t

Reverse engineering capabilities

CORBA IDL • • •

Java • • • • • •

C++ • • • •

C# • • • •

VB.NET • • • •

PHP •

Other

C
,
P
y
th
o
n
,

V
is
u
al
 B
as
ic
,

A
ct
io
n
S
cr
ip
t

J#
,
JS
cr
ip
t

To sum up, UModel and Enterprise Architect provide the

richest set of functional features, with the latter being the
most functional one in terms of source code generation and
reverse engineering capabilities. However, when it comes
down to interoperability among the tools—the main concern
for the proposed conceptual framework—even those with
same version of XMI standard fail. In theory, the project
developed in ArgoUML should be operable in Enterprise
Architect easily due to the same version of XMI standard
used in both tools (and vice versa). Similar arguments are
also exposed on such tools as UModel and Enterprise
Architect for the same reason. The most common error
relates to incorrect syntax in XMI files, which clearly
outlines the problems with proper implementation of
standards from the side of vendors.

Microsoft Visual Studio could be used as logical sequel
of previously examined tool. This tool does not support
modeling activities, but support different programming
languages for software development.

V. CONCLUSIONS

The paper discusses possibility of certification of MDA
CASE-tools, to find out some standard in existing assortment
of tools. Basic principles of MDA were examined to achieve
this goal. The paper defines components of MDA, and
relationships among them. During this research basic

397

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 413 / 612

principles of certification and defined properties of
certification corresponding to MDA were found. Tool
certification principles are important milestone to understand
how certification could be performed and which result we
want to obtain.

During this research 6 tools were examined within the
correspondence to modeling capabilities in the framework of
MDA: ArgoUML, Altova UModel, Sparx System Enterprise
Architect, IBM Rational Enterprise Architect, My Eclipes
Enterprise Workbench and MS Visual Studio 2010. The first
five tools are pure modeling tools, and the last one is MS
Visual studio positioned as development tool with modeling
capabilities.

The main contribution of the paper is the stressed
necessity for CASE tools certification. The paper shows
possibility of CASE tools certification in the context of
existing concepts. Possibility of tool verification in
accordance to proposed framework is shown in example of 6
CASE tools analysis.

With such an abundance of various CASE-tools, both
commercial and open-source, their certification is required.
Due to the fact that MDA is now the most widely used
approach in software development, it makes sense to certify
the CASE-tools in the framework of MDA. It is important to
identify the main criteria to determine conformance of
CASE-tool to the standards of MDA, and in the same time
these criteria should display conformance of CASE-tool to
the tasks facing the developer. The entire certification
process as a whole will only improve the quality of CASE-
tools and provide the ability to track information about new
features in the developed CASE-tools.

ACKNOWLEDGMENT

The research reflected in the paper is supported by Grant
of Latvian Council of Science No. 09.1245 "Methods,
models and tools for developing and governance of agile
information systems" and by ERAF project “Evolution of
RTU international collaboration, projects and capacity in
science and technologies”.

REFERENCES

[1] I.Jacobson, G.Booch, J.Rumbaugh, “The Unified Software
Development Process”, Addison-Wesley, 1999.

[2] Microsoft Solution Framework:
http://technet.microsoft.com/en-us/library/bb497059.aspx

[3] Introduction to Scrum - an Agile Process:
http://www.mountaingoatsoftware.com/topics/scrum

[4] Extreme Programming: A gentle introduction:
http://www.extremeprogramming.org/

[5] MDA Guide, version 1.0.1:
http://www.omg.org/docs/omg/03-06-01.pdf

[6] R.Bendraou, P.Desfray, M.Gervais, A.Muller, “MDA Tool
Components: a proposal for packaging know-how in model
driven development,” Software and Systems Modeling, Vol.7,
No.3,. Springer, Berlin 2008, pp.329-343.

[7] J. Krogstie, “Integrating enterprise and IS development using
a model driven approach,” Proc. 13th International
Conference on Information Systems Development—
Advances in Theory, Practice and Education, Springer. New
York, 2005, pp.43-53.

[8] M.Guttman, J.Parodi, “Real-Life MDA: Solving Business
Problems with Model Driven Architecture,” Morgan
Kaufmann, San Francisco, 2007.

[9] O.Nikiforova, V.Nikulsins, U.Sukovskis, “Integration of
MDA Framework into the Model of Traditional Software
Development,” Frontiers in Artificial Intelligence and
Applications, Vol.187, IOS Press. Amsterdam, 2009, pp.229-
239.

[10] A.Brown, J.Conallen, D.Tropeano, “Models, Modeling, and
Model Driven Development,” S.Beydeda, M.Book, V.Gruhn,
(eds.) Model-Driven Software Development, Springer, Berlin,
2005, pp.1-17.

[11] S.Mellor, K.Scott, A.Uhl, D.Weise, “MDA Distilled:
Principles of Model-Driven Architecture,” Addison-Wesley,
San Francisco, 2004.

[12] A.Cernickins, O.Nikiforova, “An Approach to Classification
of MDA Tools,” The 49th Scientific Conference of Riga
Technical University, Computer Science, Applied Computer
Systems. Riga, 2008, pp 72-83.

[13] O.Nikiforova, A.Cernickins, N.Pavlova, “Discussing the
Difference between Model Driven Architecture and Model
Driven Development in the Context of Supporting Tools,”
The 4th International Conference on Software Engineering
Advances (ICSEA), International Workshop on Enterprise
Information Systems (ENTISY), IEEE Computer Society,
2009, pp.1-6.

[14] A.Uhl, “Model-Driven Development in the Enterprise,” IEEE
Software, Vol.25, IEEE Press, Washington, 2008, pp.46-49.

[15] O.Nikiforova, M.Kuzmina, N.Pavlova, “Formal Development
of PIM in the Framework of MDA: Myth or Reality,” The
46th Scientific Conference of Riga Technical University,
Computer Science, Applied Computer Systems, Riga, 2006,
pp. 42-53.

[16] P.Bunyakiati, A.Finkelstein, D.Rosenblum, “The Certification
of Software Tools with respect to Software Standards,” IEEE
International Conference on Information Reuse and
Integration, 2007.

[17] CORBA 2.3 Conformance statement template:
http://www.opengroup.org/csq/csqdata/blanks/OB1.html

[18] H.Schäbe, “A Comparison of Different Software Certification
Schemes”: http://www.sipi61508.com/ciks/schabe1.pdf

[19] A.Cernickins, O.Nikiforova, “On Foundation for Certification
of MDA Tools: Defining a Specification,” RTU 50th
International Scientific Conference, Computer Science,
Applied Computer Systems, 2010, pp.45-51.

[20] A.Cernickins, “An analytical review of Model Driven
Architecture (MDA) tools,” Master’s thesis. Riga, 2009.

[21] A.Cernickins, “Clarifying a Vision on Certification of MDA
Tools,” Scientific Papers, University of Latvia. Vol.757.
Computer Science and Information Technologies, Latvia,
Riga, 5.-7. July, 2010, pp 23-29.

[22] I.Sommerville, “Software Engineering” (8th edition),
Addison-Wesley, Wokingham, 2006.

[23] MOF 2.0/XMI Mapping, Version 2.1.1:
http://www.omg.org/spec/XMI/2.1.1/PDF

[24] Implementing Model Driven Architecture using Enterprise
Architect. Mapping MDA Concepts to EA Features:
http://www.sparxsystems.com/downloads/whitepapers/EA4M
DA_White_Paper_Features.pdf

[25] XML Schema: http://www.w3.org/XML/Schema

[26] A.Cernickins, O.Nikiforova, K.Ozols, J.Sejans, “An Outline
of Conceptual Framework for Certification of MDA Tools,”
Model-Driven Architecture and Modeling Theory-Driven
Development, Greece, Athens, 22.-24. July, 2010. - pp 60-69.

398

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 414 / 612

Automatic Generation of GUI from VDM++ Specifications
VDM++ GUI Builder

Carlos A. L. Nunes
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

ei05095@fe.up.pt

Ana C. R. Paiva
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

apaiva@fe.up.pt

Abstract—The Vienna Development Method is supported by
several tools. These tools allow generating Java code from a
VDM++ specification but do not generate a graphical user
interface (GUI). This paper describes a generic approach and
tool to automatically generate a GUI in Java from a VDM++
specification. The generated GUI calls methods of the VDM++
specification, which allows testing the specification itself in
order to increase confidence that it is an accurate description
of the intended behaviour. This GUI may evolve to interact
with the already supported generation code in Java (for the
API) in order to obtain a complete application from a VDM++
specification based on a fully automatic code generation
process.

Keywords-Formal Methods; Graphical User Interfaces;
Vienna Development Method; Automatic Code Generation

I. INTRODUCTION
In the development of a VDM++ specification,

interaction with the underlying model is usually done by the
use of an interpreter – VDMTools [1] or VDMJ [2].
Although current tools provide an API to externally use the
interpreter [1, 2], they offer little more than a way to
establish the connection. As this stands, in order to create a
Graphical User Interface (GUI) to interact with a VDM++
specification, a developer is forced to design and implement
it from the ground up, and also create the necessary “glue”
between the VDM interpreter/tool and the GUI.

Using automatic code generation techniques from a
formal specification, this research work puts forward an
approach that allows users to interact with a VDM++
specification through an automatically generated GUI.
Enabling the developer to execute and test the VDM++
specification without the direct use of an interpreter.

Additionally, the generated GUI may be considered as an
evolutionary prototype and be connected with the API code
generated by current tools, in the following steps of the
development process, in order to provide a complete
application obtained by a fully automatic code generation
process.

This paper is organized as follows: Section II introduces
related work; Section III presents basic concepts related to
the context of this work; Section IV describes the GUI
generator tool and its approach; Section V presents a case

study; Section VI discusses the results of a case study; and
Section VII presents conclusions and future work.

II. STATE OF THE ART
The development of Graphical User Interface (GUI) is,

currently, tied to the use of tools and techniques that support
the design and implementation of the user interfaces. These
tools and techniques vary according to the main problem
they focus on and use different approaches in order to
achieve the common goal of assisting the developer.

A. Interactive Graphical Tools
Also called GUI builders, this type of tool makes it

possible to “drag and drop” interface components into place,
in order to create windows and dialogs. Leaving to the
developer the task of coding the actions associated to a given
interface.

In this manner, the developer can instantly see the final
result. Something that is not always straightforward when
coding the GUI.

This kind of tool gained its momentum with the NeXT
Interface Builder [3].

Two examples of such tools, currently in use, are the
Glade interface builder [4] and the interface builder
component of the NetBeans integrated development
environment [5].

B. Graphical User Interface Markup Languages
Conventional programming methods to develop a GUI

use a specific programming language, and often lead to the
creation of repetitive, sometimes error prone, and frequently
complex code. User Interface Markup Languages address
these problems by describing the GUI in a markup language,
usually dialects of XML. Relying on sub-applications to
interpret and transform the GUI description into program
code. This approach, besides reducing the amount of written
code, makes it easier for the developer to concentrate on user
interface design, instead of functionality [6].

Examples of user interface markup languages include
UsiXML [7], XAML [8], XUL [9] and SwiXML [10].

 However these languages still rely on the developer to
insert functionality using a more conventional approach.

399

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 415 / 612

C. Property Models
Graphical user interfaces usually possess dependencies

between values manipulated by the user interface, that lead
to conditionally enabled GUI elements. The implementation
of this aspect of a user interface is time consuming and once
again leads to repetitive code. This is the problem property
models address.

By maintaining an explicit model of dependencies
between parameters of a command, property models can then
be used by reusable algorithms to implement enabling or
disabling of user interface elements.

But as stated, the model needs to be explicitly defined,
requiring the use of a special purpose language or similar
construct [11] .

D. Formal Language-Based Tools
The motivation behind the use of existing formal method

based techniques is a strong emphasis on dialog
management. Which for example, in typical graphical
installation user interfaces is indeed a very important aspect.
However, outside of this user interface style, dialog
management by the system does not contribute to having a
shortest path between windows.

Other problems with this kind of tool are the difficulty of
expressing unordered operations, thus the interface would
have a very rigid sequence of required actions; and the need
for the developer to learn a new special purpose language
[3].

E. Constraints
“A constraint can be thought of intuitively as a restriction

on a space of possibilities (…). Mathematical constraints are
precisely specifiable relations among several unknown (or
variables), each taking a value in a given domain (…)” [12].
This concept can be used to implement several different
aspects of a user interface. Two examples of such a tool are
Amulet [13, 14] and Subarctic [3].

Relying on constraints, a user interface designer can, for
example, easily define that a line has to be attached to a
button. In the same way, the colour, position and size of an
object can be derived from a relationship with another object
expressed by a constraint. At the end, a constraint solver is
used to find a solution.

These types of systems offer a simple and declarative
specification for implementing a user interface however, as
far as we know, they are not used beyond research
environments. One of the reasons for this is the inherent
unpredictability of the resulting user interface.

The solver will try to find a solution that satisfies all
constraints. When several solutions exist, the solver may find
one that was not expected by the interface designer.

Another difficulty lies in the debugging of a set of
constraints, as locating the bug may not be easily done. A
related problem is the need by some solvers, to build the set
of constraints in a particular form (for example, in a linear
form), or the need for the developer to know some details of
how the solver works. Also, it can prove to be difficult to
master the declarative programming paradigm of constraints
as most developers are used to imperative programming

languages – in which the way to approach problems is
different [3].

Nevertheless, constraints are widely used for layout
control. NeXTStep, for example, provided a limited form of
constraints that could be used to control layout [3]. This form
of constraints gained a fair share of usage as the results were
more predictable to developers, and was also easier to use.
The Java platform also makes use of constraints in the form
of layout managers [15].

F. Automatic Model-Based Techniques
The goal of these tools is to free the developer from GUI

implementation details, allowing him to focus on developing
functionality.

The motivation for this kind of tools may be the rapid
development of quality user interfaces; endowing
programmers with little to no experience in building user
interfaces, the capacity to create high quality user interfaces;
automatically creating user interfaces suited for a wide range
of platforms, without the need of additional work.

Early examples of such tools are UIDE [3] and
HUMANOID [16]. These systems used heuristic rules to
select the suitable elements and layout, as well as other
details of the user interface specified by the model. A more
recent example of an automatic model-based technique
generates user interfaces from UML domain and use case
models [17].

A common disadvantage in the use of these techniques is
the degree of unpredictability. When heuristics are involved,
the final result of the user interface specification may be
difficult to predict. Another common disadvantage is the
need to learn a special purpose modelling language. And due
to the inherent difficulty of automatically generating user
interfaces, this kind of tools typically place significant
limitations on the type of user interfaces they can produce.
This usually leads to the generated user interface being not as
good as one created by more common programming
techniques [3, 18].

G. Summary
The tools or techniques, described above, focused on a

specific aspect or problem within GUI development. For this
work, the main problems are: user interface design, defining
the look and feel; assigning functionality to the interface; and
automatic GUI generation. As the basis for the GUI
generation process is a formal model, this approach can be
considered an “Automatic Model-Based Technique”, with
the distinguishing features of not relying on a special
purpose modeling language, and the removal of
unpredictability. Another new aspect is the use of a XML
markup language to describe the user interface, giving a
greater degree of freedom to make alterations after the
automatic generation. No attention to user interface
functionality is required from the developer.

400

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 416 / 612

III. BASIC CONCEPTS

A. Formal Methods
Formal methods, in the context of software engineering,

are a set of mathematical based languages, techniques and
tools to specify and verify systems, in order to develop
reliably systems despite their complexity [19]. The use of
formal methods does not guarantee correctness, but can
reveal system inconsistency, ambiguity, and omissions that
otherwise could pass undetected.

For specifying the system and its properties in great
detail, a formal method uses a specification language, with
mathematical based syntax and semantics. As for system
verification, formal reasoning techniques are used [19, 20]
[21, 22].

B. The Vienna Development Method (VDM) Language
The Vienna Development Method is one of the oldest

formal methods [23]. Initially the method only possessed a
meta-language for specification, but evolved to include the
VDM++ specification language. The VDM++ language is an
object-oriented version of the VDM-SL formal language.
Apart from classes, the VDM++ language includes instance
variables, operations, functions, types, operators and
expressions. As with the VDM-SL, VDM++ allows the
definition of invariants, pre-conditions and post-conditions.

Besides basic types, such as Boolean and numeric, the
language includes three collection types – set, seq and map.
A set consists of a unordered collection without repeated
elements of the same type; a seq consists of an ordered
collection of elements, allowing repetition; and a map is a
finite function relating elements of type A with elements of
type B [24] [25].

IV. VDM++ GUI BUILDER
The VDM++ GUI builder generates a GUI from a

VDM++ specification. VDM++ can be used to model
virtually any kind of system. So the GUI generation
approach should be generic enough to work on any kind of
modelled system.

A. Architecture
The VDM++ GUI Builder is integrated with the tools

developed in the context of Overture Tool Project [26] – an
open source project to develop a set of high quality formal
modelling tools, built on top of the Eclipse Platform [27].

As such, the VDMJ engine [2] is used to execute and
evaluate VDM instructions, as well as providing the bulk of
the information about the VDM++ specification necessary
by the GUI generator.

The other major external tool (not part of Overture) used
is the SwiXML Engine [10]. This engine is used to render
the GUI elements from a XML description generated by the
VDM++ GUI Builder. This tool was chosen because it is
specifically designed for Java applications and possesses a
very simple mechanism for UI element search. The tool
optionally assigns an id for each UI element, which can be
used in runtime mode to retrieve the corresponding UI
element.

Figure 1. Diagram of the architechture

As shown in Figure 1, the architecture has five major
modules:

• The interpreter wrapper,
• The class reader,
• The UI manager,
• The container bridge,
• The internal representation.
The Interpreter Wrapper serves to establish a link

between the external VDMJ engine and the VDM++ GUI
Builder. It allows calling VDM++ specification methods and
retrieving the result.

The Class Reader is used to collect/maintain an internal
representation of the information about the VDM++ classes
inside the specification, for instance, their operations,
functions, constructors and other elements, tailored for the
purposes of GUI generation. This module relies heavily on
VDMJ to extract such information. Even though, this module
can be replaced with another one in order to use the VDM++
GUI Builder with other tools different from the ones
available within the Overture project.

The UI Manager is used to create the windows of the
GUI, and serves as an intermediary to the functionality of the
underlying VDM specification during runtime.

The Container Bridge, serves as a backend to a window.
Basically providing actions during runtime to the events of
the user interface and a wrapper for a generated window.

Finally, the Internal Representation is an internal
depiction of the VDM++ specification from which the GUI
will be generated.

B. Annotations
In order to provide extra information not extractable from

a pure VDM++ specification, some annotations were
defined. These annotations are written within VDM++
comments (starting with “--”) so that it does not require an
extension to the VDM++ grammar. The annotations take the
form of “--@name=value” or “--@name” and are handled
separately by the approach.

The annotations are intended for VDM++ classes,
operations and functions. There are two specific annotations
for methods (operations or functions), “--@press” and “--
@check=<value>” and one for classes “--@nowindow”. The
press annotation is intended to identify methods that describe

401

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 417 / 612

possible user action, and “--@check=<value>” is used to
retrieve information – value is used to name the state
variable with the required information. This annotation can
only be applied to methods without arguments. As for the “--
@nowindow” class annotation, it serves to mark classes that
are to be ignored by the GUI generation process. These
would be auxiliary classes in the specification that are not
converted to windows on the generated GUI.

C. GUI Generation Strategy
As previously stated, a VDM++ specification is the basis

for the GUI generation process. As this formal specification
can be used to describe almost any kind of system, and lacks
any intentional GUI oriented elements, the generation
strategy relies primarily on signature analysis of methods to
create the GUI elements.

The GUI generation strategy supports two different
generation modes. One ignoring annotations and another one
using annotations to guide the GUI generation process.

The strategy assumes that each class is a valid basis for a
single window. In a specification with n classes (not
annotated with “--@nowindow”), the resulting GUI will
have n+2 windows – two additional windows, one with n
buttons to give access to the other windows (Figure 8), and
another to show all the class instances created in each
moment of the execution, for debugging purposes (Figure
10).

Apart from annotations, the GUI elements are generated
from the analysis of the signatures of the methods of the
underlying class.

Not relying on annotations, a method will lead to the
generation of input data GUI elements for the arguments, a
button with the name of the method, and in cases where there
is a return value, an output data GUI element (Figure 2). In
cases where the parameter is a class, the generated GUI
provides a combo box with the class instances created until
that moment.

Figure 2. Example of a generated window from the “Dining” VDM++

example (//overture.svn.sourceforge.net/)

Relying on extra information provided by annotations,
the generation process adopts a different approach. When a
method is annotated with “--@press” the generation strategy
will be the same as the one previously described. The
annotation serves only to explicitly define that the method is
to be parsed in the context of GUI generation. If the method
is annotated with “--@check=<value>”, two labels will be
generated. The first label will show the string defined by

<value>, the second will have the return value of the
corresponding method.

Figure 3. Example of a window generated from the class Card (with

‘check’ annotated methods) of the Dispenser system used in the case study.

All windows generated from VDM++ specification
classes have a drop-down list. This list (labelled “Current
Instance” in Figure 3) contains all the instances of such class.

Such list also contains a “new” option to allow the
construction of new instances. This option leads to the
immediate creation of a new instance of the class when it
does not have a constructor, or to a new window (Figure 4)
when there is a constructor with arguments.

Figure 4. Example of a window generated from the class System of the
“ElectronicPurse” specification found in //overture.svn.sourceforge.net .

D. Dependency Graph
There may exist GUI elements disabled at a given time.

For example, when a method has a parameter of the type
Class X and there is no instance of such class, this method is
disabled. In order to address this issue, the approach keeps
track of the dependencies of a given method and checks if
they are satisfied.

Figure 5. Graph representing the dependencies of simple list system.

The above graph (Figure 5) represents the dependencies
obtained from a specification of a list. The specification has
two classes, “Item” and “List”, the latter possessing one
operation, “AddItem” (represented by a dashed arrow in
Figure 5). This operation requires the existence of an “Item”
instance to be enabled (dependency represented by a solid
arrow in Figure 5).

Extending the previous example, so that a “List” requires
a “Person”, would generate the dependency graph in Figure
6 which means that it will be possible to construct List
instances only after creating Person instances.

Figure 6. Graph representing the dependencies of the extended system.

402

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 418 / 612

V. CASE STUDY
The Overture Project provides several examples of

VDM++ specifications (//overture.svn.sourceforge.net/). In
order to evaluate the approach, including the use of
annotations, the Cash Dispenser system was selected. The
specification describes a system that allows the withdrawal
money from accounts using a card and a till. The system
keeps record of issued cards, cardholders and current
accounts, and can issue card statements to the cardholders.
The VDM++ specification used in this experiment includes
the class “SimpleTest” used as a test case. Since this class
does not specify additional behaviour of the system being
modelled, the “--@nowindow” annotation was added to it.

The following figure depicts the dependencies that the
specification has, according to the previously described
approach. Note that in Figure 7, only classes, operations and
functions with dependencies are represented.

Figure 7. The Cash Dispenser system dependency graph.

The generated main window is shown in Figure 8. The
Till button is initially disabled because there is a dependency
between Till class and CentralResource class (represented by
a solid arrow in Figure 7) which means that an instance of
CentralResource in needed in order to construct a Till
instance.

Figure 8. The main window with the Till button disabled

An instance of CentralResource class is immediately
constructed when opening the corresponding window
(Figure 9) because such class has no defined constructor. The
window has two buttons disabled, “AddLetterbox” and
“AddAccount” – their dependencies are not yet satisfied, as
illustrated in Figure 7. “AddLetterBox” method is enabled
after creating instances of “Clock” and “Letterbox” classes.
“AddAccount” method is enabled after constructing
instances of the “Account” class.

Figure 9. The “CentralResource” window with AddLetterBox and

AddAccount buttons disabled

 After creating the “Clock” and the “Letterbox”, the
“AddLetterbox” operation becomes enabled, with the
appropriate controls now populated with the constructed
instances of “Clock” and “Letterbox” classes.

Figure 10. The list of instance window, after creating the instances.

VI. DISCUSSION
As the case study shows, the described approach is able

to generate a fully functional GUI to interact with a VDM++
specification, with minimal additional effort from the part of
the developer. It enables calling methods present in the
specification and displaying the return value.

However, the generated GUI is unsophisticated, due to
the inherent difficulty of implementing a GUI generation
process based on a formal language not specific for GUI
modelling (apart from the annotations introduced by the
approach). More annotations could be introduced, but they
would require additional modelling effort, which could put
into question the goal of this research work: generate a GUI
from a generic VDM++ specification with minimal
additional effort.

The GUI element enabling/disabling previously
described can check argument availability but does not
validate it. For example, a method that takes as argument a
class instance would still be accessible, even if the available
instances themselves possessed undefined or invalid required
values. But this is not necessarily a limitation of the
approach. As it could serve to help the developer identify
situations where function or operation pre-conditions are
missing.

VII. CONCLUSION AND FUTURE WORK
The described approach is able to generate a fully

functional GUI from a VDM++ specification. The generated
GUI is also capable of enabling/disabling GUI buttons based
on a dependency graph extracted from the analysis of GUI
specification methods. The approach achieves this while
following the grammar of the VDM++ formal language and

403

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 419 / 612

without requiring the user active participation in the GUI
generation process.

Furthermore, by adding annotation with additional
information to the VDM++ specification, it is possible a
better adjustment of the GUI elements generated.

Taking into account the results and features of available
VDM++ tools, the approach could be improved in the
following ways:

• Adding different user interface patterns to choose
from. Based on the design pattern terminology in
[28], this approach uses a user interface pattern [29]
that focuses on guaranteeing that the GUI will be
adequate for a VDM++ specification, whichever it
may be. But in terms of an evolving UI prototype, it
could be useful to try different interface patterns.

• Taking advantage of the available pre-conditions in a
VDM++ specification. The dependencies that check
for GUI element enabling/disabling could also be
extended to include the evaluation of pre-conditions.

• Implementing the connection of the generated GUI
with the API code generated automatically by
existing VDM tools. VDM Tools are capable of
generating Java code from a VDM++ specification.
The integration of the GUI with this code would lead
to a standalone java GUI application created with no
user intervention from a VDM++ specification. This
could be achieved by making the UI Manager
module aware of the proper VDM methods
equivalents in the generated Java code. Thus
‘redirecting’ the GUI calls to such methods in Java
instead of VDM++ methods like what happens now.

• Make the class reader dependent on the Overture
AST when the development of this tool is
completed. Currently the tool depends directly on
VDMJ for extracting class information, but this is
not a recommended method. Ideally the tool should
use a purposely built Abstract Syntax Tree.

REFERENCES
[1] C.S.K. Corporation, The VDM Toolbox API 1.1, 2008.
[2] N. Battle, VDMJ Tool Support: User Guide, 2011.
[3] B. Myers, S.E. Hudson, and R. Pausch, Past, present, and

future of user interface software tools. ACM Trans. Comput.-
Hum. Interact., 2000. 7(1): pp. 3-28.

[4] D. Aitel, A beginner's guide to using pyGTK and Glade.
Linux J., 2003. (113): p. 5.

[5] Oracle. Lesson: Using the NetBeans GUI Builder. [2011
6/3/2011]; Available from:
http://download.oracle.com/javase/tutorial/javabeans/nb/.

[6] J. Bishop, Multi-platform user interface construction: a
challenge for software engineering-in-the-small, in
Proceedings of the 28th international conference on Software
engineering, 2006, ACM: Shanghai, China. pp. 751-760.

[7] Q. Lambourg, et al., USIXML: A Language Supporting Multi-
path Development of User Interfaces, in Lecture Note in
Computer Science2005. pp. 134-135.

[8] Microsoft Corp., XAML Overview (WPF). [29/06/2011];
Available from: http://msdn.microsoft.com/en-us/en-
us/library/ms752059.aspx.

[9] M.D.N., The Joy of XUL. [28/05/2011]; Available from:
https://developer.mozilla.org/en/The_Joy_of_XUL.

[10] W. Paulus, SwiXML [03/06/2011]; Available from:
http://www.swixml.org/.

[11] J. Jarvi, et al., Algorithms for user interfaces, in Proceedings
of the eighth international conference on Generative
programming and component engineering 2009, ACM:
Denver, Colorado, USA. pp. 147-156.

[12] P.V. Hentenryck, and V. Saraswat, Strategic directions in
constraint programming. ACM Comput. Surv., 1996. 28(4):
pp. 701-726.

[13] B.A. Myers, et al., The Amulet user interface development
environment, in CHI '97 extended abstracts on Human factors
in computing systems: looking to the future 1997, ACM:
Atlanta, Georgia. pp. 214-215.

[14] B.T.V. Zanden, et al., Lessons learned about one-way,
dataflow constraints in the Garnet and Amulet graphical
toolkits. ACM Trans. Program. Lang. Syst., 2001. 23(6): pp.
776-796.

[15] I. Darwin, GUI Development with Java. Linux J., 1999.
1999(61es): pp. 4.

[16] P. Szekely, P. Luo, and R. Neches, Facilitating the
exploration of interface design alternatives: the HUMANOID
model of interface design, in Proceedings of the SIGCHI
conference on Human factors in computing systems 1992,
ACM: Monterey, California, United States. pp. 507-515.

[17] A. Rosado and J.P. Faria, A metamodel-based approach for
automatic user interface generation, in Proceedings of the
13th international conference on Model driven engineering
languages and systems: Part I 2010, Springer-Verlag: Oslo,
Norway. pp. 256-270.

[18] J. Nichols, D.H. Chau, and B.A. Myers, Demonstrating the
viability of automatically generated user interfaces, in
Proceedings of the SIGCHI conference on Human factors in
computing systems 2007, ACM: San Jose, California, USA.
pp. 1283-1292.

[19] E.M. Clarke and J.M. Wing, Formal Methods: State of the Art
And Future Directions. ACM Comput. Surv., 1996. 28: pp.
626-243.

[20] D. Bjørner, The Vienna development method (VDM):
Software specification and program synthesis, in Proceedings
of the International Conference on Mathematical Studies of
Information Processing 1979, Springer-Verlag. pp. 326-359.

[21] VDMTools: advances in support for formal modeling in
VDM. SIGPLAN Not., 2008. 43(2): pp. 3-11.

[22] J. Woodcock, et al., Formal methods: Practice and
experience. ACM Comput. Surv., 2009. 41(4): pp. 1-36.

[23] P.G. Larsen and J.S. Fitzgerald. Recent Industrial
Applications of Formal Methods in Japan. in BCS-FACS
Workshop on Formal Methods in Industry. 2008. British
Computer Society.

[24] J.S. Pedersen and K.H. Shingler, Software Development
Using VDM, 1989.

[25] P.G. Larsen, et al., VDM-10 Language Manual, 2011.
[26] P.G. Larsen, et al., Tutorial for Overture/VDM++, 2010.
[27] A. Wolfe, Eclipse: A Platform Becomes an Open-Source

Woodstock. Queue, 2003. 1(8): pp. 14-16.
[28] L. Aversano, et al., An empirical study on the evolution of

design patterns, in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering 2007, ACM: Dubrovnik, Croatia. pp. 385-394.

[29] A. Granlund, D. Lafrenière, and D.A. Carr. A Pattern-
Supported Approach to User Interface Design Process. in
HCI International'2001. 2001. New Orleans: Lawrence
Erlbaum Associates.

404

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 420 / 612

An Approach to Model, Configure and Apply QoS Attributes to Web Services

Ahmed Al-Moayed
Department of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

ahmed.almoayed@hs-furtwangen.de

Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

bernhard.hollunder@hs-furtwangen.de

Abstract—Service-oriented architectures has become a com-
monly accepted solution for integrating enterprise applica-
tions around the globe. As the SOA environment grows, its
complexity and the complexity of modelling, configuring and
applying quality of service attributes to it increases. Though
there are some tools supporting these activities, they are either
limited to certain quality of service domains or dependent to
specific development environments. In this paper, we elaborate
a concept for managing quality of service attributes for Web
services. In particular, our approach covers the modelling
of arbitrary quality attributes based on a meta-model for
quality attributes. It also covers the generation of a graphical
user interface to configure the modelled quality of service
attributes and the transformation of the modelled QoS attribute
into policy descriptions. Finally, our approach outlines the
assignment of the policies to the target Web services. This
approach offers a solution, which reduces the cost and effort
by the creation of QoS-aware Web services.

Keywords-Service-oriented architecture, meta-model, model-
model transformation, QoS-aware Web services

I. INTRODUCTION

Service-oriented architectures (SOA) refers to a system
architecture that provides a variety of different and pos-
sibly incompatible methods and applications as reusable
services. As an enterprise may have a huge variety of service
providers, which offer the same functionality, the services
may differ in the non-functional requirements. A well de-
signed application should have a precise functional goal
and a set of non-functional requirements such as security
and performance, which must be full-filled during execution
time.

Applying quality of service (QoS) to distributed Web ser-
vices is an important process as the demand for high quality
Web services in terms of non-functional attributes raises.
One way to apply QoS to Web services is by associating it
with the Web Service Definition Language (WSDL). The
WS-Policy Framework [7] is an OASIS standard, which
allows Web services to express their capabilities, require-
ments and general characteristics in an XML form. However,
in order to create such policies, a certain policy grammar
knowledge is needed, which is not always acquired by Web
service developers. In this paper, we present an approach,
which offers an easy way to model quality of services for

Web services and applies them to any Web service without
being dependent on any kind of IDE (Integrated Develop-
ment Environment), implementation language or previous
knowledge of the implementation source code of a Web
service.

We distinguish two kinds of developers: a QoS developer
and Web service developer. The first one is responsible for
modelling and implementing new QoS attributes; the latter
one is responsible for applying the required QoS attributes
to Web service once they have been developed.

There are a few tools, which allow the Web service
developer to select certain QoS and apply them to a Web
service. The problem with existing tools is, they are either
hard to extend, mostly restricted to a certain policy domain,
such as WS-SecurityPolicy [9] and WS-ReliableMessaging
[8], or bundled with a specific IDE. To our best knowledge,
there is no tool support, which offers both QoS developers
and Web service developers the following features:

• A flexible, extended and simple meta-model for QoS
modelling.

• An easy way to model and create QoS attributes for
Web services and place them under a Web service
developer’s disposal.

• A dynamic graphical user interface, which allows the
developer to easily and separately configure the mod-
elled QoS attributes for each designated Web service.

• A QoS editor, which is not platform-, IDE- or language-
specific. An editor, which supports SOA as an archi-
tecture and not Web service as a language-specific
implementation.

• Automatic transformation of the configured QoS model
into an adequate policy and automatically associate the
created WS-Policy with the Web service.

• Association of the created policy description with the
Web service.

While developing a Web service, an IDE is more than just a
source code editor, which helps the Web service developer
to write source code and to offer the developer code sugges-
tions. It also automates many processes during development
such as code compiling, generation of proxies and stubs
and code deployment. However, there is only limited IDE

405

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 421 / 612

support for developing QoS-aware Web services. This paper
is one step to improve this support. It offers a solution,
which automate and simplify the modelling, configuring and
applying of QoS attributes to Web services. The Web service
developer will no longer be required to directly configure
the required set of low-level policy assertions and manually
configure steps in order to apply the modelled QoS to Web
services. This will reduce the developing effort and the costs
of creating a QoS-aware Web service.

This paper is structured as follows: Section II gives an
overview on our approach. Section III describes the QoS
meta-model used in this paper. The QoS model will be
explained in Section IV. Section V describes the dynamic
QoS graphical user interface, which is derived from the QoS
model. Section VI will shed a light on QoS model to policy
transformation. Related work will be discussed in Section
VII. Section VIII discusses future works. In the final section,
we will conclude this paper.

II. APPROACH

The first component is the meta-model. It describes ex-
actly how the QoS model is created or defined. There are
many QoS meta-model proposals, which can be used to
define and apply QoS models for Web services. Malfatti
[6] introduced a suitable meta-model for our approach. It
is simple, extensible, easy to understand and expressive
enough to model arbitrary QoS attributes. The meta-model
was created in Eclipse Modelling Framework (EMF) (Core)
meta-model, a powerful tool for designing models and their
runtime support.

The QoS model offers the QoS developer a way to
model QoS attributes within certain QoS categories. These
categories are already defined in the QoS meta-model. As we
will see in Section IV, with this meta-model, we will be able
to model different QoS attributes including some standard-
ized QoS attributes such as reliable messaging and security.
The QoS model is expressed in XML format. EMF, however,
provides Java interfaces, Java implementation classes and a
factory and package (meta data) implementation class, which
provides support for building and modifying EMF models.
The QoS developer will be able to use an EMF editor to
manually add or remove QoS attributes.

Once a QoS model has been created, a graphical user
interface will be automatically generated. The QoS model
includes essential information on how the graphical user
interface (GUI) should look like. Depending on certain
elements in the QoS model, the GUI will be able to adapt
to new changes. For example, depending on how many QoS
categories are modelled, the GUI will generate a tab for each
category. Within the same category, the QoS attribute will be
presented. The GUI will also collect additional data from the
Web service, such as the service endpoint interface methods,
which will be needed for later steps in order to generate
QoS policies. The main purpose of the GUI is to enable

the Web service developer to easily configure the modelled
QoS attributes and apply them to a Web service. Once this
step has been done, the GUI will write the configured QoS
attributes back to the QoS model in order to be transformed
into a policy representation. For the moment, the GUI is
implemented in Java as an Eclipse plug-in. It is, however,
our intention to support other GUI frameworks in the future.

Once all data for the generation of the QoS policies has
been configured in the GUI, component four in Figure 1 will
automatically transform the QoS model into a user defined
QoS policy. This component will be able to transfer the
QoS model to different QoS policies. In this approach, we
have used the WS-Policy to demonstrate this work. Figure
1 summarizes our approach.

III. QOS META-MODEL

The QoS meta-model in Figure 1 has two purposes;
saving monitoring data of existing SOA environments with
existing QoS attributes and the modelling of QoS. QoS
monitoring is not the focus of this work. However, it has
a great importance for future works. The meta-model for
QoS modelling was slightly modified for better flexibility.
The following changes were made in the meta-model:

• The CATEGORY attribute in the QOSPARAMETER was
modified to include only predefined values specified in
the enumeration class QOSCATAGORY.

The following elements were added:
• The QOSVALUE element was expanded to include a

new attribute DATATYPE. The new attribute is neces-
sary for the creating of the QoS graphical user interface
described in Section V.

• A new enumeration class QOSDATATYPE was added.
A predefined values, which are needed for defining the
DATATYPE attribute.

• A new enumeration class QOSCATAGORY was added.
A list of pre-defined categories the QoS model supports.

• A new QOSPROPERTIES element was added. A list of
properties, which could be used to add more informa-
tion to either the QOSPARAMETER or QOSVALUE.

The following element was not considered in the modified
meta-model:

• The QOSLEVEL was not considered in this work since
the modelled QoS is always fulfilled.

The meta-model enables the QoS developer to model QoS
attributes for Web services for different business domains.
A main characteristic of the QoS model is its simplicity and
the ability to model QoS attributes. The QoS model has the
following relationships:

• Every Web service or Web service method has 0..* QoS
parameters.

• Every QOSPARAMETER has exactly one QoS metric.
As described in [6], a metric specifies a measurement
unit used for describing the QOSVALUE.

406

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 422 / 612

GUI will be dynamic generated.
depending on the QoS model

QoS Model will be
instantiated and
filled with data

from GUI

metadata model
defines the structure

of the QoS model

Policy

QoS Model

QoS Model for „Weather Service“ QoS Graphical User Interface

OCL Constrains Performance ReliableMessaging Security

Cancel OK

…

getWeather(int plz)

Method Name QoSParameter

UserID>0

plz>00000 …

Invariant Predicate

 int devid (int a, int b)

Methode (var, var)

string Methode (var)

boolean Methode ()

QoS Meta-model

Quality of Service
meta-model to

model Transformation

 Service
 QoSParameter: Response Time

 QoSMetric: Milliseconds
 QoSAgreedValue:

 QoSParameter:Throughput
 QoSMetric: Request/s
 QoSAgreedValue :

 QoSParameter: Pre-Condition
 QoSMetric: Predicate
 QoSAgreedValue :

 QoSParameter: Pre-Condition
 QoSMetric: Predicate
 QoSAgreedValue :

 QoSParameter: Post-Condition
 QoSMetric: Predicate
 QoSAgreedValue :

 QoSParameter: Response Time
 QoSMetric: Milliseconds
 QoSAgreedValue: 30

 QoSParameter:Throughput
 QoSMetric: Request/s
 QoSAgreedValue : 150

 QoSParameter: Pre-Condition
 QoSMetric: Predicate
 QoSAgreedValue : plz>00000 && plz<99999

QoSParameter: Post-Condition
 QoSMetric: Predicate
 QoSAgreedValue : UserID>0

Category :
Performance

Category: OCL
Constrains

 QoS model instance will be evaluated and
will exported to different Policy languages

1 2

3

4

Name QoSValue QoSMetric

Post-Condition Predicate

Post-Condition Predicate

Post-Condition Predicate

age>0 && ..

Figure 1. An approach to model, configure and apply QoS attributes to Web services

• Every QOSPARAMETER has exactly one QoS value.
• Every QOSPARAMETER and QOSVALUE have 0..*

QoS properties. It is used to add extra information about
the QOSPARAMETER or QOSVALUE.

• Every QOSPARAMETER has 0..* monitored QoS val-
ues. The monitored QoS values are series of values
taken by the monitoring system in order to be either
compared to the QOSAGREEDVALUE or to be used to
compute instant or average values.

• Every QOSPARAMETER has 0..* QoS monitoring rules,
a rule defines how the QoS attributes in SOA should
be monitored.

This meta-model is based on EMF (Core), a modelling
framework and code generation facility, which is used to
building tools and applications based on a structured data
model.

IV. QOS MODEL

In this section, we will model three QoS attributes to
demonstrate the flexibility of the model. We will present
a standardized QoS attribute from the WS-* family and
introduce two non-standardized QoS attributes. The first QoS
attribute is from WS-ReliableMessaging. Listing 1 models
QoS attributes described as a RM policy assertion example
in [8], Section 2.4. In the following example, lines (2) -
(6) indicate that if the idle time exceeds ten minutes, the
sequence will be considered as terminated by the Service
Endpoint. lines (7) - (11) express that an unacknowledged
message will be transmitted after three seconds. Lines (12)
- (16) express that the exponential backoff algorithm will be

1<q o s s o a : S e r v i c e x m i : v e r s i o n =” 2 . 0 ”
2 <RQoSParameter name=” I n a c t i v i t y T i m e o u t ”
3 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
4 <RQoSMetric name=” M i l l i s e c o n d ” />
5 <RQoSAgreedValue v a l u e =” 600000 ” da taType =” I n t e g e r ” />
6 </ RQoSParameter>
7 <RQoSParameter name=” B a s e R e t r a n s m i s s i o n I n t e r v a l ”
8 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
9 <RQoSMetric name=” M i l l i s e c o n d ” />

10 <RQoSAgreedValue v a l u e =” 3000 ” da taType =” I n t e g e r ” />
11 </ RQoSParameter>
12 <RQoSParameter name=” E x p o n e n t i a l B a c k o f f ”
13 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
14 <RQoSMetric />
15 <RQoSAgreedValue />
16 </ RQoSParameter>
17 <RQoSParameter name=” A c k n o w l e d g e m e n t I n t e r v a l ”
18 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
19 <RQoSMetric name=” M i l l i s e c o n d s ” />
20 <RQoSAgreedValue v a l u e =” 200 ” da taType =” I n t e g e r ” />
21 </ RQoSParameter>
22 . . .
23</ q o s s o a : S e r v i c e>

Listing 1. QoS model for reliable messaging

used to retransmitted the message if the message was not
acknowledged. Lines (17) - (21) indicate that an acknowl-
edgement could be buffered up to two-tenths of a second by
the RM destination.

The following example models a QoS attribute, which
is not standardized. Listing 2 describes OCL constraints, a
well-known formalism for expressing constraints on classes
variables, methods parameters or methods return values.
The OCL constraints set preconditions, postconditions and
invariants for the Web service class or Web service methods.
The pre-condition in line (4), for example, indicate that the
given age must be within a range, a minimal age of 18

407

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 423 / 612

1<q o s s o a : S e r v i c e x m i : v e r s i o n =” 2 . 0 ”
2 xmlns :xmi =” h t t p : / /www. omg . org /XMI”
3 x m l n s : q o s s o a =” h t t p : / / q os so a / 1 . 0 ”>
4 <RQoSParameter name=” p r e C o n d i t i o n s ”
5 c a t e g o r y =” OCLConst ra ins ”>
6 <RQoSMetric name=” p r e d i c a t e ” />
7 <RQoSAgreedValue v a l u e =” age>=18 && age<=120”
8 da taType =” S t r i n g ” />
9 </ RQoSParameter>

10 <RQoSParameter name=” p r e C o n d i t i o n s ”
11 c a t e g o r y =” OCLConst ra ins ”>
12 <RQoSMetric name=” p r e d i c a t e ” />
13 <RQoSAgreedValue v a l u e =” zipCode >01000 &&
14 zipCode <99999 && zipCode . s i z e ==5”
15 da taType =” S t r i n g ” />
16 </ RQoSParameter>
17 . . .
18 <RQoSParameter name=” p o s t C o n d i t i o n ”
19 c a t e g o r y =” OCLConst ra ins ”>
20 <RQoSMetric name=” p r e d i c a t e ” />
21 <RQoSAgreedValue v a l u e =” user ID>0”
22 da taType =” S t r i n g ” />
23 </ RQoSParameter>
24 <RQoSParameter name=” I n v a r i a n t ”
25 c a t e g o r y =” OCLConst ra ins ”>
26 <RQoSMetric />
27 <RQoSAgreedValue />
28 </ RQoSParameter>
29</ q o s s o a : S e r v i c e>

Listing 2. QoS model for OCL constraints

years and maximum of 120 years. The pre-condition in line
(10) indicates that the given zip code must be within rang
between 01000 and 99999. It also implies that the zip code
must be of five digits since these pre-conditions must comply
with the zip code rules in Germany. The post-condition in
line (18) defines that the return value USERID shall not be
a negative number. The model offers also the possibility to
specify an OCL invariant condition as shown in line (24).

Another example of modeling QoS attributes is perfor-
mance. Response time and throughput are QoS attributes,
which are two of the most common used attributes in order
to measure performance. As response time refers to the
duration, which starts from the moment a request is sent
to the time a response is received, throughput refers to the
maximum amount of requests that the service provider can
process in a given period of time without having effect on
the performance of the Web service endpoint [10]. Listing
3 shows an example of how performance can be modelled.
Line (4) defines the QoS attribute “ResponseTime”, which
indicated that the Web service shall guarantee a response
time within 10 milliseconds. Line (9) indicated that the Web
service will be able to handle up to 120 request/second
without having any change on the Web service performance.

V. GRAPHICAL USER INTERFACE

The graphical user interface is a component, which uses
the QoS model to create its representation. Its main purpose
is to offer the Web service developer a graphical tool to
configure the QoS values of the modelled QoS attributes
and associate them with the Web service.

There are two factors, which decide how the GUI should
look like; the first factor is the QoS model. The QoS model

specifies how many categories shall be represented. Every
QoS category is represented by a GUI tab, where all QoS
attributes under the represented category will be represented.
For example, if the QoS model includes four QoS categories;
performance, OCL constraints, reliable messaging and secu-
rity. The QoS model will be transformed into a GUI, which
has four tabs. Each tab will represent a category. If the QoS
constraints, for example, has four QoS attributes, the QoS
constraints tab on the GUI will represent these four QoS
attributes as shown in Figure 1.

The element QOSMETRIC helps the GUI engine to de-
termin, how the QOSAGREEDVALUE shall be presented.
For example, if the QOSMETRIC indicates that the QoS
attribute is a string, the GUI engine will use a text field.
If the QOSMETRIC is a predicate, then the GUI engine will
use a check box for the presentation of this attribute.

The second factor is the Web service endpoint. A list of
the Web service methods will be extracted either directly
from the Web service endpoint interface (SEI) or from the
WSDL. Each extracted method has its own list of QoS
attributes. If, for example, two Web service methods have
two different “ResponseTime” values, a policy for each
method will be created. This will result in creating a separate
policy for each selected method. The created policy could
be also applied Web service wide. These possibilities give
the Web service more flexibility and dynamic.

VI. QOS POLICY

As a Web service developer configured the QoS attributes
on the graphical user interface, all QoS values will be
assigned to the QOSAGREEDVALUE element in the QoS
model. Once the QoS values has been assigned, a QoS policy
will be generated. If, for example, every Web service method
has different QoS attributes, a separate policy will be created
for every Web service method. A WS-Policy may include
the description of more than one QoS attribute depending
on the user input in the graphical user interface.

Listing 4 shows the modelled QoS in Listing 1 after being
transformed into reliable messaging policy assertion (also
described in [8]). The following transformation rules are
applied:

1<q o s s o a : S e r v i c e x m i : v e r s i o n =” 2 . 0 ”
2 xmlns :xmi =” h t t p : / /www. omg . org /XMI”
3 x m l n s : q o s s o a =” h t t p : / / qos so a / 1 . 0 ”>
4 <RQoSParameter name=” ResponseTime ”
5 c a t e g o r y =” Pe r fo rmance ”>
6 <RQoSMetric name=” M i l l i s e c o n d ” />
7 <RQoSAgreedValue v a l u e =” 10 ” da taType =” Double ” />
8 </ RQoSParameter>
9 <RQoSParameter name=” Troughpu t ” c a t e g o r y =” Pe r fo rmance ”>

10 <RQoSMetric name=” R e q u e s t s / s ” />
11 <RQoSAgreedValue v a l u e =” 120 ” da taType =” Double ” />
12 </ RQoSParameter>
13</ q o s s o a : S e r v i c e>

Listing 3. QoS model for performance

408

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 424 / 612

1<w s p : P o l i c y w su : Id =” MyPolicy ”>
2 <wsrm:RMAssert ion>
3 <w s r m : I n a c t i v i t y T i m e o u t M i l l i s e c o n d s =” 600000 ” />
4 <w s r m : B a s e R e t r a n s m i s s i o n I n t e r v a l
5 M i l l i s e c o n d s =” 3000 ” />
6 <w s r m : E x p o n e n t i a l B a c k o f f />
7 <ws rm :Ac kno wl edg em en t In t e r va l
8 M i l l i s e c o n d s =” 200 ” />
9 </ wsrm:RMAssert ion>

10</ w s p : P o l i c y>

Listing 4. Reliable messaging policy assertion

• The CATEGORY attribute in the QoS model de-
clares the name of the policy. For example, the
category “ReliableMessaging” is transformed into a
wsrm:RMAssertion element declaring a ReliableMes-
saging policy.

• The element RQOSPARAMETER in the QoS model
declares a QoS attribute. The RQOSPARAMETER el-
ement indicates the reliable messaging quality attribute
“InactivityTimeout” and is therefore transformed into
“wsrm:InactivityTimeout” element.

• The element RQOSMETRIC in the QoS model declares
a property or how the QoS should be measured. The
“Milliseconds” is transformed into “Milliseconds” at-
tribute within the “wsrm:InactivityTimeout” element.

• The element RQOSAGREEDVALUE in the QoS model
declares a QoS value. The value “600000” will be
mapped as a value for the QoS attribute.

Listing 5 shows the modelled QoS in Listing 2 after the
transformation into an OCL policy assertion. The same
transformation rules apply as already described above.

Once the policies have been created, component four in
Figure 1 will assign the created policies to the Web service
endpoint interface. In our proof of concept, we use the CXF
policy engine to attach the corresponding policy to either the
selected Web service methods or the Web service endpoint
interface. CXF uses the @POLICY annotation to signal the
compiler that there are policies, which should be considered
and assigned to the correspond at Web service while creating
the Web service WSDL.

VII. RELATED WORK

In our research for related work, a recent approach, which
nearly investigates our approach or even a part of it was
not found. Most of the recent works on QoS-aware Web
services focus on QoS-aware Web services compositions.
They investigate methods, algorithm or frameworks in order
to better compose Web services according to their QoS

1<OCLConst ra ins c o n t e x t =” R e g i s t r a t i o n S e r v i c e ”>
2 <P r e c o n d i t i o n p r e d i c a t e =” zipCode >01000 &&
3 zipCode <99999 && zipCode . s i z e ==5” />
4 <P r e c o n d i t i o n p r e d i c a t e =” age>=18 && age<=120” />
5 . . .
6 <P o s t c o n d i t i o n p r e d i c a t e =” UserID>0”>
7 <I n v a r i a n t />
8</ OCLConst ra ins>

Listing 5. OCL policy assertion

attribute. Such works could be found in [1] [2] [5]. In this
section, we will describe papers, which propose either QoS
meta-models or policy editors.

Tondello et al. [12] proposes a QoS-Modelling Ontology,
which allows QoS requirements to be specified in order
to fully describe a Web service in terms of quality. How-
ever, this proposal focuses on using QoS specification for
semantic Web services description and Web service search.
This approach, however, contains many variables and many
characteristics in ontology for semantic Web services, which
does not flow in the same direction as this work intends to.

Suleiman1 et al. [11] addresses the problem with Web
service management policies during design. The authors
presented a solution, which uses a novel mechanism. It gen-
erates W-Policy4MASC policies from corresponding UML
profiles semi-automatically and feedback information moni-
tored by the MASC middleware into a set of UML diagram
annotations.

D’Ambrogio [3] introduced a WSDL extension for de-
scribing the QoS of a Web service. It uses a meta-model
transformation according to MDA standards. The WSDL
meta-model is extended and transformed into a new WSDL
model called Q-WSDL, which supports QoS description. As
D’Ambrogio favour an approach, which does not support
introducing a new additional language on top of WSDL, our
approach uses standards for the description of QoS attribute
in Web services.

WSO2 WS-Policy editor [14] offers an integrated WS-
Policy editor with the WSO2 application server. The editor
offer two policy views; a source view and a design view.
The source view shows the policy in its XML format and
the design view shows the policy as a tree view. The user
will be able to add and remove element to and from the
policy. However, this policy editor only offers support for
WS-Security and WS-ReliableMessaging. A support for new
QoS attributes is not mentioned.

NetBeans offers a graphical tool, which allows users to
graphically configure security and reliable messaging to a
Web service. Extending this tool, however, is complex due to
the lack of documentation and its dependability to NetBeans
API and Glassfish.

All the these works discuss QoS attributes after the Web
services is developed. Our approach offers a solution to
develop a QoS-aware Web service.

VIII. FUTURE WORK

In [4], we presented the design of a comprehensive tool
chain that facilitates development, deployment and testing
of QoS-aware Web services. This paper is a part of the
work presented in the tool chain, which elaborates a concept
for managing quality of service attributes for Web services.
Future works will include different tasks, which will be
individually explained in this section.

409

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 425 / 612

In Section V, we introduced a GUI, which is dynamically
generated depending on the QoS attributes modelled in the
QoS model described in Section IV. However, the generation
of the GUI is platform-specific. This GUI is only a proof
of concept in order to demonstrate the feasibility of this
approach. Our goal is to create a GUI using MDA as a
base for our approach, which will allow the dynamic GUI
generation to different platform.

Section IV indicates that the QoS model will be trans-
formed to a QoS policy. In this paper, we have only
considered WS-Policy as a policy language in order to prove
that the concept really works. It is the intention of this
approach to offer QoS model transformation support to more
than one policy language. This will increase the flexibility
of our approach.

In [13], we offered a solution architecture, which collects
real time data about applied QoS attributes from the SOA
environment: The purpose of this architecture is to evaluate
the compliance of the entire SOA with the QoS attributes
described in the SOA QoS policy. It is our intention to use
the meta-model mentioned in Section IV for the evaluation
and monitoring of the SOA environment.

This paper presents an approach of how QoS attributes
could be easily modelled and transformed into an adequate
policy language. However, a policy without a handler, which
enforces the policy on the Web service is only half the
solution. Future works include a repository component,
which is designed to store QoS handlers. This repository
will include everything a Web service developer needs to
implement a Web service Handler. This includes handler
implementation, handler configurations and test cases.

IX. CONCLUSION

There are tools and IDEs, which help developers to ease
the process of creating programs and minimizes their error
rates. Nowadays, it is hardly imaginable to start designing
and implementing complex systems without them. To create
a QoS policy and conjugate it with a Web service requires a
good knowledge of its grammar and its mechanism. Tools,
which help developers to model QoS attributes, simplify
the configuration and automate applying QoS attributes to
Web services still has a long way to completion. In this
paper, an approach, which relieve a Web service developer
with this burden, was presented. It offers an easy way to
model QoS attributes. It also supports the modelling of new
QoS attributes, simplifies the configuration and automatize
applying QoS attributes to Web services. It is a step forward
to completing a tool chain for constructing QoS-aware Web
services and reducing a lot of development effort and cost.

X. ACKNOWLEDGMENT

This work has been supported by the German Ministry
of Education and Research (BMBF) under research contract
017N0709.

REFERENCES

[1] M. H. Agdam and S. Yousefi. A Flexible and Scalable
Framework For QoS-aware Web Services Composition. In
Proc. 5th Int Telecommunications (IST) Symp, pages 521–
526, 2010.

[2] P. Bartalos and M. Bielikova. QoS Aware Semantic Web Ser-
vice Composition Approach Considering Pre/Postconditions.
In Proc. IEEE Int Web Services (ICWS) Conf, pages 345–352,
2010.

[3] A. D’Ambrogio. A Model-driven WSDL Extension for
Describing the QoS ofWeb Services. In Web Services, 2006.
ICWS ’06. International Conference on, pages 789–796, sept.
2006.

[4] B. Hollunder, A. Al-Moayed, and A. Wahl. Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions, chapter A Tool Chain for Construct-
ing QoS-aware Web Services, pages 172–188. IGI Global,
2011.

[5] H. Kil and W. Nam. Anytime Algorithm for QoS Web
Service Composition. In Proceedings of the 20th international
conference companion on World wide web, WWW ’11, pages
71–72, New York, NY, USA, 2011. ACM.

[6] D. Malfatti. A Meta-Model for QoS-Aware Service Compo-
sitions. Master’s thesis, University of Trento, Italy, 2007.

[7] OASIS. Web Services Policy Framework - Version 1.5,
September 2007. http://www.w3.org/TR/ws-policy/. Last Ac-
cess: 17.04.2011.

[8] OASIS. Web Services Reliable Messaging Policy - Ver-
sion 1.2, February 2009. http://docs.oasis-open.org/ws-
rx/wsrm/v1.2/wsrm.pdf. Last Access: 23.04.2011.

[9] OASIS. Web Services Security Policy - Version 1.3, April
2009. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/.
Last Access: 17.05.2011.

[10] OASIS. Web Services Quality Factors Version 1.0,
July 2010. http://docs.oasis-open.org/wsqm/wsqf/v1.0/WS-
Quality-Factors.html. Last Access: 17.05.2011.

[11] B. Suleiman and V. Tosic. Integration of UML Modeling and
Policy-Driven Management of Web Service Systems. In Proc.
ICSE Workshop Principles of Engineering Service Oriented
Systems PESOS 2009, pages 75–82, 2009.

[12] G Tondello and F. Siqueira. The QoS-MO Ontology For
Semantic QoS Modeling. In Proceedings of the 2008 ACM
symposium on Applied computing, SAC ’08, pages 2336–
2340, New York, NY, USA, 2008. ACM.

[13] A. Wahl, A. Al-Moayed, and B. Hollunder. An Architecture
to Measure QoS Compliance in SOA Infrastructures. In
Proceedings of the Second International Conferences on
Advanced Service, pages 27–33, Los Alamitos, CA, USA,
2010. IEEE Computer Society.

[14] WSO2. WSO2 WSAS: The WS-Policy Editor 3.2.0 -
User Guide, April 2010. http://www.wso2.org/project/wsas/
java/3.2.0/docs/policyeditor/docs/userguide.html. Last Ac-
cess: 17.05.2011.

410

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 426 / 612

 Transformation of Composite Web Service for QoS Extension into ACME\Armani

 Amel Mhamdi Raoudha maraoui Mohamed Graiet
MIRACL, ISIMS, TUNISIA MIRACL, ISIMS, TUNISIA MIRACL, ISIMS, TUNISIA
 amel.mhamdi1@yahoo.fr maraoui.raoudha@gmail.com mohamed.graiet@imag.fr

 Mouard Kmimech Mohamed Tahar Bhiri Eric Cariou
MIRACL, ISIMS, TUNISIA MIRACL, ISIMS, TUNISIA Université de Pau et des pays de l’Adour
 mkmimech@gmail.com tahar_bhiri@yahoo.fr Eric.Cariou@univ-pau.fr

Abstract— After the great proliferation of Web services, we

can find many services that have the same answer. The Quality
of the Service QoS of Web services has become the famous
criterion to choose one of many responses. The effective
instantiation of solution is provided by the ADL (Architectural
Description Language) with an architectural style. The Acme
with the ARMANI design language provides software architects
with a rich language for describing software architecture
designs. Recently, the application of Model Driven Architecture
(MDA) to Web services has received a considerable attention.
This paper focuses on the extension of the meta-model of the
transactional composite Web service TCWS to the QoS of Web
service. This paper presents a transformation of the meta-model
of TCWS with QOS to the meta-model of acme, in order to
facilitate the development of an architectural style with the Acme
ADL.

Keywords- Web Services Composition, QoS, MDE,
Transformation, ACME/ARMANI ADL.

I. INTRODUCTION

 More businesses are planning to build their future
solutions on Web service technology. Currently, SOAP,
WSDL and UDDI have become standards in the field of a
reliable execution of Web service. Like most Web services
will need to establish and maintain the standards, the quality
of service will become a point of differentiation of these
services. Recently, there have been attempts to find a
standardized participation form to describe the QoS with
which the services are performed. At any time, it is
necessary to combine a set of Web services into a more
complex Web service to respond to more complex
requirements. To ensure a reliable Web service composition
and resolve the problem of heterogeneities, the work in [1]
browses to describe a protocol for mediation using the
concept of architectural styles of ACME and refers to
ARMANI to detect incompatibilities of the software
architectures. In this paper, we focused, on the one hand, on
formalizing a reliable composition of a Web service based
on non-functional properties of Web services; that is the

quality of the service. To achieve this, we describe a Web
service composition using the ACME concept of the
architectural style and ARMANI, to detect architecture’s
software disparities. Then, we automate partially our
proposed formalization methodology using an MDE
(Model-Driven Engineering) approach. In this context, we
recover the meta-model of the proposed composite Web
services and we elaborate the ACME meta-model. These
meta-models respectively play the role of source and target
meta-models for the exogenous transformation of composite
Web services to ACME. In addition, we implemented
SWC2ACME, a tool for transforming a composite Web
service software architecture into on ACME using the MDE
language ATL (ATLAS Transformation Language). We are
then able to check the composition of the Web services
through the ACME verification tools.

The paper is organized as follows. We shall start by the

related works. Next, we describe in Section 3 our automatic
MDE approach for an exogenous transformation from Web
services to an ACME. Section 4 describes the specification
of the QoS of the Web service and we sketch a meta-model
for the composite Web service with the QoS. Then, we
formalize a reliable composition of Web services in
ACME/ARMANI. After that and to translate the source
meta-model to the target, a set of transformations is
introduced. The final part of Section 5 applies the
transformation to the running example. Finally, Section 6
represents a conclusion.

II. RELATED WORKS

 Although, there are many researches which tried to
identify and classify the QoS parameters; there is no specific
consensus on all the important QoS for Web services. Most
of the work [2][3] took into consideration these parameters
to which other parameters are associated. There are several
proposals of the QoS model for Web services. We can
classify the models into three classes. That which suggests a
classification based on attributes that are independent of the

411

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 427 / 612

service environment (functional part) and attributes
depending on the service environment (non-functional part)
[2]. This model provides a general approach that some
attributes of the QoS must be measured by examining the
service implementation. Another modelling identified and
organized by the QoS attributes of the Web services into
categories (attributes related to the execution, to the
transaction support, to security and the price and
configuration management) [3]. It is likely that the
consumer of a service does not require all the categories of
the service quality. Other works [4] have classified the QoS
attributes into two parts: the specific services and the
generic QoS. These are divided into measurable parameters
and immeasurable ones. This classification takes into
consideration the specific qualities of services that are
related to the business logic of applications. In our work, we
try to model the QoS of the non-functional parameters; these
parameters are divided into measurable and immeasurable
parameters. We formalize the quality of service for Web
services with an architecture description language. Yet,
most approaches that formalize the Web services, with an
ADL, ignore the specification of the non-functional
properties such as integrity and performance. We must be
able to define the QoS of the Web services through the ADL
specifications since the ADL techniques are a way to check
the properties of the Web services. We can, then, check the
properties of the composition and the QoS of the Web
services through the ADL ACME.
 To achieve this goal, we rely on the MDE approach defined
in the following section.

III. PROPOSED APPROACH

 Transformations are the heart of the MDA approach.
They can get different views of a model, refine or abstract. In
addition they can move from one language to another. In
MDA, each model is based on a specific meta-model, which
defines the language that the model is created in. The Meta
Object Facility (MOF) represents the only basis of the meta-
model for which any new meta-model. Therefore, the
transformation rules between two MOF compliant meta-
models; the source and the target define the transformation
model to model. In this paper, the source meta-model is the
composite Web service for QoS extension, this composition
reifies all non-functional properties: the transactional
properties and quality of the service, and the destination
meta-model is the Acme (Fig.1).

Transformation rules define a mapping between a source
and destination meta-model that preserves an equivalent or
similar semantic. A transformation engine executes the rules
of transformation on the source model (input) to generate the
equivalent model of destination (output).

 Figure 1 illustrates the principle of an automatic
translation of the Web services composition for the QoS
extension in the ACME\ARMANI. We distinguish two
levels of specification: M2 (a meta-model level) and M1 (a
model level), as defined by the MDA approach. An M1 level
model is said to be conform to an M2 meta-model if it

satisfies the consistency rules described in the meta-model in
addition to the specific rules outlined at the M1 model level.
In our approach, the M2 level contains the Web services
composition for the QoS extension meta-model on one hand
and the ACME/ARMANI one on the other hand. The M1
level allows the definition of Web services models conform
to the Web services composition meta-model [5].

Figure 1. The proposed approach for an automatic transformation of a

composite Web service for QoS extension.

These models will be automatically transformed into the
ACME models (conform to the ACME\ ARMANI meta-
model). We aim at checking the conformity of these
transformed models to specific constraints. These constraints
are defined at the model level (M1) and are checked thanks
to the ACME Studio environment, which enables the
evaluation of the ARMANI constraints [6]. To achieve the
formalization of the Web service composition for the QoS
extension in the ACME and check the consistency of this
composition; we proceed to the automatic translation of this
composition onto the ACME. This approach of translation
covers all ACME constructs including the notion of style.
These constructs are: a system, a component, a connector, a
port, etc. The source and target models (Web service
composition for QoS and architectural style of Web services
described in ACME) and the tool WSC2ACME are
consistent with their meta-models for the Web services,
ACME and ATL. These meta-models are consistent with the
MOF meta-model.

IV. METAMODELING OF QUALITE OF SERVICE OF WEB

SERVICE

 In this section, we provide an overview of the meta-
model of quality of service we have defined. This meta-
model reifies all the characteristics of a reliable composition
of the Web services. It provides the description of the QoS
and this by integrating a set of specifications as a slight
extension of the WSDL. We modeled in an earlier work [7]
the manager of mediation for a Web service composition.
The manager is seen as a set of service integration of Web
services which aims at resolving heterogeneities between

412

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 428 / 612

Web services and explicitly contains the non functional
service manager, a set of adaptive interface service for all
functional properties and a set of data mediation service on
the heterogeneity of data exchanged between Web services
compounds. In our work, we modeled the non-functional
QoS parameters. This is because they should also think
about non-functional requirements and their integration with
functional requirements to provide better quality Web
services. The non-functional QoS parameters are divided
into specific parameters (SQoS) and generic parameters
(GQoS). The generic parameters are also divided into
measurable parameters (SMP) and immeasurable parameters
(SIP) (Fig. 2).

Figure 2. The meta model of the manager of QoS.

 Then, we focus on a measurable service manager. These
specifications are the most used. They define the
quantitative attributes that could be measured. The QoS
meta-model will give benefits to both service providers and
requesters. The new QoS meta-model is a lightweight
extension to the WSDL.
The details of these factors are:
� Integrity: is the quality feature that refers to the

maintaining of correct and consistent interaction to the
source and for transaction completeness [8] (Fig. 3).

 Integrity = ExpectedResult – ProvidedResult

Figure 3. The meta model of Integrity property.

� Availability: ensures the Web service is that present or
ready for instantaneous use. TimeToRepair (TTR) and
TimeBetweenFailure (TBF) can be applied to measure
it. Besides, we would like to add two dimensions
StartTime (the start time of a service when it is
available to end users) and EndTime (the last time
when of a service is available to end users) [8]. It can
be measured and specified as shown in Figure 4:

 Availability = TBF / (TBF + TTR)

Figure 4. The meta model of Availability property.

� Accessibility: is quantified by MaxNumberOfResponse
(is the maximum number of responses that can be
processed) and NumberOfCorrectResponse (the number
of response that fulfil user’s requirements) [8] (Fig. 5).

Accessibility = (NumberOfCorrectResponse /

MaxNumberOfResponse)* 100%

Figure 5. The meta model of Accesibility property.

• Reliability: represents the ability of a Web service to
perform its required functions under stated conditions
for a specified time interval. FlowControl and
InactivityTimeOut [8] can be applied to measure it (Fig.
6).

Reliability = FlowControl + InactivityTimeOut

413

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 429 / 612

� Service Time: It is the sum of the time when the service
provider receives a request for a Web service
(ReceiveRequest) and the time when the service
provider sends the response to requester
(SendResponse). It can be specified as shown in Figure
7.

Figure 6. The meta model of the Reliability property.

Figure 7. The meta model of Service Time property.

V. FORMALIZATION OF QOS FOR WEB SERVICES

A. The ADL ACME\Armani

 The ADL ACME [9] [10], developed at Carnegie
Mellon, is a common foundation for architecture description
languages. The ARMANI language allows describing
architectural properties in the invariant or heuristics forms
attached to any architectural element (component, family,
system, connector, etc.). Such properties are achievable
within the ACME Studio environment [11]. In the same
way, the ADL ACME supports the type concept. One can
define the types of architectural elements (component type,
connector type, role type, port type and style type). The
concept property of ACME used in the type and instance
levels allows attaching non-functional properties to the

architectural elements. Lastly, the ACME provides basic
types (int, float, Boolean and string) and type builders
(enum, record, set and sequence).

B. Formalization with ACME/ARMANI

Our work began with the improvement of an existing style.
We have studied the work of [12] dealing with the
composition of Web services without mediation approach,
or control over the execution flow of services. We have
formalized this protocol mediation to ensure reliable
composition of Web services [1]. Figure 8 shows an ACME
description of style implementing the transactional aspect of
the composition of Web services.

Family WSM = {
Property Type Interfaces = Enum {Client,Service};
Property Type legalSoapVersions = Enum {SOAP1_1,
SOAP1_2};
Property Type EndPoint = Record [Transport:
legalTransportProtocols; Encoding: legalSoapVersions;];
Property Type EndPoints = Set {EndPoint};
Component Type CompTWSCommon = {
 Rule NameUnique = invariant forall p1:
PortTWSCommon in self.PORTS | forall p2:
PortTWSCommon in self.PORTS | (p1 != p2) -> p1.name
!= p2.name; }
Component Type CompTWSClient extends
CompTWSCommon with {
 rule rule25 = invariant forall p : Port in self.PORTS |
satisfiesType(p, PortTWSClient) ;
 rule rule26 = invariant size(self.PORTS) > 0; }
Connector Type ConnTWSAct extends ConnTWS with {
 rule CondActivation = invariant forall r1 : Role in
self.ROLES | forall r2 : Role in self.ROLES | forall p1 :
PortTWSClient in r1.ATTACHEDPORTS |
 forall p2 : PortTWSService in r2.ATTACHEDPORTS |
 (r1 != r2 AND attached(r1, p1) AND attached(r2, p2)) ->
(p1.Prec == terminate AND p2.Prec == activate) OR
(p2.Prec == terminate AND p1.Prec == activate); ……}

Figure 8. The ACME description of the style with non functional
properties

The contributions of different added properties of quality of
the services were formalized as constraints and properties
with ACME. Indeed, ACME disposes of concepts for
expressing properties and constraints with verifiable tools.
These properties and constraints can be expressed on each
entity or on the overall behavior of the architecture. For
example, ResponseTime was formalized with a property of
type int in the component service. This property takes into
consideration two other parameters of the type int
ResponseCompletionTime and ConsumeRequestTime.
The calculation of the response time is formalized using the
Design invariant concept of ACME.

414

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 430 / 612

 However, to calculate the factor successability, it took two
rules to define it as a form of invariant to calculate
respectively the number of messages sent and the number of
that received successfully. Note that earlier, we defined a
property SendsFirstMessage of a type boolean in a port in
order to accumulate the number of messages sent in case
that the property SendsFisrtMessage was evaluated to be
true. Similarly, we define a property of a type boolean
InOurControlDomain in a port in order to accumulate the
number of messages received in case that
InOurControlDomain property was evaluated to be true.
Figure 9 shows an excerpt of the formalization of these
properties at a client component.

Component Type CompTWSClient extends
CompTWSCommon with {
 Property ResponseComopletionTime : int;
 Property UserRequestTime : int;
 Property ResponseTime : int ;
 Property succ : int ;
 rule rule25 = invariant forall p : Port in self.PORTS |
 satisfiesType(p, PortTWSClient) << label : string =
"External ports are all Client type"; errMsg : string = "Only
client type ports are allowed"; >> ;
 rule rule26 = invariant size(self.PORTS) > 0 << label :
string = "Component has at least one port"; errMsg : string
= "Component should have at least one port"; >> ;
//
Design Invariant ResponseTime == (
ResponseComopletionTime - UserRequestTime);
 rule MsgReq = invariant forall p : PortTWSCommon in
self.PORTS | p.SendsFirstMessage == Yes -> p.NbMsgReq
== p.NbMsgReq + 1 ;
 rule MsgRes = invariant forall p : PortTWSCommon in
self.PORTS | p.InOurControlDomain == Yes ->
p.NbMsgRes == p.NbMsgRes + 1 ;
 rule successibility = invariant forall p
:PortTWSCommon in self.PORTS | succ == p.NbMsgRes /
p.NbMsgReq;}

Figure 9. The ACME description of QoS of Web service .

 Now we consider the example of the throughput factor that
is a constraint expressed at the component level through the
External Analysis concepts of ACME by using the rate
Analysis function of Armani. Here is the formalization of
this property:

External Analysis throughputRate(comp :Component) :
int = armani.tools.rateAnalyses.throughputRate(comp);

VI. EXOGENOUS TRANSFORMATION OF COMPOSITE WEB

SERVICE TO ACME

 This section demonstrates how a composite Web service
for extension can be modeled as an ACME\ARMANI ADL
and how it can be mapped to an equivalent MOF based
model representing an ACME\ARMANI. In this part of the
paper, we aim at automatically transforming composite Web
services for the QoS extension into ACME. To achieve this
automation, we get the meta-model of composite Web
service proposed elaborate the partial ACME\ ARMANI
meta-model. In addition, we implemented WSC2ACME, a
tool for transforming a composite Web service software
architecture to an ACME using the MDE transformation
language ATL [13].

A. An Overview of the tool WSC2ACME

 Our model transformation, which defines the generation
of a target model from a source model, is described by a
transformation definition, consisting of a number of
transformation rules that are executed by a transformation
case tool. There are various methods of specifying the
model transformation [14].
In this Section, we present in a detailed way the
WSC2ACME tool written in ATL allowing the
transformation of the software architecture of the Web
services towards an ACME model. In order to design and
develop our WSC2ACME tool, we used the following
constructions: standard rule, defined in the context of
models element offered by the model transformation
language ATL.
An ATL module corresponds to the transformation of a set
of source models into a set of target models in accordance
with their meta-models. Its structure is formed by a header
section, an optional import section, a set of helpers and a set
of rules. The header section defines the names of the
transformation module and the variables according to the
source and target models. It also encodes the module
execution mode that can be either normal (defined by the
keyword form) or refining. The syntax of the header section
is defined as follows:

module WSC2ACME; -- Module Template
create OUT : acme from IN : Webservice;

OUT and IN are the names of the source and target models.
They are not used thereafter. Both model types are
respectively Web Service and ACME. Thus, they must
conform to the meta-model defining their type.

• Translating of functional Web service properties
(WSDL)

A Web service is translated into the ACME. We start by the
functional property. To achieve this transformation we
based our rules to the meta-model of the WSDL.
We define the example of rule which allows us to transform

415

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 431 / 612

a WSDL and reifies all correspondences between the source
component and the target system component.

rule definition2System {
from
s : Webservice!definition
to
t : acme!System (name <- s.name,Connector <-
s.dependance,Component <- s.services,links <-
s.bindings,Property<- Sequence { targetnamespace,
xmlns,msg, imports, Types,porttype}),...}

• Translating of composite Web service
A composite Web service is translated into the ACME. This
composition presents an empty structure. We define the
rule which allows us to transform a composite service
and reifies all correspondences between the source
component and the target system component.

rule Port2Port {
from
s : Webservice!Port
to
t : acme!Port (name <- s.name, Property <- Sequence {
Integrity,
s.reliability,Interface,SendFirstMessage,InOurControlDoma
in,WSDLDocRefs,EndPointAdressList, s.SOAP, s.prec,
s.reliability}),
Integrity:acme!Property(name <- 'Integrity',val <-
s.integrity.getIntegrity().toString()),
Interface:acme!Property(name <- 'Interface',val <-
s.Interface),
SendFirstMessage:acme!Property(name <-
'SendFirstMessage',val <- s.SendFirstMessage. toString()),
InOurControlDomain:acme!Property(name <-
'InOurControlDomain',
val <- s.InOurControlDomain.toString()),
WSDLDocRefs: acme!Property(name <-
'WSDLDocRefs',val <- s.WSDLDocRefs),
EndPointAdressList:acme!Property(name <-
'EndPointAdressList',val <- s.endpointadresslist)}

• Translating of transactional Web service
properties

A transactional Web service is translated into the ACME.
To achieve this transformation we based our rules to the
meta-model of Web service for the transactional extension
proposed in [7]. We define the example of rule which allows
us to transform a meta-model of Web service for the
transactional extension and reifies all correspondences
between the source component and the target system
component.
rule Prec2Property {
from

s : Webservice!precondition
to
t : acme!Property(name <- 'Prec ' ,val <- s.name)}

rule Dependance2Connector {
from
 s : Webservice!dependance
to
t : acme!Connector(name <- s.name)}

• Translating QoS of Web service properties

A composite Web service for the QoS extension is
translated into the ACME. To achieve this transformation
we based our rules to the meta-model of the QoS of Web
service. We define the example of rule which allows us to
transform a meta-model of the QoS of Web service
and reifies all correspondences between the source
component and the target system component.

Example of helper:

helper context Webservice!Responsetime def :
getResponseTime() : Integer =
self.ResponseCompletionTime.val-
self.ConsumeRequestTime.val ;

Example of rule:

rule reliability2Property {
from
 s : Webservice!reliability
to
 t : acme!Property(name <- 'Reliability',val <-
s.getreliability().toString())
}

VII. CONCLUSION

 The work deals with the modeling of the QoS of the
Web service extension. This paper studies a model
transformation of composite Web services for the QoS from
the PSM, created Acme\Armani style architecture, into PSM.
We have presented a specification of the QoS. We have also
introduced the meta-model for the QoS of the Web service
and the meta-model for Acme\Armani. To translate the
composite Web services for the QoS extension to the
Acme\ARMANI, we have introduced a set of the ATL
transformation rules to implement WSC2ACME tools in
order to transform a Web services model conform to its
meta-model to a partial ACME model conform to the meta-
model of the ACME.

In our future works we are considering the following
perspectives:

• Improve the efficiency of our WSC2ACME using
the large logistic problem.

416

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 432 / 612

• Assessing the WSC2ACME quality using
verification techniques applicable on the model
transformation: structural tests, mutation analysis,
statistical analysis, contracts [15], [16], [17], [18].

REFERENCES
[1] M. Graiet, R. Maraoui, M. Kmimech, M.T. Bhiri , W.

Gaaloul:Towards an approach of formal verification of
mediation protocol based on Web services, 12th International
Conference on Information Integration and Web-based
Applications & Services (iiWAS2010), Paris-France,
November 2010.

[2] S. Araban and L. S. Sterling. Measuring quality of service for
contract aware Web services. In First Australian Workshop on
Engineering Service-Oriented Systems, pages 54–56, 2004

[3] R. Shuping A model for Web services discovery with qos.
SIGecom Exch., 4(1) :1–10, 2003.

[4] R.Ben Hlima , Conception, implantation et expérimentation
d’une architecture en bus pour l’auto-réparation des
applications distribuées à base de services Web, l’Université
Toulouse III - Paul Sabatier et la Faculté des Sciences
Économiques et de Gestion – Sfax, Le Jeudi 14 Mai 2009,

[5] M. Kmimech, M. Tahar Bhiri, M. Graiet and P. Aniorté.:
Checking component assembly in ACME: an approach
applied on UML 2.0 components model. In 4nd IEEE
International Conference on Software Engineering Advances
(ICSEA'2009), Portugal, IEEE CS Press, Septembre 2009.

[6] Garlan, D., R. Monroe, and D. Wile (2001). ACME:
Architectural Description of Compo-nent-based (2001).
Capturing software architecture design expertise with
Armani. Tech-nical Report CMU-CS-98-163, Carnegie
Mellon University School of Computer Science.

[7] Maraoui R., Graiet M., Kmimech M., Bhiri M.T., and Elayeb
B., Formalisation of protocol mediation for Web service
composition with ACME/ARMANI ADL, Service
Computation IARIA 2010-Lisbon-Portugal, Nov 2010.

[8] Wan Nurhayati AB. R., UML QoS Profile exploration for the
specifications of a generic QoS metamodel for designing and
developing good quality Web services , School of Computing,
Science & Engineering University of Salford, Salford, UK,
March 2010.

[9] D.Garlan, R.T Ronroe, D. Wile ACME.: An Architecture
Description Interchange Language , Proceedings of CASCON
97, Toronto, Ontario, November,169--183,1997.

[10] D.Garlan, R. T. Monroe, and D. Wile. ACME: Architectural
Description of Composed-Based Systems. Gary Leavens and
Murali Sitaraman, ed.s Kluwer, 2000.

[11] Group2006, http://www.cs.cmu.edu/˜ACME/ACME Studio/.
[12] C. Gacek. C, and C. Gamble (2008): Mismatch Avoidance in

Web Services Software Architectures. Journal of Universal
Computer Science, vol. 14, no. 8 (2008), 1285-1313.

[13] Combemale. B, Approche de méta-modélisation pour la
simulation et la vérification de modèle, application à
l’ingénierie des procédés : Thèse de Doctorat, Toulouse,(11
juillet 2008).

[14] Belzad B. and Anthanasios S., On bihavioural model
transformation in Web service, scool of computer science,
University of birminghan.

[15] Küster, J. M. Definition and validation of model
transformations. Software and systems Modeling, in press
2006.

[16] Mottu, J. M., Baudry, Brottier. E and LeTrao. Y (2005)
Génération automatique de tests pour les transformartions de
modèles. Première journée sur IDM, Paris,2005.

[17] Baudry. B, Ghosh. S, Fleurey. F,France. R, Le Traon. Y and
Mottu. J. M. Barries to systematic model transformation
testing. Communications of the ACM, Vol. 53, No. 6 (2009).

[18] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL
Contracts for the Verification of Model Transformations. In
Proceedings of the Workshop the Pragmatics of OCL and
Other Textual Specification Languages at MODELS 2009,
volume 24. Electronic Communications of the EASST, 2009.

417

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 433 / 612

ATL Transformation of UML 2.0 for the Generation of SCA Model

 Soumaya Louhichi Mohamed Graiet Mourad Kmimech
 MIRACL, ISIMS MIRACL, ISIMS MIRACL, ISIMS
 BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA
 louhichi.soumaya@gmail.com mohamed.graiet@imag.fr mkmimech@gmail.com

 Walid Gaaloul
 Computer Science Department Télécom SudParis
 Mohamed Tahar Bhiri 9, rue Charles Fourier 91 011 Évry Cedex, France Eric Cariou
 MIRACL, ISIMS walid.gaaloul@it-sudparis.eu Université de Pau et des pays de l’Adour
BP 1030, Sfax 3018, TUNISIA Avenue de l'Université BP 1155 64013
 Tahar_bhiri@yahoo.fr PAU CEDEX France

 Eric.Cariou@univ-pau.fr

Abstract— Service Component Architecture specification
(SCA) is an emerging and promising technology for the
development, deployment and integration of Internet
applications. This technology supports the management of
dynamic availability and treats the heterogeneity between the
components of distributed applications. However, this
technology is not able to solve all problems. Currently,
software systems are evolving. This factor makes development
and maintenance of systems more complex than before. One
solution to remedy this was the use of the Model Driven
Engineering (MDE) approach in the development process. The
aim of this paper is to apply an MDE automation type ensuring
the passage from an UML 2.0 model to SCA model. To achieve
this, we study two metamodels: the UML 2.0 component
metamodel and the SCA meta-model. To ensure traceability
between these two meta-models, we have defined
transformation rules in ATL language.

Keywords-UML 2.0, SCA, MDE, ATL

I. INTRODUCTION

Nowadays, Service Oriented Architecture (SOA) [1] can
be seen as one of the key technologies to enable flexibility
and reduce complexity in software systems. SOA is a set of
ideas for architectural design and there are some proposals
for SOA frameworks including a concrete architectural
language: the Service Component Architecture (SCA) [2].

SCA is a new promising programming model for

constructing service-oriented application which facilitates
the development of business integration in Service Oriented
Architecture (SOA). SCA technology supports the
management of dynamic availability and treats the
heterogeneity between the components of distributed
applications. In spite these advantages, SCA application are
incomprehensible by stakeholders who have not enough
knowledge in the SOA field. For this, we decide to use the
modelling languages to describe SCA concepts.

The most adopted modelling language to SCA is the
UML 2.0 which approved itself as a powerful tool for
modeling components and services.

Recently, the application development process becomes
more and more complex. To remain competitive, companies
must significantly reduce their development and
maintenance costs. A solution for this is the use of MDE
approach, a new discipline of software engineering, which
has emerged to deal with complexity, growth, rapidly
changing and heterogeneity in software applications.

The increasing use of MDE solves the problem of
complexity in the development process at a high level of
abstraction. Thus, an application can be generated
automatically from high level models.

The goal of this paper is to apply an MDE automation
type to develop a tool that transforms an UML 2.0
component model to an SCA model. The result of this
transformation is an XMI [3] file, which then can be used as
a template to produce the source code of an SCA application.
The transformation is expressed in ATL language (Atlas
Transformation Language) [4].

This paper is organized as follows: in section 2, we
present the MDE approach, the metamodeling and
transformation languages. In Section 3, we study our two
metamodels for UML 2.0 and SCA. In the next section, we
develop the transformation rules. Section 5 is the subject of
the implementation and execution of those rules. We end
with a conclusion.

II. MODEL DRIVEN ENGINEERING

The Model Driven Engineering has become in recent
years the most used approach for developing quality
software. This approach more abstract than the programming
one allows focusing on concepts independently of platforms,
focusing on one or more concerns abstract and study them to
obtain a complete system by composition and by
transformation.

418

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 434 / 612

The concept of model is at the heart of the device, in
MDE a model is considered as entity of first class in the
software development [5], it serves not only to better
understand and reason about the system we built, but also to
be in position to transform models into other abstract models
or into practical implementation one. In the rest of this
section, we will present the main artifacts of Engineering
Models, languages expressing the metamodels and model
transformations. A metamodel is a model that describes all
the kind of elements and their relationships that can be
instantiated for forming models. For instance, the UML
metamodel describe all the kinds of UML diagrams and their
elements (Class, State, Component, Activity, Use Case,...).
In MDE, each model is conformed to a metamodel.
Metamodel are key constructions because they make models
automatically handable by tools. A metamodel defines
concretely a modeling language.

The most widely used MDE platform is EMF (Eclipse
Modeling Framework) which provides a
metametametamodel (the metamodel allowing the definition
of metamodels) called Ecore. Ecore is aligned on the MOF
(Meta Object Facilities) which is the standard
metametametamodel from the OMG [6]. EMF is a modeling
and code generation framework used to support the creation
of model driven tools and applications.

Model transformations are at the heart of Model Driven
Engineering, and provide the essential mechanism for
manipulating and transforming models. The transformation
of models plays an important role in the Model Driven
Engineering. Indeed, several studies have been done to
define transformation languages that ensure effectively the
passage between models. We will use the ATL free tool [7];
it quickly seems to us as the best suited tool to the problem
of transformation. In fact, ATL is a proposal submission in
response to the RFP call delivered by the OMG. ATL is one
of the most popular and widely used model transformation
languages. ATL is a hybrid model transformation language
containing a mixture of declarative and imperative constructs
based on Object Constraint Language (OCL) [8] for writing
expressions. ATL transformations are unidirectional,
operating in on read-only source models and producing
write-only target models (Figure 1). During the execution of
a transformation, source models can be navigated but
changes are not allowed. Target models can not be
navigated.

Figure 1. ATL model transformation schema

III. UML 2.0 AND SCA METAMODELS

The transformation process requires initially the presence
of two metamodels:

• Source metamodel: the UML 2.0 metamodel.
• Target metamodel: SCA metamodel.

A. Source Metamodel: UML 2.0 Metamodel

The UML 2.0 metamodel definition consists of two parts:
UML 2.0 Superstructure, which defines the user vision and
UML 2.0 Infrastructure, which specifies the metamodeling
architecture of UML and its alignment with MOF (Meta-
Object Facility) [9]. In the remainder of this section, we
focus firstly on UML 2.0 Superstructure which is simply
denoted UML 2.0 [10] and then we study the behavioral part
of a component model.

1) Structural concepts of UML 2.0
The main structural concepts of UML 2.0 component

model are: component, port, connector [11].
• The component: represents a modular part of a

system that encapsulates its contents and which is
replaceable within its environment. Its description
may include a set of ports and a set of connectors.

• Port: allows the component to communicate with its
environment, a port can be equipped with provided
or required interface used to specify the expected
operations of the environment or to specify provided
operations of the component.

• Connector: A connector defines a relationship
between two ports. We find two types of connectors:
The Delegation Connector and the Assembly
Connector. The Delegation Connector represents the
forwarding of messages between a port of a
component and a port of one of its part. The
Assembly Connector must only exist between a
provided Port and a required one.

UML 2.0 metamodel represents the different
relationships between UML 2.0 concepts (structural and
behavioral concepts). Relations between these concepts are
defined in the following points:

• A component inherits the metaclass Class. It also
inherits EncapsulatedClassifier. So, it can have ports
typed by provided and required interfaces.

• The metaclass EncapsulatedClassifier inherits
StructuredClassifier. Therefore, a component can
have an internal structure and may define
connectors.

• The metaclass Property models the properties of an
instance of StructuredClassifier.

• The metaclass Port represents an interaction point
between a classifier and its environment.

• EncapsulatedClassifier is a classifier with port typed
by interfaces.

• The metaclass connector represents a link that allows
instances to communicate with each other.

• Every extremity of connector named ConnectorEnd
represents a distinct role of the communication
represented by the connector.

419

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 435 / 612

• The metaclass ConnectorEnd represents an endpoint
of a connector, which attaches the connector to a
connectable element. Each connectorEnd is a part of
one connector.

2) Behavior concept of UML 2.0
UML is a popular representation and methodology for

characterizing software. In fact, UML supports the modeling
of system behavior through the use of state machines.
UML has two types of state machines:

• Behavioral state machines.
• Protocol state machines.
In UML 2.0, the state machines can be used to specify

the behavior of several elements of the models described in
UML 2.0, such as instances of an UML 2.0 class. While
protocols state machines may be used profitably to express
protocols related to scenarios of use of services
offered by interfaces or ports[12]. Behavioral and protocol
state machines share common elements like state, region,
vertex, pseudostate, transition…

• State: models a situation during which some
invariant conditions holds.

• Region: is an orthogonal part of either a composite
state or a state machine. It contains states and
transitions.

• Vertex: is an abstraction of a node in a state machine
graph, it can be the source or destination of any
number of transitions.

• Pseudostate: is an abstraction that encompasses
different types of transient vertices in the state
machine graph.

• Transition: it shows the relation ship, or path,
between two states or pseudostates. Each transition
can have a guard condition that indicates if the
transition can even be considered (enabled), a trigger
that causes the transition to execute if it is enabled,
and any effect the transition may have when it
occurs.

A protocol state machine has the characteristics of a generic
state machine (composite states, concurrent regions…) with
the next restrictions on states and transitions [13]:

• States cannot show entry actions, exit actions,
internal actions, nor do activities.

• State invariants can be specified.
• Pseudostates cannot be deep or shadow history

kinds; they are restricted to initial, entry point and
exit point kinds.

• Transitions cannot show effect actions or send
events as generic state machines can.

• Transitions have pre and post-conditions; they can
be associated to operation calls.

• A protocol state machine may contain one or more
regions which involve vertices and transitions. A
protocol transition connects a source vertex to a
target vertex. A vertex is either a pseudostate or a
state with incoming and outgoing transitions. States
may contain zero or more regions.

• A state without region is a simple state; a final state
is a specialization of a state representing the
completion of a region.

• A state containing one or more regions is a
composite state that provides a hierarchical group of
(sub) states; a state containing more than one region
is an orthogonal state that models a concurrent
execution.

• A submachine state is semantically equivalent to a
composite state. It refers to a submachine (sub
Protocol State Machine) where its regions are the
regions of the composite state.

Figure 2 corresponds to the UML 2.0 metamodel for
describing components illustring the different relationships
between concepts (structural and behavioral concepts) in a
component UML 2.0.

B. Target Metamodel: SCA Metamodel

In this section, we describe the different structural and
behavioral concepts of SCA model necessary for the
construction of its metamodel.

1) Structural concepts of SCA
Services Component Architecture (SCA) is a set of

specifications describing a model for building applications
and systems using Service Oriented Architecture SOA [14].
SCA complete previous approaches in the implementation of
services, and focuses on open standards such as Web
services.

SCA provides an application code based on components
and divides the deployment of a service-oriented application
into two stages:

• The implementation of components that provide and
consume services.

• The assembly of sets of components to deploy
applications, by connecting the references to
services.

An SCA implementation represents a reusable service
component that encapsulates the business logic that supports
one or more services. Implementations can be in a variety of
languages, including Java, BPEL4WS [15], C, and COBOL.
Implementations also define the references dependencies on
other components’ services that the implementation must
invoke during normal operation as well as configuration
properties. Interface types (typically WSDL portTypes)
describe both services and references. Services and
references use SCA bindings to configure the interaction
protocol used for providing or using a service. Examples of
bindings are the Web services binding (the Web services
protocol stack) or a messaging backbone.

Services, references, and properties define an SCA
implementation’s configurable aspects.

An SCA component is a configured SCA implementation
that sets property values and resolves the references to other
SCA components by specifying the component wires
(interconnections). An SCA composite (or SCA assembly) is
a packaged set of components and wires that define the
structural composition.
The SCA composite can provide for the interaction between
internal components and external applications by defining

420

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 436 / 612

composite services, references, and properties. This means
that an SCA composite can be an SCA component within
another SCA composition, with the first SCA composite
providing that component’s implementation. In SCA, this is
called recursive service composition.

2) Behavior concepts of SCA
SCA specification are based on services which are

becoming more and more popular as means for decoupling
systems from each other while at the same time making
functionality and data available to all authorized applications
on the network.

Behavioral descriptions of services can be defined using
higher level standards such as BPEL (Business Process
Execution Language). BPEL is an XML-based language that
models a business process as a composition from a set of
elementary web services.

The main concept of BPEL [16] is BPEL process which
defines several concepts like basic and structured activities,
variables, partner links, and handlers. In a simple case, a
BPEL process defines partner links, variables, and activities.

• Partner links represent message exchange
relationships between two parties. Via a reference to
a partner link type the partner link defines the mutual
required endpoints of a message exchange: the
myRole and a partnerRole attributes defines who is
playing which role. Partner links are referenced by
basic activities that involve Web Service requests.

• Variables are used to store workflow data as well as
input and output messages that are exchanged by
Web Services activities via partner links.

• Handlers specify responses to unexpected behavior
like time or message events, faults, compensation, or
termination.

• Nesting of structured activities is used to express
control flow in BPEL. There are specific structured
activities for loops (while, forEach, repeatUntil),
sequential execution (sequence), conditional
branching based on data (if) or events (pick), and
concurrent branches (flow).

• Basic activities specify the actual operations of a
BPEL process. There are three activities involving
Web Services: invoke for synchronous or
asynchronous calls to a remote Web Service, receive
to wait for the receipt of a specific message, and
reply for responding to a remote request.

All these activities reference a partner link and specify
input and/or output variables for messages.

3) SCA metamodel
Figure 2 corresponds to the SCA metamodel illustring

the different relationships between SCA concepts (structural
and behavioral concepts). Relations between these concepts
are defined in the following points:

• An SCA component may have zero or more than one
service.

• An SCA component may have zero or more than one
reference.

• An SCA component may have many properties used
to configure its implementation

• A service is defined by only one interface and it may
have multiple bindings and it may have also multiple
BPEL process to describe it’s behavior.

• A reference is defined by only one interface and it
may have multiple bindings and it may have also
multiple BPEL process to describe it’s behavior.

• An interface describes the set of operations offered
by the service or used by the reference.

• A composite may be considered as a set of
components, having many properties, services,
references and wires.

• A BPEL process is a set of partners, partnerLinks,
variables and activities.

• A partner may have zero or more than one
partnerLink.

• A partnerLink may have zero or one
partnerLinkType which may contain one or two
Role.

Figure 2. Ecore metamodel of SCA

421

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 437 / 612

Figure 3 presents the UML 2.0 metamodel for describing
components. It is used to describe the different relationships

between structural and behavioral concepts of UML 2.0
component model:

Figure 3. Ecore definition of the UML 2.0 component part

IV. THE TRANSFORMATION RULES

In this section, we present the transformation rules
allowing the passage from an UML 2.0 component model to
an SCA model. The transformation rules are established
between source and target metamodels, in other words
between all the concepts of source and target models
(structural and behavior concepts). These rules are briefly
explained in the following table in natural language and then
formulated using the ATL syntax previously introduced.

TABLE I. SUMMARY OF THE TRANSFORMATION RULES

UML 2.0 concepts of source
model

SCA concepts of target model

Component SCA Component
Partner
Service Port with provided

interface PartnerLink

Reference Port with required interface
PartnerLink

Interface Interface
Operation Operation
Property Property

ConnectorEnd Binding

Connector Wire
Protocol State Machine Process BPEL

Parameter Variable
Region Sequence
State Basic Activity

(Receive,Invoke,Replay)
PseudoState (kind= choice) Switch
PseudoState (kind= fork) Flow

PseudoState (kind=
exitPoint)

Exit

422

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 438 / 612

Before starting to define some transformation rules, we
will give the general form of these:

Figure 4. An example of ATL rule

• ForExample: is the name of the transformation rule.
• i (resp. o) is the name of the variable representing

the identified element source that in the body of the
rule (resp. target element created).

• InputMetaModel (resp. OutputMetaModel) is the
metamodel in which the source model (resp. the
target model) of the transformation is consistent.

• InputElement means the metaclass of elements of
source model to which this rule will be applied.

• OutputElement means the metaclass from which the
rule will instantiate the target elements.

• The exclamation point ! used to specify to which
meta model belongs a meta class.

• attributeA and attributeB are attributes of the meta
class OutputElement, their value is initialized using
the values of attributes i.attributeB, i.attributeC and
i.attributeD of the meta class InputElement.

We will now proceed to the definition of some of our
transformation rules using the ATL language:

• Rule that transforms an UML 2.0 component to an
SCA component, here an SCA component takes the
same name as a UML 2.0 component. This rule also
allows the transformation of each instance of an
UML 2.0 component in a BPEL Partner in SCA
model.

• Rule that transforms an UML 2.0 port with provided

interface to an SCA Service. This rule allows also
the transformation of each port in UML 2.0 into
aPartner Link BPEL in SCA model.

• Rule that transforms a Protocol State Machine to a
BPEL process.

V. IMPLIMENTATION AND EXECUTION OF THE

TRANSFORMATION RULES

At first, we have developed two ECORE models
corresponding to source metamodel and target metamodel,
after we have implemented the transformation rules in the
ATL language. Once the transformation program
UML2SCA.atl is created, then we can start the execution.
The general context of the ATL transformation is illustrated
in Figure 5 below.

The engine of transformation allows generating the SCA
model, which is consistent to SCA metamodel, from the
UML 2.0 model which is consistent to UML 2.0 metamodel
using UML2SCA.atl program which must be also consistent
to metamodel that defines the semantics of ATL
transformation. All metamodels must be consistent to the
Ecore metamodel.

Figure 5. General context of ATL transformation

rule component2componentsca
{
from c:UML!Component
to cs:SCA!Component(
name<-c.name+ '_serviceComponent' ,
proporties<-c.ownedattribute),
p:SCA!Partner(name<-c.name,
owner<-c.ownedport-
>first().protocol)
}

rule psm2BPELprocess{
from ps: UML!ProtocolStateMachine
to p: SCA!BPELProcess(name<-ps.name,
targetNamespace<-
'http://' +ps.name+ '.org/' ,
 abstractProcess<- false)}

rule port2service{
from p:UML!Port(
p.provided->notEmpty())
to ps:SCA!Service(
name<-p.name+ '_service port' ,
interface<-p.provided->first(),
component<-p.owner,
bindings<-p.end,process<-
p.protocol),
 pl:SCA!PartnerLink(name<-p.name,
myRole<- 'ITF_' +p.name+ 'Provider' ,
partnerRole<- '' ,
owner<-p.protocol)
}

423

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 439 / 612

To validate our transformation rules, we completed
several tests. As an illustration, we consider the example
below (Figure 6). The example studied is an example of an
automated banking machine (ABM). Any person with an
appropriate card can use the ABM to take money. To take
the money, a customer must be identified.

Our example can be modeled in UML 2.0 as follows: a
customer is modeled by a Customer component with a port
named abm typed by a required interface named authentify.
The ABM is modeled by an ABM component having port
named customer typed by provided interface named identify.
These two components are connected by a connector named
Customer-ABM.

Figure 6. Source model

Behavior of ABM component is described using its
interface identify. Behavior of this last one is described using
a protocol state machine named identification.

We get the following input model as shown in Figure 7.

Figure 7. Source Model in Text Editor View

When the model is validated and there are no errors, the
user can run the ATL model transformation to transform the
UML 2.0 model into SCA model and the SCA Ecore model
is created. The result of this transformation is shown in
Figure 8 below.

Figure 8. Target Model in Text Editor View

We can see from Figure 8 that each UML 2.0 component
has been transformed into an SCA component, each port in
UML 2.0 typed with provided interface has been transformed
into an SCA service, each port with required interface has
been transformed into an SCA reference and each instance of
an assembly connector (in our example Customer-ABM) has
been transformed into an SCA wire (wire Customer-ABM).
Concerning the behavioral part, each instance of Protocol
State Machine in UML 2.0 has been transformed into a
BPEL Process in SCA.

VI. CONCLUSION

We applied the MDE approach to service-oriented

applications engineering. It is a question of generating the
ingredients of an SCA application from an UML 2.0
component diagram. To reach there, we elaborated at first
time the source metamodel representing an UML 2.0
component diagram. At the level of target metamodel, we try
to design all the metaclasses needed to generate a PSM
model respecting the SCA architecture. Transformation rules
have been developed in ATL language. The transformation
process allows generating an XMI file containing a structural
and behavioral description of the SCA application: SCA
components, services, references, interface, operations,
bindings as well as the process BPEL used to describe the
behavior of SCA application.

As future work, we intend to more improve the
behavioral aspect of SCA application and to try to treat the
composite aspect in SCA.

REFERENCES
[1] OSOA, Open Service Oriented Architecture, the Home Page,

2007. http://www.osoa.org/
[2] Open SOA Collaboration, Service Component Architecture

(SCA), SCA Assembly Model v1.00 specifications, 2007.
[3] B. Combemale, “ Approche de Métamodélisation pour la

Simulation et la Verification de Modèle”. Toulouse, 2008.

424

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 440 / 612

[4] J. Troya and A. Vallecillo, “ Towards a Rewriting Logic
Semantics for ATL”. ISUM/ A tenea Research Group.
Universidad de Maalaga, Spain.

[5] J. Bézivin , “Sur les Principes de L’ingénierie des Modèles”,
RSTI_L’objet 10, ou sont les objets?, 2004.

[6] OMG, Meta Object Facility (MOF) specification –version 1.4
formal, April 2002.

[7] The LINA website. Available: http//www.sciences.univ-
nantes.fr/lina/atl

[8] B. Combemale and S. Rougemaille, “–ATL- Atlas
Transformation Language”, 2005.

[9] OMG, “ Meta Object Facility (MOF) specification, version
1.3,” Mars 2000.

[10] X. Blanc, “MDA en Action Ingénierie Logicielle Guidée Par
les Modèles”, Eyrolles 2005.

[11] M. Graiet, “Contribution à une Démarche de Vérification
Formelle d’Architectures Logicielles”, 2007.

[12] OMG, “Unified Modeling Language : Superstructure version
2.0”.

[13] C. Dumez, NAIT-sidi-moh, J. Gaber and M. Wack,
“Modeling and specification of Web services composition
using UML-S”.

[14] F. Curbera, “Component Contracts in Service-oriented
Architectures”, IBM T.J. Watson Research Center, 2007.

[15] OASIS, “Service Component Architecture WS-BPEL Client
and Implementation Specification Version1.1”, 2009.

[16] T. Ambuhler, “UML 2.0 Profile for WS-BPEL with Mapping
to WS-BPEL”.

425

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 441 / 612

Towards the Development of Integrated Reuse Environments for UML Artifacts

Moataz A. Ahmed

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
moataz@kfupm.edu.sa

Abstract—Systematic software reuse is recognized to achieve

better software, faster and at a lower cost. The benefits of

reuse can be maximized if types of early stage software

artifacts can be easily reused. In early-stage reuse, once a

match is found, all related later stages artifacts for the match

can also be reused. However, the development of integrated

reuse environments to allow managing and reusing repositories

of early stage artifacts has not caught adequate attention of

researchers yet. In response to this problem, we propose an

approach to the development of environments integrated with

CASE tools and capable facilitating early-stage artifacts reuse.

Successful implementation of such environments is expected to

improve the software quality and developers productivity.

Keywords-early-stage artifacts; design reuse; integrated

reuse environment; similarity metrics; multi-view similarity.

I. INTRODUCTION

Systematic software reuse has clear benefits to include
reduction in overall development costs, increased reliability,
reduced process risk, effective use of specialists, standards
compliance, and accelerated development [1]. Features of
the object-oriented (OO) software development paradigm,
such as abstraction and encapsulation, encourage reuse of
software by enabling building reusable blocks of code.
However, it has been recognized for long that reuse of
early-stage artifacts are particularly more beneficial than
reuse of later-stage artifacts [10]. Types of early-stage
reusable artifacts include [2]:

Domain Models: These can be reused at the earliest
stage of the software development process, the domain
analysis stage. Very few systems exist that exploits the
reuse of artifacts at this stage. An example of such a system
is the work of Blok and Cybulski [3]. Another example is
the generic application frames in the ITHACA development
environment [4]. Yet, a more recent example can be found
in the software product lines approach, which was often
touted as a silver bullet for actualizing software reuse goals
[5][7][9].

Requirement Specifications: These artifacts can be
reused during the requirements analysis phase of the
software lifecycle [10]. An example of how a requirements
specification reuse may be assisted by a software tool is
described by Cybulski and Reed’s [11].

Design: These artifacts can be reused during the design
phase. An example of a design repository is the SPOOL
Design Repository [12]. Another example is the work of
Lee and Harandi [13].

In early-stage reuse, once a match is found, all related
later stages artifacts for the match can also be reused. For
instance, if an analysis model for a previous project is found
to match the analysis model of a current project, then the
previous project’s design, code, test data, and relevant
documentation may be reused in the current project.

Early-stage artifacts reuse, despite its clear benefits,
suffers from a few problems though. Reuse problems
include increased maintenance costs, the not-invented-here
syndrome, lack of tool support, difficulty of maintaining a
library of reusable artifacts, and the cost of locating and
adapting reusable artifacts [1].

A step towards a solution to the problems above could
be the development of effective tightly-knit tools to allow
finding and reusing exiting design artifacts and what follows
based on matching requirements specification. For maximal
utilization within the day-to-day activities, such tools should
be offered through a reuse environment integrated with
some prominent CASE tools; hence, Integrated Reuse
Environment (IRE). In this paper, we present an approach
to the development of IREs to maximize the designer’s
productivity. The approach will be focusing on reusing
Unified Modeling Language (UML) artifacts. The rationale
behind focusing on UML is that it is considered the de-facto
standard for expressing early-stage OO artifacts (e.g.,
analysis and design models) [8]. Accordingly, tools and
techniques to support reusing UML artifacts would facilitate
and encourage more early-stage reuse. However, to the best
of our knowledge, there is IREs that allow finding and
reusing exiting UML design artifacts and what follows
based on matching requirements specification.

The rest of the paper is organized as follows. Section II
presents a framework for assessing the similarity between
UML artifacts of different projects. Section III discusses
related work. Section IV lists some research questions to be
answer in future work in order to realize effective IREs.
Section V concludes the paper.

II. MULTI-VIEW UML MODELS SIMILARITY

During the requirement-analysis phase of the software
development life cycle, the system requirements are
typically modeled and analyzed from related but different
viewpoints where each view represents one aspect of the
software system to be developed. The division into
different views is arbitrary and typically includes at least
three views namely structural view, functional view, and
behavioral view [21][22][23][24], each capturing important

426

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 442 / 612

aspects of the system, but all required for a complete
description of the system. One or more kinds of diagrams
provide a visual notation for the concepts in each view. A
typical software procedure incorporates all three aspects
[21]. Models from different views are meant to be
compared to discover requirements that would be missed
using a single view [1][22]. Structure describes static
objects relevant to the domain in question, their
relationships, attributes and their possible states; functions
describe the input-output transformations, and behavior the
instantiation and dynamics of the transformations with time.

It is worth noting here, though, that there is a general
paucity of concepts for specifying the functionality of object
communities [22]. The UML taxonomy of diagrams
provides a logical organization for the various major kinds
of diagrams into only two major categories: structure and
behavior; with no category to represent the functional aspect
[39]. Nevertheless, use cases can be interpreted as one
means of specifying functionality, as according to Jacobson
et al. [16], they define the functionality inside the system and
constitute a specific way of using some part of this
functionality. Clearly, a use case has also a flavor of
behavior abstraction, as it is a special sequence of related
transactions in the interaction between the actor and the
system [22].

During the requirements engineering phase, the view-
points analysis technique relies on these multi-view models
where they are compared to discover requirements that
would be missed using a single view.

We propose that developing IREs to allow early-stage
OO artifacts reuse would require a framework of consistent
multi-view similarity metrics that considers similarity across
the three system views: functional view, structural view and
behavioral view. For effective reuse of available designs of
completed projects, the IRE should facilitate assessing the
combined similarity between new requirements to the
requirements of completed projects to provide closest match
so that their design counterparts can be reused with minimal
effort.

Considering UML, as the de-facto standard, we consider
Use Cases as representative of the functionality (i.e., the
services) that users require of the object oriented system.
Use cases describe the typical interactions between the users
of a system and the system itself, providing a narrative of
how a system is used. During the requirements phase of a
software project, analysts can take use cases to the next
level by providing a more formal level of refinement in a
form of sequence diagrams. Each use case is realized by
one or more sequence diagrams that depict how the objects
interact and work together to provide services. We propose
considering the development of sequence diagrams
similarity metrics in the functional view.

UML Structure diagrams show the static structure of the
objects in a system. Examples of UML structure diagrams
include the Class Diagram, Component Diagram, Object
Diagram, Deployment Diagram, Package Diagram,
Composite Structure Diagram, and the Profile Diagram.
However, most of these diagrams are mainly used during
the architecture and design phase to express artifacts at

different design levels. During the requirements
engineering phase, the static structure of the system is
mainly captured using instances of the Class Diagram and
Object Diagram. The Class Diagram shows the building
blocks of any object-oriented system: the classes that make
up a system. The potential for collaboration among these
classes, through message passing, is shown in the
relationship between these classes. Object diagrams show
instances instead of classes. They are useful for explaining
small pieces of class diagrams with complicated
relationships, especially recursive relationships. We
propose considering the development of class diagrams
similarity metrics in the structural view.

Behavior diagrams can be used at two different levels:
system level and object level. At the system level, behavior
diagrams (mainly the State Machine Diagram, which is an
object-based variant of Harel’s statecharts [39]) is used to
show the system behavior in response to user actions, as in
user interface design [38]. At the object level, they show
the dynamic behavior of the objects, including their
methods, collaborations, activities, and state histories. The
dynamic behavior of a system can be described as a series of
changes to the system over time. Examples of UML
behavior diagrams include Activity Diagram, Interaction
Diagram, and State Machine Diagram. However, most of
these diagrams are mainly used during the architecture and
design phase to express artifacts at different design phases.
During the requirements engineering phase, the system-level
behavior is if interest and mainly captured using the State
Machine Diagrams [38]. They are used to more formally
describe the flows within or between use cases. We propose
considering the development of state machine diagrams
similarity metrics in the behavioral view.

The left-hand side part of Fig. 1 shows that design reuse
is achieved by comparing the requirements of the new
system to requirements of existing systems in a repository.
The comparison is meant to assess the level of similarity. If
the level of similarity between the best matching old
requirements and the given new requirements is greater than
a given threshold, corresponding design artifacts can be
reused as a starting point for the new requirements. The
right-hand side of the figure shows that the similarity
assessment between the new and old requirements should
consider the three views (depicted as dimensions): use cases
representing the functional view, class diagrams
representing the structural view, and state machine diagrams
representing the behavioral view. It is worth noting here
that sequence diagrams are used in the view-points analysis
technique during the requirements engineering phase to
double check the consistency between the structural view
and the functional view as shown in the figure. Moreover,
as stated above, sequence diagrams can be used to provide a
more formal level of refinement of use cases. Accordingly,
sequences diagrams could be used as a better representative
of the functional view.

427

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 443 / 612

Figure 1. Various UML views in the context of similarity measurement.

In the sequel, we give a literature survey to identify the
technology gap and corresponding research questions.

III. RELATED WORK

Developing with reuse consists of the following
activities [15]: locating reusable artifacts (retrieval),
assessing their relevance to current needs (assessment), and
adapting them to those needs (adaptation). Locating
reusable artifacts often involves some form of comparison
of a query with candidate models in the repository. In every
search, a search space, a search goal, and a comparison
function are always defined. In software retrieval, the
search space is known as the software repository. The
search goal is called the query. The comparison function is
called a similarity metric. How well the retrieved artifacts
match the query depends on the soundness of the similarity
metric.

The following subsection presents a literature review on
reuse environments and similarity metrics.

A. Reuse Environments

Braga et al. [9] present the odyssey environment to
support reuse-based software development environment
based on component based software development. Odyssey
is a framework where conceptual models, architectural
models and implementation models are specified for pre-
selected application domains. Similarly, eColabra [14] is a
reuse environment that takes advantage of highly precise
information retrieval techniques and graph visualization
techniques to customize reuse during the classification and
retrieval stages. Furthermore, eColabra applies information
retrieval techniques to object oriented resources while
exploiting the object oriented languages semantics and
characteristics.

Correa et al. [18] present an approach to object oriented
design reuse by integrating design patterns and anti-patterns
into an object oriented design workbench. This allows the
reuse of knowledge about good and bad object oriented
design practices. Furthermore, a tool (OOPDTOOL) was
developed to support the approach.

Cybulski et al. [11] combine keyword-based and faceted
classifications of requirements and design. The keywords
are extracted from the body of requirements text and are

then translated into design terms of a faceted classification.
Facets are subsequently used to determine affinity between
requirements and design artifacts, which are used for reuse
based refinement of requirements documents. Beyer et al.
[19] present a success story in establishing an architecture-
centric approach at a small development organization. They
evolved the development organization towards systematic
reuse by introducing an architecture-centric strategy for
product development.

Recently, Martins et al. [20] have applied data mining
techniques improve the search of reusable assets. They
have applied association rules and clustering techniques to
aid the knowledge extraction. They used the concept of log
files to extract a historic pattern and facilitate the overall
search process.

COTS-aware requirement engineering (CARE) [35]
approach for component identification has the focus on the
utility of knowledge base. The goals and requirements are
specified as enterprise goals which are further sub
specialized into component goals. CARE points out the
importance to keep requirements flexible as they have to be
constrained by the capabilities of available components. In
this approach, requirements are classified as native
requirements acquired from customers and foreign
requirements of the COTS components. The method puts
emphases on narrowing the gap between customer and
component requirements by using knowledge base. The
process model describes the activities performed to define
the system agents, goals, system requirements, software
requirements and architecture. The product model describes
the format of the product created using the process. The
meta-model describes the knowledge content and structure
for the CARE approach. The method highlights the
importance of mapping system requirements and product
specification; however, it does not support the possible
mismatch between both specifications.

The COTS usage risk evaluation (CURE) [36] is a
‘front-end’ analysis tool that predicts the areas where the
use of COTS products will have the greatest impact on the
program. CURE is designed to find risks relating to the use
of COTS products and report those risks back to the
organization. Ideally, CURE is performed on both the
acquiring and the contracting organization, but this is not
necessary. The evaluation consists of four activities:
preliminary data gathering, on-site interview, analysis of
data and presentation of results. The CURE method has
proven to be a useful tool for organizations that acquire or
develop COTS-based systems. However, there are several
limitations of the current version of CURE ranging from
considerable amount of manual analytical work performed
by evaluators and training required by the evaluators.

B. Similarity Metrics

Retrieval is one of the activities in a software reuse
process, which takes in a query as input and returns
reusable artifacts (or objects of reuse) as output. Because
the goal of software retrieval is to return most similar
reusable software artifacts, we propose considering a

Design

Old

Requirements

Similarity

Functional view
(Use cases)

Behavioral view
(State machine

diagrams)

Structural view
(Class diagrams)

 Sequence

diagrams

New
Requirements

Design

428

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 444 / 612

framework for multi-vie similarity assessment as discussed
above.

In the sequel, we discuss related works in a
chronological order starting with the latest. We conclude
with a summary table (TBALE I) focusing on five aspects
namely artifacts considered for reuse, artifact internal
representation, criteria for matching artifacts (syntactic vs.
semantic), use of extra-artifact annotations to guide
matching, and the search algorithm used.

Ahmed [6] proposed a similarity metric to measure the
similarity of UML models from the functional view using
sequence diagrams. He used heuristic search techniques
such as Genetic and Greedy Algorithms to assess
similarities. His work did not consider consistencies with
other views though.

Rufai [2] proposed a set of structural similarity metrics
to measure the similarity in structural view for UML
models. Different metrics capture the different structural
aspects of the UML model.

William Robinson and Woo [25][26] present an
automatic technique that provides assistance for use cases
reuse. Given an initial description of the use case by
software analyst, an automated graph based relational
learner retrieves a set of similar use cases from a database.
Their work uses automated graph based relational learner
called SUBDUE. It represents an interaction diagram
(sequence diagram) which provides a semantic structure that
includes objects and methods of a use case as labeled graph
that consists of vertices and edges. It uses a structure
similarity measure to determine the distance between query
structure and the structures available in repository. The
technique does not make use of extra annotations and can be
incorporated into tools like rational rose. In their other
work, the authors have developed a CASE tool called
REUSER which uses SUBDUE algorithm to automatically
retrieve related UML sequence diagrams for reuse.

Saeki [27] has made an investigation into which parts of
a use case description can be catalogued as reusable patterns
and template for requirement analysis process. He listed the
following parts as candidates for reuse:

 Use case templates for describing use cases.

 Use case patterns for providing the reusable and
changeable structures for use cases.

 Use case frameworks that are large scale combinations
of use case patterns for an application domain.

 Aspect patterns for wearing non-functional
requirements with functional requirements.

Alspaugh et al. [28] have provided an approach to
scenario management and evolution. They defined
scenarios as a sequence of events with associated attributes.
The defined a similarity measure as the sum of the number
of common attribute values in each attribute list, divided by
the sum of sizes of each attribute list. A variation was also
proposed where attributes are assigned weights.
Annotations are used to guide matching. The authors have
not taken into account the relation between the attributes
that might arise from semantic structures.

TABLE I. EARLY SOFTWARE ARTIFACT REUSE EFFORT

Work
Artifact

Support

Internal

Rep.

Matching

Criteria

Extra

Annotation

Search

Algorithm

[6]
Sequence

Diagrams

Message

flow

Both

Syntactic
and

Semantic

Similarity
(Macro and

Micro

Levels)

No

Depth

First B&B

Genetic
Algorithm

[25]

[26]

Use-Cases,
Sequence

Diagrams,

Class

Diagrams

Conceptual

Graphs

Semantic

Similarity
or Structural

relationship

similarity

(graph

matching)

No
Subdue

Algorithm

[2]
Class

Diagrams

Class

Vectors
Syntactic No

Greedy &

Hungarian
Algorithm

[27] Use Cases

Use Case

Templates,

Use Case
Patterns,

Use Case

Framework,
Aspect

Patterns

Analogy-

based
matching

No N/A

[28] Scenarios

Attributes

or facets

constituting
the use case

scenario

(Actor, go,
purpose etc)

Syntactic

similarity

between
scenarios

Yes N/A

[3]

Use Cases,

Sequence
diagrams

Event flow

vectors

Both

Syntactic

and
Semantic

Similarity

Yes N/A

Bloch and Cybulski [3] have considered event flows in

use-cases in measuring the use-case similarity. The authors
represented the event flows present in the use-cases as
follows. They classified the various events that are part of a
particular domain model into a set of clusters. For a new
use case they associate its events to these clusters based on
the lexical description of the event. The entire event flow in
the use case is represented as a vector where each dimension
of the vector represents the number of events in a particular
cluster.

Ryan and Mathews [29] have facilitated the reuse of
previously developed requirement specifications for same or
similar domains by identifying and encoding the types of
knowledge used during requirement acquisition. They
developed a tool (ReqColl) to aid in the process of
requirement collection using conceptual graphs with
semantic relationships. They used a conceptual graph
matching algorithm to compare requirements expressed as
conceptual graphs. The similarity is assessed based on
matching nodes and arcs inside the conceptual graphs.

Reubenstein and Waters [30] developed a tool,
Requirement Apprentice (RA), to assist users in

429

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 445 / 612

documenting consistent and complete requirements. The
tool maintains a cliché library and uses it to retrieve similar
requirements based on hybrid reasoning system. The cliché
library holds bulk of the general information related to the
domain. This allows users to document only specific
requirement information; remaining general information is
completed from the library.

In conclusion, even though the UML has become more
or less the de facto standard modeling language for
representing analysis as well as design artifacts, researchers
have done little in proposing a similarity metric for UML
models. The above discussed works consider comparison of
artifacts taking only a single view into consideration.
However, as mentioned earlier, a single view cannot
comprehensively capture the software requirements and
considering only one view while assessing similarity for
reuse will not be as effective approach. Accordingly, for
more effective reuse of software artifacts the similarity must
be assessed considering all views.

Effective IREs should be built on top of strong
foundations for a multi-view similarity metric, i.e., a
similarity metric that considers multiple views of software
in its similarity assessment.

IV. RESEARCH QUESTIONS

The problem of multi-view similarity assessment thus
can be stated as to map classes of class diagrams, sequence
diagrams, and state machine diagrams of the input model to
particular counterparts in the repository such that the
substitutions (e.g., class mappings from input model to
repository model) have least conflicts. This problem is in
essence a constraint satisfaction combinatorial optimization
problem in a possibly large, but finite, space [6].
Accordingly, finding optimal substitution for maximal
similarity of UML artifacts represents a NP-hard problem.
The applicability of search heuristic algorithms, to include
but not limited to Genetic Algorithms, Tabu Search, and
Simulated Annealing, should be investigated
[31][32][33][34]. Performance comparison against exact
exhaustive search techniques, e.g., Depth-first Branch and
Bound, should also be considered.

Similarity assessments and corresponding measurements
should be used in ranking repository projects models
according to their similarities to a current project models.

Cornerstone to the similarity assessment is the multi-
view similarity metrics. Effective metrics, according to
some measures such as precession and recall, should be
developed.

A major focus of the IRE should be to offer tools to
facilitate reusing design and later artifacts based on
matching requirements. However, the IRE should also offer
ad-hoc semantic-based UML artifacts repository search.
Metadata and ontology along with indexing and storing
schemes to allow for time-wise efficient retrieval of
previous artifacts from the repository should also be
developed. Standard representation in line with standards
such as the resource description framework schema (RDFS)
should be investigated for repressing the metadata and the

ontology [17]. Text/data mining algorithms should be
researched and developed to support such search activities.

For maximal utilization within the day-to-day activities,
best ways for integration with CASE tools should be
researched. The market is glutted with UML modeling tools
such as Rational Rose, Enterprise Architect, Together J,
Visio, Microsoft Visual Modeler, Advanced Tech GD-Pro,
Visual UML, Object Domain, Object Team, etc. The
standard interchange format adopted for the UML is the
XML Metadata Interchange (XMI) format [37]. Using XMI
in representing UML artifacts in the repository should be
investigated.

It is also important to maintain the quality of the artifacts
maintained in the repository; and in the same line offer
recommendations to re-users with regard to such artifacts.
In order to do so, the IRE should facilitate the collection of
reviews from re-users with respected to re-used/inspected
artifacts. Algorithms should be developed to allow
synthesizing recommendations with regard to existing
artifacts based on a diversity of reviews as well as some
other statistics.

Last but not least, intelligent user interface for easy
artifacts management and reuse within the context of the
day-to-day development activities should be developed. It
should be intelligent in the sense that it can offer
suggestions with regard to the modeling task at hand.

V. CONCLUSION AND FUTURE WORK

This paper presented an approach towards the
development of integrated UML reuse environment. The
paper surveys current state of the art and identifies gaps
along with corresponding research questions for future
work.

The author has been supervising a group of graduate
students in an effort that aims at laying the foundations for
multi-view similarity metrics and assessment along with the
development of IREs proof of concept through a set of case
studies. The effort has started earlier [2][6], was suspended
for some time, and got resumed recently as a focus for
future work. The successful realization of such IREs to
facilitate early-stage reuse of UML artifacts is expected to
improve the software quality and developers productivity.

ACKNOWLEDGMENT

The author wish to acknowledge King Fahd University
of Petroleum and Minerals (KFUPM) for the use of various
facilities in carrying out this research.

The author also thanks Jarallah AlGhamdi, Raheem
Rufai, Awes Ahmed, and Sajjad Mahmoud for many helpful
discussions, comments, and different contributions to the
origin of this work.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed.: Addison-Wesley,
2010.

[2] R. Rufai, "New Structural Similarity Metrics for the UML," MS
Thesis, King Fahd University of Petroleum & Minerals, Dhahran,
Saudi Arabia, 2003.

430

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 446 / 612

[3] M. C. Blok and J. L. Cybulski, "Reusing UML Specifications in a
Constrained Application Domain," in Proceedings 5th Asia Pacific
Software Engineering Conference (ASPEC’98), 1998, pp. 196-202.

[4] V. De Mey and O. Nierstrasz, "The ITHACA Application
Development Environment. Visual Objects (ed. D. Tsichritzis,"
Centre Universitaire d'Informatique, University of Geneva1993.

[5] D. C. Rine, "Success factors for software reuse that are applicable
across domains and businesses. ," in Proceedings of the ACM
Symposium on Applied Computing, 1997, pp. 182-186.

[6] A. Ahmed, "Functional Similarity Metric for UML Models," MS
Thesis King Fahd University of Petroleum & Minerals, 2006.

[7] V. Sugumaran, et al., "Software product line engineering,"
Communications of the ACM, vol. 49, pp. 29-32, 2006.

[8] G. Booch, et al., Object-Oriented Analysis and Design with
Applications: Addison-Wesley, 2007.

[9] R. M. M. Braga, et al., "Odyssey: A Reuse Environment Based on
Domain Models," in Proceedings 1999 IEEE Symposium on
Application-Specific Systems and Software Engineering and
Technology, ASSET '99., 1999.

[10] J. L. Cybulski, "Introduction to Software Reuse," Technical Report
TR96/4, University of Melbourne, Melbourne, Australia1996.

[11] J. L. Cybulski and K. Reed, "Requirements Classification and Reuse:
Crossing Domain Boundaries," in Proceedings of the 6th
International Conerence on Software Reuse: Advances in Software
Reusability, London, UK, 2000.

[12] R. K. Keller, et al., "Design and Implementation of a UML-Based
Design Repository. ," in Proceedings 13th International Conference
on Advanced Information Systems Engineering (CAiSE2001),
Interlaken, Switzerland, 2001.

[13] H.-Y. Lee and M. T. Harandi, "An Analogy-Based Retrieval
Mechanism for Software Design Reuse.," in Proceedings of the 8th
Knowledge-Based Software Engineering Conference (KBSE’93),
Chicago, 1993, pp. 152-159.

[14] O. Edelstein, et al., "eColabra: An Enterprise Collaboration & Reuse
Environment," in Proc. Fourth Int'l Workshop (NGITS '99), 1999, pp.
229-236.

[15] H. Mili, et al., "Reusing Software: Issues and Research Directions,"
IEEE Transactions on Software Engineering, vol. 21, 1995.

[16] I. Jacobson, et al., Object-oriented software engineering: a use case
driven approach: Addison-Wesley, 1992.

[17] W3C, "RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210 last
accessed Jan. 2011.," ed, 2004.

[18] A. L. Correa, et al., "Object Oriented Design Expertise Reuse: An
Approach Based on Heuristics, Design Patterns and Anti-Patterns," in
6th International Conference on Software Reuse, 2000, pp. 33 - 191.

[19] H.-J. Beyer, et al., "Introducing Architecture-Centric Reuse into a
Small Development Organization," in Proceedings of the 10th
international conference on Software Reuse: High Confidence
Software Reuse in Large Systems Berlin, Heidelberg, 2008.

[20] A. C. Martins, et al., "Suggesting Software Components for Reuse in
Search Engines Using Discovered Knowledge Techniques," in SEAA
'09 Proceedings of the 2009 35th Euromicro Conference on Software
Engineering and Advanced Applications 2009, pp. 412-419.

[21] J. Rumbaugh, et al., Object-Oriented Modeling and Design, First ed.:
Prentice Hall, 1991.

[22] J. Iivari, "Object-orientation as structural, functional and behavioural
modelling: a comparison of six methods for object-oriented analysis,"
Information and Software Technology, vol. 37, pp. 155-163, 1995.

[23] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques: John Wiley & Sons, 2000.

[24] J. Mylopoulos, "Multiple Viewpoints Analysis of Software
Specification Process," IEEE Transactions on Software Engineering,
1995.

[25] W. N. Robinson and H. G. Woo, "Finding Reusable UML Sequence
Diagrams Automatically," IEEE Software, vol. 21, pp. 60-67, 2004.

[26] H. G. Woo and W. N. Robinson, "Reuse of Specifications Using an
Automated Relational Learner: A Lightweight Approach," in
Proceedings of the 10th Anniversary IEEE Joint International
Conference on Requirements Engineering, 2002, pp. 173-180.

[27] M. Saeki, "Patterns and Aspects for Use Cases: Re-use Techniques
for Use Case Descriptions," in Proceedings of the 4th International
Conference on Requirements Engineering (ICRE'00), 2000.

[28] T. A. Alspaugh, et al., "An Integrated Scenario Management
Strategy," in Proceedings of the 4th IEEE International Symposium
on Requirements Engineering, 1999.

[29] K. Ryan and B. Mathews, "Matching Conceptual Graphs as an aid to
Requirements Re-use," Proceedings of IEEE International
Symposium on Requirements Engineering, pp. 112-120 1993.

[30] H. B. Reubenstein and R. C. Waters, "The Requirements Apprentice:
Automated Assistance for Requirements Acquisition," IEEE
Transactions on Software Engineering, vol. 17, 1991.

[31] R. Poli, et al., "Particle swarm optimization: An overview," Swarm
Intelligence, vol. 1, pp. 33-57, 2007.

[32] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed.: Prentice Hall, 2010.

[33] S. Sait and H. Youssef, Iterative Computer Algorithms with
Applications in Engineering: IEEE Computer Society, 1999.

[34] D. Teodorovic, et al., "Bee Colony Optimization: Principles and
Applications," in 8th Seminar on Neural Network Applications in
Electrical Eng., NEUREL-2006, IEEE CNF, 2007.

[35] L. Chung and K. Cooper, "Knowledge based COTS aware
requirements engineering approach," in 14th Int. Conf. Software Eng.
Knowledge Eng, 2002, pp. 175 - 182.

[36] D. J. Carney, et al., "Identifying Commercial off the Shelf Product
Risks: The COTS Usage Risk Evaluation," Carnegie Mellon Software
Engineering Institute (SEI) 2003.

[37] Object Management Group (OMG). OMG XML Metadata
Interchange (XMI) Specification (V. 2.11/Beta 2.4). Jan. 2002.
http://www.omg.org/spec/XMI/ (Accessed 2011-05-28).

[38] B. Sheiderman and C. Plaisant, Designing the User Interface, Pearson
Education, Inc., 2005.

[39] Object Management Group (OMG). OMG Unified Modeling
Language (OMG UML), Superstructure (V. 2.3). May, 2010.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/ (Accessed
2011-09-23).

431

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 447 / 612

An Automated Translation of UML Class Diagrams into a Formal Specification to

Detect UML Inconsistencies

Khadija El Miloudi Younès El Amrani Aziz Ettouhami

Laboratoire Conception et Systèmes FSR

University MohamedV-Agdal

BP 1014 RP Rabat. Morocco

{elmiloudi,elamrani,touhami}@fsr.ac.ma

Abstract— In view of the informal semantic of UML, there is a

high risk of introducing ambiguities and contradictions in the

modelled software. A considerable amount of literature has

been published on UML inconsistencies. These studies have

demonstrated the absence of any rule in UML to prevent such

inconsistencies from being introduced in UML designs. This

article describes a systematic translation of UML Class

Diagrams into a formal specification to uncover most of the

UML inconsistencies published to date. Examples of

inconsistent UML class diagrams presented in previous

research studies were used to validate the approach. The

formal model obtained from UML class diagrams helped to

uncover inconsistencies without any further proof. In order to

relieve the user from writing a much rigorous and precise

formalism, a tool that automatically generates the formal

model from the UML class diagram was developed.

Keywords- Z; UML; UML inconsistencies; Formal

Specification; Software Model Checking.

I. INTRODUCTION

There are numerous off-the-shelf software proposing to
automatically translate UML Class Diagrams into several
implementations. Nonetheless, there are very few
translations into a formal notation to detect UML
inconsistencies. Therefore, UML inconsistencies are
insidiously injected into any generated implementation,
when not removed. According to a definition provided in [7],
inconsistency “denotes any situation in which a set of
descriptions does not obey some relationship that should
hold between them”. This paper will use this definition to
identify most of contradictions in UML class diagram using
Z notation [1]. The Z notation was chosen for the various
benefits that it offers. Hall [5] [6] identifies several
advantages of formal methods and concluded that they
“contributes to demonstrably cost-effective development of
software with very low defect rates”. This study makes use
of Anthony Hall’s model [2] [4] of specification and
interpretation of class hierarchies to express UML [2] class
diagram in Z [1]. The obtained model uncovers
inconsistencies of a given UML class diagram. We selected
Anthony Hall’s model because it is referenced by most of
works published to date and it models all needed concepts
for the inconsistencies studied, namely: class hierarchy,
multiplicity and association between classes. A prototype
was devised to automatically generate formal specifications

based on Anthony Hall’s model [2] [4]. All presented
examples were automatically generated then type-checked
with Z/EVES [13].

The structure of the rest of this paper is as follows. In
Section 2, we present the related work. Section 3 provides a
summary of Z notation [1] used in this paper. Section 4
summarizes Anthony Hall’s model [2] [4]. Section 5
illustrates how UML [2] inconsistencies identified in
published previous studies are uncovered in Z [1]. Section 6
draws some conclusions and future works.

II. RELATED WORK

There are several researches that are closely related to
our work. A method for the automatic detection of the
contradictions in UML Class Diagram has been introduced
in [10]. Two kinds of inconsistencies were detected:
contradictory multiplicities and the disjoint constraint
violation. A semantic of UML in terms of first order logic
was used to translate the class diagram into a program in
logic. Our work inspires by this approach and chooses to
formalize all the UML class model into the Z notation, both
contradictions studied in [10] trivially surfaced. The strength
of our approach takes root into the simplicity and elegance of
Anthony Hall’s class hierarchies model. Also, the use of the
Z notation made it possible to foster the Z/EVES [13] system
for future investigations of the UML design robustness and
to automatically process the model.

In [8], a definition of a production system language and
rules specific to UML software designs is proposed. The
system aims at detecting inconsistencies, notifying users and
automatically fixing the inconsistency during the design
process. The production system uses the Jess rule Engine
 [15]. In our approach, we use the Z notation [1] based upon
set theory and mathematical logic. In the generated model,
an inconsistency appears as two inconsistent predicates as it
will be illustrated in Section 5. Our approach provides more
visibility on the generated predicates, which enables further
investigations on the software correctness. In the same
context, the RoZ tool [11] has been developed to
automatically generate formal specifications from UML
class diagram. The UML design is completed by annotations
in Z. However, this tool is different from ours, on the one
hand, RoZ does not tackle inconsistency detection in UML
class diagram. On the other hand, this tool requires the

432

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 448 / 612

designers to annotate in Z the UML class diagram to proceed
with the generation of specifications, hence, the tool RoZ
 [11] requires Z specification at the UML stage, whereas in
our method, we generate a complete translation of UML
class diagram without any preliminary Z annotations. In our
approach the separation of UML and Z allows to work on
UML designs provided by software engineers without Z
knowledge. When the model is generated, it offers the choice
between an automatic processing to detect inconsistencies or
a human static checking by a Z literate for further
investigations.

In [16] and [17], a formal representation of UML models
is proposed. The formal specification obtained is used to
express and check some properties, called conjectures, on the
model. Whereas in our approach we check the structural
inconsistencies of a UML Class Diagram in general,
focusing on generalization and multiplicities.

III. SUMMARY OF Z NOTATION

Z [1] is a formal specification language created by J.R.
Abrial based upon set theory and mathematical logic. In Z
notation, a specification uses the notion of schema to
structure the underlying mathematics and allow an easy
reuse of its subparts. According to [12], a schema is a
“structure describing some variables whose values are
constrained in some way”. A schema consists of two parts:
the declaration part which contains the declaration of state
variables and the predicate part which consists in a set of
predicates constraining the variable state values. These
predicates express properties on the state variables and
introduce relationships between them. The name of the Z
schema enables its re-use. A Z schema may be used or re-
used as a declaration, a type or a predicate. When the
specification requires a composite type, a schema is used to
denote it. For example, the following schema denotes the
type Rider, which is composed of four state variables with
their types.

 Rider

self: RIDER

name: NAME

weight: WEIGHT

skill: SKILL

At an early stage of the specifications, the new types are
introduced as given sets. New introduced types serve as basic
types in the specification. A given set is introduced between
square brackets. For example, to introduce a given set named
OBJECT, we write:

[OBJECT]
The symbol ℙ is used to denote all subsets of a set. For

example, to denote RIDER a subset of the set OBJECT we
write:

RIDER: ℙ OBJECT

Several subsets can be defined at once, for example the

following declaration

 MAN, WOMAN: RIDER

introduces two subsets of RIDER. To denote that the two

sets are disjoint we write

MAN ∩ WOMAN = ∅

It could be abbreviated to:

disjoint ‹ MAN, WOMAN ›

To denote a partial function named idRider from RIDER

to Rider we write:

 idRider: RIDER ß Rider

dom idRider denotes the domain of the partial function

idRider, and ran idRider denotes its range. We can also

define a function by set comprehension, example:

 idRider={rider : Rider • rider.self å rider }
The function idRider is the set of all mappings rider.self

å rider.

We can also define a function using lambda notation which

is: (λ declaration | constraint • result)

For example, the relation f on the set of natural numbers ℕ

associates to each natural number m, the unique number

2*m+1 as follow:

f : ℕ↔ℕ

f = (lm:ℕ •2*m+1)

IV. UML CONSTRUCTS IN Z

In order to detect inconsistencies, a formal translation of

UML constructs is used. The Z notation is the selected

formal notation. The translation must meet a published

model widely referenced. The model used is Anthony Hall’s

 [2] [4]. The most needed constructs are the class construct

and the generalization relationship. The model is presented

through the example of the riding school from [4] illustrated

in Figure 1.

Figure 1. A Riding School UML Class Diagram

433

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 449 / 612

In Object-oriented modeling, a class describes the state

and behavior of the class objects. The objects of a class are

also called the class instances. The set of all object identities

in Anthony Hall’s model is introduced as the given set

[OBJECT]. To model the set of all classes we introduce the

given set [CLASS]. A class is a particular member of

CLASS. In the example of the riding school, the UML rider

class is translated into a schema containing the attributes

and their types. An attribute self represents the identifier of

the current instance. The name of the schema in Z is the

concatenation of name of the class with the text

‘CoreClass’. Then a free type, with the same name as the

class, is defined. It adds an optional nil value to be used in

initializations.

In our example, a schema called SRider represents all

instances of the class. The state variable riders represents

the set of the riders identified by the system. The state

variable ridersIds is the set of their identities. A function

idRider binds each unique instance identifier to the

corresponding rider.

ÆRIDER: P OBJECT

 RiderCoreClass

self: RIDER

name: Name

weight: Weight

skill: Skill

Rider ::= nilRider| ridercoreclasstoriderœRiderCoreClass∑

 SRider

riders: P Rider

idRider: RIDER ß Rider

riderIds: P RIDER

idRider

 = { ridercoreclass: RiderCoreClass

• ridercoreclass.self å ridercoreclasstorider

ridercoreclass }
riderIds = dom idRider

An initialization schema is generated for each class to

indicate the initial value of each attribute. Two types of

initialization are proposed: an initialization by default which

allows assigning nil values defined above to all attributes

and the second method is used to initialize the attributes

with values provided by the user.

 InitRiderCoreClassByDefault

RiderCoreClass'

name' = nilName

weight' = nilWeight

skill' = nilSkill

 InitRiderCoreClassWithValues

RiderCoreClass'

name?: Name

weight?: Weight

skill?: Skill

name' = name?

weight' = weight?

skill' = skill?

The following example illustrates the way to formalize a

method using the Z notation. Each method is translated into

an operation schema. Each operation includes a schema that

indicates whether the system state will be changed (RiderOp

below) or remains unchanged (RiderGet below). This

schema also guarantees us that the object identifier (self)

remains unchanged.

Since the formal model is automatically generated from

the UML Class Diagram, only the method signature is

defined (ChangeNameRider below).

 RiderOp

∆RiderCoreClass

self' = self

 RiderGet

ΞRiderCoreClass

self' = self

 changeNameRider

RiderOp

name?: Name

In Object-oriented programming, the setters/getters

methods are often used. The setter method takes a new value

as an input parameter to modify the private attribute. The

getter method returns the value of the private attribute. In

our tool, the getters/setters methods are automatically

generated for each class.

 setskillRider

RiderOp

skill?: Skill

434

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 450 / 612

RsetskillRider: Skill f Rider f Rider

RsetskillRider= { skill: Skill

 • skillå { setskillRider | skill? = skill

• (ridercoreclasstorider θ RiderCoreClass

å ridercoreclasstorider θ RiderCoreClass') } }

 setskillRiderSystem

∆SRider

rider?: RIDER

skill?: Skill

idRider' = idRider ± ({rider?} r idRider ;
RsetskillRider skill?)

 getskillRider

RiderGet

skill!: Skill

skill! = skill

The example below illustrates the transformation rule of

the inheritance relationship between Teacher Class that

inherits from Rider Class. The inheritance relationship

between two classes is translated into Z by the inclusion of

the schema of the super-class in the declaration part of the

schema of subclass. In any inheritance relationship, the set

of object identities of the subclass is a subset of the object

identities of the super-class. To express this relationship, we

define the schema called RiderTeacherHierarchy. The

lambda function (λ Teacher • θ Rider) used in the predicate

part of RiderTeacherHierarchy denotes the projection

function from Teacher state to Rider state.

Figure 2. Example of Inheritance Relationship

 TeacherCoreClass

RiderCoreClass

qualification: Skill

self e TEACHER

Teacher ::= nilTeacher

| teachercoreclasstoteacher œTeacherCoreClass∑

 STeacher

teachers: P Teacher

idTeacher: TEACHER ß Teacher

teacherIds: P TEACHER

idTeacher

 = { teachercoreclass: TeacherCoreClass

 • teachercoreclass.self

 å teachercoreclasstoteacher teachercoreclass }
teacherIds = dom idTeacher

 RiderTeacherHierarchy

SRider

STeacher

teacherIds = riderIds I TEACHER

A t: teacherIds

 • (l TeacherCoreClass• θ RiderCoreClass)

(teachercoreclasstoteacher
~
 (idTeacher t))

 = ridercoreclasstorider
~
 (idRider t)

To get an overview of all classes of the system and
relationships that bring them together, the schema System is
introduced.

 System

SRider

Steacher

RiderTeacherHierarchy

This model is used in Section 5 to illustrate how common
UML inconsistencies [9] [10] are translated into inconsistent
predicates.

V. UML INCONSISTENCIES IN Z

In this section, a formalization of UML inconsistencies is
presented using Z Notation. This formalization is based on
the model presented in Section 4. Each inconsistency is
presented through an illustrative example previously
published.

A. Generalization and Disjointness

In a UML Class Diagram, the disjoint constraint means

that an instance of the super-type may not be a member of

more than one sub-type, it is denoted in UML between

brackets near the inheritance arrow, i.e., multiple inheritance

of disjoint classes is forbidden. The example studied in the

papers [9] [10] and illustrated in Figure 3. shows a diagram

where {disjoint} constraint is violated.

435

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 451 / 612

Figure 3. Inconsistent Class Diagram

The formalization of disjointness is given by the inclusion

of a predicate which guarantees the disjointness of classes

mentioned with the constraint {disjoint}.

 System

Sclass1

Sclass3

Sclass2

Sclass4

class3class1Hierarchy

class2class1Hierarchy

class4class2Hierarchy

class4class3Hierarchy

disjoint ‹ class2Ids , class3Ids›

The predicate disjoint‹class2Ids , class3Ids› is equivalent

to the predicate:

class2Ids ∩ class3Ids = ∅ (1)

The constraints

(class1Ids = class2Ids ∩ CLASS1) ∧ (class1Ids = class3Ids

∩ CLASS1) (2)

are introduced in the schema System from

class2class1Hierarchy and class3class1Hierarchy.

(1) And (2) implies that class1Ids = ∅ (3)

If class1 is instantiated then class1Ids ≠∅, hence the

inconsistency.

To check the consistency of the specification, a

disjointness theorem is generated when a disjoint property is

reported on the UML model.

theorem disjointness

 E Sclass1 | class1Ids Î 0 • System

If the theorem cannot be proved, then the System is

inconsistent.

B. Completeness and Disjointness

We found also in the UML class diagram the {complete}

constraint.

The {complete} constraint means that each instance of

the super-type must be a member of one of the sub-types.

Here is an example from [9].

Figure 4. Inconsistent Class Diagram

The {complete} constraint used in the Figure 4. imposes

on the class5 to be specialized either as class2 or class3.

The completeness constraint is translated by the following

predicate in the system schema:

class5Ids = class2Ids U class3Ids

This predicate expresses that all instances of class5

belong either to class2 or class3. The system obtained is:

 System

Sclass1

Sclass2

Sclass3

Sclass4

Sclass5

class4class1Hierarchy

class4class2Hierarchy

class4class3Hierarchy

class5class1Hierarchy

class5class2Hierarchy

class5class3Hierarchy

disjoint „class1Ids, class2Ids, class3Ids
class5Ids = class2Ids U class3Ids

On the one hand in the final schema System, the predicate

disjoint „class1Ids, class2Ids, class3Ids
translates the disjoint constraint in UML and the predicate

class5Ids = class2Ids U class3Ids

translates the complete constraint in UML.

436

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 452 / 612

On the other hand, the generalization between class1 and

class5 is translated into the following predicates:

class1Ids = class5Ids ∩ CLASS1 from the schema

class5class1Hierarchy.

where class5Ids: ℙ CLASS5 from the schema Sclass5.

Therefore class1Ids ⊆ CLASS5 ∩ CLASS1 implies that

class1Ids = ∅.
If class1 is instantiated, then class1Ids ≠ ∅. Hence the

inconsistency.

The following theorem is used to check the consistency of

the schema System when using disjoint and complete

constraints simultaneously.

theorem completeness

 E Sclass1 | class1Ids Î 0 • System

In the same way, it detects when there is no such a System.

C. Multiplicities

Consider the following class diagram used in the article

 [9] [10] representing a multiple inheritance:

Figure 5. Inconsistent Class Diagram

In this example, we have three classes named class1,

class2 and class3. Class1 inherits from both class2 and

class3. The multiplicity of an attribute indicates the number

of values that attribute can contain. In the example, class2

has an attribute with a multiplicity maximum of 4 and

minimum of 1, class3 has an attribute with the same name

but different bounds: the multiplicity maximum is 8 and

minimum is 5.

The following schema illustrates the multiplicity

formalization:

 class2

self: CLASS2

a: Pℤ

1 ¯ # a ¯ 4

 class3

self: CLASS3

a: ℙℤ

5 ¯ # a ¯ 8

We use Anthony Hall’s modelling [2] [4] summarized in

Section 4 to represent the inheritance relationship. We

include the schema of the super-class in the declaration part

of the schema of subclass. In this example, we have a

multiple inheritance. class1 is represented by the following

schema:

 class1

class3

class2

self e CLASS1

In Z, the introduction of a schema S1 into another
schema S2 introduces all the state variables and predicates of
S1 into S2. In this example, the inconsistency is immediately
detected in Z because class1 inherit two attributes with the
same name from two different super-classes class2 and
class3. The Z/EVES [13] immediately uncovers such a
redundant declaration. Even if we keep only one declaration
in the variable part of the schema, the two predicates remain
inconsistent. It is worth saying here that the UML standard
 [2] is ambiguous in the case of multiple inheritance of the
same attribute. Therefore, it is up to the designer to provide a
semantic in that case.

VI. CONCLUSION AND FUTURE WORK

A. Concluding Remarks

This article illustrated most frequent UML
inconsistencies published so far using Anthony Hall’s model
 [2] [4] most of these are translated into contradictory
predicates. In some ambiguous cases, UML must be
supplemented by an additional formal semantic. Typically
UML lacks a semantic for multiple inheritance of attributes
with the same name. A prototype has been developed to
automatically translate UML designs into their formal
counterpart. The Z notation makes the formal translation of
the design particularly suitable for further investigation in Z.

B. Future Work

There are two ways to build on this work. First we are
developing an automated and interactive verifier of the
inconsistencies using Z/EVES [13] meanwhile a
formalization of the Object Constraint Language is prepared
in order to translate UML Class Diagrams using OCL [14]
into a more precise Z counterpart. The current prototype is
completed to automatically generate formal specifications
from UML Class diagrams annotated by OCL constraints.

REFERENCES

[1] J. M. Spivey: The Z Notation: A Reference Manual, Prentice
Hall, Englewood Cliffs, NJ, Second Edition, 1992.

[2] Object Management Group (OMG). Unified Modeling
Language: Superstructure. Version 2.3, May 2010.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/.
Sept 11, 2011.

437

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 453 / 612

[3] A. Hall, “Using Z as a Specification Calculus for Object-
Oriented Systems”. In Bjorner D, Langmaack H (eds),
Proceedings of VDM 90, Lecture Notes in Computer Science
No. 428, pp. 290 - 318. Springer Verlag, 1990.

[4] A. Hall, “Specifying and Interpreting Class Hierarchies in Z”,
Z User Workshop, Cambridge 1994, ed. J. P. Bowen and J.
A. Hall, Springer, 1994.

[5] A. Hall, “Realising the Benefits of Formal Methods”, Formal
Methods and Software Engineering, LNCS 3785, Springer,
pp. 1-4, 2005.

[6] A. Hall, “Seven Myths of Formal Methods”, IEEE Software,
September 1990, pp. 11-19.

[7] B. Nuseibeh, S. Easterbrook and A. Russo, “Leveraging
Inconsistency in Software Development”. IEEE Computer,
vol. 33, pp. 24–29, April, 2000.

[8] W. Liu, S. Easterbrook and J. Mylopoulos: Rule-based
Detection of Inconsistency in UML Models; Proc. Workshop
on Consistency Problems in UML-Based Software
Development, pp. 106-123, 2002.

[9] K. Kaneiwa and S. Satoh, “Consistency Checking
Algorithms for Restricted UML Class Diagrams”. In
Proceedings of the Fourth International Symposium on
Foundations of Information and Knowledge Systems, vol.
3861, pp.219-239, 2006.

[10] K. Satoh, K. Kaneiwa and T. Uno, “Contradiction Finding
and Minimal Recovery for UML Class Diagrams using Logic
Programming”. Proceeding of 21st IEEE International
Conference on Automated Software Engineering (ASE’2006),
pp. 277-280, 2006.

[11] Yves Ledru. RoZ tool. 22 february 2000.
http://vasco.imag.fr/RoZ/index.html. Sept 11, 2011.

[12] Jim Woodcock and Jim Davies.: Using Z Specification,
Refinement, and Proof. University of Oxford, 1995.

[13] Irwin Meisels. Software Manual for Windows Z/EVES
Version 2.3. ORA Canada Technical Report TR-97-5505-04h,
June 2004.

[14] Object Management Group (OMG). Object Constraint
Language. Version 2.2, February 2010.
http://www.omg.org/spec/OCL/2.2/PDF/. Sept 11, 2011.

[15] Jess, the Rule Engine for the JavaTM Platform.
http://www.jessrules.com/. Sept 11, 2011.

[16] N. Amalio, F. Polack and S. Stepney. “UML + Z: UML
augmented with Z”. In Software Specification Methods: an
Overview Using a Case Study. Marc Frappier and Henri
Habrias, editor. Hermes Science Publishing. 2006.

[17] N. Amalio, S. Stepney and F. Polack, “Formal Proof from
UML Models”. In et al, J. D.,ed., ICFEM 2004, volume 3308
of LNCS, pp. 418–433. Springer .2004.

438

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 454 / 612

 UML 2.0 Profile for Structural and Behavioral Specification of SCA Architectures

 Wided Ben Abid Mohamed Graiet Mourad Kmimech
 MIRACL, ISIMS MIRACL, ISIMS MIRACL, ISIMS
 BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA
 benabidwided@hotmail.com mohamed.graiet@imag.fr mkmimech@gmail.com

 Walid Gaaloul
 Computer Science Department Télécom SudParis
 Mohamed Tahar Bhiri 9, rue Charles Fourier 91 011 Évry Cedex, France Eric Cariou
 MIRACL, ISIMS walid.gaaloul@it-sudparis.eu Université de Pau et des pays de l’Adour
BP 1030, Sfax 3018, TUNISIA Avenue de l'Université BP 1155 64013
 Tahar_bhiri@yahoo.fr PAU CEDEX France

 Eric.Cariou@univ-pau.fr

Abstract— Service Component Architecture (SCA) aims to
simplify the construction of service oriented architecture
(SOA) to encourage a better reuse and to be independent from
used technologies. In the other hand, UML 2.0 is the de-facto
standard for graphical notation and modelling in software
engineering. To face this situation we recommend an
adaptation of UML 2.0 to SCA. It is in this context that we
have defined a profile UML 2.0 for SCA containing a set of
stereotypes applied to metaclasses stemming from the
metamodel UML 2.0. These stereotypes are completed by
formal constraints in OCL. Our profile introduces new
elements to reflect the architectural concepts of SCA.

 Keywords-Software architecture, SCA, UML 2.0, OCL,
Profile and Metamodel.

I. INTRODUCTION

Nowadays, software engineering aims to decrease the
complexity of application development by reusing
heterogeneous and distributed software components. Thanks
to the Web technologies, to the SOA architecture (Service
Oriented Architecture) [1] and the SCA Architecture
(Service Component Architecture) [2], the opening of the
company to the world is made possible. The use of the
standard SCA as the model of specification of the service
oriented components architectures produces concepts and
notations which are not readable and easily understandable,
especially in the industrial circles. Using a graphical model
seems a way that could overcome this disadvantage.

The UML language being a modelling standard which
supplies, on one hand readable graphic representations and
on the other hand proposes diagrams to specify workflows,
seems a relevant way to model SCA Architectures. To face
this situation, we recommend an adaptation of UML 2.0 to
the SCA. It is in this context that we defined a profile UML
2.0 of specification of the architectures SCA. Our profile
UML 2.0-SCA is a set of stereotypes applied to metaclasses
stemming from the UML 2.0 metamodel.
The proposed stereotypes are endowed with the constraints

of use expressed formally in OCL [3]. Such a profile is
defined to favor:

• Recovery (or reuse) of software architecture
described in SCA from the academic world.

• Design and implementation of software systems
having explicit and documented software
architectures.

• The transformation of model according to the
approach MDA [4] [5] [6]. For example, the
transformation of a PIM (Platform Independent
Model) described in this profile to another PIM or
PSM (Platform Specific Model) described in UML
2.0 or using others profiles.

Then, we partially automate our proposed formalization
methodology using an MDE (Model Driven Engineering)
approach. For this, we will transform the metamodel of the
proposed UML 2.0-SCA profile to SCA metamodel. These
metamodels respectively play the role of source and target
metamodels for the exogenous transformation of the profile
UML2 to SCA. In addition, we implemented
ProfilUML2SCA, a tool for this transformation using the
MDE language ATL (ATLAS Transformation Language)
[7].

This paper has four main sections besides an introduction
and a conclusion. The first and second section will position
our contribution with respect to different approaches of
modelling software architectures and initializes an SCA
metamodel to express in a semi-formal way the SCA
concepts to be modeled in UML 2.0 to establish
correspondences. The third section describes an extension of
the proposed UML profile. In Section 4, we present our
automatic MDE approach for Exegenous transformation
from our profile to SCA application.

II. SOFTWARE ARCHITECTURE IN UML

UML is a modelling language which is generalist, semi-
formal and widely used in the industrial world. However,
several researchers [8] [9] studied the possibility of
modelling software architecture by using UML. Two
approaches corresponding to the standard UML are

439

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 455 / 612

proposed. The first strategy uses UML as it is, to represent
the architectural concepts of the ADLs, such as component,
connector, role, port and configuration. The major advantage
of this approach is the understanding of this modelling by
every user of UML. But this strategy has limitations on the
inability of UML, especially UML1.x to translate
architectural concepts explicitly. For this reason, we use a
second approach which consists in defining profiles.
UML can be adapted to every domain through the
extensibility mechanisms offered by this language such as
stereotypes, tagged values and constraints. These
mechanisms offered by UML extend UML without changing
the UML metamodel. The advantage using profiles consists
in clarifying the representation of the architectural concepts.
So, we define this profile based on the strategy of using
extensibility mechanisms of UML 2.0 to constrain the UML
metamodel in order to adapt to the architectural concepts of
SCA.

III. METAMODELLING OF THE SCA ARCHITECTURE

A. Structural aspects of SCA

SCA provides a programming model for building
applications and systems based on a SOA. The main idea
behind SCA is to be able to build distributed applications,
which are independent of implementation technology and
protocol. SCA is the result of a collaborative project OSOA
(Open Service Oriented Architecture) [10] which aims to
provide a set of specifications including firstly a model for
creating components and also a programming model for
building software applications based on architecture services.

In this section, we introduce only the model for creating
software components. SCA provides an assembly model
representing a network of services and allows building the
SCA components in different languages, while ensuring
integration with existing models. The basic unit of
deployment of an SCA application is composite. A
composite is an assembly of heterogeneous components,
which implement particular business functionality (see
Figure 1 below).

Figure 1. Diagram of an SCA composite [11]

A SCA composite is an assembly, which can contain
components, services, references of services, declarations of
properties allowing the configuration of its components, and

links specifying the connections between components.
Independently of whatever technology is used, every
component relies on a common set of abstractions including
services, references, properties, and bindings.

A component is the basic entity for the construction
of SCA application. This element has an implementation that
must be either Java class or a BPEL process. Independently
of the technology used for its implementation, the
component is based on a common set of abstractions such as
services, references and properties. Figure 2 shows an
example of an SCA component:

Figure 2. Example of SCA component

Each SCA component implements a business logic
exposed by one or more services. A service describes what a
component provides, i.e., its external interface. A reference
specifies what a component needs from the other
components or applications of the outside world. Services
and references are matched and connected using wires or
bindings. A component also defines one or more properties.

To provide distant communications between services,
SCA offers the possibility of using a protocol described in
the binding specified within the service and\or within the
implementation, for example the protocols JMS (Java
Message Service), RMI (Remote Method Invocation) or
SOAP (Simple Object Access Protocol) to perform
synchronous or asynchronous communications. A single
service or reference can have multiple bindings, allowing
different remote software to communicate with it in different
ways.

B. Behavioural aspects of SCA

The web services technology is widely used as support of
the interoperability between applications. In this context, the
interactions between components of the SCA Architecture
are made through its service interfaces. The communication
is realized by means of message exchanges. A web service
defines the functionality it provides and the required
information that must be met to perform its function. The
functionality of the web service can be implemented in
any number of ways and languages such as XLANG [12],
Web Services Flow Language(WSFL) [13] and Business
Process Execution Language(BPEL) [14].

BPEL is a language of composition which is spirit to
become a standard. This language describes a business
process who specifies the execution order between a

440

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 456 / 612

numbers of constituent activities, the partners involved, the
message exchanged between these partners and the fault and
exception handling mechanisms, to achieve a commercial
goal.

The main concept of BPEL is the BPEL process. It uses
several concepts as Partner links, handlers, variables,
correlation sets, and activities for the process logic. The
atomic element of a process is an activity, which can be the
“send of a message” (activity: reply), the “reception of a
message” (activity: receive), the “call of an operation”
(activity: invoke) or “manipulate data” (activity: assign).
Structured Activities prescribe the order in which a
collection of activities take place like “execute these
structured activities prescribe the order in which a collection

of activities take place like “execute these activities
sequentially” (activity: sequence), “repeat the execution of
this activity” (activity: while) or “parallel execution of
activities” (activity: flow).

In this section, we thus decided to elaborate a metamodel
for SCA Architecture representing most of the concepts
stemming from this specification. This metamodel allows, in
our context, to express in a semi-formal way the concepts
SCA both structural and comportemental to be modelled in
UML 2.0. Our metamodel is built as an extension of the
metamodel proposed by the community OASIS
(Organization for the Advancement of Structured
Information Standards). Our metamodel is illustrated in
Figure 3.

Figure 3. A metamodel of SCA

The behavioral aspect is represented in this metamodel
by the BPEL process. While being a powerful language for
implementing processes, BPEL is difficult to use. Its XML
representation is very verbose and only readable for the
trained eye. Several vendors offer a graphical interface that
generates BPEL code. However, the graphical

representations are a direct reflection BPEL code and not
easy to use by end-users. Therefore, we provide a mapping
from UML to BPEL. In the following section, we are going
to establish stereotypes to model respectively behavioral and
structural concepts of the SCA Architecture.

441

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 457 / 612

IV. UML PROFILE FOR SPECIFYING SCA ARCHITECTURES

This part is dedicated to the technical definition of the
profile SCA-UML. Such a profile contains a set of
stereotypes applied to métaclasses UML 2.0 and defined by a
set of constraints OCL. In UML 2.0, the state machines can
be used to specify the behavior of several elements of the
models described in UML 2.0, such as instances of a class
UML 2.0. While the state machine description of protocols
can be used with profit to express protocols related to
scenarios of use of services offered by interfaces or ports
(Figure 4).

Figure 4. State machine description of protocols associated at the interfaces

or ports

The concept of state machine UML2 .0 is used as a basis
for stereotyping behavioral aspects of SCA or more precisely
BPEL activities.

In the rest, we will establish stereotypes to model
structural and comportemental aspects of SCA such as BPEL
process, BPEL activities, component, ports services, ports
references and connectors. We provided particular care to the
development of formal constraints in OCL related to
stereotypes. This gives a better idea for the context of use of
these stereotypes.

A. SCA Components

An SCA component is described by an UML 2.0
component stereotyped by <<SCAComponent>> (Figure 5).
The stereotype <<SCAComponent>> is defined by the
following OCL constraints:

• No provided or required interface is associated with
<<SCAComponent>>.

 self.provided -> isEmpty () and self.required ->
 isEmpty ()
• All ports associated with <<SCAComponent>> are

<<SCAPortService>> or <<SCAPortReference>>
and must be of type port.

 self.ports -> forAll (p| p. stereotype =
 SCAPortService and p.SCAPortServiceType =
 #port) or (p| p. stereotype = SCAPortReference
 and p.SCAPortReferenceType = #port))
• <<SCAComponent>> has at least one port.

 self.ports -> size () >= 1 and (self.ports.oclAsType
 (service).stereotype = SCAPortService or

 self.ports.oclAsType (reference).stereotype =
 SCAPortReference)
• One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAComponent>>.
 self.stateMachine -> size () = 1 and
 self.stateMachine.oclAsType
 (ProtocolStateMachine).
 Stereotype =SCAProtocolStateMachine)

Figure 5. The Component metaclass in UML 2.0 metamodel

B. Services and references

A service from an SCA component provides a set of
business functionality to other SCA components whereas a
reference represents the services offered by other
components. For it a SCA service is described by an UML
2.0 port (Figure 6) stereotyped by <<SCAPortService>>. A
SCA reference is described by an UML 2.0 port (Figure 7)
stereotyped by <<SCAPortReference>>.

A port is the element of a component used to
interconnect components via connections between ports. A
port realizes an interface of services.

The stereotype <<SCAPortService>> is defined by the
following OCL constraints:

• All the offered interfaces associated in
<<SCAPortService>> are SCAInterface.

 self.provided -> forAll (i | i.stereotype =
 SCAInterface)
• <<SCAPortService>> has at most one interface

provided and no interface required.
 self.provided -> size () <=1 and self.required->
 isEmpty ()
• One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAPortService>>.
 self.protocol -> size () = 1 and self.protocol ->
 forAll (psm| psm.stereotype =
 SCAProtocolStateMachine)

442

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 458 / 612

Figure 6. The metaclass Port in the metamodel UML 2.0

The following OCL constraints are defined for the
stereotype <<SCAPortReference>>:

• All required interfaces associated with
<<SCAPortReference>> are SCAInterface.

 self.required -> forAll (i| i.stereotype =
 SCAInterface)
• <<SCAPortReference>> has at most a required

interface and no interface provided.
 self.required -> size () <=1 and self.provided->
 isEmpty ()
• One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAPortReference>>
 self.protocol -> size () = 1 and self.protocol ->
 forAll (psm| psm.stereotype =
 SCAProtocolStateMachine)

 Figure 7. The metaclass Port in the metamodel UML 2.0

C. The interfaces of components

Every SCA interface (a port of a component) possesses
one or several operations. An SCA interface is described by
an UML 2.0 interface (Figure 8) stereotyped by
<<SCAInterface>> for ports services and interfaces. This
one is defined by the following OCL constraints:

• All the operations associated with SCAInterface are
operations without parameter.

 self.ownedOperation -> forAll
 (o|o.formalParameter -> isEmpty ())
• No attributes are associated with an SCAInterface.
 self.ownedAttribute -> isEmpty ()
• Exactly one and only one

<<SCAProtocolStateMachine>> is associated with
each <<SCAInterface>>.

 self.protocol -> size () = 1 and self.protocol ->
 forAll (psm| psm.stereotype =
 SCAProtocolStateMachine)

Figure 8. The metaclass Interface in the metamodel UML 2.0

D. BPEL Process

A BPEL process is represented as a protocol state
machine describes the comportemental aspect of SCA with
the stereotype <<SCAProtocolStateMachine>>. But the
definition of the stereotype requires the introduction of other
stereotypes such as <<SCAProtocolTransition>>,
<<SCARegion>>and <<SCAVertex>> to express more
formally the behavioral aspects.

1) <<SCAVertex>> stereotype
Each activity has a descriptive name and an entry action

detailing the work performed by the activity. For these, an
activity in BPEL can be represented by a state in diagram
state machine (see Figure 9), stereotyped by
<<SCAVertex>>. This stereotype is defined by the following
OCL constraints:

• All transitions incoming <<SCAVertex>> must be
SCAProtocolTransition.

 self.incoming -> forAll (t |
 t.oclAsType (ProtocolTransition).stereotype
 SCAProtocolTransition)
• All outgoing transitions of <<SCAVertex>> must be

SCAProtocol transition.
 self.outgoing -> forAll (t | t.oclAsType
 (ProtocolTransition).stereotype =
 SCAProtocolTransition)

Figure 9. the metaclass Vertex in the metamodel UML 2.0

443

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 459 / 612

2) <<SCARegion>>
The stereotype <<SCARegion>> applied to the metaclass

Region (see Figure 10) is defined by the following OCL
constraints:

• All vertices belonging to <<SCARegion>> are
SCAVertex.

 self.subvertex -> forAll(s | s.stereotype =
 SCAVertex)
• All transitions belonging to SCARegion must be

SCAProtocolTransition.
 self.transitions -> forAll (t | t.oclAsType
 (ProtocolTransition).stereotype =
 SCAProtocolTransition)

Figure 10. the metaclass Region in the metamodel UML 2.0

3) <<SCAProtocolStateMachine>> stereotype
The stereotype <<SCAProtocolStateMachine>> applied

to the metaclass StateMachine (see Figure 11) is defined by
the following OCL constraint:

• All regions belonging to stereotype
SCAProtocolStateMachine must be SCARegion.

 self.oclAsType (ProtocolStateMachine).region->
 ForAll(r | r.stereotype = SCARegion)

4) <<SCAProtocolStateMachine>> stereotype
The stereotype <<SCAProtocolStateMachine>> applied

to the metaclass StateMachine (see Figure 11) is defined by
the following OCL constraint:

• All regions belonging to stereotype
SCAProtocolStateMachine must be SCARegion.

 self.oclAsType (ProtocolStateMachine).region->
 ForAll(r | r.stereotype = SCARegion)

Figure 11. The StateMachine metaclass in UML 2.0 metamodel

Finally, Figure 12 illustrates our UML2.0 profile for
SCA.

Figure 12. A metamodel of Profile UML 2.0-SCA

444

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 460 / 612

V. EXOGENOUS TRANSFORMATION OF PROFILE UML

2.0-SCA TO SCA

In this part of paper, we aim to automatically transform
this profile into an application using an MDE approach of
automation [15]. Before the transformation of our profile
into ecore, we have created its implementation in Domain
Specific Language (DSL).

A. Our approach

In this section, we present in a detailed way the
PofilUML2SCA tool written in ATL allowing the
transformation of an extension of profile proposed
previously towards an SCA application.

Figure 13 illustrates our proposed approach for an
automatic transformation of a profile UML 2.0-SCA to SCA.
We distinguish two levels of specification: M2 (a Meta model level)
and M1 (a model level) as define by the MDA approach. In our
approach a transformation model defines how to generate a
model (SCA model) according to the metamodel (SCA Metamodel)
from the model (Profile model) consistent with the metamodel
(Profile Metamodel).

Figure 13. The proposed approach for an automatic transformation profile

into SCA

The source and target models (i.e., the Profile UML 2.0-
SCA model and the SCA model) and the ProfilUML2SCA
tool are consistent with their ProfilUML, SCA and ATL
metamodels. These metamodels are also consistent with the
Ecore meta-model of the EMF platform [16]. The profile
source metamodel, resp. the SCA target metamodel, is
represented by an Ecore diagram in Figure 12, resp. Figure 3.

B. Global Overview on the ProfileUML2SCA tool

In the next, we present the standard rules for the
development of our tool. Our profile transformation into
SCA is based on rules issued from OCL constraints. An ATL
module corresponds to the transformation of a set of source
models into a set of target models according to their
metamodels. Its structure is formed by a section header, an
optional import section, a set of helpers and a set of rules.

The header section (Figure. 14) defines the names of the
transformation module and the variables of the source and
target models. The following ATL source code represents the
header of the ProfilUML.atl file, thus the ATL header for the
transformation from Profile UML-SCA to SCA application:

Figure 14. The header section of transformation

• module defines the module name.
• create introduces the target model declaration.
• from introduces the source model Declaration.
In this part of paper, we present the transformation rules

of the structural aspect transformation of our profile
ULM2.0-SCA using the ATL language.

We define the rule which allows us to transform an
SCAComponent in the profile to Component in SCA, here
an SCA component takes the same name as a SCA.

• Each instance of a stereotype SCAPortService is
transformed into a Service in SCA.

• Each instance of a stereotype SCAPortReference is
transformed into a Reference in SCA.

• Each instance of a stereotype

SCAProtocolStateMachine is transformed into a
BPELProcess.

 rule SCAComponent2Component{
 from scac:ProfilUML!SCAComponent
 to c: SCA!Component (
 name<-scac.name)}

rule SCAPortService2Service{
from scaps:ProfilUML!SCAPortService
 to s:SCA!Service(
 name<-scaps.name,
 component<-scaps.component,
 interface<-scaps.provided,
process<-scaps.provided.protocol)}

rule SCAPortReference2Reference{
from scapr:ProfilUML!SCAPortReference
 to r:SCA!Reference(
 name<-scapr.name,
 component<-scapr.component,
 interface<-scapr.required,
process<-scapr.required.protocol)}

445

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 461 / 612

VI. CONCLUSION

This paper proposes a UML profile for specifying the

SCA Architectures. This profile is based on the reuse of
concepts for the description of the elements of the model
which essentially arise from the SCA Architecture. Such a
profile will facilitate the work of the developers which are
not still familiarized with complex languages and notations.

In a second part, we proposed an MDE approach
which allows transforming a metamodel of our extension
of a UML profile proposed into an SCA metamodel. To do
so, we elaborated two metamodels: the ProfileUML
metamodel and the SCA metamodel. Then, we designed and
implemented a ProfilUML2SCA tool in order to transform a
profile model conform to its metamodel to a SCA model
conform to its meta-model.

The extension proposed in this paper provides a special
study of the structural and behavioral aspects of the SCA
Architecture. So, we intend to extend our profile to take into
account the advanced concepts such as SCA connector and
composite.

 REFERENCES
[1] Open SOA Collaboration, Service Component Architecture

(SCA), SCA Assembly Model v1.00 specifications, 2007.
[2] OSOA, Open Service Oriented Architecture, the Home Page,

2007. http://www.osoa.org/
[3] J. Warmer and A. Kleppe, “The Object Constraint Language,”

Addison-Wesley, August 2003.
[4] X. Blanc, “MDA en action ingénierie logicielle guidée par les

modèles,” Eyrolles, 2005.
[5] Object Management Group. MDA Guide, version 1.0.1, 2003.

http://www.omg.org
[6] J.Bézivin and X.Blanc, Promesses et Interrogations de

l’Approche MDA, Développeur Référence, Septembre 2002.
[7] F. Jouault, “Contribution à l’étude des languages de

transformation de modèles,” thèse de doctorat, Ecole Dotorale
sciences et technologies de l’information et des
matériaux, Nantes, 2006.

[8] D. Garlan, S.W. Cheng, and A. Kompanek, “Reconciling the
Needs of Architectural Description with Object-Modelling
Notations,” Science of Computer Programming Journal,
Special UML Edition Elsevier Science, 2001.

[9] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, and J.E.
Robbins, “Modelling Software Architectures in the Unified
Modelling Language,” ACM Transactions on Software
Engineering and Methodology, vol. 11, no .1, January 2002.

[10] OSOA. SCA Service Component Architecture: Assembly
Model Specification, March 2007.

[11] SCA, “Building Your First Application Simplified BigBank,”
SCA Version 0.9, August 2007.

[12] S. Thatte, “XLANG Web Services for Business Process
Design”, October 2005.

[13] F. Leymann, Web Services Flow Language.WSFL 1.0,
October 2005. http://www-
3.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf.

[14] T. Andrews, F. Curbera , H. Dholakia , Y. Goland , J.Klein ,
F. Leymann, K. Liu , D. Roller, D. Smith, S. Thatte, I.
Trickovic, and S. Weerawarana, Business Process Execution
Language for Web Services, October 2005.

[15] R. Maraoui, M. Graiet, M. Kmimech, M.T. Bhiri, and B.
Elayeb, “ Formalisation of protocol mediation for web
service composition with ACME/ARMANI ADL,” Service
Computation IARIA 2010-Lisbon-Portugal, November. 2010.

[16] F. Budinsky, D. Steinberg, and R. Ellersick, “Eclipse
Modelling Framework : A developer’s Guide,” Addison-
Wesly Professional, 2003.

rule
SCAProtocolStateMachine2ProcessBPEL{
from
psm:ProfilUML!SCAProtocolStateMachine
to bp:SCA!BPELProcess(name<-psm.name)}

446

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 462 / 612

Process Improvement and Knowledge Sharing in Small Software Companies:
A Case Study

Minna Kivihalme, Anne Valsta, Raine Kauppinen
HAAGA-HELIA
Ratapihantie 13

FIN-00520 Helsinki, FINLAND
{minna.kivihalme, anne.valsta, raine.kauppinen}@haaga-helia.fi

Abstract — Process improvement, knowledge sharing and
management are challenging issues for small software
companies. In this article, the experiences of three small
software business organizations, one research and
development (R&D) -project team in hotel business using
Taimi-tool [16][26] to support process improvement and
knowledge sharing were studied and analyzed with grounded
theory. The findings of the case study show that systematic
process improvement is not very familiar to small software
companies. Modeling and writing down processes are
considered old-fashioned, too strict and rules given from
above. Process improvement does not fit in to the self-image of
an innovative, agile and flexible software company. However,
for the R&D-project team, Taimi-tool gave good insights for
modeling processes and finding the best ways to improve
them. This implies that the problems are not with the tool, but
rather with the small software business organizational culture
towards process improvement and knowledge sharing. There
is a clear need for collaboration with research and
development in the field of workplace learning and
competence development in small business working life and
vocationally oriented educational institutions.

Keywords-process; project; knowledge sharing; education

I. INTRODUCTION
Small organizations as well as the larger ones need

software process modeling, development and improvement.
However, traditional models and frameworks, such as
CMMI or SPICE are often much too complicated and
rigorous to be used in small software business. During the
earlier study done at HAAGA-HELIA University of
Applied Sciences, it was found that in process modeling and
process improvement for small businesses the key purpose
is to encourage and develop the organizational and
individual knowledge [16]. In addition, the need for a tool
supporting an agile process development in the small
companies was identified. Based on these findings, a
prototype of Taimi-tool was introduced.

Taimi-tool is designed to support communication and
sharing of best practices which can be found in any
company during an excellent project or lessons learned from
a troublesome project. These experiences remain literally
unique unless they are shared between colleagues. An
excellent project is worth modeling and should be
distributed as best practices or as a model, and as widely as

possible. In the next section the research approach and
methods are described. In the third section Taimi-tool is
introduced. The fourth section presents the current state of
art of relevant related work. In the fifth section case study
companies are introduced briefly and finally findings,
conclusions and future work end the paper.

II. RESEARCH APPROACH AND METHODS
In this research the aim was to understand and specify

the relations between software process improvement and
knowledge sharing in small software companies. The
approach is qualitative and the methods used to analyze data
are based on grounded theory [9]. The research questions
are:

1) How important systematic process improvement is
for small software businesses? How do small
software businesses share knowledge internally
and externally?

2) What kind of a connection there is between process
improvement and knowledge sharing in small
software organization?

3) What kind of issues the small software businesses
have faced in integrating knowledge sharing and
management to normal daily-routines? Could a
tool like Taimi be helpful in these situations?

The hypothesis based on the previous study [16] is that

the small organizations will benefit using a process
modeling tool like Taimi. It will make their work more
systematic and at the same time it allows them to be flexible
and even more agile in their daily work. Process
improvement is not only for those who fancy processes.
Taimi will encourage everyone in the organization to
participate process improvement achievements.

The data collection was done using case-study approach
[28] during eight months in 2010. To start the research
group organized workshops in every case study company.
These workshops were documented as group interviews. In
every workshop there were at least two company
representatives and two members of the research team.
Different roles like management and leadership roles,
project management and project team member roles were
involved. During the workshops, Taimi-tool was introduced
and a brochure and guidelines of use were given to the case
study companies. After the workshops, each company could

447

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 463 / 612

either install Taimi to their own server by downloading the
software from Internet or they could use the service hosted
by the research team during the experiment. Research team
named a specific contact person for every company to help
with the details. After few months, the date was fixed for
the final interviews. Everyone involved in the workshops
were interviewed except one process developer who was
retired. These interviews were semi-structured, recorded and
transcript personal interviews.

During the months between the workshops and final
interviews, the research team noticed that it seemed as if the
companies were not experimenting much with Taimi. This
was later confirmed in the interviews. Because of this, an
R&D-project team in hotel business was added as a case
study company. The R&D-project team had started a project
a bit earlier. After they were contacted and introduced to
Taimi and this case study they wanted to test Taimi in their
project. The research group thought this was a good way to
evaluate the suitability of Taimi for a different type of
processes and organizations. A workshop was arranged with
the project team giving them the necessary material and
information.

III. TAIMI – A MODELLING APPLICATION
Taimi is an open source web application used via a web

browser such as Firefox or Internet Explorer. Taimi [26] is
developed using Ruby on Rails [22] and it runs on a
standard web application server such as Apache Tomcat
[27]. In Taimi, each process model and project is visualized
as a matrix containing phases and tasks to be stored in the
database (MySQL). The phases of a process model or a
project can be named and colored as the user wants (see
Figure 1). The task boxes get a color code based on the
phase they belong into, so it is easy to read the matrix.
Tasks can be copied to another process model or project,
even several times in the same one if necessary. It is also
possible to add attachments and comments to the tasks.

In Taimi, a task in a process model can be seen as a best
practice with supporting templates or other guidance. The
tasks can be completed with as specific or general
descriptions as needed for the common benefit of the
organization. The users of a process model can comment on
their experiences related to the model as well as suggest
improvements to the model immediately when an issue
arises during a project.

Figure 1. Adding a new phase into a process model

In Taimi, a process model can be copied into a project

and vice versa. After that, the new project is a look-alike
copy of the original process model. Tasks that are not part
of the new project can be erased. It is also possible to add
and edit new tasks (see Figure 2) to the project or copy tasks
from other projects or process models.

Figure 2. An added task in a process

It is possible to estimate the amount of the work needed

to complete a task and define start and end dates for each
task. When a task in a project is completed, it can be marked
as done. Thus, the progress of the project can be monitored
visually (see Figure 3).

The information gained in a project is immediately
visible throughout the organization and to the relevant
interest groups since a project manager is able to share the
project with the necessary interest groups. The members of
these groups can also comment on the tasks in the project
and add attachment files to them as seen in Figure 2. In this
way, Taimi can be used as a collaborative platform
supporting the evolution of process models and projects in
an agile way based on the shared lessons learned in different
projects.

448

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 464 / 612

Figure 3. A project with two completed tasks

IV. RELATED WORK
Software process improvement (SPI) is closely related to

the knowledge management (KM) strategy of an
organization [18]. Especially in IDEAL [8], CMM [17] and
SPICE [23] the focus is in achieving a certain level of
maturity. The knowledge management strategy should vary
according to the maturity level [18]. Knowledge
management strategy can be viewed from two different
levels: 1) based on coding [11][25] and 2) tactical level [20]
According to Dixon [7] there are five different types of
knowledge transfer: serial transfer, near transfer, far
transfer, strategical transfer and expert transfer. In order to
succeed in knowledge transfer and knowledge management,
an organization needs to define what activities and
operations it will have and choose its knowledge
management strategy accordingly [18].

Sulayman and Mendes [24] have studied the small and
medium sized organizations specialized in web
technologies. They found that issues in SPI, which were
important to the success in business operations, were very
closely related to the knowledge management strategy of the
company as well. According to the survey made for
software developers about the web 2.0 tools, those tools
have already changed the way software developers
communicate with each other, for example, about testing,
marketing and developing [1]. Cockburn has indentified
term ‘osmotic communication’ in his book about agile
software development and emphasized its meaning to
software engineering especially in the agile development
[3]. It is very common to see SPI as a mean to achieve better
quality with less cost. SPI can also be seen as a way of
rationalizing the activities in an organization. It is very
important that an organization is able to handle uncertainty
and instability because “Chaos is often a sign that the
implementation process is on its way and that you are about
to receive valuable information helping you succeed” [2].

It is important to recognize the need for improvement
when the company management anticipates the future.
When the company is in its peak condition, the work is
often very ambitious, even aggressive and the need for

change can easily be left unnoticed [10]. Company after
company has seen its management fixing pieces instead of
redesigning the processes applied to get the work done
[5][10].

In a study [4] made in Ireland, the target was to figure
out why small companies are reluctant to use known best
practices in their activities. It was found that process
improvement is considered to be so expensive investment
that small companies do not see or do not want to see it as a
profitable effort [4]. The small software companies have
easily adapted principles of lean thinking and the question
often raised by them is whether the customer is willing to
pay for this kind of work or not. This is a potential conflict,
because there is evidence of customers wanting to see proof
of quality and stable working habits within the small and
especially young companies [16].

The study in Ireland also showed that start-up companies
saw the formal SPI as an obstacle to creativity, innovation
and flexibility. From their viewpoint, SPI was not about
improving the process, but instead a set of strict instructions
forcing them to follow the given process and blocking
creativity and flexibility. Also, it was found out that the
educational background, experience and know-how of the
technical management had a lot of influence on the
willingness to commit to the best practices.

A similar study [19] was made in Vietnam focusing on
the obstacles of applying process models and SPI. In that
study it was found that depending on the size of the
company the issues were emphasized differently. For the
small organizations, the most important issue was the lack
of resources. In the bigger organizations, in addition to the
previous issue, the lack of communication, the commitment
of the management and timetable pressure were identified.
These findings were compared to the research made in the
UK where the timetable pressure was identified as the key
issue. The conclusion was that while in Vietnam, the lack of
resources meant that the process improvement was not
really happening, in the UK it was, but there still were
problems related to the resources in the form of timetable
pressure. In addition, the staff in Vietnam was quite young
compared to the staff in the UK. The conclusion was that
young inexperienced managers did not see process
improvement so important that they would have allocated
resources for such initiatives. [19]

In a Finnish study [15] about the agile future
organization, it was found that organization needs versatile
talented people and that the agility needs to be part of the
business operation strategy as well. The software
development alone cannot be agile if the business around it
is not. In addition, an agile process framework is needed for
teams to be able to tailor their process for the particular
situation [15].

In a study [21] of project managers’ knowledge transfer
made in the USA, it was found that inexperienced project
managers relied more on social networks in order to get the
knowledge they were looking for than their more
experienced colleges who used more formal knowledge
sources. The conclusion of this study [21] was that
inexperienced project managers were sensitive or even timid
to search and ask information from knowledge management

449

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 465 / 612

systems used in their company. According to the study
social norms and organizational culture either encourages IT
project manager to share their knowledge or inhibit it.

Wiki technology has been found to be very powerful
technique to transfer knowledge to large groups of people in
ad-hoc and other dynamic situations [12]. But there is a lot
more than just ad-hoc and other dynamic situations in
knowledge transfer and knowledge management. Davidson
and Rowe [6] defined different levels of knowledge
management. At the first level, the team learns from the
previous project and answers to questionnaire to find out the
lessons learned. This information is delivered to the second
level, where it will be analyzed and passed on to the next
level, which is a strategic level. It is obvious that this formal
knowledge management will benefit from a suitable
supporting tool and, in most cases, this process needs a
knowledge manager to handle the tool and process [6].

V. CASE STUDY COMPANIES
The companies participating in the case study are small

or medium sized Finnish software engineering companies
(companies A-C, see Table 1) and a hotel entrepreneur
(company D).

Table 1. Some business features in 2009-2010

A. Company A

Company A is a Finnish software engineering company
creating applications ranging from intranets to business
intelligence and social services. Their emphasis is on the
lean philosophy – removing waste and concentrating only
on producing something useful and having a strong focus on
usability at the same time. This company has been growing
quite fast. The atmosphere of the company is very informal
and free-minded. The slogan for this company could be
“Things can always be done better”. The company recruits
people having the attitude of wanting to give his or her best
as an individual and as a team member.

B. Company B

Company B is a Finnish software engineering company
specializing in tailor-made customer-specific software
projects, consulting, maintenance and support for large
information systems. Processes are quite a new concept to
the company B. The management has mainly focused on
creating innovative environment for people to work in.
Company B views process models from the standard point
of view: as a way to implement company strategy.
However, company B sees processes and modeling very
situational.

C. Company C

Company C is a Finnish software consulting company
specialized in software quality. The aim of the company C is

to assist their customers to ensure the quality of their IT
systems. Because of their service strategy, the process meta
models (CMMI, SPICE) are well known and those models
are used to improve customers’ processes.

D. Company D

Company D was not a partner at the beginning of the
research study and it differs from the previous ones.
Company D was actually one team from HAAGA-HELIA’s
R&D-project team for developing processes for hospitality
and hotel business.

VI. FINDINGS
Systematic process improvement was not very familiar

to the companies in this case study. This is the case even in
the company having more than 100 employees. Instead,
knowledge management and knowledge transfer are very
much appreciated. However, they are on the level of near
transfer [7] and not on strategic level. Modeling and writing
down processes are considered old-fashioned, too strict and
as rules given from above. Process improvement does not fit
into the image of an innovative, agile and flexible company.
According to Mark Kennaley the word process is not valued
in the agile approach [14]. Instead of process Kennaley
recommends ‘standard work’ in the meaning of how daily
work is performed and described.

Process and creativity are seen as opposites and
companies want to emphasis creativity, passion for work
and freedom to be creative. Similar results were found in the
research conducted in Ireland [4]. The daily work is seen too
artistic to be modeled as a process. Still, knowledge transfer
and knowledge management are highly appreciated and
there are lots of different unsystematic methods for
transferring knowledge within the company and via
networks. These methods are not treated as processes even
though they might be seen that way. Nevertheless the
atmosphere of knowledge sharing is very free and open. The
organizational culture in these case study companies
encourages project managers to share their knowledge. The
same results were also found in the study made in the USA
[21].

In every interview we made, one common denominator
was found; at a certain point people do not have the time to
do anything in addition to the deliverable result. The deeper
you dig into the world of project managers the more you
sense that it is hard to invent the wheel all over again.
Project managers eventually see the pattern, but they do not
have time or resources to make the pattern visible even if
they would like to. The results of the research in Vietnam
support this as well [19]. Project managers are bound very
tightly to the ongoing project. They would like to have more
guidance, methods and help instead of being forced to
invent the wheel again. However, the management and
leaders in the small companies think that there are many
ways and opportunities to transfer knowledge, for example,
‘brown bag sessions’, ‘company Fridays’ and study or
learning groups. All these methods are actually methods for
near transfer and only they work if face-to-face methods are
available. But, these methods are unavailable if you cannot
be present, for example, if you are working in the customer

Company Personnel Turnover, MEUR Established
A 110 7.7 2000
B 50 4.5 2005

C 60 5 2002

450

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 466 / 612

premises and the customer will not allow collaboration
within the company’s social network. This was the case for
one of the project managers working at customer premises.
Companies use and have been using all sorts of tools to
communicate such as discussion forums, wikis, social
networks and network drives, but they also feel that the
information gets buried into these systems. Major
disadvantage for these tools is the fact that you need the
time to gain all the visible or hidden information and time is
a scarce resource in the small or medium enterprise (SME).

Four groups were identified using the open coding of
grounded theory: knowledge management and transfer,
creativity, process and process improvement and lack of
time. In axial coding, the relationships among these
concepts are identified. These relations are illustrated in
Figure 4.

Figure 4. Creativity, process, knowledge and time in a SME

The SME’s see knowledge management and transfer
worth chasing for while processes and especially process
improvement is something SME’s are not so keen on doing.
One of the managers said, “We should forget analyzing and
think about what to do next, because analyzing doesn’t
really create anything. Process is something given from
above “.

Processes were even seen as an obstacle to creativity.
When the creativity is high, processes are low. Negative
correlation between process and creativity is illustrated by
letter b) in the Figure 4. Another manager said, “The work
we do for our customers is very creative: people get familiar
with things and tell about them, so it is very informal. We
have not defined our process, and we are talking about our
work as artistic work.”

Knowledge transfer and management are directly
comparable to creativity in SME’s self-image. The positive
correlation between knowledge and creativity illustrated by
letter c) is seen in the Figure 4. One of the project managers
said, “We are encouraged to teach each other. We should
give small sessions out of our own interest and will. These
demo days have been ok. It has been possible to go deeper
into some interesting subject area”.

According to Sulayman and Mendes [24] and
Mathiassen and Pourkomeylian [18] knowledge
management and transfer are closely related to processes
and their improvement. For the companies in this study this
was not the case. In these companies the knowledge transfer
happens ad-hoc without visible processes involved. This
relationship is illustrated by letter a) in the Figure 4. One of
the managers said, “We try to give people as much freedom
as possible and encourage them to use their creativity and
passion. That’s how we create self-organized workplace and
knowledge sharing”. By this the manager revealed in fact
that there was not a process involved in knowledge sharing.

These findings show that SME’s are not ready for a tool
like Taimi. There were some positive signs especially from

the project managers’ point of view: they would have
appreciated this kind of a tool if they would have had time
to take a bit deeper look at it. This also means that they
would have liked to concentrate on the process, process
improvement and knowledge sharing as well. One of the
project managers said, “I don’t need any new features for
Taimi. The matrix is just great. The main features of Taimi
are really good. And we could have used Taimi for real as a
tool between project managers and company management,
but the lack of time was my problem”. According to
Davidson and Rowe [6] companies would benefit from a
suitable tool to support the knowledge management and
transfer as well as knowledge manager to handle the tool
and process.

The project managers in the case study companies were
too busy in their ongoing project to be able to take a wider
perspective to their work. They needed the support from
their superiors, which they did not get this time. One of the
project managers said, “I would have liked to test the tool,
but in the company there were others who didn’t want to test
it or they wanted to have free hands and not to use any tool
at all. The decision was made by management to not to trial
the tool”.

In the Figure 4 the letter d) illustrating the lack of time
has connections to all the other themes. The lack of time
rounds up to the fact of project managers wanting to have
the support from their superior even in the atmosphere of
informal and innovative company. One of the project
manager said, “There could be concrete recommendation
what tool to use in projects. Now everybody is using the
tools they want and you have to compare the plusses and
minuses of the product by yourself. If there were some
guidance, it would be nice. Face-to-face meetings are of
course nice. A tool, project database or something would be
a good bonus for later use or reference.” By this the project
manager meant that, for some of the staff, it would be
helpful and timesaving to have a process and a supporting
tool for the process and knowledge sharing.

Findings from the company D differ from the rest of the
case study companies. Taimi got good feedback from the
company D. The idea of user interface as a process matrix,
the idea of being able to link different information to tasks
and being able to change the process easily and quickly if
necessary were appreciated by the company D. The tool
gave good insight to process modeling and finding the best
ways of improving the process in the hotel involved in the
R&D-project team. Company D wanted to start using Taimi,
but they were somewhat worried about the continuity of
Taimi’s future. These findings about the tool and the idea
behind it are promising.

VII. CONCLUSION AND FUTURE WORK
The conclusion of this study is that process improvement

is on very early stage in the small and medium sized
software engineering companies. Modeling processes is on
learning phase and it is not yet something that is seen
important and necessary. There is always something more
important to be done. Also, the lack of time and resources
does not promise more process improvement to happen in

451

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 467 / 612

the near future. Sharing knowledge happens ad-hoc or in a
project between its members.

A new tool or method needs to be learnt first and it takes
time. And spare time is something the small companies do
not have. Internal improvement gets left behind. Outside
stimulator or supporter, research time and money is needed
to get the internal improvement on the road. The first step is
always the hardest. Next steps are easier to take. A
comprehensive tool would help sharing and transferring
knowledge wider in a company.

How could we support SME? According to Illeris [13]
radical changes and development have been taking place in
recent years concerning work-based and work-related
learning and competence development. Globalization, the
knowledge society and human competence are becoming an
increasingly decisive resource of competition. Illeris notes
vary of general qualifications with terms such as
organizational learning, experimental learning and
spirituality at work. According to Illeris even professionals
find it difficult to negotiate these areas, not to speak of small
companies with no time and no particular educational
function. The situation is different in educational
institutions, where time is available and whose function is
vocational education. The lesson learned from this study is
that there is a need for much tighter collaboration with
research and development in the field of workplace learning
and competence development in working life with small
software development companies and vocationally oriented
educational institutions.

During the curricula, students should be adapted to
operate with a shared tools and knowledge ware. The young
professionals need good understanding and skills on
processes and methodologies. Further research is needed to
study the attitudes of students choosing software
development as their area of expertise and how these
attitudes reflect to their future career as professional
software specialists. Another, maybe more important,
question is what are the mechanisms, including teaching
methods, especially in vocationally-oriented education to
promote the internal process improvement both in business
processes, entrepreneurship and software processes as a part
of workplace learning and competence development.

REFERENCES
[1] Black, S. and Jacobs, J. 2010. Using Web 2.0 to Improve

Software Quality, Web2SE’10, May 4, Cape Town, South
Africa.

[2] Börjesson, A. and Mathiassen, L. 2004. Successful Process
Implementation, IEEE Software, July/August, pp. 36-44.

[3] Cockburn, A. 2007. Agile Software Development, The
Cooperative Game, Second Edition.

[4] Coleman, G. and O’Connor, R. 2008. Investigating software
process in practice: A grounded theory perspective. The
Journal of Systems and Software Vol. 81, pp. 772-784.

[5] Dangle, K., Larsen, P., Shaw, M. and Zelkowitz, M. 2005.
Software Process Improvement in Small Organizations: A
Case study. IEEE Software, June, pp. 68-75.

[6] Davidson, P. and Rowe, J. 2009. Systematising knowledge
management in projects. International Journal of Managing
Projects in Business, Vol 2, No 4, pp. 561-576.

[7] Dixon, N. 2000. Common Knowledge, How Companies
Thrive by Sharing What They Know?

[8] McFeeley, B. 1996. IDEAL: a user’s guide for software
process improvement. The software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Handbook
CMU/SEI-96-HB-001.

[9] Glaser, B.G. 1992. Basics of grounded theory analysis:
Emergence vs. forcing. Mill Valley, CA: Sociology Press.

[10] Hammer, M. and Champy, J. 1993. Reengineering the
Corporation. A Manifesto for Business Revolution.

[11] Hansen, T., Morten, N. and Tierney, T. 1999. What’s your
strategy form managing knowledge? Harvard Business
Review, pp. 106-116.

[12] Hester, A.J. 2010. Increasing Collaborative Knowledge
Management in Your Organization: Characteristics of Wiki
Technology and Wiki Users. SIGMIS-CPR’10, May, pp.
113-143.

[13] Illeris, K. 2003. Workplace learning and learning theory.
Journal of Workplace Learning, April, pp. 167-178.

[14] Kennaley, M, 2010. SDLC 3.0. Beyond a Tacit
Understanding of Agile, Towards the Next Generation of
Software Engineering. Fourth Medium Press.

[15] Kettunen, P. and Laanti, M. 2007. Combining Agile
Software Projects and large-scale Organizational Agility,
Software Process Improvement and Practice, July, pp. 183-
193.

[16] Kivihalme, M. and Valsta A. 2010. Improving Software
Development Processes in Small Companies: A Case Study.
In Proceedings of the IASTED International Conference on
Software Engineering (Innsbruck, Austria, February 16 – 18,
2010) SE 2010. ACTA Press.

[17] Laryd, A. and Orci, T. 2000. Dynamic CMM for Small
organizations. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.37.5555 [ref. Apr/2011].

[18] Mathiassen, L. and Pourkomeylian, P. 2003. Managing
knowledge in a software organization. Journal of Knowledge
Management, May, pp. 63-80.

[19] Niazi, M., Ali Babar, N. and Katugampola, M. 2008.
Demotivators of Software Process Improvements: An
Empirical Investigation. Software Process Improvement and
Practice, March, pp. 331-347.

[20] Nokana, I. and Takeutchi, H. 1995. The knowledge-Creating
Company, Oxford University Press.

[21] Petter, S. and Randolph, A.B. 2009. Developing Soft Skills
to Manage User Expectations in IT Projects: Knowledge
Reuse Among IT Project Managers. Project Management
Journal, Dec, pp. 45-59.

[22] Ruby On Rails. http://www.rubyonrail.org [ref. Apr/2011].
[23] SPICE, 2007. Software Process Improvement and Capability

dEter-mination, ISO 15504, http://www.sqi.gu.edu.au/spice
[ref. Apr/2011].

[24] Sulayman, M. and Mendes, E. 2010. Quantitative
Assessments of Key Success Factors in Software
Improvement for Small and Medium Web Companies.
SAC’10, March 22-26, Sierre, Switcherland.

[25] Swan, J., Newell, S., Scarbrough, H. and Hislop. D. 1999.
Knowledge management and innovation: network and
networking. Journal of Knowledge Management, Vol 3 No.
3, pp. 262-275.

[26] Taimi, process and project management tool, 2010.
http://www.taimimap.fi/sivut/material.html [ref. Apr/2011].

[27] Tomcat. http://tomcat.apache.org [ref. Apr/2011].
[28] Yin, R.K. 2003. Case Study Research: Design and Methods,

Third Edition.

452

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 468 / 612

Choosing a Business Software Systems Development and Enhancement Project
Variant on the basis of Benchmarking Data – Case Study

Beata Czarnacka-Chrobot

Department of Business Informatics
Warsaw School of Economics

 Warsaw, Poland
e-mail: bczarn@sgh.waw.pl

Abstract—Execution of Business Software Systems (BSS)

Development and Enhancement Projects (D&EP) is

characterised by the exceptionally low effectiveness, leading to

the considerable financial losses. Thus it is necessary to

rationalize investment decisions made with regard to the

projects of this type. Each rational investment decision should

meet two measurable criteria: of effectiveness and of economic

efficiency. In order to make ex ante evaluation of these criteria,

being key to the decision-making process, one may successfully

use ever richer resources of benchmarking data, having been

collected in special repositories that were created with

improvement of software processes in mind. The goal of this

paper is to present possibilities of rationalization of investment

decision concerning the choice of BSS D&EP execution variant

with the use of benchmarking data on the basis of a case study.

These issues classify into economics problems of software

engineering.

 Keywords-business software systems development and

enhancement projects variants; rational investment decision;

benchmarking data repositories; software engineering economics

I. INTRODUCTION

In practice, execution of Business Software Systems
(BSS) Development and Enhancement Projects (D&EP) is
characterised by the exceptionally low effectiveness, leading
to the considerable financial losses. This may be proved by
numerous analyses. As indicated by the results of the
Standish Group studies success rate for application software
D&EP has never gone beyond 35%, while currently
products delivered as a result of nearly 45% of them lack on
average 32% of the required functions and features, the
estimated project budget is exceeded by approx. 55% on
average and the planned project time − by nearly 80% on
average [1] (for more details see [2]). Analyses by T.C.
Jones plainly indicate that those software D&EP, which are
aimed at delivery of business software systems, have the
lowest chance to succeed [3]. The Panorama Consulting
Group, when investigating in their 2008 study the
effectiveness of ERP (Enterprise Resource Planning)
systems projects being accomplished worldwide revealed
that 93% of them were completed after the scheduled time
while as many as 68% among them were considerably
delayed comparing to the expected completion time [4].
Merely 7% of the surveyed ERP projects were
accomplished as planned. Comparison of actual versus

planned expenses has revealed that as many as 65% of such
projects overran the planned budget. Only 13% of the
respondents expressed high satisfaction with the
functionality implemented in final product while in merely
every fifth company at least 50% of the expected benefits
from its implementation were said to be achieved.
Meanwhile (see also [2]):

• BSS are one of the fundamental IT application areas.
• BSS development or enhancement often constitutes

serious investment undertaking.
• In practice, COTS (Commercial-Off-The-Shelf) BSS

rarely happen to be fully tailored to the particular
client business requirements therefore their
customization appears vital.

Low effectiveness of BSS D&EP execution leads to the
substantial financial losses, on a worldwide scale estimated
to be hundreds of billions of dollars yearly, sometimes
making even more than half the funds being invested in
such projects. The Standish Group estimates that these
losses – excluding losses caused by business opportunities
lost by clients, providers losing credibility or legal
repercussions – range, depending on the year considered,
from approx. 20% to even 55% of the costs assigned for the
execution of the analysed projects types (see e.g., [5][6]).
On the other hand, analyses of The Economist Intelligence
Unit, which studied the consequences of BSS D&EP delay
indicate that there is strong correlation between delays in
delivery of software products and services and decrease in
profitability of a company therefore failures of BSS D&EP,
resulting in delays in making new product and services
available and in decreasing the expected income represent
threat also to the company’s business activity [7].

The above studies unequivocally indicate there is a
significant need to rationalize investment decisions made
with regard to BSS D&EP. To do so, one may successfully
use ever richer resources of benchmarking data, having been
collected with the intention to support improvement of
various IT projects, including BSS D&EP. The goal of this
paper is to present possibilities of BSS D&EP investment
decision rationalization with the use of benchmarking data,
illustrated with an example taken from development
practice. This decision concerns choosing variant of BSS
D&EP execution – since each project of this type may be
executed using one of the three variants, namely: (1)

453

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 469 / 612

developing new BSS from scratch, (2) customization of
COTS BSS, and (3) modernization of BSS being currently
used.

The paper is structured as follows: in Section 2 the
author presents the criteria of rational investment decision in
the context of BSS D&EP along with the selected results of
studies concerning ex ante evaluation of these criteria.
Section 3 is devoted to the presentation of the considered
case study problem. In Section 4 the main conclusions
coming from the benchmarking data analysis are pointed
out, while in Section 5 the effectiveness and efficiency
factors for the recommended BSS D&EP variant are
analysed. Finally, in Section 6 the author draws conclusions
and some open lines about future work on the rationalization
of BSS D&EP investment decision with the use of
benchmarking data.

II. RATIONAL INVESTMENT DECISION CRITERIA FOR

BUSINESS SOFTWARE SYSTEMS DEVELOPMENT AND

ENHANCEMENT PROJECTS

Each rational investment decision should meet three
criteria, which in the context of BSS D&EP should be
interpreted as follows (for more details see [8]):

• Criterion of consistency, which means that the
project undertaken should comply with the
environment (economic, organizational, legal and
cultural) – unlike the other two criteria, this criterion
is not subject to quantitative assessment therefore it
is skipped in this paper.

• Criterion of economic efficiency, meaning that the
decision should benefit to the maximisation of the
relationship between the effects to be gained as a
result of project execution and the costs being
estimated for the project.

• Criterion of effectiveness, meaning that such
decision should contribute to achieving the assumed
result, in the case of BSS D&EP usually being
considered as delivering product meeting client’s
requirements with regard to functions and features
without budget and time overruns.

Generally speaking, in the case of economic efficiency
evaluation, effects are compared against costs necessary to
achieve these effects while in the case of effectiveness
evaluation these are only the results that are of significance.
Thus, economic efficiency is measured by relating total
effects to total costs. Meanwhile, effectiveness is measured
by the ratio of the achieved result to the assumed result,
which is being conveniently expressed as a percentage.

Both economic efficiency criterion as well as
effectiveness criterion are based on the obvious assumption
that the effects, costs and results are measurable. However,
in the case of BSS D&EP this assumption is often treated as
controversial. Numerous studies indicate that evaluation of
BSS D&EP economic efficiency is made relatively rarely
while fundamental reason for this status quo are difficulties
related to identification, and most of all quantitative
expression, of benefits resulting from the execution of such
projects (see e.g., [9][10][11][12][13]). These studies reveal

that difficulties related to identification and quantitative
expression of BSS D&EP costs too are of significance,
which also is of importance to the evaluation of their
effectiveness.

Key conclusions coming from the above mentioned
studies have also been confirmed by the results of studies
carried out by the author of this paper in two research cycles
among Polish dedicated BSS providers (for more details see
[14]). They revealed that at the turn of the years 2005/2006
the results obtained with the use of the effort estimation
methods, employed only by approx. 45% of the respondents,
were designed for estimating BSS D&EP costs and time
frame while relatively rarely they were used to estimate
economic efficiency − such use of these methods was
indicated by only 25% of those using effort estimation
methods. Heads of IT departments in Polish companies, for
which BSS D&EP are executed, still explain the
sporadically required calculation of this type of investments
efficiency mostly by the necessity to undertake them – most
often due to the fact that without such solutions they lack
possibility to match competition from foreign companies, as
well as to match foreign business partners requirements.
While Polish public administration institutions in practice
still do not see the need for the BSS D&EP economic
efficiency evaluation, in most cases as an argument giving
the non-economic purposes of systems being implemented
in this type of organizations. On the other hand, at the turn
of the years 2008/2009 the results obtained with the use of
the BSS D&EP effort estimation methods (approx. 53% of
BSS providers surveyed in this cycle declared they
commonly employed such methods) were more often used
to estimate efficiency: there was an increase to approx. 36%
of those using effort estimation methods. This applies to
internal IT departments of Polish companies yet still it does
not comprise public administration institutions. This
increase may be explained first of all by stronger care about
financial means in the times of recession, however it still
leaves a lot to be desired. Meanwhile, to rationalize various
BSS D&EP investment decisions, one may successfully use
benchmarking data, having been collected in special
repositories with intention to support effective and efficient
execution of such projects.

III. CASE STUDY: DESCRIPTION OF THE PROBLEM

A company that was facing the need to choose an
appropriate variant of BSS D&EP execution collects and
processes, as a part of its basic activity, orders for certain
goods from all over the world in a 24-hour mode, 7 days a
week through: website, client service centres, fax and
electronic mail (description of the case study taken from
[15]). All those channels cooperate with the application,
having been functioning in the company for a dozen or so
years already, that is designed for orders processing and
which no longer is able to satisfy present requirements
since:

• Large part of processes is not automated, which
requires additional work for registering orders and
that generates losses.

454

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 470 / 612

• Current status of orders is not known therefore they
are being lost, as a result of this other losses are also
borne, which together with earlier mentioned losses
are estimated to be approx. USD 5000 a day.

• System is expensive and difficult to maintain, with
frequent malfunctions as it employs obsolete
technology.

• System extends the time of delivering new products
to the market, increases the risk of losing clients and
lack of compliance with their requirements, slows
down the growth of competitive advantage.

Thus the company has faced a decision on choosing
variant of BSS D&EP execution that would:

• Eliminate the above mentioned drawbacks of the
existing solution.

• Contribute to short- and long-term profits – that’s
why the costs and duration of project are of great
significance.

• Reduce the costs of functioning of both company
and technology.

• Contribute to the reduction of risk, both in terms of
business and technology.

Offers for each BSS D&EP variant were submitted,
having approximate average values as shown in Table I.

Since each variant was backed by certain part of the
board and key users, an analysis aimed at supporting
decision-making process was carried out.

IV. CONCLUSIONS FROM THE BENCHMARKING DATA

ANALYSIS

The analysis used benchmarking data for BSS D&EP
having been collected in the following repositories:

• Standish Group, featuring data about over 70
thousands of the accomplished application software
D&EP, which were analysed using the tool called
VirtualADVISOR [15].

• Software Productivity Research (SPR), containing
data from approx. 15 thousands of the accomplished
application software D&EP, which were used to
verify conclusions coming from Standish Group
repository analysis with the use of SPR Knowledge
Plan tool [16].

• International Software Benchmarking Standards
Group (ISBSG), having collected data from approx.
5 thousands of the accomplished application

software D&EP [17], also used to verify findings
coming from Standish Group repository analysis and
also with the use of SPR Knowledge Plan tool,
which at its present version offers possibility to
import data from the ISBSG repository.

Priority was given to the Standish Group data and this
being not only due to the size of this repository, objectivity
of data (they come solely from clients) or the fact of IT
branch appreciating its practical value [5] but also because
they take into account an appropriate kind of client (in terms
of branch and size of a company), appropriate kinds and size
of BSS D&EP as well as appropriate type and size of
application. Thus using the Standish Group repository made
it possible to match all three kinds of BSS D&EP against the
profile, with 90% match of the 120 attributes of more than
100 projects [15].

What’s also important, in their analyses the Standish
Group employs clearly defined criteria of project
classification, dividing projects into the following three
groups (see e.g., [1][6][18]):

• Successful projects – that is projects completed with
delivery of product having functions and features
being in accordance with client requirements
specification and within the estimated time and
budget.

• Challenged projects – that is projects completed with
delivery of product that is operating yet has fewer
vital functions/features comparing to the client
requirements specification and/or with overrun of the
planned budget and/or duration.

• Failed projects – that is projects that were abandoned
(cancelled) at some point of their life cycle or were
completed with delivery of product that had never
been used.

In the analysis of the Standish Group data, the following
criteria were employed as equivalent for particular variants
of the BSS D&EP considered:

1) Criterion of expected BSS D&EP effectiveness,
including:

a) chance to succeed
b) level of planned costs overrun

 c) level of planned duration overrun.
2) Criterion of expected BSS D&EP efficiency,

including:
 a) return on investment (ROI)

 b) payback period.
Data presented in Table II clearly indicate that in the

case being considered the highest chance to succeed is held
by modernization variant, for which success coefficient is
several times higher than that characteristic of variant
consisting in development of new application, being only
4% (sic!), and significantly higher than that of COTS
customization variant. Also in case of variant 3 the lowest
percentage of projects ends with being abandoned – it is
several times lower than in case of variant 1 and two times
lower than in case of variant 2. What seems interesting, the
highest percentage of projects that ended in partial failure
(challenged projects) occurs in case of the customization of

TABLE I. PARAMETERS OF OFFERS CONCERNING

EXECUTION OF PARTICULAR VARIANTS OF BSS D&EP

CONSIDERED
Variant BSS D&EP variant Execution

cost offered

Execution

time offered

1 Development of new
BSS from scratch using
modern technologies

USD 10
million

3 years

2 Customization of BSS
purchased

USD 5
million

2 years

3 Modernization of BSS
used currently

USD 3,5
million

1,5 years

Source: Author’s analysis based on [15, p. 2].

455

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 471 / 612

COTS application. What’s more, the average expected
overrun of both costs (see Table III) and project duration
(see Table IV) is also the highest in case of this project
variant.

Moreover, data in Table III clearly indicate that the
average expected overrun of the planned costs for projects
that ended in partial failure too is the lowest in case of
variant 3. Also the lowest percentage of such projects
overruns the costs by more than 50%. If offered costs and
average expected overrun of these costs are taken into
consideration when calculating the expected cost then it
appears evident that the lowest expected cost of project
execution applies to modernization variant.

Analogous conclusions may be drawn on the basis of the

analysis of data presented in Table IV. Again, the average
expected overrun of the planned duration for projects that
ended in partial failure proves being the lowest for variant 3.
Also the lowest percentage of such projects overruns the
duration by more than 50%. If we take into account the
offered duration and average expected overrun of this
duration then we can see that the lowest expected duration
of project execution applies to modernization variant too.

TABLE IV. EXPECTED LEVEL OF PLANNED DURATION

OVERRUN FOR PARTICULAR VARIANTS OF BSS D&EP

CONSIDERED (CHALLENGED PROJECTS)

Duration

overrun

Variant 1 Variant 2 Variant 3

0% to 50% 57% 59% 80%

51% to 50% 43% 41% 20%

Average 44% 45% 29%

Offered duration 36 months 24 months 18 months

Estimated
duration

52 months 35 months 23,5 months

Source: Author’s analysis based on [15, p. 4].

Data shown in Table V clearly indicate that the highest
percentage of projects characterised by the highest ROI can
be found in case of variant 3 again. On the other hand,
what’s interesting is that projects with average ROI most
often are projects consisting in developing new application
from scratch while the lowest percentage of projects
characterised by the lowest ROI can be found in case of
customization variant.

TABLE V. EXPECTED ROI FOR PARTICULAR VARIANTS OF

BSS D&EP CONSIDERED
ROI Variant 1 Variant 2 Variant 3

High 11% 34% 52%

Average 66% 57% 37%

Low 23% 9% 11%

Source: [15, p. 5].

In Table VI both ROI and payback period for particular

variants of the considered project were estimated in
optimistic and pessimistic version. In the optimistic version
it was assumed that the costs were identical with the offered
costs while in the pessimistic version - that the costs were
exceeded by the average values being expected for each
variant analysed (see Table III). Based on these
assumptions, both in optimistic and in pessimistic version,
the highest 5-year gain applies to the modernization variant;
also in case of that variant the payback period proves the
shortest. It is worth noting that project in variant consisting
in developing the new application would pay off after nearly
5 and half years in the optimistic version and after nearly 7
and half years in the pessimistic version.

TABLE VI. EXPECTED ROI AND PAYBACK PERIOD FOR

PARTICULAR VARIANTS OF BSS D&EP CONSIDERED

 Optimistic version Pessimistic version
Variant Costs

(in $
millions)

5-year
gain
(in $

millions)

Payback
period

(in
years)

Costs
(in $

millions)

5-year
gain
(in $

millions)

Payback
period

(in
years)

1 10 0 5,4 14,4 0 7,3
2 5 7,25 3,2 7,35 2,8 4,4

3 3,5 10,6 2,4 4,69 7,9 3,1
Source: Author’s analysis based on [15, p. 5].

The above analysis clearly indicates that what in the

considered case would be the best of the three BSS D&EP
variants both from the perspective of the expected
effectiveness and from the perspective of the expected
efficiency is variant consisting in modernization of the
application being used (variant 3).

V. THE EFFECTIVENESS AND EFFICIENCY FACTORS FOR

THE RECOMMENDED VARIANT

In the analysed case, BSS D&EP consisting in
modernization of application being used proves the most
effective as well as the most efficient, what results, among
others, from (see also [15]):

• Undertaking of such projects as a rule is a result of
clearly defined needs of users therefore their goals
are comprehensible, what undoubtedly promotes

TABLE II. EXPECTED CHANCE TO SUCCEED FOR

PARTICULAR VARIANTS OF BSS D&EP CONSIDERED

Resolution Variant 1 Variant 2 Variant 3

Successful 4% 30% 53%

Challenged 47% 54% 39%

Failed 49% 16% 8%

Source: [15, p. 4].

TABLE III. EXPECTED LEVEL OF PLANNED COST OVERRUN

FOR PARTICULAR VARIANTS OF BSS D&EP CONSIDERED

(CHALLENGED PROJECTS)

Cost overrun Variant 1 Variant 2 Variant 3

0% to 50% 64% 58% 75%

51% to 50% 36% 42% 25%

Average 44% 47% 34%

Offered cost USD 10
million

USD 5 million USD 3,5
million

Estimated cost USD 14,4
million

USD 7,35
million

USD 4,7
million

Source: Author’s analysis based on [15, p. 4].

456

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 472 / 612

users’ engagement in the project and the board’s
support for the project, which, according to the list of
success factors having been developed by the
Standish Group since 1995, are still the two most
important success factors [18].

• The fact that modernization projects do not require
extensive analysis of requirements, numerous
agreements, long-time training, changes of processes
that would be destabilizing the work.

• Commonness of such projects thus the skills of
executing them are high; what’s more, projects of
this type do not require additional skills in terms of
project management, they rather require technical,
the so called „hard”, skills.

• Present structure of project costs in terms of
development activities, which due to the increased
complexity of projects and ever more developed
tools has changed and is now in inverse proportion
to the structure as it was 25 years ago: now
programming costs make up approx. 20% while
other development works make up approx. 80% of
the total cost.

• The fact that modernization projects are
characterised by the lowest hidden cost (mainly
user’s time), estimated to be 15% of project costs
versus 55% for variant 2 and versus 35% for variant
1.

• The discussed projects may be successfully carried
out using agile approach, which also ranks high
(sixth position) in the current list of success factors
[18].

• Products smaller than those in case of developing
application from scratch are developed as a result of
the modernization projects and this is what increases
their chance to succeed.

• The discussed projects do not have redundant
requirements – as this is the case of the COTS
customization where, according to the Standish
Group data, less than 5% (sic!) of the features and
functions get used [15], and of the development of
new products (see Figure 1).

Figure 1. Average use of functions and features in the implemented

software systems - custom development applications

Source: Author’s analysis based on [15, p. 15].

However, variant recommended in the discussed case is
not devoid of drawbacks though. Most of all, it evidently is
not suitable for organizations where BSS have not
functioned so far (in Poland approx. 95% of small
companies do not use BSS – comparing to 50% in
developed countries), for new organizations, new
departments, and in case of fusion the modernization often
ends in failure too. Moreover in modernization variant there
are limited possibilities to implement fundamental business
changes. What’s more, the use of obsolete technologies is
being continued, what makes cooperation with modern
applications difficult, reduces usability, portability and
maintainability of the modified application; performance is
usually lower too. It is worth stressing that these attributes
are the software product quality attributes of the ISO/IEC
9126 norm [19]. Thus what appears to be open to doubt is
reduction of costs and difficulties in maintaining the system
as well as technological risk - this being one of the major
goals of the solution variant to be chosen (see Section 2). It
is also worth mentioning that the ISBSG data indicate lower
productivity of such projects: in case of BSS D&EP
consisting in developing new BSS from scratch it ranges on
average from 9 (for 4GL) to 24.5 (for 3GL) work hours for
developing 1 function point (for more details about function
points see [20]) whereas in case of modernization projects it
takes approx. 27 work hours on average to develop 1
function point [21].

VI. CONCLUSION AND FUTURE WORK

Based on the analysis of benchmarking data coming
from the Standish Group repository, having been carried out
with the use of VirtualADVISOR tool, it was concluded that
what proves the best among the three BSS D&EP variants in
the discussed case is variant consisting in modernization of
application being used. Data analysis indicates that choosing
the above mentioned variant is rational due to the criterion
of both expected effectiveness and expected efficiency of
project. This conclusion has been confirmed by the
verification based on the repository of the SPR and ISBSG
data, having been carried out with the use of SPR
Knowledge Plan tool.

From the point of view of effectiveness and efficiency,
modernization variant has many advantages yet it is not
devoid of drawbacks though. What’s more, this does not
have to be the best solution in other cases, e.g., for real time
systems, for small software product development/
enhancement projects, or for organizations that specialise in
developing specific kind of new software systems where
there is possibility to use the already written code. It should
be also mentioned that projects of higher risk, i.e., those
having lower chance to succeed, often happen to be more
efficient.

As indicated by the study results discussed in this paper,
in view of exceptionally low effectiveness of BSS D&EP it
is necessary to rationalize investment decisions being made
with regard to such projects. To do so one may successfully
use ever richer resources of benchmarking data having been
collected in repositories with intention to support effective
and efficient BSS D&EP execution. In the opinion of T.C.

Always
7% Often

13%

Rarely
19%

Never
45%

Sometimes
16%

457

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 473 / 612

Jones: "For many years the lack of readily available
benchmark data blinded software developers and managers
to the real economics of software. Now (…) it is becoming
possible to make solid business decisions about software
development practices and their results (…). [Benchmarking
– B.C.C.] data is a valuable asset for the software industry
and for all companies that produce software" [22]. This
paper presented the possibility of rationalization of
investment decision concerning the choice of the BSS
D&EP variant execution with the use of such data,
illustrated on the basis of a case study.

REFERENCES

[1] Standish Group, “CHAOS summary 2009”, West Yarmouth,
Massachusetts, 2009, pp. 1-4.

[2] B. Czarnacka-Chrobot, “The economic importance of
business software systems size measurement”, Proc. of the 5th
International Multi-Conference on Computing in the Global
Information Technology (ICCGI 2010), 20-25 September
2010, Valencia, Spain, M. Garcia, J-D. Mathias, Eds., IEEE
Computer Society Conference Publishing Services, Los
Alamitos, California-Washington-Tokyo, 2010, pp. 293-299.

[3] T. C. Jones, Patterns of software systems failure and success,
International Thompson Computer Press, Boston, MA, 1995.

[4] PCG, “2008 ERP report, topline results”, Panorama
Consulting Group, Denver, 2008, pp. 1-2.

[5] J. Johnson, “CHAOS rising”, Proc. of 2nd Polish Conference
on Information Systems Quality, Standish Group-
Computerworld, 2005, pp. 1-52.

[6] Standish Group, “CHAOS summary 2008”, West Yarmouth,
Massachusetts, 2008, pp. 1-4.

[7] Economist Intelligence Unit, “Global survey reveals late IT
projects linked to lower profits, poor business outcomes”,
Palo Alto, California, 2007: http://www.hp.com/
hpinfo/newsroom/press/2007/070605xa.html (11.07.2011).

[8] B. Czarnacka-Chrobot, “Evaluation of business software
systems development and enhancement projects effectiveness
and economic efficiency on the basis of functional size
measurement”, Proc. of the 10th International Conference on
Software Engineering Research and Practice (SERP 2011),
The 2011 World Congress in Computer Science, Computer
Engineering & Applied Computing (WORLDCOMP'11), H.
R. Arabnia, H. Reza, L. Deligiannidis, Eds., CSREA Press,
Las Vegas, Nevada, USA, July 2011, in press.

[9] A. Brown, “IS evaluation in practice”, The Electronic Journal
Information Systems Evaluation, vol. 8, no. 3, 2005, pp. 169–
178.

[10] E. Frisk and A. Plantén, “IT investment evaluation – a survey
of perceptions among managers in Sweden”, Proc. of the 11th
European Conference on Information Technology Evaluation,
Academic Conferences, 2004, pp. 145–154.

[11] Z. Irani and P. Love, “Information systems evaluation: past,
present and future”, European Journal of Information
Systems, vol. 10, no. 4, 2001, pp. 183–188.

[12] S. Jones and J. Hughes, “Understanding IS evaluation as a
complex social process: a case study of a UK local authority”,
European Journal of Information Systems, vol. 10, no. 4,
2001, pp. 189–203.

[13] A. J. Silvius, “Does ROI matter? Insights into the true
business value of IT”, The Electronic Journal Information
Systems Evaluation, vol. 9, issue 2, 2006, pp. 93–104.

[14] B. Czarnacka-Chrobot, “Analysis of the functional size
measurement methods usage by Polish business software
systems providers”, in Software Process and Product
Measurement, A. Abran, R. Braungarten, R. Dumke, J.
Cuadrado-Gallego, J. Brunekreef, Eds., Proc. of the 3rd
International Conference IWSM/Mensura 2009, Lecture
Notes in Computer Science, vol. 5891, Springer-Verlag,
Berlin-Heidelberg, 2009, pp. 17–34.

[15] Standish Group, “Modernization – clearing a pathway to
success”, West Yarmouth, Massachusetts, 2010, pp. 1-16.

[16] Software Productivity Research: http://www.spr.com/spr-
knowledgeplanr.html (11.07.2011).

[17] ISBSG, “Data demographics release 11”, International
Software Benchmarking Standards Group, Hawthorn,
Australia, June 2009, pp. 1-24.

[18] Standish Group, “The CHAOS manifesto”, West Yarmouth,
Massachusetts, 2009, pp. 1-54.

[19] ISO/IEC 9126 Software Engineering – Product Quality – Part
1-4, ISO, Geneva, 2001-2004.

[20] B. Czarnacka-Chrobot, “The effectiveness of business
software systems functional size measurement”, Proc. of the
6th International Multi-Conference on Computing in the
Global Information Technology (ICCGI 2011), 19-24 June
2011, Luxemburg City, Luxemburg, Constantin Paleologu,
Constandinos Mavromoustakis, Marius Minea, Eds.,
International Academy, Research, and Industry Association
(IARIA), Wilmington, Delaware, USA, 2011, pp. 63-71.

[21] Ch. Symons, “The performance of real-time, business
application and component software projects”, Common
Software Measurement International Consortium (COSMIC)
and ISBSG, September 2009, pp. 1-45.

[22] ISBSG: http://www.isbsg.org (11.07.2011).

458

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 474 / 612

Towards Functional and Constructional Perspectives
on Business Process Patterns

Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, Herwig Mannaert
Department of Management Information Systems

University of Antwerp
Antwerp, Belgium

{peter.debruyn,dieter.vannuffel,philip.huysmans,herwig.mannaert}@ua.ac.be

Abstract—Contemporary organizations need to be more agile
to keep up with the swiftly changing business environment.
The Normalized Systems theory has proven to introduce this
required agility within an organization, starting at the software
level. However, in order to realize an agile enterprise, also
business processes have to exhibit this evolvability. Currently,
the relevance of Normalized Systems theory at the business
process level has been demonstrated, however no equivalent
to the software elements at the organizational level have been
developed. Therefore, this paper investigates whether it is possible
to base such elements on the available business process patterns
in literature. After investigating the usefulness of the MIT Process
Handbook with regard to this purpose, this paper emphasizes the
importance of recognizing the so-called functional–constructional
gap and identifies the need for developing modular and evolvable
constructional business process design patterns to further extend
Normalized Systems theory on the business level.

Index Terms—Normalized Systems, business process patterns,
analysis patterns, evolvability, MIT Process Handbook

I. INTRODUCTION

Contemporary organizations need to be more agile to keep
up with the swiftly changing business environment. As a
consequence, all constructs of an organization—structure,
business processes, information systems—have to evolve at
an equivalent pace. The Normalized Systems (NS) theory has
proven to introduce this required agility within an organiza-
tion. First, the theory prescribes how to design and implement
information systems that are able to evolve over time, and are
thus designed to accommodate change [1]. It is based on the
systems theoretic concept of stability and on the prevention
of so-called combinatorial effects, i.e., changes of which the
impact is not only dependent on the kind of the change but
also on the size of the system. As such, NS proposes four
design principles that need to be adhered at all times [2]:

• separation of concerns requires that every change driver
or concern is separated from other concerns;

• data version transparency requires that data is communi-
cated in version transparent ways between components;

• action version transparency requires that a component
can be upgraded without impacting the calling compo-
nents;

• separation of states requires that actions or steps in
a workflow are separated from each other in time by
keeping state after every action or step.

The design principles show that software constructs, such as
functions and classes, by themselves offer no mechanisms to
accommodate anticipated changes in a stable manner. The NS
theory therefore proposes to encapsulate software constructs
in a set of five higher-level software elements: action ele-
ment, data element, workflow element, trigger element, and
connector element [3]. These elements are modular structures
that adhere to these design principles, in order to provide the
required stability with respect to anticipated changes [2]. As
these elements themselves are free of combinatorial effects,
also the applications based on them are free of combinatorial
effects.

However, it does not suffice to introduce agility within
the information systems to realize an agile enterprise. Other
organizational artifacts have to evolve in the same way as
well. Therefore, the NS theory was extended to other orga-
nizational elements, such as business processes and enterprise
architectures [4]. Regarding the former, business processes, the
applicability of the extension is already demonstrated [5].

Nevertheless, the authors have not yet been able to identify
an equivalent of the five software elements at the business
process level. Although preliminary research findings indicate
that Notification and Payment might classify as such a business
process element [5], additional research is required. Therefore,
this paper investigates whether it is possible to base such ele-
ments on the available business process patterns in literature.

When selecting appropriate business process elements, an
important distinction needs to be made between patterns from
a functional and the constructional perspective. The func-
tional and constructional view on a system are fundamentally
different conceptualizations of a system [6]. The functional
perspective is concerned with the external behavior of the
system [7]. This perspective is adequate for the purpose of
using or controlling a system. Therefore, knowledge of the
required input variables, transfer function and output vari-
ables are key components of this perspective. In contrast,
the constructional perspective describes what a system really
is [8]. In this perspective, knowledge about the composition
(i.e., which components constitute the system) and structure
(i.e., how these components are related) is focused on. The
function of a system is brought about by the operation of
its construction. However, the construction cannot be deduced
from the functional description, since the two perspectives deal

459

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 475 / 612

with fundamentally different components. Consistent with the
NS elements, we aim to propose process elements using a
constructive perspective. Therefore, it is important to consider
these perspectives when building on business process patterns
found in literature.

The remainder of this paper will be structured as follows:
in Section II we will briefly discuss some already existing
analysis and design patterns in literature. Next, we will in-
vestigate to which extent we can derive corresponding NS
conform elements and patterns from those available business
process patterns by studying one frequently cited and used
framework, being the MIT Process Handbook, in Section III.
Afterwards, we will discuss how NS theory extends towards
normalized business process design patterns and Section V
will end up with some final comments and opportunities for
further research.

II. RELATED WORK

The use of patterns in software development and informa-
tion systems analysis has been increasingly gaining attention
during the past decade. One of the first publications on
software development patterns that generated considerable
interest was probably the so-called Gang of Four (GoF) book
of Gamma et al. [9]. Gamma et al. identified patterns as
ideas that senior developers have used many times while
solving commonly occurring problems [9]. Essentially, the
overall meaning or intention of this concept has remained
rather unchanged throughout many later publications on design
patterns. Further summarizing, patterns are frequently claimed
to exhibit the following characteristics:

• starting from a generally occurring problem in the con-
sidered problem domain;

• proposing standard and / or best practice solutions to
these problems applicable to a myriad of analogous
situations;

• incorporating domain knowledge and expertise some-
times requiring multiple years of experience to gather
independently;

• exhibiting high-quality and robustness by representing
frequently tested solutions;

• increasing pace of the development / modeling process by
avoiding to systematically start from scratch and trying
to ‘reinvent the wheel’.

Moreover, they are generally claimed to be a sign of a
discipline becoming somewhat more mature, in the sense that
an accumulation of generally recurring problems and their
best-practice solutions becomes identified and documented. As
such, existing knowledge from experts can be consolidated,
published, and made available for a whole community [10].

After the work of Gamma et al. [9], additional, more
analysis-oriented frameworks arised. As such, we will present
here a brief illustrative, yet not exhaustive, overview. Given
the plethora of available frameworks, a lot of different classi-
fication approaches exist as well. Some pattern frameworks for
example mainly focus on the data aspects of an organization
model, such as Hay [11] and Fowler [12]. Elaborating on

these previous two frameworks, an interesting work was also
delivered by Silverston providing domain data models for
several industries such as manufacturing, telecommunications,
health care, insurance, etc. [13], [14]. More process-oriented
patterns can be found in, for example, Larman [15]. Further-
more, some claim that the broad area of workflow patterns are
to be considered as some form of process-oriented analysis
patterns (see e.g., [16]). Scheer also provided domain models
for several functional domains of a typical organization, and
combined both data and process related aspects [17]. Moving
to more abstract levels, some frameworks claiming to state
more generic and universal patterns can be noticed. For
example, Dietz models every enterprise as an aggregation of
instantiations of one universal transaction pattern [18]. Also
REA (resources, events, agents) similarly views an enterprise
as an aggregation of transactions representing some kind of
economic exchange [19], [20]. Finally, one could argue that
also some general reference models could be considered to
a certain extent as analysis patterns, such as the value chain
model of Porter [21], the eTOM model for the telecommu-
nications sector or the SCOR model representing a reference
model for supply chain operations [22].

III. INVESTIGATING CURRENT BUSINESS PROCESS
DESIGN AND REFERENCE MODELS

In this section we will discuss the extent to which currently
available analysis patterns and reference models can be applied
to and serve as a means to extent the previously discussed
NS theory to the level of normalized design patterns at the
business level (i.e., modular and evolvable business process
design patterns). As the number of available frameworks in
this regard is rather extensive at first sight (cf. Section II)
and due to the limited available space, we chose to focus our
attention initially to only one framework that formulates a
number of functional patterns at the business process level:
the MIT Process Handbook. This approach allowed us to
analyze this one specific framework in a rather profound
way. The pattern framework was selected mainly because of
the fact that it is a generally well known, publicly available
framework, extensively discussed and referred to in both
academic and practitioners literature. Also, as will be further
clarified later on, this framework’s motivation seems to be
closely resembling our previously stated purpose in Section
I: the formation of a repository consisting out of generally
reusable business process patterns. As such, the purpose is to
investigate whether these functional patterns can be translated
in the required modular and evolvable design patterns.

The MIT Process Handbook initiative originated around
1994 reacting to an identified need of enabling more easily
business process redesign and the knowledge management re-
garding those business processes [23]. As such, the purpose of
the project was to identify similarities between and alternatives
regarding different business processes at various organizations
[23]. This resulted in an online available “process handbook”
to exchange ideas regarding organizational practices ending

460

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 476 / 612

up with a “repository” of knowledge about business processes
and featuring more than 5900 entries in July 2002 [24].

In its very essence, the MIT Process Handbook structures
its business process repository around two main dimensions:
parts and types. Process parts represent the fact that a business
process can be subdivided into several “sub” business pro-
cesses or activities as for example the “sell product” business
process is broken down into the more detailed processes like
“identify potential customers”, “inform potential customers”,
“obtain order”, “deliver product”, etc. Process types represent
different alternatives or “specializations” of a generic activity,
as for example the processes “sell by mail order” and “sell in
retail store” can be considered as two specializations of the
generic process “sell product”. Using these two dimensions
to situate the different business processes then results in the
so-called “Process Compass” where processes are depicted on
the vertical axe according to their different parts / subactivities
and on the horizontal axe according to their different types /
alternatives [23].

Clearly, this way of working already implies a certain
amount of modularity: in a top-down way, the general, more
“high-level” activities are constantly broken down into more
detailed constituent subactivities, representing the respective
modular “building blocks”. In addition, the different types /
alternatives available for certain processes suggest the pos-
sibility of being able to compose new processes in a kind
of “plug and play” manner: for each subactivity, frequently
some “equivalent” types are proposed, apparently allowing the
designer of a new or ameliorated process to choose and trade-
off between different alternatives or replace on a later time an
existing activity by an alternative “version” of that subactivity.

In order to assess whether the Handbook can provide suffi-
cient support regarding our attempt to extend our framework
on modularity and evolvability to patterns on the business
level, let us start for example on the overall activity of the
Process Handbook (i.e., the most generic and high-level one,
claimed as being the basis for most business processes):
“produce as a business”. A schematic overview of this process
is provided in Figure 1. One can notice that the business
process “produce as a business” has five parts (i.e., design
product and process, buy, make, sell and manage a business).
The figure moreover is partially expanded for the parts “design
product and process” and “sell”. When trying to leverage these
business processes and parts to our constructional building
blocks created at the software level in NS theory, three
somewhat related issues arise: under-specification, lack of
adherence to prescriptive design principles and an inherent
top-down approach.

A. Underspecification

The repository of the Process Handbook regularly seems
to be lacking highly specified and detailed descriptions of its
different processes and activities. Frequently, some relevant
subactivities seem to be omitted and the structure of decom-
position already stops before one has attained a very fine-
grained modular overview of all the needed, broken-down,

Fig. 1. Partial breakdown of the “Produce as a business” business process
based on the MIT Process Handbook

activities which are required for exhaustively executing a
more generic high-level process. Consider for example the
subprocess “identify needs or requirements” as shown in
Figure 1. This subprocess has been given the rather vague
essential description that it is a process for “identifying the
usability parameters of a resource that is managed in a
flow dependency” and it is already situated at the bottom
of the Process Compass. Therefore, no further subactivities
are identified in the Process Handbook. However, one could
reasonably argue that this process can still be refined into
more fine-grained activities such as, e.g., conducting a market
survey, analyzing preceding sales results, etc, which could then
be detailed into even more specific subprocesses. As such, the
process descriptions frequently leave considerable room for
interpretation about the actual specific activities entailed in
certain processes.

Indeed, it has not been the objective of the initiators of
the Process Handbook to provide such a very fine-grained
overview of each process. While Malone et al. mention in their
introduction that their Handbook is expected to be useful in
automatically generating software, they argue later on that as
their main focus is to support human decision-makers “there
is no requirement that all our process descriptions be detailed
or formalized enough to be executable by automated systems”
[23, p. 426]. Explicitly referring to Hammer and Champy’s
[25] concept of analysis paralysis, they further claim that it is
more important to be able to make a rapid assessment of the
basic caracteristics of a process, rather than an elaborate and
detailed overview. Proposing an approach to further fill in the
Process Handbook, Pentland et al. [26, p. 3] also emphasize
that it is “pointless to spend a lot of energy mapping out [in
a detailed way] how a particular activity is accomplished”.
However, in order to directly apply a NS approach, it is
necessary to break down the action entities up to the point
that it enables the identification of each individual concern
which can potentially be considered as a separate “change
driver” [1]–[3]. Also applying the NS principles at the business
level requires the rather fine-grained identification of such
individual change drivers related to individual elementary life
cycle information objects, albeit that they can depend on time,
context and subjective interpretation [4], [5].

461

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 477 / 612

B. Lack of adherence to prescriptive design principles

Also few or no applied prescriptive design guidelines can be
retrieved towards the design of the process repository. Previous
research regarding evolvable modularity at the software level
[1]–[3] and the business level [5] however points out that
some very stringent principles should consistently be adhered
to with this respect. Consider for instance again the example
previously outlined and depicted in Figure 1. “Identify needs
or requirements” is a subprocess of “design product and
process”, which is at its turn a part of the general process
“produce as a business”. “Identify potential customer needs”
is a subprocess of “sell” which is at its turn a part of the same
general process “produce as a business”. While not completely
clear from the descriptions delivered by the Handbook, one
could argue that certain functionality is common or repeated
within these two distinct processes (each having no ‘lower’
subprocesses / parts in the process compass). Specializing the
“sell” process towards “sell via electronic store” has a subpro-
cess “identify customer needs in electronic store”, which again
seems to cover at least some common functionality, apart from
the employed distribution channel. Surprisingly, the “identify
customer needs in electronic store” process is subdivided
into several other parts, not reused in the processes “identify
needs or requirements” or “identify potential customer needs”.
Similar instances of common functionality scattered around in
various business processes were noticed regarding the delivery
of products, advertising via diverse channels, etc. In terms of
evolvability, this would imply that the need for e.g., changing
something in the way customer needs are identified, could
have a possible impact on all business processes involved
with this functionality. This evidence suggests that at least one
of the four basic principles of NS theory is not adhered to.
The principle of Separation of Concerns namely enforces one
to separate each individual change driver in its own distinct
construct in order to encapsulate and limit the impact of a
change driver in its own construct. More specifically, NS
theory demands that during the design of evolve software
or business processes, common parts of data or business
processes should be kept in a non-redundant form, whereas
each variation should be kept separated from the common part.

This lack of unambiguous and stringent prescriptive design
guidelines to compose the Process Handbook is not only
apparent when analyzing the respective processes, but also
while studying the guidelines directed to the users of and con-
tributors to the Handbook. For example, it is stated that: “we
believe that [. . . our structure] is comprehensive and intuitive
[. . .] we have, in general, tried to maintain a branching factor
of about “7 plus or minus 2” in the specialization hierarchy
[. . . and use it] primarily as a rough guideline for editing
the Process Handbook” [24, p. 250]. Later on, one can read:
“wherever possible, we have tried to create groupings that
constitute a mutually exclusive and exhaustive partitioning
of the possible specializations of that activity” [24, p. 250].
Finally, Malone et al. [23, p. 439] even explicitly mention that
their Handbook is primarily a resource to suggest people what

to do rather than proposing “prescriptive rules” in drafting
the Handbook and are confident in the “role of intelligent
human “editors” to select, refine, and structure the knowledge
represented in the Handbook to tackle the editioral challenge.”

C. Top-down modeling

Finally, the systematic way of structuring the different
business processes in a top-down fashion (i.e., starting from
general high-level processes and then refining them into more
detailed ones including some possible alternatives) inherently
contributes to the functional–constructional gap as mentioned
in Section I.

The breakdown of the “produce as a business” business
process can illustrate this point. From a functional point of
view, one tries to relate the input variables to the output
variables through a transfer function. Knowing the transfer
function, insight is gained in how the systems responds to
various instances of input parameters from the environment.
In this case, one tries to understand which resources (input
variables) are required to deliver products or services (output
variables) to the customers. However, such a transfer function
is generally extremely complicated. Therefore, the technique
of functional decomposition can be applied to reduce this com-
plexity. Using functional decomposition, the transfer function
is replaced by a set of sub-systems of which the transfer
function is easier to understand. In the “produce as a busi-
ness” business process, design, buy, make, sell, and manage
are identified as sub-systems. Consequently, one now has to
understand the inputs and outputs of, for example, the “sell”
transfer function. However, these systems are still considered
using a functional perspective: together, they describe in more
detail how resources can be converted to products or services.
On these functionally decomposed processes, one can again
apply functional decomposition, resulting in very detailed
descriptions of transfer functions. In traditional architecture
literature, this process is referred to as analysis [27]. However,
this activity is radically different from designing a structure
which brings about this transfer function. When designing
process elements, we aim to describe the structure to bring
about the business process functionality. In design studies,
this activity is referred to as synthesis [28]. Unsurprisingly,
the design of a system which brings about the “produce as
a business” function will be very complex. Analogously to
functional decomposition, constructional decomposition can
then be applied. However, the elements which are identified
in a constructional decomposition are different in nature than
the elements from a functional decomposition. Consequently,
it does not make sense to try to relate the elements of a
functional decomposition to the elements of a constructional
decomposition. In other words, one cannot expect to arrive at
essential constructional process building blocks by describing
very detailed functionally decomposed elements, as proposed
by the MIT Process Handbook.

Indeed, as Kodaganallur [10] seems to be noticing rightfully,
few development methodologies seem to be seamlessly inte-
grated with the use of patterns at the analysis level. However,

462

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 478 / 612

using a systematic integrated bottom-up approach starting
from data and action entities, encapsulating them in higher-
order elements with proven stability and finally aggregating
them into evolvable business process (patterns) is the inherent
rationale in the NS theory. In our view, designing organiza-
tions towards (proven) evolvability requires such a bottom-
up approach where in a first phase some very fine-grained
building blocks exhibiting proven evolvability by adhering
to the predefined principles (e.g., “send notification”) are
developed. Later on, these fine-grained building blocks can
be reused in a safe and black-box way to construct more
coarse-grained blocks, again conforming to the predefined
design principles (e.g., “decide on customer creditworthness”).
Only in a final phase these coarse-grained blocks could be
aggregated towards such general processes as depicted in
Figure 1 and enabling the transformation of, for instance,
“sell product” to NS compatible patterns. Again, this suggests
that the MIT Process Handbook is not directly applicable
with respect to evolvable and modular constructional business
process patterns.

These three issues are obviously highly related to one
another and add up to the conclusion that the MIT Process
Handbook primarily gives a functional overview of possible
business processes in an enterprise. When designing new
business processes or trying to ameliorate existing ones, the
Process Handbook gives of an overview of some available
options regarding the general functional elements such a
business process should or could incorporate without giv-
ing any further compelling guidance on the way in which
they should be aggregated or structured. Additionally, it still
leaves (consciously) some room for interpretation regarding
the specific activities and change drivers incorporated in each
activity or business process. As such, the Process Handbook
can (and maybe should) be considered as primarily a kind
of reference model containing mainly domain knowledge on
broad aspects affecting many enterprises: HR, supply chain
management, marketing, etc. It can signify a considerable
help and contribution when one is indeed looking for the
functionalities common business processes have to perform.
However, the Process Handbook does not adhere to specific
modularity and evolvability guidelines and was essentially also
not established with that main purpose in mind.

IV. THE NEED FOR MODULAR AND EVOLVABLE
CONSTRUCTIONAL BUSINESS PROCESS DESIGN PATTERNS

In the previous section, we argued that the MIT Process
Handbook can have considerable value regarding the func-
tional analysis and decomposition of business processes, but
that it can not be simply translated to existing NS software ele-
ments for several reasons. Without explicitly discussing several
other existing and possibly relevant reference frameworks or
claimed business process patterns, it seems reasonable to argue
that some of the aforementioned arguments can be applied to
multiple other existing frameworks as well: several of them in-
deed emphasize the modeling of best-practices and functional
requirements in a top-down way. As such, a first important

Fig. 2. A visualization of the functional–constructional gap and the need for
modular and evolvable constructional business process design patterns

conclusion to be made is that this functional–constructive
gap is again clearly been proven to be present and offers
considerable challenges to unifying models on the business
level with those on the software level. However, the existence
of this gap is frequently underestimated or even not mentioned
or addressed at all by many current methodologies. Obviously,
the question then remains how to indeed develop modular
and evolvable business process design patterns, focusing on
constructive components instead of functional components.

Based on the NS theory rationale, Mannaert et al. [1]
have already emphasized the existence of the functional–
constructional gap and the importance of adhering to certain
design principles when developing information systems. More
specifically they suggest to consider the development of an
information system as a linear transformation of a set of
functional requirements (i.e., data entities, action entities and
connectors) into a set of instantiations of software constructs
(i.e., data structures and processing functions) at a certain
point in time. Also, they show that this transformation can
be quite straightforward when one is studying information
systems from a static perspective. However, when focusing
on the dynamic perspective (i.e., incorporating a marginal
transformation of a set of additional functional requirements
into a set of additional instantiations of software constructs) it
is easy to show that the impact of a single ‘extra’ functional
requirement is not necessarily limited to the addition or
modification of a single software primitive. Stated otherwise,
the impact of 1 functional change can have impact n on the
constructional side, thus showing instability.

In order for this instability to be avoided, the NS rationale
would require to first decompose the complex (high-level)
functional requirements into a kind of more basic require-
ments. The next step would then be to look for Normalized
linear transformations where — at least part of — the basic
functional requirements can be deterministically transformed
into constructional business process patterns, thus allowing a 1

463

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 479 / 612

to 1 mapping. Ideally, when representing this transformation in
matrix form, the transformation matrix should indeed be of a
diagonalized form or at least of a Jordan normal form. Finally,
this reasoning is also visually depicted in Figure 2: instead
of searching for business process patterns on the functional
view, NS proposes to try to decompose these functional
requirements to very basic ones and subsequently considering
the transformation to constructive business process patterns.

These transformations should then again be analyzed from
both a static and a dynamic perspective. Ideally, these trans-
formations should be linear and normalized. This would entail
from a static perspective that the realization of functional
requirements, including the possible insufficiencies, could be
located in a bounded and identifiable set of constructional
primitives. From a dynamic perspective, this would entail
that an increase in an existing functional requirement, or the
addition of a functional requirement, would have a bounded
impact on the constructional view.

V. CONCLUSION AND FUTURE WORK

This paper investigated the extent to which currently avail-
able business process patterns can be applied in order to de-
velop ‘normalized’ elements at the business process level, with
the purpose to further extend the NS theory at the business
level. Focusing our attention primarily on the MIT Process
Handbook, three issues arose as hampering the application of
this framework directly to NS elements: under-specification,
lack of adherence to prescriptive design principles and an
inherent top-down approach. Regarding the latter, it was noted
that this aspect is strongly related to the concept of the so-
called functional–constructional gap, in that lots of the existing
pattern frameworks seem to provide functional decomposition.
Therefore, they can be useful in managing domain knowledge
and expertise, but are not directly transformable to construc-
tional primitives at the NS level. Hence, the necessity for
future identification of modular and evolvable constructional
business process design patterns was called for and a NS
theory based approach was proposed for studying the needed
transformation between functional and constructional patterns
in a dynamic context, emphasizing the need for evolvability.

A limitation of this paper is that it focused its attention
into discussing only one existing framework in a rather de-
tailed way. While we expect our proposed reasoning regard-
ing the important, yet frequently underestimated functional–
constructional gap to be applicable to many, if not most
currently available pattern frameworks, some future research
could then obviously investigate the extent to which our
conclusions can also be applied to other existing frameworks.

Other related research at our research group will clearly be
aimed at trying to find those necessary constructional business
process elements. Previous research suggested Notification
and Payment as potential business process design patterns,
however further research and extension is definitely needed.

ACKNOWLEDGMENTS

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
pp. 1210–1222, 2010.

[2] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software Practice and Experience, vol. Early View,
2011.

[3] H. Mannaert and J. Verelst, Normalized systems: re-creating information
technology based on laws for software evolvability. Koppa, 2009.

[4] D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst, “Towards
a deterministic business process modeling method based on normalized
systems theory,” International Journal on Advances in Software, vol. 3,
no. 1-2, pp. 54–69, 2010.

[5] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[6] G. M. Weinberg, An Introduction to General Systems Thinking. Wiley-
Interscience, 1975.

[7] L. Bertalanffy, General Systems Theory: Foundations, Development,
Applications. New York: George Braziller, 1968.

[8] M. Bunge, Treatise on Basic Philosophy: Vol. 4: Ontology II: A World
of Systems. Boston: Reidel, 1979.

[9] E. R. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns
– Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[10] V. Kodaganallur and S. Shim, “Analysis patterns: A taxonomy and its
implications,” Information Systems Management, vol. 23, no. 3, pp. 52–
61, SUM 2006.

[11] D. C. Hay, Data Model Patterns: Conventions of Thought. Dorset
House, 1995.

[12] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley Professional, 1996.

[13] L. Silverston, The Data Model Resource Book: v.1: A Library of
Universal Data Models for All Enterprises: Vol 1. John Wiley & Sons,
2001.

[14] ——, The Data Model Resource Book: A Library of Universal Data
Models by Industry Types: v. 2. John Wiley & Sons, 2001.

[15] C. Larman, Applying UML and Patterns. Prentice Hall PTR, 1997.
[16] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,

“Workflow patterns,” Distributed and Parallel Databases, vol. 14, pp.
5–51, 2003.

[17] A. Scheer, Business Process Engineering – Reference Models for Indus-
trial Enterprises. Springer-Verlag, 1998.

[18] J. L. G. Dietz, Enterprise Ontology: Theory and Methodology. Springer,
2006.

[19] W. McCarthy, “The REA Accounting Model: A Generalized Framework
for Accounting Systems in a Shared Data Environment,” The Accounting
Review, vol. 57, no. 3, pp. 554–578, 1982.

[20] P. Hruby, J. Kiehn, and C. Scheller, Model-Driven Design Using
Business Patterns. Springer, 2006.

[21] M. Porter, Competitive Advantage: Creating and Sustaining Superior
Performance. Free Press, 1998.

[22] Supply Chain Council (SCC), “Supply Chain Operations Reference
Model (SCOR): Version 10.0.”

[23] T. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. Osborn, A. Bernstein, G. Herman, M. Klein, and
E. O’Donnell, “Tools for inventing organizations: Toward a handbook
of organizational processes,” Management Science, vol. 45, no. 3, pp.
425–443, MAR 1999.

[24] T. Malone, K. Crowston, and G. Herman, Organizing Business Knowl-
edge: The MIT Process Handbook. The MIT Press, 2003.

[25] M. Hammer and J. Champy, Reengineering the Corporation: A Mani-
festo for Business Revolution. HarperCollins, 1993.

[26] B. Pentland, C. Osborn, G. Wyner, and F. Luconi, “Useful descriptions
of organizational processes: Collecting data for the process handbook,”
August 1999, Unpublished Working Paper. Center for Coordination
Science, MIT, Cambridge, MA.

[27] C. Alexander, Notes on the Synthesis of Form. Harvard University
Press, 1964, iSBN: 0674627512.

[28] J. S. Gero and U. Kannengiesser, “The situated function-behaviour-
structure framework,” Design Studies, vol. 25, no. 4, pp. 373–391, 2004.

464

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 480 / 612

Practical Experiences with Software Factory Approaches

in Enterprise Software Delivery

Alan W. Brown, Ana Lopez Mancisidor, Luis Reyes Oliva

IBM Rational

Sta Hortensia, 26-28, Madrid, Spain

(alanbrown, ana.lopez, luis.reyes)@es.ibm.com

Abstract—There are many pressures on software delivery

organizations to produce more software faster in the context of

extreme cost pressure and growing globalization of the

software delivery organization. The concept of a Software

Factory is beginning to emerge as one way to address these

challenges. This paper discusses the principles of software

factories for enterprise software delivery using practical

examples that explore the how software delivery quality can be

managed across the software supply chain. In particular, we

discuss two case studies where large commercial organizations

have achieved significant improvements in software quality

when adopting a software factory approach. We conclude with

a set of observations that highlight where this work can be

usefully refined and extended.

Keywords – software engineering; software process

improvement; application management; software delivery

I. INTRODUCTION

Many companies have experienced a great deal of change
over the past few years due to evolution of the business
environment, financial upheavals, societal changes, and
technical advancement. Key to addressing these changes has
been analysis of core business processes to see how they can
be refined and optimized, followed by a restructuring of
those business processes to better meet the new context. This
business process reengineering has helped to refocus on the
most compelling and valuable aspects of the business, and is
a first step in readjusting investment priorities toward those
business activities that are considered essential, while
looking to divest those considered secondary [1].

At the same time all IT groups have been forced to lower
operating costs across the organization. The direct
implication is that they must not only minimize waste and
inefficiency, but increase productivity and relevance to the
businesses they serve.

This combination of business process restructuring and
close focus on delivery efficiency have been seen in many
business domains, and have resulted in techniques such as
“lean manufacturing”, “supply-chain management”, and
“product line engineering”. The application of these ideas in
software delivery is what we refer to here as a “software
factory approach” to enterprise software delivery [2, 3].

In this paper we examine this view of enterprise software
delivery. We first explore the idea of the “software supply
chain” and introduce the concept of the software factory. We

then detail the characteristics of the software factory
approach, and illustrate those concepts using real world
examples. We conclude with several key observations.

II. ELEMENTS OF A SOFTWARE FACTORY APPROACH

Analogous with changes in the industrial sector, a
software factory approach to enterprise software delivery
aims to reduce time to market for new products, increase
flexibility and agility in component assembly, and reduce
costs of production while increasing quality and end-user
satisfaction. It is important to highlight several key elements
of such an approach that impact enterprise software delivery.

A. Aligning business and engineering

A software factory approach to enterprise software
delivery requires a well-established, multiplatform process
with tooling that aligns business strategy with engineering
and system deployment. Critical in building applications that
meet the needs of the customer, such processes can help to
identify business needs and stakeholder requirements, and
drive those business goals into enterprise software delivery
projects and solutions, ensuring that the final product meets
the business objectives with the lowest possible cost and
highest possible quality.

B. Automating processes and tasks

Automating the enterprise software delivery lifecycle can
help reduce errors and improve productivity, leading to
higher quality products. An integrated portfolio of tools can
help teams automate specific, labor-intensive tasks—similar
to the way automation is used to perform repetitive manual
tasks in manufacturing. Using automation, practitioners are
able to focus on creating more innovative solutions with
industry-leading design and development environments that
help support the delivery of high-quality, secure and scalable
products. Companies that invest in automation and a more
efficient means of production and delivery can experience a
sizeable jump in productivity, quality, time to market and
scalability.

C. Leveraging assets across the enterprise

Modern architectural and product development
frameworks can be considered complex supply-chains that
integrate third-party, custom, off-the-shelf and outsourced
components in the overall software or system. This has led to
approaches such as Service-Oriented Architecture (SOA)

465

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 481 / 612

frameworks, which focus on assembly of standard
components to promote reuse across the enterprise, and more
generally to product line engineering (PLE), where the focus
is strategic reuse in developing portfolios of similar products
that share many components but are differentiated by
variations in features and functions [4].

The first step is to understand what assets exist and
leverage them to create reusable components to extend
architectural frameworks in meaningful, predictable ways.

D. Supporting integration and lean processes

Today’s enterprise software delivery teams can be highly
distributed geographically. Consequently, they need flexible
and agile processes with real-time collaboration, integrated
across disparate platforms, roles and geographies to reap the
benefits of modern software and systems frameworks.
Globally distributed development can be facilitated through
defined, customizable processes and best practices to support
flexibility, mitigate risk with comprehensive quality
management and enhance developer productivity through
task and process automation.

E. Automating operational measurement and control

To help ensure predictable outcomes, the enterprise
software delivery process must be governed so it can be
continuously measured and improved. A fundamental aspect
of this is the definition and codification of processes for
developing products. These processes and best practices are
corporate assets, and need to be captured in an actionable
form so teams can be guided to adhere to appropriate best
practices through automated workflows.

Relevant metrics should be gathered automatically at
each step, including after software and systems are delivered
into production. By constantly, automatically measuring the
specific key value aspects of processes, these metrics can
provide insight into the efficacy of existing processes and
identify areas for improvement. Automated measurement
and control is also critical in tightly regulated industries,
such as government, aerospace, medical or financial sectors.

III. REALIZING A SOFTWARE FACTORY

Realizing a software factory requires a blueprint to
organize and structure the methods and tools that deliver the
capabilities to make this real.

Domain Focus

Business
Management

Asset
Production &
Maintenance

Application
Development
and Delivery
Management

Manage Method and Processes

Manage Services

Manage

Knowledge

And Guidance

(HOW TO)

Manage

Assets and

Deliverables

Manage Portfolio

(Releases, Programs and Projects)

Planning

Manage resource capacity

Manage estimates

Reporting/

Dashboards

G
o
v
e
rn
a
n
c
e

P
la
n
 t
o
o
li
n
g
 l
a
n
d
s
c
a
p
e
 s
e
le
c
ti
o
n
,

d
e
p
lo
y
m
e
n
t,
 r
e
ti
re
m
e
n
t

Application
Infrastructure/
Deployment
Management

Figure 1. A Simplified Blueprint for a Software Factory.

Figure 1 illustrates a simplified software factory blueprint
that we have used as the basis for several large scale
enterprises. In this approach the software factory provides a
collection of capabilities that support the management and
delivery of enterprise software, covering 5 key areas. We
briefly review each of these in turn.

A. Business management

Effective business and IT planning and portfolio
management helps to streamline the business by empowering
faster, better-informed decisions, and can reduce costs by
prioritizing enterprise software investments to support
business goals. Ultimately, proficiency in this area allows
strategic intent to be converted into executable processes
with measurable business results. To implement this
typically requires several elements:

� Enterprise architecture management to help make

faster, better-informed strategic and tactical decisions,

prioritize enterprise software investments to support

business goals, and analyze, plan and execute change

with reduced risk.

� Business process management to help to optimize

business performance by discovering, documenting,

automating, and continuously improving business

processes to increase efficiency and reduce costs.

� Requirements definition and management to

minimize the number of inaccurate, incomplete, and

omitted requirements. This helps teams collaborate

effectively with stakeholders, reduce rework, accelerate

time to market, and respond better to change.

B. Asset production and maintenance

Knowledge management and reuse best practices allow
organizations to discover and leverage existing data and
assets. With an understanding of the key assets, it is possible
to enforce policies and best practices, manage model
dependencies and even trace assets to versioned artifacts.

It is important to determine what assets exist by
providing the ability to search and select across multiple
asset repositories and data warehouses, relate assets to one
another and leverage existing assets for reuse. Such solutions
can also help administrators enforce policies and best
practices, manage model dependencies and trace assets to
versioned artifacts, creating a link between systems, sub-
systems, code, requirements, test cases and delivered
solutions. Finally, teams create new assets, transforming
code into standardized artifacts such as Web or Business
Process Execution Language (BPEL) services that can be
used as components for building value-added applications.

C. Application development and delivery management

Smart product design and delivery optimization requires
collaboration across teams to deliver quality software and
systems. In addition, applying lean processes with
disciplined teams in focused “centers of excellence” ensures
flexibility and facilitates globally distributed enterprise
software delivery. Collaborative services, automation and
measurement feedback throughout the software development

466

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 482 / 612

lifecycle are essential to achieve levels of productivity and
consistency beyond those accomplished using traditional,
craft-oriented software development tools.

This requires capabilities that can help teams to
collaborate across the lifecycle and automate routine tasks.
Key capabilities include:

� Change and release management. Improving quality

and productivity by effectively unifying distributed

teams by managing change processes from

requirements gathering through to deployment.

� Quality management. Advancing quality across the

entire software delivery lifecycle from requirements,

design, development, quality assurance, security, and

compliance to deployment.

� Architecture management. Software development

tools for design, development, and delivery that support

modeling and coding activities in appropriate high-level

languages, supported with a range of analysis

capabilities for maintaining the architectural quality of

the delivered solution.

D. Application infrastructure and deployment management

A modern application infrastructure allows organizations
to cost effectively build, deploy and manage applications and
products for varying business needs. Integrating service
delivery across organizational boundaries and all stages of
the lifecycle helps to improve time-to-market and reduce cost
and risk while providing the visibility, control and
automation needed to deliver a dynamic infrastructure that
adapts to changing business requirements. These solutions
provide capabilities to help organizations develop a robust
application infrastructure, including capabilities for:
� Product deployment. Offering services to

automatically deploy, track, and manage applications

across the lifecycle.

� Application delivery. A set of technologies that

support system build and deployment across mainframe

and distributed environments.

� Connectivity and application integration. Services

that foster collaboration, insight and cost effective re-

use of data and knowledge across the organization.

E. Governance

Automated capabilities to monitor operational
environments and provide feedback to the software and
systems delivery processes are critical in a modern approach.
Iterative improvement across the entire lifecycle ensures
timely problem resolution and ensures flexibility to adapt to
change in today’s business environment. These solutions for
operations provide capabilities to help organizations develop
a robust set of practices for automating operational
monitoring and measurement. These solutions can help in:

� Application health monitoring.

� Performance management.

� Security and compliance.

� Service management.

� Performance optimization.

� Monitoring and measurement.

IV. RATIONAL JAZZ: AN INTEGRATED SOFTWARE

FACTORY PLATFORM

A common collaborative platform is critical for
effectively introducing a software factory approach. A
collaborative development platform automates and simplifies
the challenges of enterprise software delivery from project
management, to the ability to leverage innovation, to the
visibility and access of the development and delivery teams
across the distributed supply chain.

Rational Team Concert

Work items:

Requirements, Issues,
ClearQuest bridge

Build System:

Automation and integration
with SCM and work items

traceability, Local and Server
builds, BuildForge integration

Project Planning and
Management:

Agile/Traditional planning,
Reporting & Dashboards

Collaboration

Presentation:
Mashups

Discovery

Query

Storage

Administration: Users,
projects, process

Jazz Team Server

REST APIs: Jazz Foundation Services and Open
Services for Lifecycle Collaboration (OSLC)

Jazz Foundation Services

Rational Quality
Manager

Rational
Requirements
Composer

Rational Project
Conductor

3rd Party ALM
Tools

Rational Build
Forge

Rational Test and
Lab Management

Other Jazz-based
Rational
Products

Software Configuration
Management:

Server-based sandbox,
Changesets, Streams,

Components, Snapshots and
Baselines, ClearCase Bridge

Figure 2. The Rational Jazz Platform.

IBM Rational’s approach to provide a collaborative

platform for software factories is the Jazz technology – a set
of integrated capabilities to unify all stakeholders in the
software supply-chain, a basis for governance and
management of standardized delivery processes, and the glue
that enables visibility and transparency across the complete
software delivery process [5].

As illustrated in Figure 2, the Rational Jazz platform
consists of a set of capabilities that deliver the services
necessary for a software factory. There are 2 major parts to
the solution. The first is the Jazz Team Server comprising
core capabilities for integrating and collaborating across
teams. Access to these capabilities is via the Open Services
for Lifecycle Collaboration (OSLC) interfaces. The second is
the Rational Team Concert solution that embeds the Jazz
Team Server as the basis for delivering core services for
work item management, project planning and management,
source code management, and build management. Any
software factory solution built on this technology customizes
and extends this platform through the addition of specific
capabilities in areas such as quality management,
requirements management, and so on.

The Rational Jazz Platform has been used in several
different kinds of scenarios. In particular, were companies
are moving toward a software factory approach, this platform
offers the core capabilities on which to build and deliver the
essential characteristics of a software factory: collaboration,
automation, and visibility.

467

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 483 / 612

V. EXAMPLES

We provide 2 examples
1
 of organizations that have

implemented a software factory approach, realized via the
Rational Jazz platform.

A. Subcontractor management at ABC Bank

1) Challenges
ABC Bank is a large worldwide financial institution with

a diverse, widely distributed IT organization. In an attempt to
efficiently manage rapid growth at ABC Bank, they have
substantially focused on subcontracting major parts of their
software development and delivery to large software centers
in Latin America, Europe, and Asia. This approach was
aimed at reducing fixed IT costs and increasing flexibility to
adapt to customer demand. The growth of this subcontracting
model is challenging due to:

� Lack of governance to control project progress.

Across the organization, different teams were using

different governance mechanisms, not connected, with

progress measured during informal weekly meetings.

� Poor communication due to different time zones,

location, cultural and political differences. Not all

team members were fluent in English language and due

to different time zones many discussions were

inconclusive, or had to be postponed for days.

� Inadequate planning and change management

procedures. Projects were subcontracted using a fixed-

price model, and there was little flexibility to negotiate

changes or modify initial planning.

� Mismatches between user expectations and the real

outcomes. End users were not involved in requirement

analysis or reviews and there were many rejected

requests and conflicts across the main stakeholders.

� Poor infrastructure for remote access and lack of a

common asset repository. Distributed teams were not

notified when new versions of the common architecture

framework were released and a lot of rework had to be

done to adapt these changes at the last minute.

� Unclear information sharing and privacy rules.

Integrating components from different providers raised

many poorly addressed privacy and security issues.

2) Approach
To recover from this situation, ABC Bank directly

focused on supply-chain management issues as part of a
wider software factory approach to software delivery. They
changed their development processes and infrastructure, and
implemented a common development environment based on
Rational Jazz platform to mitigate hidden costs and issues.
In their first wave of changes they focused on:

� Organization changes by creating a new Software

Factories Project Office in charge of negotiating and

managing subcontracted projects;

� Common infrastructure based on a central repository,

accessed from external locations using standard Internet

1
 Although the examples are real, we use fictitious name for reasons of
privacy.

connection protocols. This central repository is used to

share and integrate information across the teams.

� Governance Dashboards producing metrics and

reports that measure progress of individuals, teams, and

software factories to assess their performance. This

central governance dashboard was updated

automatically with project information in real time,

allowing the enterprise to keep external developments

under control and to reduce meeting and travel costs.

Figure 3. Software Factories Governance Dashboard.

� Planning and change management processes were

adapted to augment traditional waterfall software

development processes with iterative, agile techniques,

to enable faster response to changing demands.

� Confidentiality was addressed by identifying every

critical private data element that the company had,

isolating it from subcontractor access, and explicitly

granting permissions for common assets to be shared

with subcontractors via a central register of shared

artifacts (e.g., common architecture components).

3) Results
Implementing these changes was not easy and caused

many political and technical conflicts inside ABC Bank, and
across the supply-chain. However, as a result of this
transformation the enterprise was able to adapt to this new
software delivery model, and is starting to benefit from the
reduction of fixed costs and increased flexibility into their
development activities across their suppliers.

Thanks to the governance dashboard they are now able to
measure status and progress of each supplier, penalizing or
terminating contracts of those with less efficient delivery.

B. Testing Factory Services at XYZ

1) Challenges
XYZ is a European software services and consulting

company, specializing in software development and testing
services. One of the company's most important concerns is
consistency and quality of delivered services, and a
repeatable lean approach to software delivery. To that end,
XYZ has standardized many key practices, and has obtained
a CMMI Level 3 certification [6]. XYZ's engineering and
quality assurance (QA) culture encourages agile practices
along the full software lifecycle, making it compatible with
the rules and constraints associated with CMMI.

468

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 484 / 612

As part of their global strategy, XYZ offers expertise and
services in software testing, and provides a catalog of
services to their customers, including:

� Services to assure the quality of the work-products

generated in each phase of the software development

lifecycle, reducing defects across phases;

� Playing the role of facilitator between the different

actors in the QA process to objectively assess quality

practices and review project milestones;

� Advising on quality processes and practices, including

assessing deliverables, and designing appropriate test

and support processes to increase quality.

A software factory approach to XYZ is important

because it encourages early project involvement of testers
and other quality-focused roles, and makes quality
management throughout the project lifecycle a high priority.

2) Approach
To realize these needs, XYZ decided to set up several

large European delivery centres, and to adopt a software
factory approach to deliver its quality-focused services. It
refers to these as a “software test factories”.

The basis for their software test factories is an
infrastructure supporting software configuration
management, build management and continuous integration
practices, and agile project management. These core
capabilities are fully integrated with specific testing services
to manage the test plans, execute tests and assess test
coverage against the project requirements.

Figure 4. Testing Factory Solution Architecture.

A streamlined software factory infrastructure for QA is

the cornerstone of the XYZ solution. This solution,
augmented with additional tools for developers or test
engineers in their day-to-day work, offers the integrated
capabilities that ensure XYZ delivers quality solutions to its
clients. As illustrated in Figure 4, the testing factory services
were automated by providing a suite of integrated tools
covering several process areas of CMMI.

In addition, the need for supporting geographically
distributed teams and roles (PMO, Test Manager, Test
engineers, etc.) was critical. A series of customized
processes were designed that resulted in:

� Templates to specify test cases and test scripts to

define automated or manual tests;

� Automation of building and continuous integration

process, regression testing or other quality standards

such as those imposed by CMMI;

� Visual dashboards to monitor the state of the projects,

delayed activities, open vs. closed defects, metrics of

coverage, productivity of the team, etc.

Figure 5. A Dashboard from XYZ´s Software Test Factory.

3) Results
The software factory approach to testing and quality is a

critical part of XYZ´s strategy. As a result of this initiative,
XYZ has successfully increased the efficiency of their
processes, improving the productivity of their key testing
factory in Salamanca, Spain. This solution is now being
introduced at test factories across the XYZ organization.

VI. OBSERVATIONS

A. Agile Software Factories and CMMI

Is it possible to make agile methods and process maturity
compatible? In a software factory context, this goal is not
only possible, but mandatory. In all enterprise organizations
there are policies and rules which enforce achievement of
certain maturity levels. At the same time, the agile paradigm
is an emerging necessity to address the challenges of
flexibility in software development and delivery.

For many organizations, significant investment has been
made to improve the maturity of the key management
processes, with the CMMI as a focus for much of that effort.
To achieve many operational goals of a software factory,
CMMI can be very valuable in areas such as:

� Reducing operational costs;

� Improving the quality of the service;

� Managing capacity and resources efficiently;

� Industrialize the software lifecycle through reuse.
In contrast, the agile methods [7] (primarily oriented to

optimize software development teams) are very useful for
helping to ground the more abstracts ‘process areas’ into a

P2 P1 P3 P4 P5 P6 P7

469

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 485 / 612

more concrete and concise practices which will be used by
the development and testing teams in:
� Delivering working software on a frequent basis;

� Promoting whole team planning and face-to-face

collaboration;

� Reacting to frequent changes and reprioritizations with

rapid fact-based decision making.
At first glance, these agile practices do not align well

with more traditional high maturity approaches such as
CMMI. However, in our experiences we can adapt these
ideas in the context of a software factory model to balance
the need for repeatability and governance essential for
CMMI with the pragmatic needs expressed in agile
approaches. Achieving this balance is critical in enterprise
organizations such as ABC Bank and XYZ. A software
factory approach provides a framework to realize this.

B. Software Factories in the Cloud

There is a high level of excitement about cloud
computing and the promises that it brings to enterprises to
reduce cost and increase flexibility of service delivery [8].
Many organizations are already involved in pilots, or are
actively using cloud technologies and cloud-based services.

Initially, we have seen many traditional enterprise
software solutions ported to a cloud platform, and included
in platform images that can be uploaded to a cloud
infrastructure. This is an important starting point for
enterprise system use on the cloud. However, it is very
limited in terms of many of the important usage scenarios for
cloud technology. There is less understanding of which new
enterprise software capabilities, services, and approaches
will be needed in much more complex scenarios. For
example, we already are seeing interesting scenarios that are
raising new challenges for enterprise software delivery
organizations:

• Several teams are deploying business application onto a
public cloud infrastructure for access by clients around
the world. How do those teams collaborate to share
information to ensure that they do place sensitive data
on the public infrastructure? What coordination is given
to the teams to ensure the management of shared images
is handled effectively?

• Multiple System Integrators and specialist vendors must
deliver different parts of key enterprise solutions as part
of a software supply chain that must be integrated to be
delivered into production. How can the cloud be used as
the delivery platform to coordinate and govern delivery
and integration of these components?
These, and many more such scenarios, are stretching

conventional processes, skills and technologies for enterprise
software delivery. Software delivery organizations are
actively working on new deployment approaches that
provide the additional governance, visibility, and control that
is demanded in such situations.

C. Metrics and measures for Software Factories

Although there are different development standards to
measure in-house development, there is little standardization

in evaluating supply-chains and software factories. Standard
approaches such as function point analysis and defect density
can be applied, but in practice they appear inadequate.

With more complex supply-chain delivery models
becoming more common, we need metrics that help us
address different questions: Which software factory is more
productive? How many defects are still opened? Which
software factory is delayed in their deliverables? These and
many other measures need to be defined and an automatic
mechanism to collect these metrics must be implemented to
help compare results across external providers in real time.

VII. SUMMARY

A fast-paced evolution is taking place in the context of
very dramatic shifts in how IT organizations view the value
they bring to their varied stakeholders, the services they
deliver to clients, and the way they invest to achieve their
goals. As a result, the last few years has seen a significant
change in the way enterprise systems are developed,
delivered, and maintained. By introducing a software factory
view to enterprise software delivery, organizations can focus
attention on the software supply chain, address inefficiencies
in software delivery, and gain greater control and visibility
into the delivery process.

In this paper we have examined the key principles that
underlie this kind of software factory thinking to enterprise
software delivery, and provided 2 real-world examples to
illustrate how solutions can be introduced that provide value
to the IT organization. The technology underpinning such an
approach is critical. We briefly discussed one example
technology approach based on Rational Jazz platform, and
illustrated its primary characteristics as the basis for a
software factory.

Much further work remains. We have made a number of
observations on critical areas requiring additional work. Over
the coming years we expect to see significant progress in
these, and in several other key areas.

REFERENCES

[1] J. Jeston and J. Nelis, "Business Process Management, Second
Edition: Practical Guidelines to Successful Implementations",
Butterworth-Heinemann, 2008.

[2] M. Poppendieck and T. Poppendieck, “Lean Software Development:
An agile toolkit”, Addison Wesley, 2003.

[3] M. Hotle and S. Landry, "Application Delivery and Support
Organizational Archetypes: The Software Factory", Gartner Research
Report G00167531, May 2009.

[4] P. Clements and L. Northrop, “Software Product Lines: Patterns and
Practices”, 3rd Edition, Addison Wesley, 2001.

[5] M. Goethe et al., "Collaborative Application Lifecycle Management
with IBM Rational Products", IBM Redbook, December 2008.

[6] “CMMi for Development, Version 1.3”, CMU/SEI-2010-TR-033,
November 2010.

[7] R.C. Martin, “Agile Software Development: Principles, patterns, and
practices”, Prentice Hall, 2002.

[8] G. Reese, “Cloud Application Architectures: Building Applications
and Infrastructures in the Cloud”, O´Reilly Press, 2009.

470

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 486 / 612

A “Future-Proof” Postgraduate Software Engineering Programme:
Maintainability Issues

J Paul Gibson and Jean-Luc Raffy
Le département Logiciels-Réseaux (LOR)

Telecom & Management SudParis (TMSP)
9 rue Charles Fourier, 91011, France

Email: gibson.paul@it-sudparis.eu

Abstract—We report on the development of a software
engineering programme for Masters students. Maintainability
of educational programmes is critical: there is a large initial
investment in developing quality programmes and we must
ensure that these programmes are “future proof”. Conse-
quently, we followed a traditional software engineering life-
cycle process to develop a programme that would meet the
current needs of industry, whilst also being easy to maintain
with respect to future changes in industrial requirements. We
show how the programme has gone through a number of
refinement steps — where we have iterated through the life
cycle of requirements engineering (with “client” industries),
high-level design (establishment of a foundational educational
architecture), implementation (by lecturers), testing (through
establishment of evaluation and feedback mechanisms) and
maintenance (throw updates to curriculum and course content).
To conclude, we propose treating educational programmes as
software, and demonstrate advantages in applying software
engineering techniques for development and maintenance.

Keywords-Teaching, Education, Curriculum, Software Engi-
neering

I. INTRODUCTION

Our institute is focused on educational programmes for
telecommunications engineers. Software is playing an in-
creasingly important role in telecommunications systems;
and a strategic decision was taken, a number of years ago,
to introduce a postgraduate (Masters) programme which
specialised in software engineering. We have been motivated
by the observations of Curran[3] and Parnas[11] concerning
the need to distinguish computer science from software
engineering, and the goal of making software engineering
a true engineering discipline [16].

Despite following guidelines in the development of soft-
ware engineering curriculae [17], [7], the programme has
failed to attract the number of students that are required to
make it feasible to run in the long-term. We have a capacity
for teaching around 20 students (for each of the 2 years of
the programme), but in the last four years we have not had
more than 6 students in each year.

As a result, we have made continuous changes to the
programme in order to attract more students. In particular,
the programme has gradually become more specialised;
moving from:

• a software engineering stream as part of a general
information technology (IT) Masters, to

• a stand-alone Masters programme software engineering
for smart devices, to

• its most recent incarnation as a more specialised Mas-
ters software engineering and ambient intelligence.

The changes have required much work, and during the
process of evolving and maintaining our software engineer-
ing programme (in its different forms) we have identified
the need for a process to aid us in improving our work,
and the quality of the programme. As software engineers,
we realised that much of our academic programme could
be considered analagous to software and so we should be
able to apply software engineering development principles,
methods and techniques to the development of our pro-
gramme. This paper reports on this insight and summarises
the advantages of working within such an analogy. The
results should be of interest to all developers of academic
programmes, and not just those teaching software engineers.

This is work in progress: the ideas need further discussion
and, in our opinion, the software engineering community is
the best placed to be able to provide useful feedback. We
hope in some way to be contributing to the “Push to Make
Software Engineering Respectable” [12].

The remainder of the paper is structured as follows. In
section II we motivate our work by introducing the premise
that developing an educational programme is like developing
software. In section III we give an overview of the problems
in developing a software engineering programme and pro-
pose that one must consider the life-cycle of the programme
analagous to the software life-cycle. Sections IV, V and VI
examine the main life-cycle stages: requirements, design
and implementation. Section VII reports on the different
evaluation techniques that can be applied during the different
stages in the life-cycle. Section VIII illustrates, by review-
ing the changes made between three iterations, how the
evaluation can feedback into the programme development
aand maintainance. Section IX concludes with some remarks
about future work.

471

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 487 / 612

Figure 1. Software Engineering Domain of Knowledge

II. DEVELOPING AN EDUCATIONAL PROGRAMME IS
LIKE DEVELOPING SOFTWARE

Most, if not all, educational programmes can be specified
in a bottom-up fashion — listing a set of core components
that need to be taught. Then, the traditional approach to
programme development is to assign core components to
programme modules and to identify dependencies between
modules so that the temporal ordering of modules in the
programme respects the dependency relationship. Modules
are then, in general, taught and assessed independently.
Irrespective of whether this is likely to produce a good
academic programme — we would argue that it is not — it
has the major disadvantage that the programme is difficult
to maintain: small changes to the component requirements
can have a major impact on the implementation of the
programme. Further, small changes to the implementation
environment (the lecturers, etc.) may necessitate major re-
structuring of the programme.

Most academic programmes evolve. Unfortunately, as
years pass by the links between the different versions of the
programme get lost. Further, documentation of the changes
made (why and how) is usually very poor. As a consequence,
after a number of years there is a lack of coherence between
what one is trying to teach and how it is being taught.

These type of problems are very familiar to software en-
gineers. Managing the evolution of an academic programme,
like managing a software system, has two fundamental,
complementary aspects:

• a continual improvement in the understanding of the
problem domain through continual analysis [13]

• an iterative life-cycle of evaluation, feedback and
change [1]

Where a problem domain is well-understood and aca-
demic programmes have been well-established for a number
of years then there is probably no need for a maintenance
(evolution) process. However, this is clearly not the case for
software engineering. The discipline has been moving so
fast that many subjects that are common to recent curricula
are not even mentioned in the body of knowledge from 12

years ago [2].

III. DEVELOPING A SOFTWARE EDUCATION
PROGRAMME: THE DOMAIN AND THE LIFE-CYCLE

A. The software engineering domain

In Figure 1 we see how the discipline of Software
Engineering cannot and should not be separated from other
disciplines. This figure illustrates our particular structured
understanding of what we exepect our students to know
about:

• Software Engineering — this is the core knowledge that
all our graduates must have mastered

• Complex System Engineering — software, in general,
does not exist in isolation. Most software engineering
problems arise because of complex interactions in and
between the software and the environment in which it
exists.

• Computer Engineering — software executes on a phys-
ical machine, and we expect our students to understand
how such a machine operates

• Communicating Systems — more and more software
systems involve communications over different types
of network. As a telecommunications school we expect
our students to understand how such networks operate.

This is the view of software engineering that we believe
is unlikely to change in the short to medium term (it is
consistent with views on software engineering that are ten
years old [17]). It is also a view that best matches our
institutes’ expertise (in teaching and research). Later in the
paper we will introduce: the scientific and mathematical
foundations upon which these four engineering disciplines
are constructed, and the specific state-of-the-art techniques
and tools for engineering software that have been developed
out of (and interaction between) these domains.

B. The Programme Life-Cycle

As work in progress, we chose to develop our programme
following the simplest, best understood, waterfall life-cycle
model [15]. Such a model can be defined to different levels

472

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 488 / 612

Figure 2. Architecture for Software Engineering Programme

of detail, for our initial research we chose to consider a life
cycle with 3 fundamental steps — requirements, design and
implementation — and feedback between each of the steps.

IV. REQUIREMENTS

Our first step is to identify the requirements of our
academic programme. As with complex, software systems,
these requirements must attempt to meet the needs of a
number of different actors:

• the students — want to improve their prospects of
employment and enjoy their education;

• the lecturers — want to teach in their area of expertise,
work with good quality, well-motivated students, and
help promote and further their research through teach-
ing;

• the university administration — want to attract large
number of students, graduate large number of students,
and minimize costs;

• the government — want their investment in universities
to be coherent and worthwhile;

• industries —- want graduates that match their current
needs (quantity and quality);

• research institutes — want to attract postgraduates into
research careers, etc.

As programme developers we are very aware of the dif-
ferent compromises that exist in meeting these requirements.
As such, it is critical that all interested parties are involved in
the construction, evaluation and evolution of our academic
programmes.

The requirements, listed above, are not specific to soft-
ware engineering. We regard these in more detail in the
following section - where we map specific requirements to
a high-level programme design (architecture).

V. PROGRAMME DESIGN FOR MEETING HIGH-LEVEL
REQUIREMENTS

In Figure 2 we represent our high-level requirements for
a software engineering project:

• Our four engineering domains depend on common
computer science foundations [11].

• Computer science foundations depend on mathematical
foundations [5].

• All students will require support skills [14] in order to
work on industrial projects and write a thesis.

• The project work [6] and thesis must demonstrate
mastery of software engineering foundations, and may
also depend on understanding of complex systems,
computer engineering and communication systems.

The key to evolving and maintaining our programme is
that these abstract components of our high-level architecture
(and their interdependencies) will not change.

VI. PROGRAMME IMPLEMENTATION

A. Modules: The Programme Components

In Figure 3 we see how each of these abstract components
is to be implemented:

• The mathematical and computer science foundations
will be taught as individual modules

• The software engineering foundations will be taught as
a number of inter-related modules

• The support skills — including innovation [4] — are
not specific to software engineering

• The remaining modules address the 3 domains that
overlap with software engineering - where we choose to
address these domains through a software engineering
perspective

473

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 489 / 612

Figure 3. Implementation of Software Engineering Programme

• The project work is dependent on the the student’s
knowledge in these other domains

• The thesis must be written concerning an industrial
placement.

From the diagram we have also circled the modules that
may change over time. (The others will always be in the
programme, although internal details of each of these mod-
ules may change.) The circled modules are those which are
currently being taught in the latest version of the programme
(Software Engineering and Ambient Intelligence).

B. The Approach: PBL for Software Engineering

The previous subsection examined what we are going to
teach. It should also be mentioned that we have taken some
decisions as to how the modules should be taught:

• Foundational mathematics and computer science will
only be taught if it is used in the engineering modules.
Where possible, all material in these foundational mod-
ules will be linked to the software engineering modules.

• All software engineering modules will be taught using a
problem-based-learning (PBL) approach [8]. Emphasis
will be on rigour and formalilty, and mathematical
modelling [10]

• The PBL will draw from real-world problems taken
from industries that can be expected to hire our gradu-
ates.

• Modules will be coherently connected by sharing com-
mon problems.

• The ethical side of software engineering will be empha-
sised and the recurrent problem of plagiarism explicitly
addressed [9].

VII. PROGRAMME EVALUATION

A. Accreditation

Our institute is a member of a group of schools whose
Masters programmes go through an independent review
(mostly by other academics) in order for them to be accred-
ited. This accreditation is critical for attracting students as it
is intended to be a good indicator of a quality programme.
Further, students on accredited programmes may benefit
from additional funding.

During accreditation feedback focuses on programme
content. Comparisons are made with other programmes and
curriculum guidelines from around the world. It is only in the
current year that our programme has achieved accreditation.
Many of the changes made in order to achieve accreditation
were superficial in nature.

B. Industrial Feedback

A co-director for the programme is directly involved in
collaboration with local industry in order to establish a Pole
de competence for complex system engineering. Industries

474

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 490 / 612

Figure 4. Industrial Evaluation Criteria

have identified a need for more (and better) software en-
gineering students who can work in the area of complex
systems (across many different industrial sectors).

In Figure 4 we see the list of competencies that these
industries have identified as being core to their requirements.
It should be noted that software engineering is not explicit in
their criteria: in their System Engineering criteria they expect
the engineers to be specialised in a relevant discipline (like
software engineering) whilst also having generic engineering
skills.

Our most recent evaluation is sketched in the diagram.
This shows that we have some progress to make in all
criteria, but we are weakest in social skills. We note that
this evaluation is based on static analysis of our programme
description (design and implementation).

C. Students — Quantity and Quality

Our programme will have little value if we cannot attract
more students. However, we must not compromise quality
for quantity. Perhaps the weakest element of our evaluation
is that which we could get from students. Students are en-
couraged to completed feedback questionnaires concerning
all aspects of the programme. With such small numbers
of students, statisticaly significant analysis is not feasible.
Rather, we focus on open questions and freeform discussions
with students. Two main issues have arisen:

• Coherency between modules needs to be better ad-
dressed, and

• Standards of evaluation are not consistent between
modules

The students suggest that increasing the number of com-
mon problems between modules will address the first issue.
The second issue is more difficult to address — the students
believe that the main difference is between the foundational
modules (which are perceived to be difficult) and the tech-
nology modules (which are perceived to be not so difficult).
These percieved differences have been validated through
analysis of students’ results.

We plan to keep in contact with students after they
graduate. However, we have no formal procedures in place:
the students rest in contact through personal communication.
This requires further work, on our behalf.

VIII. PROGRAMME EVOLUTION: THREE ITERATIONS

In 3 years, our programme has gone through 3 iterations.
(In the fourth year we stabilised the programme in order
to better evaluate it against the educational and industrial
requirements.)

A. Software Engineering (Information Technology)

In this iteration, software engineering was taught as a
specialist stream in a more general masters programme. Our
initial evaluation identified weaknesses in this programme
that could only be addressed by teaching a dedicated soft-
ware engineering postgraduate programme:

475

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 491 / 612

• Core software engineering material was not being
taught in enough detail.

• The relationship and dependencies between core mate-
rial was not adequately addressed.

• Core mathematics and CS material was presented in a
way that was not specific to software engineering

B. Software Engineering and Smart Devices

In this iteration we restructured our programme in order to
better focus on core software engineering. For project and
practical work we focused on Smart Devices (as this was
a leading area of development in industry). Feedback from
students and industry led us to prototype teaching material
on developing games that would exploit the functionality
of such devices. Evaluation of this programme identified
weaknesses that needed to be addressed:

• We needed a clearer separation of core and non-core
material.

• We needed to demonstrate the general utility of our
core software engineering material by addressing more
than one area in our project/practical work.

• We needed more emphasis on support skills.
This resulted in the programme as currently illustrated in

Figure 3

C. Software Engineering and Ambient Intelligence

The most recent iteration has yet to be fully evaluated. We
have had positive feedback from the accreditation process
and from the industrial partners. However, we continue to
fail to address our main weakness — there are only nine
students registered for the first two years of the programme.

IX. CONCLUSIONS: REMARKS AND FUTURE WORK

We have proposed treating educational programmes as
software, and demonstrated advantages in applying software
engineering techniques for their development and mainte-
nance.

Current and future work involves examining re-use of
material across and between programmes; and improving
evaluation processes (particularly improving feedback from
students).

Our major challege is not in knowing what to teach, or
knowing how to teach; it is in having a reasonable number
of students to teach. Perhaps we should add a “marketing”
module to our curriculum?

REFERENCES

[1] B Boehm. A spiral model of software development and
enhancement. SIGSOFT Software Engineering Notes, 11:14–
24, August 1986.

[2] Pierre Bourque, Robert Dupuis, Alain Abran, James W.
Moore, and Leonard Tripp. The guide to the software
engineering body of knowledge. IEEE Software, 16:35–44,
November 1999.

[3] W. S. Curran. Teaching software engineering in the computer
science curriculum. SIGCSE Bulletin, 35(4):72–75, 2003.

[4] Peter J. Denning and Andrew McGettrick. Recentering
computer science. Communications of the ACM, 48(11):15–
19, 2005.

[5] Keith Devlin. Viewpoint: the real reason why software
engineers need math. Communications of the ACM, 44:21–22,
October 2001.

[6] Alan Dutson, Robert H. Todd, Spencer P. Magleby, and
Carl D. Sorensen. A review of literature on teaching en-
gineering design through project-oriented capstone courses.
Journal of Engineering Education, 86:17–28, 1997.

[7] Gary A. Ford and Norman E. Gibbs. A master of software
engineering curriculum: Recommendations from the software
engineering institute. Computer, 22:59–71, September 1989.

[8] J. Paul Gibson. Weaving a formal methods education with
problem-based learning. In T. Margaria and B. Steffen,
editors, 3rd International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information
Science (CCIS), pages 460–472, Porto Sani, Greece, October
2008. Springer-Verlag, Berlin Heidelberg.

[9] J. Paul Gibson. Software reuse and plagiarism: A code
of practice. In 14th ACM SIGCSE Annual Conference on
Innovation and Technology in Computer Science Educa-
tion(ITiCSE 2009), pages 55–59, Paris, France, July 2009.
ACM.

[10] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Sculpturing
Event-B models with Rodin: “holes and lumps” in teaching
refinement through problem-based learning. In From Re-
search to Teaching Formal Methods - The B Method (TFM
B’2009), pages 7–21, Nantes, France, 2009. APCB.

[11] David Lorge Parnas. Software engineering programmes
are not computer science programmes. Annals of Software
Engineering, 6:19–37, 1998.

[12] Gilda Pour, Martin L. Griss, and Michael J. Lutz. The push
to make software engineering respectable. IEEE Computer,
33(5):35–43, 2000.

[13] Rubén Prieto-Dı́az. Domain analysis: an introduction. SIG-
SOFT Software Engineering Notes, 15:47–54, April 1990.

[14] S.H. Pulko and S. Parikh. Teaching soft skills to engineers.
International Journal of Electrical Engineering Education,
40(11):243–254, 2003.

[15] W. W. Royce. Managing the development of large software
systems: concepts and techniques. In Proceedings of the
9th International Conference on Software Engineering, pages
328–338, Los Alamitos, CA, USA, 1987. IEEE Computer
Society Press.

[16] Mary Shaw. Prospects for an engineering discipline of
software. IEEE Software, 7:15–24, November 1990.

[17] Mary Shaw. Software engineering education: a roadmap. In
International Conference on Software Engineering — Future
of Software Engineering Track, pages 371–380, 2000.

476

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 492 / 612

Using Software Engineering Principles to Develop a Web-Based Application

Cynthia Y. Lester

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, USA

cylester@mytu.tuskegee.edu

Abstract – In the United States, the software development

industry is about a $220 billon industry. Therefore, the need to

produce accessible, reliable and trustworthy software that is

within budget and that also meets the demands of the

heterogeneous user can sometimes become an overwhelming

task by organizations. Since its inception in the late 1960s,

software engineering has used software processes as systematic

approaches that lead to the development of software

applications. However, with the introduction of the Internet

and the World Wide Web, there have been changes to the way

that software is produced. The aim of this paper is to present

the results of an inquiry that introduced to undergraduate

software engineering students an approach to developing a

web-based application. Traditionally, specialized web

engineering courses are offered at the graduate level or as an

elective course in an undergraduate curriculum. The paper

presents a semester-long project that combines some

traditional software engineering processes with web

engineering processes. The results from the study suggest that

introducing a hybrid approach inclusive of traditional software

processes and web engineering techniques can be done

successfully at the undergraduate level but not without certain

challenges.

Keywords – software development; software engineering;

web-based application; web engineering.

I. INTRODUCTION

Software engineering is defined as a discipline that is

concerned with all aspects of software production from the

early stages of inception and specification to the

maintenance of the system when it has gone into use. It has

often been seen as the “cradle-to-grave” approach for

producing reliable, cost-efficient software that is delivered

in a timely manner, under given budget constraints, that

meets the client’s needs.

 The concept of software engineering was first

introduced in 1968 at the NATO Science Engineering

conference held in Garmisch, Germany, to discuss the

ominous “software crisis [1].” The software crisis was a

result of informal development practices used to meet the

needs of a rapidly changing hardware industry. Software

applications were often noted as being unreliable, complex,

expensive and sometimes delivered years after the deadline.

Since the inception of software engineering, tremendous

strides have been made to develop effective strategies to

deliver reliable, cost-efficient software.

Yet, with the advent of the World Wide Web, the topic of

how to deliver trustworthy, cost-efficient web applications

has become one of increasing importance. Software

applications no longer run on a local machine and are

accessed by only those who are part of the organization.

Now, users demand that software be accessible wherever

they are which brings a whole new notion to the delivery of

reliable, cost-efficient software. Consequently, the role of

software engineering is changing to meet the demands of the

heterogeneous user.

The aim of this paper is to present the results from a

semester-long project in which software engineering

concepts were modified to develop a web-based application.

Typically undergraduate students enroll in a general

software engineering course which is part of the required

curriculum. This course can be taught from many different

perspectives. However, to gain specific knowledge in web

engineering, students must often enroll in a separate course,

if one is offered. However, a survey of various

undergraduate curricula did not find many web engineering

courses at the undergraduate level. Consequently, if

educators want to introduce to the next generation of

technologists these concepts, a traditional software

engineering course serves as the best vehicle.

The paper begins by presenting several time-honored

software development methodologies discussed in a

traditionally taught software engineering course. This

discussion provides the impetus for an introduction to web

engineering concepts. Additionally, the paper presents a

semester-long project in which students were engaged

which focused on the practical implementation of software

engineering concepts for a web-based application. Lastly,

challenges and future work are discussed.

II. TRADITIONAL SOFTWARE DEVELOPMENT

METHODOLOGIES

Since its inception, there have been many methodologies

that have emerged that lead to the production of a software

product. The most fundamental activities that are common

among all software processes include [1]:

477

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 493 / 612

 Software specification – engineers and customers

define the software and its constraints

 Software development – the software is design and

programmed

 Software validation – the software is checked to

ensure that it meets the customer requirements

 Software evolution – the software changes to meet

the changing needs of the customer

Typically, students are introduced to these activities in

the undergraduate computer science curriculum through a

software engineering course. This course is often a survey

course which exposes students to a variety of life cycle

models. The course is frequently taught from a systems

approach which places an emphasis on creating

requirements and then developing a system to meet the

requirements. In the traditional view of software

development, requirements are seen as the contract between

the organization developing the system and the organization

needing the system [2].

A traditional view of software development is the

waterfall method. The waterfall method was the first

published software development process and forms the basis

for many life cycles. It was noted as a great step forward in

software development [3]. The method has stages that

cascade from one to the other, giving it the “waterfall”

name. Figure 1 is an example of the waterfall life cycle [4].

Figure 1. Waterfall model

It has been noted that the method might work

satisfactorily if design requirements could be addressed

prior to design creation and if the design were perfect prior

to implementation [3]. Consequently, one of the main

disadvantages of this model is that requirements may change

accordingly to meet the needs of the customer and the

change is difficult to incorporate into the life cycle. As a

result of this shortcoming, additional life cycles emerged

which allowed for a more iterative approach to

development.

Software prototyping is based on the idea where a

version or sample of the software is developed to test

requirements and design feasibility [1]. Figure 2 is a

modified version of Sommerville’s process of prototype

development [1]. A reason why this particular model was

introduced by the author to the undergraduate software

engineering students is because it serves as a precursor to

web-based application development. More specifically,

software prototyping provides an effective way to gain

understanding of requirements, provides early testing of

system design, and reduces challenges during

implementation. It has been stated that the advantages of

software prototyping over its predecessor include that it

accommodates change easier, it allows users to see how well

the system can be integrated into current work activities, and

it reveals errors and oversights early on in the process [1].

However, this approach to software development is not

without some concerns. For example, the prototype may not

be used in the same manner as the final system, the skill

level of the testers of the prototype may differ from the

users of the system, and because prototypes lack full

functionality rapid changes may be made without proper

documentation [1]. Consequently, these concerns provide

an impetus to review the spiral model and agile methods,

which are presented in the next.

Establish

prototype

objectives

Define

Prototype

functionality

Develop

prototype

Evaluate

prototype

Prototyping

plan

Outline

definition

Executable

prototype

Evaluation

plan

Establish

prototype

objectives

Define

Prototype

functionality

Develop

prototype

Evaluate

prototype

Prototyping

plan

Outline

definition

Executable

prototype

Evaluation

plan

Figure 2. Prototype development

The spiral development model is also an example of an

iterative process model that represents the software process

as a set of interleaved activities that allows activities to be

evaluated repeatedly. The model was presented by Barry

Boehm in his 1988 paper entitled A Spiral Model of

Software Development and Enhancement [5]. The spiral

model is shown in Figure 3 [1]. The spiral model differs

from the waterfall model in one very distinct way because it

promotes prototyping; and, it differs from the waterfall and

incremental development method because it takes into

consideration that something may go wrong which is

exercised through risk analysis.

478

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 494 / 612

Figure 3. Spiral model

It is noted that this life cycle provides more flexibility

than its more traditional predecessors. Further, this method

produces a preliminary design. This phase of the life cycle

was added specifically in order to identify and resolve all

the possible risks in the project development. Therefore, if

risks indicate any kind of uncertainty in requirements,

prototyping may be used to proceed in order to determine a

possible solution.

However, in these approaches, as with many of the other

approaches to software development that are taught in

traditional software engineering courses, a true focus on the

software is mostly absent from the process. Hence, the

increasingly important need to include a discussion of how

to deliver working software to customers quickly. The next

section explores agile methods and its life cycle.

III. AGILE METHODS

In an effort to address the dissatisfaction that the heavy-

weight approaches to software engineering brought to small

and medium-sized businesses and their system development,

in the 1990s, a new approach was introduced termed, “agile

methods.” Agile processes are stated to be a family of

software development methodologies in which software is

produced in short releases and iterations, allowing for

greater change to occur during the design [6]. A typical

iteration or sprint is anywhere from two to four weeks, but

can vary. The agile methods allow for software

development teams to focus on the software rather than the

design and documentation [1]. The following list is stated

to depict agile methods [1], [6]:

 Short releases and iterations - allow the work to be

divided, thereby releasing the software to the

customer as soon as possible and as often as

possible

 Incremental design – the design is not completed

initially, but is improved upon when more

knowledge is acquired throughout the process

 User involvement – there is a high level of

involvement with the user who provides continuous

feedback

 Minimal documentation – source code is well

documented and well-structured

 Informal communication – communication is

maintained but not through formal documents

 Change – presume that the system will evolve and

find a way to work with changing requirements and

environments

More specifically, the agile manifesto states [1]:

“We are uncovering better ways of developing software

by doing it and helping others to do it.

Through this work we have come to value:

Individuals and interaction over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.”

While agile methods are considered as light-weight

processes as compared to the traditional software processes,

they too are not without some controversy. For example, it

is sometimes difficult to keep the customer involved after

software delivery; there may be resistance to change and

tool integration; as well as teaming issues. Therefore, in an

effort to address these concerns as it relates to developing

web-based applications, new models in web engineering

emerged.

IV. WEB ENGINEERING

 The World Wide Web can be described as a multimedia

environment that allows documents to be seamlessly linked

over the Internet [7]. It was developed by Tim Berners-Lee

with help from Robert Cailliaua, both researchers at the

European Laboratory for Particle Physics (CERN) [8]. The

basic idea was that documents stored on computer that were

linked by a network could be accessed by an authorized

individual using the network. This idea however, relied on

two types of software, a web server and a web browser. The

web server stores the documents and “serves” them to other

computers who desire access to the documents [7]. The web

browser allows user to request and view the documents [7].

These ideas became common place in the 1990s and provide

the foundation of today’s Web and its many uses.

In 1990, it was reported that there were less that 50

million users of the Internet in the U.S. However, by 2008

the U.S. reported approximately 230,630,000 Internet users

[9]. Therefore, it stands to reason that with more users and

more advanced systems, the user population of today’s

technology would be more technically savvy than those user

groups of yesteryear. However, the average user is now less

likely to understand the systems of today as compared to the

users of a decade ago. Consequently, the designers and

developers of these applications must ensure that the

479

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 495 / 612

software is designed with the three “use” words in mind so

that the user experience is successful. Hence, the

application must be useful, usable, and used [2].

A. Web Engineering as a Multi-disciplinary Field

Web engineering is an emerging multi-disciplinary field

that is concerned with the development of web-based

applications and systems [11]. As stated by Ginige and

Murugesan, the premise of web engineering is a proactive

approach taken to successfully manage the diversity and

complexity of web application development and to avoid

potential failures [11]. Consequently, web engineering

encompasses not only the technical aspects of software

engineering and its traditional software processes, but also

the business-related area of project management, and the

humanistic side of computer science, human-computer

interaction. Figure 4 is a representation of the many

disciplines that provide the foundation for web engineering

[12].

Figure 4. Web engineering

B. Web Engineering Activities

Since web engineering deals with all aspects of web-

based system development, it too has many different

activities akin to software engineering. These activities

begin with specification, and continue with development,

validation and evolution. However, specific web

engineering activities include [12], [13]:

 Requirements engineering for web applications

 Techniques and methodologies for modeling web

applications

 Design of functionality and interaction

 Implementation using a language for web-based

applications

 Performance evaluation including verification and

validation

 Operation and maintenance

Even more specific to web engineering activities are

those that focus on the interaction between the application

and the user. Activities that focus on the humanistic side of

web development include [12]:

 Human and cultural aspects

 User involvement and feedback

 End-user application development

 Education and training

 Team and staff development

The next section presents a semester-long project that

introduces to undergraduate software engineering students

an approach to developing a web-based application. The

project combines the concepts of traditional software

processes with web engineering.

V. DEVELOPING A WEB-BASED APPLICATION

It was the anticipation of the author that through the

hands-on experience of developing a web-based application,

students would gain an understanding of the software

engineering process, various process models and how they

could be manipulated and combined to develop a web-based

application. It was also the anticipation of the author that

students would understand that the fundamental ideas of

software engineering are still relevant in the development of

today’s software applications as well as those web-based

applications.

A. The Project

 The semester-long project selected for the fall 2010

semester was to develop a web-based application that could

be used during the academic advising process by students

and faculty in a medium-sized computer science department.

The application was to replace a paper-based method used

by students and faculty. The department has approximately

100 undergraduate majors which are advised by roughly

seven faculty members. Student advisees are paired

according to last name with a faculty advisor.

Currently, the department uses a paper-based method on

which students and faculty record by hand the student’s

courses, credit hours, grade earned, and semester in which a

course is taken. The recording of this information is either

done during the University’s registration period or during

the academic advising timeframe which happens twice

within the academic year, once during the fall semester and

another in the spring semester. During the meeting, the

student advisee discusses with the faculty advisor the

progress made toward the completion of the computer

science degree. At the meeting the student advisee and the

faculty advisor review the paper. The paper is called a

Provisional Sheet. The Provisional Sheet is updated by

hand by the student and the faculty member. At the

completion of the meeting, each has a copy of the updated

Provisional Sheet.

However, problems arise if the Provisional Sheet is lost;

if updates are made on one sheet and not the other; or if a

grade, course number, or course credit is written incorrectly.

480

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 496 / 612

At the end of a student’s matriculation, the updated

Provisional Sheet which should now contain all the courses,

grades, and credit hours in which the student was enrolled is

given to the Office of the Registrar for graduation

preparation. It is, at this time, if an error has occurred that it

is identified. While both the student and the faculty member

have sufficient time to correct an error that might have

happened, the paper-based method does not truly permit for

a check-and-balances procedure.

Therefore the focus of the semester-long project was to

develop a web-based application that would alleviate some

of the difficulties as seen with the paper-based Provisional

Sheet. The goal of the project was to design the Provisional

Sheet so that it could be completed and updated on-line by

authorized users only, and be cross-checked with the

University’s student information system.

B. Learning Outcomes

Students were part of a team which was expected to meet

with the customer (or representative) so that each phase of

the process could be implemented. The team was also

expected to produce a deliverable by the set deadline for

each phase of the process and to also deliver it and make

presentations to the customer (or representative).

The learning outcomes of the semester-long project

included that after the completion of the project students

would:

 Have a working knowledge of software

engineering principles

 Understand how software engineering principles

could be applied to the semester-long project

 Identify activities and implement strategies that

were germane to the development of a web-based

application

 Work effectively and efficiently in a team

environment to produce the semester-long project

C. Project Requirements

Students were given basic requirements from the

instructor for the web-based application; however, the

majority of the requirements were gathered from

stakeholders. Since the project was a web-based application,

students had to consider basic requirements found in

traditional software process models, as well as those that are

part of the web engineering process.

D. Project Deliverables

 Each item that the student team submitted was

considered a deliverable. The project had four deliverables

which were the requirements document, design document,

implementation, and the test plan. The following is an

overview of the project deliverables (i.e., models for web-

based applications, language for web-based applications).

1) Requirements Document. The first document students

were required to submit was the requirements document.

The requirements document was considered the official

statement of what the students would implement. It

included both the stakeholder requirements for the software

application, which students named the Computer Science

Provisional System (CSPS), and a detailed specification of

system requirements.

To capture the requirements students engaged in a

modified version of the requirements engineering process as

presented by Sommerville [1] and by Kappel et al. [13].

During the requirements engineering process, students met

with stakeholders who included faculty members and

students in the computer science department. Additionally

students met with staff members in the Office of the

Registrar as well as identified faculty and students in other

academic units on campus in order to complete the

elicitation and analysis phase of the requirements

engineering process.

The document was meant to get the students actively

involved in the planning and development of the

application. Consequently, after the completion of the

requirements document, students had an idea of the system

architecture, functional and non-functional requirements,

external interface specifications, how the application would

be accessed, and by whom. Moreover, because this was to

be a web-based application and not a traditional desktop

application, students were charged with identifying varying

levels of risk which included defining in the requirements

document the method to secure student information and how

change was to be accommodated.

2) Design Document. The design document was meant to

be an in-depth description of the system design. The design

showed how data flowed between system components and

the trust relationships between components. Since the

application was a web-based application, both the system

and security requirements were described and explained

how they would be implemented. Further since the CSPS

would contain personal and confidential information, the

design document elaborated on the requirements document

risk analysis of critical characteristics of information that

was presented in a module of the course designed by Lester

on software security [14].

The team was required to use one of the decomposition

strategies discussed in the course. The design document was

required to have an introduction, an overview of the design

strategy chosen, and the diagrams, charts, and/or details

required as part of the decomposition strategy chosen.

Additionally, the design document was to be based on one

of the architectural design patterns which were discussed in

class. The team chose the Model-View-Controller (MVC)

pattern because of the stated advantages: team members had

varying technical skill levels, MVC separates design

concerns, and there is the likelihood of less code duplication

[15].

481

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 497 / 612

3) Implementation. Students were required to implement

the project based on the requirements and design

documents. To implement the project students chose the

PHP scripting language for use in a Linux environment.

The student team chose this language and the environment

based on familiarity and accessibility to the MySQL server

database.

4) Testing. Students were required to develop a test plan

which required them to perform development testing and

end-user testing. The test plan was based on Sommerville’s

structure of a software test plan for large and complex

systems but modified to be less formal and represent the

smaller nature of the Computer Science Provisional System

[1]. The modified version of the software test plan included:

the testing process, test case design, hardware and software

requirements and constraints.

VI. CONCLUSION

The aim of this paper was to present the results of an

inquiry that introduced to undergraduate software

engineering students an approach to developing a web-based

application. The paper discusses traditional software

engineering principles typically introduced in undergraduate

software engineering courses which provides a case for

introducing in these same courses some of the topics found

in web engineering.

The study revealed that it is difficult to implement the

entire software development life cycle. While students have

a very good understanding of the requirements engineering

process and developed a well-planned requirements

document and design document, the implementation and

testing phases proved to be challenging. The student team

indicated that with the fixed timeframe of a sixteen week

semester, it was difficult to fully implement the phases of

the life cycle. Also, because students were under the

impression that developing a web-based application would

be similar to developing a web page or web site with which

they had previous experience, they underestimated the time

needed to produce the required documentation. They also

underestimated the understanding of client/server network

technology and the time needed to conduct accessibility and

usability testing. Consequently, based on these

observations, future work for the author is to re-design the

semester-long from a heavy-weight process which is plan-

driven to a more light-weight process focuses more on the

software (i.e., the use of agile methods with a focus on

extreme programming).

In conclusion, as the users of today’s Web demand more

from their web applications, it is the responsibility of

educators to train the technologists of tomorrow to meet

those demands. Consequently, the traditional software

engineering practices that rely on well established

development processes must also embrace change in order

to continue to produce reliable, trustworthy software

applications specifically developed for the Web.

ACKNOWLEDGMENTS

The author thanks the students enrolled in the CSCI 430-

Software Engineering course, fall 2010 semester.

REFERENCES

[1] I. Sommerville. (2011). Software Engineering 9th Ed.

Addison Wesley, 13:978-0-13-703515-1, Boston, MA.

[2] C. Angelov, R.V.N. Melnik, and J. Buur. (2003). The

synergistic integration of mathematics, software engineering,

and user-centered design: exploring new trends in education.

Future Generation Computer Systems. Vol. 19, 299 – 1307.

[3] B. K. Jayaswal and P.C. Patton (2007). Design for trustworthy

software: Tools, techniques for developing robust software.

Prentice Hall, 0-13-187250-8, Upper Saddle Rover, NJ.

[4] Codebetter.com http://codebetter.com/blogs/raymond.

lewallen/downloads/waterfalllModel.gif. (Accessed on

October 10, 2009.

[5] B. Boehm. (1988). A Spiral Model of Software Development

and Enhancement. IEEE Computer 21, 5, 61-72.

[6] F. Tsui and O. Karam. (2011). Essentials of Software

Engineering 2nd Ed. Jones and Bartlett Publishers, 13:978-0-

7637-8634-5.

[7] D. Reed (2008). A Balanced Introduction to Computer

Science 2nd Ed. Pearson Prentice Hall, 13:978-0-13-601381-5.

[8] A Short History of the Web, Text of a speech delivered at the

launching of the European branch of the W3 Consortium

Paris, 2 November 1995. http://www.netvalley.com/archives

/mirrors/robert_cailliau_speech.htm (Accessed May 31,

2011).

[9] Internet users as percentage population. http://www.

geohive.com/ charts/ec_internet1.aspx (Accessed December

20, 2010).

[10] A. Dix, J. Finlay, G.B. Abowd, and R. Beale. (2004).

Human-Computer Interaction. Prentice Hall, Boston, MA.

[11] A. Ginige and S. Murugesan. (2001). Web Engineering: A

Methodology for Developing Scalable, Maintainable Web

Applications. Cutter IT Journal. Vol. 14, No. 7, 24-35.

[12] S. Murugesan, Y. Deshpande, S. Hansen, and A. Ginige. Web

Engineering: A New Discipline for Development of Web-

based Systems. (2001). Proceedings of Web Engineering,

pp.3-13.

[13] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger (eds),

(2006). Web Engineering - The Discipline of Systematic

Development of Web Applications. John Wiley & Sons.

[14] C. Lester and F. Jamerson. “Incorporating software security

into an undergraduate software engineering course,” in Proc.

of the Third International Conference Emerging Security,

Information Systems and Technology, 2009, pp. 161-166.

[15] Designing Enterprise Applications with J2EE Platform 2nd ed,

http://java.sun.com/blueprints/guidelines/designing

_enterprise_applications_2e/web-tier/web-tier5.html

(Accessed August 4, 2011).

482

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 498 / 612

How to Think about Customer Value in Requirements Engineering

Xinwei Zhang1,2, Guillaume Auriol1,2, Claude Baron1,2, Vikas Shukla 1,2

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France

{xwzhang, guillaume.auriol, claude.baron}@insa-toulouse.fr and vshukla@laas.fr

Abstract—Value is important for customer decisions and
software design decisions. Understanding customer needs using
value-focused thinking contributing to connecting customer
needs and customer values and finally developing an approach
of value-based Requirements Engineering. The main question
of such approach is: how customer value can be reasonably
quantified or measured? The ideas underlying our research
are to qualify and quantify customer values on basis of the
input of initial customer statements by introducing a set of
techniques, e.g. multiple attributes preference theory and
means-ends objectives network. In this paper, we give a
preview on our proposed approach of qualitative and
quantitative thinking that will enable value measurable and
help make rational decision-makings.

Keywords-customer values, requirements engineering,
multiple attributes preference theory, weights

I. INTRODUCTION
 It is attractive to develop and provide software products
that have high levels of value to customers, and that
conform to the customer needs. Then there may be certain
intrinsic relationships between customer needs and customer
values. There is a substantive opportunity to clarify
understanding of customer values and their relationships
with customer needs, which finally contributes to an
approach of value-based Requirements Engineering (RE).
However, many discussions on RE are about deriving
software requirements from customer needs and are value-
neutral in nature [1][2]. Some discussions on value in RE
literature are too subjective and qualitative to be quantified
reasonably [3][4]. It is also easy to confusing value with
weightings or rankings of needs or requirements [5][6] that
are part of elements to quantify value.

Values are what customers fundamentally care about in
decision-making [7]. There are lots of discussions about the
concept and definition about “value”, and no consensus has
been achieved. We think of value in a broad sense, including
preference under certainty (value in a narrow sense) and
preference under uncertainty (utility). All customer
statements, such as needs and expectations, function and
performance requirements, constraints, goals, indicate value.
But some are important to customers because they are
fundamentally important to customers themselves (value)
while the others are means to influence the achievement of
value. Researches in decision analysis have make
distinctions between value models and consequences models

[7]. Value model incorporates the value or value tradeoffs
and risk tolerances to evaluate consequences. Consequence
models, such as performance models, model the influence
relationships between design parameters to software
performance.

Thus, discussions about customer values should be
separated from software design solutions. The distinction is
similar to the separation of what to do from how to do, or
separation of world from machine in Jackson’s term [1]. We
believe that understanding customer values is not so trivial
and should be explored firstly in depth and width before used
for software design, although iterations between customer
values and means implementing customer values are always
necessary.
 In our approach, a set of techniques is introduced to
clarify the understanding of customer needs and values. As
customer statements are always expressed in different levels
and granularities and some statements are even too vague to
be appropriately understood, means-ends objectives network
and fundamental objectives hierarchy are utilized to
structure them reasonably. Then customer needs are
quantified in term of value with multiple attributes
preference theory. With these techniques and theory, it is
then possible, for example, to model customer value and
evaluate value contribution of various software solutions.
 The rest of paper is structured as follows. Sections 2
gives an introduction to value-focused thinking approach. In
Section 3, two techniques are introduced to structure the
initially identified customer statements and to identify real
customer needs. In Section 4, preference theory is utilized to
construct value model with discussions about its
implications for relevant problems. Section 5 outlines other
related work. Finally, a conclusion is made with an outlook.

II. VALUE-FOCUSED THINKING APPROACH
Traditionally, general problem-solving approach is the

alternative-focused thinking as the decision maker first
focuses on alternatives, then on evaluating criteria. Value-
focused thinking approach is different and proactive in
nature. It first focuses on value and later on alternatives that
might achieve it.

Qualitative and quantitative thinking of value is implied
in value-focused thinking as shown in Fig. 1. It provides
methodological basis of thinking about customer value in
requirements engineering stage.

483

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 499 / 612

Figure 2. Qualitative and quantitative thinking of value [7]

III. UNDERSTANDING CUSTOMER NEEDS USING
QUALITATIVE THINKING ABOUT VALUE

 The initially elicited customer statements are usually in
different levels and granularities, e.g. maximize security,
access of database, sharing of information and maximize
usability. “Access of database” influences negatively the
security of software and is a possible means to influence the
ends “maximum security”. It also is a part of “sharing of
information” as others, such as “access other staffs’ files”,
are also include as parts. “Sharing of information” then
influences positively the usability of software and acts as
one possible means of the ends “maximize usability”.

The intrinsic abstractions underlying these statements are
means-ends and part-whole relationships, respectively. It is
then useful to introduce some techniques encompassing
these abstractions for structuring customer statements.
Means-ends objectives network is utilized to trace
statements in different levels and identify real customer
needs hidden in statements. Fundamental objectives
hierarchy is used to organize and expand the understanding
of the real customer needs in different granularities. These
two abstractions are also used to structure the intent
specification of the software system [8].
 The structuring process firstly performs means-ends
analysis with customers on the initially identified customer
statements. Typically, two kinds of questions are asked. One
kind of questions, for example, “why this customer
statement is important?” is asked to identify the ends of the
statements. Then it may be always possible to ask the
question of why, and may possibly arrive at statements in
higher levels that may not be under current control and is
not desired. An appropriate ending point to ask why
question is when customers have identified the statements
that are important because it is essential and important to
customers in the decision context. We than obtain real
customer needs in the same level. Another kind of questions,
for example, “how this customer statement can be better
achieved?” is asked to identify possible means to implement
the customer statement, and then the first kind of questions
is asked to pursue the real customer needs of these means. It
is really a creatively thinking process to identify all possible
means and customer needs for further exploration.
 When a set of sufficiently complete customer needs in
the same level has been identified, it is then necessary to
clarify the understanding of each customer need in depth.

There are also two kinds of questions to be asked towards
customers. One is to ask such question as “what do you
mean by that customer need?” It helps to identify the parts
of current need. Then we may also have the problem of
when to end questioning. An appropriate ending point is
when suitable attributes can be selected to measure the
needs in the leaves in the hierarchy. On the other side, it is
also possible to ask such question as “the customer need is a
part of what?” It then traces the part to the whole. After
questioning, a hierarchy of customer needs with part-whole
relationships is established.
 It is straightforward to find that these two techniques also
support top-down and bottom-up reasoning that conforms to
the usual style of human problem solving. So it is
cognitively attractive for qualitative understanding of
customer needs and values. Intuitively, it is similar to goal-
oriented RE in structuring different levels of goals and sub-
goals [9]. However, more careful examination is given to
identify real customer needs and to represent them in a
hierarchy with collectively complete and mutually
exhaustive relationships, which facilitates to verify
underlying independence conditions between them.

IV. UNDERSTANDING CUSTOMER NEEDS USING
QUANTITATIVE THINKING ABOUT VALUE

The bridge that connects qualification and quantification
is the selection of attribute to measure the degree to which
the customer need is met. However, it is a missing element
in analytic hierarchy process (AHP) and quality function
deployment (QFD). Then weights of customer needs are
possibly assigned independently of the attributes and their
range information. But according to classic utility theory, it
makes no sense to say that for example in context of
selecting the best suitable software to buy, minimum
software cost is important than maximum performance, or
vise versa. It all depends on how much you talk about cost
and performance, respectively, and where you start. It is
meaningful to say that cost is important than performance
only when the range of change in cost from the starting
point of attribute cost is more important than the range of
change in performance from the starting point of attributes
performance. Three kinds of attributes are usually used for
measuring with different pros and cons. The procedure and
criteria to be satisfied to select desired attributes are
extensively discussed in [7][10][11].

After specifying attributes, it is then necessary to check
the independence conditions between the set of selected
attributes. There are usually several kinds of independence
conditions in concert with three major function forms [12].
When additive independence is satisfied, that is, the
preference order for lotteries depends only on their marginal
possibility distribution, additive function form

 ! !!,… , !! = !!!!!
!!! !! (1) (1)

!"#$%&#&%'()&*%+,%+-)
#./"&)'#$"(0)%1(+&%23%+-)

#+1)4&5"6&"5%+-)
/.7(6&%'(4

!"#+&%&#&%'()&*%+,%+-)
#./"&)'#$"(0)48(6%23%+-))
#&&5%."&(4)#+1)9"#+&%23)

'#$"(

objectives
objective function
(value model)

information
flow
insight

484

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 500 / 612

exsits, where ui is a single attribute utility function over
attributes Xi, and the ki are scaling constants subjecting to

!! = 1, !! ≥ 0,! ≥ 2.!
!!!

 This function form is similar to typically additive linear
function form to calculate customer satisfaction in QFD
[13][14],

 S = d!s! (2)!
!!!

where S is overall customer satisfaction, di is degree of
importance of the ith customer need, and si	
 is degree of
attainment of the jth engineering characteristic.
 However, there are at least two obvious distinctions as
follows:
1) ki in equation (1) is a relative weight of attribute Xi or
corresponding need. It is determined by making value trade-
offs between attributes. To assess ki, at least M equations
with ki’s (i=1, …, M) as unknowns should be found and
solved while it is necessary to identify a pair of two
consequences C1=(x1, x2, …, xM) and C*=(x1

*, x2
*, …, xM

*)
that are indifferent to customers to construct one equation.
di, however, is usually determined by a direct weighting
methods and then a normalization process without
considering attributes information. Some representative
methods in this kind are Analytic Hierarchy Process, 9-point
direct-rating scale.
2) ui is a single attributes utility function over attribute Xi,. It
can be an increasing, decreasing or non-monotonic utility
function and be of concave, linear or convex form. For
example, one customer is of risk aversion over cost of
buying software, the corresponding function form is a
decreasing utility function with concave shape. When
customer is of risk neutrality, the function form is linear and
consistent with typically used function form as equation (2).
In this situation, every unit of achievement of attribute has
the same effect on customer satisfaction. This formalization
of single attribute utility function is similar to the discussion
on KANO model that distinguish three categories of
customer needs with distinctive customer satisfaction
relationships, respectively. In KANO model, however, there
is no assessment of mathematical function between
customer satisfaction and different levels of achievement of
customer need and no consideration of risk attitudes toward
uncertainty of attribute attainment.
 It is easy to find that even in this simple function form
distinctions can be made. So it is necessary to rigorously
test the underlying relationships between the attributes and
to verify whether certain independence conditions are
satisfied.
 By introducing multiple attributes preference theory,
there are at least following extra benefits:
1) Design features (means) are important because of their
implications to implementation of real customer needs.
Then weights of the means should be derived from weights
of customer needs multiplied by their contribution to the
achievement of customer needs. An opportunity exists to

model the relationships and function between means and
achievement of customer needs,
2) Weights of needs are subjective and may be imprecise. It
is then useful to do sensitivity analysis based on the
available weighting information on the constructed value
model,
3) Customers’ group preferences can be reasonably derived
from individual customer preferences by formalizing
customer preferences using preference theory. It is then also
possible to discuss the fairness between customers, and
4) It is also possible to improve the release planning
problems by selecting a set of requirements to be
implemented to maximize customer values. The value in
cost-value approach and the benefit in benefit-cost ratio are
then should be rectified by introducing attributes and their
possibly non-linear utility functions.

V. RELATED WORK
 Researches on value in RE are far to be satisfying. The
concepts, sources and dimensions of value are usually
discussed in literatures without a widely acceptable
definition or formulation [3][4]. Some possibly limited
quantification about value focus only on weighting or
prioritize requirements and resource allocation [5][6].
Several approaches are usually used in the process, e.g.
AHP, QFD and cost-value approach. However, these
approaches, are all controversial in their validity to model
customer preferences under uncertainty. Especially,
weighting and relative customer satisfaction calculation in
QFD is subject to certain strong set of preference
independence assumptions. It is not appropriate to use them
directly without verifying preference independence
assumptions among attributes.
 A recent proposition that is relevant to value-based RE is
value-based software engineering. It proposes a framework
on the basis of “4+1” theories [15]. Four of five theories in
the framework: utility theory, decision theory, dependency
theory (causality) and theory W (group decision making)
perform almost the same works as decision analysis does.
We think it is also interesting to adopt these theories to RE
stage.
 Multiple attributes preference theory is in the core of
modeling customer values in decision analysis, and it is
especially useful when customers have multiple, conflicting
needs and when there may be uncertainty in the software
performance and cost. Integrating these techniques from
decision analysis provides a fertile field to be explored to
model customer value reasonably and effectively.

VI. CONCLUSIONS AND FUTURE WORKS
 We have presented the approach to understand customer
needs using value-focused thinking. Customer values then
become an explicit construct that can be modeled
qualitatively and quantitatively. Weighting of customer
needs and requirements are also discussed to enable a

485

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 501 / 612

reasonable way of assigning. These give important
implications to value-based RE.
 However, it is found that sometimes there is difficulty to
make judgments whether a statement is a means or a part of
another statement, although they are obviously different in
concept. Some extra researches are needed to explore the
point. And the proposed approach adds cognitive and
modeling burden to customers and engineers, and is time-
consuming. It is expected that some reasonable
simplifications or approximations can be made according to
the actual application contexts, making it more practical and
applicable.
 We are currently preparing its applications in the RE
stage of aircraft system development to test its validity. A
work package “requirements establishment and value
generation” is initiated and some test cases have been
collected. Further results about the approach and its
practical applications will be reported.

ACKNOWLEDGMENT
The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement
n◦234344.

REFERENCES
[1] M. Jackson, “The world and the machine,” Proc. the 17th

International Conference on Software Engineering, ACM
Press, Seattle, Washington, United States, 1995.

[2] M. Jackson, “Problem frames: analyzing and structuring
software development problems,” Addison-Wesley
Professional, 2001.

[3] R. Proynova, B. Paech, A. Wicht, and T. Wetter, “Use of
personal values in requirements engineering –a research

preview,” Proc. FEFSQ 2011, LNCS 6182, pp. 17-22.
Springer, Heidelberg.

[4] M. Kauppinen, J. Savolainen, L. Lehtola, M. Komssi, H.
Tohonen, and A. Davis, “From feature development to
customer value creation,” Proc. the 17th International
Requirements Engineering Conference, IEEE Computer
Society, Atlanta, United States, 2009

[5] J. Karlsson and K. Ryan, “Prioritizing requirements using a
cost-value approach,” IEEE Software, vol. 14, pp. 67-74,
1997.

[6] J. Karlsson, S. Olsson, and K. Ryan, “Improved practical
support for large-scale requirements prioritizing,”
Requirements Engineering, vol. 2, pp. 51-60, 1997.

[7] R. L. Keeney, “Value-focused thinking,” Harvard University
Press, Cambridge, MA, 1992.

[8] N. Leveson, “Intent specifications: an approach to building
human-centered specifications,” IEEE Trans. on Software
Engineering, vol. 26, pp. 15-35, 2000)

[9] A.V. Lamsweerde, “Requirements engineering: from craft to
discipline, Proc. the16th ACM Sigsoft Intl. Symposium on the
Foundations of Software Engineering, ACM press, Atlanta ,
2008.

[10] R. L. Keeney, “Common mistakes in making value trade-
off,” Operation Research, vol. 50, pp. 935-945, 2002.

[11] R. L. Keeney, “Selecting attributes to measure the
achievement of objectives,” Operation Research, vol. 53, pp.
1-11, 2005.

[12] R. L. Keene and H. Raiffa, “Decisions with multiple
objectives: preferences and value trade−offs,” Cambridge
University Press, 1993.

[13] I. V. de Poel, “Methodological problems in QFD and
directions for future development,” Research in Engineering
Design, vol. 18, pp. 21-36, 2007.

[14] J. R. Hauser, and D. Clausing, “The house of quality,”
Harvard Business Review, vol. 66, pp. 63-74, 1988.

[15] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.
Grunbacher, “Value-based software engineering,” Springer,
New York, 2006.

486

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 502 / 612

Migrating Functional Requirements in SSUCD Use Cases to a More
Formal Representation

Mohamed El-Attar

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

P.O. 5066, Al Dhahran 31261, Kingdom of Saudi Arabia
melattar@kfupm.edu.sa

James Miller
STEAM Laboratory

Department of Electrical and Computer Engineering
University of Alberta, Edmonton, Alberta, Canada

jm@ece.ualberta.ca

Abstract- Use case modeling is a popular technique to elicit and
model functional requirements of a software development
project. In a use case driven development methodology, use cases
are used as a basis to guide the development of UML design
models. In this paper, we provide a model transformation
approach to transform use cases descriptions written in a nearly
unstructured form to a more formal representation. A more
formal representation, which is machine-readable, can be used to
systematically generate other UML design models, in particular
UML activity diagrams. The main advantage of using this model
transformation approach is to avoid potential errors introduced
by modelers if they were to develop the UML design models while
depending solely on their skill and experience. The proposed
model transformation approach is applied to a library system to
demonstrate its applicability and to validate its correctness and
effectiveness.

Keywords – Use Cases; SSUCD; SUCD; Model
Transformation.

I. INTRODUCTION

Use case diagrams [3, 6] have become the de-facto modeling
tool to elicit and model functional requirements for object-
oriented software development projects. In a use case driven
development methodology, the use case model is developed at
the analysis phase used to drive the development of other UML
(Unified Modeling Language) [12] design artifacts at the
design phase. This is process is far from straightforward sine
naturally there is a gap between the analysis and design phases.
If the development of UML design artifacts based on use case
models is dependent solely on human skill, experience and
judgment, then there will be a great risk of developing design
artifacts that have a design view which is inconsistent with the
analytical view as presented by the use case model. As a result,
system architects may construct a design that provides different
functionality than that required (i.e., developing the ‘wrong’
system), leading to costly reworks and schedule overruns, in
addition to the intangible cost of unsatisfied customers.
 Model transformation provides a more rigorous approach
towards developing UML design artifacts based on use case
models. Model transformation greatly reduces the human factor
during the development process thus increasing the likelihood
of developing a system that satisfies its prescribed functional
requirements. To this end, this paper presents a model
transformation approach that transforms use cases written in a
form named SSUCD (Simple Structured Use Case
Descriptions) [2] to another more formal representation named
SUCD (Structured Use Case Descriptions) [5]. SUCD is a

language first introduced in [5] that is used to structure use case
descriptions by embedding enough structure within the use
case descriptions to facilitate the transformation of workflows
in use case descriptions into UML activity diagrams. Use cases
are ideally written by business analysts. In [1], an experiment
was conducted which revealed that the language SUCD was
too difficult to be used by its potential users (business
analysts). The experiment indicated that when using SUCD, the
majority of defects detected in the models developed were due
to syntax errors resulting from using of the SUCD language.
Consequently, the authors of the SUCD language developed a
simplified version of SUCD, which is SSUCD [2]. SSUCD
was intentionally designed to accessible to business analysts.
The usability of SSUCD was empirically evaluated in [1]. The
results of the experiment indicate that users of SSUCD develop
higher quality use case models. SSUCD was also intentionally
designed to help business analysts develop use case models
that are consistent to combat the issue of developing
inconsistent use case models when not utilizing any structure.

The remainder of the paper is organized as follows: Section 2
briefly outlines the related work and provides an introduction
to the SSUCD and SUCD languages. The proposed model
transformation technique is detailed in Section 3. In Section 4,
a library system case study is used to evaluate the correctness
and effectiveness of the proposed transformation technique.
Finally, Section 5 concludes and discusses future work.

II. BACKGROUND AND RELATED WORK

 There exist two tools that automate the generation of
activity diagrams from use case models such as “Catalyze
Suite” [8] and “TopTeam Analyst” [9]. Both tools produce
diagrams similar to UML activity diagrams, which their
developers refer to as ‘Flow diagrams’. However, such tools
and methods depend on the utilization of use case descriptions
with no structure, meaning that the source use case
descriptions used are vulnerable to inconsistencies. If
inconsistent use case models are used as a source to generate
UML activity diagrams, therefore these inconsistencies will
propagate onwards to the UML activity diagrams, which in
turn will propagate to the implementation source code where
the cost of fixing such inconsistency error escalates
significantly. Therefore, tools that generate UML activity
diagrams should be geared towards using the SSUCD
language to ensure that the source use case models used are
consistent. This approach presented in this paper uses use
cases written in the SSUCD form to contribute towards the

487

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 503 / 612

overall goal of generating UML activity diagrams that provide
a consistent and correct view of the system’s functional
requirements.

III. A BRIEF BACKGROUND TO SSUCD AND SUCD

The model transformation approach proposed in this paper

depends on using SSUCD use case descriptions as input and
produced SUCD use case descriptions as output. As a prelude
to outlining the model transformation mapping rules and
algorithms shown in Section 3, it is necessary to briefly
introduce the SSUCD and SUCD languages; the components
used in the model transformation. To this end, this section
provides a brief introduction to SSUCD and SUCD using a
use case description of a system outlined in [5]. The use case
is concerned with the functionality of borrowing a book from
a library. SSUCD and SUCD use cases do not mandate any
particular template to be used. SSUCD and SUCD use cases
however require a minimal set of fields to be present in a use
case description. The fields required are the (a) Use Case
Name section, (b) the Associated Actors section, (c) the
Description section, and (d) the Extension Points section.
SUCD use cases, being more formal that SSUCD, do contain
further subsections within some sections of its template. For
example, in the Extension Points section, SUCD use cases
case outline Public Extension Points and Private Extension
Points. A detailed description of the SSUCD and SUCD
languages are out of the scope of this paper. For detailed
descriptions of the SSUCD and SUCD languages as well as
their formal syntax, our interested readers are referred to [2]
and [5], respectively. However, to illustrate the difference
between using both languages, Figures 1 and 2 show the
textual description of the “Borrow Book” use case using
SSUCD and SUCD, respectively.

Use Case Name:
Borrow Book

Brief Description:
This use case is initiated by a Member to allow that member to
borrow a book. A Librarian is then involved to carry out the
transaction.

Preconditions:
The book must exist

Basic Flow:
The use case begins when a member brings a book they would
like to borrow. Information about the book is then retrieved
from the database by entering the book’s name or barcode.
The member then provides their library card for the librarian
to scan. The librarian needs to authenticate first before
scanning the book’s barcode. The librarian then updates the
member’s record with the newly borrowed book. The book’s
status is then changed in the database and set as ‘Borrowed’.

Alternative Flow:
When the librarian scans the book's barcode, if the barcode
cannot be scanned, then the book's barcode is entered
manually.

Postconditions:
The number of borrowed books in the member's record is
increased by one

Extension Points:
Balance overdue

Fig. 1. The description of the Borrow Book use case described in SSUCD

Use Case Name:
Borrow Book

Brief Description:
This use case is initiated by a Member to allow that member to
borrow a book. A Librarian is then involved to carry out the
transaction.

Preconditions:
The book must exist

Basic Flow:

{BEGIN Use Case}

{BEGIN bring book to borrow}
• Member -> Brings the book he/she would like to borrow
• PERFORM Retrieve book information (2)
• Member -> Provides library card
• Librarian -> Scans member's card
{END bring book to borrow}

{BEGIN authenticate librarian}
• INCLUDE Authenticate Librarian (1)
{END authenticate librarian}

{BEGIN scan book}
• Librarian -> Scan's book's barcode
RESUME {update member's record} {update book's status}
(5)
{END scan book}

{BEGIN update member's record}
• Librarian -> Updates the Member's record with the newly
borrowed book
RESUME {END}
{END update member's record}

{BEGIN update book's status}
• SYSTEM -> Changes the book's status in the database to
'Borrowed'
{END update book's status}

{END Use Case}

Alternative Flows:
FLOW Basic Flow (3)
AT {scan book} (4)
• Librarian -> Scans the book's barcode
IF barcode cannot be scanned
{BEGIN enter barcode manually}
• Librarian -> Enters the book's barcode number manually

488

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 504 / 612

{END enter barcode manually}
CONTINUE {update member's record} {update book's status}
Subflows:

SUBFLOW Retrieve book information
{BEGIN enter and retrieve book information}
• Librarian -> enters the book's name or barcode
• SYSTEM -> retrieve the given book's information from
database
{END enter and retrieve book information}

Postconditions:
The number of borrowed books in the member's record is
increased by one

PUBLIC EXTENSION POINT
Balance overdue

Fig. 2. The description of the Borrow Book use case described in SUCD

It can be easily deduced from Figures 1 and 2 that SUCD
use case descriptions contain far more structure that SSUCD
use cases. This is the chief motivation behind this work. Due
to the complexity of this transformation problem, if the
transformation is performed manually then there will be a
great risk of developing SUCD use cases that are inconsistent
with their corresponding source SSUCD use cases.

IV. TRANSFORMING USE CASES FROM SSUCD TO SUCD

 This section describes the preparation activities requisite for
the transformation process to take place. In this section, we
also present the model transformation rules and algorithms.
Automation support is important to ensure the syntactical
correctness of the models used and created and to ensure the
speed and accuracy of the application of the transformation
process and therefore the transformation rules and algorithms
were coded using two popular tools within the model
transformation research community.

A. Generating the Metamodels of SSUCD and SUCD

 A model transformation process uses a source model to
produce a target model based on the transformation rules and
algorithm. As a prerequisite to the execution of the
transformation, the source model needs to conform to a
metamodel. The conformance of the source model to a
metamodel ensures the syntactical correctness of the source
model. Similarly, the target model also needs to conform to
metamodel to ensure the syntactical correctness of the
produced model. The derivation of the metamodels for both
source and target models were reverse engineered from the E-
BNF rules for both SSUCD and SUCD, respectively. The E-
BNF rules for SSUCD and SUCD are defined in [2] and [5],
respectively. The metamodels were reverse engineering using
a tool named ANTLR (ANother Tool for Language
Recognition) [7]. ANTLR is a language tool that provides a
framework for constructing recognizers, interpreters,
compilers, and translators from grammatical descriptions
containing actions in a variety of target languages [7]. The

high-level metamodels for SUCD and SSUCD are shown in
Figures 3 and 4, respectively.

Fig. 3. The high-level components of the SUCD metamodel.

 As shown in Figures 3 and 4, the SSUCD and SUCD
metamodels formats the use case descriptions into several
sections represented as objects. Each section describes a certain
important aspect of the use case. For example,
“AssociatedActorsSection” object is used to describe the list of
actors associated with the given use case. It can be shown that
the SSUCD metamodel is a simplified version of SUCD as the
metamodel of SSUCD is a subset of the SUCD metamodel.
ANTLR generated a compiler that can parse SSUCD use case
descriptions. The compilation process results in the generation
of an object model that represents the given SSUCD use cases.

Fig. 4. The high-level components of the SSUCD metamodel.

 Transformation Mapping Rules and Algorithms

 The transformation and mapping rules and algorithms
prescribe the process through which a source model is
transformed into a target model. In the scope of model-driven
engineering, the transformation mapping rules and algorithms
are defined in terms of model, which in turn must conform to a
metamodel. The ATL (Atlas Transformation Language)
metamodel was chosen as the metamodel for model
transformation problem considered in this paper. ATL was
selected since it provides two methods to describe

489

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 505 / 612

transformation rules: (a) using “matching rules” (declarative
programming); and (b) using “called rules” (imperative
programming). For the transformation problem at hand it was
necessary to use both types of programming methods provided
by ATL as complex transformation algorithms can be too
difficult to program declaratively only [10]. Figures 5 8
outline the mapping rules and algorithms of the proposed
model transformation technique per description section.

Use Case Name Section
SSUCD SUCD

The “Use Case Name”
section starts with the label
“Use Case Name:”

MAPPING1: Every use case
in the model must have a
name and therefore this
section must exist in every
use case description

The “Use Case Name
Section” starts with the label”
Use Case Name:”

MAPPING1: Every use case
in the model must have a
name and therefore this must
exist in every use case
description.

 If the use case is abstract
then this section is followed
by the keyword
“ABSTRACT”

Use case name as-is in free
flow NL
MAPPING2: Use case name
must be unique in the entire
model. No two use cases can
have the same name.

 If the use case is abstract,
this section then is followed
by the keyword
“ABSTRACT”

Use case name as-is in free
flow NL
MAPPING2: Use case name
must be unique in the entire
model. No two use cases can
have the same name.

Transformation Rule: The use case names must be exactly
the same in both SSUCD and SUCD.

If the use case is
implementing an abstract use
case, the keyword
“IMPLEMENTS” is shown
followed by the name of the
abstract use case. Any
additional abstract use cases
which the given use case
implements, is stated by
using a comma followed by
the name of the other abstract
use cases. For example:
IMPLEMENTS UseCaseA,
UseCaseB, UseCaseC
MAPPING3: Use cases that
are implemented must exist in
the target model.
MAPPING4: Use cases that
are implemented must be
abstract. In other words, they
should have the keyword
“ABSTRACT” in their “Use
Case Name” section.

If the use case is
implementing an abstract use
case, the keyword
“IMPLEMENTS” is shown
followed by the name of the
abstract use case. Any
additional abstract use cases
which the given use case
implements, is stated by
using a comma followed by
the name of the other abstract
use cases. For example:
IMPLEMENTS UseCaseA,
UseCaseB, UseCaseC
MAPPING3: Use cases that
are implemented must exist in
the target model.
MAPPING4: Use cases that
are implemented must be
abstract. In other words, they
should have the keyword
“ABSTRACT” in their “Use
Case Name” section.

Transformation Rule: The names of the implemented use
cases in both SSUCD and SUCD must match. Both SSUCD
and SUCD must include the keyword ABSTRACT.

If the use case is specializing
a concrete use case, the
keyword “SPECIALIZES” is
shown followed by the name
of the concrete use case. Any
additional concrete use cases
which the given use case
specializes, is stated by using
a comma followed by the
name of the other concrete
use cases. For example:
SPECIALIZES UseCaseA,
UseCaseB, UseCaseC
MAPPING5: Use cases that
are specialized must exist in
the target model.

If the use case is specializing
a concrete use case, the
keyword “SPECIALIZES” is
shown followed by the name
of the concrete use case. Any
additional concrete use cases
which the given use case
specializes, is stated by using
a comma followed by the
name of the other concrete
use cases. For example:
SPECIALIZES UseCaseA,
UseCaseB, UseCaseC
MAPPING5: Use cases that
are specialized must exist in
the target model.

MAPPING6: Use cases that
are specialized must NOT be
abstract. In other words, they
should NOT have the
keyword “ABSTRACT” in
their “Use Case Name”
section.

 MAPPING6: Use cases that
are specialized must NOT be
abstract. In other words, they
should NOT have the
keyword “ABSTRACT” in
their “Use Case Name”
section.

Transformation Rule: The names of the parent use cases in
both SSUCD and SUCD must match. Both SSUCD and
SUCD must NOT include the keyword ABSTRACT.

Fig. 5. Transforming the “Name Section”

Figure 5 outlines the mapping rules for the “Name Section”.
The purpose of “Name Section” is mainly to specify the name
of the use case. The “Name Section” is also used to specify if
the use case is abstract or concrete. Moreover, the “Name
Section” is also used to specify if the use case is generalizing
or specializing another use case. The transformation process of
the “Name Section” can be fully automated since this section
is very similar in the SSUCD and SUCD forms.

Associated Actors Section
SSUCD SUCD

The “Associated Actors”
section starts with label
“Associated Actors:”
MAPPING7: If the use case
does not have any actors
associated with it then this
section is removed entirely.

The “Associated Actors”
section starts with label
“Associated Actors:”
MAPPING7: If the use case
does not have any actors
associated with it then this
section is removed entirely.

490

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 506 / 612

Any associated actors are
then listed (comma separated)
in a new line as such:
ActorA, ActorB, ActorC.
MAPPING8: Actors listed in
this section must exist in the
model. In other words, there
must be actor descriptions
with the stated actor names in
the “Actor Name” section.

Any associated actors are
then listed (comma separated)
in a new line as such:
ActorA, ActorB, ActorC.
MAPPING8: Actors listed in
this section must exist in the
model. In other words, there
must be actor descriptions
with the stated actor names in
the “Actor Name” section.

Transformation Rule: The names of the actors listed in both
SSUCD and SUCD must match.

Fig. 6. Transforming the “Associated Actors Section”

Figure 5 outlines the mapping rules for the “Associated Actors
Section”. The purpose of “Associated Actors Section” is
mainly to specify the names of any actors involved with the
use case. Once again the “Associated Actors Sections” of the
SSUCD and SUCD forms are very similar hence the
transformation is straightforward and fully automated.

Description Section
SSUCD SUCD

The “Description” section starts
with label “Description:”
MAPPING9: Every use case must
have a description. Therefore,
every use case must have a
“Description” section.

The “Description” section in
SSUCD is populated with the free
flow Natural Language. The only
structure involved in this section
is the use of the “INCLUDE”
keyword. The “INCLUDE”
keyword is used to indicated other
use cases which the given use
case includes. The “INCLUDE”
keyword is embedded within the
free flow text. It is used by
showing the keyword
“INCLUDE” followed by two
angled brackets (< >). The name
of the included use case is stated
between the angled brackets. For
example:

Description:
Free-flow text, free-flow text.....
INCLUDE <UseCaseA> free-
flow text, free-flow text...
MAPPING10: The name of stated
inclusion use case (the included
use case) must exist in the mo

The “Description”
section starts with label
“Description:”
MAPPING10: Every use
case must have a
description. Therefore,
every use case must have
a “Description” section.

The “Description”
section then must have a
“Basic Flow:” label.

The heart of
“Description” section
basically consists of
“headers” which contain
“actions”. An “action”
basically consists of a
bullet point, followed by
the name of the actor
performing the action
then followed by an
arrow then followed
by the action description
written in natural
language. For example:

• Librarian Enter
member’s

Transformation Rule: The conversion of this section will be
semi-automated. There are only two rules to consider when
converting this section. First, the actor names used in SUCD
must be listed in the “Associated Actors” section of SSUCD
(apart from the SYSTEM actor). Secondly, the “include”
statement in SSUCD use cases stated as such INCLUDE
<UseCaseA> must be mentioned at least one once in SUCD
and stated as such: • INCLUDE <UseCaseA>.

Fig 7. Transforming the “Description Section”

Figure 7 outlines the mapping rules for the “Description
Section”. The purpose of “Description Section” is mainly to
describe the behavior of the use case. In the SSUCD form, the
description is provided in an unstructured natural language
form. The only exception being the specification of an
included use case where the keyword INCLUDE is used to
specify the inclusion use case. Meanwhile, in the SUCD form
the description section is far more structured. Each statement
is specified individually along with the actor that is
responsible for performing the actor. If the performer is the
system itself, then the keyword SYSTEM is used. Hence, the
transformation process of the “Description Section” cannot be
fully automated and it requires human cognition to partition
the description in the SSUCD form to bullet points in the
SUCD form.

Extension Points Section
SSUCD SUCD

The “Extension Points”
section starts with label
“Extension Points:”
MAPPING11: If the use
case does not have any
public extension points
this section is removed
entirely.

The name of the extension
points are then listed
while separated with
commas as follows:

Extension Points:
<EP1>, <EP2>, <EP3>…

Public Extension Points Section:

The “Public Extension Points”
section starts with label “Public
Extension Points:”
MAPPING11: If the use case
does not have any public
extension points this section is
removed entirely.

The name of the extension points
are then listed while separated
with commas as follows:

Public Extension Points:
<EP1>, <EP2>, <EP3>…

Transformation Rule: The names of the publication
extension points listed in both SSUCD and SUCD must
match.

For an extension use case, it
states the it extends another
use case using the following
structure:

Extended Use Cases:
Base UC Name:
<UseCaseA>
Extension Point:
<EP_Name>
IF <Condition>
MAPPING12: The name of

For an extension use case, it
states the it extends another
use case as well as it states
the extension behavior using
the following structure:

PUBLIC EXTENSION
POINT BEHAVIOR
EXTENDING {UseCaseA :
EP_Name}
MAPPING12: The name of
stated use case being

491

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 507 / 612

stated use case being
extended must exist.

extended must exist in the
model.

MAPPING13: The name of
the stated extension point
must be listed in the
“Extension Points” section of
the extended use case.

MAPPING13: The name of
the stated extension point
must be listed in the
“Extension Points” section of
the extended use case.

Transformation Rule: The use case name stated in SSUCD
as Base UC Name: <UseCaseA>, must be the same as that
stated in SUCD as EXTENDING {UseCaseA: …etc. The
extension point name stated in SSUCD as Extension Point:
<EP_Name>, must be the same as that stated in SUCD as
EXTENDING {UseCaseA : EP_Name}.

Fig 8. Transforming the “Extension Points Section”

Figure 8 outlines the mapping rules for the “Extension Points
Section”. The purpose of “Extension Points Section” is to state
the extension points of a use case. The transformation process
of the “Extension Points Section” may also be fully
automated.

V. LIBRARY SYSTEM CASE STUDY

The library system discussed in this section was previously
presented in [5], which the research work that introduced
SUCD. This library system was specifically to evaluate the
correctness of the proposed model transformation technique as
the work presented in [5] outlines a set of use cases and how
they are transformed into UML activity diagrams. In order to
perform the evaluation, the SUCD use cases were rewritten as
SSUCD use cases by extracting only the information required
by the SSUCD structure. The entire set SUCD use cases and
their corresponding SSUCD use cases used in this case study
are available in [5]. For illustrative purposes, an example of a
SUCD use case presented in [5] and its reverse-engineering
SSUCD version are shown in Figures 1 and 2 (see Section 2),
respectively.

A. Applying the Model Transformation

 Using the reserve engineering SSUCD use cases as the
source, the textual descriptions were analyzed by ANTLR to
generate a representative object models that conform to the
metamodel previously produced (see Section 3.1). The
generated object models were used as input by ATL to apply
the model transformation algorithms and mapping rules
previously encoded. ATL then generates a set of object
models that represent the SUCD equivalent of the SSUCD use
cases used as input. As encoded in ATL, the generated object
models representing the SUCD use cases are set to conform to
the target metamodel (see Figure 3). A simple tool was used to
read the generated object models representing the SUCD use
cases to produce the text files presenting the SUCD use cases
in a textual form.

B. Verifying the Correctness of the Produced SUCD Use
Case Descriptions

 The correctness of the produced SUCD use case
descriptions was verified through two distinct means. The first
approach involved the use of the Diff tool to check for
differences between the produced SUCD use cases and the
SUCD use cases already shown in [5]. Although some minor
differences were found in the layout (white spaces and empty
lines), the textual content of the use case descriptions were
confirmed to be the same.
 The second approach used to verify the correctness is to
verify that the generated SUCD use case descriptions can be
used as a source to generate representative UML activity
diagrams using the approach presented in [5] to produce UML
activity diagrams that match the UML activity diagrams
shown in [5]. The generated UML activity diagrams along
with the UML activity diagrams already shown in [5] were
used as input by a tool named UMLDiff [11]. UMLDiff is an
automated UML-aware structure differences algorithm which
uses as input two object-oriented models then produces a
report of the design evolution of the software system in the
form of a change tree [11]. For given object models
(representing the UML activity diagrams), the UMLDiff tool
did not report any differences between the UML activity
diagrams.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that helps bridge the
gap between the analysis and design phases in a use case-
driven development process. The contribution of this paper is a
model transformation technique that is almost fully automated,
which can be used to transform use case descriptions written in
the SSUCD form to use cases written in the SUCD form which
may then be used to generate other types of UML design
artifacts. The model transformation technique helps eliminate
the human factor and thus eliminating human injected errors
that may result from perform the transformation completely
manually. The proposed approach was applied to use cases of a
library system already presented in the literature. The
correctness of the proposed technique was verified by
differencing the textual descriptions of the generated SUCD
use case descriptions with the SUCD use case descriptions
presented in [5]. The second approach involved the use of a
popular tool in the model differencing research community,
named UMLDiff, to compare the UML activity diagrams
produced with the generated SUCD use case descriptions
against the UML activity diagrams already presented in
[Seattle]. Both verification approaches indicate the correctness
and the effectiveness of the proposed technique.
 Future work will be directed towards extending the SSUCD
and SUCD languages to allow for the specification of
functional security requirements. The model transformation
technique will also need to be enhanced to facilitate the
transformation of the extended SSUCD and SUCD languages.

492

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 508 / 612

ACKNOWLEDGEMENTS

The author would like to acknowledge the support provided by
the Deanship of Scientific Research (DSR) at King Fahd
University of Petroleum & Minerals (KFUPM) for funding this
work through project No. JF100008.

REFERENCES

[1] M. El-Attar and J. Miller, A Subject-Based Empirical Evaluation of

SSUCD’s Performance in Reducing Inconsistencies in Use Case
Models, Journal of Empirical Software Engineering, vol.14, no. 5, pp.
477-512, (2009).

[2] M. El-Attar and J. Miller, Producing Robust Use Case Diagrams via
Reverse Engineering of Use Case Descriptions, Journal of Software and
Systems Modeling, vol. 7, no. 1, pp. 67-83 (2008).

[3] I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage. ACM
Press, 1995.

[4] M. El-Attar and J. Miller, A User-Centered Approach to Modeling
BPEL Business Processes Using SUCD Use Cases. Journal of Software
Development and Theory, Practice and Experimentation, vol. 1, no. 1,
pp. 59-76 (2007)

[5] M. El-Attar and J. Miller, AGADUC: Towards a More Precise
Presentation of Functional Requirements in Use Case Models, 4th ACIS
International Conference on Software Engineering, Research,
Management and Applications, Seattle, Washington, USA. pp.346-353,
(2006).

[6] Object Management Group, UML Superstructure Specification (2005).
http://www.omg.org/docs/formal/05-07-04.pdf, Version 2.0 formal/05-
07-04. Accessed March 2011.

[7] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages (Pragmatic Programmers). Pragmatic Bookshelf, 2007.

[8] SteelTrace. “Catalyze Suite”. Availabe [Online] www.steeltrace.com.
Last Accessed March 2011.

[9] TechnoSoclutions. “Top Team Analsyt”. Availabe [Online]
http://www.technosolutions.com/topteam_requirements_management.ht
ml. Last Accessed March 2011.

[10] The Eclipse Foundation. ATL – A Model Transformation Technology.
Available Online at (http://www.eclipse.org/atl/). Last accessed March
2011.

[11] Z. Xing and E. Strou, UMLDiff: An Algorithm for Object-Oriented
Design Differencing, Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 54-65, 2005.

[12] OMG 2003, “UML Superstructure Specification”, Object Management
Group, http://www.omg.org/docs/ptc/03-08-02.pdf, 2003.

493

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 509 / 612

KM-SORE: Knowledge Management for Service Oriented Requirements Engineering

Muneera Bano, Naveed Ikram
Department of Software Engineering

International Islamic University Islamabad, Pakistan
muneera@iiu.edu.pk, naveed.ikram@iiu.edu.pk

Abstract—Service-oriented Software Engineering is a new
style for creating software using reusable services which are
available over the web. The biggest challenge in this process is
to discover and select the appropriate services that match
system requirements. Currently, none of the proposed
approach has been accepted by research community as a
standard. There is very little empirical work available that
addresses requirements engineering in service oriented
paradigm. The aim of this study is to propose a framework for
requirements engineering in SOSE. The framework is based on
a new idea, that integrating Knowledge Management in
Service Oriented development would improve requirement
engineering phase as it does for traditional software
engineering. The framework is developed in the light of the
issues and challenges identified by published literature and the
feedback of practitioners and researchers working on service
oriented projects.

Keywords- Service Oriented Software Engineering (SOSE);
Requirement Engineering (RE); Knowledge Management (KM).

I. INTRODUCTION

Reusability of software is a major concern for software
engineers. In current market conditions meeting deadlines
and producing quality software is vital. In these conditions
recoding what has already been coded in a good quality is
wasting your time. Component Based Software
Development (CBSD) was the result of the efforts by
research community in software engineering for providing
methods and techniques for effective, faster and economical
software development by ensuring the reuse of existing
software modules. Along with the benefits these solutions
posed some new challenges for developers. CBSD though
proved promising for software reuse and maintainability but
it still faces issues like heterogeneity of platforms and
protocols, and difficulty of locating required components
and selecting them against system requirements [1]. Another
effort to overcome these issues is the new paradigm of
Service Oriented Software Engineering [2], which is a new
architectural style for building applications that support
loose coupling among web services. The basic building
block of software in SOSE is a web service, which is
accessible via internet. Web service is a ready to use
software and can be accessed via interface or API over
internet by using XML standard messaging format of Web
Service Definition Language (WSDL). The service provider
publishes specification of service in central repository
Universal Description, Discovery and Integration (UDDI),
which is explored by service requester. When a service is
selected requester and provider make Service Level

Agreement (SLA). For the last few years the number of
services on the web has increased exponentially.
Discovering appropriate web service which satisfies the
requirements of the requester has become a challenge. In
SOSE services are in ready to use state so the focus in this
case is on identifying the services that accurately or at least
appropriately fulfil system requirements. Requirements
Engineering (RE) for SOSE can have different traditional
development activities such as modelling, specification, and
analysis but RE processes are carried out in different way
[3]. The RE revolves around making a match between ready
to use software components and user requirements and the
result should be a compromise agreed upon by all
stakeholders.

In this paper, we propose a framework for requirements
engineering in SOSE. The framework is formulated on the
results obtained from published literature and opinions of
practitioners and researchers working on service-oriented
projects.

Section II describes motivation for our research. Section
III is prior related work done on SOSE and the gap analysis
of it. Section IV gives details of proposed solution and
Section V describes the proposed framework KM-SORE.
Section VI outlines future work followed by references and
appendix.

II. MOTIVATION

The additional task the requirement engineer has to
perform in SOSE is to gain knowledge by exploring existing
services with the aim of matchmaking between requirements
and available services [4]. Service-oriented Software
Engineering (SOSE) is a new field and is not fully mature
yet. Though, recently a lot of interest has been shown by
both industry and academia researchers [2][5][6][7][8][9],
but there are still problems and challenges in this field
[10][11]. Broadly, these challenges can fall into four
categories that relate to main four phases of SOSE [12];

A. Specification (Planning) Issues

By specification issues we mean, the problems that are
faced when we want to know the requirements for system,
and during planning of acquiring these requirements and
making them complete.

B. Discovery Issues

This category deals with searching for the services that
actually meet the functional and non functional
requirements.

494

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 510 / 612

C. Composition Issues

Services are selected based on their individual
functionalities. Next, we need to see if they will work
properly in a workflow by making composition that satisfies
system requirements.

D. Management Issues

If a requirement is changed, or a new version of service
is launched, or the service becomes unavailable due to any
reason, re-composition and re-deployment of system is
required.

The issues identified in literature against above
mentioned SOSE phases are summarized in the following
list, and details can be found in [12];
 Web Service Discovery

o Matching user requirements and available
service

o Automated and Dynamic Service Discovery
o Iterative Discovery Process
o Completing requirements with discovery
o High Level Language/Tool Support

 Innovation and creativity in RE
 Requirement change and evolution
 Semantic gaps in specification
 Knowledge Management in service-oriented SDLC
 Non functional Requirements gathering and assessment
 Web service Dependency discovery
 Platform dependence in selected web services
 Lack of standard RE process for SOSE

With these challenges and issues on one side and the
promises proposed for systems developed in service-
oriented paradigm (cost effective, reduce time effort, re-
usability, agility, platform independence, loose coupling
etc.) there is a need of systematic investigation of the real
nature of these problems and what solution can be proposed
to overcome them. In Systematic Review conducted to
explore SOSE challenges [13] it was found that total 8
challenges of RE were worked upon by researchers in year
2007 and 2008. The empirical work is not sufficient in this
field. There is a need of new RE process [3], which should
consider only the service-oriented paradigm of software
development life cycle [1][14]. There has been no standard
accepted so far for RE process in this domain [10][11]. This
motivates further exploration and research in this emerging
area.

III. RELATED PRIOR WORK

SOSE is currently under focus of research community
from different perspectives. There have been many methods,
techniques and tools proposed by different mega projects
and research teams. They include; SeCSE [6], SODIUM
[8][15], SENSORIA [7], IBM SOA [9][16], MICROSOFT
[17], SOAF [18], SDLM [19], and work other researchers
[20] [3].These approaches are proposing solutions in their
own ways and are not sharing any common ground [10][11].

That is not going to be helpful in providing any unified
approach in future as it happened with RUP and UML [10].
To provide unification there should be more standards,
models and patterns proposed for this new field [10]. Some
of the proposed approaches still lack validation from
industrial feedback. According to the systematic review of
Qing Gu et al [13], empirical work related to requirement
engineering in SOSE is not sufficient. There is a need for
further empirical work in this area [10], with real life
projects to provide feedback for improvements in current
methods and practices and also to enrich the knowledge in
SOA domain and open further research directions.

Table IV in Appendix section shows comparison and gap
analysis of existing technologies with respect to the phases
of SOSE, along with associated issues reported in literature.
Table V in Appendix section shows comparison for gap
analysis of work done to the issues identified in section
“Motivation”.

IV. PROPOSED SOLUTION

Knowledge Management has been proved helpful in core
activities of traditional software engineering [21][22][23].
Considering SOSE as a sub field of software engineering,
we have deduced that knowledge management process if
integrated into all activities of SOSE, would improve the RE
process and would be helpful in tackling the issues of RE in
SOSE. Not equivocally, but the idea has been supported by
some of the researchers in different ways. In [24], KMP is
considered important to accomplish tasks of Business
Process Management (BPM) in Service-oriented
Architecture (SOA). In [25], the authors have highlighted
the need for novel approach for sharing service knowledge
and application specific information. Knowledge is required
to build trust among distributed parties on heterogeneous
platforms, when we do automated composition [26].
Knowledge management can improve cooperative work
among services [27][28]. XML messaging data if managed
can provide information regarding web service dependency
by the calls one service make to the others [29].

The philosophy of service orientation is built on the idea
of software reusability and agility of the process. The
designers and developers must know what solutions are
available in order to develop right system, with correct
process. The required knowledge is about available services,
previous decisions and their results, constraints of using any
tool/technique/method, service interdependencies etc.

If we summarize the whole discussion, we can conclude,
 SOSE is a shift of paradigm from SE
 Traditional RE cannot be applied to SOSE
 SOSE is facing challenges in RE
 KM has been proved promising in SE
 KM can improve RE in SOSE

Therefore, we propose that if Knowledge Management
is used in Service-oriented Software Engineering it would

495

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 511 / 612

help in overcoming most of the issues of Requirements
Engineering. We formulate the proposed framework on the
basis of issues and challenges of RE in SOSE highlighted in
published literature and then conducting a survey to get the
opinion of practitioners and researchers working on service-
oriented projects about the issues and impact of KM on
SOSE. The first part was to conduct a literature survey, and
the second part was a questionnaire-based web survey.

A. STEP1: Literature Survey

The aim of performing literature survey was to extract
the list of issues and challenges of requirements engineering
in SOSE that has been reported in published literature. The
results from this phase are published [12]. The factors
identified from this phase are listed in motivation section.

B. STEP2: Survey

The purpose of conducting the survey was to validate the
list of issues of RE in SOSE, extracted from published
literature, from practitioners working on service-oriented
system development and to get their opinion on using KM
in SOSE. The population comprised of those people who
have worked on service-oriented projects either as technical
team member or as a researcher. The instrument for survey
was questionnaire based on the identified factors from
issues. The items in questionnaire used Likert scale of five
levels to measure agreement level. We administered the
survey on web and sent the link through email to invite the
practitioners around the world. The duration for the survey
was from 16th December 2010 to 23rd January 2011. A total
of 117 responses were received from all around the world in
this duration with almost 5.2% response rate. 20% of the
responses were received from USA and 17% from India.
60% of the respondents have experience in relevant area
between 4 to 9 years. 42% of the respondents are SOA
architects. Out of 117 respondents 100 had experience as a
practitioner and 77 had worked as a researcher in SOSE.
After analysis 8 responses were rejected for providing
incomplete information. And out of 109 responses, 9 were
only researchers, 32 were only practitioners and 68 had
experience both as a researcher and practitioner. The
ranking of the factors was analyzed by grouping
respondents into above mentioned three categories; only
Practitioners (P), only Researchers (R) and experience of
both practitioner and researcher (P+R). The ranking in
Table I has been calculated for the factors on the basis of
average agreement level they have achieved in their
question items. The ranking provides an interesting
overview of what is important for each group of respondents
as they all have a different ranking for the measurement
factors. The difference in opinion is mostly because SOSE
is a new field, and a shift of paradigm from traditional
software engineering. Most of its concepts are not fully
mature yet and they are not fully understood and appreciated
by designers and developers, resulting in a poor
implementation of the SOSE concepts. This according to the

respondents is one of the reasons for the resulting issues
besides other. Knowledge Management in Service-oriented
Software Engineering has got highest agreement level in
overall ranking in above table.

Measurement Factors

Agreement Percentage (Stronly
agree+agree)

All
(109)

Only P
(32)

Only
R (9)

P+R
(68)

Knowledge Management in Service-
oriented Software Engineering

76 78 60 76

Matching user requirements and
available service

75 73 73 77

Iterative Discovery Process 74 60 89 80

Semantic gaps in specifications 53 63 63 54

Automated and Dynamic Service
Discovery

57 60 59 56

High Level Language Support 35 37 41 32

Eliciting requirements through service
discovery

72 72 89 71

Service Testing 61 75 55 35

Requirement change and evolution 48 50 33 49

Innovation and creativity in RE 67 78 66 62

Non functional Requirements gathering
and assessment

59 59 67 59

Lack of standard RE process for SOS 54 41 44 62

TABLE I. RANKING OF ISSUES AND CHALLENGES FROM SURVEY

It has been reported in literature that KM
(Knowledge Management) improves the software
development process. In traditional software engineering,
knowledge management helps in; Decreasing development
time and cost, and increasing quality, Making better
decisions, Understanding the domain, Communication,
Acquiring knowledge about new technologies, Accessing
domain knowledge, Sharing knowledge about local policies
and practices, Capturing knowledge and knowing who
knows what, Collaborating and sharing knowledge [21]. In
core SE activities KM can support in; Document
management, Competence management, Expert
identification, Software reuse (making developers aware of
existing software contents/components) [21]. Similarly, if
knowledge management is applied in SOSE, along with
above mentioned benefits, it would help to increase
understanding of the engineers and would address the issues
that arise due to misunderstanding of this style of solution
making. Overall the survey results have indicated that KM
would have a good impact on SOSE life cycle. According to
comments of respondents it would help to solve following
issues of SOSE; matchmaking between requirements and
services, iterative discovery process, decision making,
semantic gap, eliciting requirements through service
discovery, re-composition, automating the discovery
process.

Naturally, SOSE would face fewer challenges in
integrating KM then tradition software development. The
central repository UDDI contains all information about
specification of available services. The conversion method
of requirements into formal queries, search process,

496

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 512 / 612

retrieved results etc. could all be codified and stored. Such
that, if we face a problem the previously stored knowledge
can be retrieved and analyzed. Integrating creativity and
innovation in requirements engineering for SOSE would
help in making new ways for solutions and maintaining a
KM along with the process would help in not repeating the
mistakes. KM would definitely take cost and efforts for its
implementation as apprehended by respondents, but it is like
an investment for improvement in the process where the
benefits become visible with time. The respondents had a
concern that whether there would be a need of some specific
to field KMP for SOSE. Current KMPs for SE were not
proposed considering service-oriented paradigm. How a KM
for traditional SE can be adapted for SOSE, is yet an area of
exploration. According to the systematic literature review
conducted by Bjørnson and Dingsøyr on knowledge
management in software engineering [22], the main
emphasize of SE has been so far on technocratic category of
KM in Earl’s taxonomy for Knowledge management
strategies [30]. The KM process for SOSE will mainly cover
technocratic and organizational sub category from
behavioral of Earl’s Taxonomy for KM.

V. FRAMEWORK KM-SORE

The framework has integrated KM with SOSE life cycle
in the light of findings from literature and survey. After
analyzing the issues of requirements engineering in SOSE
and results from the survey we found that the issues are
somewhat interlinked because the phases of SOSE work in
iterations. RE in SOSE is not a discrete activity but is
related to the Discovery and Composition phase as well.
There for any problem cannot be described as belonging to
one phase. The issues of RE are also overlapping into other
phases as well. All the phases of SOSE depend on each
other for their functioning. Table II shows their overlapping
in different phases of SOSE [12].

The framework proposes to integrate KM in all the
phases of SOSE. These phases are interrelated and work in
iteration for successful composition. J. Ward and A. Aurum
[31] have given a refined list of KM process activities from
literature. They have given list of seven activities. On
highest level of abstraction three activities are required for
KMP; Knowledge Creation (KC), Knowledge Storage (KS),
Knowledge Retrieval (KR). Integration of KM in SOSE will
require Knowledge creation, storage and retrieval in all four
main phases. Table III summarize the overall idea of this
integration.

In a common storage space, the codified
knowledge from all phases will be stored to make it
available for all phases, ultimately storing the information in
organization’s central knowledge base. Figure 1 shows this
integration graphically. The framework provides an overall
view of how KM would be integrated in SOSE phases.
Exactly what strategy and tools have to be selected for
knowledge management, is to be decided by the
organization. The literature has guidance available on how

to select an appropriate strategy [32] [33] [34] and software
tool [35] [36].

SOSE Phase Related Issues
Planning Matching user requirements and available service

Following iterative Discovery Process
Completing requirements with iterative discovery
Semantic gaps in specification
Non functional Requirements gathering and
assessment

Discovery Matching user requirements and available service
Following automated and dynamic Service
Discovery
Following iterative Discovery Process
Completing requirements with iterative discovery
Semantic gaps in specification
Non functional Requirements gathering and
assessment

Composition Semantic gaps in specification
Web service Dependency discovery

Management Dealing with requirement change and evolution

TABLE II. ISSUES AND THEIR RELATION TO PHASES OF SOSE

SOSE
PHASE

KMP ACTIVITY Related issues

P
la

n
ni

ng

KC Initial composition
design

Matching user requirements
and available service
Ease of iterative Discovery
Process
Completing requirements with
iterative discovery
Semantic gaps in specification
Non functional Requirements
gathering and assessment

KS Codifying created
knowledge

KR User requirements,
results of discovery

D
is

co
ve

ry

KC Queries and results of
discovery

Matching user requirements
and available service
Ease of automated and
dynamic Service Discovery
Ease of iterative Discovery
Process
Completing requirements with
iterative discovery
Semantic gaps in specification
Non functional Requirements
gathering and assessment

KS Codifying created
knowledge

KR Initial composition
design, user
requirements

C
om

p
os

it
io

n

KC Workflow for
composition

Semantic gaps in specification
Web service Dependency
discoveryKS Codifying created

knowledge
KR Results of discovery,

user requirements

M
an

ag
em

en
t

KC Changes in workflow of
composition and their
reasons

Ease of requirement change
and evolution

KS Codifying created
knowledge

KR User requirements,
workflow of previous
composition, results
from previous discovery

TABLE III. KNOWLEDGE MANAGEMENT IN SOSE

Figure 1. KM Activities integrated with SOSE phases

497

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 513 / 612

VI. CONCLUSION AND FUTURE WORKS

According to the results of our survey, KM has been
acknowledged by practitioners to improve the issues and
challenges of RE in SOSE. Currently, the framework has its
foundations on the basis of results obtained from literature
and survey. Our next task is to apply the framework in
experimental setup to see the results it would produce. We
will be conducting an experiment on two projects of SOSE
one with proposed framework and one without it. The
results from both projects will be compared. It will be an
observational field experiment, where we will be evaluating
the checklist of issues of RE in SOSE in both projects to see
any difference in the results. Improvement will be assessed
based on the checklist of issues of RE in SOSE, mainly
based on time and ease of performing the task along with
the phases of SOSE. The data collection units during
observations will be: Accuracy rate of discovery results,
Time of decision for selection of query, Composition
success/failure rate, Time for accommodating service
change request.

REFERENCES

[1] H. P. Breivold and M. Larsson, “Component-Based and Service-
Oriented Software Engineering: Key Concepts and Principles,” in
33rd EUROMICRO Conference on Software Engineering and
Advanced Applications, 2007. pp. 13-20.

[2] W. T. Tsai, “Service-oriented system engineering: a new
paradigm,” in IEEE international workshop on service-oriented
system engineering (SOSE), Beijing, 2005, pp. 3-8.

[3] W. T. Tsai, Z. Jin, P. Wang, and B. Wu, “Requirement engineering
in service-oriented system engineering,” in proceedings of
International Workshop on Service-Oriented System Engineering,
pp. 661–668.

[4] G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A service
discovery framework for service centric systems,” in Proceedings
of the IEEE International Conference on Services Computing
(SCC’05), 2005, pp. 251–259.

[5] A. Arsanjani, “Service-oriented modeling and architecture,” IBM
developer works, 2004.

[6] S. Crew, Service Centric System Engineering—EU/IST Integrated
Project. 2004.

[7] M. Wirsing and M. Hölzl, Rigorous Software Engineering for
Service-Oriented Systems—Results of the Sensoria project on
Software Engineering for Service-Oriented Computing. Springer,
2010.

[8] S. Topouzidou, “SODIUM, Service-Oriented Development In a
Unified framework,” Final report ISTFP6-004559. http://www. atc.
gr/sodium.

[9] A. Arsanjani, L. J. Zhang, M. Ellis, A. Allam, and K.
Channabasavaiah, “S3: A service-oriented reference architecture,”
IT professional, vol. 9, no. 3, pp. 10-17, 2007.

[10] A. Kontogogos and P. Avgeriou, “An Overview of Software
Engineering Approaches to Service Oriented Architectures in
Various Fields,” in 18th IEEE International Workshops on
Enabling Technologies: Infrastructures for Collaborative
Enterprises, 2009. WETICE ’09. 2009, pp. 254-259.

[11] E. Ramollari, D. Dranidis, and A. J. H. Simons, “A survey of
service oriented development methodologies,” in The 2nd
European Young Researchers Workshop on Service Oriented
Computing, 2007.

[12] M. Bano and N. Ikram, “Issues and Challenges of Requirement
Engineering in Service Oriented Software Development,” in Fifth
International Conference on Software Engineering Advances
(ICSEA), 2010, 2010, pp. 64-69.

[13] Q. Gu and P. Lago, “Exploring service-oriented system
engineering challenges: a systematic literature review,” Service
Oriented Computing and Applications, vol. 3, no. 3, pp. 171-188,
2009.

[14] A. Brown, S. Johnston, and K. Kelly, “Using service-oriented
architecture and component-based development to build web
service applications,” interactions, vol. 1, pp. 2-4.

[15] S. Topouzidou, SODIUM, Service-Oriented Development In a
Unified framework, Final report ISTFP 6-004559. .

[16] A. Arsanjani, “How to identify, specify, and realize services for
your SOA,” IBM Corporation, February, 2005.

[17] A. Sehmi and B. Schwegler, “Service-oriented modeling for
connected systems-part 1,” The Architecture Journal, vol. 7, pp.
33-41, 2006.

[18] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization,” in SCC’06. IEEE
International Conference on Services Computing, 2006, pp. 151-
158.

[19] M. P. Papazoglou and W. J. Van Den Heuvel, “Service-oriented
design and development methodology,” International Journal of
Web Engineering and Technology, vol. 2, no. 4, pp. 412-442, 2006.

[20] W. T. Tsai, “Service-oriented system engineering: a new
paradigm,” in IEEE international workshop on service-oriented
system engineering (SOSE), Beijing, 2005, pp. 3-8.

[21] I. Rus and M. Lindvall, “Knowledge management in software
engineering,” IEEE software, pp. 26-38, 2002.

[22] F. O. Bjørnson and T. Dingsøyr, “Knowledge management in
software engineering: A systematic review of studied concepts,
findings and research methods used,” Information and Software
Technology, vol. 50, no. 11, pp. 1055-1068, 2008.

[23] A. Aurum, F. Daneshgar, and J. Ward, “Investigating Knowledge
Management practices in software development organisations–An
Australian experience,” Information and Software Technology, vol.
50, no. 6, pp. 511-533, 2008.

[24] Jianmei Guo, Yinglin Wang, Xijuan Liu, and Hongxia Tong, “A
Service-oriented Integration Model of Knowledge and Business
Processes,” in IEEE International Conference on Networking,
Sensing and Control. ICNSC, 2008, pp. 1674-1679.

[25] D. Huang, Y. Yang, and J. Calmet, “A Knowledge-based Security
Policy Framework for Business Process Management,” in
Proceedings of the International Conference on Computational
Inteligence for Modelling Control and Automation and
International Conference on Intelligent Agents Web Technologies
and International Commerce, 2006, pp. 154-160.

[26] G. Koumoutsos and K. Thramboulidis, “A knowledge-based
framework for complex, proactive and service-oriented e-
negotiation systems,” Electronic Commerce Research, vol. 9, no. 4,
pp. 317-349, 2009.

[27] H. Kojima, K. Funaki, and T. Inoue, “Web Service Systems for
Cooperative Work Support in Knowledge Creation Processes,”
Human Interface and the Management of Information. Designing
Information Environments, pp. 94-103.

[28] Jiang Jichen and Gao Ming, “A process-driven content-oriented
integration framework for knowledge management systems,” in
SOLI ’09. IEEE/INFORMS International Conference on Service
Operations, Logistics and Informatics, 2009, pp. 213-218.

[29] S. Basu, F. Casati, and F. Daniel, “Web service dependency
discovery tool for SOA management,” in IEEE International
Conference on Services Computing, 2007. SCC 2007, 2007, pp.
684-685.

[30] M. Earl, “Knowledge management strategies: toward a taxonomy,”
Journal of Management Information Systems, vol. 18, no. 1, pp.
215-233, 2001.

[31] J. Ward and A. Aurum, “Knowledge management in software
engineering-describing the process,” in Software Engineering
Conference, 2004. Proceedings. 2004 Australian, 2004, pp. 137-
146.

[32] K. Haggie and J. Kingston, “Choosing your knowledge
management strategy,” Journal of Knowledge Management
Practice, vol. 4, pp. 1-23, 2003.

498

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 514 / 612

[33] J. Robertson, “Developing a knowledge management strategy,”
Knowledge Management Column, 2004.

[34] B. Choi and H. Lee, “Knowledge management strategy and its link
to knowledge creation process,” Expert Systems with applications,
vol. 23, no. 3, pp. 173-187, 2002.

[35] M. Lindvall, I. Rus, and S. S. Sinha, “Software systems support for
knowledge management,” Journal of Knowledge Management, vol.
7, no. 5, pp. 137-150, 2003.

[36] M. Lindvall, I. Rus, and S. S. Sinha, “Technology support for
knowledge management,” Advances in Learning Software
Organizations, pp. 94-103, 2003.

APPENDIX

Related Prior Work Specification Discovery Composition Management Issues [10][11]

SeCSE
(Analysis and
Design)

Tools and methods for
testing service specification
and quality
Early Service Discovery
(ESD) to complete
requirements

Supporting
framework for
runtime service
discovery, and
search engine

QoS aware service
composition in order to
solve re planning problem
Architecture-based Service
Discovery (ASD)

Self healing service
composition,
requirement
monitoring
Run Time Service
Discovery (RTSD)

Lack of Industrial case studies
Unable to handle heterogeneous service
composition
Covers analysis and design of SDLC
only
Only workflow technique is used (not
supporting semantic web techniques)

SODIUM
(Complete
Composition Life
Cycle)

XML based Query
language (USQL)
search engine for
USQL, Languages
for Unified
Discovery and
Composition

Heterogeneous service
composition USCL (Unified
Service Composition
Language)
A Methodology for Service
Composition VSCL (Visual
Service Composition
Language)

The project is focused mainly on
providing methods/tools for composition
of heterogeneous web services. There
focus is different and is not from
requirement engineer’s perspective.

SENSORIA
(Complete SDLC)

UML Profile for Service-
Oriented
Systems(UML4SOA)
Ontology for SOAs,
SENSORIA Reference
Modelling Language
(SRML)
Prototype Language for
Business Policies

Mathematical models for
simulation and verification
of service composition

Not evaluated by researchers yet.

IBM Service
identification
method, Service
classification and
categorization
method

Service realization method Covers analysis and design of SDLC
only
SOMA lacks openly available detailed
description of the methodology, which
makes it difficult to further analyze its
capabilities.

SOAF Information elicitation Service
identification and
service definition

Service realization roadmap and
planning
(management)

It has given the framework for whole life
cycle about what to do but details on
guidelines of how to do are missing.
Lack of tool support.

Papazoglou et al
Framework SDLM

Planning and Analysis
(Using methods of BPM,
RUP, CBD)

Service construction, testing,
provisioning, deployment

Monitoring The proposed approach does not provide
enough guidelines for explicit
consideration of service model artifacts.

TABLE IV. COMPARISON AND GAP ANALYSIS OF EXISTING TECHNIQUES WITH PHASES SOSE AND ASSOCIATED ISSUES

Issues from Literature SeCSE SENSORIA SODIUM IBM SOAF SDLM
Matching user requirements and available service Yes No No Yes Yes Yes
Automated and Dynamic Service Discovery Yes No No No No No
Iterative Discovery Process Yes No No No No No
Completing requirements with discovery Yes No No No No No
High Level Language Support Yes Yes Yes No No Yes
Innovation and creativity in RE Yes No No No No No
Requirement change and evolution Yes Yes No Yes Yes Yes
Semantic gaps in specification No Yes No No Yes Yes
Knowledge Management in service-oriented SDLC No No No No No No
Non functional Requirements gathering and assessment Yes No No Yes No No
Web service Dependency discovery No No No No No No

TABLE V. COMPARISON AND GAP ANALYSIS OF EXISTING TECHNIQUES TO THE ISSUES OF RE IN SOSE REPORTED IN LITERATURE

499

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 515 / 612

Brainstorming as a Route to Improving Software Processes

Celestina Bianco
Systelab Technologies

Barcelona, Spain
email: celestina.bianco@systelabsw.com

Abstract-This contribution shows how a “guided
brainstorming” process facilitates the applicability of an
assessment and process improvement model (such as for
example SPiCE or CMMi) to Companies that develop Critical
Software applications. For a Manufacturer that deals with
time-to-market and customer satisfaction, as well as with
regulations and laws, both efficiency and efficacy are
mandatory for regulatory and commercial purposes, and
become strictly related. A Process Improvement is often
necessary for a company that develops and distributes critical
software in order to establish a Quality System, which is a set
of established procedures with measurable and auditable
output. To be effective these procedures must be or become a
natural part of the daily activities. To provide an efficient way
to approach and implement the improvement plan, we suggest
guided brainstorm sessions, which are a good interactive
opportunity for team and formalization building. Although
the concept of brainstorming is not novel in organizations, it is
generally a first approach to discussions that are later
formalized. The use of this technique for definition of critical
requirements or regulated activities is not common. For the
definition of Quality Systems, a top-down approach (definition,
training, roll-out, audit) is generally used whereas
brainstorming can be considered bottom-up approach, from
experience to formalization.

Keywords-improvement; participation; experience;
motivation.

I. INTRODUCTION
This contribution shows how a “guided brainstorming”

process facilitates the applicability of an assessment and
process improvement model (such as SPiCE or CMMi) to
Companies that develop Critical Software applications. It
comes after a study for the definition of a simplified Spice
model for Small Companies and a study about the
application of Spice to Medical Devices.

Critical Software manufacturing companies are generally
of limited dimension, or small / medium departments inside
large Companies. We define as critical, the software that
controls apparatus or activities that may imply direct benefits
or risks for life, security, and the environment. In
applications such as Medical Devices (our specific sector),
the software has generally to provide and handle the overall
protection to guarantee safety and liability of the system.

The Manufacturer deals with time-to-market and
customer satisfaction, as well as with regulations and laws.
The risks derived from the product characteristics and from
the processes applied to design control have to be

considered, in addition to typical project and commercial
risks.

In this context, both efficiency and efficacy are
mandatory for regulatory and commercial purposes, and
become strictly related.

A Process Improvement plan, tailored and tuned to the
needs of the Company, is the main route to reach the trade-
off of the efficacy and efficiency required.

What is an efficient and effective way to approach and
implement the improvement plan for a Small Company? We
suggest that guided brainstorm sessions are a good
interactive opportunity for team and formalization building.

The paper has the following structure. Section II presents
maturity levels of processes following standard models, and
develops brainstorming methods. Section III exposes
potential evolution of topics under survey.

II. PROCESSES FOLLOWING STANDARDS MODELS AND
USE OF BRAINSTORMING METHODS

From SPICE Level 2 to Level 3, from an informal
process to an established process, the advantages of using a
standard reference model for Process Improvement are
multiple:

 First of all, the model is ready and has been proved in a
number of other companies. This may not be feasible as it is,
as the Improvement Plan may need to be implemented with
limited resources, often in parallel with the daily tasks
assigned. This implies that small companies need a specific
approach to make ROI of Process Improvement interesting
for the business.

Process Improvement requests for a company that
develops and distributes critical software [2][3][4] have a
main outcome, namely, the definition and control of a
Quality System [5][6], which is a set of established
procedures with measurable and auditable output. Translated
in SPICE concepts [1], it means that Process Improvement
has capability level 3 as a target.

SPICE capability level 2 “certifies” that a controlled
common process is followed within a Company, with
activities that are carried out in a common way by all team
and project members, with similar outcomes. When a
Company reaches SPICE capability level 3, those processes
that are managed and controlled have been formalized and
established within the Company.

To move from level two to the following levels, the steps
to an effective and efficient improvement for a Small
Company can be summarised as:

500

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 516 / 612

• Select the set of basic processes that are needed for
Design Control and ancillary mandatory activities

• Define the processes
• Define the support for processes (instructions,

templates, checklists, etc.)

A. Define your Quality System
The set of processes to be established is the minimum set

that covers the Project Life Cycle phases, including control
of design, validation, configuration, risk management, and
all others specific to the sector, required to comply with
customer requirements and with regulations.

In a Company that is active in a critical sector, most of
those processes are implicitly defined. If a common approach
is applied through the projects the Company is generally at a
capability level 2. It has to move one step higher by
establishing the processes mentioned above.

1) Guided Brainstorming

To acquire process formalization and description for roll-
out, training and control, we suggest using guided
brainstorming sessions.

Guided brainstorming goes beyond the purpose of
allowing “everyone to say his own opinion freely about a
subject”. Applied as a working tool, it is more structured:

It is a guided meeting attended by people involved with
the subject, often experts themselves.

Each attendee replies with 3 to 5 answers or suggestions
to each of the questions specified in the agenda of the
meeting. Such as for example: “list which are, in your
opinion, the 3 main characteristics of xxx”.

Attendees get 10 to 15 minutes to prepare and write the
answer separately.

The answers are then presented and explained.
They are rated and ranked for popularity (i.e. given a

higher rating if more attendees gave same or similar answers
then ranked by the resulting score).

The first arguments in the list, the highest rated, are then
refined and considered in detail. The result of the discussion
is recorded.

For example, if the question was “Which are the 3 main
activities of process X?”, the three most rated proposed
actions are detailed in terms of responsibility, flow, inputs,
outputs, etc.

A guided brainstorm is called with the purpose of

describing and building a process or sub-process or
supporting material for the required phases, with the
contribution of all the attendees. The moderator of the
meeting has prepared a minimum set of items that the list of
answers HAS to contain, and will guide the participants to
include them. The approach is based on the belief that the
process is implemented and implicitly defined in the
majority of the parts, and the people involved are the best
candidates to describe, analyze and formalize it. The
moderator will help to fill in the gaps.

A step forward in a small company, equally relevant after

the identification and definition of processes, is to define

templates and practical instructions which will easily and
cost-effectively carry out the tasks. Templates and
instructions can also be the result of brainstorm sessions,
generally with a smaller number of participants.

2) Advantages

What are the advantages of the technique?
In the belief that in the Company processes are

implemented, in order to reach a higher capability level and
compliance with regulation, they must be formalized in
procedures, and so, becoming repeatable and controllable.

Brainstorm meetings are used to gather the practices,
share and formalize with the advantage that:

• All are protagonists and motivated
• The base is a company culture already in place
• Sharing is not imposing
• Changes and up-grading of the practices, if needed,

are easily accepted
• Roll-out of the process will not find resistance as it is

accepted “by definition” by people that contributed
to build it

• It is also an economical saving, as you don’t have to
call in experts to define processes and train on them

3) Drawbacks

This technique is not a panacea; it presents some
drawbacks. Warnings to be considered are:

• As it is based on the use of existing knowledge and
experience, it can be effective only if the activities to
formalize are already part of the culture and daily
experience.

• Instead, if one wants to apply the technique to
introduce new concepts, some extra technique and
expertise is required. The outcomes of the
brainstorm have to be reviewed and revisited after a
pilot experience, often happening for processes such
as risk management and metric collection. In these
cases brainstorming becomes a good training
technique.

• The strength of this approach is its usage and sharing
of experience. It is also a weakness as the quality
system generated is recognized by the authors but
does not have the “authority” of a recognized
standard for their colleagues (no man is a prophet in
his own land!). Mapping to the standard used as a
reference to guide the brainstorm will be useful.

• There is a time cost involved in the preparation of
the meetings and formalization of the results, which
is partially avoided by the use external experts. On
the other side the ROI is high in terms of training
and roll-out.

• The outcome is not accepted without time limit and
has to be periodically updated even if it may still be
valid because:

• People change and so does the approach
• People need to be protagonists and new people need

to be part of a revision to accept their own

501

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 517 / 612

procedures as did the team defining the original
system.

Based on the analysis of the advantages and draw backs,
and on the experience within our Company and companies
with which we have worked using the method, we believe
that the approach is appropriate and of high ROI in
companies with real internal practical know how on the
activities to be organized and formalized in processes. Most
of the draw-backs have simple mitigations and the others are
in fact the correct stimulus for continuous improvement and
action plans.

Once the Company reaches the level of compliance with
regulation, continuous process improvement will focus on
improving efficiency. Regulatory compliance is required to
stay in the business.

The above brings us to the conclusion that through the
initial scope of the technique, small companies, and with
expansion larger ones, gain the advantages of being people
and company-culture centred.

If the company is entering a new sector or business and
the participants in brainstorming sessions do not have
specific previous experience to share and formalize, the
technique can still give good results. Advantages such as
motivation, participation and buy-in are still relevant. In this
case it will be necessary to acquire the help of a moderator
who is expert in the sector of the application, able to guide
and focus the questions and answers for the purpose of
getting compliance with the requirements.

B. Examples

1) Example 1 – Brainstorming to define SW Design
Process

a) Rules:
• Each participant receives two questions then is

requested to give 1 to 5 replies to each question
• There will be 15 min. for individual answering
• The answers will be collected in a round table

session. Rating of an answer is equal to the number
of people giving the same one

• The 5 most rated answers will be discussed to
generate a draft procedure

• The total time of the meeting will be two hours
• The moderator will distribute minutes
b) Questions:
• list 5 major steps in a controlled Software

Development
• Process list 5 major activities to support and keep a

project under control

TABLE I. ANSWER QUESTION 1

What Rating
Requirements IIIII
Design IIII
Project Planning III

Risk Analysis III
Integration and Test III
Test Planning II
Test Protocol definition I
Release control I

TABLE II. ANSWER QUESTION 2

What Rating
Risk Management IIII
Release Planning III
Defect Management III
Change Management III
Configuration Control II

A draft SW Design Procedure was defined based on the

first table, defining tasks for each major step, responsibility
and templates, based on current practices and suggestions for
improvement. The second table defines the supporting
activities and required metrics. Later on, parts of the SW
design flow were detailed in dedicated procedures (for
example requirement management, testing etc.)

2) Example 2 – Brainstorming to define SW Testing

Process
a) Rules : same rules
b) Questions:
• list 5 major SW Testing Tasks
• list 5 mandatory sections of a SW Test Plan
• list 5 mandatory sections of a SW Test Case

TABLE III. ANSWER QUESTION 1

What Rating
Test Run IIIII
Design Tests II
Planning Test II
Test Report II
Defect Management II
Coverage Metrics --

TABLE IV. ANSWER QUESTION 2

What Rating
Features to be tested III
Responsibility II
Strategy II
Test Environment II
Version description --
Pass / Fail criteria --
Defect Metrics --

As the participants DO NOT have experience in

organized formal testing, the third questions were even
harder to reply to. The moderator enters the meeting with a
pre-prepared list of answers expected and leads the group to
understand which of the answers are out of scope, and which
are missing. The tables of answers are completed and

502

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 518 / 612

corrected and on this basis the brainstorm continues as
shown in the previous example.

C. Lessons learnt
The method has been applied initially in our Company,

when the Software department contained less than 20 people,
and the testing team was starting with a group of 5, including
myself.

The Company had defined a Quality System based on
international standards that applied to another division,
working for Space missions. The Quality System was not
tailored to the new department, and too complicated for a
small team. On the other side, the people in the new
department had good experience of Software engineering.
Use of the brainstorming technique allowed us to define in a
few months the nucleus of the Quality System that later
became the base for the current one. The Quality System
developed on this nucleus applies to a Company currently
able to sell in international markets and to comply with
different regulations and standards.

The resistance in following procedures common to many
Software Engineers has been overcome by the fact that
everyone was in some way the author of the procedure, and
because they were aware of the requirements beneath each
process.

The method was then applied in other companies which
either wanted to gain more efficiency or comply with
regulation. The two most successful examples involved the
definition of the basic software design processes in a
Company developing economically critical software, and the
creation of the team and processes for Software verification
and validation in a Company developing Medical Devices. In
both Companies the Software team was unstructured and
parts of the projects were assigned to consultants.

Of major relevance for the first company was the
formalization of the flow, in order to describe it to the
external partners and monitor the progress and quality.

For the second it was mandatory to define the process of
testing to be able to check internal and external parts and to
demonstrate to Regulatory Bodies and customers the quality
of the system and the compliance with regulations.

Both companies were aware that an efficient process had
to be simple. They matched their goal defining a Quality
System based on their experience, with the help and review
of an expert.

III. EVOLUTION OF THE METHOD FOR EVOLUTION OF THE
QUALITY SYSTEM

In our Company the roll-out of the first Quality System
defined was relatively simple with low resistance, as
described above but in five years difficulties appeared.

The processes defined initially had been progressively
updated to adapt them to the new standards, practices,
projects. At that point the main problem was not the
adequacy of the process, it was that the resistance to apply it
had increased.

The people who had defined the initial nucleus are no
longer employed in the company, or have been assigned to
other roles.

Two years ago we decided to revisit all the defined
processes and add new ones. We used approximately the
same technique in a slightly different format, adapted to the
current dimension of the company and to the variety of
services. Brainstorming was used in larger groups to gather
needs and experience and details then discussed in small
working groups.

We defined a set of procedures and activities similar to
the original ones, produced by the new owners of the
processes.

REFERENCES
[1] ISO/IEC FDIS 15504-2 Software engineering — Process assessment

— Part 2: Performing an Assessment, Part 5: An exemplar Process
Assessment Model

[2] FDA 21 CFR 820 - Quality System Regulation US Food and Drug
Administration, 1997

[3] FDA General principles of software validation. US Food and Drug
Administration, 2002

[4] Medical Devices - Directive 2007/47/EC on Medical Devices,
European Parliament and Council, 2007

[5] ISO 9000:2008 Quality management systems - Requirements
[6] ISO 13485:2003 Medical devices - Quality management systems -

Requirements for regulatory purposes

503

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 519 / 612

Web-Based Focus Groups for Requirements Elicitation

Carla Farinha

IST / Opensoft, S.A.

Lisboa, Portugal

carla.farinha@opensoft.pt

Miguel Mira da Silva

IST / INOV

Lisboa, Portugal

mms@ist.utl.pt

Abstract—Requirements determine how an Information

System should operate. Requirements Engineering errors

become failure reasons of the Information System. In this

paper we propose a Web-based focus group method to

overcome many problems of the requirements elicitation

activity. Collaboration is promoted in discussions involving all

stakeholders to achieve consensual decisions. The proposal was

evaluated with two real-world experiments the results of which

reveal the potential of the method. The successful

implementation of the proposed method can avoid many

limitations of the requirements elicitation traditional methods,

such as misunderstandings between stakeholders and analysts.

Keywords: Requirements Elicitation; Focus Groups;

Collaboration Tools

I. INTRODUCTION

Requirements are the heart of Information Systems
Development since the earliest days of computing [1]
because they determine how the system will operate [2], [3],
[4]. Nevertheless, errors on the elicitation activity still
represent major causes for the failure of these systems [5].

Requirements elicitation is influenced by many factors,
including contextual, human, economic, and educational
factors. It is also constrained by issues such as the specific
process and project, the difficulties in communication and
understanding between stakeholders and analysts, the quality
of identified requirements, stakeholders’ conflicts, and the
experience and practice of the analyst [4]. Moreover,
stakeholders should identify real needs but they may not
know what they need and analysts may not understand
business concepts [6], [7], [8]. Errors made at this activity
cost around 80-100 times more if discovered at the
implementation stage [1] and are very hard to fix [9].

The social nature of Requirements Elicitation has been
leading to the usage of social sciences approaches [4],
including ethnography [10], [11] interviews [3], [12] or
group work [13-17].

We propose a web-based Focus Groups method to
overcome major problems of Requirements Elicitation [15].
Requirements are discussed between all stakeholders that
want to contribute with ideas. The goal is to find a global
overview of real needs and to negotiate incoming conflicts.
Finally, identified needs are resumed in a report according to
their relevance. Our proposal was evaluated with Action
Research with a real problematic situation, developing skills
of organizational members to overcome that situation, and
adding scientific knowledge [18, 19].

We present recent trends of requirements elicitation
methods and relate collaboration tools in Section 2. Section 3
describes our proposal and research, including our
experiments. Finally, Section 4 discusses concluding
remarks and future research work.

II. REQUIREMENTS ELICITATION

Requirements Elicitation is a critical activity of the
Requirements Engineering process [4, 20] for many reasons.
First, the activity relies on a complex and error-prone
communication between stakeholders and analysts. Second,
stakeholders are not always clear about what they want or
need. Finally, analysts may not understand the business
concepts [1, 7, 8].

The communication nature of the Requirements
Elicitation activity and its social context is incontestable [6,
8, 12]. As such, methods for this activity are deriving from
social sciences’ methods [4].

A. Methods from Social Sciences

Zowghi and Coulin [4] surveyed aspects of techniques,
approaches and tools for requirements elicitation and
aggregated them in 8 groups that cover the whole spectrum.
The groups that actively involve stakeholders are
ethnography, interview and group work, considered as
alternative to each other.

Ethnography is the observation of people in their natural
environment [10, 11]. Crabtree, Nichols, O’Brien,
Rouncefield and Twidale [11] studied this method and
reveal limitations, including risk of incorrect interpretation
[10], impossibility of identifying new requirements [20] or
difficulty of generalizing results. Sommerville [21] says that
ethnography is incomplete, being useful as a complement.

Interviewing is an informal interaction where analysts
gather requirements asking questions about the system in use
and the system to be [4, 9, 21]. Davey and Cope [3] studied
interviews as best practice for requirements elicitation but
they admit that more research is needed about the nature of
conversations in the field to bring successful results. Goguen
and Linde [12] evaluated techniques for eliciting
requirements, including interviews, and concluded that this
method is limited by the stimulus-response interaction and
by the need of participants to share basic concepts and
methods. Sommerville [21] states that interviewing is
unsuitable to identify organizational requirements and
constraints, but could be used as complementary method.

504

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 520 / 612

Group work, such as brainstorming, joint application
development, creativity workshops or focus groups, gathers
stakeholders to collaborate reaching solutions about an
identified problematic situation. Typical limitations of group
work are dominant participants, biased opinions, high
logistic costs and gathering stakeholders [4, 22].

Concluding, ethnography is incomplete on covering the
fundamental types of activities of requirements elicitation
and has relevant limitations. As for group work and
interviews, the group work have many advantages since they
can obtain a more complete overview of the system, richer
information and resolution of conflicts through stakeholders’
discussions rather than with individual interviews [4].

B. Group Work Methods

There are many group work methods, including
brainstorming and workshops, which includes JAD,
creativity workshops and focus groups.

Brainstorming joins stakeholders in informal discussions
to rapidly generate ideas without focusing on any one. It is
used to develop the preliminary mission statement for the
project but not to explore requirements [4].

Joint Application Development (JAD) discussions focus
needs of business and users rather than technical issues to
make decisions. JAD differs from brainstorms since main
goals of the system are already established before the
discussion [4]. Davidson [14] studied 3 organizations using
JAD and concluded that, although there are improvements in
systems development, JAD is difficult to sustain in practice.
Coughlan [2] also presented studies of JAD in practice,
demonstrating that JAD forces a rigid user-designer
interaction, is weak at acquiring knowledge and complicated
to use in practice.

Creativity workshops encourage creative thinking to
discover and invent system requirements [23]. Maiden and
Robertson [23] used creativity workshops to discover
stakeholder and system requirements, concluding that the
overall process was successful but not all of the workshop
sessions.

Focus Groups are discussion groups facilitated by a
specialist that follows a guide to orientate the discussion
around key questions [24, 25]. The preparation of the method
requires defining groups (size and composition) and
procedures (number of sessions and moderator guide). This
method differs from other group-based methods because of
the group special characteristics: homogeneous and focused
on key topics to collect inductive and natural information
[24]. Engelbrektssonn, Yesil and Karlsson [17] studied
methodological considerations with focus groups,
concluding that an efficient choice of participants and
mediating tools are also important to enhance the
requirements elicitation activity. Farinha and Mira da Silva
[16] applied Focus Groups in real-world experiments to
better elicit requirements of information systems, concluding
that stakeholders discuss different perspectives about the
system as a whole and collaborate to formalize the
requirements according to their needs but dominant users
and analysis costs were serious limitations. Kasirun and
Salim [26] evaluated a requirement elicitation tool based on

a forum that employed Focus Groups, demonstrating that a
web-based tool supports shared involvement and eases
requirements elicitation but further research is needed to
prove results.

Many researchers have been studying requirements
elicitation problem using social sciences’ methods,
particularly group work. However, the problem still exists
and much more empirical work is needed [2, 3].

C. Collaboration Tools to Elicit Requirements

The intense communication of requirements elicitation
[7, 22], demands a high level of collaboration [27]. However,
it is difficult to gather stakeholders at the same time and
place [1, 9, 28]. This is why collaboration tools have been
applied to requirements elicitation [4, 27].

Collaboration tools allow the cooperation of all
stakeholders in several phases of the software process,
including in requirements engineering. Choosing one of the
wide range of collaboration tools demands defining types of
tasks to accomplish, making an inventory of the existing
software and hardware infrastructures and knowing the
experience and capabilities of the team [27].

Herbsleb [29] studied a desired global development
considering coordination as a key. He considered challenges
in several areas, including eliciting and communicating
requirements, concluding that is needed a systematic
understanding of what drives the need to coordinate and
effective mechanisms for bringing.

Whitehead [27] studied goals of collaboration in software
engineering and existing collaboration tools, particularly
web-based tools. He realized that there is no integrated web-
based environment to cover the entire development lifecycle.
He also concluded that is important to understand the
collaborative nature of software engineering combined with
low costs of high capabilities of communication platforms to
improve collaboration in the creation of software artifacts.

III. PROPOSAL

In this paper we propose to address requirements
elicitation problems, including difficulties on gathering
stakeholders, misunderstandings between stakeholders and
analysts, quality of identified requirements and stakeholders’
conflicts. In order to do so, our key concerns were allowing
an asynchronous and distributed communication; avoiding
interpretation of results by analysts; inviting all stakeholders
to contribute with their ideas; and obtaining agreement of all
stakeholders about the identified needs.

To accomplish these challenges, we propose an effective
requirements elicitation method, based on a collaboration
tool that integrates the Focus Group method. Before using
the method, boundaries of the system and key discussion
topics must be defined by project managers. Finally, a report
with the results must be delivered to project managers.

Although many proposals of collaboration tools with
focus groups exist, we introduce distinctive features. One of
the most important features is opening the discussion to all
stakeholders, allowing the input of all necessary parts of the
problem. We also added a voting system, which is not
usually applied to focus groups. We compared a focus group

505

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 521 / 612

with anonymous contributions versus a focus group with
identified contributions. Finally, we evaluated our proposal
in a real environment.

In order to be successful, we assume that all stakeholders
are interested in the Information System and want to
contribute with ideas. We also assume that questions to
discuss are defined by client project managers that know the
limits of their desired solution. Finally, we believe that
stakeholders actually take advantage of the asynchronous
communication, which allows thinking on the problem,
understanding other perspectives and generate new ideas to
contribute again.

Our requirement elicitation method demands defining
limits and goals with project managers conduct the focus
group and resume results. We propose the following steps:

1) Define scope and questions

2) Prepare the focus group in a collaboration tool

configuring desired properties (anonymity, navigation, etc.)

3) Conduct the focus group

4) Report results

A. Define scope and questions

This step intends to define limits of the desired solution
and key questions to address in the focus group. Analysts
have to meet with project managers to define these limits and
the questions they find important to discuss.

B. Prepare the focus group

The focus group must be configured in a collaboration
tool according to desired and adequate features. For
example, shall the participants be identified or anonymous?
Is there a navigation rule to answer the questions? How shall
participants give their contributions?

In this experiment, we compared two approaches:

1) Comment-oriented forum, based on comments.

2) Vote-oriented forum, based on comments and votes.

The comment-oriented forum was configured in a self-

hosted blogging tool. Each page had a question where
stakeholders could comment. Following the orientations of a
regular focus group moderator guide, these pages had a
sequential order. Participants were advised to navigate and
comment according to that order in the first time but they
could freely navigate and comment any page. Opening and
ending questions were excluded because they wouldn’t make
sense in an online method. Anonymity was integrated in this
forum so that stakeholders could freely express opinions.

The vote-oriented forum was configured in a question &
answer tool. Only key questions from a regular focus group
were initially introduced to reduce the extensiveness of the
time spent to answer. Participants could comment questions
and others’ ideas vote on posted ideas and introduce new
questions. No navigation recommendations were provided.
Anonymity wasn’t integrated in this approach.

C. Conduct the focus group

The administration of the forums had to moderate the
discussions. This moderation required to follow comments

and, if needed, delete comments, encourage discussions or
probe for more information.

When conflicts of interests rise and it is impossible to
satisfy different identified needs, participants shall be
advised to resolve the disagreement. Whether they all agree
with a solution becomes irrelevant after all because the most
voted need is chosen.

D. Report Results

In order to avoid interpretation of results, analysts shall
list identified needs and organize in a descending order. This
order must be according to the number of positive comments
asking for the need or to the positive votes.

IV. EVALUATION

Our proposal was evaluated on an enterprise of
technological solutions, mainly e-government solutions.
There are 60 employees that are from 23 to 40 years old and,
the majority, are IT savvy.

The desired Information System was an in-house
Information System to manage activities. The enterprise had
an old solution that was outdated and not aligned with
current needs. The modules they wanted to improve were
time reporting, project management and financials.

Both forums defined in subsection B of the proposal were
evaluated for a period of time. The comment-oriented forum
was applied to discuss the time reporting module while the
vote-oriented forum was applied to discuss the other two
modules. Table I resumes the features of these forums.

TABLE I. FEATURES OF THE FORUMS

Forum
Comment-

Oriented
Vote-Oriented

Module

Feature
Time Reporting

Project

Management
Financials

Participation Comments
Comments

and Votes

Comments

and Votes

Period 20 days 20 days 20 days

Initial

Questions
8 3 3

Sequential

Navigation
Yes No No

Anonymity Yes No No

All employees have to report time and, as such,

stakeholders of the time reporting module are all of the
employees. As with project management and financials
modules, only project managers and directors have to
coordinate these activities. As a result, only the 14
employees that are project managers and directors were
invited to discuss these two modules.

V. RESULTS

The main results are presented in Table II. The comment-
oriented forum obtained around 10.25 comments per
discussion topic and 15 identified needs. Anonymous
comments made it impossible to measure the average
comments per user and no vote system was integrated. Some

506

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 522 / 612

participants posted figures and graphics as examples of their
perspectives.

The vote-oriented forum obtained, per discussion topic,
around 18 comments in the project management module
discussion and 11.30 comments in the financials module
discussion. No other discussion topics were introduced by
the participants. The average comments per user were 4.79 in
the project management module discussion and 1.36 in the
financials module discussion. The vote system verified
around 7.14 votes per user. Finally, 33 needs were identified
for the project management module and 11 needs for the
financials module.

TABLE II. MEASURED INDICATORS

Forum
Comment-

Oriented
Vote-Oriented

Module

Characteristic
Time Reporting

Project

Management
Financials

Comments per
topic

10.25 18 11.30

Comments per

user

- 4.79 1.36

Votes per user - 7.14

Identified

Needs

15 33 11

The number of comments during the discussion period
was also measured. Figure 1 shows that the comment-
oriented forum had a regular participation over time.
However, the vote-oriented forum had a higher participation
on the last days of the discussion, particularly in the last
three days.

Figure 1. Participation during the Discussion Period.

The resolution of conflicts was performed by participants
themselves. When conflicts of interests rose and it was
impossible to satisfy different identified needs, participants
were advised to resolve the disagreement. The discussion
with all stakeholders allowed them to understand the other
perspective. More support and justifications were given to
one of the perspectives and the most approved was finally
agreed.

After closing the discussion period, employees were
asked about their participation, including reasons that lead
them to participate or not. The received feedback involved
30% of the participants invited to the comment-oriented
forum and 50% of the participants invited to the vote-
oriented forum. The results are presented in Table III.

TABLE III. FEEDBACK

Type Feedback

Nonparticipation
Reasons

No ideas, lack of time to participate and recent
employees with no experience

Positive Aspects Extensive to all employees, anonymity, simple

participation rules, structured discussion and
open comments about discussion topics

Improvements Present just key discussion topics, give rewards

to participants, support the vote system to avoid
repeating ideas, suppress suggested answers, no

anonymity to avoid unreasonable censures

No transcriptions of the discussion were needed since it

was already written. Identified needs were resumed in a
descending order and included in a report delivered to
project managers. Priorities were defined according to the
number of references in the comment-oriented forum and to
the number of votes in the vote-oriented forum

VI. LEARNING

Stakeholders’ feedback confirms that this initiative was
considered useful so that they could express their opinions.

Results show a higher participation rate in the vote-
oriented forum although this forum involved only 14
stakeholders. Votes also counted as participations, which
may explain this result. Typically, people avoid spending
time on writing or exposing detailed ideas and the
participants’ final feedback for the voting system highlights
this fact. It is easier to vote than to write comments.

Although we verified a higher participation rate in the
vote-oriented forum, we consider that both forums had a fair
participation rate. The contributions were rich, since they
were always justified and, some included uploads of hand-
made illustrations to explain and substantiate the
participant’s idea. As such, the comments were not only
quantitatively but also qualitatively meaningful.

The asynchronous communication aspect of this tool
allowed participants to express perspectives along time
whenever they could. Also, the online tool allowed users to
contribute with their ideas from wherever they were.

We also verified that users of both forums did not answer
to all of the discussion topics. The topics with high
discussion rates were key discussion topics in the comment-
oriented forum and difficulties questions to judge the
existing modules in the vote-oriented forum. This not only
reveals that stakeholders prefer to directly answer key
questions, but also that people are critical since there were
more criticisms than comments about positive aspects or new
ideas. Criticisms are also useful to understand what is wrong
and should be improved.

The identified needs were mostly technical requests. For
example, users wrote that the existing modules are too slow,
that some buttons should be available, that certain

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19

Time Reporting Project Management Financials

Days

#

507

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 523 / 612

information is needed or that a particular navigation would
be better than the existing one. This can easily be explained
by the participants’ profiles: almost all participants are
computer engineers and, as such, they understand the
problems behind the existing modules and tend to express
technical opinions. This is clear since the comments of less
technical users were also less technical.

Anonymity promoted free answers in the one hand, but it
lead to less participation and conflicts in the other hand.
Anonymity brought unexpected criticisms that otherwise
could not have been revealed. These criticisms also brought
conflicting perspectives that were discussed, always reaching
consensus. However, the forum without anonymity had more
comments per user indicating a commitment sense of
identified users. The lack of conflicts may mean that users
agreed to each other or that they did not feel free to disagree.
Some participants believe that anonymity allows free
expression of ideas without fear of consequences while
others think that anonymity brings unreasonable criticisms.

Figure 1 shows that the comment-oriented forum had
more regular participation than the vote-oriented one, which
had more participation at the end of the period. This fact may
be explained because votes also count as participation and at
the end of the period there were more comments to vote.
Actually, this voting system helps users not to repeat ideas
and to prioritize needs. It is also possible to vote when
comments are available, incrementing the participation rate.

Most important, suggested needs were integrated in a
new version of the time reporting module and the overall
feedback of stakeholders was positive. Moreover, they use
the module more frequently, with fewer problems and
without spending much time. These results prove that our
method helps overcoming limitations, such as difficulties in
communication and understanding between stakeholders and
analysts, quality of identified requirements, stakeholders’
conflicts, and the experience and practice of the analyst.
Also, this method overcomes well know problems of group
work methods, including dominant users with no limitations
of time for each participant; gathering stakeholders at the
same time and place with an online tool; generalization of
results with the involvement of all stakeholders; and
simplification of the analysis since no transcriptions or
interpretations are needed.

VII. CONCLUSION

Stakeholders approved the initiative of freely expressing
ideas in a simple and structured online forum. They prefer
the voting system than repeating others’ ideas and the
discussion of key questions than starting with trivial and
irrelevant discussion topics. Anonymity on the one hand
helps users to make more censorious comments but, on the
other hand, seems to take out the participation commitment
and to discourage the disagreement of ideas. As such, some
participants would prefer anonymity while others think that
comments should be identified to avoid unreasonable and
thoughtless criticism. We conclude that this proposal
allowed quickly eliciting needs from all stakeholders.

After implementing the suggested needs for the time
reporting module, the results prove that the method was a

success. Stakeholders are pleased with the new system and
report their time more frequently, without mistakes or
complaints. As such, we can conclude that the proposed
method was a success.

Our method seems more effective over existing methods
with our new features. The most significant feature is
opening the discussion to all stakeholders. With this features,
we wanted to ensure that inputs of important requirements
would not be forgotten. Also, our proposal added a voting
system and compared the anonymity aspect in two different
approaches. This is also an unusual configuration of
collaborative tools, particularly those who integrate focus
groups as an elicitation method. These features bring
effectiveness to the method by allowing a richer overview of
the system with inputs of everyone, ordered needs with
priorities given by participants and free expression with the
anonymous approach or commitment sense with the
approach with identified participants.

The major concerns we wanted to address, allowing an
asynchronous and distributed communication; avoiding
interpretation of results by analysts; inviting all stakeholders
to contribute with their ideas; and obtaining agreement of all
stakeholders about the identified needs, were met. As such,
the problems we identified to resolve were actually
addressed.

This paper proves that a collaboration tool based on focus
groups allows eliciting requirements more quickly than the
regular focus group of our previous experiment. This fact is
easily understood since our previous effort required weeks to
schedule a meeting with key stakeholders at the same time
and place and more weeks to analyze results, transcribing the
sessions and examining the information.

This paper also proves that a collaboration tool
overcomes many problems of regular focus groups and
elicitation methods. For example, communication between
stakeholders and analysts is eased with this tool. Quality of
identified requirements is higher since discussion provides
richer information. Stakeholders’ conflicts may be resolved
in discussion with other participants. Dominant users are no
longer a problem since time spent with the contribution of a
participant does not steal time of another participant.
Gathering stakeholders at the same time and place is no
longer a problem as well.

Note that the demonstrated improvements are not meant
to apply in general domains but in the maintenance/evolution
of an existing Information System.

More research work is needed to confirm these results in
other projects. The feedback of stakeholders also suggests
other aspects to include in a future research. First, rewards to
participants should be given to encourage participation.
Second, only key discussion topics should be initially
provided but allowing to add new discussion topics. Third,
the voting system should always be present. Fourth,
suggested answers should be removed so that users do not
feel biased to answer.

508

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 524 / 612

ACKNOWLEDGMENT

We would like to thank the participants in the presented
experiment as well as the managers of the organization
which made the experiment possible.

REFERENCES

[1] D. Avison and G. Fitzgerald, Information systems

development: methodologies, techniques and tools. New

York, NY: McGraw-Hill, 2006.

[2] J. Coughlan and R. Marcredie, "Effective communication in

requirements elicitation: a comparison of methodologies,"

Requirements Engineering, vol. 7, pp. 47-60, 2002.

[3] B. Davey and C. Cope, "Requirements elicitation - what's

missing?," in Issues in Informing Science and Information

Technology. vol. 5, 2008, pp. 543-551

[4] D. Zowghi and C. Coulin, "Requirements Elicitation A

Survey of Techniques, Approaches and Tools," in

Engineering and Managing Software Requirements, A.

Aurum and C. Wohlin, Eds. Berlin: Springer, 2005.

[5] T. S. Group, "The Chaos Report," 2009.

[6] A. Al-Rawas and S. Easterbrook, "Communication problems

in requirements engineering: a field study," in First

Westminster Conference on Professional Awareness in

Software Engineering London, 1996.

[7] J. F. M. Burg, Linguistic instruments in requirements

engineering. Amsterdam: IOS Press, 1997.

[8] B. Nuseibeh and S. Easterbrook, "Requirements engineering:

a roadmap," in Conference on The Future of Software

Engineering 2000, 2000, pp. 35-46.

[9] R. Hossenlopp and K. B. Hass, Unearthing business

requirements: elicitation tools and techniques. Vienna:

Management Concepts, 2007.

[10] A. Crabtree, "Ethnography in participatory design," in 1998

Participatory Design Conference Seattle, 1998, pp. 93-105.

[11] A. Crabtree, D. M. Nichols, J. O’Brien, M. Rouncefield, and

M. B. Twidale, "Ethnomethodologically-informed

ethnography and information system design," Journal of the

American Society for Information Science, vol. 51, pp. 666-

682, 2000.

[12] J. A. Goguen and C. Linde, "Techniques for Requirements

Elicitation," in Requirements Engineering, S. Fickas and A.

Finkelstein, Eds.: IEEE Computer Society, 1993, pp. 152-

164.

[13] W. S. Davis and D. C. Yen, "Joint application design

(JAD)," in The Information System Consultant's Handbook:

CRC Press, 1998.

[14] E. J. Davidson, "Joint Application Design (JAD) in practice,"

Journal of Systems & Software, vol. 45, pp. 215-223, 1999.

[15] E. W. Duggan and C. S. Thachenkary, "Supporting the JAD

facilitator with the nominal group technique," Journal of

Organizational and End User Computing, 2004.

[16] C. Farinha and M. M. d. Silva, "Focus Groups for eliciting

requirements in information systems development," in 14th

UK Academy for Information Systems, 2009, p. 20.

[17] P. Engelbrektsson, Ö. Yesil, and I. C. M. Karlsson, "Eliciting

customer requirements in Focus Group interviews: can

efficiency be increased?," in 7th International Product

Development Management Conference Belgium, 2000.

[18] J. Bhattacharjya and J. Venable, "An Action Research

Approach to Strategic Information Systems Planning in a

Non-profit Organization," in 3rd International Conference

on Qualitative Research in IT and IT in Qualitative Research

Brisbane, Australia, 2006.

[19] D. Coghlan and T. Brannick, Doing Action Research in your

own organization, 3 ed. Los Angeles: SAGE Publications

Ltd, 2009.

[20] M. Sadiq, M. Shahid, and S. Ahmad, "Adding thread during

software requirements elicitation and prioritization,"

International Journal of Computer Applications, vol. 1,

2010.

[21] I. Sommerville, Software engineering, 6 ed. Harlow,

England: Pearson Education, 2001.

[22] J. L. Maté and A. Silva, Requirements engineering for

sociotechnical systems. Hershey, USA: Idea Group Inc (IGI),

2005.

[23] N. Maiden and S. Robertson, "Integrating creativity into

requirements processes: experiences with an air traffic

management system," in 13th IEEE International

Conference on Requirements Engineering Paris, 2005, pp.

105 -114.

[24] R. A. Krueger and M. A. Casey, Focus groups: a practical

guide for applied research. California: SAGE, 2000.

[25] J. Kitzinger, "The methodology of Focus Groups: the

importance of interaction between research participants,"

Sociology of Health & Illness, vol. 16, pp. 103-121, 1994.

[26] Z. M. Kasirun and S. S. Salim, "Supporting collaborative

requirements elicitation using Focus Group discussion,"

International Journal of Software Engineering and its

Applications, vol. 3, 2009.

[27] J. Whitehead, "Collaboration in software engineering: a

roadmap," in Future of Software Engineering, 2007. FOSE

'07, Minneapolis, 2007.

[28] D. Apshvalka, D. Donina, and M. Kirikova, "Understanding

the Problems of Requirements Elicitation Process - A Human

Perspective," in Information systems development:

challenges in practice, theory, and education. vol. 1, C.

Barry, K. Conboy, M. Lang, G. Wojtowski, and W.

Wojtowski, Eds. New York, NY: Springer, 2008, p. 600.

[29] J. D. Herbsleb, "Global software engineering: the future of

socio-technical coordination," in Future of Software

Engineering, 2007. FOSE '07, Minneapolis, 2007, pp. 188-

198.

509

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 525 / 612

Mapping Architectural Concepts to SysML Profile for Product Line Architecture
Modeling

Shahliza Abd Halim, Mohd Zulkifli Mohd Zaki, Noraini Ibrahim, Dayang N. A. Jawawi and Safaai Deris
Software Engineering Department

Faculty of Computer Science and Information Systems,
Universiti Teknologi Malaysia,
81310 Skudai, Johor, Malaysia.

shahliza@utm.my, zulkiflizaki@utm.my, noraini_ib@utm.my, dayang@utm.my, safaai@utm.my

Abstract— There are different proposals for modelling Product
Line Architecture. To model the Product Line Architecture
(PLA), the most important elements are the explicit treatment
of its commonality and variability representation. This paper
concentrates on the use of Architecture Description Language
(ADL) and its integration with object oriented modeling, for
the representation of architecture in order to model PLA
architecture construct and variability construct effectively.
Consequently, the possibility of integration which involves the
mapping between the xADL and SysML a UML2 based profile
extension to enable the profile to be incorporated to an existing
UML commercial tool was investigated. The result of the
mapping is proposed extension to SysML profile. The profile is
then applied to a case study of Autonomous Mobile Robot
Product Line. Based on the case study evaluation, the profile
has shown a significant improvement to the existing SysML for
modelling PLA.

Keywords-product line architecture (PLA); autonomous
mobile robot (AMR),architecture description language, xADL

I. INTRODUCTION
Product line architecture (PLA) is the first artifacts

which realise the requirements for the Software Product
Line (SPL) and also is the abstraction for detail design. PLA
modelling differs from other single system architecture
modelling where PLA should be able to express
commonality and variability explicitly in its architecture.
Thus, in addition for modelling the basic architectural
strucutre, PLA has to model variability information such as
optional and variants structure and the rule in choosing
between different variants and optional stuctures as it will
affect the derivation of product specific architecture.

Therefore, it is essential to model architecture in a
formal manner which ensures a better tool support and also
a comprehensive architecture description. A consistent,
complete and correct architecture description is by using
Architecture Description Language (ADL) [1]. Nevertheless
ADL is reported to not integrate well with software
development methodology and tools [2]. Another paradigm
for representing architecture is with UML which has been
used as an architecture modelling language and also a de
facto modelling language used in the industry, even so there

are arguments concerning its modelling notations
inadequacy for representing architecture [3, 4].

Integrating both languages, ADL and UML can be
considered as having a synergistic relationships where the
combination enables a precise and explicit architecture
description and at the same time having a wider usage
among UML users in commercial tool. Among the proposed
integration approaches are from [2, 5]. This paper
concentrates on how to map architecture concept from xADL
to one of UML profile, SysML for an explicit representation
of architectural and variability construct for modelling PLA.

SysML is a profile targeted for system engineering where
the strength of SysML compared to UML 2.0 is based on its
new addition of requirements and parametric diagram as well
as its additional constructs in architecture modelling. xADL
is chosen due to its specialised schema targeted for product
line architecture description [6].

The remainder of this paper is organised as follows: In
Section II, the paper discusses the problem background
which motivates the focus of this paper. Section III discusses
on the methodology of the mapping and the profile proposed
based on the mapping. Section IV demonstrates the
applicability of the proposed profile in modeling
Autonomous Mobile Robot (AMR) Product Line case study.
Section V discusses on the feasibility of the results. Lastly,
Section VI discusses on the conclusion and recommendation
for future work.

II. BACKGROUND
There are two extension mechanisms in customising

UML metamodel. First class extension mechanism is by
adding or removing metaclasses in Metamodel Object
Facility (MOF) or can be referred as heavyweight extension.
Another mechanism is by using profile which does not
allow any modification of existing metamodel other than by
adjusting the metamodel with constructs suitable for the
particular domain, platform or method [7]. Profile extension
is also known as lightweight extension. Thus, the latter
option is opted as SysML is already an establish profile for
modelling System Engineering applications. Thus, by
extending the profile, the best aspect of SysML can be
leveraged while lowering the learning curve. Furthernore,
the profile extension is conformed to standard UML hence
can also be supported by existing UML tool.

510

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) The Government of Malaysia, 2011. Used by permission to IARIA. ISBN: 978-1-61208-165-6

 526 / 612

The first notions of modelling architecture by using UML
in a formal manner by mapping it to ADL were done in [3,
8] Nonetheless, both researchers do not concentrate on UML
2.0. Even so, they both highlight a useful consideration to be
acknowledged in the mapping. Garlan, Cheng and
Kompanek [8] discuss the pros and cons of using different
metaclasses for representing architectural concepts.
Medvidovic and Rosenblum [2] describe a more detailed
mapping between C2 and Wright architecture style and UML
which involved two strategies of either using UML "as is" or
by using stereotypes with restrictions by means of OCL. The
moves towards mapping of UML 2.0 with ADL were done
in [9-11]. Only one of the researchers proposed on using
UML 2.0 in order to model variability in architecture.
Nonetheless, the concentration of Choi [11] is on
representing variability in PLA behavior through connector .
There is also a research done by Maga and Jazdi [12] on
extending variability in SysML profile. Although the
researchers have proposed a variety of variants in their
extension, however they do not specifically address the PLA
and its constructs in the extension. This research
concentrates on filling in the gap in the PLA modelling by
concentrating on a formal architectural and variability
construct based on xADL and its mapping to SysML for
profile extension.

III. MAPPING STRATEGY FROM ARCHITECTURE
DESCRIPTION TO SYSML

The mapping strategy is basically divided into three
steps: Mapping basic architecture construct; Mapping
variability construct and mapping the constrain. However,
the third strategy is not the focus for this paper hence is not
being elaborated. The mapping steps are as shown in Figure
1. Each step is described in detail as follows:

A. Mapping Basic Architectural Construct
The corresponding elements of the mapping are between

the Structure and Types schema in xADL which can be
mapped into two corresponding packages in SysML, Blocks
package and Ports&Flows package. The first mapping is
between component from xADL and block from SysML.
Block is equivalent to component where block is an
extension of class metaclass in SysML. The same notion is
also used by Medvidovic and Rosenblum [3] where their
component is an extension of UML class metaclass instead
of extending from component metaclass. In the case of
mapping between Connector, Interface, Link, Point and
Group from xADL Structure and Types schema, roughly all
the elements are also present in SysML Ports&Flow
package. Nonetheless, construct such as connector is not
explicitly specified. Instead it can only be identified when a
relationships between two roles in SysML are specified.
Therefore, stereotypes were explicitly added for both
connector and role. Signature schema in xADL construct is
also added as stereotype extending an interface metaclass.

B. Mapping Variability Construct
The schema in xADL has to be in an equivalent

metamodel form before the mapping to SysML can be done.

Thus, for Variants package and Options package in xADL
which do not have a corresponding matching in SysML, a
package called Variability package is extended from the
original SysML profile to support variability as shown in
Figure 1. The added stereotype is extended from the class
metaclass.

Figure 1. Mapping Strategy

C. Mapping results
Based on the specified strategy, the proposed profile for

representing architecture based on the mapping is as shown
in Figure 2. The profile is divided into three sections, the
metaclass section which consists of UML classes reused in
SysML known as UML4SysML. The architectural construct
section which shows the extension of stereotype classes
shaded in grey. The variability construct section which
shows the extension of stereotype to represent variability,
variants and option can be applied to the architecture
construct since both the variability constructs extends from
class metaclass. Another variability construct, representing
guard in xADL schema is added as a stereotype extension
from ConstrainBlock stereotype.

IV. CASE STUDY
In order to validate the applicability of the extended

modelling in SysML, the extended model was applied to
product line of Autonomous Mobile Robots (AMR). The
product line consists of five different but similar applications
of AMR. Four of the AMR are AMR for research, AMR for
teaching, i-wheelchair and intelligent scooter based on the
research collaboration done at Embedded Real Time and

511

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) The Government of Malaysia, 2011. Used by permission to IARIA. ISBN: 978-1-61208-165-6

 527 / 612

Software Engineering Research Lab (ERetSEL), Universiti
Teknologi Malaysia. The fifth AMR is the parking assistant
based on the work of Polzer, Kowalewski and Botterweck
[13]. The five AMR product line (AMRPL) are as shown in
Figure 3.

In order to identify the commonality and variability of
the AMRPL requirements, approach by Abd Halim, Jawawi
and Safaai [14] is used. However, in order to simplify this
paper, the common and variable function is represented in
use case diagram as shown in Figure 4.

The focus to model the architecture of the AMRPL is

The proposed profile is used in modelling general

architecture, the block definition diagram (bdd) in SysML.
The bdd diagram shows the structure of the components in
the form of noncomposite relationships which will explicitly
shows the common and variable blocks involved in the
system. Other than noncomposite relationships, another
relationships that can be shown in bdd is the whole-part
relationships [15]. However, in PLA, a noncomposite
relationship is more suitable as the block can either be
selected or not selected based on its variability and
commonality and it would not affect the block which it
related to. The whole-part relationships is not chosen as it
will affect the relationships between blocks which is not
being selected for composition.

Furthermore, the profile will then be used for modelling
specific architecture, which is shown in SysML internal
block diagram (ibd). In this diagram the component which
are modelled as having a part component in the bdd will be
elaborated further, which will explicitly show the variability
in the connectors and the internal components relationships.
Both bdd and ibd diagram can be referred at Figure 5 and
Figure 6 respectively.

Figure 2. xADLUMLProfile

Figure 4. AMRPL Use Case

Figure 3. AMR Product Line (AMRPL)

512

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) The Government of Malaysia, 2011. Used by permission to IARIA. ISBN: 978-1-61208-165-6

 528 / 612

Figure 5. Block Definition Diagram for AMRPL

Figure 6. Internal Block Diagram for Motor Controller Part

513

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) The Government of Malaysia, 2011. Used by permission to IARIA. ISBN: 978-1-61208-165-6

 529 / 612

V. DISCUSSION
From the case study, PLA modelling can be seen in

different granularity based on the SysML bdd and ibd
diagram. In both diagrams, the proposed xADLUML profile
is used to augment the diagram with commonality and
variability stereotypes and also with a more concrete
architectural construct. From the case study, bdd diagram in
Figure 5 shows common and optional stereotype in the
AMRPL such as Motorcontoller block which have the option
of using PID, PI or PD as a controller. The Motorcontroller
blocks and its parts is further refined in ibd diagram in
Figure 6 where the common and variable connectors are
clearly shown by the stereotypes. Nonetheless, there are few
constructs in the profile that is not being applied to the case
study such as the use of delegation and assembly and the use
of signature for representing interface. However, the case
study did reflect a significant potential in modelling PLA in
both bdd and ibd diagram thus helps in the understanding of
the PLA for an easier product specific derivation for
AMRPL.

According to our experience with this case study, the
profile can explicitly show the commonality and variability
in the AMRPL. The mapping from xADL to SysML profile
further helps in formalising the architectural concepts of the
modelling. Nonetheless, rule is essential to ensure
consistency between the model elements. Therefore, OCL
rule should be added in the profile to constraint metaclasses
between the bdd and ibd diagram. The constraint will
determine the consistency between the different views of the
block diagram. Consequently, it is essential to understand
how the rule in xADL Guard can be translated into OCL rule
for the purpose.

VI. CONCLUSION
This paper concentrates on how to map architecture

concept from xADL to one of UML profile, SysML for an
explicit representation of architectural and variability
construct for modeling PLA. From the case study, it did
show a noteworthy contribution in modelling PLA in terms
of its blocks and its connector and also in terms of the
granularity of the modelling. A more extensive case study
should be done in the future in order to fully validate the
proposed profile. Furthermore, rules to infuse consistency of
the metaclasses and its instance should be further explored. It
is hoped from the explicit modelling of PLA commonality
and variability can further help reuser to derive a product
specific application in the application engineering phase.

ACKNOWLEDGMENT
This research is fully funded by the Research University

Grant (RUG) from the Universiti Teknologi Malaysia
(UTM) and Ministry of Higher Education (MOHE) under

Cost Center No.Q.J130000.7128.03J23. Our profound
appreciation also goes to ERetSEL lab members for their
continuous support in the working of this paper.

REFERENCES

[1] Taylor, R.N., N. Medvidovic, and E.M. Dashofy, Software
Architecture: Foundations, Theory and Practice.John Wiley &
Sons, Inc.) 2009.

[2] Kandé, M.M. and A. Strohmeier. Towards a UML profile for
software architecture descriptions. 2000: In Springer-Verlag,
pp. 513-527.

[3] Medvidovic, N., et al., Modeling software architectures in the
Unified Modeling Language. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2002. vol 11, pp. 2-
57.

[4] Medvidovic, N., E.M. Dashofy, and R.N. Taylor, Moving
architectural description from under the technology lamppost.
Information and Software Technology, 2007. vol 49, pp. 12-
31.

[5] Cheng, S.W. and D. Garlan. Mapping Architectural Concepts
to UML-RT. in Proceedings of the Parallel and Distributed
Processing Techniques and Applications Conference. 2001.

[6] Dashofy, E.M., A. Hoek, and R.N. Taylor, A comprehensive
approach for the development of modular software
architecture description languages. ACM Transactions on
Software Engineering and Methodology (TOSEM), 2005.
14(2): pp. 199-245.

[7] SysML. OMG SysML Specification v. 1.0. Retrieved from
http://www.sysml.org. 2006. Last accessed on 21.7.2011.

[8] David, G., C. Shang-Wen, and J.K. Andrew, Reconciling the
needs of architectural description with object-modeling
notations. Sci. Comput. Program., 2002. 44(1): pp. 23-49.

[9] Goulão, M. and F.B. e Abreu, Bridging the gap between
Acme and UML 2.0 for CBD. SAVCBS 2003 Specification
and Verification of Component-Based Systems, 2003: pp. 75-
79.

[10] Meister, J., R. Reussner, and M. Rohde. Applying patterns to
develop a product line architecture for statistical analysis
software. in Software Architecture, 2004. WICSA 2004.
Proceedings. Fourth Working IEEE/IFIP Conference, 2004.

[11] Choi, Y., et al. An approach to extension of UML 2.0 for
representing variabilities. Fourth Annual ACIS International
Conference, IEEE, 2005, pp. 258-261.

[12] Maga, C.R. and N. Jazdi, Survey, Approach and Examples of
Modeling Variants in Industrial Automation. Journal of
Control Engineering and Applied Informatics, vol.13, pp. 54-
61.

[13] Polzer, A., S. Kowalewski, and G. Botterweck. Applying
Software Product Line Techniques in Model-based Embedded
Systems Engineering. in MOMPES 2009, Vancouver,
Canada, pp. 2-10.

[14] Halim, S.A., D.N.A. Jawawi, and S. Deris. Requirements
Identification and Representation in Software Product Line. In
Asia Pacific Software Engineering Conference (APSEC'09),
IEEE, Pulau Pinang, Malaysia, pp. 340-346.

[15] Friedenthal, S., A. Moore, and R. Steiner, A Practical Guide
to SysML: The Systems Modeling Language. (The OMG
Press) , Morgan Kaufmann, 2008.

514

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) The Government of Malaysia, 2011. Used by permission to IARIA. ISBN: 978-1-61208-165-6

 530 / 612

Exploring Architecture Design Alternatives for

Global Software Product Line Engineering

Bedir Tekinerdogan

Department of Computer Engineering

Bilkent University

Ankara, Turkey

e-mail: bedir@cs.bilkent.edu.tr

Semih Cetin, Ferhat Savcı

Cybersoft Information Technologies, Ata Plaza 3/3,

34758,

Atasehir, Istanbul, Turkey

e-mail: {semih.cetin, ferhat.savci}@cs.com.tr

Abstract — Current trends in software engineering show that

large software projects have to operate with teams which are

working in different locations. An analysis of current global

software engineering literature shows that the focus has been

basically on single system development. Yet, very often

organizations do not aim to develop a single product but a

product line for a particular market segment. Unfortunately,

the notion of global software development has not been

explicitly addressed in product line engineering. We introduce

and define the notion of global software product line

engineering (GSPLE) to integrate global software engineering

paradigm with the software product line engineering

paradigm. Based on an analysis of architectural approaches in

both paradigms we define the space of the different software

architecture design alternatives for GSPLE. We illustrate the

architecture design alternatives using examples of an industrial

context.

Keywords-Product Line Engineering; Global Software

Development; Business Strategies

I. INTRODUCTION

Current trends in software engineering show that large
software projects have to operate with teams that are
working in different locations. The reason behind this
globalization of software development stems from clear
business goals such as reducing cost of development, solving
local IT skills shortage, and supporting outsourcing and
offshoring [1]. There is ample reason that these factors will
be even stronger in the future, and as such we will face a
further globalization of software development [8]. To cope
with these problems the concept of global software
engineering (GSE) is introduced [9]. GSE is a relatively new
concept in software development that can be considered as
the coordinated activity of software development that is not
localized and central but geographically distributed.

An analysis of current global software engineering
literature shows that the focus has been basically on single
system development. Yet, very often organizations do not
aim to develop a single product but a product line. A product
line is defined as a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed
way [11]. Despite earlier software reuse approaches,
software product line engineering (SPLE) aims to provide
pro-active, pre-planned reuse at a large granularity to
develop applications from a core asset base. The key
motivation for adopting a product line engineering process is
to develop products more efficiently, get them to the market
faster to stay competitive and produce with higher quality
[14]. In alignment with these goals different software
product line engineering approaches have been proposed
[5][11].

Unfortunately, the notion of global software development
has not been explicitly addressed in product line engineering.
On the other hand, an analysis of the current product line
engineering approaches shows that global software
development is not explicitly addressed. We can observe
valuable knowledge on defining organization structures for
product lines [4][11] but these do not explicitly consider the
concern of globalization of the product line engineering
process. To apply systematic, anticipated reuse for global
software development we believe that global software
development will substantially benefit from software product
line engineering. In parallel, similar to single system
development in which teams might be spread over different
locations [3], it is also expected that product line engineering
projects might operate with teams which are working in
different locations. The reason for this globalization of
product line engineering will also be based on the general
motivations for global software development.

In this paper, we introduce and define the notion of
global software product line engineering (GSPLE) to
integrate global software engineering paradigm with the
software product line engineering paradigm. The motivation
for GSPLE stems from the industrial context of Cybersoft, a
leading company in global software development in Turkey.
The efforts to define the architecture for GSPLE have shown
that the integration of SPLE and GSE can be done in
multiple different ways. Based on an analysis of architectural
approaches in both paradigms and our experiences we define
the space of the different software architecture design
alternatives for GSPLE. We illustrate the architecture design
alternatives using examples of an industrial context.

515

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 531 / 612

The remainder of the paper is organized as follows. In
Section II we briefly introduce a conceptual model for GSE,
followed by an analysis to software product line engineering
in section III. Section IV discusses the stakeholder analysis
for GSPLE. Section V describes the strategies for integrating
SPLE with GSE. Section VI discusses the design
alternatives. Section VII provides the related work and
section VIII concludes the paper.

II. CONCEPTUAL MODEL FOR GSE

GSE is a software development approach that can be

considered as the coordinated activity of software

development that is not localized and central but

geographically distributed. Overall we can identify four

important key concerns in GSE:

Development - the software development activities

typically using a software development process. This

includes activities such as requirements analysis, design,

implementation and testing. Each product development site

will address typically a subset of these activities.

Communication – communication mechanisms within

and across sites. Typically the different sites need to adopt a

common communication protocol.

Coordination – coordination of the activities within and

across sites to develop the software according to the

requirements. Coordination will be necessary to align the

workflows and schedules of the different sites. An important

goal could be to optimize the development using appropriate

coordination mechanisms.

Control – systematic control mechanisms for analyzing,

monitoring and guiding the development activities. This

does not only include controlling whether the functional

requirements are performed but also which and to what

extent quality requirements are addressed.

Each of these concerns and the way they are allocated in

the GSE environment will have a direct impact on the

architecture. In principle, we assume that each of these

concerns can be mapped to a separate implementation unit,

or layer. Based on this assumption we have defined the

conceptual layered model for GSE system as defined in

Figure 1.

Here we have depicted GSE system as consisting of a

structure with separate activity layers that depend on each

other. The layering is defined based on conceptual relations.

Activities in the development layer are coordinated by the

coordination layer. The coordination of the activities will be

controlled by functionality in the control layer. Finally, the

development, coordination and control layers will require

suitable communication mechanisms which are provided by

the communication layer. In Figure 1, we have provided

communication layer as a sidebar indicating that all layers

will use this layer. Alternatively, a separate specific

communication mechanism could be provided for each

layer.

 Based on this layered view of GSE system we need to

decide how to allocate each layer to different nodes in the

GSE environment. In the following sections we will define

the different concrete deployment alternatives for GSE

systems based on this model.

 KEY
Conceptual

Layer
depends on

Coordination

Development

Control
C

o
m

m
u

n
ic

a
tio

n

Figure 1. Layered View of GSE system with four key concerns

III. SOFTWARE PRODUCT LINE ENGINEERING

Global software development can be focused on single

software development or product line engineering [5].

Although different product line engineering processes have

been proposed they share the same concepts of domain

engineering, in which a reusable platform and product line

architecture is developed, and application engineering, in

which the results of the domain engineering process are

used to develop the product members.

In general the adopted product line engineering approach

has not been directly considered for global software

engineering. Integration of both paradigms would in

principle mean to define and align the common product line

engineering process to a given GSE software architecture.

Since each unit can be considered as a separate,

independent unit, the GSE system can be also set up as a

production line. The concept of production line is defined in

the industrial engineering and denotes a set of sequential

operations established in a factory whereby materials are put

through a refining process to produce an end-product; or

components are assembled to make a finished article.

Although the notion of software product line engineering is

quite popular this does not seem to be the case for software

production line engineering. Nevertheless, we think that this

is important for GSE. In principle, the development units in

GSE can also be considered as separate domain specific

entities that aim to develop particular intermediate products,

and likewise a production line can be set up.

IV. DESIGN SPACE FOR GSPLE ARCHITECTURE

It appears that we can combine the three different

concepts of Global Software Engineering, Software

Production Line and Software Product Line Engineering in

different ways. We depict the different possibilities in Table

1. The names of the alternatives indicate whether the

development is local (L) or global (G), whether production

line (Pn) is applied or a conventional approach is used (C),

and whether the focus is on product line (Pl) or single-

system development (S). As such, the first four alternatives

define the case of local software development in which the

516

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 532 / 612

development units are co-located. The last four alternatives

define the alternatives for global software development.

To denote the integration of global software engineering

with product line engineering we define the notion of global

software product line engineering. GSPLE spans the last

two rows of Table 1 (GCPl and GPnPl). GSPLE can be

considered as a special form of product line engineering

process in which the development teams are not collocated

but distributed as it is defined by the GSE paradigm. The

integration of both paradigms might be based on practical

necessity but in parallel will also combine the benefits of

both product line engineering and global software

development. From a reuse perspective we could state that

GSPLE even further broadens reuse by also reusing

development teams and not only artefacts. In the following

we describe each alternative and provide the architectural

template and an example.

TABLE 1. DESCRIPTION OF PRODUCT LINE INTEGRATION ALTERNATIVES

WITH GLOBAL SOFTWARE DEVELOPMENT

Strategy Description

LCS
Software development at a single site without
product and production lines.

LPnS

Software development at a single site with

production line but not focused on product

variability management

LCPl
Software development at a single site focused on
product variability management without

production line

LPnPl
Software development at a single site with
production line and focused on product variability

management

GCS
Software development at multiple sites without

product and production lines

GPnS

Software development at multiple sites with

production line but not focused on product

variability management

GCPl
Software development at multiple sites focused on
product variability management without

production line

GPnP1
Software development at multiple sites with
production line and focused on product variability

management

A. Local Single System Development

Local Single System Development is the traditional way

of software development located at a single site. In the

following sections we will also introduce product line and

production line engineering for GSE, but for now we

assume that a single system is developed at a single site.

The deployment view for GSE system for this case is shown

in Figure 2. Note that the four layers/concerns are mapped

to a single deployment node. From a theoretical perspective

we could consider local system development as a special

case, the simplest one, of global software development.

Example:

John Doe Software Co. develops an accounting system

accustomed for Non-Exist Tech. Ltd.. The accounting

system is developed at a single site using a traditional, non-

product line engineering, development approach.

 KEY
Product

Development

Site

Conceptual

Layer
depends on

Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

Figure 2. Local Single System Development

B. Local Single System Development with Production Line

We could define a software product line engineering as

an application of the Pipes and Filters pattern [2]. Hereby

the filters define processing units, whereas the pipes define

the mechanism for distribution and communication. A

conceptual model of software product line engineering is

given in Figure 3. In principle a number of filters, i.e.

production units can be defined which can be linked in

different ways to each other. However, the key design

principle for having independent filters as defined in the

Pipes and Filters pattern also seem to apply for the software

production line engineering process. This is to say that each

production unit can be (largely) seen as a separate, black

box unit that can accept input, process this and provide it to

the output. In principle, the production units are not aware

of each other.

 KEY

Development

Unit

Connection

(for Communication)

D1 D2 D3 Dn

Figure 3. Software Production Line Engineering Process defined

using the Pipes and Filter Pattern

Figure 4 shows the deployment view when we apply

production line engineering to single-site single system

development. Here the Pipes and Filters pattern has been

applied to the development process units within a single

site. These could be typically the applied workflows of the

software development process. In Figure 4, we assume that

we apply a centralized control and coordination mechanism.

517

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 533 / 612

However, these could also be equally distributed leading to

a distributed coordination and control system of the

development process.

 KEY

Development

Site

Conceptual

Layer
depends on

Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

A2 AnA1

Figure 4. Local Single System Development with Production Line

Example:

John Doe Software Co. has a custom software production

line based on SpringSource [12], which is used to develop

an accounting system accustomed for Non-Exist Tech. The

company intentionally employed the production line to

reuse infrastructural modules such as logging, content

management, object to relational mapping, etc.

C. Local Software Product Line Development

A product line is defined as a set of software-intensive

systems sharing a common, managed set of features that

satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core

assets in a prescribed way [5]. The key motivation for

adopting a product line engineering process is to develop

products more efficiently, get them to the market faster to

stay competitive and produce with higher quality. In

alignment with these goals different software product line

engineering approaches have been proposed. These

approaches seem to share the same concepts of domain

engineering, in which a reusable platform and product line

architecture is developed, and application engineering, in

which the results of the domain engineering process are

used to develop the product members [5][9].

Example:

John Doe Software Co. develops accounting products for

different customers like Non-Exist Tech. by reusing the

assets and managing the variability of these assets specific

to accounting domain. The company developed the product

by using conventional techniques, but not based on a

production line infrastructure.

 KEY

Development

Site

Conceptual

Layer
depends on

Domain Engineering

Domain

Requirements

Analysis

Product

Management

Domain

Design

Domain

Implementation

Application Engineering

Application

Requirements

Analysis

Application

Design

Application

Implementation

Figure 5. Local Single Product Line Development

D. Local Product Line Development with Production Line

A product line development can be realized on a

production line platform. Hereby multiple variant products

are developed based on set of sequential production units

whereby components are assembled to make a finished

article. Similar to the case for single system development

with production line we could apply here the Pipes and

Filters pattern.

Figure 6 shows an example of a local product line

development with production line. Hereby, we have chosen

for centralized control and coordination of the product line

engineering activities (domain engineering and application

engineering).

It appears that we could also have different

interpretations and applications of local product line

development with production line. For example, we could

also apply production line engineering only for domain

engineering, or only for application engineering.

Example:

John Doe Software Co. develops accounting products

for different customers like Non-Exist Tech. by reusing the

assets and managing the variability of these assets specific

to accounting domain. The company developed the product

by using its custom production line based on SpringSource.

In this case, both the business domain specific assets and

infrastructural modules are reused.

518

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 534 / 612

 KEY

Development

Site

Conceptual

Layer
depends on

Coordination

Domain Engineering

Control

C
o

m
m

u
n

ic
a

tio
n

D2 DnD1

Application Engineering

A2 AnA1

Figure 6. Local Product Line Development using a Production Line for
both Domain Engineering and Application Engineering with Centralized

Control and Coordination

E. Global Software Development with Single System

Development

This section and the following three sections focus on

defining the architecture design alternatives for GSE system

in particular. We first consider GSE for single system

development. We have defined the GSE with single system

development alternative in Figure 7. Here the development

of a single product is distributed over multiple sites

(denoted by multiplicity 1..*).

 KEY
Product

Development

Site

Conceptual

Layer

connected to

association

Site

 internet

Data Storage

1..*

Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

1..*

Figure 7. Global Software Development Single System Development

However, again we can observe here several sub-

alternatives. These are defined basically due to the different

application of the coordination and control mechanisms. In

particular we can distinguish among the following

alternatives as defined in Table 2.

TABLE 2. POSSIBLE ALTERNATIVE CONFIGURATIONS FOR CONTROL AND

COORDINATION CONCERNS IN GSE

Alternative Control Coordination

1 Central Central

2 Central Distributed

3 Distributed Central

4 Distributed Distributed

A selection of one of the four alternatives will result in a

refinement of the architecture in Figure 7. For example,

Figure 8 shows the alternative with a central control and

coordination, whereby development is distributed. Figure 9

defines an alternative with distributed control and central

coordination. Of course not all the possible deployment

alternatives might make sense. These should be validated

from the requirements in practice.

 KEY
Product

Development

Site

Conceptual

Layer

connected to

Site

Control

Site

Site

Site

internet

association

Data Storage

Coordination

Development Development

Development

Data Storage

Data Storage

Data Storage

Figure 8. Deployment View of GSE with Single System Development

using Central Control and Central Coordination

 KEY
Product

Development

Site

Conceptual

Layer

connected to

Site

Site

Site

Site

internet

association

Coordination

Development

Control

Data Storage

Data Storage

Data Storage

Data Storage
Development

Control

Development

Control

Figure 9. Deployment View of GSE with Single System Development

using Distributed Control and Central Coordination

Example:

John Doe Software Co. distributes the development of an

accounting system accustomed for Non-Exist Tech. Ltd. to

different units all over the world. The company employed

classical processes and approaches without having reuse

insight for assets and infrastructural modules.

F. Global Single Software Development with Production

Line

Figure 10 shows the case for global single software

development with production line. Since GSE is used, the

architecture will consist of multiple sites. The focus is on

the development of a single system and as such the domain

519

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 535 / 612

engineering process is missing. However, the development

is based on the production line paradigm.

 KEY
Product

Development

Site

Conceptual Layer

connected to

internet

association

Data Storage

1..*Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

A2 AnA1

Figure 10. Global Software Development Single System Development with
Production Line

Example

John Doe Software Co. has a custom distributed software

production line based on SpringSource, which is installed at

its business units all over the world to develop an

accounting system accustomed for Non-Exist Tech. The

company intentionally employed the production line to

reuse infrastructural modules such as logging, content

management, object to relational mapping, etc. within all its

units.

G. Global Software Development for Product Line

Engineering

Figure 11 represents the most difficult case for designing

GSE system. It focuses on distributed development for a

product line, in which the concept of production line is

adopted.

 KEY
Product

Development

Site

Conceptual

Layer

connected to

Site

internet

association

Data Storage

1..*

Coordination

Domain Engineering

Control

C
o

m
m

u
n

ic
a

tio
n

Application Engineering

Figure 11. Global Software Development for Product Line Engineering

Example

John Doe Software Co. develops accounting products for

different customers like Non-Exist Tech. by reusing the

assets and managing the variability of these assets specific

to accounting domain. The company distributed the

development efforts of the product to different business

units all over the world by using classical techniques, but

not based on a production line infrastructure.

H. Global Software Development for Product Line

Engineering with Production Line Engineering

Figure 12 represents the most difficult case for designing

GSE system. It focuses on distributed development for a

product line, in which the concept of production line is

adopted.

 KEY
Product

Development

Site

Conceptual

Layer

connected to

internet

association

Data Storage

1..*

Coordination

Domain Engineering

Control

C
o

m
m

u
n

ic
a

tio
n

D2 DnD1

Application Engineering

A2 AnA1

Figure 12. Global Software Development for Product Line Engineering

with Production Line Engineering

Example:

John Doe Software Co. develops accounting products for

different customers like Non-Exist Tech. by both reusing the

assets and managing the variability of these assets specific

to accounting domain. The company developed the product

by using its custom distributed production line based on

SpringSource, which can centrally control and monitor the

whole development items and deliverables precisely. The

production line based product variability management

allows the reuse of business domain specific assets and

infrastructural modules in a distributed way.

V. RELATED WORK

Notably, architecting in GSE has not been widely

addressed. The key research focus in the GSE community

seems to have been in particular related to tackling the

problems related to communication, coordination and

control concerns. Clerk et al. [4] report on the use of so-

called architectural rules to tackle the GSE concerns.

Architectural rules are defined as “principles and statements

about the software architecture that must be complied with

throughout the organization”. They have defined four

challenges in GSE: time difference and geographical

distance, culture, team communication and collaboration,

and work distribution. For each of these challenges they list

possible solutions and describe to what extent these

solutions can be expressed as architectural rules. The work

520

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 536 / 612

of Clerk et al. aims to shed light on what kind of

architectural rules are necessary to guide the GSE. We

consider our work complementary to this work. In our work

the design actions that relate to the expected answers of

questions are defined as design actions.

In a position paper of Siemens, Paulish [10] provides

some guidelines about how to develop a product line using a

centralized product line management team and distributed

component development teams. For this, the author

proposes to decompose the large-scale requirements into a

well-structured set of software components that can be

developed in parallel among globally distributed

development teams. Likewise it is aimed to develop the

product line using global software engineering practices.

Further it is recommended to keep small teams that use agile

processes and which are controlled by a central

organization. Further, the author describes some best

practices for formal requirements engineering and

architecture design to develop the software components that

will make up the product line. Using the approach it is

aimed to reduce the time-to-market and increase

productivity. The architecture as proposed by Paulish is one

of the alternatives that we have defined in Table 1. In fact,

Paulish focuses more on the overall process for supporting

product line engineering using global software engineering.

In our approach we have focused on the architectural design

of global software product line engineering. We believe

that both approaches are complementary to each other.

A common practice is to model and document different

architectural views for describing the architecture according

to the stakeholders’ concerns [6][9]. An architectural view is

a representation of a set of system elements and relations

associated with them to support a particular concern. Having

multiple views helps to separate the concerns and as such

support the modeling, understanding, communication and

analysis of the software architecture for different

stakeholders. Architectural views conform to viewpoints

that represent the conventions for constructing and using a

view. An architectural framework organizes and structures

the proposed architectural viewpoints. Different

architectural frameworks have been proposed in the

literature. Examples of architectural frameworks include the

Kruchten’s 4+1 view model [9], the Siemens Four View

Model and the Views and Beyond approach (V&B)[6]. In

our work we have defined the architecture that represents

the deployment view of the system. This view appeared to

be one of the most useful views since it is able to depict the

multi-site character of GSE. However, we could easily

consider other views such as decomposition view or uses

view. We consider this as part of our future work.

VI. CONCLUSIONS

We have defined the notion of global software product

line engineering that considers the application of product

line engineering in a global development environment. Our

study shows that we can in essence identify 8 possible

integration alternatives of product line engineering with

global software engineering. We have made a distinction

between two global software product line engineering

approaches: (1) GSPLE without production line and (2)

GSPLE with production line. Obviously the latter GSPLE

approach is the most difficult alternative but on the other

hand will also lead to enhanced reuse.

The goal of this work was primarily to shed light on the

challenges related to the architecture design of GSE system.

The alternatives that we have shown can be used as

templates for GSE architect to derive the architect for a

particular project. Further, we consider this work as an

initial step towards integrating product line with global

software engineering. Our future work will focus on

enhancing the concepts that we have discussed in this paper

and applying this within an industrial context of Cybersoft.

REFERENCES

[1] R.D. Battin, R. Crocker, J. Kreidler, K. Subramanian. Leveraging
Resources in Global Software Development. IEEE Software, 18(2), p.
70-77, Mar/Apr, 2001.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture Volume 1 - A System of
Patterns, Wiley, 1996.

[3] E. Carmel and R. Agarwal. Tactical Approaches for Alleviating
Distance in Global Software Development. IEEE Software,
March/April,p. 22-29, 2001.

[4] V. Clerc, P. Lago, H. van Vliet. Global Software Development: Are
Architectural Rules the Answer? In: Proc. of the 2nd International

Conference on Global Software Engineering, pp. 225–234. IEEE

Computer Society Press, Los Alamitos, 2007.

[5] P. Clements, L. Northrop. Software Product Lines: Practices and
Patterns. Boston, MA:Addison-Wesley, 2002.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition. Addison-Wesley, 2010.

[7] J.D. Herbsleb. Global Software Engineering: The Future of Socio-
technical Coordination. International Conference on Software
Engineering. p. 188-198, 2007.

[8] J.D. Herbsleb and D. Moitra. Global Software Development. IEEE
Software, March/April, p. 16- 20, 2001.

[9] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software,
12(6):42–50, 1995.

[10] D. Paulish, Product Line Engineering for Global Development,
Siemens AG, pp. 1-6, 2005.

[11] K. Pohl, G. Böckle, F. van der Linden. Software Product Line
Engineering – Foundations, Principles, and Techniques, Springer,
2005.

[12] SpringSource Tool Suite. http://www.springsource.com/products/sts

[13] T. Stahl, M. Voelter. Model-Driven Software Development, Addison-
Wesley, 2006.

[14] K. Schmid, M. Verlage. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software, Vol. 19, No. 4, July/August
2002, 50-57.

[15] B. Sengupta, S. Chandra, V. Sinha. A research agenda for distributed
software development, In Proceedings of the 28th international

conference on Software engineering, pp. 731-740, 2006.

[16] J. Whitehead, Collaboration in Software Engineering: A Roadmap, In

FOSE '07: 2007 Future of Software Engineering, pp. 214-225, 2007.

[17] J.A. Zachman. A Framework for Information Systems Architecture.
IBM Systems Journal, Vol. 26. No 3, pp. 276-292, 1987

521

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 537 / 612

Towards CMMI-compliant MDD Software Processes

Alexandre M. L. de Vasconcelos
Centro de Informática

Universidade Federal de Pernambuco
Av. Jornalista Anibal Fernandes s/n, 50740-560

Cidade Universitária, Recife-PE, Brazil
e-mail: amlv@cin.ufpe.br

Giovanni Giachetti, Beatriz Marín, Oscar Pastor
Centro de Investigación en Métodos de

Producción de Software - PROS
Universitat Politècnica de València

Camino de Vera s/n, 46022, Valencia, Spain
e-mail: {ggiachetti, bmarin, opastor}@pros.upv.es

Abstract — In the last years, Model-Driven Development
(MDD) approaches have taken an important role in the quality
improvement of software products. These approaches perform
the automatic compilation of high-abstraction models to
generate the final application code. In this way, MDD
approaches aim at reducing development costs as well as
increasing productivity, portability, interoperabil ity, and ease
of software evolution; i.e., achieving higher product quality. A
major obstacle for MDD approaches to be massively adopted
by industry is their lack of alignment to well-defined quality
models for software processes. We advocate that performing a
compliance analysis, based on a software process quality
model, is the first step to deal with this obstacle. In this paper,
we analyze the degree of compliance of an industrially applied
MDD approach with the CMMI-DEV quality model. In
particular, we determine those characteristics that meet the
technical solution process area of CMMI-DEV and identify
improvement opportunities to obtain a proper alignment of the
MDD approach with this model.

Keywords – MDD; OO-Method; CMMI; Software Process
Quality; Feature-based Analysis.

I. INTRODUCTION

Developing high quality software has been a continuous
concern in the Software Engineering community. To achieve
this goal, several software development approaches have
emerged. In this context, the Model Driven Development
(MDD) approach [1][3][4] has become subject of current
research. The main idea behind MDD is the automatic
generation of code from models through successive
transformation of higher abstraction’s level models (problem
domain) into more concrete models (solution domain).

The MDD paradigm advocates that the initial software
development and the implementation of future changes are
all made in the model. In this way, MDD allows lower
development costs, and higher productivity, portability,
interoperability, and ease of software evolution [5]; i.e.,
higher software quality.

In parallel to the research on MDD and to the gradual
adoption of this approach, many software development
organizations are strongly seeking improvement and/or
assessment of their software processes on the basis of quality
models [6][7]. Such organizations aim to improve the
efficiency of their processes and the quality of the products
developed by the enactment of these processes as well as to

meet market and stakeholders needs. Hence, given the
importance of software process quality models, MDD
approaches must be compliant with these models to be
widely used by software development organizations. Since
this challenge has not been properly addressed by any MDD
approach yet, further research into this direction is necessary.
Thus, we propose the following research question: “Is it
possible to design a MDD process that fully complies with a
well-defined software process quality model?”

We advocate that MDD approaches must be analyzed
with regard to software process quality models as a first step
towards answering this research question. In this paper, we
analyze the compliance of a specific MDD approach, named
OO-Method [8], with the Technical Solution (TS) Process
Area (PA – a cluster of related practices that, when
implemented collectively, satisfies a set of goals for making
improvements in an area) of the CMMI-DEV (Capability
Maturity Model Integration for Development) software
process quality model [9]. This analysis is performed by
using an assessment method based on SCAMPI (Standard
CMMI Appraisal Method for Process Improvement) [10]. As
consequences of this analysis, certain weaknesses in the OO-
Method approach have been indicated and adjustments have
been proposed to make this MDD approach fully compliant
with TS. Thus, the OO-Method approach can be integrated
into a complete CMMI-based software process.

OO-Method and CMMI (across the entire paper CMMI
and CMMI-DEV are being used as synonyms) have been
chosen for the analysis because the former is a MDD
approach that has been successfully applied in the software
industry [11] and the latter is the most frequently adopted
software process quality model [6][7]. TS has been chosen to
be analyzed because the main objectives of this PA are the
design and the implementation of information system’s
requirements, which are also the main objectives of MDD.

The contribution of this paper is twofold. First,
practitioners can benefit from the analysis by adapting it to
detect weaknesses on other MDD approaches in relation to a
software process quality model. As a result, they can decide
whether adopt a specific approach (although having to
modify it) or discard it and adopt another one. Second, this
type of analysis can be useful in academia for identifying
room for improvement in existing or new MDD approaches,
and therefore, for discovering further research areas. By
using this analysis as reference, other MDD approaches can

522

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 538 / 612

be analyzed and improvements can be proposed for them so
that their industrial acceptance could increase.

The rest of this paper is organized as follows. Section II
presents background and related work. Section III describes
the SCAMPI-based assessment method which was used in
the compliance analysis. Section IV presents the compliance
analysis of OO-Method regarding TS. Finally, Section V
summarizes some conclusions and proposes further work.

II. BACKGROUND

In this section, we provide a brief explanation of OO-
Method, CMMI-DEV, and some works related to this paper.

A. OO-Method

OO-Method [8] is an object-oriented method for
conceptual modeling and automatic code generation that is
supported by the industrial tool Olivanova [12]. It provides a
precise UML-like notation, which is used to specify a
Conceptual Schema that describes a system at the problem
space level. The development process suggested by OO-
Method has two phases (Fig. 1): Development of a
conceptual schema and Generation of a software product.

Figure 1. Phases and artifacts of the OO-Method MDD approach

The first phase consists of eliciting and representing the
essential properties of the information system under study,
thereby creating the corresponding conceptual schema. In the
second phase, a precise execution model, conformed by a set
of compilation patterns, indicates the correspondences
between the conceptual schema and the pieces of code in a
target implementation platform. Thus, the application code is
automatically generated for an input conceptual schema.

B. CMMI-DEV

CMMI-DEV [10] is a guide to implement a continuous
process improvement for developing products and services.
For accomplishing this task, it provides two representations:
Continuous, which assesses the capability level of individual
Process Areas (PAs) that are selected based on the
organization’s business goals; and Staged, which assesses
the maturity level of a whole development process.

The compliance analysis presented in this paper focuses
on the continuous representation, since only one PA is
analyzed. In this representation, capability levels have goals
and practices (decomposition of goals) of two types: 1)
Specific Goals (SGs) and Specific Practices (SPs), which are

applied only to a particular PA; and 2) Generic Goals (GGs)
and Generic Practices (GPs), which are applied equally to all
PAs. From the assessment of practices and goals, it is
possible to classify the capability level of a PA on a scale
from 0 to 3 (unlike the previous versions of CMMI, the
continuous representation no longer has capability levels 4
and 5). OO-Method will be assessed against level 1 because,
according to CMMI-DEV, this level corresponds to the basis
for improvement initiatives in a specific PA.

C. Related Work

Several authors have discussed the compliance of CMMI
or CMM (the ancestor of CMMI) in relation to traditional or
agile software development processes (e.g., [13][14][15],
[16]). However, results obtained from these works are not
completely useful to MDD approaches, which have
characteristics that differentiate them from those other
approaches [1][3][4][8]. For example, MDD approaches are
mainly focused on: 1) modeling rather than coding; 2)
implementing changes directly in the model rather than in
the code; 3) maintaining the model updated; 4)
synchronizing the model and the code; 5) automatically
verifying properties in the model; and 6) automatically
generating the complete code from models rather than using
the model as a guide for manual code programming, or as a
post-mortem code documentation.

In addition, at least one of the following problems can be
found in the works related to those other software
development approaches: 1) non-use of the SCAMPI grades
of satisfaction; 2) lack of explicit/objective criteria for
attributing grades; 3) analysis based only on the activity
descriptions, without requiring documental evidences or
requiring only some of the evidences; 4) analysis not in the
same depth level as SCAMPI; 5) lack of details about the
rationale behind the analysis; or 6) non-provision of
solutions to fill in the gaps found in the analysis.

Although there are some specific works related to the
compliance of MDD approaches with CMMI or CMM, they
fail to deal with this issue properly. The works do not explain
in detail how an approach complies with the quality model,
where the approach should be adjusted for compliance, and
whether/where the approach conflicts with the quality model
requirements. The most relevant related works found are
described as follows.

An engineering and management software process to
support the achievement of CMM level 3 is proposed in [17].
The process uses MDA (a standard for MDD) [18] in the
context of system families and CMM. However, an explicit
mapping between the process and Key Process Areas (KPAs
– a CMM concept that is equivalent to a PA of CMMI) is not
presented, neither satisfaction grades are assigned.

The impacts in the software process and the main
concerns to be dealt with when using MDD for the
implementation of the CMM’s KPAs are discussed in [19].
However, the discussion is presented in a high abstraction
level, without providing any explicit compliance mapping
neither the attribution of grades to KPAs.

The MDD Maturity Model, which establishes five
capability levels towards the progressive adoption of MDD

523

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 539 / 612

within an organization, is proposed in [20]. The authors
argue that this model is compliant and complementary to
CMMI staged. However, they do not present evidences to
justify this affirmation.

The compliance between a software development process
(based on the formal specification language CSP-CASL)
with the PAs of requirements management, product
integration, requirements development, technical solution,
verification, and validation of CMMI is analyzed in [21].
The analysis concluded that, in general, it is possible to
conciliate the development based on formal specifications
with the requirements of CMMI. Grades are assigned for the
respective SPs and SGs of each analyzed PA. However, the
grades are not based on the SCAMPI criteria and evidences
are not presented to justify all of the assigned grades.

The Model-Driven (software) Development Process
(MDDP) is presented in [22]. It covers the software
development stages from business processes through system
requirements, analysis, and design models into test scripts
and code. The authors argue that it can be used to comply
with every level of CMMI staged. But, a grading scheme and
an explicit mapping identifying the documental evidences
that give support to this compliance are not presented.

In [23], a case study on the use of MDD to support the
implementation of processes for the following PAs of CMMI
is described: requirements management, technical solution,
product integration, verification, and validation. The study
concluded that the use of MDD helps, but is not sufficient to
satisfy all requirements of those PAs. However, evidences to
justify this conclusion are not presented.

Unlike those works, we present a detailed compliance
mapping which uses a SCAMPI-based grading method. The
mapping was produced with the help of experts on the MDD
approach and a CMMI consultant/member of assessment
teams [1]. These facts reinforce the mapping validity.

III. A SCAMPI-BASED ASSESSMENT METHOD

SCAMPI [10] is a method to objectively assess the
development process of an organization according to the
requirements of respective PAs of CMMI. It deals with the
consolidation of evidences (e.g., presentations, documents
and interviews) related to the execution of the process in
actual projects. The evidences are used, by an assessment
team, to support the attribution of grades to practices, goals
and, finally, to the evaluated PAs.

Although SCAMPI-based analyses are usually performed
using artifacts from actual projects, we defined an
assessment method based on existing publications on OO-
Method [8][11][12][24] in order to obtain results
independent from any organizational context, and draw
conclusions without influences from the environment in
which the approach is used. Therefore, these results and
conclusions can be generalized to any organization that uses
OO-Method or similar MDD approaches.

Assessment based on publications can be seen as a
feature-based analysis performed as part of a major
evaluation scenario [25]. For instance, an organization that
follows or plans to follow CMMI might analyze the
possibility of adopting a MDD approach as part of its

development process; in this scenario, the organization can
perform a feature-based analysis on each candidate MDD
approach, and perform a preliminary selection (a subset of
the candidate approaches) based on the analysis’ results.
Then, the selected approaches can be used on pilot projects
to attest their effectiveness and to decide about the adoption.

The proposed SCAMPI-based assessment method uses
the following types of evidences for the compliance analysis:

• Affirmations (AFs): statements described in the
process that confirm or support implementation (or
lack of implementation) of a practice as well as
information obtained from experts in the approach.

• Artifacts (ARs): tangible evidences, mentioned in
the process description, that are indicative of the
work being performed and represent either the
primary outputs of a model practice or a
consequence of implementing a model practice.

The assessment is performed on a bottom-up way, from
the practices up to the goals. Hence, for characterizing the
level of implementation of a Specific Practice (SP) or
Generic Practice (GP), the following grades are used:

• Fully Implemented (FI): ARs are present and
judged to be adequate for demonstrating the
practice implementation. No weaknesses are found.

• Largely Implemented (LI): ARs are present and
judged to be adequate for demonstrating the
practice implementation. However, one or more
weaknesses are found.

• Partially Implemented (PI): some or all data
required is absent or judged to be inadequate, some
data provided (if exist) suggest that aspects of the
practice are implemented, and one or more
weaknesses are found; or the data supplied to the
assessment team present conflicts, i.e., certain data
indicate that the practice is implemented and other
data indicate the practice is not implemented, and
also, one or more weaknesses are noted.

• Not Implemented (NI): some or all data required is
absent or judged to be inadequate, data supplied (if
exist) do not support the conclusion that the
practice is implemented, and one or more
weaknesses are noted.

Based on the grades defined for a practice, each Specific
Goal (SG) or Generic Goal (GG) is graded as:

• Satisfied: if and only if all corresponding practices
are graded as either LI or FI, and the aggregation of
weaknesses associated with the goal does not have
a significant impact on the goal achievement; or,

• Unsatisfied: if at least one of the corresponding
practices has a grade different from LI or FI.

Based on the grades defined for the goals (SGs and GGs),
the capability level of a PA is defined. For instance, the
capability level 1 has to satisfy the associated GG (hereafter
called GG 1). Furthermore, GG 1 is “Satisfied” if all the SGs
associated to the PA are graded as “Satisfied”.

524

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 540 / 612

For capability levels higher than 1, a PA must satisfy the
GG associated to the current level as well as all the GGs
associated to the lower levels. The evaluation of the current
GG is performed by applying the grading method defined
previously to all the GPs associated to the GG (for instance,
a process has capability level 2 for a specific PA if it satisfies
all the GPs associated to the GG of capability level 2 and
also satisfies GG 1). The application of this SCAMPI-based
assessment method to OO-Method is shown in next section.

IV. COMPLIANCE ANALYSIS OF OO-METHOD WITH THE

TECHNICAL SOLUTION PROCESS AREA

The purpose of TS is providing guidance for design,
development and implementation of the given product
requirements [9]. It focuses on evaluating and selecting a
solution, developing a detailed design of the solution, and
implementing the design as a product or product component.

The compliance analysis presented in this section uses an
instance of the assessment method described in Section III.
Based on publications about OO-Method, the CMMI expert
carried out the analysis playing the role of an assessor. Then,
experts on the MDD approach reviewed the analysis to
identify possible flaws or misinterpretations. After that,
discussions on the results were carried out by the experts (on
CMMI and on the MDD approach) to validate the analysis.

The following subsections detail the results of the
compliance analysis of OO-Method regarding the capability
level 1 of TS process area. For each SG, the purpose of each
corresponding SP is presented, the practice is mapped to AFs
and ARs, and the SP is graded. After grading all the SPs of a
SG, each SG is graded. Finally, a summary of the results is
presented, where the whole PA is graded. Improvement
suggestions are also discussed.

A. SG 1 Select Product Component Solutions

This specific goal includes SP1.1 and SP1.2.

SP 1.1 Develop Alternative Solutions and Selection Criteria
This SP identifies and analyzes alternative solutions to

enable the selection of a balanced solution in terms of cost,
schedule, performance, and risk. Selection criteria typically
address costs (e.g., time, people, money), benefits (e.g.,
product performance, capability, effectiveness), and risks
(e.g., technical, cost, schedule).

AFs: The application’s architecture is defined based on a
three-layer architectural pattern and restrictions on
the selected technological platform,
implementation language(s), and persistence
service(s). Then, the conceptual model compilation
is parameterized by the chosen architecture and the
application’s source code can be automatically
generated [8].

ARs: Conceptual Schema, Execution Model, Application
Code.

Grade: PI
OO-Method does not explicitly analyze alternative

solutions prior to code generation (the architecture is usually
defined by the application’s developers jointly with the
clients); neither defines criteria for the architecture selection.

However, if the source code generated is not adjusted to the
quality requirements of a particular application, it can be
regenerated for alternative platforms [8].

SP 1.2 Select Product Component Solutions
This SP selects the product component solutions based

on selection criteria. Lower level requirements are generated
from the selected architecture and used to develop product
component designs. Interfaces among product components
are described. The description of the solutions and the
rationale for selection are documented.

AFs: Components identified during the phase
“Development of a conceptual schema” are
allocated to the architecture layers [8]. A
documentation manager [26], which is part of the
suite of tools to support OO-Method, automatically
generates documentation from the conceptual
schema, describing each component and its
interface with other components.

ARs: Conceptual Schema, Execution Model, Application
Code, Generated documentation, Documentation
manager tool.

Grade: LI
OO-Method does not have an explicit artifact for

documenting the selection decisions that are related to
product component solutions, neither their rationale.

Conclusion
SP1.1 is graded as PI and SP1.2 is graded as LI.

Therefore, SG 1 is graded as “Unsatisfied”.

B. SG 2 Develop the Design

This specific goal includes SP2.1, SP2.2, SP2.3, and
SP2.4.

SP 2.1 Design the Product or Product Components
This SP designs the product or its components in two

phases, which can overlap in execution: preliminary
(abstract) and detailed (concrete) design.

AFs: During the phase “Development of a conceptual
schema”, an abstract architecture is defined. A
concrete architecture is defined during the phase
“Generation of a software product”, according to
an execution model driven by restrictions on the
selected technological platform, implementation
language(s), and persistence service(s) [8].

ARs: Conceptual Schema, Execution Model, Application
Code.

Grade: FI
No weak points have been identified.

SP 2.2 Establish a Technical Data Package
This SP records the design in a technical data package (a

collection of items providing the developer a description of
the product or product components) created during
preliminary design.

AFs: A documentation manager is responsible for
documenting the architecture definition from the
conceptual schema created, and a repository

525

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 541 / 612

manager is responsible for creating and
administrating a model library (including access
control and management of model versions) [26].

ARs: Generated documentation, Data repository,
Documentation manager tool, Repository manager
tool, Conceptual Schema, Execution Model,
Application Code.

Grade: FI
No weak points have been identified.

SP 2.3 Design Interfaces Using Criteria
This SP designs product component interfaces using

established criteria (e.g., critical parameters that should be
defined, or at least investigated, to ascertain their
applicability).

AFs: OO-Method defines criteria for validating the
Conceptual Schema in terms of correctness and
completeness. The specification samples presented
in part II of [8] illustrate the use of these criteria.
Additional criteria for evaluating consistency,
correctness and completeness are defined in [24].

ARs: Conceptual Schema, Validation criteria, Execution
Model, Application Code.

Grade: FI
No weak points have been identified.

SP 2.4 Perform “Make, Buy, or Reuse” Analysis
This SP evaluates whether the product components

should be developed, purchased, or reused based on
established criteria.

AFs: Not identified.
ARs: Not identified.
Grade: NI
OO-Method does explicitly mention this analysis in its

process; neither establishes criteria for performing it.
However, the approach makes it possible to integrate
developed components with pre-existing components and/or
systems (legacy code).

Conclusion
SPs 2.1, 2.2 and 2.3 are graded as FI, and SP 2.4 is

graded as NI. Therefore, SG 2 is graded as “Unsatisfied”.

C. SG 3 Implement the Product Design

This specific goal includes SP3.1, SP3.2, and SP3.3.

SP 3.1 Implement the Design
This SP implements the design of the product

components and includes the allocation, refinement, and
verification of each product component.

AFs: Once architecture is chosen, its code can be
automatically generated. Prior to the source code
generation, it is possible to have a conceptual
model validation [8].

ARs: Conceptual Schema, Validation criteria, Execution
Model, Application Code.

Grade: FI
No weak points have been identified.

SP 3.2 Develop Product Support Documentation
This SP develops and maintains documentation that will

be used to install, operate, and maintain the product.
AFs: The documentation manager [26] automatically

generates support and end-user documentation
from the conceptual schema created.

ARs: Generated documentation, Documentation manager
tool, Conceptual Schema, Application Code.

Grade: FI
No weak points have been identified.

Conclusion
SP 3.1 is graded as FI and SP 3.2 is graded as FI.

Therefore, SG 3 is graded as “Satisfied”.

D. Summary of Assessment and Improvement Suggestions

As Table I summarizes, the OO-Method development
process has capability level 0 with regard to TS.

TABLE I. OVERALL RESULTS OF OO-METHOD ASSESSMENT

Goals and practices of TS Grades
SG 1 Select Product Component Solutions Unsatisfied.
SG 2 Develop the Design Unsatisfied.
SG 3 Implement the Product Design Satisfied

In spite of this negative result, several convergence
points have been pointed out, and most of the weak points
found are easy to solve with the improvement suggestions
described in Table II. In general, the improvements are
simple adjustments in the development process, mainly
related to explicit documentation of evidences.

TABLE II. IMPROVEMENT SUGGESTIONS FOR OO-METHOD

Improvements Affected
SPs

Extension of the development process to include an
explicit analysis of alternative solutions prior to the code
generation, as well as the explicit creation of a document
defining criteria for the architecture selection.

SP 1.1

Explicit documentation of selection decisions (related to
product component solutions) and their rationale.

SP 1.2

Explicit definition of criteria to perform “make, buy or
reuse” analysis and the creation of an activity to explicitly
perform this analysis prior to the code generation.

SP 2.4

Thus, by tailoring OO-Method with these improvements,
it is possible to turn the grade of all SGs of TS into
“Satisfied”. As a result, the development process of OO-
Method can reach the capability level 1 for this PA.
However, in order to confirm the effectiveness of the
changes, the improvements should be implemented in a new
version of OO-Method and the modified approach should be
used in actual projects.

V. CONCLUSIONS AND FUTURE WORK

Even though this work has presented an analysis for
CMMI and OO-Method, its purpose is to emphasize the need
of analyzing the compliance of MDD approaches in relation
to any software process quality model and to show how it
can be addressed. Hence, the analysis can be adapted to other
quality models [6][7] and to other MDD approaches [27].

526

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 542 / 612

In this paper, the compliance of OO-Method in relation
to TS process area was analyzed. As a result, it was detected
that this MDD approach does not sufficiently implement
certain SPs. Hence, improvements were proposed aiming to
fully implement the SPs for which weaknesses were found.

Some of the problems found in the analysis of OO-
Method are also common to other approaches [27]. For
instance, the lack of “make, buy, or reuse” analysis is a
problem found in most of the approaches. Moreover, some of
the features that were satisfied for OO-Method (e.g., the full
code and document generations) are not presented in all of
the other approaches [27].

This work is a starting point for several future works. We
plan to perform a SCAMPI-based analysis of other MDD
approaches for assessment and comparison; an assessment of
the OO-Method development process applied to real projects
must be addressed and an evaluation of the proposed
improvements must be performed; the compliance with other
PAs and capability levels of CMMI-DEV will be analyzed
against OO-Method; and a systematic literature review [28]
will be conducted to verify the existence of other works
related to the compliance of MDD and software process
quality models. All of these works are part of a research
agenda towards the development of a complete MDD-based
software process compliant with CMMI.

ACKNOWLEDGMENT

This work has been developed with the support of the
Brazilian Research Agency CAPES, under the grant
#BEX3229/10-6, and the Spanish Government, under the
projects ORCA (PROMETEO/2009/15) and PROS-REQ
(TIN2010-19130-C02-02).

REFERENCES
[1] A. Vasconcelos, “Curriculum Vitae”, in Portuguese,

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4
787134E7, Last access 2011/07/18

[2] B. Selic, “The Pragmatics of Model-Driven Development,”
IEEE Software, vol. 20(5), 2003, pp. 19-25

[3] D. Schmidt, “Model-Driven Engineering,” IEEE Computer,
vol. 39(2), 2006, pp. 25-31

[4] M. Völter, “Model-Driven Software Development –
Technology, Engineering, Management,” Wiley, 2007

[5] P. Mohagheghi and V. Dehlen, “Where is the Proof? – A
Review of Experiences from Applying MDE in Industry,”
LNCS, Springer, 2008, vol. 5095, pp. 432-443

[6] F. J. Pino, F. García, and M. Piattini, “Software process
improvement in small and medium software enterprises: a
systematic review,” Software Quality Journal, vol. 16(2),
2008, pp. 237-261

[7] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. Cheng, R.
Permadi, and R. Feldt, “Evaluation and Measurement of
Software Process Improvement - A Systematic Literature
Review,” IEEE-TSE, 2011

[8] O. Pastor and J. C. Molina, Model-Driven Architecture in
Practice: A Software Production Environment Based on
Conceptual Modeling, 1st edn. Springer, New York, 2007

[9] SEI, “CMMI for Development, Version 1.3,” CMU/SEI-
2010-TR-033, http://www.sei.cmu.edu, 2010, Last access
2011/07/18

[10] SEI, “Standard CMMI Appraisal Method for Process
Improvement (SCAMPI) A, Version 1.3: Method Definition
Document”, CMU/SEI-2011-HB-001, 2011,
http://www.sei.cmu.edu, 2010, Last access 2011/07/18

[11] PROS, Model Driven Development and Automatic Code
Generation, http://www.pros.upv.es/index.php/en/lineas/69-
lineaddm, Last access 2011/07/18

[12] O. Pastor, J. C. Molina, and E. Iborra, “Automated production
of fully functional applications with OlivaNova Model
Execution”, ERCIM News, nº 57, 2004

[13] L. V. Manzoni and R. T. Price, “Identifying Extensions
Required by RUP to Comply with CMM Levels 2 and 3,”
IEEE TSE, vol. 29(2), 2003, pp. 181-192

[14] C. Santana, C. Gusmão, A. Rouiller, and A. Vasconcelos,
“Achieving Software Quality Certifications through Agile
Software Development,” Internat. Journal of Advanced
Manufacturing Systems, vol. 11(1), 2008, pp. 1-6

[15] J. Smith, “Reaching CMM Level 2 and 3 with the Rational
Unified Process – White Paper,”
http://www.wthreex.com/rup/portugues/papers/pdf/rupcmm.p
df, 2000, Last access 2011/07/18

[16] J. Diaz, J. Garbajosa, and J. A. Calvo-Manzano, “Mapping
CMMI Level 2 to Scrum Practices: An Experience Report,”
Proc. EuroSPI 2009, CCIS, Springer, 2009, vol. 42, pp. 93-
104

[17] ESI, “Model-driven Architecture inSTrumentation,
Enhancement and Refinement,” IST-2001-34600, MASTER-
2003-D3.2-V1.0-PUBLIC, 2003

[18] OMG, “Model Driven Architecture (MDA) Guide Version
1.0.1,” http://www.omg.org/mda/, 2003, Last access
2011/07/18

[19] R. Steinhau, et al., “Guidelines for the Application of MDA
and the Technologies covered by it,” Deliverable 3.2,
MODA-TEL Consortium, IST-2001-37785, Interactive
Objects Software GmbH, 2003

[20] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, “MDD
Maturity Model: A Roadmap for Introducing Model-Driven
Development. Model Driven Architecture – Foundations and
Applications,” LNCS, Springer, 2006, vol. 4066, pp. 78-89

[21] S. Mishra and B. Schlingloff, “Compliance of CMMI Process
Area with Specification Based Development,” Proc. VI
Internat. Conf. on Softw. Engineering Research, Management
and Applications, IEEE Computer Society, 2008, pp. 77-84

[22] Crag Systems, The Model-Driven Development Process,
http://www.cragsystems.co.uk/development_process, 2008,
Last access 2011/07/18

[23] S. Fricker,“Introducing Model-Driven Development for
CMMI Engineering Process Areas,” SEPG 2006,
http://www.secc.org.eg/sepg%202006/ingredients/Indexes/aut
horindex.html#f, 2006, Last access 2011/07/18

[24] B. Marín, G. Giachetti O. Pastor, and A. Abran, “A Quality
Model for Conceptual Models of MDD Environments”
Advances in Software Engineering, (Special Issue: New
Generation of Software Metrics), 2010

[25] B. Kitchenham, “DESMET: A Method for Evaluating
Software Engineering Methods and Tools,” TR96-09,
Department of Computer Science, University of Keele, 1996

[26] CARE-Technologies Web Page, http://www.care-t.com,
2011/07/18

[27] J. Estefan, “Survey of Model-Based Systems Engineering
Methodologies – Rev. B,” Technical Report, INCOSE MBSE
Initiative Focus Group, 2008

[28] B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature Reviews in Software Engineering
Version 2.3,” Keele University and Durham University Joint
Technical Report EBSE-2007-01, 2007

527

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 543 / 612

From Boolean Relations to Control Software

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science

Sapienza University of Rome
Via Salaria 113, 00198 Rome, Italy

Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Many software as well digital hardware automatic
synthesis methods define the set of implementations meeting
the given system specifications with a boolean relationK. In
such a context a fundamental step in the software (hardware)
synthesis process is finding effective solutions to the functional
equation defined byK. This entails finding a (set of) boolean
function(s) F (typically represented using OBDDs, Ordered
Binary Decision Diagrams) such that: 1) for all x for which K
is satisfiable,K(x, F (x)) = 1 holds; 2) the implementation of
F is efficient with respect to given implementation parameters
such as code size or execution time. While this problem has
been widely studied in digital hardware synthesis, little has
been done in a software synthesis context. Unfortunately the
approaches developed for hardware synthesis cannot be directly
used in a software context. This motivates investigation of
effective methods to solve the above problem whenF has to
be implemented with software. In this paper, we present an
algorithm that, from an OBDD representation for K, generates
a C code implementation forF that has the same size as the
OBDD for F and a worst case execution time linear innr,
being n = |x| the number of input arguments for functions in
F and r the number of functions in F .

Keywords-Control Software Synthesis; Embedded Systems;
Model Checking

I. I NTRODUCTION

Many software as well digital hardware automatic synthe-
sis methods define the set of implementations meeting the
given system specifications with a boolean relationK. Such
relation typically takes as input (then-bits encoding of) a
statex of the system and (ther-bits encoding of) a proposed
action to be performedu, and returnstrue (i.e., 1) iff the
system specifications are met when performing actionu in
statex. In such a context a fundamental step in the software
(hardware) synthesis process is finding effective solutions to
the functional equation defined byK, i.e.,K(x, u) = 1. This
entails finding a tuple of boolean functionsF = 〈f1, . . . , fr〉
(typically represented using OBDDs,Ordered Binary Deci-
sion Diagrams[1]) s.t. 1) for allx for whichK is satisfiable
(i.e., it enables at least one action),K(x, F (x)) = 1 holds,
and 2) the implementation ofF is efficient with respect
to given implementation parameters such as code size or
execution time.

While this problem has been widely studied in digital
hardware synthesis [2][3], little has been done in a software
synthesis context. This is not surprising since software

synthesis from formal specifications is still in its infancy.
Unfortunately the approaches developed for hardware syn-
thesis cannot be directly used in a software context. In
fact, synthesis methods targeting a hardware implementation
typically aim at minimizing the number of digital gates and
of hierarchy levels. Since in the same hierarchy level gates
output computation isparallel, the hardware implementation
WCET (Worst Case Execution Time) is given by the number
of levels. On the other hand, a software implementation will
have tosequentiallycompute the gates outputs. This implies
that the software implementation WCET is the number of
gates used, while a synthesis method targeting a software
implementation may obtain a better WCET. This motivates
investigation of effective methods to solve the above problem
whenF has to be implemented with software.

In this paper we present an algorithm that, from an OBDD
representation forK, effectively generates a C code imple-
mentation forK that has the same size as the OBDD forF
and a WCET linear in linear innr, beingn = |x| the size
of states encoding andr = |u| the size of actions encoding.
This allows us to synthesize correct-by-constructioncontrol
software, provided thatK is provably correct w.r.t. initial
formal specifications. This is the case of [4], where an algo-
rithm to synthesizeK starting from the formal specification
of a Discrete-Time Linear Hybrid System (DTLHS in the
following) is presented. Thus this methodology allows a
correct-by-construction control software to be synthesized,
starting from formal specifications for DTLHSs.

Note that the problem of solving the functional equation
K(x, F (x)) = 1 w.r.t. F is trivially decidable, since there
are finitely manyF . However, trying to explicitly enumerate
all F requires timeΩ(2r2

n

) (being n the number of bits
encoding statex and r the number of bits encoding state
u). By using OBDD-based computations, our algorithm
complexity isO(r2n) in the worst case. However, in many
interesting cases OBDD sizes and computations are much
lower than the theoretical worst case (e.g., in Model Check-
ing applications, see [5]).

Furthermore, once the OBDD representation forF has
been computed, a trivial implementation ofF could use
a look-up table in RAM. While this solution would yield
a better WCET, it would imply aΩ(r2n) RAM usage.
Unfortunately, implementations forF in real-world cases are

528

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 544 / 612

typically implemented on microcontrollers (this is the case,
e.g., forembedded systems). Since microcontrollers usually
have a small RAM, the look-up table based solution is not
feasible in many interesting cases. The approach we present
here will rely on OBDDs compression to overcome such
obstruction.

Moreover, F : B
n → B

r is composed byr boolean
functions, thus it is represented byr OBDDs. Such OBDDs
typically share nodes among them. If a trivial implementa-
tion of F in C code is used, i.e., each OBDD is translated as
a stand-alone C function, OBDDs nodes sharing will not be
exploited. In our approach, we also exploit nodes sharing,
thus the control software we generate fully takes advantage
of OBDDs compression.

Finally, we present experimental results showing effec-
tiveness of the proposed algorithm. As an example, in less
than 1 second and within 70 MB of RAM we are able
to synthesize the control software for a functionK of
24 boolean variables, divided inn = 20 state variables
and r = 4 action variables, represented by a OBDD with
about4 × 104 nodes. SuchK represents the set of correct
implementations for a real-world system, namely a multi-
input buck DC/DC converter [6], obtained as described
in [4]. The control software we synthesize in such a case
has about1.2×104 lines of code, whilest a control software
not taking into account OBDDs nodes sharing would have
had about1.5 × 104 lines of code. Thus, we obtain a24%
gain towards a trivial implementation.

This paper is organized as follows. In Section III we give
the basic notions to understand our approach. In Section IV
we formally define the problem we want to solve. In Sec-
tion V we give definition and main properties of COBDDs
(i.e., Complemented edges OBDDs), on which our approach
is based. Section VI describes the algorithms our approach
consists of. Finally, Section VII presents experimental results
showing effectiveness of the proposed approach.

II. RELATED WORK

Synthesis of boolean functionsF satisfying a given
boolean relationK in a way s.t.K(x, F (x)) = 1 is also
addressed in [2]. However, [2] targets a hardware setting,
whereas we are interested in a software implementation
for F . Due to structural differences between hardware and
software based implementations (see the discussion in Sec-
tion I), the method in [2] is not directly applicable here. An
OBDD-based method for synthesis of boolean (reversible)
functions is presented in [3] (see also citations thereof).
Again, the method in [3] targets a hardware implementation,
thus it is not applicable here.

In [4], an algorithm is presented which, starting from
formal specifications of a DTLHS, synthesizes a correct-
by-construction boolean relationK, and then a correct-by-
construction control software implementation forK. How-
ever, in [4] the implementation ofK is not described in

detail. Furthermore, the implementation synthesis described
in [4] has not the same size of the OBDD forF , i.e., it does
not exploit OBDD node sharing.

In [7], an algorithm is presented which computes boolean
functionsF satisfying a given boolean relationK in a way
s.t.K(x, F (x)) = 1. This approach is very similar to ours.
However [7] does not generate the C code control software
and it does not exploit OBDD node sharing.

Therefore, to the best of our knowledge this is the first
time that an algorithm synthesizing correct-by-construction
control software starting from a boolean relation (with the
characteristics given in Section I) is presented.

III. B ASIC DEFINITIONS

In the following, we denote withB = {0, 1} the boolean
domain, where0 stands forfalse and 1 for true. We will
denote boolean functionsf : B

n → B with boolean
expressions on boolean variables involving+ (logical OR),
· (logical AND, usually omitted thusxy = x · y), ¯ (log-
ical complementation) and⊕ (logical XOR). We will also
denote vectors of boolean variables in boldface, e.g.,x =
〈x1, . . . , xn〉. Moreover, we also denote withf |xi=g(x) the
boolean functionf(x1, . . . , xi−1, g(x), xi+1, . . . , xn) and
with ∃xi f(x) the boolean functionf |xi=0(x)+f |xi=1(x).

Finally, we denote with[n] the set{1, . . . , n}.
1) Most General Optimal Controllers:A Labeled Tran-

sition System(LTS) is a tupleS = (S,A, T) whereS is
a finite set of states,A is a finite set ofactions, andT is
the (possibly non-deterministic)transition relationof S. A
controller for an LTS S is a functionK : S × A → B

enabling actions in a given state. We denote with Dom(K)
the set of states for which a control action is enabled. An
LTS control problemis a tripleP = (S, I, G), whereS
is an LTS andI,G ⊆ S. A controllerK for S is a strong
solution to P iff it drives eachinitial states ∈ I in a goal
statet ∈ G, notwithstanding nondeterminism ofS. A strong
solutionK∗ toP is optimal iff it minimizes path lengths. An
optimal strong solutionK∗ to P is themost general optimal
controller (we call such solution anmgo) iff in each state it
enables all actions enabled by other optimal controllers. For
more formal definitions of such concepts, see [8].

Efficient algorithms to compute mgos starting from suit-
able (nondeterministic) LTSs have been proposed in the
literature (e.g., see [9]). Once an mgoK has been com-
puted, solving and implementing the functional equation
K(x,u) = 1 allows a correct-by-construction control soft-
ware to be synthesized.

2) OBDD Representation for Boolean Functions:A Bi-
nary Decision Diagram(BDD) R is a rooted directed acyclic
graph (DAG) with the following properties. EachR node
v is labeled either with a boolean variablevar(v) (internal
node) or with a boolean constantval(v) ∈ B (terminal node).
EachR internal nodev has exactly two children, labeled
with high(v) and low(v). Let x1, . . . , xn be the boolean

529

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 545 / 612

variables labelingR internal nodes. Each terminal nodev
representsfv(x) = val(v). Each internal nodev represents
fv(x) = xifhigh(v)(x) + x̄iflow(v)(x), beingxi = var(v).
An Ordered BDD(OBDD) is a BDD where, on each path
from the root to a terminal node, the variables labeling each
internal node must follow the same ordering.

IV. SOLVING A BOOLEAN FUNCTIONAL EQUATION

Let K(x1, . . . , xn, u1, . . . , ur) be the mgo for a given
control problemP = (S, I, G). We want to solve the
boolean functional equationK(x,u) = 1 w.r.t. variablesu,
that is we want to obtain boolean functionsf1, . . . , fr s.t.
K(x, f1(x), . . . , fr(x)) = K|u1=f1(x),...,ur=fr(x)(x,u) =
1. This problem may be solved in different ways, depending
on the target implementation(hardware or software) for
functionsfi. In both cases, it is crucial to be able to bound
the WCET (Worst Case Execution Time) of the obtained
controller. In fact, controllers must work in an endless closed
loop with the systemS (plant) they control. This implies
that, everyT seconds (sampling time), the controller has to
decide the actions to be sent toS. Thus, in order for the
entire system (plant + control software) to properly work,
the controller WCET upper bound must be at mostT .

In [2], f1, . . . , fr are generated in order to optimize
a hardware implementation. In this paper, we focus on
software implementations forfi (control software). As it
is discussed in Section I, simply translating an hardware
implementation into a software implementation would re-
sult in a too high WCET. Thus, a method directly tar-
geting software is needed. An easy solution would be
to set up, for a given statex, a SAT problem instance
C = CK1, . . . , CKt, c1, . . . , cn, where CK1 ∧ . . . ∧ CKt

is equisatisfiable toK and each clauseci is either xi (if
xi is 1) or x̄i (otherwise). ThenC may be solved using a
SAT solver, and the values assigned tou in the computed
satisfying assignment may be returned as the action to be
taken. However, it would be hard to estimate a WCET for
such an implementation. The method we propose in this
paper overcomes such obstructions by achieving a WCET
proportional torn.

V. OBDDS WITH COMPLEMENTED EDGES

In this section, we introduce OBDDs with complemented
edges (COBDDs, Definition 1), which were first presented
in [10][11]. Intuitively, they are OBDDs where else edges
(i.e., edges of type(v, low(v))) may be complemented. Then
edges (i.e., edges of type(v, high(v))) complementation
is not allowed to retain canonicity. Edge complementation
usually reduce resources usage, both in terms of CPU and
memory.

Definition 1. An OBDD with complemented edges(COBDD
in the following) is a tupleρ = (V, V , 1, var, low, high,
flip) with the following properties: i)V = {x1, . . . , xn}
is a finite set ofordered boolean variables; ii)V is a

finite set of nodes; iii) 1 ∈ V is the terminal node of
ρ, corresponding to the boolean constant1 (non-terminal
nodes are calledinternal); iv) for each internal nodev,
var(v) < var(high(v)) and var(v) < var(low(v)); v)
var, low, high, flip are functions defined on internal nodes,
namely:var : V \ {1} → V assigns to each internal node a
boolean variable inV, high[low] : V \ {1} → V assigns to
each internal nodev a high child [low child] (or true child
[else child]), representing the case in whichvar(v) = 1
[var(v) = 0], flip : V \ {1} → B assigns to each internal
nodev a boolean value; namely, ifflip(v) = 1 then the else
child has to be complemented, otherwise it is regular (i.e.,
non-complemented).

COBDDs associated multigraphs:We associate to a
COBDD ρ = (V, V , 1, var, low, high, flip) a labeled
directed multigraphG(ρ) = (V,E) s.t.V is the same set of
nodes ofρ and there is an edge(v, w) ∈ E iff w is a child of
v. Moreover, each edgee ∈ E has a typetype(e), indicating
if e is a then, a regular else, or a complemented else edge.
Figure 1 shows an example of a COBDD depicted via its
associated multigraph, where edges are directed downwards.
Moreover, in Figure 1 then edges are solid lines, regular
else edges are dashed lines and complemented else edges
are dotted lines.

The graph associated to a given COBDDρ = (V, V , 1,
var, low, high, flip) may be seen as a forest with multiple
rooted multigraphs. In order to select one root vertex and
thus one rooted multigraph, we define theCOBDD restricted
to v ∈ V as the COBDDρv = (V, Vv, 1, var, low, high,
flip) s.t. Vv = {w ∈ V | there exists a path fromv to w in
G(ρ)} (note thatv ∈ Vv).

Reduced COBDDs:Two COBDDs areisomorphiciff
there exists a mapping from nodes to nodes preserving at-
tributesvar, flip, high andlow. A COBDD is calledreduced
iff it contains no vertexv with low(v) = high(v)∧flip(v) =
0, nor does it contains distinct verticesv andv′ such thatρv
andρv′ are isomorphic. Note that, differently from OBDDs,
it is possible thathigh(v) = low(v) for some v ∈ V ,
provided thatflip(v) = 1 (e.g., see nodes0xf and 0xe in
Figure 1). In the following, we assume all our COBDDs to
be reduced.

COBDDs properties:For a given COBDDρ = (V, V ,
1, var, low, high, flip) the following properties follow from
definitions given above: i)G(ρ) is a rooted directed acyclic
(multi)graph (DAG); ii) each path inG(ρ) starting from an
internal node ends in1; iii) let v1, . . . , vk be a path inG(ρ),
thenvar(v1) < . . . < var(vk).

A. Semantics of a COBDD

In Definition 2, we define the semanticsJ·K of each node
v of a given COBDDρ as the boolean function represented
by v, given the parityb of complemented edges seen on the
path from a root tov.

530

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 546 / 612

Definition 2. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD. Thesemantics of the terminal node1
w.r.t. a flipping bit b is a boolean function defined as
J1, bKρ := b̄. The semantics of an internal nodev ∈ V
w.r.t. a flipping bit b is a boolean function defined as
Jv, bKρ := xiJhigh(v), bKρ + x̄iJlow(v), b ⊕ flip(v)Kρ, being
xi = var(v). Whenρ is understood, we will writeJ·K instead
of J·Kρ.

Example 1. Letρ be the COBDD depicted in Figure 1. If we
pick node0xe we haveJ0xe, bK = x2J1, bK+ x̄2J1, b⊕ 1K =
x2b̄+ x̄2b = x2 ⊕ b.

Theor. 1 states that COBDDs are acanonicalrepresenta-
tion for boolean functions (see [10][11]).

Theorem 1. Let f : Bn → B be a boolean function. Then
there exist a COBDDρ = (V, V , 1, var, low, high, flip), a
node v ∈ V and a flipping bitb ∈ B s.t. Jv, bK = f(x).
Moreover, letρ = (V, V , 1, var, low, high, flip) be a
COBDD, letv1, v2 ∈ V be nodes andb1, b2 ∈ B be flipping
bits. ThenJv1, b1K = Jv2, b2K iff v1 = v2 ∧ b1 = b2.

VI. SYNTHESIS OFC CODE FROM A COBDD

Let K(x1, . . . , xn, u1, . . . , ur) be the mgo for a given
control problem. Letρ = (V, V , 1, var, low, high, flip)
be a COBDD s.t. there existv ∈ V , b ∈ B s.t. Jv, bK =
K(x1, . . . , xn, u1, . . . , ur). Thus,V = X ·∪ U = {x1, . . . ,
xn} ·∪{u1, . . . , ur} (we denote with ·∪ the disjoint union
operator, thusX ∩ U = ∅). We will call variablesxi ∈ X
asstate variablesand variablesuj ∈ U asaction variables.
More in-depth details may be found in [8].

A. Synthesis Algorithm: Overview

Our methodSynthesizetakes as inputρ, v and b s.t.
Jv, bK = K(x,u). Then, it returns as output a C function
void K(int *x, int *u) with the following prop-
erty: if, before a call toK, ∀i x[i − 1]= xi holds (array
indexes in C language begin from0) with x ∈ Dom(K), and
after the call toK, ∀i u[i−1]= ui holds, thenK(x,u) = 1.
Moreover, the WCET of functionK is O(nr).

Note that our methodSynthesizeprovides an effective
implementationof the mgoK, i.e., a C function which takes
as input the current state of the LTS and outputs the action
to be taken. Thus,K is indeed a control software.

Function Synthesizeis organized in two phases. First,
starting fromρ, v and b (thus fromK(x,u)), we generate
COBDD nodesv1, . . . , vr and flipping bitsb1, . . . , br for
boolean functionsf1, . . . , fr s.t. eachfi = Jvi, biK takes
as input the state bit vectorx and computes thei-th bit
ui of an output action bit vectoru, whereK(x,u) = 1,
provided thatx ∈ Dom(K). This computation is carried
out in functionSolveFunctionalEq. Second,f1, . . . , fr are
translated inside functionvoid K(int *x, int *u).
This step is performed by maintaining the structure of the
COBDD nodes representingf1, . . . , fr. This allows us to

exploit COBDD node sharing in the generated software. This
phase is performed by functionGenerateCCode.

Thus functionSynthesizeis organized as in Algorithm 1.
Correctness for functionSynthesizeis stated in Theor. 2.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD ρ, nodev, booleanb
Ensure: Synthesize(ρ, v, b):

1: 〈v1, b1, . . . , vr, br〉 ← SolveFunctionalEq(ρ, v, b)
2: GenerateCCode(ρ, v1, b1, . . . , vr, br)

B. Synthesis Algorithm: Solving a Functional Equation

In this phase, starting fromρ, v andb (thus fromJv, bK =
K(x,u)), we compute functionsf1, . . . , fr s.t. for all x ∈
Dom(K), K(x, f1(x), . . . , fr(x)) = 1.

To this aim, we follow an approach similar to
the one presented in [7]. Namely, we computefi
using f1, . . . , fi−1, in the following way: fi(x) =
∃ui+1, . . . , un K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , un).
Thus, functionSolveFunctionalEq(ρ, v, b) computes and re-
turns〈v1, b1, . . . , vr, br〉 s.t. for all i ∈ [r], Jvi, biK = fi(x).

C. Synthesis Algorithm: Generating C Code

In this phase, starting from COBDD nodesv1, . . . , vr and
flipping bits b1, . . . , br for functions f1, . . . , fr generated
in the first phase, we generate two C functions: i)void
K(int *x, int *u), which is the required output func-
tion for our methodSynthesize; ii) int K_bits(int

*x, int action), which is an auxiliary function called
by K. A call to K_bits(x, i) returnsfi(x), beingx[j−
1]= xj for all j ∈ [n]. This phase is detailed in Algs. 2
(function GenerateCCode) and 3 (functionTranslate).

Given inputsρ, v1, b1, . . . , vr, br (output bySolveFunc-
tionalEq), Algs. 2 and 3 work as follows. First, function
int K_bits(int *x, int action) is generated. If
x[j − 1]= xj for all j ∈ [n], the call K_bits(x, i)
has to returnfi(x). In order to do this,K_bits(x, i)
traverses the graphG(ρvi

) by taking, in each nodev, the
then edge ifx[j − 1] = 1 (with j s.t. var(v) = xj) and
the else edge otherwise. When node1 is reached, then1 is
returned iff the integer sumc+bi is even, beingc the number
of complemented else edges traversed. Parity ofc + bi is
maintained by initializing a C variableret_b to b̄i, then
complementingret_b when a complemented else edge is
traversed, and finally returningret_b.

Thus, Algs. 2 and 3 generateK_bits in order to obtain
the above described behavior. Namely, for allvi output by
the first phase (functionSolveFunctionalEq), GenerateC-
Code calls Translatewith parametersρ, vi,W , whereW
maintains the set of nodes already translated in C code.
This results, for all suchvi, in a recursive graph traversal of
G(ρvi

) where, for each internal nodew /∈W which was not
already translated, a C code blockB = B1B2 is generated
s.t.B1 is of the formL_w: if (x[j−1]) goto L_h;

531

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 547 / 612

(line 7 of Algorithm 3) andB2 has one of the following
forms: i) else goto L_l; (if flip(w) = 0, line 9 of
Algorithm 3) or ii) else {ret_b = !ret_b; goto
L_l;} (otherwise, line 8 of Algorithm 3). For the terminal
node, the blockL_1: return ret_b; is generated.
Note that maintaining the set of already translated nodes
W allows us to fully exploit COBDDs nodes sharing.

Algorithm 2 Generating C functions
Require: COBDD ρ, v1, . . . , vr, boolean valuesb1, . . . , br
Ensure: GenerateCCode(ρ, v1, b1, . . . , vr, br):

1: print “int K_bits(int *x, int action) {
int ret_b; switch(action) {”

2: for all i ∈ [r] do
3: print “case ”, i − 1, “: ret_b = ”, b̄i, “;

goto L_”, vi,“;”
4: print “}” /* end of the switch block */
5: W ← ∅

6: for all do i ∈ [r] W ←Translate(ρ, vi,W) done
7: print “} K(int*x,int*u){int
i;for(i=0;i<”,r,“;i++)u[i]=K_bits(x,i);}”

Algorithm 3 COBDD nodes translation
Require: COBDD ρ, nodev, nodes setW
Ensure: Translate(ρ, v,W):

1: if v ∈W then return W
2: W ←W ∪ {v}, print “L_”, v, “:”
3: if v = 1 then
4: print “return ret_b;”
5: else
6: let i be s.t.var(v) = xi

7: print “if(x[”,i− 1,“]==1)goto L_”, high(v)
8: if flip(v) then print “else {ret_b = !ret_b;

goto L_”, low(v),“;}”
9: else print “else goto L_”, low(v)

10: W ←Translate(ρ, high(v),W)
11: W ←Translate(ρ, low(v),W)
12: return W

Algorithm Correctness:Correctness of our approach,
i.e., of functionSynthesizein Algorithm 1, is stated by Th. 2
(for the proof, see [8]).

Theorem 2. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD withV = X ·∪U , v ∈ V be a node,
b ∈ B be a boolean. LetJv, bK = K(x,u). Then function
Synthesize(ρ, v, b) generates a C functionvoid K(int

*x, int *u) with the following property: for allx ∈
Dom(K), if before a call toK ∀i ∈ [n] x[i− 1]= xi, and
after the call toK ∀i ∈ [r] u[i−1]= ui, thenK(x,u) = 1.
Furthermore, functionK has WCETO(nr).

An Example of Translation:Consider the COBDDρ
shown in Figure 1. Withinρ, consider mgoK(x0, x1,
x2, u0, u1) = J0x17, 1K. By applying SolveFunctionalEq,
we obtain f1(x0, x1, x2) = J0x15, 1K and f2(x0, x1,

 u0

 u1

 x0

 x1

 x2

K

0x17

0x120x16

0x10

0x11

0x15

1

0xf

0xe

0x13 0x14

Figure 1. An mgo example

i n t K_bits(i n t *x, i n t action) { i n t ret_b;
swi tch(action) { case 0: ret_b = 0; goto L_0x15;

case 1: ret_b = 0; goto L_0x10; }
L_0x15: i f (x[0] == 1) goto L_0x13;

e l s e { ret_b = !ret_b; goto L_0x14; }
L_0x13: i f (x[1] == 1) goto L_0xe;

e l s e { ret_b = !ret_b; goto L_1; }
L_0xe: i f (x[2] == 1) goto L_1;

e l s e { ret_b = !ret_b; goto L_1; }
L_0x14: i f (x[1] == 1) goto L_0xe;

e l s e goto L_1;
L_0x10: i f (x[0] == 1) goto L_0xe;

e l s e { ret_b = !ret_b; goto L_0xf; }
L_0xf: i f (x[1] == 1) goto L_0xe;

e l s e { ret_b = !ret_b; goto L_0xe; }
L_1: re turn ret_b; }

vo id K(i n t *x, i n t *u) { i n t i;
f o r (i = 0; i < 2; i++) u[i] = K_bits(x, i); }

Figure 2. C code for the mgo in Figure 1 as generated bySynthesize

x2) = J0x10, 1K. Note that0xe is shared betweenG(ρ0x15)

andG(ρ0x10). Finally, by callingGenerateCCode(see Algo-
rithm 2) onf1, f2, we have the C code in Figure 2.

VII. E XPERIMENTAL RESULTS

We implemented our synthesis algorithm in C program-
ming language, using the CUDD package for OBDD based
computations and BLIF files to represent input OBDDs. We
name the resulting tool KSS (Kontrol Software Synthesizer).
KSS is part of a more general tool named QKS (Quantized
feedback Kontrol Synthesizer[4]).

1) Experimental Settings:We present experimental re-
sults obtained by using KSS on given COBDDsρ1, . . . , ρ4
s.t. for all i ∈ [4] ρi represents the mgoKi(x,u) for a buck
DC/DC converter withi inputs (see [6] for a description of
this system), wheren = |x| = 20 and ri = |u| = i. Ki is
an intermediate output of the QKS tool described in [4].

For eachρi, we run KSS so as to computeSynthesize(ρi,
vi, bi) (see Algorithm 1). In the following, we will call
〈v1i, b1i, . . . , vii, bii〉, with vji ∈ Vi, bji ∈ B, the out-

532

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 548 / 612

Table I
KSS PERFORMACES

r CPU MEM |K| |Funsh| |Sw| %

1 2.2e-01 4.5e+07 12124 2545 2545 0.0e+00
2 4.2e-01 5.3e+07 25246 5444 4536 1.7e+01
3 5.2e-01 5.9e+07 34741 10731 8271 2.3e+01
4 6.3e-01 6.5e+07 43065 15165 11490 2.4e+01

put of function SolveFunctionalEq(ρi, vi, bi). Moreover,
we call f1i, . . . , fii : Bn → B the i boolean functions s.t.
Jvji, bjiK = fji(x). All our experiments have been carried
out on a 3.0 GHz Intel hyperthreaded Quad Core Linux PC
with 8 GB of RAM.

2) KSS Performance:In this section we will show the
performance (in terms of computation time, memory, and
output size) of the algorithms discussed in Section VI. Ta-
ble I show our experimental results. Thei-th row in Table I
corresponds to experiments running KSS so as to compute
Synthesize(ρi, vi, bi). Columns in Table I have the following
meaning. Columnr shows the number of action variables|u|
(note that|x| = 20 on all our experiments). ColumnCPU
shows the computation time of KSS (in secs). ColumnMEM
shows the memory usage for KSS (in bytes). Column|K|
shows the number of nodes of the COBDD representation for
Ki(x,u), i.e., |Vvℓi

|. Column|Funsh| shows the number of
nodes of the COBDD representations off1i, . . . , fii, without
considering nodes sharing among such COBDDs. Note that
we do consider nodes sharing inside eachfji separately.
That is,|Funsh| =

∑i
j=1 |Vvji

| is the size of a trivial imple-
mentation off1i, . . . , fii in which eachfji is implemented
by a stand-alone C function. Column|Sw| shows the size
of the control software generated by KSS, i.e., the number
of nodes of the COBDD representationsf1i, . . . , fii, con-
sidering also nodes sharing among such COBDDs. That is,
|Sw| = |∪ij=1Vvji

| is the number of C code blocks generated
by lines 5–6 of functionGenerateCCodein Algorithm 2.
Finally, Column% shows the gain percentage we obtain by
considering node sharing among COBDD representations for
f1i, . . . , fii, i.e., (1− |Sw|

|Funsh|
)100.

From Table I we can see that, in less than 1 second
and within 70 MB of RAM we are able to synthesize the
control software for the multi-input buck withr = 4 action
variables, starting from a COBDD representation ofK with
about 4 × 104 nodes. The control software we synthesize
in such a case has about1.2 × 104 lines of code, whilest
a control software not taking into account COBDD nodes
sharing would have had about1.5×104 lines of code. Thus,
we obtain a24% gain towards a trivial implementation.

VIII. C ONCLUSION AND FUTURE WORK

We presented an algorithm and a tool KSS implementing
it which, starting from a boolean relationK representing

the set of implementations meeting the given system speci-
fications, generates a correct-by-construction C code imple-
menting K. This entails finding boolean functionsF s.t.
K(x, F (x)) = 1 holds, and then implement suchF . WCET
for the generated control software is linear linear innr, being
r the number of functions inF and n = |x|. KSS allows
us to synthesize correct-by-construction control software,
provided thatK is provably correct w.r.t. initial formal spec-
ifications. This is the case in [4], thus this methodology, e.g.,
allows to synthesize correct-by-construction control software
starting from formal specifications for DTLHSs. We have
shown feasibility of our proposed approach by presenting
experimental results on using it to synthesize C controllers
for a buck DC-DC converter.

In order to speed-up the resulting WCET, a natural possi-
ble future research direction is to investigate how to paral-
lelize the generated control software, as well as to improve
don’t-cares handling inF .

Acknowledgments:This work has received funding both
from MIUR project TRAMP and the FP7/2007-2013 project
ULISSE (grant agreement no218815).

REFERENCES

[1] R. Bryant, “Graph-based algorithms for boolean function
manipulation,”IEEE Trans. on Computers, vol. C-35, no. 8,
pp. 677–691, 1986.

[2] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive
paradigm to solve boolean relations,”IEEE Trans. Comput.,
vol. 58, pp. 512–527, April 2009.

[3] R. Wille and R. Drechsler, “Bdd-based synthesis of reversible
logic for large functions,” inDAC, 2009, pp. 270–275.

[4] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV, ser. LNCS 6174, 2010, pp. 180–195.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Check-
ing. The MIT Press, 1999.

[6] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Quantized
feedback control software synthesis from system level for-
mal specifications for buck dc/dc converters,”CoRR, vol.
abs/1105.5640, 2011.

[7] E. Tronci, “Automatic synthesis of controllers from formal
specifications,” inICFEM. IEEE, 1998, pp. 134–143.

[8] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “From
boolean functional equations to control software,”CoRR, vol.
abs/1106.0468, 2011.

[9] A. Cimatti, M. Roveri, and P. Traverso, “Strong planning
in non-deterministic domains via model checking,” inAIPS,
1998, pp. 36–43.

[10] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” inDAC, 1990, pp. 40–
45.

[11] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision
diagram with attributed edges for efficient boolean function
manipulation,” inDAC, 1990, pp. 52–57.

533

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 549 / 612

Empirical Evidence in Software Architecture: A Systematic Literature Review

Protocol

Nadia Qureshi, Naveed Ikram, Muneera Bano, Muhammad Usman

International Islamic University Islamabad, Pakistan

nadia_iiu@yahoo.com, {naveed.ikram, muneera, m.usman} @iiu.edu.pk

Abstract—Software Architecture (SA) plays important role in

software development as it acts as a skeleton and the whole

development revolves around it. As the SA as a discipline is

maturing, large number of empirically supported studies are

being reported in SA. There is a need to systematically

aggregate, analyze and synthesize evidence based studies in SA.

We plan to systematically investigate evidence-based SA

studies to see and report state of the art in evidence based SA

reported research. This paper aims at providing a brief

description of systematic literature review (SLR) protocol to

describe a process for synthesizing the empirically supported

work in the area of SA. Protocol for this review has already

been developed and its implementation is in progress. Expected

outcome of this review will be state-of-the-art of empirical

work in the field of software architecture, strength and

effectiveness of empirical work, best practices and future

research directions.

Keywords-systematic literature review; software architecture

state-of-the-art.

I. INTRODUCTION

Software Architecture acts as a skeleton for the software
development. SA needs to be created early during the
software development and then the whole development
process revolves around this skeleton, keeping into account
the constraints and facilities implied by the software
architecture. Few decades back there was nothing like
architecture. The concept of software architecture was first
introduced in 1968 when layering was used in program
development [1], then this concept was enhanced and
structure of software was emphasized [2] [3]. Increasing
complexity and software quality needs urged the
practitioners to opt modularity and ultimately it turned into
the form which is now called software architecture. Software
architecture is responsible for incorporating quality in
software by accommodating quality attributes and functional
requirements. Moreover, software architecture must have to
accommodate the continuous changing needs so it should be
flexible enough to evolve. Academia and industry both are
well aware of the importance of software architecture that is
why there exists lots of empirical literature on various sub
areas of software architecture. But there is a need to
summarize and aggregate this literature to find out actual
status of the field, to identify gaps, scope for further research
and quality of the work. This is the reason to undertake this
systematic literature review. This document provides an
outline of the protocol for this systematic literature review
and it is developed based on the guidelines of Kitchenham
[4].

The remaining portion of the paper consists of following
sections; Section II describes motivation and background,
Section III explains the outline of research methodology and
Section IV concludes the paper along with future work.

II. BACKGROUND

The main motive to undertake this systematic review is to
identify all empirical research related to software
architecture, aggregate the empirical studies and summaries
the evidence for future use. Focus of this SLR is limited to
aggregate empirically supported literature i.e. literature based
upon some evidence (case study, experiment, experience
report and lesson learned etc such studies are also called
evidence-based studies). Evidence-based literature is more
valuable than literature based upon authors’ personal
opinion. Similar work exists in several studies where
researchers summarized the available literature and pointed
out future directions but the focus of those studies was not
empirical evidence. The studies, those reported state-of-the-
art in software architecture, did not performed qualitative
and quantitative evaluation of empirical data at a time.

 The concept of software architecture as a separate
discipline started to emerge in 1990 [5] [6] and developed
later on [7]. Since then, the key research areas of software
architecture and its future directions have been identified
time to time by conducting informal literature reviews and
surveys [5] [8] [9]. The research paradigms used in software
architecture research have been focused by identifying the
types of research questions which were structured to use and
the research design devised to answer those questions; state-
of-the-art in software architecture with a perspective of
growth in technology maturation model has also been
described [10] [11]. The chronological history of the
software architecture field, its innovative methods, tools,
techniques, software architecture community, papers, books
and conferences has already been aggregated [5].

The above mentioned studies aggregated the existing
literature of software architecture and each of these studies
has different concerns and varying scope. These studies were
carried out as normal literature surveys without following a
systematic process. None of these studies attempted to
aggregate the evidence-based software architecture literature.
Evaluating empirical evidence is equally important for
academia and software industry, as systematically gathering
and summarizing empirical evidence will help researchers in
future and practitioners will also get quantified measures to
make informed decisions [12]. There is much work that
points towards the need to systematically gather empirical
evidence in software Engineering [13] [14]; so conducting
the research using a systematic and unbiased methodology is

534

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 550 / 612

necessary. Mapping study [15] and many systematic
literature reviews exist in the field of software architecture
[16] [17] [18]. They differ from our review in a way that
their scope is limited to one sub-area of software architecture
as opposed to our review. We focus on whole SA discipline.
Moreover our review is focused on only empirically
supported evidence based SA studies.

III. SYSTEMATIC LITERATURE REVIEW PROTOCOL

Systematic Literature Review is a form of secondary
study and it is an established methodology used for the
identification, analysis and interpretation of available
literature relevant to the research question [4]. Systematic
literature Review does not result in novel ideas, it is a fair
and repeatable methodology for evaluation of the existing
evidence [4]. There are three steps of a systematic literature
review process i.e., planning, conducting and reporting [4].
This section will explain the outline of systematic literature
review planning phase. Systematic review protocol is the
outcome of this phase. Systematic review protocol is the
detailed plan that describes the whole review procedures. It
is better to develop a pre-planned protocol before conducting
systematic literature review [4].

The research questions are phrased considering the
overall objective of this systematic literature review so, that
these questions can capture the existing empirical knowledge
of software architecture field. By answering these research
questions the needs for future research will be identified
from existing empirical literature. Moreover the strength and
validity of identified empirical literature will also be
identified.
RQ1: what is the state-of-the-art in empirical studies of
software architecture?

The main motive behind this research question is to find
out the current state of the software architecture field in
terms of existing empirical studies and to extract some future
guidelines from the existing empirical literature. The data
obtained as an answer of this question will be evaluated
quantitatively in terms of frequency of occurrence and will
depict the mature and underdeveloped areas of software
architecture along with other relevant information in terms of
quantity of the studies.
RQ2: what is the strength of empirical evidence reflected in
empirical software architecture literature?

Objective behind this question is to find out the
effectiveness and strength of empirical evidence in terms of
source of evidence and methods used. Strength of empirical
evidence is important for future research. The studies
obtained for both of these questions will be same but the
main difference is in the perspective, for this question data
will be evaluated for quality of work to know what is the
source of data and what study design have been used to
obtain this evidence etc.

The overall Evidence based investigation is focused on
the type of question given by guidelines of Kitchenham [4].
“Assessing the frequency or rate of project development
factor such as the adoption of a technology or the frequency
of project success or failure” And “identify and/or scope
future research activities”. So the questions of this SLR will

be assessing the future research scope by evaluating and
aggregating the available literature.

A. Search Strategy

 Identify Major Search Terms
Search criteria used to construct major search terms is as
follows

a) Derive major terms from Research Questions;

b) Software architecture, empirical

c) Find alternative spellings and synonyms of major

terms;

d) Software OR System

e) Architecture OR Structure OR Design

f) Empirical OR Industrial OR Case study OR

Experiment OR Experience Report OR Lesson learned

g) Use Boolean Operators ‘AND’ and ‘OR’ to

concatenate search terms if these operators are allowed to

be used in the search database strings. Use ‘OR’ operator

to concatenate synonyms of the search terms while use

‘AND’ to concatenate major search terms.

h) ((Software Architecture OR Software Structure OR

Software Design OR System Architecture OR System

Structure OR System Design) AND (Empirical OR

Industrial OR Case Study OR Experiment OR Experience

Report OR Lesson Learned))

 Resources to be Searched: Springerlink, IEEE
Explore, ACM Digital library, ScienceDirect, EI
Compendex

 Search Constraints
Search is limited to published studies related to
research questions. Search will be applied on
conferences papers, journal articles, and workshop
papers. This review will consider the work in
English and since 1972 (After Parnas work on
software structure and decomposition [2] [3]).

B. Publication Selection

 Inclusion Criteria
Research articles based on empirical evidence related to
software architecture will be included with either
professionals or students as subjects of investigation.
Only one instance will be included if multiple studies
report same empirical results.

 Exclusion Criteria
Editorials, prefaces, discussions, comments, summaries
of tutorials, workshop brief, panels and duplicate studies
will be excluded. Studies with insufficient focus on
software architecture or with absence of empirical data
will be excluded

 Selecting Primary Studies
Search Strings will be applied on the databases and
obtained references will be archived in a Reference
library. Duplicates will be removed. In the first phase
titles of studies will be assessed upon inclusion exclusion
criteria. In the next phase the abstracts will be reviewed
and after that full text of the selected studies will be

535

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 551 / 612

assessed upon inclusion exclusion criteria. As the
inclusion/exclusion criteria is multiphase so the results of
each screening phase will be maintained in separate
libraries. The papers that are not clearly relevant or
irrelevant will be included or excluded in discussion
meeting with secondary researcher/research supervisor.

C. Publication Quality Assessment

Quality Instrument will be used to assign quality score to
the studies as a support for data analysis and synthesis. The
Quality instrument consists of 5 sections; a main section
contains generic checklist items applicable to all the studies
while other 4 sections are specific for research design used in
the study. These sections are survey, case study, experiment
and experience report. These criteria are based upon SLR
guidelines [4], along with revised set of items adopted from
various checklists that have already been used [19] [20] [21]
[22] [23]. This checklist generation was a mutual group
effort and we are using it in other similar studies [27] as
well. The detailed checklist is in Table I.

TABLE I. QUALITY CHECKLIST ADOPTED FROM [4] [19] [20] [21]

[22] [23]

Quality Checklist

Generic

Are the aims clearly stated? YES/NO

Are the study participants or observational
units adequately described?

YES/NO/PARTIAL

Was the study design appropriate with

respect to research aim?

YES/NO/PARTIAL

Are the data collection methods adequately

described?

YES/NO/PARTIAL

Are the statistical methods justified by the
author?

YES/NO

Is the statistical methods used to analyze the

data properly described and referenced?

YES/NO

Are negative findings presented? YES/NO/PARTIAL

Are all the study questions answered? YES/NO

Do the researchers explain future

implications?

YES/NO

Survey

Was the denominator (i.e. the population

size) reported?

YES/NO

Did the author justified sample size? YES/NO

Is the sample representative of the

population to which the results will
generalize?

YES/NO

Have “drop outs” introduced biasness on

result limitation?
YES/NO/NOT

APPLICABLE
Experiment

Were treatments randomly allocated? YES/NO

If there is a control group, are participants

similar to the treatment group participants

in terms of variables that may affect study
outcomes?

YES/NO

Could lack of blinding introduce bias? YES/NO

Quality Checklist

Generic

Are the variables used in the study

adequately measured (i.e. are the variables

likely to be valid and reliable)?

YES/NO

Case Study

Is case study context defined? YES/NO

Are sufficient raw data presented to provide

understanding of the case?

YES/NO

Is the case study based on theory and linked
to existing literature?

YES/NO

Are ethical issues addressed properly

(personal intentions, integrity issues,
consent, review board approval)?

YES/NO

Is a clear Chain of evidence established

from observations to conclusions?

YES/NO/PARTIAL

Experience Report

Is the focus of study reported? YES/NO

Does the author report personal

observation?

YES/NO

Is there a link between data, interpretation
and conclusion?

YES/NO/PARTIAL

Does the study report multiple experiences? YES/NO

Some of the checklist items will be graded on yes/no and

few with partially. Scores will also be assigned according the
grades, 1 for yes, 0 for No and 0.5 for partially. The total
sum of the scores will be used for the quality assessment of
studies.

D. Data Extraction Strategy

Data-Extraction will be performed by using extraction
forms. Each paper selected for data extraction will be
assigned a unique ID. A general form will obtain generic
data about the studies like title of the study, author(s) name,
year of publication, journal/conference name etc. Then the
data extraction form will extract data specifically relevant to
research questions. The data will be extracted with the help
of a classification scheme. This classification scheme is
adapted from [24]. The extracted data for research questions
is as:
For RQ1 data extraction form will extract following
information:

 Software Architecture area (Software Architecture
design, Software Architecture Documentation and
Specification, Software Architecture Analysis,
Software Architecture Evolution, Software
Architecture Knowledge Management etc)

 Research output (New Tool/Technique/Process,
Modification of Tool/Technique/Process, Usage
Experience of Tool/Technique/Process, Software
Architecture issues and Challenges).

 Subjects of investigation (Academia, Industry,
Mixed)

 Country (involved in research)

 Conference/ Journal

 Year of Publication
For RQ2 the extracted information is as follows:

536

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 552 / 612

 Type of evidence (case study, experiment,
experience report etc)

 Data collection method (interview, questionnaire etc)

 Type of research: Data about type of research will be
extracted based upon an existing classification of
research [25] [26] i.e. validation research, evaluation
research, solution proposal, philosophical papers,
opinion papers and experience papers.

E. Data Synthsis Strategy

Data Extracted from selected literature will be analyzed
using quantitative and qualitative synthesis methods. The
classification scheme used in data extraction will help here to
separate the concerns and categories. Relationships among
various categories of data will also be pointed out with
multiple perspectives. After depicting data in quantitative
summaries a thorough qualitative analysis of the data will
also be performed to evaluate the strengths of the literature
and to draw certain patterns. The expected outcomes will
contain information like:

 Publication chronology of included studies

 Distribution of included studies in publication
channels along with most cited studies

 List of best practices

 Percentage of studies for different research and
evidence types

 Analysis of evidence type versus participant type

 Analysis of evidence type versus SA area type.

 Analysis of evidence type versus type of research

 And more complex analysis comprising more than
two parameters.

The quantitative information will be depicted in the form
of Bar graphs, Bubble plots etc. A thorough Qualitative
analysis of the claims, future directions, recommendations
and personal reflections will be performed to draw certain
research patterns, future direction and existing gaps.

We are conducting similar studies in other disciplines as well
like requirements engineering [27] and using almost the
same extraction and synthesis strategies in all studies.

IV. CONCLUSION AND FUTURE WORK

Software Architecture (SA) is maturing into a discipline
and has now a long history of research and development. It
has its own workshops, conferences and special issues in
journals. Large number of empirically supported studies has
been published in SA. There lacks a study which presents
state of the art of empirically supported work in overall SA
discipline. This paper presents the plan for conducting such
study i.e. a systematic literature review to present state of the
art of empirically supported evidence based SA work. The
study will help SA practitioners and researchers to find out
mature practices and techniques, patterns/trends in research,
gaps and future directions where more emphasis should be
placed. The implementation of this systematic literature
review protocol is under progress. Search strings returned
5617 results. Screening of the studies upon titles and

abstracts is complete. At present data extraction and quality
ranking procedure is under progress.

TABLE II. PUBLICATIONS OBTAINED FROM VARIOUS PUBLICATION

CHANNELS.

S. N0.
Publication distribution

Publication Channel
No. of

studies

%age of

studies

1 IEEE 1930 34.35%

2 ACM 1761 31.35%

3 ScienceDirect 259 4.61%

4 SpringerLink 308 5,5%

5 EI Compendex 1359 24.19%

 Sum 5617 100%

REFERENCES

[1] E. W. Dijkstra, “The structure of the ‘THE’-multiprogramming
system,” in Proceedings of the first ACM symposium on Operating
System Principles, 1967, pp. 10.1-10.6.

[2] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-
1058, 1972.

[3] D. L. Parnas, “Information distribution aspects of design
methodology,” Methods, vol. 4, no. 5, pp. 6-7.

[4] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Engineering,
vol. 2, no. EBSE 2007-001, 2007.

[5] P. Kruchten, H. Obbink, and J. Stafford, “The past, present, and
future for software architecture,” Software, IEEE, vol. 23, no. 2, pp.
22-30, 2006.

[6] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17,
no. 4, pp. 40-52, 1992.

[7] D. E. Perry, “State of the Art: Software Architecture,” in
International Conference on Software Engineering, 1997, vol. 19, pp.
590-591.

[8] D. Garlan, “Research directions in software architecture,” ACM
Computing Surveys (CSUR), vol. 27, no. 2, pp. 257-261, 1995.

[9] Y. Chen, X. Li, L. Yi, D. Liu, L. Tang, and H. Yang, “A ten-year
survey of software architecture,” in IEEE International Conference
on Software Engineering and Service Sciences (ICSESS), 2010, pp.
729-733.

[10] M. Shaw, “The coming-of-age of software architecture research,” in
Proceedings of the 23rd international conference on Software
engineering, 2001, p. 656.

[11] M. Shaw and P. Clements, “The golden age of software architecture,”
Software, IEEE, vol. 23, no. 2, pp. 31-39, 2006.

[12] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Applying
empirical software engineering to software architecture: challenges
and lessons learned,” Empirical Software Engineering, vol. 15, no. 3,
pp. 250-276, 2010.

[13] T. Dyba, B. A. Kitchenham, and M. Jorgensen, “Evidence-based
software engineering for practitioners,” Software, IEEE, vol. 22, no.
1, pp. 58-65, 2005.

[14] B. J. Oates, “Widening the scope of evidence gathering in software
engineering,” in 11th International Workshop on Software
Technology and Engineering Practice, 2003, pp.59-64.

537

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 553 / 612

[15] E. Y. Nakagawa, D. Feitosa, and K. R. Felizardo, “Using systematic
mapping to explore software architecture knowledge,” in Proceedings
of the 2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge, 2010, pp. 29-36. h

[16] R. Farenhorst and R. C. de Boer, “Knowledge management in
software architecture: State of the art,” Software Architecture
Knowledge Management: Theory and Practice. Springer, Under
submission.

[17] B. J. Williams and J. C. Carver, “Characterizing software architecture
changes: A systematic review,” Information and Software
Technology, vol. 52, no. 1, pp. 31-51, 2010.

[18] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review of
software architecture evolution research,” Information and Software
Technology, 2011, ISSN 0950-5849, 10.1016/j.infsof.2011.06.002.
(http://www.sciencedirect.com/science/article/pii/S095058491100137
6)

[19] B. A. Kitchenham, O. P. Brereton, D. Budgen, and Z. Li, “An
Evaluation of Quality Checklist Proposals-A participant-observer
case study,” in 13th International Conference on Evaluation and
Assessment in Software Engineering, 2009, available online
http://www.bcs.org/upload/pdf/ewic_ea09_s3paper1.pdf

[20] B. Kitchenham et al., “Can we evaluate the quality of software
engineering experiments?,” in Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement, 2010, pp. 1-8.

[21] M. Host and P. Runeson, “Checklists for software engineering case
study research,” in Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International Symposium on,
2007, pp. 479-481.

[22] D. Budgen and C. Zhang, “Preliminary reporting guidelines for
experience papers,” in Proceedings of EASE, 2009, vol. 2009, pp. 1-
10.

[23] T. Dyba and T. Dingsoyr, “Empirical studies of agile software
development: A systematic review,” Information and Software
Technology, vol. 50, no. 9-10, pp. 833-859, 2008.

[24] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence
in global software engineering: a systematic review,” Empirical
Software Engineering, vol. 15, no. 1, pp. 91-118, 2010.

[25] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal
and a discussion,” Requirements Engineering, vol. 11, no. 1, pp. 102-
107, 2006.

[26] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in 12th International
Conference on Evaluation and Assessment in Software Engineering,
2008, pp. 71-80.

[27] T. Ambreen, M. Usman, N. Ikram and M. Bano, “Software
requirement engineering: A systematic literature review protocol”, in
6th International Conference on Software Engineering Advances,
2011., in press.

538

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 554 / 612

Agile Development of Interactive Software by means of User Objectives

Begoña Losada, Maite Urretavizcaya, Isabel Fernández de Castro

Dept. of Computer Languages and Systems
Faculty of Computer Engineering - University of the Basque Country

20001 San Sebastián

{b.losada, maite.urretavizcaya, isabel.fernandez}@ehu.es

Abstract—Agile methods, model-driven developments and

user-centred design are three approaches widely accepted in

the development of interactive software. In this paper we

present InterMod, a new approach that integrates all three

methods. The project planning is based on User Objectives and

the process is organised as a series of iterations, where the

work is distributed in different workgroups according to some

developmental and integration activities, each one driven by

models. The requirements are incrementally collected and

evaluated with models based on user-centered design. To speed

up this validation, we put forward the SE-HCI model, which

enriches a human-computer interaction model with the

semantics of the application and some basic characteristics of

an abstract prototype. This allows gather and validate the

requirements incrementally. Moreover, this iterative process

speeds up the development and generates results from the

project progress.

Keywords-Software Engineering; Agile method; User-

Centered Design; Model-Driven Development.

I. INTRODUCTION

Currently, Agile Methods (AM) and Model-Driven
Development (MDD) are the predominant approaches in
Software Engineering. AM are able to develop a software
product incrementally and iteratively. They get feedback
from the client at each incremental delivery and, as a result,
adapt the development plan accordingly. Most studies report
increased code quality when agile methods are used but they
also report a lack of attention to design and architectural
issues [1]; moreover, it must be noted that in the area of
Software Engineering quality software comes from good
design.
Current trends establish design as final product models

characterised by iterative and incremental development while
at the same time promoting formal development along the
lines of traditional or waterfall methodologies. Some authors
[2] point out that a drawback of MDD is that the models are
difficult to maintain, because as a project progresses changes
come up and new requirements are added.
On the other hand, in the area of Human-Computer

Interaction, User-Centered Design (UCD) is the dominant
approach. Under UCD, the end user is involved in the
process of multidisciplinary development based on iterative
design and evaluation so the designer understands the user's
needs and tasks [3][4]. But, as is the case with traditional or

heavyweight methodologies, with UCD all requirements
must be gathered and evaluated before they are implemented
[5][6][7].
To make up for the weaker aspects of these proposals,

efforts are being made to integrate agile methods into both
model-driven design [8][9], and into UCD [10]. However,
due to the fact that a majority of software engineering
development processes focus on software architecture,
satisfactory integration has not yet been achieved. Therefore,
we focus our efforts on integrating these three techniques
and we base our methodology in user-centered models
starting from requirements gathering.
The main contributions of the paper can be summarised

as follows:
c1. We propose a new approach to improve Software

Development by applying User Centered and Model-
Driven Development in an Agile manner.

c2. A new integrated model, involved in a Model Driven
Process, to support the project requirements, is
presented: the SE-HCI model. It facilitates usability and
other kinds of incremental evaluation, tested by a
multidisciplinary team of developers and users, just as
proposed by UCD.

c3. Finally, we present an agile methodology organised as a
series of iterations by means of User Objectives (UO) as
a new way to promote a correct development. This
iterative approach guides the incremental development
of software.
Our paper is structured as follows. Section 2 outlines the

primary characteristics of agile methods and how they
compare to the other abovementioned approaches. Section 3
presents our proposal, situating it in the context of related
work. We explain phases and development activities of our
approach and its model structure, especially for the
requirements model, and we show graphically a project
iteration example. Finally, we draw some conclusions and
outline our future work.

II. AGILE SOFTWARE DEVELOPMENT: VIRTUES AND

DEFECTS RELATIVE TO OTHER APPROACHES

Agile software development establishes the following as
principles [11]: Individuals and interactions over processes
and tools, working software over comprehensive
documentation, customer collaboration over contract
negotiation, and responding to change over following a plan.

539

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 555 / 612

This approach challenges waterfall or heavyweight
methods in which one activity begins only when the previous
one finishes and where extensive and well-founded
documentation is required. The rationale behind these
traditional methods is to reduce the number of corrections
further on in the process and consequently reduce the cost of
the project. However, in practice this type of planning fails,
as it doesn't allow the changes that inevitably come up
during development [12]. Because of this, versions of the
agile philosophy such as eXtreme Programming (XP) [13],
Scrum [14], Crystal [15], Feature Driven Development
(FDD) [16], UP [17] and others, currently prevail.

A. Agile processes and user-centered design

One of the important aspects of UCD is the collaboration
between users and developers in building software solutions,
each one bringing their experience to bear [18].According to
Norman [19], it is first necessary to think about the needs of
those who will be using the product that is being created in
order to model that information, and then iteratively evaluate
the product with users. Thus, the intention is to improve the
product’s usability such that it is easy to learn, it is easy to
use, errors are reduced and users are satisfied, as defined in
ISO standard 9241-11 [20].
Both proposals centre on the user/client and propose an

iterative development process. These contrast with
traditional architecture-based development processes, which
are directed by the developers, who structure and control the
users' activities.
Nevertheless, the differences between UCD and AM are

great in terms of how they act and what their interests are
[10]. On the one hand, the flexibility in action when faced
with changes that the agile philosophy recommends is at
odds with interface design prior to implementation (up-
front), according to the principles of UCD. On the other
hand, UCD develops a holistic product, while the agile
process results in subproducts in an incremental process.
And while agile methods focus on code development, UCD
methods focus on the design of the interaction that users will
engage in.
Finally, it must be noted that both approaches seek to

satisfy the users' needs. However, in AM users are involved
in checking that the functionality has been correctly
implemented, while in UCD users give input regarding other
aspects such as user satisfaction or efficiency of use for the
whole application. UCD focuses on how end users work with
the system, whereas AM is more concerned with how
software should be built or how the process is managed.

B. Agile processes and model-driven development

In MDD, models serve principally as documentation and
guidance for the subsequent implementation phase. Although
building models is very useful in other areas of engineering,
in Software Engineering there is great apathy toward
building and using models. Many developers think that
modelling demands the creation of excessive and extensive
documentation, which ultimately is of little help when it
comes time to implement and maintain the system [2]. This
is because the changes that arise throughout development

make these models difficult to update. In fact, many
developers skip the model redesign phases and prefer to
modify the code directly.
From this point of view, we have two issues that strongly

conflict in software development. On the one hand, MDD
needs to maintain model consistency as changes come up
during application development. That is to say, our system
will be more flexible if the model that represents it is an
accurate and updated abstraction of itself [21]. On the other
hand, due to unforeseen changes, AM perform modifications
on the implementations that are not reflected in the designs.
Therefore, if the constructed model does not correspond with
reality and our code was initially generated from the model,
this could spell failure for the project.

III. INTERMOD, AN INTEGRATED PROPOSAL

InterMod [22] is a methodology whose aim is to help
with the accurate development of interactive software.
Although it is suitable for use with web design, its utility is
not restricted to just that area. Our latest studies have led us
to place a new focus on the methodology by integrating an
agile process with the other two philosophies namely, UCD
and MDD, already present in our previous work. Also a new
vision of the Requirements Models together with the SE-HCI
model and the User Objective, to guide the process, are
included in this paper.
Our proposal is the following: organise the project as a

series of iterations, just as the agile methodologies do, and
distribute the work in the iterations according to different
developmental activities of the User Objectives. A User
Objective (UO) is a user desire e.g. “buying a t-shirt” or
“reserving a meeting room in a workplace”, that can be
achieved by one or more user functionalities. These are
defined by means of the possibilities that the end user will
perform in the application interface.
The Feature-Driven Design approach (FDD) [16] also

uses MDD and divides the labour into different features (e.g.
“calculate the total of a sale“ or “ add a new customer to a
customer list”) to see measurable progress of the project.
The functionalities implied in our UOs are always direct
user’s intentions, whereas the features can be user’s or
system’s needs. In FDD, use cases obtain the features that
allow the domain objects to be modelled (class diagram and
the operations required in the system). However, our primary
goal is not to model the domain objects but rather to model
the tasks (user actions in the interface), navigation
(action/reaction between the user and system) and
presentation (visual aspects). We focus the development
from the UCD perspective, as a new vision that obtains
partially the interface before implementing the business
logic. Once the objectives have been evaluated in terms of
testing and usability of requirements, our proposal naturally
ties in with the FDD perspective to model the domain
objects.
InterMod has four main steps, i.e. the initial step Analyse

Overall Project takes place at the project beginning, and then
an iterative process with three steps follows: Build User
Objectives List, Plan Parallel Iteration and Perform
Iteration Activities.

540

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 556 / 612

A. InterMod steps: Activities and Models

Fig. 1 shows a scheme of the InterMod process and the
models associated with it.

Figure 1. InterMod process and development activities

At the beginning of the project, it is necessary to analyse
it as a whole in order to determine: (a) what the starting UOs
are, and (b) the design decisions that will guide and give
coherence to this iterative and incremental process. InterMod
proposes the Analyse Overall Project step to achieve these
challenges. The starting UOs (such as those most important
or needed), together with a provisional general menu
incorporating some functionalities, provide the global view
of the application. And this analysis draws up the models
that help to collect the defining characteristics of the system
type (e.g. device type, security, window size, colour, logo,
etc) and those of the user (e.g. colour preferences, font, size,
some limitations as colour blindness, deafness, vision loss,
etc). These characteristics are collected in the System Model
and the User Model respectively. All developments in the
project will inherit, supplement or extend these models in
order to guide and ensure coherence throughout the entire
application.
The application requirements are incrementally collected

during the progressive UO List construction. Each iteration
begins with a revision of the UOs list. The Build User
Objective List step updates the list with the new UOs derived
either from previous UO developments or from the new
needs of the project. It is possible that a UO breaks on two or
more new UOs because of its complexity; on the contrary,
some UOs may be merged in one new integrated UO
because of its simplicity. That is, the UOs included in the list
may be modified, in the sense of agile methodologies [23],
through the different evaluations undertaken by developers
and users, or by the continuous meeting among members of
the same and different teams.
In order to achieve a UO, different activities must be

realised. The next step, Plan Parallel Iteration, decides for
the current iteration:

a) what UOs to develop

b) what activities to make for those UOs

c) how to distribute these different activities to the

workgroups (if there is more than one).

The iteration ends with the Perform Iteration Activities

step. Each workgroup performs the activities established in
its plan.
InterMod has two kinds of Activities: Developmental

Activities and Integration Activities.
The Developmental Activities (DAs) associated with

each UO are strongly related:

• A1.Analysis and Navigation Design

• A2. Interface Building

• A3. Business-Logic Coding.

Just as UCD recommends, before coding a relevant UO,

its interface must be validated. However, unlike UCD, it is
not required that the complete application interface be
developed before moving to the implementation of the
business logic; instead this approach stays framed in the
development of one or several UO groups. That is, each UO
requires the three DAs to be developed but a prerequisite
relation must be done A1< A2< A3 (‘<’ means prerequisite).
A1 has not got any prerequisite activity. A DA of a User
Objective is possible to deal with if and only if the UO is in
the UO list and its prerequisite is achieved.
Furthermore, to assure a correct incremental progress of

the project, some Integration Activities (IAs) are needed:

• I1.Requirement Models (RM) Integration

• I2.Interface Integration

• I3.Code Integration & Refactoring

A restriction is necessary for controlling the correct

development of an IA. Thus, it is possible to carry out an IA
Ik (K=1..3) for a concrete UOj (j=0..n) if and only if the UOj
is the fusion of two UOs belonging to the UO List and the
DAs Ak of these fused UOs are already made. To ensure
consistency in the final application, evaluations of the
incrementally obtained products as well as heuristic and
metric evaluations are included in all activities.
All iterations are guided by the same action plan that

divides the work according to the activities of different UOs,
in such a way that each DA will be next driven by models
and all the integration processes can lead to the revision and
modification of these models. Even during final integration
of the software there may be revisions of all models and new
UOs can be created.
The activities of analysis and navigation design and

RM integration deals with the Requirements Model (RM),
which includes the Semantically Enriched Human-Computer
Interaction (SE-HCI) model (more detail in section III.B). In
the Interface Building activity, the Presentation Model is
created for a UO previously designed and evaluated, and the
Interface Integration activity fuse together the
Presentation Model of some UOs. The Presentation Model
of a specific UO settles the graphical elements and others

541

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 557 / 612

characteristics gathered from the Requirements Models.
There are several languages for modeling user interfaces
widely used and tested, such as XIML[24] or UIML [25],
and they may be used to reflect this model. Finally, the
Business–Logic Coding and code Integration &
Refactoring activities deal with the Functionality Model
that guides the implementation in a particular programming
language. This model inherits the behaviour characteristics
from the UO Requirements Models evaluated in the first
activity. UML or SysML [26] are alternative languages
typically used to represent this model.

B. The SE-HCI model in a Model Driven Process

We propose interactive software development based on
user-centered models generated and evaluated during the
project, following the Object Management Group’s Model
Driven Architecture proposal [27].
For each UO the designers involved in the Analysis &

Navigation Design activity formalise the established
Requirements Models (RMs): Task Model and SE-HCI
Model (see Figure 2.).

Figure 2. The SE-HCI model involved in a Model-driven process

The Task Model, which is a classic element in Model-
Based User Interface Development [28][29][30], describes
user performance in completing each task. The concept that
is the basis of RM is the Task, which allows user
performance to be captured. This concept is complemented
by the ordering of tasks (Sequential, Indifferent, Choice,
Concurrent), iteration which establishes whether it is
compulsory to carry out a task and how many times it is
necessary to do so (Unitary, Optional, Repetitive) and
hierarchy, which correctly places the task in the complete
set of tasks. That is, the Task Model defines the semantic
aspects of the application to be associated (see Fig. 3).
The SE-HCI Model, which incorporates information from

the User and System Models, is an abstract description
constructed over the Task Model. The SE-HCI Model is the
core of our proposed methodology, and it not only gathers
the requirements from the Task Model but it also
incorporates three essential aspects. The first two are
behaviour aspects and the third, visual aspect (see Fig. 3):

1) The system direct communication with the user. The
description of both the actions that users and the system
can carry out at the user interface level (who performs
the intervention: usr/sys), during an interactive session
[28], and their possible temporal relations are here
included. That is, it generates those communications in

which the system directly communicates with the user
by displaying an error window or a simple message.
This means that the system's operations on other
elements in the application's environment, such as a
database, won't be expressed in the model since they
will not be involved in any direct communication with
the user.

Figure 3. The Requirement Meta-Model

2) The descriptions of the correct interactions, taken from
the Task Model, as well as the incorrect ones. Both types
of interactions express the different application runs
(next task to perform). That is, this model represents the
semantics of the application through interface
navigation.

3) The basic visual characteristics, such as colours,
sections, button types, etc. The SE-HCI incorporates a
Prototype Model that gathers these aspects, some of that
are assumed from the User and System Models.

Different techniques can be used to implement this

specification. Fig. 4 shows a graphical example of the SE-
HCI for the development of a website; it has been made with
a HTA technique [31] (some symbols express the
characteristics of the tasks). In this case, we use a XML
format to express that SE-HCI specification.
In line with user-centered designs, our proposal stresses,

like Hix's model [32], the integration of the evaluation
process at all stages of the lifecycle rather than just at the end
as is the case in the classic cascade lifecycle. The RMs make
it possible to quickly produce incremental prototypes by
adapting the design according to the modifications prompted
by both user and software developer evaluations. Similar to
our proposal, Propp and his colleagues [33] start with task
models in the process of developing interactive applications
and they then define the navigational structure, the creation
of an Abstract User Interface (AUI) that is independent of
the device, and one or more Concrete User Interfaces (CUI).

542

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 558 / 612

Figure 4. Snapshot of the XML description and Task Hierarchy of an
application development

During the development process they perform several
usability evaluations. We propose the evaluation of the
requirements involved in the SE-HCI with an abstract
prototype (Fig. 5) created automatically by transforming the
SE-HCI model. From this point, the evaluation can be carried
out jointly by the designers, customers and developers.
According to Wiegers [34] we think that it’s hard to visualise
exactly how software will behave by reading textual
requirements or studying analysis models. Users are more
willing to try a prototype than to read a document. Wiegers
says: “A prototype is useful for revealing and resolving
ambiguity and incompleteness in the requirements.”

Figure 5. An Abstract Interface with simple menus and buttons

C. Iterations in InterMod. A general example

In this section we explain an iteration progress of a
project. In order to facilitate and simplify the general
example comprehension, we represent graphically Activities
as shown in TABLE I. As above mentioned, each
Developmental Activity (DA) is driven by models: A1-
Requirements Models, A2- Presentation Model and A3-
Functionality Model. And each Integration Activity (IA) is

involved in models integration: I1- Requirements Models,
I2- Presentation Model and I3- Functionality Model.

TABLE I. INTERMOD ACTIVITIES

Development Activities
Graphical

representation
Integration Activities

A1. Analysis &

Navigation Design

I1. RM Integration

A2. Interface Building

I2. Interface Integration

A3. Bus.-Logic Coding
 I3. Code Integration &

Refactoring

Fig. 6 shows a snapshot of the Project Progress State and

the Plan obtained for the Parallel Iteration after some
iterations (iteration i).

Project Progress State

Parallel Iteration Plani

Team 1 Team 2 Team 3

UO6 UO4 UO1 UO10

Figure 6. A Snapshot of the Project Progress with InterMod

Three aspects characterise the state of the project: the UO
list, the UOs fusion list and the UOs progress according to
the Activities (DAs or IAs) performed. This iteration begins
with the Build UO List step to revise the UOs list. After
that, the process goes on with the Plan Parallel Iteration
step where the project members have decided:

a) The UOs to perform (underlined in Fig.6 - UO list

and UO Fusion),

b) The activities for these UOs, which have been

selected taking into account their prerequisites.

c) The distribution into three teams, as follows:

• The first team takes responsibility for two
activities: A1 activity for UO6 (in the UO list)
and I1 for UO4. As it is shown, UO4 is the fusion
of the objectives 2 and 3 (UO Fusion in Fig. 6).
The I1 Activity is possible because the progress
of the project assures that both, the RMs of UO2
and UO3 are already validated (see A1 list in
“DAs & IAs Progress” in Fig.6).

• The second team builds the interface (A2) for the
UO1 whose prerequisite is reached (UO1 is in the
A1 list).

A1 I1 A2 I3

UO list ={UO0, UO1, UO2, UO3, UO4, UO5 ,UO6, …
,UO10}

UO Fusion: UO4={UO2+UO3}, UO10={UO0+UO5}
DAs & IAs Progress:

 {UO0, UO1, UO2, UO3, UO5}

 {UO0, UO5}

 {UO0, UO5} DAs

 � {UO10,}

 � {UO10}

 � { } IAs

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<tasks>

 …

 <task max="999" min="0">

 <id>15</id>

 <name>Shopping List</name>

 <mother>12</mother>

 <comment/>

 <daughters>

 …

 <task max="1" min="0">

 <id>19</id>

 <name>Edit</name>

 <mother>16</mother>

 <type>2</type>

 <comments/>

 <daughters/>

543

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 559 / 612

• Meanwhile, team 3 must integrates and refactors
the code referred to UO10 that is composed of the
objectives 0 and 5 that have been already coded.

The evolution of a UO is not predictable. In each work

meeting project members will select the best UOs activities
to do. Fig. 7 presents two different possible evolutions of
UO12 which is composed of {UO4, UO6}.

Activities A2&A3 of

UO12 subsume A2&A3

activities of UO4&UO6

and so I2&I3 are not

needed because are

already integrated.

Due to

complexity, A3 is

treated separately

in UO4 and UO6,
and so I3 is

needed.

Figure 7. A Snapshot of two UO12 possible evolution

When the Plan is ready, the teams go on with the
activities assigned. After each iteration is completed, the
process repeats:

• Step2- Build of UO list- All teams contribute with
their work and evaluation results to the list
actualization.

• Step3- Plan Parallel Iteration- Taking into account
the prerequisites of the activities and the project
needs, the distribution is carried out.

• Step4- Perform Iteration Activities- Each team
makes their activities and the process goes again to
the Step2 until the application is completed.

IV. CONCLUSION AND FUTURE WORK

In this article we presented a new vision of the InterMod
methodology, a proposal integrating three philosophies:
UCD, MDD and AM. From the point of view of agile
methods, our work is organised in a series of iterations in
which the user objectives (UO) to be dealt with are
developed. This iterative process speeds up the development
and generates results from the project progress. InterMod
proposes some developmental and integration activities
driven by models to achieve the UOs In the first analysis, the
initial user objectives are obtained and then, the different
activities to achieve these UOs are distributed among the
workgroups. Each iteration is open to include new user
objectives, whether obtained through previous refinements or
through evolution or alterations during the agile development
of the application itself. The possibility to distribute the work
in parallel increases the speed of resolution, although the
process itself requires integration points to ensure
consistency.
The SE-HCI model is the core of our proposal models

architecture. It is involved in a Model Driven Process that

obtains an abstract prototype created automatically by
transforming the SE-HCI model. This prototype allows the
evaluation of the requirements and facilitates the end user's
participation, as recommended by UCD and AM. Early
evaluations of the requirements reduce the number of the
corrections further on in the process and therefore, reduce its
cost.
This process allows for the gathering and validation of

the requirements incrementally. Because of this agile
approach, InterMod, unlike UCD, does not require the
complete development of the application interface before the
implementation of the business logic, but assures usability.
The new InterMod methodology has been refined in

parallel with the development of a demonstrator. A small
initial set of UOs has evolved to a complex system. It has
been carried out by means of UO creation, development and
integration processes. This make us think of the scalability
and practicability properties of the proposed methodology.
However these aspects have not been treated in this paper as
a deeper work needs to be done.
We are currently working on reusing models. It should be

understood in the broadest sense of the word. A UO model
can be defined once in a project, but it can be reused at
different points in the project. Similarly, a model developed
in previous applications can be reused in a current project.
Thus, a model can be converted into a pattern or a solution to
a design problem. That is to say, we believe that it is
important to value the possibility of creating patterns, in
order to facilitate and speed up design processes.

ACKNOWLEDGMENT

This work has been partially supported by TIN2009-14380
and DFG 157/2009.

REFERENCES

[1] Mcbreen, P., “Questioning Extreme Programming”, Pearson
Educ., Boston, MA, USA 2003

[2] Ambler, S., “Debunking Modeling Myths”,
http://www.ambysoft.com/onlineWritings.html (Last Access:
August 2011).

[3] Norman, D.A. and Draper, S.W., “User-Centered System
Design: New Perspectives on HCI”, Lawrence Erlbaum
Associates, Inc, Mahwah, NJ, USA, 1986.

[4] Vredenburg, K., Isensee, S., and Carol Righi, C. , “User-
Centered Design: An Integrated Approach”, Prentice Hall,
2001.

[5] Norman, D., “Why doing user observations first is wrong”.
Interactions 13, 4, 2006, pp.50--63

[6] Cooper, A. and Reimann, R.: About Face 2.0, “The Essentials
of Interaction Design”, JohnWiley & Sons, Inc., Indianapolis,
Indiana, USA, 2003

[7] Constantine, L. and Lockwood, L.: Software for Use, “A
Practical Guide to the Models and Methods of Usage-
Centered Design”. ACM Press, Addison-Wesley Co., 1999

[8] Robles, E., Grigera, J., and Rossi, G., “ Bridging Test and
Model-Driven Approaches in Web Engineering”, in: Gaedke
M., Grossniklaus M, Díaz O. (eds.) ICWE 2009. LNCS, vol.
5648,. Springer, Heidelberg 2009, pp. 136--150

A2 A3
A1

UO6

UO4
I1

A1 A3

I3

UO6

UO4
I1 A2

UO6

UO4

544

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 560 / 612

[9] Ambler, S.W., “ The object primer: agile modeling-driven
development with UML 2.0.” Cambridge University Press,
Cambridge 2004

[10] Ferreira, J., “Interaction Design and Agile Development, A
Real- World. Pers.”, Ph. D. 2007.

[11] Fowler,M. and Highsmith, J., “ The agile manifesto, Software
Development”, 2001, pp 28--32

[12] Highsmith and J., Cockburn, A., “Agile Software
Development: The business of innovation”. Computer 34, 9,
2001, pp120—127

[13] Beck, K., “Extreme Proamming Explained-Embrace Change”.
Addison-Wesley, 2000.

[14] Schwaber, K. and Beedle, M. “Agile Software Development
with Scrum”, Prentice-Hall, 2002.

[15] Cockburn, A., “Agile Software Development”, Addison-
Wesley, 2002

[16] Palmer, S.M. and Felsing, J.M., “A practical guide to feature-
driven development”. Prentice-Hall USA, 2002.

[17] Jacobson, I., Booch, G., and Rumbaugh, J., “The Unified
Software Development Process”, Addison-Wesley, 1999.

[18] Robey, D., Welke, R., and Turk, D., “Traditional, iterative,
and component-based development: A social analysis of
software development paradigms”, Information Technology
and Management, Volume 2, Number 1, 2001, pp53-70

[19] Norman, D.A., “The invisible Computer”, Cambridge M.A.
MIT Press, 1998.

[20] ISO, (International Organization for Standardisation), 9241-
11. Ergonomic requirements for office work with visual
display terminals. Part 11: Guidance on usability, 1998.

[21] Eric Evans, Domain-Driven Design, “ Tackling complexity in
the heart of software”, Addison Wesley, 2004

[22] Losada, B., Urretavizcaya M., and Fernández-Castro, I., “ The
InterMod Methodology: An Interface Engineering Process
linked with Software Engineering Stages”, In Macías,J.A.,
Granollers,T., Latorre,P.(eds). New Trends on Human-
Computer Interaction: Reseach, Development, New Tools and
Methods. Springer, 2009

[23] Larman, C., “ Agile & Iterative development: A manager’s
guide”. Addison-Wesley, 2004.

[24] eXtensible Interface Markup Language http://www.ximl.org/
(Last Access: August 2011).

[25] Abrams,M. and Helms, J., UIML Specification, 2002
http://www.oasis- open.org /committees /download.php
/5937/uiml-core-3.1-draft-01-20040311.pdf (Last Access:
August 2011).

[26] Nolan, B., Brown, B., Balmelli, L., Bohn, T., and Wahli, U.,
“Model Driven Systems Development with Rational
Products”. ibm.com/redbooks 2007

[27] Object Management Group. Model Driven architecture.
Technical report, 2003 http://www.omg.org/mda (Last
Access: August 2011).

[28] Paternò, F. “Model-Based Design and Evaluation of
Interactive Applications”, Springer-Verlag London, 1999

[29] Puerta, A., “A model based interface development
environment” , IEEE Soft.Vol.14-4, 1997

[30] Limbourg, Q., Vanderdonckt, V., Michotte, B., and Bouillon,
L., “USIXML: A Language Supporting Multi-path
Development of User Interfaces” .LNCS , 3425, 2005, pp
200—220,

[31] Annet, J. and Duncan, K.D., “Task Analysis and Training
Design”, Occupational Psychology, vol. 41, 1967, pp. 211-
221

[32] Hix, D., and Hartson, H.R., “Developing User Interfaces:
Ensuring Usability Through Product and Process”, John
Wiley and Sons, New York NY, 1993.

[33] Propp, S., Buchholz, G. and Forbrig, P., “Integration of
Usability Evaluation and Model-based Softwae
Development”, Journal Advances in Engineering Software.
Vol. 40 Issue 12. 2009, pp 1223—1230

[34] Wiegers, K. E., “Software Requirements”. Microsoft Press,
2003, pp 234--235

545

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 561 / 612

REfIS: A Stage-based Methodology for Eliciting Requirements

 Felipe S. Ferraz¹², Leopoldo P. Ferreira¹, Rodrigo E. Assad¹², Renato A. G. P. França¹², Silvio Meira¹
Informatics Center

Federal University of Pernambuco
Recife, Brazil

¹{lpf,fsf3,rea,srlm@cin.ufpe.br}
²{fsf,rea,ragpf@cesar.org.br}

Abstract— Eliciting requirements is one of the most important
phases in software development, which can lead the project to
success or to failure. Particularly, when it comes to security
requirements, the main responsibles for specifying software
system have a lack of knowledge at security policies and the
mechanisms for achieving them. This article proposes and
presents a stage-based methodology called REfIS that aims to
guide requirements engineers through the elicitation
requirement process of software system. The methodology
consists of three phases: (1) dispersion of knowledge about a
certain universe of study through Casual Layered Analysis
(CLA), (2) creation of a future scenario using Futures Wheel
and (3) extraction of requirements from the analysis of the
generated scenario. Finally, this methodology will be applied
and validated at the initial phase of the development of a real
P2P backup System in order to extract requirements.

Keywords-eliciting requirements; methodology; innovation
systems.

I. INTRODUCTION
The widely accepted concept of the innovation refers to

the flow of technology and information among people,
enterprises and institutions as a key to an innovative process
or product. It contains and gives different and new
interaction between the actors involved in the process and
the process itself. It brings that actor across that new
experience based on his previously knowledge.

When dealing with requirements, and users needs and
expectations we may be facing a infinite universe of
possibilities available for the specification of those kind of
system we are also facing the infinite of the unknown, sure,
we are presented to new ways, process and products and with
that the task of define requirements meets challenges towards
its time. This short paper, is a brief introduction to a new
Stage-based methodology, called REfIS, that intends to
present the definitions to systems that are not thinkable
working on theirs definitions using techniques used among
brain storm meetings. The methodology and the paper will
introduce the use of CLA and Future Wheels combined as a
approach to better understand and define innovational system
requirements.

II. BACKGROUND
The main objective of this methodology is to combine

CLA [1] and Future Wheels [3] techniques to propose a new
approach to requirement analyses. To that, this section will

shortly introduce those techniques focusing on present them
as the first and second stages of REfIS.

A. Causal Layered Analysis (CLA)

Causal Layered Analysis [1] can be regarded as a

sophisticated technique to organize thoughts and views about
the future. Although ones affirms that this is only a way to
predict the future, Inayatullah holds the idea that it can create
transformative spaces for the creation of alternative futures.
Particularly, this technique is less to do with forecasting
methods and more with understand the present and past to
build alternative future scenarios.

This technique is composed of four layers [2]: Litany,
Social causes, Worldview and Myth/Metaphors. However,
each one of these layers has different proposes and focus
varying from different perspective of knowing. The main
idea is to conduct a deep research by moving up and down
these layers. Figure 1 depicts the layers of the Causal
Layered Analysis.

Figure 1. Layers of Causal Layred Analysis [1].

The first layer of CLA is called Litany. The participants
of the meeting discuss, at this point, the public descriptions
of the subject that is being analyzed. However, the view of
the reality presented here are rarely questioned or used to
make any suppositions about a near future.

The second layer, called Causes, is responsible for
analyze the subject through the definitions found on the
social sciences. At this layer, systemic events including

546

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 562 / 612

socials, technologics, economics, environmentals, politics
and historicals are analyzed and its interpretations should be
relied on quantitative data. Finally, the information gathered
at the first layer are now questioned and explained.

The third layer is known as the Worldview. At this point
of the analysis, all daily world view of the subject or event
being studied should be discussed. Social-cultural factors of
the population involved in the study are essentially required
due to the strong impact caused by the context on the subject
that is being analyzed.

Last but not least, the fourth layer, called Myth and
Metaphor, is responsible for including in the discussion the
myths, legends and metaphors related to the subject or event
that is being analyzed owing to its influence on the beliefs of
the participants as well as the society.

After all layers are analyzed and discussed, it is usually
common to build a fifth layer called Future Choices where
one makes statements about the events whose outcomes have
not yet been observed. This forecasting process is depicted at
figure 2 below.

Figure 2. Bulding future scenarios through CLA [1].

B. Futures Wheel

Futures Wheel [3] was developed in 1971 by Jerome C.

Glenn as a cross-impact analysis technique mainly used for
predict impacts of future events, trends, ideas or values on a
given context through a structured brainstorming process.
Consequently, stakeholders are able to build relationships
between events besides elicit and mitigate problems that
might occur in a near future. In Gleen’s own words, the
“Future wheels moves the mind from linear, hierarchical,
and simplistic thinking to more network-oriented, organic
and complex thinking”.

When a group (usually groups of 8 to 12 individuals)
decides to brainstorm about a specific subject, it is written on
piece of paper or a white-board, circled and placed in an oval
at the centre by the leader of the brainstorming session or a
facilitator’s guiding. After that, it is requested to the other
members to say whatever comes to their mind about the item
that is being shown besides raising relevant questions to the
discussion. As statements are offered by the team, the leader

draws a wheel-like chart around the first item radially. At the
end, the leader invites the participants to argue about the
likely consequences of the new items that have just been
drawn. Additionally, one can draw interconnecting lines
between the primary and secondary impacts of a trend in
order to establish relationship between them.

Usually, this process tends to go very quickly with the
participants listing consequences with little or no evaluation.
Alternatively, the wheel can be also edited in order to make
it more realistic. In this approach, every statement discussed
by the group has to be approved by all in order to be
included in the wheel. The brainstorm session thereby tends
to take more time due to the acceptation of prior criticism.

 As a result of the session, the team should have
developed a mind-mapping diagram that will work as a
heuristic device for thinking about the future. To put it
simply, the outcome of the process aims to nurture a future-
conscious perspective. The final design seems like a hub of
wheel with spokes radiating from it. As en example, figure 3
depicts the forecasting of the future of a videocassette
recorder (VCR) device using Future Wheels technique.

Figure 3. Example of a Future Wheel exploring the future of the VCR
tehcnology [3].

A second version of Future Wheel was also proposed by
Glenn in order to consider a wider range of consequences.
For example, electric engineers would naturally tend to
identify technologies improvements on our VCR example
and put less effort on economics or environmental
consequences. Consequently, the wheel is originally divided
into pre-determined sections or domains to force the team to
think about the trend as broad as possible.

III. METHODOLOGY
REfIS relies on Requirement Eliciting for Innovation

Systems. Our goal is to guide stakeholders at early stages of a
software development process, specially the requirement
eliciting process [4] [5]. We understand that, when it comes

547

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 563 / 612

to Innovation Systems that claims to be built on new
business models, its requirements are not trivially defined
and therefore require a methodology that helps the
development team to think, discuss, and analyze everything
the systems should perform [6].

Trustworthy, the methodology proposed by this paper is
divided into three stages; however, the first stage can be
omitted if the subject to be discussed is widely known by the
stakeholders.

The first stage is called the Dispersion. At this initial
phase, the development team is invited to open a free
discussion about the main subject of the software that will be
soon developed. As an example, if the software concerns
about a Video Conference system for facilitate company’s
internal meetings, the group may choose as the central event
of the discussion, actual technologies for video-conferences
systems. Once the subject is chosen, a second session should
be started to analyze the consequences of the implementation
of this idea using Causal Layered Analysis (see section 2a).
The expected outcome of this analysis is the filling of a table
that contains the variables identified by each layer on CLA.

The second stage is called the Modeling. After the subject
is widely discussed by the group, a second session is opened
for modeling a scenario that describes the consequences and
impacts on the software development process from the
perspective of the trend analyzed on the previous stage. For
modeling the scenario, we suggest the use of the second
version of Future Wheels technique. Consequently, the
wheel must be sectioned into domains that may have some
influences on the topic discussed. As an example, we divided
a generic wheel on different contexts of impacts

(educational, economical, political, etc.), as depicted on
figure 4.

Finally, the group will answer the following questions for
each circle in each domain:

(a) What would happen if this circle is omitted from the
implementation?

(b) What requirement(s) should be implemented to
prevent this from occurring?

In a future scenario, the circles can be joined into one
single circle in order to define a broader requirement that
cover more than one consequence.

At the end of the process, the group is expected to create a
wide variety of requirements grouped by sections of
interests. These requirements now can be used to compose a
structured Requirement Documentation.

.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

 At this moment of our study, we are preparing a Quasi-
Experiment [7] to analyze the impact on time, quality and
stakeholder’s feedback of the process. This experiment will
take place at the Recife Advanced Center of Research and
Study (CESAR) and will be applied on a new P2P Backup
[8] [9] system that is being developed by local researchers
[11][12] [13]. As it is a new area of study and there is a lack
of solutions using this kind of technology, stakeholders are
quite unsure about what requirements should be elicited for
this particular system [10]. Our main goal is to guide their
requirement tasks by combining these two powerful
techniques described in the past sections of this article.

Figure 4. Example of a Future Wheel divided into sections [3]

548

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 564 / 612

 In order to define specific goals for this experiment, we
have established the following questions:

 Q1 : What are the quantitative and qualitative benefits of
using Refis from the point of the view of the stakeholders
in the context of eliciting requirements in contrast of past
methods used by the team?
Q2 : What strengths and weakness were identified during
the technique appliance?
Q3 : What other techniques can be combined with Refis?

After the experiment evaluations, our academic and
professional commitment is to present this work into
further details to the science computer community as a
new and promising methodology for eliciting
requirements.

V ACKNOWLEDGMENTS

This work was partially supported by the National
Institute of Science and Technology for Software
Engineering (INES¹), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES
[1] S. Inayatullah, “The causal layered analysis (CLA)
Reader,” 2004.
[2] S.I. This and S. Inayatullah, “Causal Layered Analysis
- Deepening the future,” 2005, pp. 1-22.
[3] J.C. Glenn, “The futures wheel,” Washington, DC:
United Nations University.(Part of Glenn 1994a), 1994.
[4] B. Nuseibeh and S. Easterbrook, “Requirements
engineering: a roadmap,” Proceedings of the Conference
on the Future of Software Engineering, ACM New York,
NY, USA, 2000, pp. 35–46.
[5] G. Sindre and A.L. Opdahl, “Eliciting security
requirements with misuse cases,” Requirements
Engineering, vol. 10, 2004, pp. 34-44.

[6] M. Hadavi, V. Hamishagi, and H. Sangchi, “Security
Requirements Engineering; State of the Art and Research
Challenges,” Proceedings of the International
MultiConference of Engineers and Computer Scientists,
vol. 1, 2008, pp. 19-21.
[7] G.E.L. Cohen and G. Susan G. Jr, “Effectiveness of
Self-Managing Teams : A Quasi-Experiment,” Human
Relations, Vol.47, No 1, 1994, pp. 13-43.
[8] C. Miller, P. Butler, A. Shah, and A.R. Butt,
“PeerStripe: a p2p-based large-file storage for desktop
grids,” Proceedings of the 16th international symposium
on High performance distributed computing, ACM, 2007,
p. 222.
[9] R. Butt, T. a Johnson, and Y.C. Hu, “Kosha: A Peer-
to-Peer Enhancement for the Network File System,”
Proceedings of the ACM/IEEE SC2004 Conference,
2004, pp. 51-51.
[10] C. Batten, K. Barr, A. Saraf, and S. Trepetin,
“pStore: A secure peer-to-peer backup system,”
Unpublished report, MIT Laboratory for Computer
Science, 2001, pp. 130-139.
[11] M. Pinheiro, R. Assad, F. Ferraz, L. Ferreira, and S.
Meira . An Availability Algorithm for Backup Systems
Using Secure P2P Platform. In: International Conference
of Software Engineering Advances, 2010, Nice, France.
ICSEA, 2010, pp. 471-478.
[12] T. Katter, R. Assad, F. Ferraz, L. Ferreira, and S.
Meira. Security Quality Assurance on Web-Based
Application through Security Requirements Tests:
Elaboration, Execution and Automation. In: International
Conference of Software Engineering Advances, 2010,
Nice, France. ICSEA, 2010, pp. 272-277.
[13] F. Ferraz, R. Assad, and S. Meira . A Relating
Security Requirements and Design Patterns: Working
with Design Pattern to reduce Security Requirements
implementation impacts. In: International Conference on
Software Engineering Advances, 2009, Porto, Portugal.
ICSEA, 2009, pp. 9-14.

¹INES – http://www.ines.org.br

549

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 565 / 612

A Metamodel for Representing Safety LifeCycle Development Process

Huaxi (Yulin) Zhang
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9, France

zhang@irit.fr

Brahim Hamid
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9, France

hamid@irit.fr

Damien Gouteux
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9, France

gouteux@irit.fr

Abstract—Metamodeling process supports the effort of cre-
ating flexible process models. The purpose of process models
is to document and communicate processes and to enhance the
reuse of processes. Thus, processes can be better taught and
executed. Results of using metamodel process are an increased
productivity of process engineers and an improved quality of
the models they produce. However, most useful metamodels are
activity-oriented, and the required concepts of safety lifecycle,
such as validation, can not be easily modeled through these
metamodels. In this paper, we propose a safety-oriented process
metamodel to support all the requirements of safety control. As
a proof of concept, we examine a process model that has several
safety lifecycle requirements: the IEC 61508 safety lifecycle V-
model standard.

Keywords-Safety lifecycle, Development process, Modeling,
Process metamodel

I. INTRODUCTION

Over the last two decades, the need for a formally defined
safety lifecycle process has emerged. This is because the
inevitable requirement for better processes eventually pushed
control systems to a level of complexity where sophisticated
electronics and programmable systems have became the
optimal solution for control and safety protection [1]. The
industrial processes trend to have following characters:

• Industrial processes are becoming more and more com-
plex.

• Increasing numbers of people and organizations are
involved.

• High cost in case of an unwanted spurious process trip.
• Large consequences in case the process gets out of

control.
With these emergent requirements, many safety lifecycles

have been proposed by different associations, like IEC (Inter-
national Electrotechnical Commission) or ISA (International
Society of Automation). These safety lifecycles are adopted
by different domains or enterprises with some modifications
to adapt different requirements (for example, domain specific
requirements). However, as the fundamental differences be-
tween traditional development process and safety lifecycle
are huge, such as different kinds of safety checks and
the safety relationships between these checks and phases,

to model these different safety lifecycles with traditional
used process metamodel is not simple and direct. Most
process metamodels such as SPEM (Software & Systems
Process Engineering Metamodel), UMA (Unified Method
Architecture), OPF (OPEN Process Framework), focus on
modeling the process model with activity-oriented viewpoint
to accommodate a large range of development processes.
Furthermore, no process metamodel is rich enough or ori-
ented to serve as the support of a safety lifecycle.

The goal of the paper is to present an ongoing work
devoted to extend exiting framework with support for safety
lifecycle development. That is, we propose a new safety
lifecycle development processes technique in order to make
easy their use in a building process of system/ software
applications with safety support. The proposed vision is to
use modeling techniques to obtain high level of abstractions
in order to avoid the cost of building a process for each
applications properties and/or for each domain. Reaching
this purpose requires to get (1) a common representation of
safety lifecycle process for several domains; (2) a process
flexible structure; (3) guidelines for domain specific imple-
mentation of the process and (4) guidelines to guarantee the
correctness of the process with regard to safety requirements.
Thus, we propose a PPFS metamodel which response all
these requirements which is developed under the European
project TERESA, oriented to different concerns, namely
safety lifecycle, pattern, repository, embedded system and
non-/extra- functional properties. In this paper, we just
concentrate on the aspect of safety lifecyle.

The remaining of this paper is organized as follows.
Section II defines the context of the safety lifecycle and
the problem definition is presented followed by a motivating
example. Section III discusses the state of the art of process
metamodels from the safety related viewpoint. Section IV
outlines the PPFS process metamodel. Section V presents
how the PPFS metamodel supports the safety lifecycle
with its safety-related concepts. Section VI illustrates the
PPFS metamodel by the IEC 61508 standard safety lifecycle
V-model. Section VII concludes and draws future work
directions.

550

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 566 / 612

II. PROBLEM STATEMENT

The main difficulty to overcome in the development of
critical embedded systems is how to avoid the cost of
building a process for properties of each application and/or
for each domain. One way to obtain high level of abstraction
is to make use of meta-modeling techniques. Informally,
a process has several views with regard to the considered
level of abstraction. This decomposition and separation of
uses illuminates how to create, to specialize processes. This
implies that a process is created at high level abstraction
and then it will be transformed into more specific one.
The common safety engineering meta-model will have to
recognize the need to separate expertise on applications. As
a result, individual application domains could have different
safety engineering processes, for example, a domain where
application engineers do not use model-driven engineering
should have a more decoupled interaction with the modeling
artifacts.

A. Safety Lifecycle: Definition and Concepts

The safety lifecycle can be defined as: an engineering
process designed to achieve a risk-based level of safety
with performance criteria that allow versatile technologies
and optimal design solutions [2]. The risk-based levels are
recognized as system integrity level (SIL). SIL measures
the confidence which can be attributed on the fact that
the integrity of the system functions conform with the
requirements.

Many safety lifecycles are proposed, such as IEC
61508 [3], IEC 61511 [4], and ANSI/ISA S84.01 [5]. The
differences between the safety lifecycle and normal devel-
opment process are only the integration of safety related
phases into process, but also the special concepts used to
verify whether the safety lifecycle and the SIL requirements
are correctly implemented and satisfied. Generally, there are
four types of checks used to validate the safety lifecycle [3]:

• Verification. Confirmation by examination and provi-
sion of objective evidence that the intended functions
have been correctly implemented and the requirements
have been satisfied. and assurance that the safety anal-
ysis remains valid for the system as implemented.

• Validation. The activity of demonstrating that the
safety-related system under consideration, before or
after installation, meets in all respects the safety re-
quirements specification for that safety-related system.

• Functional safety audit. Systematic and independent
examination to determine whether the procedures spe-
cific to the functional safety requirements comply with
the planned arrangements, are implemented effectively
and are suitable to achieve the specified objectives.

• Functional safety assessment. Investigation, based on
evidence, to judge the functional safety achieved by
one or more E/E/PE safety-related systems, other tech-

nology safety-related systems or external risk reduction
facilities.

Beyond these checks, the interaction and influences be-
tween the process phases should be considered. This means
the safety relationships between checks and phases within
one development process. To support these relationships,
four basic flows should be modeled: control flow, retrieve
flow, validation flow and verification flow. These flows
represent the interactions and influences between checks
and process phases. process, such as he verification flow,
validation flow, etc. Thus, the same time with four types of
checks, it also specify four types of flow relationships in
process.

B. Motivating Example

Safety lifecycles are practiced in different domains or
different enterprises with different kinds of versions [2]. The
domain specific requirements lead different safety lifecycles,
which are modified from the general or standard lifecycle
to adapt their specific requirements. For example, the IEC
(International Electrotechnical Commission) 61508 is today
globally recognized and considered as the basic standard to
evaluate the suppliers’ products. IEC 61508 [3] recommends
a V-model safety lifecycle, as shown in Fig. 1. How to
define this kind of safety lifecycle model, such as IEC 61508
V-model, is raised as a problem. Thus, in this paper, we use
IEC 61508 as a motivating example.

E/E/PES safety
requirements
specification

Software
architecture

Software safety
requirements
specification

Software system
design

Module
design

Module
testing

Validation
testing

CODING

Integration testing
(components, subsystems

and programmable
electronics)

Validation Validated
software

Output

Verification

Integration
testing
(module)

E/E/PES
architecture

Figure 5 — Software safety integrity and the development lifecycle (the V-model)

Figure 1. The V model of IEC 61508

Considering above modeling problem, we find that a
safety-related metamodel, which can be applied to model
these different lifecycle models, is stringently required. Thus
the claim of this paper is that a safety-related process
metamodel should capture the safety related process con-
cepts to facilitate the modeling of safety-related development
process. In other words, in order to model a safety lifecycle,
a process metamodel should model SIL, checkpoints and dif-
ferent flows between checks and phases. These concepts as
the minimum support and basic elements for safety-related

551

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 567 / 612

lifecycle, should be modeled by a process metamodel. State-
of -the-art of process metamodels have been analyzed from
this perspective, trying to answer the following questions:

• Do existing process metamodels support safety lifecy-
cles?

• If so, are these metamodels can capture all required
safety concepts mentioned above explicitly?

III. STATE OF THE ART OF PROCESS METAMODEL

Meta-process modeling supports the effort of creating
flexible process models. The purpose of process models is
to document and communicate processes and to enhance
the reuse of processes. Thus, processes can be better taught
and executed. Results of using meta-process models are an
increased productivity of process engineers and an improved
quality of the models they produce [6].

Process metamodels can be modeled from different
views: activity-oriented, product-oriented and decision-
oriented views [6], [7], [8]. Most process metamodels adopt
the activity-oriented views, such as SPEM, UMA and OPF.

The SPEM (Software & Systems Process Engineer-
ing Metamodel) was created by the Object Management
Group [9] as a de facto, high-level standard for processes
used in object-oriented software development. The scope
of SPEM is purposely limited to the minimal elements
necessary to define any software and systems development
process, without adding specific features for particular devel-
opment domains or disciplines. The goal is to accommodate
a large range of development methods and processes of
different styles, cultural backgrounds, levels of formalism,
lifecycle models, and communities. Thus, with SPEM, it is
not easily to model all the specific concepts required by
safety lifecycle.

The Unified Method Architecture (UMA) [10] has been
developed within IBM 1, which is mostly used in industry
to support the most important standards. The metamodel of
UMA is based on SPEM, thus it has the same weakness as
SPEM .

The OPEN Process Framework (OPF) is defined by
OPEN [11]. Generally, it is a componentized OO develop-
ment methodology underpinned by a full metamodel. The
drawback of OPF is just like above twos.

Thus, we can find that these metamodels are not designed
to support safety lifecycle. In some view, they permit to
model the safety related concepts. With the above mentioned
characters of safety lifecycle, we give a comparison between
these metamodels as shown in tables I and II. Table I eval-
uates how these metamodels support four kinds of checks
mentioned in the beginning and Table II compares these
metamodels from the special required relationships of safety
lifecycle. Tables I and II evaluate these metamodel from

1UMA has been developed in a collaborative effort by the architects of
the IBM Rational Unified Process (RUP).

the facility of use and the easiness of comprehension via
the mentioned safety concepts. The tables use four levels
to evaluate these metamodel from + to ++++. From these
tables, as SPEM is a general process metamodel, we can
find that it is difficult to use to model safety lifecycle.
UMA and OPF are better than SPEM, however they are
also not designed to orient and model safety lifecycle. We
can just adjust some of their concepts to represent the safety
audit and safety assessment in a more general way. For the
safety relationship, all these metamodels are in same level,
they do not have any specific concepts to model the safety
relationship, however we can still adjust their control flow
concepts to safety relationship. But the semantic information
of all these safety checkpoints and relationships are difficult
to reserve and illustrate in these metamodels.

Metamodel Validation Verification Safety
audit

Safety
assessment

SPEM + + + +
UMA ++ ++ ++ ++
OPF ++ ++ +++ +++

Table I
COMPARISON OF EXISTING PROCESS METAMODELS IN CHECKPOINTS

Metamodel Control
Flow

Retrieve
Flow

Validation
Flow

Verification
Flow

SPEM ++++ ++ ++ ++
UMA ++++ ++ ++ ++
OPF ++++ ++ ++ ++

Table II
COMPARISON OF EXISTING PROCESS METAMODELS IN ASSOCIATIONS

Except above mentioned process metamodels, there
are also other activity metamodels like OOSPICE [12],
SMSDM [13]. Beyonds these, the other types of process
metamodel such as decision based etc, do not orient to
safety critical system development neither. As far as we
know, the studied process metamodels unfortunately do not
support safety related development process explicitly or
facilitate the modeling of safety lifecycles. Beyonds these,
many safety critical systems use safety instrument systems
(SIS) to manage the safety lifecycle, however, these SIS
do not have any process metamodel. Some works like [14]
are proposed to model different standards and try to give
recommendations during the application development using
these standards. In conclusion, these existing metamodels are
(1) not explicitly or directly describing the safety concepts
as the first-classes and (2) not easily to use or comprehend,
such as the different flows cannot be differentiated with each
other. Thus, this analysis results in requirements for the
process metamodel presented in this paper with following
characteristics:

• Design with the viewpoint: safety-related.

552

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 568 / 612

• Support safety-related development process with its
necessary required concepts: SIL, checkpoints and
safety control relationships.

IV. OVERVIEW OF PPFS METAMODEL

To response the above requirements of metamodel, we
propose a metamodel called PPFS. This metamodel is de-
signed under the European project TERESA. It supports
several engineering concerns, namely: safety lifecycle, pat-
tern, repository, embedded system and non-/extra- functional
properties, as shown in Fig. 2. In our works, we deal
with a metamodel PPFS (Process-based Pattern Fundamental
Structure), which is designed to orient several engineer-
ing concerns, namely: safety lifecycle, pattern, repository,
embedded system and non-/extra- functional properties, as
shown in Fig. 2. In this paper, we concentrate on its safety
related concern.

MetaModel of Software/System development process 2615/11/2010

PPFS - Overview

PPFS

Pattern
integration

Embedded
system

Non/extra
functional
property

Safety
lifecycle

Repository

Figure 2. The characteristics of PPFS metamodel

The PPFS metamodel describes all the artifacts (and their
relations) required to capture all the facets of safety-life
cycle processes. It contains different packages depicted in
Fig. 3 which supply different capabilities. In order to com-
pare with other process metamodels, we give a simplified
version of metamodel with necessary elements to capture
safety-related concepts as shown in Fig. 4.

In this paper, we concentrate on presenting the safety-
related part of the PPFS metamodel.

V. SAFETY CONCERN OF PPFS METAMODEL

In this section, the safety-related concepts in PPFS will
be introduced, including SIL, the checks and safety relation-
ships.

Figure 3. Structure of PPFS Metamodel

A. SIL

SIL in the PPFS metamodel is modeled as enumeration
class with five levels from zero to four.

• SIL 4: the highest target and most onerous to achieve,
requiring state of the art techniques (usually avoided)

• SIL 3: less onerous than SIL 4 but still requiring the
use of sophisticated design techniques.

• SIL 2: requiring good design and operating practice to
a level not unlike ISO 9000.

• SIL 1: the minimum level but still implying good design
practice.

• SIL 0: referred to as “not-safety related” in terms of
compliance.

With these five levels, the SIL attribute of process class
can be set to SIL value to determine the process demand
rate, which is a measure of the integrity and the stability of
the process (see Fig. 4).

B. Checkpoint

Checkpoint is defined as an activity or phase which
presents the safety checks in different levels of process.
In other words, in the PPFS, safety checks are named
checkpoints. They are used to verify whether the safety
requirements are correctly implemented. To fulfill the re-
quirements presented in Section II, we specify four kinds of
checkpoints: validation, verification,safety audit and safety
assessment. The structure of checkpoint and related classes
is depicted in Fig. 5.

Furthermore, in order to facilitate the extension of the
metamodel, the different kinds of checkpoints are defined
as CheckpointKind. With this class, the checkpoint can be
easily extended by different required types. The relationship
is shown in Fig. 6.

In the following, we present four kinds of checkpoints
predefined in the PPFS metamodel.

1) Verification: The definition of validation is a confirma-
tion by examination and provision of objective evidence that
(i) the intended functions have been correctly implemented

553

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 569 / 612

Figure 4. The structure of PPFS from safety-related viewpoint

Figure 5. Structure of Checkpoint

Figure 6. The types of checkpoint

and (ii) the requirements have been satisfied and (iii) assur-
ance that the safety analysis remains valid for the system as
implemented.

2) Validation: The activity of demonstrating that the
safety-related system under consideration, before or after

installation, meets in all respects the safety requirements
specification for that safety-related system.

3) Safety audit: Safety audit defines a systematic and in-
dependent examination to determine whether the procedures
specific to the functional safety requirements comply with
the planned arrangements, are implemented effectively and
are suitable to achieve the specified objectives. Figure. 7
gives an example of safety audit, which serves as a check-
point and also a phase or activity.

Figure 7. The example of Safety audit

4) Safety assessment: Safety assessment is defined as an
investigation, based on evidence, to judge the functional
safety achieved by one or more E/E/PE safety-related sys-
tems, other technology safety-related systems or external
risk reduction facilities.

C. Safety Relationships

There are five kinds of safety relationships: internal verifi-
cation, external verification, validation and retrieve flow. We
precisely define different kinds of verification relationships
in the PPFS metamodel.

1) Control Flow: is a Flow element that presents the
continuation of one Work Breakdown Element to another
Work Breakdown Element. The control flow presents the

554

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 570 / 612

Figure 8. Structure of Flows

next work breakdown element after finishing the previous
one.

2) Internal Verification Flow: is a Flow element that
presents the internal verification relationship of one Work
Breakdown Element to another Work Breakdown Element.

Internal Verification Flow represents the internal verifi-
cation that we performed before start a new development
phase. These actions must be carried out in order to check
that the actions performed in the immediately previous phase
have been done in a proper way. These actions are performed
by a group independent to the design team and these actions
are restricted to the left branch of the Safety Life Cycle (V-
Model). These verification actions are shared between the
safety audit team (Safety Auditor) and the team in charge
of carried out the internal reviews.

3) External Verification Flow: is a Flow element that
presents the external verification relationship of one Work
Breakdown Element to another Work Breakdown Element.

External Verification Flow represents the normal verifi-
cation performed at the right branch of Safety Life Cycle
(V-Model). These actions are performed by the verification
team and they start at the end of the implementation phase.
The typical actions in this kind of verification are often listed
below:

• Static analysis - Code coverage/Syntactic analysis
• Unit Tests
• Integration Tests
• System Tests - Validation Tests

4) Validation Flow: is a Flow that represents the vali-
dation relationship between two Work Breakdown Element.
In safety lifecycle V-model, validation executes at the end
of the implementation phase in V-model to confirm that the
installed and commissioned SIFs meet the Safety Require-
ments Specification (SRS).

In our metamodel, although the validation concept comes
from the safety lifecycle, we still make it generalization.
That means validation can be concerned different perspec-
tive, not only just for safety, for example dependability
validation, security validation etc.

5) Retrieve Flow: is a Flow that represents the retrieve
relationship from checkpoints to phases or activities. The
retrieve action will be proceeded when the checkpoints don’t
pass the examination. The process will turn back to the
previous Work Breakdown Element to reexamine or redo
the works. Figure 9 shows an example of retrieve flow.

Figure 9. The example of retrieve flow

VI. AN ILLUSTRATION: IEC 61508 SAFETY LIFECYCLE

In this section, we try to illustrate the use of modeling
framework by modeling IEC 61508 standard safety lifecycle
V-model by the PPFS metamodel. Fig. 10 depicts the IEC
61508 V-model instantiated from the PPFS metamodel.
From this illustration, we can easily demonstrate that it
is more direct and precise using the PPFS metamodel to
define the different safety lifecycle models. As software
process covers the entire software development and contains
almost all the necessary information of the development,
thus it is difficult to present the entire process with all the
information in one model. Normally, we use one process
model to present the overall development in first level,
and then decompose the process with different sub-models
that correspond each phase of development. Fig. 10 is an
example of the first level model of process.

VII. CONCLUSION AND FUTURE WORKS

This paper presented and illustrated our proposed PPFS
metamodel from the safety-related viewpoint. Few process
metamodel are rich enough or oriented to serve as the
support of a safety lifecycle. Most process metamodels such
as SPEM [9], UMA [10], OPF [11], focus on modeling the
process model with activity-oriented viewpoint to accom-
modate a large range of development processes. As men-
tioned in Section III, a safety-oriented process metamodel
is required. The PPFS metamodel fulfills all the required
characteristics mentioned. It permits (1) to design process
model from the safety-related viewpoint, (2) to support
safety-related development process with SIL (safety integrity
level), checkpoints and safety control relationships, (3) to
facilitate modeling the domain specific safety lifecycle.

The PPFS metamodel presented in this paper is also
illustrated by a case study of IEC 61508 standard safety-

555

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 571 / 612

Figure 10. PPFS Metamodel instantiated by the IEC 61508 safety lifecycle.

lifecycle V-model. By this illustration, we can validate the
feasibility and effectiveness of the PPFS metamodel.

As future work, we plan to extend the meta-model to
refine the specifications of safety lifecycle in order to support
(i) design pattern solutions, (ii) repository and (iii) extra-
functional and non-functional properties.

Acknowledgements. This work is initiated in the context
of SEMCO framework. It is supported by the European FP7
TERESA project and by the French FUI 7 SIRSEC project.

REFERENCES

[1] D. J. Smith and K. G. L. Simpson, Functional Safety: A
straightforward guide to applying IEC 61508 and related
standards, 2nd ed. Elsevier: Butterworth Heinemann, 2004.

[2] Exida, “Iec 61508 overview report (version 2.0),” Tech. Rep.,
January 2006.

[3] I. S. . IEC 61508, Functional safety of electrical/ elec-
tronic/programmable electronic safetyrelated systems, Inter-
national Electrotechnical Commission Std., 2000.

[4] I. S. . IEC 61511, Functional safety - Safety instrumented
systems for the process industry sector, International Elec-
trotechnical Commission Std., 2003.

[5] A. S. S84.01, Application of Safety Instrumented Systems for
the Process Industry, International Society for Measurement
& Control Std., 1996.

[6] C. Rolland, “A comprehensive view of process engineering,”
in Proceedings of the 10th International Conference on
Advanced Information Systems Engineering. London, UK:
Springer-Verlag, 1998, pp. 1–24.

[7] C. Rolland, N. Prakash, and A. Benjamen, “A multi-
model view of process modelling,” Requirements Engineer-
ing, vol. 4, pp. 169–187, 1999.

[8] C. Hug, A. Front, D. Rieu, and B. Henderson-Sellers, “A
method to build information systems engineering process
metamodels,” J. Syst. Softw., vol. 82, pp. 1730–1742, October
2009.

[9] Software & Systems Process Engineering Meta-Model Spec-
ification, OMG, 2008.

[10] EPF. www.eclipse.org/epf.

[11] O. P. F. (OPF). http://www.opfro.org/.

[12] B. Henderson-Sellers and C. Gonzalez-Perez, “A comparison
of four process metamodels and the creation of a new generic
standard,” Information & Software Technology, vol. 47, no. 1,
pp. 49–65, 2005.

[13] Standard Metamodel for Software Development Methodolo-
gies., Standards Australia, 2004.

[14] L. Y. C. Cheung, P. W. H. Chung, and R. J.
Dawson, Managing process compliance. Hershey, PA,
USA: IGI Publishing, 2003, pp. 48–62. [Online]. Available:
http://portal.acm.org/citation.cfm?id=954321.954326

556

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 572 / 612

On the Extensibility of Plug-ins

Vanea Chiprianov, Yvon Kermarrec
Institut Telecom, Telecom Bretagne
Universit́e euroṕeenne de Bretagne

Technopole Brest Iroise, CS 83818 29238
Brest Cedex 3, France

UMR CNRS 3192 Lab-STICC
Vanea.Chiprianov@telecom-bretagne.eu

Siegfried Rouvrais
Institut Telecom, Telecom Bretagne
Universit́e euroṕeenne de Bretagne

Technopole Brest Iroise, CS 83818 29238
Brest Cedex 3, France

Siegfried.Rouvrais@telecom-bretagne.eu

Abstract—There are software engineering tooling problems
for which the solution benefits from being encapsulated as
a plug-in. Among these problems, to ensure higher leverage,
there are categories for which is important that their solution is
extensible. However, extending a plug-in in practice oftentakes
a long time, requires expertise, involves hacks and produces low
quality code. In this paper, we advocate that assuring early
in the design that a plug-in is extensible, by providing the
necessary extension points, increases its re-usability, improves
its evolution, and ultimately reduces the development time
of the extender plug-in. We identify categories of software
engineering problems whose solutions benefit from being ex-
tensible plug-ins, and review existing approaches to extending
plug-ins. Finally, we report on our experience, with some of
these approaches, in extending an Eclipse plug-in for a domain
specific modeling language graphical editor.

Keywords-Plug-in; extensibility; framework; software ar-
chitecture; software design; design pattern; Domain Specific
Language; modeling; experience report.

I. I NTRODUCTION

Our knowledge for solving software engineering problems
is increasingly being encapsulated in tools. These tools
provide the maximum of benefits when they operate in
an environment that can provide integration with existing
elements such as editors, compilers, debuggers, profilers and
visualizers. A major challenge is to develop tools that can
span different, heterogeneous and future environments.

A software plug-in is a set of software components that
adds specific capabilities to a larger software application[1].
As an auxiliary ”client” module or expansion, it permits to
add specific capabilities to a larger ”host” software appli-
cation. For example, external capabilities may be functions,
services, features, or support for handling a file format. The
plug-in pattern, Figure 1, from [2], presents how to design
an application in order to allow its extension at runtime by
dynamically loaded modules or classes. The plug-in loader
is part of what is called the framework.

Well-known examples of systems based on plug-ins in-
clude web-browsers (e.g., the add-ons [3] for Firefox),
graphics editing programs [4], games (plug-ins are called

Figure 1. UML class diagram for the plug-in pattern, from [2].

mods [5]), integrated development environments (IDE) (e.g.,
Eclipse), tools for formal analysis and verification.

Plug-in systems are developed in order to benefit from the
following advantages [6]:

• Stability of system design. New features are added
through plug-ins, independent of the core functional-
ities of the application.

• Reduced frequency of context switches. The user re-
mains in the same integrated environment, experiencing
a feeling of continuity.

• Increased usability. The user does not need to learn to
use a new environment for the system functionality.

• Re-usability of framework functionality. Basic shared
functionality is provided by the framework, so liberat-
ing the plug-ins from assuring it, reducing complexity
and increasing modularity and understandability [2].

• High flexibility in tool customization. The user can
select exactly the plug-ins tailored to her needs.

• Interoperability. In many research communities, all
tools are developed using the same framework.

• Easy extensibility [7]. New tools can be added without
the need to understand the framework code. Extendibil-
ity [8] is defined as the degree of usability and safety in
contexts beyond those initially intended. Extendibility
includes, but is not restricted to, extensibility.

Plug-in extension may be considered as a subproblem of
the customizing libraries issue. Library customization con-

557

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 573 / 612

sists in adding new or modifying existing pieces of code. A
recent comparative study [9] surveyed most of the techniques
for library customization. Despite their differences, alltech-
niques require some sort of hole/hook point/expansion in
the ”host” code. The extensions have to ”hook” into a main
application or framework environment [10]. For this, ”client”
extensions must declare how they interact with the ”host”
and the ”host” must provide interaction points. Because of
this shared need of all extension approaches, we advocate
that designers of the ”host” extended plug-in appear as good
candidates to identify and provide these extension points,for
the expansion approach of their choice.

However, plug-ins present drawbacks also:
• Difficult installation of new plug-ins. Compatibility

issues with already present plug-ins, versioning prob-
lems, impede users and may even provoke reliability
problems if the existing application stops.

• Restriction to the chosen framework. The framework
may not support adequately all the necessary func-
tionality and/or technologies (e.g., limitation to only
a certain operating system).

To improve plug-in extensibility, and based on our ex-
perience report (Section IV), we defend in this paper that
extension points should be included in the very initial design
of certain plug-ins (Section II) software architecture in some
manner (Section III). As such, developing plug-ins from
scratch or refactoring them with those extension points in
mind, opens the way towards easier plug-in interoperability,
extensibility, integration, installation, increases openness to
several frameworks, leading to more potential uses.

II. CATEGORIES OFEXTENSIBLE PLUG-INS

It is quite safe to assume that plug-in providers would
like to easily make their plug-in available in multiple
frameworks. But experiments [11] on porting plug-ins to
other frameworks suggest that only limited reuse is possible.
Conceiving a plug-in as an extension of an adapter plug-in
that takes care of framework particularities greatly increases
reuse. So extension may be a great benefit or even a
requirement for certain categories of plug-ins. In this section,
we identify such categories of plug-ins.

One such category are tools for domain specific languages
(DSLs). A DSL [12] is a language restricted to and focused
on a particular domain. Implementing a DSL and its asso-
ciated tools usually have as starting point an existing, more
general purpose, base language and its tools. For example,
SysML [13] (a modeling language for systems engineering
applications) is defined as an extension of UML. Developing
tools (e.g., editors, code generators) for such DSLs benefits
from reusing base language tools. The base language tools
are often part of a tool-set, an IDE, and implemented as
plug-ins. Therefore, developing tools for DSLs based on
another language often consists in extending plug-ins. The
case study presented in Section IV is an example of an

editor plug-in for such a DSL. Another example of plug-
in extension for domain specificity is Ginga-NCL (Nested
Context Language) [14], a declarative environment for IPTV
services. An NCL application itself acts as a plug-in of
another parent NCL application.

Tools for coverage, profiling and the collection of different
kinds of runtime information are also particularly suitable
for plug-in extension. Many of them are implemented as part
of an IDE, as plug-ins, to assist the developer. Also, they
may present several variants that share nonetheless common
functionality, and so be suitable for extension. An exampleis
InsECTJ [15], a framework which is also a plug-in. It is a set
of Eclipse plug-ins for the collection of runtime information
(coverage, profiling, and data values from specific points
in a program execution). It defines a core plug-in, which
implements the general framework and uses an extension
point to expose its functionality to specific probe inserters. A
probe inserter is an instrumentation module that implements
the extension point in the core plug-in. Probe inserters are
bundled in a second Eclipse plug-in.

In the Web development community, there are numerous
web browser plug-ins that are extended at their turn. For
example, Firebug [16] is a Firefox add-on for editing, de-
bugging, and monitoring HTML, JavaScript and other Web
languages. It has a number of extensions [17] that typically
come in the form of Firefox add-ons. For example, Firebug
Code Coverage is a Firefox add-on and Firebug extension
that adds entry function code coverage for JavaScript code.

Another category consists of tools that implement differ-
ent strategies (cf. the Strategy pattern [18]) as part of a tool-
chain. For example, the RDB2RDF Plugin [19] is an Eclipse
plug-in that supports the standard relational database schema
(RDB) to Resource Description Framework (RDF) Mapping
Language (R2RML). R2RML mappings provide the ability
to view existing relational data in the RDF data model,
expressed in a structure and target vocabulary of the mapping
author’s choice. New mapping algorithms can be added by
the user through the implementation of an interface.

Plug-ins that are ported to other frameworks constitute
another category for which plug-in extension is beneficial.
To achieve more reuse when porting plug-ins to another
platform, [11] propose to construct an adapter layer, written
in a language supported by the framework, and conforming
to the frameworks plug-in interface. The adapter in turn
communicates with the plug-in through, for example, mes-
sages or remote procedure calls. We propose to construct
the adapter as an extensible plug-in, so greatly simplifying
the communication between the adapter and the plug-in. An
adapter extensible plug-in will also reduce theRestriction to
the chosen frameworkdrawback of plug-ins (cf. Section I).

The need for extensible plug-ins is a real one, as shown
by the numerous examples in different categories we have
identified here. And even more categories should be identi-
fied. They can then be used by designers to decide if their

558

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 574 / 612

plug-in belongs to one of them. If it is the case, designers
know there are high chances extensibility will be needed for
their plug-in. So they can create an architecture accordingly.

III. PLUG-IN EXTENSION METHODS

To implement plug-in extension, common approaches,
inspired from code generation techniques, are:

• Hacks. Though undesirable, many programmers use
them. Hacks add code in many places, which reduces
readability, maintenance, re-usability;

• C-style preprocessor directives. Simple #ifdef’s can be
used to include or exclude code, but readability is low
and errors can be introduced easily;

• Object-Oriented Programming (OOP). Interfaces and
(multiple)-inheritance provide variation/expansion
points. They can be used at design time of the ”host”
plug-in to provide expansion points for the ”client”
code. Once the expansion points in the ”host” are
in place, the expansions consist of only adding new
classes. This provides clear separation, facilitating
readability, maintenance, extensibility. However,
supplementary levels in inheritance hierarchies may
result in loss of performance at run time;

• Feature-Oriented Programming [20]. A feature is an
increment in program functionality. Feature interaction
with core functionality and other features is defined in
”lifters”. At its essence, extending code this way is the
same as OOP method overriding;

• Aspect-Oriented Programming [21]. An aspect is a
supporting function, separated from the main logic.
Aspects are added to main logic at various joint points.
It allows adding functionality to an existing class
transparently, which implies clean structuring of code.
However, specifying point-cuts uniquely can be hard;

• Fragment-Oriented Program Generation. Pieces of code
are combined to form a complete program. Pieces
can be used by functions as regular input or output
parameters. Composition of pieces is performed by
plugging fragments into the holes declared in other
fragments. Declaration of holes is needed.

Despite their differences, all these techniques require
some sort of hole/hook point/expansion in the ”host” code.
Because of this shared need of all extension approaches,
we advocate that designers of the ”host” extended plug-
in appear as good candidates to identify and provide these
extension points, for the expansion approach of their choice.
In this way, non-functional properties (e.g., re-usability,
flexibility, extensibility) of the ”host” plug-in are improved.

IV. EXPERIENCEREPORT

In this section we report on our experience with extending
a plug-in for Eclipse. Eclipse is an open source, extensible
IDE, but also an extensible application framework upon
which software, usually as plug-ins, can be built [10]. Using

the OSGI framework to install, update or remove plug-ins
on the fly, Eclipse can be easily customized. Moreover, it
provides a mechanism to add features to a plug-in. In fact,
there are numerous dependencies between plug-ins, some
of them extending others. Eclipse allows building tools that
integrate seamlessly with the environment and other tools.

A. Telecommunications Service Creation

As our research context is in the telecommunications area,
we investigate domain specific models, meta-models and
model transformations for service creation. We rely on a
multi-layer, multi-view approach, as largely recognized in
the Enterprise Architecture community. Recent efforts [22]
[23] [24] of telecom operators (service providers) on defin-
ing meta-models for modeling services are indicative of the
need for specific, dedicated modeling telecom languages and
tools. Moreover, one of the service providers’ requirements
identified by [25] is to have an overall representation of
service creation taking in all business, management, and
technical activities. To meet these needs, we propose defin-
ing a graphical telecom DSL (with semantics implemented
through code generation) as an extension of an Enterprise
Architecture modeling language [26].

ArchiMate [27] is an Enterprise Architecture modeling
language, a standard developed by the Open Group, with a
large and growing user community. We propose defining our
DSL as an ArchiMate extension. Archi [28] is a free, open
source, cross-platform editor to create ArchiMate models.
Archi is developed as a plug-in for Eclipse3.6.1. To reuse
existing tools for ArchiMate, we define a telecom DSL editor
(Figure 2) as an extension of Archi. The editor presents the
classical divisions of an Eclipse-based editor. At the left,
there is the model navigator and an outline of the graphical
model. The central window presents views (defined as tabs)
of the graphical model. At the right, the palette offers the
telecom specific concepts and relations, from which the
designer can select, drag and drop the desired ones.

Our investigations and results for telecommunications [29]
are out of the scope of this paper. Here we focus on tool
design and development concerns [30] and especially report
on our experience regarding the benefits of using extension
points through three approaches presented hereafter.

B. Hacks

In the first phase, while still getting familiar with Archi’s
inner structure, we extended the editor by adding code
in several methods from different classes. Adding a new
concept in Archi means adding one class for the concept
logic and two other classes for graphical purposes. Five
other classes need editing. Three of these hacks are of the
same type: adding acasestatement in aswitch instruction.
Knowing all these distributed editing places requires in depth
knowledge, which takes a significant time to acquire.

559

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 575 / 612

Figure 2. The Archi editor with the Telecom extension (showed in red boxes) in the palette.

After acquiring sufficient knowledge, we were able to
propose a refactoring. Theswitch instruction may be re-
placed with an interface that is implemented by a class for
eachcasestatement (e.g., Strategy Design Pattern [18]). The
advantage of this pattern is that code is added only in new
classes, which impacts far less the existing code. However,
refactoring takes a lot of time. An alternative solution would
have been, for a good extensible plug-in, to have provided
extension points from the original design.

C. Factory Design Pattern

Valid relations in Archi are listed in a hash-map. Adding
a new relation implies updating this hash-map and the code
that verifies if a particular relation has valid source and
target entities. These verifications use conventions that are
personal to the original developer (e.g., the pairs of valid
source-target entities are coded as strings of letters). While

the resulting code is small, its readability is very low.
However, an alternative way of adding new relations consists
in adding a new class that verifies the type of a relation:
ArchimateModelTelecomExtensionUtils.

This new class implements an interface, also added by
us: IArchimateModelExtensionUtils. The advantage is that
when a new extension is desired, the relations introduced
by this new extension are grouped in a new class which
implements the interfaceIArchimateModelExtensionUtils.
The instantiation of the class that implements this interface
is chosen in another class, implementing in this way the
Factory Design Pattern [18]. The disadvantage is that at any
given time, only one extension can be activated.

D. Eclipse Extension Points

We may want to separate the newly added classes into
a new plug-in. Eclipse offers the possibility, through ex-

560

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 576 / 612

tensions points, to define an ”extender” plug-in that adds
functionality to a ”host” plug-in. However, it still requires
the ”host” plug-in to call the extensions.

E. Lessons Learned and Insights

In all three methods presented for this case study, we had
to provide expansion points in the ”host” extended plug-
in. This implies detailed knowledge of the extended plug-
in code, which takes a long time to acquire. That is why
we advocate that the original designer of the ”host” plug-
in should be the one that provides extension points. In this
way, non-functional properties of the ”host” plug-in (e.g.,
re-usability, extensibility) are improved and the development
time of the extender plug-in is reduced.

We also emphasize the iterative manner in which the
extensions were written. In the discovery phase of the ”host”
plug-in code, hacks were easier to use. When a more global
understanding of the design was achieved, restructuring the
design was envisaged and design patterns were employed.
Finally, the added code could be separated in a new plug-
in. We appreciate that a good extensible design for a ”host”
plug-in should enable the ”client” plug-in developer to skip
directly to what was, in our case, the third phase.

V. RELATED WORK

ObjectTeams/Java [31] is an Aspect-Oriented Program-
ming language which introduces the concepts of roles and
decapsulation. A role class can declare a base class by
which this role is played (using the keyword ”playedBy”). To
visualize it, in Figure 1, consider ”Plugin” as the base class,
”ConcretePlugin” as the role class and replace the ”realize”
relation between them with the ”playedBy” relation. A role
class can adapt the behavior of its base class much like a
sub-class, with the difference that roles are kept as separate
entities at runtime. This results in base instances being kept
intact, while roles can be added independently from each
other. Of course, to have access to private data as sub-
classes do, roles need decapsulation. Decapsulation means
that a role class may access features of its base class even if
the normal rules of encapsulation would prohibit it. Support
for ObjectTeams has been added in the Eclipse OSGI
framework. This generalizes the Eclipse plug-in extension
mechanism with the introduction of joint points which can
bee seen as unanticipated extension points. This makes it
possible not only to add new behavior, but also to replace
functionality of a plug-in. However, the introduction of
decapsulation breaks one of the most important principle
and advantage of the Object Oriented Paradigm. Program-
mers of the extending plug-in become encumbered with
the responsibility of correctly using the decapsulated data,
which goes back to the need of knowing in great detail the
implementation of the extended plug-in. To counter negative
effects like this, we propose that the original architect ofthe
plug-in provides the necessary extension points.

Other proposals that enable reuse of plug-ins, although not
through extensibility, include, for example, [32]. The authors
propose the concepts of Task Based plug-in and work-flow
of Task Based plug-ins. A Task Based plug-in is a plug-
in that declares the functionalities that can be executed as
tasks. Using tasks, IDE users can create work-flows that
execute multiple tools and integrate tool results. In this way,
Task Based plug-ins can be integrated and composed through
pre-defined and user-defined task flows. However, this reuse
approach does not allow specialization of the behavior of a
tool, which extensibility does.

Another framework for service development, developed
as an Eclipse plug-in, is jABC [33]. It also contains an
extensible set of plug-ins, so that the jABC models can
be analyzed, simulated, verified, executed and compiled.
However, it deals with services in general, while the plug-in
we developed is focused on Telecommunications services.

VI. D ISCUSSION ANDCONCLUSIONS

The importance of plug-in extensibility is intrinsically
part of the bigger discussion on software architecture (good
properties). It may be argued that extensibility, and even
the existence of a software architecture, plans too much in
advance, pushes too much on the anticipation side. This may
lead to BUFD [34] (Big Up-Front Design), massive docu-
mentation, smell of waterfall, implementing features YAGNI
[35] (You Ain’t Gonna Need It), huge future re-factorings
because of architecture erosion. An alternative is that a
metaphor should suffice, the architecture should emerge
gradually sprint after sprint, as a result of a succession of
small re-factorings, through an adaptive process. However,
certain classes of systems, ignoring architectural issuestoo
long, ”hit a wall” and collapse by lack of an architectural
focus [36]. So, there are categories of systems for which
an adaptive approach may prove more appropriate (e.g.,
small web-based socio-technical systems) or, conversely,
categories of systems for which an anticipative approach
may prove more beneficial.

In this paper we addressed problems related to plug-in
extension. To reduce the development time of the extender
plug-in and increase quality properties (e.g., extensibility,
re-usability, flexibility) of the ”host” plug-in, we advocated
including extension points from the start, in the original
design of the ”host” plug-in. We have illustrated issues
and investigated solutions for the case of extending an
Eclipse plug-in for a domain specific modeling language
graphical editor. Through this, we hope to raise awareness
among plug-in designers for domains which are highly
probable to make use of plug-in extension (e.g., domain
specific languages). In the future, a full comparative studyof
extension methods will be useful in pinpointing limitations
from which current plug-in development systems may suffer
and help correct them.

561

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 577 / 612

VII. A CKNOWLEDGMENTS

The authors would like to thank Sébastien Bigaret, Tele-
com Bretagne, for his helpful reviews and Phil Beauvoir,
JISC CETIS, University of Bolton, for his helpful explana-
tions, examples and suggestions.

REFERENCES

[1] Wikipedia. (2011) Plug-in (computing). Accessed on
25.07.2011. [Online]. Available: http://en.wikipedia.org/wiki/
Plug-in %28computing%29

[2] J. Mayer, I. Melzer, and F. Schweiggert, “Lightweight plug-
in-based application development,” inIntl Conf. NetObject-
Days on Objects, Components, Architectures, Services, and
Applications for a Networked World, London, UK, 2003, pp.
87–102.

[3] Firefox. (2011) Add-ons. Accessed on 25.07.2011. [Online].
Available: https://addons.mozilla.org/en-US/firefox/

[4] Photoshop. (2011) The plugin site. Accessed on
25.07.2011. [Online]. Available: http://thepluginsite.com/
knowhow/tutorials/introduction/introduction.htm

[5] Civfanatics. (2011) Customizing Civilization IV. Accessed
on 25.07.2011. [Online]. Available: http://www.civfanatics.
com/civ4/downloads

[6] S. Wagner, S. Winkler, E. Pitzer, G. Kronberger, A. Beham,
R. Braune, and M. Affenzeller, “Benefits of plugin-based
heuristic optimization software systems,” inProc. of the 11th
intl conf. on Computer aided systems theory, Las Palmas de
Gran Canaria, Spain, 2007, pp. 747–754.

[7] F. N. Paulisch,The Design of an Extendible Graph Editor.
Secaucus, NJ, USA: Springer-Verlag, 1993.

[8] JTC1/SC7/WG6,ISO/IEC CD 25010.3: Systems and software
engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Quality models for software product
quality and system quality in use. Version 1.46, Std., 2009.

[9] B. Aktemur and S. Kamin, “A comparative study of tech-
niques to write customizable libraries,” inACM Symposium
on Applied Computing, Hawaii, USA, 2009, pp. 522–529.

[10] D. Rubel, “The Heart of Eclipse,”Queue, vol. 4, pp. 36–44,
2006.

[11] N. Sawadsky and G. C. Murphy, “Fishtail: From Task Context
to Source Code Examples,” in[37] , 2011.

[12] A. V. Deursen, P. Klint, and J. Visser, “Domain-specificlan-
guages: an annotated bibliography,”SIGPLAN Not., vol. 35,
no. 6, pp. 26–36, 2000.

[13] OMG, Systems Modeling Language, Version 1.2, Std., 2010.
[14] M. F. Moreno, R. S. Marinho, and L. F. Gomes Soares,

“Ginga-NCL Architecture for Plug-ins,” in[37] , 2011.
[15] A. Seesing and A. Orso, “InsECTJ: a generic instrumenta-

tion framework for collecting dynamic information within
Eclipse,” in Proc. of the eclipse Technology eXchange (eTX)
Ws at OOPSLA, San Diego, CA, USA, 2005, pp. 49–53.

[16] Firefox. (2011) Firebug. Accessed on 25.07.2011.
[Online]. Available: https://addons.mozilla.org/en-US/firefox/
addon/firebug/

[17] Getfirebug. (2011) Firebug/Extensions. Accessed on
25.07.2011. [Online]. Available: http://getfirebug.com/wiki/
index.php/FirebugExtensions

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[19] P. E. Salas, E. Marx, A. Mera, and J. Viterbo, “RDB2RDF
Plugin: Relational Databases to RDF Plugin for Eclipse,” in
[37] , 2011.

[20] C. Prehofer, “Feature-oriented programming: A fresh look at
objects,”ECOOP, vol. 1241, pp. 419–443, 1997.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin, “Aspect-oriented programming,”
ECOOP, vol. 1241, pp. 220–242, 1997.

[22] E. Bertin, S. Bécot, and R. Nedelec, “Applying Enterprise
Architecture Principles to Telco Services,” in14th Intl Conf.
on Intelligence in Next Generation Networks, 2010, pp. 1–6.

[23] A. Ahuja, J. Simonin, and R. Nedelec, “MDA tool for telecom
service functional design,” inProc. of the 4th Euro conf. on
Software architecture, Copenhagen, Dk, 2010, pp. 519–522.

[24] J. Simonin, E. Bertin, Y. L. Traon, J.-M. Jezequel, and
N. Crespi, “Business and information system alignment: A
formal solution for telecom services,”Intl Conf. on Software
Engineering Advances (ICSEA), pp. 278–283, 2010.

[25] J. Hållstrand and D. Martin, “Industrial requirements on a
service creation environment,” inProc. of the 2nd Intl Conf.
on Intelligence in Broadband Services and Networks: Towards
a Pan-European Telecommunication Service Infrastructure,
Aachen, Germany, 1994, pp. 17–25.

[26] V. Chiprianov, I. Alloush, Y. Kermarrec, and S. Rouvrais,
“Telecommunications Service Creation: Towards Extensions
for Enterprise Architecture Modeling Languages,” in6th Intl
Conf. on Software and Data Technologies (ICSOFT), Seville,
Spain, 2011, pp. 23–28.

[27] Open Group,Archimate 1.0 specification, Std., 2009.
[28] Cetis. (2011) Archi. Accessed on 25.07.2011. [Online].

Available: http://archi.cetis.ac.uk/
[29] V. Chiprianov, Y. Kermarrec, and P. D. Alff, “A Model-

Driven Approach for Telecommunications Network Services
Definition,” in Eunice’09: Proc. of the 15th Open European
Summer School and IFIP TC6. 6 Ws on The Internet of the
Future, vol. 5733, Barcelona, Spain, 2009, pp. 199–207.

[30] V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “Meta-tools
for Software Language Engineering: A Flexible Collaborative
Modeling Language for Efficient Telecommunications Ser-
vice Design,” inFlexiTools Ws at the 32nd ACM/IEEE Intl
Conf. on Software Engineering (ICSE), Cape Town, South
Africa, 2010.

[31] S. Herrmann, C. Hundt, and C. Pfeiffer, “Eclipse plugin
adaptation with Equinox and ObjectTeams/Java,” inEclipse
Technology eXchange Ws at ECOOP, Nantes, France, 2006.

[32] L. Mariani and F. Pastore, “Supporting Plug-in Mashes to
Ease Tool Integration,” in[37] , 2011.

[33] B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak,
“Model-driven development with the jABC,” inProc. of the
2nd intl Haifa verification conf. on hardware and software,
verification and testing, Haifa, Israel, 2007, pp. 92–108.

[34] Wikipedia. (2011) Big Design Up Front. Accessed on
25.07.2011. [Online]. Available: http://en.wikipedia.org/wiki/
Big Design Up Front

[35] R. E. Jeffries. (2011) Youre NOT gonna need it! Accessedon
25.07.2011. [Online]. Available: http://www.xprogramming.
com/Practices/PracNotNeed.html

[36] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and
Architecture: Can They Coexist?”IEEE Softw., vol. 27, pp.
16–22, 2010.

[37] J. Bishop, K. Breitman, and D. Notkin, in1st Ws on De-
veloping Tools as Plug-ins (TOPI) at the 33rd Intl Conf. on
Software Engineering (ICSE), vol. (in press), Hawaii, USA,
2011.

562

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 578 / 612

 Effective Task Allocation in Distributed Environments: A Traceability Perspective

Salma Imtiaz, Naveed Ikram
Department of Software Engineering
International Islamic University

Islamabad, Pakistan
salma.imtiaz@iiu.edu.pk, naveed.ikram@bcs.org

Abstract— Task allocation or work assignment in Distributed
Environments is a challenging task due to intricate
dependencies between distributed sites and fundamental
requirement of multifarious information. Conway’s law relates
product architecture to communication and coordination needs
of the people, whereas Parnas argues that communication and
coordination needs give rise to technical dependencies. Product
structure is depicted in its architecture, which in turn, consists
of multiple views based on different perspectives. These views
which are used to model different concerns of various
stakeholders are inter-related. Task allocation depends on
information about different architectural views and their
interrelationship. Traceability links between various views can
be used to model this interrelationship. There is a need to
identify the traceability support between different
architectural views to determine the extent of linkage between
them. Task allocation is also dependent on factors not depicted
in product architecture such as temporal and cultural
dependencies between distributed sites. These dependencies
highlight the need of an effective and sound task allocation
strategy for distributed environment. A well conceived task
allocation strategy will reduce various dependencies between
sites resulting in effective task allocation and smooth
distributed development. This paper analyses the
dependencies/factors that should be considered for task
allocation, the current task allocation strategies and their
limitations and the traceability support between various views
to identify gaps required to be filled.

Keywords-Task Allocation; Architectural View; Distributed
Development.

I. INTRODUCTION

Allocation of task to distributed teams is a complicated
and difficult affair as it involves enlarged time and space
dimensions while adequate information of distributed sites
is lacking [1][2][3]. Current literature adequately identifies
the temporal, cultural, knowledge base, communication,
coordination and other dependencies, which combined with
various other factors, make the task allocation problematic
[4]. Currently, task allocation is mostly done with focus on
module or component dependencies overlooking most of the
above mentioned important factors. This results in
inadequate task allocation.

While considering a mechanism to bridge the gap
caused by geographic and cultural barriers in
distributed development, we find that architecture plays
an important role in this regard. It acts as a central
knowledge and coordination mechanism [3][5].
However, the architecture of a system facilitates
identification of some but not all the dependencies. For
example, temporal, cultural and knowledge
dependencies, which are also critical for an effective
task allocation strategy, are not visible in architecture.
Task allocation is also important for co-located

development, but it acquires a critical value in a
distributed setting. Distributed teams need to
intercommunicate and coordinate their activities to
understand each other’s culture, norms, organizational
structures and business process etc., while co-located
teams share common social and cultural norms and
have almost the same knowledge level. [6]. Lack of
inter-team information, problem of mapping the system
architecture to organizational structure, and time
pressure are some of the important factors aggravating
the complexities of a distributed environment [3][7].

The architecture view type literature highlight

allocation view type as necessary to model ‘allocated
to’ relationships [17]. This view type is necessary for
task allocation as it presents the allocated to
relationship between software elements and
environmental elements [17]. The environmental
elements in case of work assignment style are
individuals, teams, and organizational units, etc. Thus it
focuses on task allocation to teams. The software
elements in work assignment view type are elements
from the module and the component and connector
view type, thus implicitly creating a linkage between
various views. Because of this conceptual linkage, we
can establish traceability relationships between views
for supporting alignment between them. The
architectural models surveyed and presented in Section
II-A do not explicitly model this view resulting in lack
of foundational information for task allocation.

563

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 579 / 612

II. MOTIVATION

According to Conway’s law [8], the design of a system

reflects the communication and coordination needs of the
people. As opposed to this law, Parnas [9] argues that
technical dependencies between modules give birth to
communication and coordination needs. Both these
statements have been validated through empirical evidence
and this inter-relationship highlights the need for a clear,
effective and sound strategy for task allocation in distributed
environment. Considering that both these laws are true can
we identify this information as early as required for
effective task allocation?. Current literature points to a
glaring misalignment between communication/coordination
dependencies and technical dependencies; particularly, in
distributed environment [10][11]. The current task
allocation literature also does not encompass all the factors
necessary for effective work assignment in a distributed
setting.

An architecture is divided into multiple views for

separating stakeholders’ concerns. Modeling each concern
in a separate view increases its comprehensibility, reuse and
evolution [12]. Where these views are separated for
understanding, proper linkage between them is also required
for task allocation, evolution and view synchronization [13].
This is where traceability information comes in. This
information is used to link the work assignment view with
implementation view and execution view etc. to understand
the effect of component and runtime dependencies on work
assignment [6]. The traceability information between
architectural views needs to be correct and current at all
times to ensure architecture’s inter-view alignment. We
need traceability information within different views to
ensure their synchronization in a manner that modification
in one view automatically modifies similar information in
other views as well. This synchronization is particularly
important for re-allocation of work.

 Different architectural views have been proposed by
researchers and institutes for effective modeling of software
architecture. Due to the unique nature of software, the scope
of this work only includes architectural models specific to
software systems. We have excluded architectural models
such as Telemanagement Forum Views whose focus is
telecommunication systems [34], Open Group Architecture
Framework whose focus is enterprise architecture [35] and
Zachmann’s Framework, which again focuses on enterprise
architecture [36]. Out of all the architectural models only
five identify the need for separation of stakeholders
concerns which is necessary for increased understanding,
reuse and evolution of architecture. These are: SEI View
Model [12], Siemens 4 View Model [12][14][15], 4+1 View
Model [12][15][18], Rational ADS View Model [12] and
RM-ODP [12] [14][15]. We are interested in architectural

viewpoint models which reflect different concerns
separately, provide a linkage mechanism between them and
focus on design of the system. SEI View Model and ISO-
RM do not meet our requirement because of their
independent views. Besides the focus of ISO-RM is
‘development across variant domains’. The focus of
Rational ADS View Model is ‘requirement evolution’,
which is not relevant to task allocation. The only two
viewpoint models which focus on architectural design are
Siemens 4 View Model and Kruchten’s 4+1 View Model.
We have selected Kruchten’s 4+1 View Model because it
comprehensively describes the architecture of a system [12].
Different views of this model are designed using UML
(Unified Modeling Language) which is an industry standard
and a standard way to represent product architecture. It
facilitates easy comprehension of different views [16].
Traceability support between these architectural views can
be identified by studying the traceability support between
UML models present in each view.

Current literature on architecture highlights the need for

different views [18]. 4+1 Architectural View Model
proposed by Philippe Kruchten is one such model which
reflects concerns in different views [18]. It organizes the
architecture using five concurrent views namely: logical
view, process view, development view, use case view and
physical view. All the surveyed architectural view models
including 4+1 View Model lack work assignment view
which is necessary for task allocation in distributed
environment. The full support for this view needs to be
incorporated for resolving task allocation problem in
distributed development. Both, 4+1 View Model and
Rational ADS View Model (extension of 4+1) consist of the
deployment view which falls in the category of allocation
view type. This view type is restricted to deployment on
physical nodes only where deployment of work to different
organizational units, teams or individuals is not modeled.
Depicting work assignment view via module view is also
considered a viable approach but it is also fraught with
problems [19].

Task allocation is dependent upon communication and

coordination needs of an organization (Conway’s law) and
various other factors discussed in literature survey. We
present a resumé of the current literature in the following
paragraphs. We have divided Section III (Literature Survey)
into three subsections. Section A identifies different types of
important dependencies existing between various distributed
sites and their importance as related to task allocation.
Subsection B highlights the current task allocation strategies
used in distributed environment and their limitations.
Subsection C identifies the traceability support present
between architectural views of 4+1 Architectural View
Model. Discussion is presented in Section IV whereas
conclusion and future work are presented in Section V.

564

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 580 / 612

III. LITERATURE SURVEY

A. Dependencies between distributed sites

Important dependencies/factors for task allocation are:

Knowledge base, Technical resources and Communication
and Coordination [5][17]. The research work [1] also
identifies other dependencies such as scheduling strategy,
state synchronization and synchronizing release schedule
which effect the task allocation in varying degrees. Most of
the dependencies except cultural and temporal also affect
task allocation in a co-located environment, but their impact
is more pronounced in distributed development. Distributed
teams are not only separated by geographic distances but
they also differ in knowledge base, technological expertise,
organizational structures, temporal, communication and
coordination aspects, socio-cultural norms and business
processes [4][22]. All these dependencies/factors exercise
considerable influence on the task allocation and their
deliberation is essential.

B. Current task allocation strategies

Currently _ different task allocation strategies are being

used in distributed environment. These are Modular
Structures (Functionality based and Product based), Phase
based structures (Process based), Functional Expertise based
Structures, Customization based Structures and Follow the
Sun Configuration (Overnight gain effect) [20][22][23][24].
It is evident that these strategies focus on only one criterion
and ignore other important factors while assigning tasks to
remote teams. Even if these strategies are used in
conjunction with each other, some important factors like
communication/coordination and cultural dependencies get
ignored. Some surveys [20] also recommend that culture,
product architecture, willingness to work and mutual trust
must be included in our deliberations for task allocation. It is,
therefore, important that a comprehensive strategy be
worked out by including all relevant factors.

C. Current traceability support between views

 Architecture is affected by communication and
coordination needs of the organization. If tasks are allocated
according to Conway’s law then the development view will
change with change in communication and coordination
needs. This change will also trigger change in other views
such as deployment view, execution view and vice versa.
There is a need to update linked views to incorporate the
change effectively. This support can be given with help of
traceability information. Availability of traceability links
between various views will ensure the architecture’s inter-
view alignment.

Work in the field of traceability between architectural

views is carried out for different purposes such as concern
evolution, requirement evolution and impact analysis etc.
Traceability information between architectural views
ensures consistency [16][25][26][27]. This linkage
information can be used for task allocation/re-allocation in
distributed teams [6] in a manner that it supports timely
communication and coordination where necessary.

 We have divided the literature survey on the basis of its

focus of traceability support between UML diagrams and
architectural views.

The focus of research [28][29] is requirement

traceability. Research work [28] proposes an approach to
provide traceability between requirements and UML
diagrams using the Z Notation and XML. The UML
diagrams included are use cases, class and sequence
diagram. Traceability rules are defined to specify the above
mentioned diagrams in Z language. The formal specification
of the diagrams is then converted to XML schemas and
traceability information is generated along with
identification of missing requirements, inconsistent
implementation and incomplete coverage. Traceability
between use case, sequence and class diagram is also
supported [29][30] via explicit saving of traceability links
and via guided software production process respectively. A
framework for the purpose of requirement tracing is
presented [29]. The explicit link saving is performed via
stereotypes and can help in change tracking as well as
influence analysis. A supporting tool “Tracer” for
implementing the framework is also presented. The guided
production process moves from a requirement model (made
using TRADE) to a conceptual model (made using Object
Oriented method). The three views of the Object Oriented
method include object model, dynamic model and
functional model. These views include class diagram, state
diagram, collaboration diagram and sequence diagram. We
identify the responsibility in each use case as client (which
invokes the responsibility) and implement the responsibility
as server (which carries out responsibility). Responsibility is
given via sequence diagram as it shows the participating
classes in realizing the corresponding use case through
interaction. The work of Lee et al. [31] provides traceability
between sequence diagram, class diagram activity and
collaboration diagram. The traceability support for activity
diagram was not present in any of the previously mentioned
work. The focus of the research is to evaluate the
architecture for logical, behavior and performance issues.
The approach works by converting UML artifacts to colored
petri nets. More detailed traceability links are provided
between use case model (activity and use case diagram) and
object model (class and sequence diagram) with help of
explicit link saving [32].

565

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 581 / 612

Traceability is provided for evolution of lower level
models (sequence and class diagram) with respect to
changes in higher level models (use case and activity
models). Later evolution is supported by transversal of these
links.
Traceability between use case and sequence diagram is

also supported [33] via trace model and process description.
The model also supports traceability with state diagram for
the purpose of impact analysis of functional system
requirements for embedded systems. It provides semi
automatic traceability with help of prototype tool.

Traceability between class, component and deployment

diagram is only performed by Bedir et al. [26]. The purpose
of the work is to support concern traceability. A Concern
Traceability Meta Model (CTM) is proposed which is used
to model concerns, architectural elements (entity or
relationship), and trace links between architectural views.
The work is validated via case study of climate control
system with the help of different change scenarios. The
CTM is implemented using XML document type definitions
(DTD). The instantiation are provided to support traces
using XQuery. The traces are automatically identified using
generic and specific queries written in XQuery and the
results are shown in XML.

 Our literature survey has revealed that there is very little
traceability support between views with respect to the levels
of traceability highlighted in [16]. The traceability links
which are maintained or are implicitly present are between
use case, class and sequence diagrams which are part of

logical, process and use case view. Although the traceability
support between above mentioned diagrams is present but
the focus of research work is very narrow. Table 1 presents
the results of the literature survey focusing on general and
implementation information of each traceability
technique/method.

IV. DISCUSSION

A survey of the current literature reveals that there is a

linkage gap between different architectural views. Most of
the work has been performed between use case, logical and
process view. The work of Bedir et al. [26] whose focus is
logical, implementation and physical view provides concern
evolution but whether it is extendable to support full
traceability across all views, for the purpose of our research
is still to be seen. The physical view presented [26]
concentrates on allocation of software units to hardware
nodes disregarding work assignment style.

The literature survey also highlights the need for

validation of traceability work to identify its usefulness for
task allocation in distributed environment. Even if the
traceability links within these views are identified it is not
possible to relate them to work assignment view as this view
is not designed in any of the viewpoint models. Moreover,
the focus of research work surveyed ranges from concern
evolution to impact analysis and architectural evaluation etc.
thus providing traceability support only to solve the specific
issues.

566

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 582 / 612

General Information
Implementation Details

Focus of Paper
Paper

ID
Author(s) Year

Architectural

View

UML Models

Covered

Implemented

via
validation

Tool

Support

Requirement

Traceability

[28]
S. Sengupta et

al.
2008

use case ,

process and

logical view

Use case,

Sequence and

Class diagram

(Framework)

XML, Z notation,

Limited

Case Study

Apache

Xerces

DOM

Parser

[29]
T. Tsumaki, Y.

Morisawa
2000

use case,

process and

logical view

Use case,

Sequence and

Class diagram

(Framework)

Business Object

Modeling and

Design

Methodology

Case Study

Proposed

Tool

(Tracer)

Concern Traceability [26]

B.

Tekinerdoga

n et al.

2007

logical view,

implementatio

n and physical

view

Class,

Component and

Deployment

diagram

(Meta Model)

X-Query
Case Study

Research

Tool

M-Trace

Other
Evaluating

Architecture
[31]

L. W.

Wangenhals

et al.

2002
Logical view,

process view

Collaboration,

Sequence,

Activity and

Class diagram

(A Process)

Colored Petri

Nets, Algorithm

for Conversion to

Executable

Models

Example No

Supporting

Evolution in

OO

development

[32]
H. Omote et

al.
2004

Use case,

logical and

process view.

Use case,

Activity, Class

and Sequence

diagram.

Via Stereotypes

of UML
Example No

Impact

analysis
[33] A. Von 2002

Use case,

logical and

process view.

Use case, Class,

Sequence and

State diagram

(Trace Change

Approach, Trace

Model)

Experiment

Case Tool,

St P/UML

and

Prototype

Tool

Moving from

Requirements

to a conceptual

schema in a

traceable way

[30]
E. Insfran et

al.
2002

Use case,

logical and

process view.

Use case, Class

and State

diagram

(Conceptual

Modeling

Approach)

TRADE and OO

Method

Used in two

Medium

Sized

Projects

Case tool

TABLE 1: EVALUATION OF LITERATURE ON GENERAL AND IMPLEMENTATION DETAILS

567

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 583 / 612

V. CONCLUSION AND FUTURE WORK

Our literature survey reveals different task allocation
strategies being used for assigning work to distributed sites.
It also highlights various dependencies between distributed
sites and traceability support between different views of
viewpoint models. We find that distributed sites depend on
each other for various things such as knowledge, process,

module etc. but the current task allocation strategies do not
take into account all these factors. Task allocation also
depends on the communication and coordination needs of
the teams which is depicted in architecture of the product.
Synchronizing different architectural views will result in
informed and effective task allocation in a distributed
environment. This synchronization is proposed by studying
traceability linkage between view. The initial survey
highlights inadequacy of linkage between architectural
views. There is a need to identify/model the traceability
links which would be specifically required for task
allocation. We also need to model the work assignment
view along with other views and provide synchronization
between all of them. How this can be accomplished for an
effective task allocation strategy will be seen in future.

REFERENCES

[1] M. Bass, V. Mikulovic, L. Bass, J. Herbsleb, and C. Marcelo,
“Architectural misalignment: An experience report,” Proceedings
of Working IEEE/IFIP Conference on Software Architecture, pp.
17-17, 2007
[2] P. J. Componation and J. Byrd, “Utilizing cluster analysis to
structure concurrent engineering teams,” IEEE Transactions on
Engineering Management, vol. 47, no. 12, pp. 269-280, 2000.
[3] F. Salger, “Software Architecture Evaluation in Global
Software Development Projects”, OTM Workshops, LNCS 5872,
pp. 391-400, 2009
[4] J. Ralyte, X. Lamielle, N. A. Bloch, and M. Leonard, “A
framework for supporting management in distributed information
system development,” Proceedings of the IEEE Conference on
Research Challenges in Information Science, pp. 381-392,
Marakech, 2008
[5] J. Herbsleb, “ Global software engineering: Future of
socio technical coordination,” Proceedings of International
Conference on Software Engineering, pp. 188-198, 2007.
[6] R. Sagwan, M. Bass, N. Mullick, and D. J. Paulish, “Gobal
software development handbook,” Chapter 5, Auerbach
Publications, Taylor and Francis Group, pp. 37-65, 2007.
[7] M. T. Lane and P.J. Agerfalk, “On the suitability of particular
software development roles to global software development,”
IEEE International Conference on Global Software Engineering,
pp. 3-12, 2008.
[8] M.Conway, “How do committees invent?,” Thompson
Publications, Reprinted by permission of Datamation Magazine,
1968.
[9] J. Herbsleb and R. Grinter, “Architectures, coordination and
distance: Conway’s law and beyond,” IEEE Software, vol. 16, no.
5, pp. 63-70, Sep./Oct 1999.

[10] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “The
misalignment of product architecture and organizational structure
in complex product development,” Journal of Management
Sciences, vol. 50, no. 12, pp. 1674-1689, 2004.
[11] C. Amrit and J. V. Hillegersberg, “Mapping social network to
software architecture to detect structure clashes in agile software
development,” Proceedings of 15th European conference on
information technology, Switzerland, 2007.
[12] N. May, “A survey of software architecture,” In Proceedings
of the Sixth Australasian Workshop on Software and System
Architectures, pp. 13-24. Melbourne, Australia, 2005
[13] N. Medvidovic and D. S. Rosenblum, “Domains of concern in
software architectures,” Published in the Proceedings of the
Confernece on Domain Specific Languages,Santa Barbara, pp.
119-218, October1997.
[14] D. Soni, R. L. Nord, and C. Hofmeister, “Software
architecture in industrial applications,” Proceedings of
International Conference on Software Engineering, pp. 196–207,
1995.
[15] P. Clements et al., “A practical method for documenting
software architectures,” Retrieved from“http://www-
2.cs.cmu.edu/afs/cs/project/able/ftp/icse03-dsa/submitted.pd%f”
Accessed on 20th September, 2004, Sept. 2002 Draft.
[16] R. Hilliard, “Using the UML for architectural description,”
Proceedings of <<UML>>,Lecture notes in Computer Science,
Springerlink, vol. 1723, pp. 32-48, 1999.
[17] V. Clerc, P. Lago, and H. V. Vliet, “Global software
development: Are architectural rules the answer?,” International
Conference on Global Software Engineering, pp. 225-234, 2007.
[18] P. kruchten, “The 4+1 view model of architecture,” IEEE
Software, vol. 12, no. 6, pp. 42-50, Nov.1995.
[19] P. Clements et al., “Documenting software architectures,”
Published by Addison Wesley, Second Review Edition, 2002.
[20] A. Lamersdorf, “A survey on the state of the practice in
distributed software development: criteria for task allocation,”
Fourth IEEE International Conference on Global Software
Engineering, pp. 41-50, 2009
[21] H. Sertit and R. F. Pogaj, “Efficient software development
organization based on unified process,” Electronics in Marine 46th
International Symposium, pp.390-395, 2004.
[22] B. Lings, B. Lundell, P. J. Agerfalk, and B. Fitzgerald, “A
reference model for successful distributed development of software
systems,” Proceedings of the International Conference on Global
Software Engineering, pp. 130-139, 2007.
[23] I. Gortona and S. Motwanib, “Issues in co-operative software
engineering using globally distributed teams,” Journal of
Information and Software Technology, vol. 38, issue 10, pp. 647-
655, 1996.
[24] R. E. Grinter, J. D. Herbsleb, and D. E. Perry, “The geography
of coordination: Dealing with distance in R & D work,”
Proceedings of the International ACM SIGGROUP Conference on
Supporting group Work, pp. 306-315, 1999.
[25] E. V. Hippel, “Task Partitioning: An innovation process
variable,” Journal of Research Policy, vol. 19, issue 5,pp. 407-418.
[26] B. Tekinerdogan, C. Hofmann, and M. Aksit, “Modeling
traceability of concerns for synchronizing architectural views,”
Journal of object technology, vol.6 no.7, pp. 7-25, August 2007.
[27] N. Boucke, D. Weyns, R. Hilliard, T. Holvoet, and A.
Helleboogh, “Categorizing relations between architectural views,”
Springer-Verlag, pp. 66-81, 2008.
[28] S. Sengupta, A. kanjilala, and S. Bhattacharya, “Requirement
traceability in software development process,: An empirical

568

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 584 / 612

approach,” The 19th IEEE/IFIP International Symposium on Rapid
System Prototyping, pp. 105-111, 2008
[29] T. Tsumaki and Y. Morisawa, “A framework of requirement
tracing using UML,” Proceedings of APSEC, pp. 206-213, 2000.
[30] E. Insfran, O. Pastor, and R. Wieringa, “Requirement
engineering- based conceptual modeling,” Requirement
Engineering, Springerlink Verlog, pp. 61-72, 2002.
[31] L. W. Wagenhal, S. Haider, and A. H. Levis, “Synthesizing
executable models of object oriented architecture,” Workshop on
Formal Methods, Applied to Defense Systems, Australia, vol. 12,
pp. 266-300, June 2002.
[32] H. Omote, K.Sasaki, H. Kaiya, and K. Kaijiri, “Software
evolution support using traceability link between UML diagrams,”
Proceedings of the 6th JCKBSE, pp. 15-23, 2004.
[33] A. Von, “Change-oriented requirements traceability support
for evolution of embedded systems,” Proceedings of the
International Conference on Software Maintenance, pp. 482-585,
2002.
[34] “New generation operational support system,” Architecture
Overview, Telemanagement Forum, GB920, Public Version 1.5,
November 2000.
[35] “Open group architecture framework,” Retrieved from
“http://pubs.opengroup.org/architecture/togaf8-doc/arch/”,
Accessed on 28th August 2011.
[36] “Zachman framework,” Wikipedia, Retrieved from
“http://en.wikipedia.org/wiki/Zachman_Framework”, Accessed on
28th August 2011.

569

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 585 / 612

An Agile Method for Model-Driven Requirements Engineering

Grzegorz Loniewski, Ausias Armesto, Emilio Insfran

ISSI Research Group, Department of Computer Science and Computation

Universidad Politecnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

{gloniewski, einsfran}@dsic.upv.es, aarmesto@novasoft.es

Abstract - The complexity and pervasiveness of software

applications has increased over the last few years. In this

context, software development processes have also become

complex and difficult to use. It is widely recognized that

requirements engineering has become a critical activity within

this process. In this paper, we aim to provide a methodological

approach which focuses on requirements engineering within

the Model-Driven Development (MDD) context. Our approach

is an OpenUP extension in which the requirements discipline is

placed in the model-driven context. We believe that the

integration of requirements engineering and MDD into one

consistent process will provide practitioners with the benefits

of both. This paper presents the definition of the proposed

process, OpenUP/MDRE, including its activities, roles, and

work products. We also provide an example of its use in a

SOA-based software development project. The use of our

approximation guides the activities of requirements

engineering and promotes automation by means of model
transformations.

Keywords - Model-Driven Development, Requirements

Engineering, agile methodology, OpenUP.

I. INTRODUCTION

Software systems are becoming more and more complex,
and the success of their development should not depend on
individual efforts and heroics. Successful software
development can only be accomplished by using a well-
defined software development process. Requirements
Engineering (RE) is recognized as being one of the most
critical aspects of this process. Errors made at this stage may
have negative effects on subsequent development steps, and
on the quality of the resulting software.

Several software development approaches with which to
support the development of complex systems have been
proposed, of which Model-Driven Development (MDD) is
one of the most promising. MDD promotes the separation of
concerns between the business specifications and the
implementation of these specifications on specific platforms
[4]. This separation is obtained by using models that allow
the level of abstraction to be elevated [9]. In this context,
Model-Driven Architecture (MDA) [13] is the best known
realization of the MDD. It encourages the use of models and
model transformations, among several models: the
Computation Independent Model (CIM), the Platform
Independent Model (PIM), the Platform Specific Model
(PSM) and code.

However, most MDA-based approaches focus on the
transformation strategies from PIM to PSM and from PSM to

code. Unfortunately, less attention is paid to the CIM to PIM
transformations upon which requirements engineering places
emphasis. Loniewski et al. [7] have shown that there is no
systematized development process that applies RE
techniques in the MDD context. Although various techniques
for CIM to PIM model transformations exist, those software
development projects which attempt to use them often fail
owing to the lack of well-defined methods and processes
describing the entire development life cycle.

Another problematic issue as regards existing MDD
supporting approaches is that the clear assignation of the
methodology’s artifacts to the MDA abstraction levels is
frequently impossible. This situation arises as a result of the
unclear definition of CIM and PIM, which confuses
developers. It is consequently very difficult to apply the
MDA life cycle by starting from the CIM level, and thus
obtain most of the benefits that the MDD process should
provide, i.e., automation in model transformations and
traceability management.

In this paper, we introduce a methodology that provides
MDD processes with an agile method which incorporates the
RE activities. This method has been developed as an
extension of OpenUP [2], an agile methodology, which is a
minimally sufficient software development process that
provides only fundamental content for small or medium size
projects that deliver software as a main product. It mainly
focuses on the collaborative nature of software development.
The main extension is the replacement of the Requirements
discipline with Model-Driven Requirements with which to
elicit, model and manage requirements in the MDD context.
Although OpenUP was not initially created to support MDD
processes, it offers a flexible, agile and extensible means to
introduce a model-driven process integrated with RE
activities. This work may be an interesting contribution for
those software process engineers who are faced with the
challenge of guiding software development projects that
follow an MDD approach from the requirements elicitation.
Moreover, in projects already using the OpenUP method, the
agility feature of our method makes the incorporation of the
improved MDD-complaint OpenUP extension quite quick
and smooth.

The remainder of this work is as follows. Section 2
provides an overview of the software process as an
engineering process and also introduces some related
approaches. Section 3 introduces the improved OpenUP-
based methodological approach, presenting details of the
content and process elements of the new Model-Driven
Requirements discipline. Section 4 puts this approach into
practice, discussing an example of its application to a SOA-

570

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 586 / 612

based middleware platform development. Finally, Section 5
contains some conclusions and future work.

II. RESEARCH BACKGROUND

This section describes the background of software
process engineering along with other important approaches
related to OpenUP/MDRE.

A. Software Process Engineering

When methodologies first emerged, each software
development process used its own concepts and notations to
define the contents of the methodology. The need to unify all
these concepts and notations therefore emerged. The OMG
thus introduced the Software Process Engineering
Metamodel (SPEM) [12] standard. SPEM provides a
complete metamodel based on the Meta Object Facility
(MOF) [11] to formally express and maintain development
method content and processes.

Various tools supporting this standard currently exist,
one of which is the Eclipse Process Framework (EPF) [1].
EPF is a comprehensive process authoring tool which
provides extensive method authoring and publishing
capabilities. EPF uses the concept of a plug-in library to
allow process engineers to define and extend methodologies.
The fact that OpenUP is itself a plug-in library permits it to
define new processes or extend existing ones. In this paper,
this tool is used to extend OpenUP by incorporating a model-
driven requirements engineering approach.

B. Related Work

Various existing approaches provide model-based
requirements specifications incorporated into an agile
methodology. The Agile Unified Process (AUP) is a
simplified version of the RUP which applies agile techniques
to Agile Model-Driven Development (AMDD). This
approach considers the model as the principal artifact of the
requirements specifications. However, its use in the model-
driven context is not clear. There has been another attempt to
create a lightweight methodology upon the MDA principles:
OpenUP/MDD. However, its stable version has not been
released. This proposal was focused solely on the
transformations from the PIM to PSM level of the MDA
framework. In this respect, our proposal and the
OpenUP/MDD approach are complementary. The
methodological approach presented in this work focuses on
the CIM level transformations and generates the desired
model at the PIM level.

Several attempts to establish a methodology with model-
driven principles can be found in literature, but none of them
focuses on the CIM-level requirements and a complete
process to derive PIM-level specifications. Methods and
techniques that describe particular transformations of
requirements also exist (e.g., [5] or [15]), but they hardly
ever possess a well-defined description of their use in a
development process.

III. OPENUP EXTENSION FOR THE MODEL-DRIVEN RE

This section introduces an extension of OpenUP for
model-driven requirements engineering - OpenUP/MDRE,

signifying that it focuses on a discipline for requirements
engineering based on models in the model-driven context.
We believe that this new discipline will improve the
effectiveness of requirements engineering and will also make
a significant contribution towards supporting analysts and
developers by providing a well-defined process.

The first proposal of the methodology presented in [8]
was defined on a base method adapted from the Rational
Unified Process (RUP) [6]. This proposal was validated in a
case study in an academic context and some of its
weaknesses were identified. The RUP-based model-driven
requirements engineering proposal was too strict and
complex. This limitation has been solved by changing the
base process of our approach to the agile OpenUP. Both
RUP and OpenUP provide an iterative and incremental life
cycle. However, OpenUP decreases the ceremony of the
process, incorporating one of the strong points of agile
methodologies such as Extreme Programming and Scrum.
Our new method restricts neither the requirements elicitation
methods, nor their specification form. The tasks provided in
our approach allow an easy adaptation of any type of
requirements specifications when using them in a model-
driven process leading to PIM definition.

OpenUP is also available under the Eclipse Public
License and is developed as a plug-in library of the Eclipse
Process Framework (EPF) [2] tool, giving process engineers
a powerful mechanism with which to provide content
variability of its process elements by means of contribution,
extension and replacement.

Figure 1 illustrates the OpenUP hump chart in which the
Requirements discipline is redefined by the Model-Driven
Requirements discipline.

Figure 1. OpenUP Extension for Model-Driven Requirements

As is depicted in Figure 1, the redefined Model-Driven
Requirements discipline is a concern from the inception
phase to the construction. Since the hump chart emphasizes
the workload within disciplines, the diagram shows that the
new discipline is particularly important during the inception
and elaboration phase, in which the product vision is created
and the architecture is established.

In this new discipline, a CIM requirements model is first
created on the basis of the stakeholders’ needs, and this is
then transformed into an analysis model at the PIM level.
Specifying the CIM to PIM transformations reduces the
system analysts’ workload and responsibilities by including

571

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 587 / 612

domain experts and stakeholders in the system modeling.
The analyst’s workload therefore decreases, particularly in
the elaboration phase. Since we are concentrating on model
use in the MDD context, the workload in the Development
discipline in the elaboration phase also decreases, depending
on the degree of automation of the specification generation
tasks in the Model-Driven Requirements discipline.

The Architecture discipline (marked with a star) is only
performed if the architecture (adequate architectural
elements, models, or patterns) has not been defined.
However, once this architecture has been defined, the
Architecture discipline is optional and may be narrowed to
refine the reference architecture provided.

Owing to space constraints, we shall comment only
briefly on each activity of the main extensions of the
OpenUP methodology, which is the Model-Driven
Requirements discipline, pointing out the roles responsible
for each task, along with input and output artifacts.

Our approach maintains the roles originally defined by
OpenUP, but also introduces two roles related to the model-
driven context activities: Model Analyst and
Transformations Specifier.

A set of new activities has been provided and the
workflow has been replaced. Figure 2 shows the Model-
Driven Requirements workflow represented through a
tailored version of a UML activity diagram. It is based on the
OpenUP’s Requirements workflow tasks, but also introduces
new activities and tasks, which are crucial to the MDD
process.

Figure 2. Model-Driven Requirements workflow

The following subsections discuss each of the activities
of the proposed workflow, including a description of the new
activities, accompanied by a detailed diagram of tasks, their
input and output artifacts, and responsible roles. These
diagrams show not only the roles which are responsible for a
particular task, but also the roles who participate in its
realization.

A. Capture and Analyze Requirements

This activity, which is mainly composed of tasks taken
from the original OpenUP requirements discipline, involves
reaching an agreement on a statement of the problem to be
solved, identifying the stakeholders and clearly defining the
system’s boundaries and constraints.

Stakeholders’ needs and potential features, which
represent the high-level user or customer view of the system,
are captured and documented in the Vision document. The
potential for possible misunderstandings between the
Analyst and the other different domain background
stakeholders is minimized by establishing and maintaining a
common vocabulary in the Glossary.

The purpose of this activity is, amongst others, to identify
and capture functional and non-functional requirements for
the system. The idea is to initially understand and determine
the requirements at a high-level, and then describe these
requirements with enough detail to validate understanding of
the requirements, to ensure concurrence with stakeholder
expectations, and to permit software development to begin.

The artifacts that result from the tasks performed
constitute the principal input for further modeling tasks. The
tasks defined in this activity are shown in Figure 3.

Figure 3. Roles, tasks and work products of the Capture and Analyze

Requirements activity

B. Identify a Candidate Architecture

This activity is essential for the software development
process. It determines the content of artifacts in the RE
phase, which also conditions the MDD process to be
followed. In this activity, the main architectural elements are
identified and the metamodels for models at the CIM-level
and PIM-level of the MDD process are established. This
approach is architecture-centric, signifying that it is the
architecture that demands a certain type of model to be
created. The architectural pattern identified for the system
becomes a basis from which to derive further analysis
artifacts. For example, if the architecture chosen is Service
Oriented Architecture (SOA), the model that describes
requirements at the CIM-level may be given as Business
Process Modeling Notation (BPMN) and it is supposed that
the model at the PIM-level may be a service model. A
detailed diagram of particular tasks, roles and artifacts for
this activity is shown in Figure 4.

Figure 4. Roles, tasks and work products of the Identify a Candidate

Architecture activity

C. Develop Artifacts

This activity, like the Identify a Candidate Architecture,
is essential in our approach. The CIM-level requirements
model (RM) is created in this activity, and this model

572

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 588 / 612

conforms to the metamodel selected for this purpose in the
previous activity. Model-driven transformations are also
specified and planned. In particular, the transformation
language is chosen, along with the transformation
automation level and tool support that are specified.
Transformation rules are described in a specially prepared
Transformation Rules Catalog (TRC). This document is the
principal artifact supporting transformation execution, but it
is also essential for the requirements traceability, which is
the means used to control changes in requirements, maintain
agreements with the customer and set realistic expectations
as to what will be delivered. This requirements traceability is
performed in a new task, Manage Dependencies, and the
Model Dependencies Specification document is produced as
a result of this.

A Transformation Iteration Plan (TIP) is created in this
activity to describe not only the elements of a source model
to which the transformation applies, but also the order of the
transformation rule application. For example, if the
architecture chosen is SOA, the CIM model contains BPMNs
and the PIM model contains service models. An example of
the transformation iteration plan could specify that the
transformation rules between a BPMN of a higher level and
a BPMN of a lower level should be executed before the
transformations rules from a BPMN of a lower level to a
service model. The tasks defined within this activity are
shown in Figure 5.

Figure 5. Roles, tasks and work products of the Develop Artifacts activity

D. Generate and Validate Model

This activity concludes the entire requirements modeling
process by generating the principal artifact of the
requirements engineering process, which is the Generated
Analysis Model (GAM). GAM represents requirements
specification at the PIM-level of the MDA lifecycle. For
example, GAM can be specified by a UML sequence
diagram in the case of a client-server software project, or a
service model in the case of SOA platform development.

Artifacts, such as a requirements model (RM) or
transformation rules catalog (TRC), developed as a result of
the previously performed tasks, are the input artifacts for
performing model transformations in order to create the
GAM artifact. These transformations can be manual or
automated, depending on their level of complexity. Their
execution may be supported by appropriate tools. Although
the GAM is systematically obtained by the transformation
rules, we believe that it is necessary to validate it with regard

to its consistency and correctness. This type of validation
should be previously described while defining the
transformation rules in a separate Model Validation Plan
(MVP) document. The RM can also be validated against the
specific conceptual standards of the domain in which it is
applied. The validation result is stored in the Model
Validation Record (MVR) document. The tasks defined in
this activity are shown in Figure 6.

Figure 6. Roles, tasks and work products of the Generate and Validate

Model activity

IV. APPLYING OPENUP/MDRE

The main objective of this section is to show the
applicability and feasibility of the OpenUP/MDRE approach
in the development process of a SOA-based system. In this
example of methodology usage, the system specification is
developed on the basis of user requirements, which were
captured as user scenarios. We assume that the requirements
scenarios and use cases defined in the Capture and Analyze
Requirements activity have been correctly captured and
documented in the initial stages of the project. These artifacts
constitute the input for the subsequent model-driven process.

Each of the main tasks of the OpenUP/MDRE
application is commented on in the following subsections.

A. Identify the System Architecture

Our proposal for the OpenUP extension was applied to a
domain in which current systems have to deal with many
complex processes, multiple stakeholder views and users, a
distributed environment, changing requirements and many
other factors. These factors and the domain’s complexity
lead to system specifications of the same complexity, and the
principal issues to be considered are interoperability and
distributed use of the software functionalities. These
characteristics indicate that the Service-Oriented
Architecture (SOA) is a primary candidate architecture. SOA
strengthens such factors as reusability, scalability or
interoperability. In this case, the Architecture Notebook
(artifact from the architecture OpenUP’s discipline) contains
the SOA reference architecture description adapted to this
particular project.

B. Define Meta-Models

Since SOA is the selected architecture, it demands a
certain type of functionality specification. It also implies the
type of models that should be used in the RE process. The
Architecture Notebook therefore includes the metamodels
identified for the CIM-level requirements model and PIM-

573

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 589 / 612

level analysis model. In this example, requirements specified
as scenarios and use case models provided by stakeholders
and captured by the Analyst serve to create the requirements
model that conforms to the features metamodel (Figure 7.A).
The most important concept of this metamodel is the Service
Feature, with one of three refinement types (Decomposition,
Specialization, and Implemented-by).

Since SOA was chosen as the reference architecture for
the project, the PIM-level analysis models will cover the
business process and service layers of the architecture. In this
case, models that will be generated in the MDD process are
established to conform to the BPMN process metamodel
(Figure 7.B) and service metamodel (Figure 7.C).

Figure 7. Simplified metamodels used for requirements specification

The most important concepts of these models are the
service with its description containing operations, messages
and exceptions, and also the process with the flow of
activities.

C. Define and Plan Transformations

At this stage, the Transformations Specifier prepares the
TRC, which documents transformations from the CIM model
to the PIM-level model. In this case, these rules describe a
transformation from the features model to reach target
models such as BPMN and service specification. The
transformation described in this example is not straight
forward, but consists of two steps: one from the features

model to BPMN, and one BPMN to the service specification.
In this case, the TIP document describes the order of use of
specified transformations.

The transformations in this particular example are
performed manually by the Model Analyst. However, in
other cases they may be executed automatically through the
use of tools that support a particular transformation.

An example of this feature to BPMN transformation,
which is described in detail by Montero et al. [10], is shown
in Figure 8, in which the left-hand side of the transformation
presents an element of the source model and the right-hand
side presents a corresponding element of the target model.

The service specification is then obtained from the
BPMN model by applying one of existing techniques. In this
case, the services and their operations were identified using
the method described by Azevedo et al. [3].

Figure 8. Example of transformation rules

D. Develop Requirements Model

Once the architecture and the metamodels have been
identified, the Requirements Model is created. This is done
manually. The features model, which constitutes the input for
the CIM to PIM transformation, is created on the basis of
scenarios and use-cases previously described by the
stakeholders. Figure 9 shows an example of a features model
for the system’s Actor Management functionality. This
functionality contains three independent and optional
functionalities with which to manage actors.

Figure 9. Example of the requirements model

E. Run Transformations

Once the transformations have been defined and planned,
the Model Analyst generates the PIM-level models in order
to produce the Generated Analysis Model artifact. The
specification produced is the input for further design and
implementation in the Development discipline. Figure 10
shows a simplified specification of the Actor Management
business process represented as BPMN (Figure 10.A), along
with the Actor Management service specification (Figure
10.B) that conforms to the aforementioned metamodels.

The Model Dependencies Specification document, which
is prepared during the aforementioned process, includes the
traceability links between the requirements and all
subsequent models that are created as intermediate or final
products of the model-driven process.

574

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 590 / 612

Figure 10. Example of Generated Analysis Model for Actor Management

The example presented here shows how the requirements
specification process may be conducted for SOA-based
systems development. Taking advantage of the model-driven
requirements process signifies that it is systematized but also
agile when preparing different kinds of specifications. The
process is accompanied by a set of artifacts that provide
well-documented guidelines for all interested project
development members.

V. CONCLUSIONS AND FURTHER WORK

This paper presents an extension of OpenUP,
emphasizing the use of models as requirements
specifications in the context of MDD. This extension
redefines the original Requirements discipline in the
OpenUP and proposes a new discipline called Model-Driven
Requirements. Our methodological approach is an agile RE
method for project managers who would prefer to adapt a
MDD RE process to particular software architecture rather
than using another general approach. We believe that this
flexible MDD approach is a solution to the common "one
method fits all" problem of generic methodologies.

In our approach we apply model-driven techniques to
extend OpenUP to support different architectures and project
needs. It improves the development process defined by
OpenUP in that it is not only model-based, but also model-
driven. This makes OpenUP/MDRE more compliant to
maturity model approaches (such as that of the MDD
Maturity Model [14]) needed in industry for the incremental
adoption of MDD processes. The extension was developed
as a plug-in library for EPF. It includes new content
elements, such as: artifacts, roles, tasks, and process
elements, i.e., activities and capability patterns, to guide
software engineers who attempt to follow an MDD approach
in their software projects.

The application of this approach to an MDD project has
been described, and shows that the use of a model-driven RE
has an important influence on the entire development
process.

As further work, we plan to provide a tool support with
which to easily create the artifacts defined for this model-
driven development process (transformation rules,
transformations iteration plan, model validation plan, etc.).
This will be addressed by providing document templates and
creating artifacts with wizards.

Finally, we are involved in the redefinition of the
OpenUP/MDRE based on the artifact-driven approach
which, in our opinion, better covers the different aspects of
an MDD process definition.

ACKNOWLEDGEMENT

This research work is supported by the MULTIPLE
project (with ref. TIN2009-13838) funded by the "Ministerio
de Ciencia e Innovación (Spain)".

REFERENCES

[1] The Eclipse Process Framework (EPF) project,
www.eclipse.org/proposals/beacon/ (last accessed 8/8/2011)

[2] The OpenUP methodology web site (November 2010),
http://epf.eclipse.org/wikis/openup/ (last accessed 8/8/2011)

[3] L.G. Azevedo, F. Santoro, F. Baio, J. Souza, K. Revoredo, V.
Pereira, and I. Herlain, A Method for Service Identification
from Business Process Models in a SOA Approach. In:
Enterprise Business-Process and Information Systems
Modeling, Lecture Notes in Business Information Processing,
vol. 29, pp. 99-112. Springer Berlin Heidelberg (2009)

[4] M. Azoff, The Benefits of Model Driven Development. White
paper, Butler Group (March 2008),
http://www.ca.com/us/products/detail/CA-Gen.aspx (last
accessed 8/5/2011)

[5] P. Jamshidi, S. Khoshnevis, R. Teimourzadegan, A.
Nikravesh, and F. Shams, Toward Automatic Transformation
of Enterprise Business Model to Service Model. In: PESOS
'09: Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, pp. 70-74, IEEE CS,
Washington, DC, USA (2009)

[6] P. Kruchten, The Rational Unied Process: an Introduction.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1999)

[7] G. Loniewski, A. Armesto, and E. Insfran, Incorporating
Model-Driven Techniques into Requirements Engineering for
the Service-Oriented Development Process. In: ME’11:
Proceedings of the 2011 Conference on Method Engineering,
vol. 351, pp. 102-107, Springer Boston (2011)

[8] G. Loniewski, E. Insfran, and S. Abrahao, A Systematic
Review of the Use of Requirements Engineering Techniques
in Model-Driven Development. In: Petriu, D.C., Rouquette,
N., Haugen, (eds.) MoDELS. Lecture Notes in Computer
Science, vol. 6395, pp. 213-227, Springer (2010)

[9] T. Menzies, Editorial: Model-Based Requirements
Engineering. Requirements Eng. 8(4), 193--194 (2003)

[10] I. Montero, J. Pena, and A. Ruiz-Cortes, From Feature
Models to Business Processes. In: Proceedings of the 2008
IEEE Int. Conf. on Services Computing, vol. 2, pp. 605-608,
IEEE Computer Society, Washington, DC, USA (2008)

[11] OMG (Object Management Group): Meta Object Facility
(MOF) Core Specification Version 2.0 (2006),
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[12] OMG (Object Management Group): Software Process
Engineering Metamodel (SPEM) (January)

[13] OMG (Object Management Group): Model Driven
Architecture: The Architecture of Choice for a Changing
World (2010), http://www.omg.org/mda

[14] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, MDD
Maturity Model: A Roadmap for Introducing Model-Driven
Development. In: ECMDA-FA. pp. 78-89 (2006)

[15] L. Zhang and W. Jiang, Transforming Business Requirements
into BPEL: A MDA-Based Approach to Web Application
Development. In: WSCS'08: IEEE Int. Workshop on
Semantic Computing and Systems, 2008, pp. 61-66 (2008)

575

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 591 / 612

1

Evidence in Requirements Engineering: A Systematic Literature Review Protocol

Talat Ambreen, Muhammad Usman, Naveed Ikram, Muneera Bano

International Islamic University Islamabad, Pakistan

{talat.ambreen, m.usman, naveed.ikram,muneera}@iiu.edu.pk

Abstract— Requirements Engineering (RE) is recognized as

one of the critical phases in software development. RE has its

own journals and conferences where lots of work has been

published. As the area is maturing, increasingly large numbers

of empirically supported studies have been reported in RE.

There is a need to synthesize evidence based RE literature. We

plan to systematically investigate evidence based RE studies to

see and report state of the art in evidence based RE reported

research. This paper aims at providing a systematic literature

review (SLR) protocol to describe a process for synthesizing

the empirically supported work in the area of RE that will

eventually present a state of the art of the field. This SLR

intends to not only summarize the empirical data regarding

RE but will also be helpful for various practitioners in this

field to find out areas of RE rich in terms of tools, techniques,

frameworks, models and guidelines to aid in their work. It will

also facilitate RE researchers to identify knowledge gaps to

recognize needs and chances for future research directions in
this field.

Keywords-systematic literature review; requirements

engineering; evidence-based software engineering.

I. INTRODUCTION

Software Requirements Knowledge Area (KA) is
concerned with the elicitation, analysis, specification, and
validation of software requirements [1]. Requirements
engineering is known as the key to success to software and
systems development [2].

Requirements are very fundamental aspect of a software
system as Fredrick Brooks illustrates “The hardest part of
building a software system is deciding precisely what to
build. No other part of the work so cripples the resulting
system if done wrong. No other part is more difficult to
rectify later” [3].

RE is recognized as one of the important activities in
software development that deals with the requirements, from
their elicitation until the system is validated for completion
of requirements. Software requirement elicitation, analysis of
the requirements, and writing good requirements are the
most difficult parts of software engineering. As Karl Wiegers
[4] describes, “If you don’t get the requirements right, it
doesn’t matter how well you do anything else”, because if
requirements are wrongly captured or developed it results in
a flawed product.
 Software requirements have been considered a problem
repeatedly during the past 36 years [17]. Ross and Schoman
[10] broadly described the scope of requirement engineering.
Since then the work progressed in this field in terms of
research and development.

A lot of research has been done in all the areas of
requirement engineering. Some of the famous international
Journals and Conferences [5,6] of requirement engineering
have published significant research in this field.

 But, after all the research in this field, the question
arises; how much of RE literature is supported by evidence?
What is the nature of evidence in RE studies? What is the
strength of evidence in RE studies? These are important
questions. Answers to these questions will help RE
researchers and practitioners to work with clear focus and
see where more attention needs to be given. For finding
solution to these questions, one needs to look for ways to
gather this important information. One of the way of
gathering information related to some specific topic of
interest is through a systematic way of discovering,
synthesizing and then reporting that information, i.e.,
through the methodology of SLR. Despite of significant
research in the field of RE, there has not been done any
effort of carrying out an SLR for the whole field of RE. The
SLR described in this paper, intends to capture all the useful
information related to software requirement engineering in a
systematic way. This process of capturing information based
on evidence is rigorous and repeatable. To the best of our
knowledge, no such systematic review has been reported at
this level of RE yet, so this SLR is first of its kind that will
review all evidence based RE studies covering all the
subareas of RE.

This paper aims at providing a systematic literature review
protocol to describe a process for capturing the current
empirically evaluated knowledge in the area of software
requirement engineering and to recognize needs and chances
for future research in this field. The rest of the paper consists
of following sections; Section II presents background,
Section III describes the systematic literature review
protocol, while Section IV concludes the paper along with
future work.

II. BACKGROUND

Requirement Engineering is an important phase in
software development because a software success is strongly
tied to the fulfillment of requirements as put by various
stakeholders. Having recognized this fact, there is a vast
amount of research available in all the areas of this field,
aiming at providing specific tools, techniques, and guidelines
for improving sub areas of RE. Despite of all this research,
RE lacks a study describing the state of the art of this field.

To carry out such a study which is based on evidence,
there are specific methodologies like Systematic Literature
Review [12] and Systematic Mapping [18], which have been
frequently used by many research fields like evidence-based

576

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 592 / 612

2

medicine. But they have not been much employed in
software engineering for validation of empirical studies.

In the field of software engineering, there has been a new
drift towards evidence-based software engineering (EBSE)
[7] with an emphasis on new empirical and systematic
research methods.

EBSE is concerned with capturing current best evidence
from research and then integrating it with practical
experience and human values in the software development
decision making process [8,9]. The main tool of EBSE is
Systematic Literature Review [12] which has been employed
in this review.

The main motive to undertake this SLR is to discover
gaps and commonalities in software requirement engineering
empirical research and providing a summary of the existing
empirical evidence in this field to form a stepping-stone for
future research in this field and for practitioners for their
practical use

III. SYSTEMATIC LITERATURE REVIEW PROTOCOL

 There are three main phases of a systematic literature

review process; planning, conducting and reporting of

review as described by Kitchenham [12].

 This paper aims at describing the first phase of the

review i.e., planning the review, in the specified field of

requirement engineering. The output achieved after

completion of this phase is a systematic review protocol

which has significance as it tells about rationale and

process of carrying out the whole systematic review step
by step. A systematic review protocol developed in such

a way in the start of a systematic review lessens the risk

of bias on the part of a researcher [12].

 The steps followed in this review protocol have been

developed according to guidelines provided by

Kitchenham [12]. This protocol describes various steps

for carrying out a systematic review that aims at

reviewing primary studies related to software requirement

engineering to present an outline of existing information

related to this field that will eventually help in drawing a

broad category of conclusions from this information.
 The review intends to find a state of the art in the field

of software requirement engineering and the research

questions have been formulated according to the motive

of the review. The research questions are:

RQ1: What is state of the art in empirical studies of RE?

 The purpose of this question is to empirically evaluate

the status of the software requirement engineering and

finding out future research directions in this field

 For this purpose specific information will be collected

through existing research papers in the software

requirement engineering field by carrying out a

systematic review of research papers in this field.
RQ2: What is the strength of empirical evidence reflected

in empirical requirement engineering literature?

 The aim of this question is to find out the strength of

empirical evidences, i.e., what we actually know

regarding the evidences we collected. This question will

provide information about the strength of the studies in

terms of sources of the evidence and research approach

used.

A. Search Strategy

The search strategy contains different decisions like
search string, resources to be searched and selection items to
be searched.
This has been done in steps as:

 Identifying Major Terms from Research Question
Major terms from research questions are:

- RQ1: Software, Requirements Engineering,
Empirical studies

- RQ2: Software, Requirements Engineering,
Empirical studies

 Identifying Alternate Spellings and Acronym for
Major Terms

Alternate Spellings and Acronym for Major Terms are:
- A: (All synonyms of requirement engineering)

requirements process, requirements
development, requirements elicitation,
requirements gathering, requirements
identification, requirements discovery,
requirements analysis, requirements
specification, requirements validation,
requirements verification, requirements testing,
requirements checking, requirements
negotiation, requirements documentation,
requirements management, requirements
change management.

- B: (All synonyms of empirical studies)
empirical, case study, experiment, industrial
report, experience report, observational study,
survey.

 Formulating Search String
The final search string will be like:

 (All synonyms of requirement engineering ORed)
AND
(All synonyms of empirical studies ORed)

 The search string will be modified according to the

search criteria provided by different sources like

Compendex, ACM digital Library, etc. during the
conduction of review.

 Deciding Resources to be Searched

Resources to be searched include:

IEEE Explore, ACM digital library, ScienceDirect,

SpringerLink and Compendex.

 Selecting Items to be Searched

The items to be searched include: Journal articles,

Workshop papers and Conference papers.

 Deciding Language of Review Studies

The research papers in English language will be selected

for review.

 Deciding Publication Period

Publication period included in the review will be from the

start period as specified in the resource to be searched up to

year 2011.

577

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 593 / 612

3

B. Publication Selection

 Inclusion Criteria

The study will be included that fits the criteria as:

- The study is about RE

- OR the study is about any of sub-areas of RE

- AND the study has empirical evidence.

 Exclusion Criteria

The study will be excluded that:

- Is in the form of books or thesis or

unpublished articles

- OR the study that does not directly address RE

or any of its sub areas
- OR the study that lacks empirical evidence

 Selecting Primary Studies

The primary studies included in the review will be

selected in two iterations:

- Level 1 screening

Initially the papers will be selected by reviewing the

title, keywords and abstract. By doing this, the studies

which are relevant to the research questions will be

selected and those lacking this relevance will be

excluded. If there is any uncertainty about any paper for

inclusion/exclusion in level 1 screening then the paper
will not be excluded at this level rather it will be iterated

through level 2 screening.

- Level 2 screening

 The candidate primary studies selected initially in

level 1 will then be checked against the aforementioned

inclusion/exclusion criteria by reviewing the studies

thoroughly by going through their full text. A secondary

reviewer will then review the studies against the

Inclusion/Exclusion criteria to cross-check the results of

inclusion and exclusion. Studies that lack empirical

evidence or that are not about RE will be excluded in

this process. And those matching with the inclusion
criteria will be selected as primary studies for the

review.

C. Publication Quality Assessment

Quality Instrument will be used to evaluate quality of
empirical evidences as described in the primary studies. The
Quality instrument used in this review consists of 5 sections;
a section having general checklist items which are applicable
to all the studies included while other 4 sections are
specifically for various research method used in the study
i.e., experiment, survey, case study and experience report.
These criteria have been adopted from SLR guidelines [12]
[13] [14] [15] [16]. The formulation of this checklist is a
joint group effort of various researchers. Table 1 shows the
detailed checklist.

Generic

Are the aims clearly stated? YES/NO

Are the study participants or
observational units adequately
described?

YES/NO/PARTIAL

Was the study design appropriate with
respect to research aim?

YES/NO/PARTIAL

Are the data collection methods
adequately described?

YES/NO/PARTIAL

Are the statistical methods justified by

the author?

YES/NO

Is the statistical methods used to analyze
the data properly described and
referenced?

YES/NO

Are negative findings presented? YES/NO/PARTIAL

Are all the study questions answered? YES/NO

Do the researchers explain future
implications?

YES/NO

Survey

Was the denominator (i.e., the
population size) reported?

YES/NO

Did the author justified sample size? YES/NO

Is the sample representative of the
population to which the results will
generalize?

YES/NO

Have “drop outs” introduced biasness
on result limitation?

YES/NO/NOT
APPLICABLE

Experiment

Were treatments randomly allocated? YES/NO

If there is a control group, are
participants similar to the treatment
group participants in terms of variables
that may affect study outcomes?

YES/NO

Could lack of blinding introduce bias? YES/NO

Are the variables used in the study
adequately measured (i.e., are the
variables likely to be valid and
reliable)?

YES/NO

Case Study

Is case study context defined? YES/NO

Are sufficient raw data presented to
provide understanding of the case?

YES/NO

Is the case study based on theory and
linked to existing literature?

YES/NO

Are ethical issues addressed properly
(personal intentions, integrity issues,
consent, review board approval)?

YES/NO

Is a clear Chain of evidence established
from observations to conclusions?

YES/NO/PARTIAL

Experience Report

Is the focus of study reported? YES/NO

Does the author report personal

observation?

YES/NO

Is there a link between data,
interpretation and conclusion?

YES/NO/PARTIAL

Does the study report multiple
experiences?

YES/NO

 TABLE 1: QUALITY CHECKLIST ADOPTED FROM [12] [13] [14] [15] [16].

The questions included in the checklist will be answered

either Yes, No or Partial and will be rated as 2, 1 or 0
respectively. The sum of the scores from all these questions
will be used for assessing the quality of the studies.

578

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 594 / 612

4

D. Data Extraction Strategy

 Two reviewers will extract the data randomly and then

will compare the results. In case of any disagreement,

reviewer will arbitrate to reach on some agreement. Each

study will be uniquely numbered and studies reported in

more than one papers will be counted once. For each

research question, relevant data will be extracted from all

accepted papers and will be recorded in data synthesis

forms. Data will be extracted contributing to each research

question.

For RQ1 following information will be extracted:

- RE area (Elicitation, Analysis, Specification, etc.)
- Research output (New Tool, New Technique, New

Process, Modification of Tool/Technique/Process,

Usage Experience Tool, Usage Experience

Technique, Usage Experience Process, RE issues

and Challenges).

- Participant Type (Academia, Industry, Mixed)

- Country (involved in research)

- Conference/ Journal

- Year of Publication

For RQ2 following information will be extracted:

- Type of evidence (case study, experiment,
experience report, etc.)

- Data collection method (interview, questionnaire,

etc)

- Type of research: For extracting information about

type of research we have consulted an already

developed classification of research approaches by

Wieringa [11] who has categorized research types as

validation research, evaluation research, solution

proposal, philosophical papers, opinion papers and

experience papers.

E. Data Synthesis Strategy

Data from all the included papers will be extracted and
recorded. Different kind of data will be extracted for each
research question as has been described in section D of this
paper. The data will be extracted by using well defined data
extraction forms, where data will be fed to the best in a
quantitative way so that data can finally be analyzed for
various patterns.

Data related to RQ1 will help out in finding information
like:

 Which area of requirements engineering is
empirically evaluated more/less frequently and in
what context these empirical studies have been
carried out?

 What type of tools, techniques, frameworks and
models, etc. are being used in the field of RE?

 Where these tools, techniques and models, etc. are
adopted mostly?

 What are the areas of RE that are rich in terms of
tools and techniques available and what are the
areas where more attention needs to be given?

 What areas of RE are under more consideration and
where more work is required?

 Which era of RE can be said as having maximum
progress in terms of new advances?

 Which research participants are more involved in
RE progress?

 What is the knowledge gap pointed by the evidence
in RE?

 Data related to RQ2 will help out in finding:

 Which research methods have been employed more
frequently in RE?

 Which research methods have been employed for
investigating which sub areas of RE?

 Which data collection method has been used for
investigating which sub area of RE and by using
which research method?

 What type of research has been presented more
frequently by the empirical studies of RE?

The extracted data will then be analyzed using various
quantitative and qualitative methods for synthesizing the
data. Based on this data, different statistics and reports will
be generated like:

 Percentage of studies containing case studies,
experiments and experiences

 Percentage of studies for each RE area.

 Percentage of studies for different research types.

 Percentage of studies for different participant types.

 Analysis of evidence type versus participant type.

 Analysis of evidence type versus RE area type.

 Analysis of evidence type versus type of research.

 And more complex analysis comprising more than
two parameters.

All of this information will be finally presented in the
form of systematic maps like bar graphs, bubble plots, etc.

IV. CONCLUSION AND FUTURE WORK

Requirements engineering being a mature field of software
engineering, presents a vast history of research and developments

in all of its sub areas. But there lacks a study summarizing the
whole field of RE with an emphasis on empirical evidences
presented in this field to date. This paper in the form of a protocol
provides a plan for carrying out a systematic literature review for
the field of requirements engineering, describing state of the art of
this field. The future work includes successful execution of the
research plan presented in this paper to present a state of the art of
software requirements engineering. It will help out various

practitioners and researchers in the field to find out which areas of
RE are rich in research and also to identify gaps and thus future
research directions in this field.

REFERENCES

[1] A. Abran, J. W. Moore, R. Dupuis, R. L. Dupuis, and L. L.
Tripp, “Guide to the software engineering body of knowledge
(swebok),” 2004 ed P Bourque R Dupuis A Abran and JW
Moore Eds IEEE Press, 2001. Last access: March, 2011.

[2] H. F. Hofmann and F. Lehner, “Requirements engineering as
a success factor in software projects,” Software, IEEE, vol.
18, no. 4, pp. 58-66, 2001. Last access: March, 2011.

[3] F.P. Brooks, “Mythical Man-Month: Essays on Software
Engineering|”, 20th anniversary edition. Addison-Wesley
Professional, 1995.

579

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 595 / 612

5

[4] K. E. Wiegers, “In search of excellent requirements,” The
Journal of the Quality Assurance Institute, vol. 1, 1995. Last
access: April, 2011.

[5] Springer, International Journal of Requirement Engineering.
Website Url:http://www.springer.com/computer/swe/journal/766

[6] IEEE, International Conference on Requirement Engineering.

Website Url: http://www.requirements-engineering.org/

[7] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-
based software engineering,” in Proceedings of the 26th
international conference on software engineering, 2004, pp.
273-281. Last access: January, 2011.

[8] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J.
Bailey, and S. Linkman, “Systematic literature reviews in
software engineering-A systematic literature review,”
Information and Software Technology, vol. 51, no. 1, pp. 7-
15, 2009. Last access: March, 2011.

[9] T. Dybå and T. Dingsøyr, “Strength of evidence in systematic
reviews in software engineering,” in Proceedings of the
Second ACM-IEEE international symposium on Empirical
software engineering and measurement, 2008, pp. 178-187.
Last access: March, 2011.

[10] D. T. Ross and K. E. Schoman Jr, “Structured analysis for
requirements definition,” Software Engineering, IEEE
Transactions on, no. 1, pp. 6-15, 1977, doi:
10.1109/TSE.1977.229899. Last access: May, 2011.

[11] R. Wieringa, N. Maiden, N. Mead, and C. Rolland,
“Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion,”
Requirements Engineering, vol. 11, no. 1, pp. 102-107, 2006.

[12] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,”

Engineering, vol. 2, no. EBSE 2007-001, 2007. Last access:
January, 2011.

[13] B.A. Kitchenham, O.P. Brereton, D. Budgen, and Z. Li, “An
Evaluation of Quality Checklist Proposals-A participant-
observer case study,” 13th International Conference on
Evaluation and Assessment in Software Engineering, Durham
University, UK, 20 – 21, April 2009. Last access: March,
2011.

[14] B. Kitchenham, D.I.K. Sjoberg, O.P. Brereton, D. Budgen, T.
Dyba, M. Host, D. Pfahl, and P. Runeson, “Can we evaluate
the quality of software engineering experiments?,”
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ACM, 2010, pp. 1-8,
doi:10.1145/1852786.1852789. Last access: March, 2011.

[15] M. Host and P. Runeson, “Checklists for software engineering
case study research,” Empirical Software Engineering and
Measurement, ESEM 2007. First International Symposium
on, IEEE, 2007, pp. 479-481, doi:10.1109/ESEM.2007.29.
Last access: January, 2011.

[16] D. Budgen and C. Zhang, “Preliminary reporting guidelines
for experience papers,” Proceedings of EASE, 2009, pp. 1-10.
Last access: March, 2011.

[17] T.E. Bell and T.A. Thayer, “Software Requirements: Are
They Really a Problem?”, Proc. ICSE-2: 2nd Intrnational
Conference on Software Enginering, San Francisco, 1976.
Last access: January, 2011.

[18] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,
“Systematic mapping studies in software engineering,” in
12th International Conference on Evaluation and Assessment
in Software Engineering, 2008, pp. 71-80.

580

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 596 / 612

 Success Factors Leading to the Sustainability of Software Process

Improvement Efforts

Natalja Nikitina, Mira Kajko-Mattsson

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

nikitina@kth.se, mekm2@kth.se

Abstract— Despite the fact that many software organizations

put a lot of effort into software process improvement, they

still do not always succeed in sustaining the improvement

results. We believe that this is due to the fact that current

software process improvement frameworks and/or models

do not provide any aid in form of a list of success factors that

primarily contribute to the sustainability of SPI efforts. In

this paper, we compile thirty two SPI success factors as

elicited in theoretical and empirical studies. Our primary

goal is to aid software companies in defining, planning,

monitoring and improving their SPI efforts. Our secondary

goal is to create a basis for identifying SPI health attributes

which, in turn, would allow software companies to determine

the health of their SPI projects. (Abstract)

Keywords-SPI project health, lessons (key words)

I. INTRODUCTION

Current Software Process Improvement (SPI) process
frameworks and/or models do not always provide clear
evidence about the long-term health of the SPI projects and
the sustainability of their results. With this we mean that
successful SPI implementations do not always guarantee
long lasting results [1]. Although the immediate SPI
positive results may be clearly tangible, this does not
imply that they will sustain in the long-run [2].

The problem of sustaining the SPI results has been
widely recognized and suggestions for solving it have been
made by some maturity models and development methods
[3], [4]. The suggestions usually incorporate process
improvement activities into software development
processes. Still, however, they do not cover exhaustive list
of attributes aiding software organizations in evaluating
the success of their SPI projects, and thereby, aiding them
in sustaining the SPI results in the long-run.

Sustainability of the SPI efforts is very important. Lack
of it means that the organizations quickly go back to the
old pre-SPI process state and its problems, and thereby
make the SPI efforts a waste of time and resources. For
this not to happen, organizations should not only
implement SPI activities and check their immediate
results. They should also plan, monitor and control the
long-term progress of their SPI efforts and the processes
undergoing SPI. For that, they need to identify the success
factors aiding them in sustaining their SPI results.

Today, there are many SPI models and frameworks,
development methods and experience reports dealing with
SPI. They either suggest different ways of improving
processes or they report on the SPI results. Many of them
delineate SPI from their own perspectives, in which, they
may suggest or report on the SPI success factors that are
limited to and/or relevant in their own contexts. This, in

turn, implies that overall knowledge of the SPI
sustainability factors is provided by different authors and,
thereby, scattered in many different sources. To the
knowledge of the authors of this paper, however, no one
has tried to gather them and put them into an overall list of
SPI sustainability success factors.

In this paper, we elicit thirty two SPI success factors
that primarily contribute to the sustainability of SPI efforts.
We do it in two ways, via a literature study and via
interviews. Our primary goal is to aid software companies
in defining, planning, monitoring and improving their SPI
efforts, and sustain its results. Our secondary goal is to
create a basis for identifying SPI health attributes which, in
turn, would allow software companies to determine the
health of their SPI projects.

The remainder of this paper is organized as follows.
Section II presents background of the field. Section III
describes the method used during this study. Section IV
lists and provides descriptions of thirty two SPI
sustainability success factors. Finally, Section V presents
final remarks and suggests future work.

II. BACKGROUND

There is a large amount of software maturity models
that have been designed to help software organizations
implement SPI activities. The best known ones are CMMI
and SPICE [3], [4].

CMM Integration (CMMI) framework provides
guidance for improving software organization’s processes
in a structured and well planned manner. It helps assess
organizational maturity or process area capability,
establish priorities for improvement, and implement these
improvements [3]. CMMI best practices are organized into
25 process areas, which have two different representations:
continuous, labeled by standardized “capability levels”,
and staged, labeled by tailored “maturity levels”.

SPICE maturity model, also known as ISO 15504, has
similar structure to CMMI. It consists of capability levels,
which, in turn, consist of process attributes, and further, of
generic practices. SPICE model provides tools for
standardized process assessment and suggestions for
defining process maturity.

Even though many software organizations are using
maturity models for process improvements, there are still
many organizations that are not willing to follow formal
maturity models [5]. The reasons are many. Some of them
are: (1) the organizations are too small, (2) process
certification is too costly, (3) the organizations do not have
time for it, or (4) the organizations use other SPI methods
[5]. Smaller organizations are often using ad-hoc SPI
methods, or, they transition from one development method
to another without proper planning or preparation [6].

581

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 597 / 612

III. METHOD

In this section, we present our research method. We
first present research steps in Section III.A. We then
describe the questionnaire used in one of the steps of this
study in Section III.B. Finally, we describe the validity of
our results in Section III.C.

A. Research Steps

Our research consisted of the three following steps: (1)
Literature Study, (2) Empirical Study, and (3) Data
Analysis. During the first two steps, we elicited
sustainability success factors, first by reviewing literature
and then by interviewing software practitioners. These two
steps were conducted independently. This implies that the
results of the first step did not constitute input to the
second step, and vice versa. In the third step, we combined
and analyzed the results as achieved in the first two
independently done steps. Below, we briefly describe the
three steps.

1) Literature Study

During the literature study, we reviewed more than 45
publications dealing with SPI projects. These were mainly
experience reports and case studies that had been retrieved
from IEEE, ACM, Springer, John Wiley and Sons, and
other publishers. Out of them, we chose 25 empirical
reports describing conditions contributing to or subtracting
from the success of SPI projects [1], [2], [7-29]. Our goal
was to elicit factors that contributed to the sustainability of
SPI efforts, as defined by literature.

The majority of the publications studied mainly
reported on the empirical process improvement projects.
They did not focus on outlining the conditions contributing
to the success of SPI efforts. However, some of the
conditions could be indirectly recognized out of their
contexts and results. Only three publications provided
direct and explicit feedback on critical SPI success factors.
These were [7], [8], [9].

During the literature study, we elicited critical factors
influencing SPI for both successful SPI initiation and
implementation, and successful preservation of its results.
This step resulted in a preliminary list of SPI sustainability
success factors. Having this list as a basis, we reviewed the
publications anew, now with the purpose of studying their
direct and indirect descriptions, their contexts, and
identifying their impact on the sustainability of the SPI
efforts. This step resulted in 28 SPI success factors.

2) Empirical study

During the empirical study, we interviewed 40
software engineers who had been involved in or who had
been affected by SPI projects. Among the interviewees,
there were twenty two software developers, ten testers,
seven development managers and one SPI manager. They
came from eight different middle size software
organizations, located in Vietnam (18 participants),
Sweden (18 participants), Bangladesh (2 participants),
China (1 participant) and Island (1 participant).

Each interviewee was interviewed only once, in a tête à
tête manner. Some of the interviews were recorded, while
others were not. The ones that had not been recorded were
the interviewees from Vietnam. On purpose, we chose not
to record them because we believed that due to cultural
reasons, the interviewees might feel hampered in providing
honest answers. However, the interview results were

TABLE I. INTERVIEW QUESTIONNAIRE

1. Are you aware that the information you provide will be
kept confidential?

2. Have you been involved in process improvement or
process transition before? To what extent?
a. If yes, have the results of the process improvements

been lasting?
i. If yes, why do you think the results have been

lasting?
ii. If no, why do you think the results have not been

lasting?
3. What factors contribute to the process improvement

sustainability? Please list them and motivate your
answers.

4. What factors prevent the process improvement
sustainability? Please list them and motivate your
answers.

5. What are your suggestions for keeping the process
improvement results lasting/sustainable? Please list
them and motivate your answers.

documented directly after each interview. The interviews
lasted for forty minutes per interview in average. They had
resulted in 24 SPI sustainability factors in total, out of
which 20 overlapped with the factors as identified in the
literature studied, and four constituted new SPI success
factors that had not been identified in the literature.

3) Data analysis

During the Data Analysis step, we analyzed the results
of the literature study, transcribed the interviews that had
been recorded, and analyzed the empirical data using the
hermeneutics approach. Here, we identified and analyzed
the sustainability factors as elicited in both studies. Finally,
we identified common and overlapping sustainability
factors, combined them and created a list of SPI
sustainability success factors. It is this list that constitutes
the body of this paper and a basis for the future creation of
the SPI health attributes.

B. Questionnaire

For this study, we used semi-structured interviews,
based on a questionnaire presented in Table 1. The semi-
structure implies that the interview structure was flexible,
allowing new questions to be asked depending on the
answers of the interviewee.

As shown in Table 1, the interviews were aimed at
identifying both the success and failure factors. They
consisted of the following groups of questions: (1) the
reasons for why SPI efforts have been lasting, (2) the
reasons for why SPI efforts have not been lasting, (3)
factors contributing to the SPI sustainability, (4) factors
preventing the SPI sustainability, and finally, (5)
suggestions for how to keep the SPI efforts sustainable.

C. Validity

All the qualitative research methods, encounter validity
threats [30]. Those threats concern construct validity,
internal validity, external validity, and conclusion validity.

Construct validity refers to the degree to which
inference can be made from the operational definition of a
variable to the theoretical constructs [31]. The main threat
to construct validity is to guarantee that the right measures
have been chosen for the study. Here, the risk was that we
might use wrong measures, and as a result, that we might
misinterpret the SPI sustainability success factors. To
minimize this threat, we conducted both theoretical and

582

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 598 / 612

empirical studies. Moreover, we employed the multiple
sources of data during the empirical study by interviewing
different roles in eight different organizations.

Internal validity refers to the degree of inferences of
the cause-effect or causal relationships in the study [31].
The main thread to internal validity for the literature study
was the fact that we might misinterpret the conclusions
presented in the literature or use too few literature sources.
Therefore, in this study, we first made a comprehensive
search in various scientific sources out of which we
extracted 25 experience reports. The main threat to internal
validity for the empirical study was that the interviewees
might have misunderstood the impacts on the SPI
sustainability. To minimize this threat, we used various
roles involved in SPI in different software organizations.

External validity refers to the degree of whenever the
sample findings can be generalized [31]. The main external
validity threat to our empirical study was the fact that the
SPI sustainability factors that had been identified during
the interviews were based on the experiences of only 40
individuals and eight software organizations. However, we
believe that the findings and conclusions of this study can
still be found useful for many other software companies
planning to conduct SPI and wishing to sustain its results.

Conclusion validity refers to the degree to which the
conclusions are based on the correct interpretation of the

relationships of the data [31]. The conclusion validity
threat to our study was that the conclusions would not be
related to the data. To minimize the threat, we based our
conclusions on the multiple data sources such as literature
and interviews.

IV. SPI SUSTAINABILITY FACTORS

In this section, we present the SPI success factors that
have been elicited both during the literature and empirical
studies. All the SPI success factors identified in the
literature study have direct or indirect impact on the
sustainability of the SPI efforts. Therefore, when
describing them, we state their relationship with the SPI
sustainability wherever relevant.

During the literature study, we have identified 28 SPI
success factors, out of which 20 factors overlapped with
the factors that have been elicited during the empirical
study. The interviews have additionally resulted in four
new SPI sustainability factors.

Just because these two studies were done
independently, they had led to two groups of SPI success
factors: (1) the ones that are common to the two studies,
and, (2) the ones that have been elicited within one type of
a study but not within the other. When describing them in
this section, we clearly identify their sources. Additionally,
we list them and their sources in Table 2.

TABLE II. COMPILED LIST OF SPI SUSTAINABILITY SUCCESS FACTORS

 Cluster SPI sustainability factor Source Cluster SPI sustainability factor Source

H
u
m

an
 f

ac
to

rs

Education

Stakeholders are trained and mentored
Lit. &

Emp.

O
rg

an
iz

at
io

n
al

fa
ct

o
rs

 (
2
)

Alignment

SPI is aligned with business goals Lit.

Stakeholders have a common understanding

of the process undergoing change

Lit. &

Emp.

SPI is aligned with organizational policies

and strategies
Lit.

SPI

campaign

Stakeholders are encouraged to support SPI Emp.
SPI methods are tailored to specific

organizational contexts and needs

Lit. &

Emp

SPI activities are accepted
Lit. &

Emp.

Im
p

le
m

en
ta

ti
o

n
 f

ac
to

rs

Knowledge

Technical staff participates in SPI
Lit. &

Emp.

Commit-

ment and

support

Management is committed to and

continuously supports the SPI process

Lit. &

Emp.

Technical staff and SPI leaders possess

experience and expertise in SPI

Lit. &

Emp.

Technical staff is committed to the SPI

process

Lit. &

Emp. SPI method is well defined
Lit. &

Emp.

Communi-

cation

Stakeholders are aware of the complexity,

challenges and benefits of SPI
Lit.

Preparation

and planning

Mechanisms for stabilizing the process are

planned and prepared
Lit.

Stakeholders have realistic expectations Emp.
SPI goals and objectives are clear and

realistic

Lit. &

Emp.

Information about SPI activities and its

results is disseminated

Lit. &

Emp.

Management

SPI leaders do not blame staff for their

mistakes
Lit.

SPI

drivers

Technical staff owns the process
Lit. &

Emp.
Process standards are defined and enforced

Lit. &

Emp. External SPI leaders are trusted and

respected

Lit. &

Emp.

Internal SPI leaders are designated
Lit. &

Emp. SPI projects are effectively managed Lit.

Rewards

Newly introduced processes give positive

results
Emp.

SPI activities are prioritized Lit.
Stakeholders involved are rewarded for

successful SPI activities

Lit. &

Emp.
Process

review and

measure-

ment

Software process is monitored and measured
Lit. &

Emp.

O
rg

an
iz

at
io

n
al

fa
ct

o
rs

 (
1
)

Resources

Time and resources are dedicated to SPI
Lit. &

Emp.

SPI responsibilities are clearly specified

and compensated
Lit.

Software process and its efficiency is

continuously reviewed

Lit. &

Emp.

People turnover is low Emp.
Continuous

SPI

Mechanisms for continuous process tuning

are in place

Lit. &

Emp.

583

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 599 / 612

Many different roles are involved in process improvement.
Their naming and responsibilities vary in different
literature and industrial contexts. For this reason, we
identify and define the following roles involved in SPI:

• Stakeholder: a person or a group that is involved

in or affected by SPI.

• Development team: a group of developers and/or

testers that work together on development of the

software product.

• Technical staff: a group consisting of developers,

testers and other roles involved in executing the

process undergoing the improvement. They are the

“doers”, and therefore, they get affected by the process

change the most.

• External SPI leader: a person or a group that is in

charge of the overall SPI process. He/she initiates the

improvement projects, requests resources, encourages

local improvement efforts and establishes

communication channels between different groups.

External SPI leader is not the doer in the process to be

improved. For this reason, he/she is seen as an external

and independent role.

• Internal SPI leader: a person or a group within

the development team who is responsible for

supporting and following the SPI strategy on a local

level.
To facilitate our presentation, we group the elicited SPI

sustainability success factors into three categories as
defined in [10]. These are human factors, organizational
factors and implementation factors.

A. Human factors

We have identified fourteen different human SPI
sustainability success factors. Human factors deal with
human behavior and reactions in the SPI context.

1) Stakeholders are trained and mentored

Process improvement often implies changes to the
process or introduction of new techniques and practices.
Hence, as pointed out in the literature studied, the
development team needs to be trained in them in order to
fully understand their role in the process change. They
need to be prepared for the process improvement and
understand the reasons behind each suggested change.
Otherwise, they would less likely follow the new process
[11]. For this reason, staff training and mentoring in the
new process, new techniques and practices are needed not
only for implementing process changes but also for
sustaining their results. In organizations or cultures where
knowledge of the process is low, the training in the process
is even more important [32].

The need for training and mentoring of the SPI
stakeholders was also raised during the interviews.
According to our interviewees, all the company employees
need to have necessary training in the new method in order
to be able to follow it properly and dedicatedly. Moreover,
the internal SPI leaders and team members responsible for
improvement activities have to be coached on how to
implement improvements and how to follow the new
process. According to our interviewees continuous
mentoring and training increases the credibility of strategic

SPI decisions and contributes to building trust in those
decisions and in the new process.

2) Stakeholders have a common understanding of the

process undergoing change

The process cannot be efficiently improved unless it is
properly understood. According to the literature studied,
the technical staff and management have to reach
consensus on the status of the current process, its problems
and possible solutions, as well as the organization’s vision
and the improvement goals [9]. Common understanding of
the current and new process, suggested changes and its
potential benefits are important to increase support for
process improvement among all the stakeholders involved.

Our empirical study has led to the same conclusion.
According to our interviewees, technical staff should
understand the reasons behind process changes, since it is
mainly the technical staff, who have to change the
previous habits and adapt to a new way of working. Our
interviewees have also pointed out that common
understanding of the new process, SPI activities and its
potential benefits strongly contribute to the increase of
commitment and motivation towards SPI.

3) Stakeholders are encouraged to support SPI

Commitment to and support of SPI by all the
stakeholders is a great asset to help successful SPI
implementation and to decrease inertia to change.
Therefore, according to the interview results, all the
stakeholders need to be continuously encouraged to
support SPI, and to show interest in the process
improvement activities.

4) SPI activities are accepted

Changes to the process may affect daily work of many
employees. Therefore, according to the literature studied, it
is important that all the members of the technical staff
agree and accept future changes to the process [10], [23].
This can decrease inertia to change. Acceptance of process
changes can be encouraged by high involvement of the
technical staff in the SPI activities.

Our interviews have also led to the same success
factor. According to our interviewees, if all the personnel
accept the newly changed process, then there is a greater
opportunity that the changed process will be sustained.
Mutual acceptance of the changed process and process
improvement activities is a key to sustain the results
achieved by the SPI.

5) Management is committed to and continuously

supports the SPI process

To provide long-term sustainable results, software
improvement requires continuous investment in time,
resources and effort. This, in turn, requires that
management is strongly committed to and continuously
supports the SPI efforts [9], [10], [12], [13], [33].
According to the literature studied, the strong management
commitment helps retain high priority of the SPI projects
and the continuous management support helps assure
continuous supply of the required resources [9], [10], [12],
[13]. It is especially important in the initial SPI phases
during which the cost of SPI activities is higher than
initially expected and planned [7].

Even our interviewees have stated that SPI projects
need commitment and support of top management for
investment in time and resources in order to achieve
sustainable results.

584

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 600 / 612

6) Technical staff is committed to the SPI process

Acceptance of SPI activities is a critical success factor
when starting SPI projects. However, according to the
literature studied, it needs to be complemented with the
commitment of the technical staff. Management
commitment to SPI projects has already been listed as a
significant success factor to SPI projects. However,
commitment of technical staff is just as important [14-17],
[33]. Together with the increased motivation and
engagement, the commitment of the technical staff can
become a driving wheel of process improvement [2].
Committed staff takes responsibility and ownership of the
process and keeps process in a healthy state [2].

Commitment of the technical staff has also been
elicited during our interviews. Our interviewees have
stated that, if the company personnel does not commit to
the process changes, it will most likely go back to the pre-
SPI process state.

7) Stakeholders are aware of complexity, challenges

and benefits of SPI

Since SPI requires continuous effort and often brings
mainly long term results, it is important that everybody
involved in it is aware of its complexity, challenges and
future benefits. Hence, according to the literature studied,
organizations must make sure that all the stakeholders
involved are aware of them. This can be realized via
education and training. Raising awareness of SPI and
effective communication of its complexity, challenges and
benefits strongly affects the success of the SPI projects
[16-22].

8) Stakeholders have realistic expectations

Our interviews have indicated that in order to be
satisfied with SPI and its results, the employees affected
by SPI should have realistic expectations. Otherwise, the
stakeholders would get disappointed with SPI and would
not continue with it, even though SPI brought positive
results.

9) Information about SPI activities and its results is

disseminated

SPI projects bring many changes to the process and
daily routines. These changes have to be communicated to
all the stakeholders that can be directly or indirectly
impacted by the changes.

According to the literature studied, insufficient
communication of the SPI changes may lead to lack of
transparency of the SPI projects, confused personnel and
poor quality process. Team collaboration and
communication, on the other hand, may help the staff
members to exchange knowledge and experience during
the improvement project and contribute to coherent
organizational culture [9].

The need for communicating on the SPI activities and
their results has also been raised by our interviews.
According to them, sufficient communication positively
impacts motivation in SPI and acceptance of the new
process changes.

10) Technical staff owns the SPI process

Disregarding the reasons behind the SPI projects, the
new process has to be accepted and followed by the team.
According to the literature studied, it is important that not
only external and internal SPI leaders but also all the
technical staff members take on the ownership of the
process to be improved. The members should take the

responsibility for tailoring the process and for continuously
improving it. It is only in this way they will feel more
affiliated with the process and more responsible for future
process improvements. This, in turn, will lead to a built-in,
self-driven continuous process improvement process,
which, in turn, will strongly contribute to the sustainability
of the SPI results [12].

Our interviewees have also stated that the success of
SPI projects is strongly related to process ownership.
According to them, not only management and SPI leaders
should own the process, but also all the technical staff
members. They should not only be responsible for the SPI
process but also for its progress.

11) External SPI leaders are trusted and respected

According to the literature studied, the level of
experience, commitment and engagement of the external
SPI leaders can determine the success of the SPI projects
[7-10]. However, as [7], [8] claim, the authority and
respect paid to the external SPI leaders is as important.
Even if the SPI leaders are in a privileged position, it still
does not imply that they have high enough authority, trust
and respect among the technical staff members. If so, then
their ideas may not be supported and successfully
transmitted to the process change [7-10]. Trust and respect
may only be gained via personal qualities such as honesty,
credibility, reliability, experience and reputation.

Trust and respect of the external SPI leaders was also
raised during the interviews. According to our
interviewees, to make the SPI results last, there should be
an external SPI leader, a person or a group of people who
have knowledge of SPI and who take on the responsibility
of driving it.

12) Internal SPI leaders are designated

According to the literature studied, the internal SPI
leaders are recognized as important SPI actors since they
take on immediate responsibility for leading and
supporting continuous process improvement [9], [12-14].
By possessing knowledge of the process, they are able to
adapt the improvement suggestions to the different needs
of development teams, projects and cultures. They help
SPI activities get started and their engagement aids in
winning support of their team members [13].

The importance of designating internal SPI leaders was
also recognized during the interviews. According to our
interviewees, the involvement of the internal SPI leaders
helps spread commitment to the process and create strong
process ownership. Internal leadership creates continuous
control that the process is followed in a correct way and
that its stakeholders are engaged in SPI.

13) Newly introduced processes give positive results

As mentioned before, the results of the SPI activities
should be disseminated to all the stakeholders. However,
as discovered during the interviews, just the dissemination
of the results of SPI is not enough. The results achieved by
the early SPI effort should be positive and should speak for
themself. Positive results of the newly introduced process
encourages and motivates stakeholders to continue with
the SPI activities and changes the opinions of those who
did not support it from the very beginning.

14) Stakeholders involved are rewarded for successful

SPI activities

The importance of rewards for SPI success has been
mentioned in some of the studied literature sources [20].

585

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 601 / 612

Our interviews have also shown that in order to keep
constant stakeholder commitment to and engagement in
SPI, the stakeholders should celebrate the SPI success.
Rewards for the improved process contribute to the
increase of motivation and engagement in future SPI
activities.

B. Organizational factors

We have elicited six organizational factors.
Organizational factors are critical success aspects that are
outside the scope of SPI. Those are related to the
organizational structures and politics as well as cultural
issues [10]. Still, however, they have a substantial impact
on SPI sustainability.

1) Time and resources are dedicated to SPI

According to the literature studied, SPI projects need to
have dedicated time and resources. As many as 72% of SPI
improvement projects have suffered from lack of resources
and constant time pressure [7], [11], [18], [21]. SPI
projects cannot run on their own. Investment in time and
people has been recognized not only for starting and
implementing the SPI projects but also for sustaining the
achieved results [7], [8], [10], [14], [18-20], [24].

Our interviewees were of the same opinion. According
to them, process related problems often start when no one
is responsible for the process.

2) SPI responsibilities are clearly specified and

compensated

According to the literature studied, people involved in
SPI should have clear responsibilities and compensation
for their effort [7], [8]. If they are assigned to SPI related
tasks, they should be relieved from other tasks. Time
dedicated to the SPI activities should be compensated in
the same manner as other work. Otherwise, the SPI
activities will be done in a rush, they may be neglected,
they may be delayed or they may even be forgotten.

3) People turnover is low

According to our interviewees, high people turnover
can become a significant barrier to the sustainability of the
SPI efforts. When the key employees leave the company,
so does the knowledge of the process and SPI. With high
people turnover, more effort needs to be spent on the
education and training of the new hires.

4) SPI is aligned with business goals

The goals of SPI projects should not only go in line
with the standardization of process and quality standards,
but also with business goals. According to the literature
studied, alignment of SPI goals with the organizational
business goals contributes to the better management of,
commitment to and support of the SPI projects [10], [14],
[15], [25], [26].

5) SPI is aligned with organizational policies and

strategies

Improvement projects often conflict with the existing
organizational policies by requiring changes to routines
and processes that are common to the whole organization.
Therefore, as stated in the literature studied, organizational
policies have to be aligned with the SPI goals and vice
versa. In cases when organizations do not have any
policies, they have to establish ones and make the process
standardization and improvement coherent with them.
Lack of organizational policies to support process changes

can potentially become a big barrier for a successful
process improvement [7], [11], [14], [21].

6) SPI methods are tailored to specific organizational

contexts and needs

Each organization is different with respect to its
structure, culture and policies. For this reason, as stated in
the literature studied, SPI initiatives should consider the
contextual specifics of the organizational culture, product
characteristics, customer availability and people influenced
by the process. The adaptation of process improvement
methods to specific organizational contexts and needs
helps address individual problems and contributes to
sustainable SPI efforts [9-10].

The interviews have led to the similar conclusion.
According to our interviewees, if the SPI is not aligned
with the organizational needs, or if it does not fit the
established organizational and national culture, then it is
more difficult to win people’s support and commitment.
Moreover, the people would resist the process changes and
the results achieved by SPI would be easily lost.

C. Implementation factors

We have elicited twelve implementation factors. The
implementation factors are related to the execution of the
SPI projects.

1) Technical staff participates in SPI

Technical staff constitutes an important process
knowledge and experience asset [9]. By knowing all the
nooks and crannies of the process, they may provide useful
feedback on the suggested SPI changes [23]. For this
reason, it is important that they are involved in identifying
process pains and in suggesting solutions for them [9],
[10], [18-20], [25], [26].

The literature findings show that the involvement and
participation of the technical staff reduce resistance to
change, and thereby, strongly impacts the SPI success [9],
[10], [14]. By being involved in the SPI activities, the
technical staff members feel more motivated to adhere to
the process changes, and therefore, they are more likely to
accept them [9], [10]. Technical staff involvement was
found especially important in immature organizations [19].

Our interviews have also led to the same conclusion.
According to our interviewees, the involvement of the
technical staff contributes to the alignment of SPI methods
to the organizational needs. It also decreases inertia to
change and increases motivation, and thereby, significantly
affects the sustainability of the SPI efforts.

2) Technical staff and SPI leaders possess experience

and expertise in SPI

Process improvement implies changes to the deeply
ingrained organizational culture, habits, working patterns
and manners that have been developed throughout a long
time. To change them is very difficult. However, according
to the literature studied, it is easier to change them if the
stakeholders involved possess enough knowledge and
experience in implementing software process improvement
changes. If there is lack of such knowledge and
experience, then there is a risk of using unsuitable SPI
strategy and of having poor SPI execution, which could
potentially fail the SPI projects [11], [12], [18-20], [34].

Few of our interviews have also mentioned the
importance of knowledge in SPI by all the stakeholders
involved.

586

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 602 / 612

3) SPI method is well defined

Software process improvement is a complex and time
consuming process. Following a well defined and
structured SPI implementation method strongly contributes
to its success [12], [19], [20]. According to the literature
studied, the SPI method should be suitable to the
organization, its size and goals.

Our interviews have also led to the same success
factor, highlighting the importance of accessible and
updated process documentation.

4) Mechanisms for stabilizing the process are

planned and prepared

To prevent losing the immediate advantage of process
improvement efforts, it is important to stabilize the
changed process. According to the literature studied, this
can be done by providing a comprehensive support to
those responsible for the process and by encouraging staff
to practice new procedures [9]. All the roles responsible
for the SPI projects should influence the process
stabilization by continuously reaffirming commitment to
change, communicating progress of improvements, and by
providing continuous feedback and motivation [9].

5) SPI goals and objectives are clear and realistic

SPI projects should have clearly specified goals and
objectives. Our literature study shows that clear, realistic
and well communicated SPI goals contribute to the good
understanding of the SPI process and assurance that they
are well understood across all the organizational levels [8].

Realistic SPI goals lead to realistic expectations and
aid in maintaining high motivation for and support of the
SPI activities. Unrealistic, too ambitious or unreachable
objectives, on the other hand, may jeopardize the SPI
projects, by decreasing employees’ engagement and
motivation even in projects with positive results [7], [14].
Our interviews have led to the similar conclusion.

6) SPI leaders do not blame staff for their mistakes

During the SPI projects, the weaknesses and problems
of the current process are continuously identified and
improvements are suggested. Since the problems and
negative issues of the process are continuously discussed,
it is important not to start blame games [11].

According to the literature studied, blaming people for
mistakes can only lead to frustration and inertia to process
change [11], [24]. One should focus on process’s
weaknesses rather than on people’s mistakes [24]. One
should also encourage initiative, innovation, creativity and
openness. Without it, employees cannot share valuable
ideas, and thereby, contribute to process improvement
[24].

7) Process standards are defined and enforced

When the stakeholders lack dedication and
commitment to the new process, people are tempted not to
follow the process standards, unless there is a strong
control mechanism in place [6]. Even when properly
trained, the staff may not follow the newly introduced
process. Therefore, as stated in the literature studied, in
order to guarantee that the process is dedicatedly followed
by all the stakeholders, it should be enforced and
controlled by the SPI managers [6].

Our interviews have led to the similar conclusion. The
interviewees have also suggested that the employees that
are not following the new process procedures correctly
should be informed and consequently corrected.

8) SPI projects are effectively managed

Management of the SPI projects involves a wide range
of activities such as planning for change, identifying actors
involved, ensuring the level of understanding of process
changes, monitoring the status of SPI, evaluating the
progress, and the like. It needs to be performed in an
effective and professional manner [21]. According to the
literature studied, without project management, SPI
projects are doomed to fail and may lead to chaos [9].

9) SPI activities are prioritized

At the beginning of the SPI projects, companies can be
overwhelmed with the amount of suggestions for the
improvements. Such being a case, as stated in the literature
studied, it is important not to do too many changes at ones.
Instead, companies should prioritize the SPI suggestions
and, focus on one or few improvements at a time [13],
[14]. This leads to easier and more efficient
implementation, control, measurement, and thereby, to
more sustainable results.

10) Software process is monitored and measured

Continuous process monitoring and measurement
indicates whether the SPI activities are effective or not,
and allows to provide early feedback on the sustainability
of the SPI efforts. Hence, as stated in the literature studied,
it is important to evaluate and measure the process on a
continuous basis to reinsure its purpose and to increase the
engagement of the SPI supporters. Measured and
acknowledged process improvements will positively affect
team morale and motivation [12], [13], [25], [26]. Our
interviews have also stated that measurement and
evaluation of the SPI results can positively impact the
engagement in and motivation for future SPI.

11) Software process and its efficiency is continuously

reviewed

To achieve continuous process improvements, the SPI
process and its efficiency should be reflected on and
evaluated on a continuous basis. As stated in the literature
studied, process reviews, such as retrospectives, allow
learning from previous experience and from experimenting
with the process, which, in turn, contributes to a self-
driven continuous process improvement, and thereby, to
the long lasting SPI results [25], [26].

Our interviews have led to the similar conclusion.
According to our interviewees, process reviews help to
identify problems in the current process and to
acknowledge benefits achieved by SPI. This, in turn,
significantly contributes to the sustainability of the
achieved results.

12) Mechanisms for continuous process tuning are in

place

Software organizations have dynamic and continuously
changing structures. Organizational culture, availability of
the customer and background of the employees are always
changing. Hence, a static process that is not improving or
adapting to the changing organizational needs is failed to
decay [6]. Without frequent reviews and changes to the
process, it will soon outdate. Therefore, it is important to
have mechanisms for continuous process tuning and
improvements in place [6]. This was also concluded during
our interviews.

587

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 603 / 612

V. FINAL REMARKS

In this paper, we have presented thirty two success
factors influencing the sustainability of SPI efforts. We
have elicited them in two independently conducted studies,
the literature and empirical studies.

Initially, we grouped our sustainability factors into
three clusters: human, organizational and implementation.
When analyzing them, however, we could further group
them into thirteen additional sub-clusters. As shown in
Table 2, those are: (1) Education, (2) SPI campaign, (3)
Commitment and support, (4) Communication, (5) SPI
drivers, (6) Rewards, (7) Resources, (8) Alignment, (9)
Knowledge, (10) Preparation and planning, (11)
Management, (12) Process review and measurement, and
(13) Continuous process improvement.

The SPI sustainability success factors presented in this
paper constitute the body of the knowledge of the software
engineering community as elicited in the current software
engineering literature and in the industry. They may
already be used by software development organizations
when implementing and managing their SPI projects.

We strongly believe that it is not enough to just define
SPI process frameworks and/or models. Process
frameworks/models do not always provide clear evidence
about the health of the SPI projects. For this reason, we
plan to continue studying and analyzing the SPI
sustainability success factors presented in this paper. Our
future goal is to create a basis for supplementing currently
defined SPI frameworks and/or models with a checklist of
health attributes allowing software companies to define,
monitor, control and improve their SPI processes, and
thereby, allowing them to achieve long-term sustainable
results.

REFERENCES

[1] S. S. Chakravorty, “Where Process Improvement Projects Go
wrong,” Wall Street J., 2010.

[2] N. Nikitina and M. Kajko-Mattsson, “Developer-Driven Big Bang
Process Transition from Scrum to Kanban,” Proc. 2011
International Conference on on Software and Systems Process
(ICSSP 2011), ACM, 2011.

[3] CMMI Product Team, Capability Maturity Model Integration
(CMMI), Version 1.1. Pittsburgh, USA: Software Engineering
Institute, Carnegie Mellon University, 2002.

[4] K. Schwaber and M. Beedle, Agile Software Development with
SCRUM, Prentice Hall, 2001.

[5] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, et. al.,
“Why organization do not want to adopt CMMI,” J. of Syst. and
Softw., vol. 80, 2007, pp.883–895.

[6] S. Zahran, Software Process Improvement: Practical Guidelines for
business success, Addison Wesley, 1998.

[7] D. Goldenson and D. Herbsleb, After the Appraisal: A systematic
Survey of Process Improvements, its Benefits, and Success Factors
that influence Success. Technical report, SEI, 1995.

[8] K. El Emam and P. Fusaro, B. Smith, “Success factors and barriers
for software process improvement,” 1999. In: C. Tully, R.
Messnarz, (Eds), Better Software Practice For Business Benefit:
Principles and Experience. In: IEEE Computer Society Press,
Silver Spring, MD.

[9] D. Stelzer and W. Mellis, “Success Factors of Organizational
Change in Software Process Improvements,” J. Softw. Process
Improve. Pract., 1998, pp. 227-250.

[10] T. Hall, A. Rainer and N. Badoo, “Implementing Software Process
Improvement: An Empirical Study,” J. Softw. Process Improve.
Pract., vol. 7, 2002, pp. 3–15.

[11] S. Beecham, T. Hall and A. Rainer, “Software Process
Improvement Problems in Twelve Software Companies: An
Empirical Analysis,” Emp. Softw. Eng., vol. 8, 2003, pp.7–42.

[12] A. Rainer and T. Hall, “Key success factors for implementing
software process improvement: a maturity-based analysis,” J. Syst.
Softw., vol. 62, 2002, pp. 71–84.

[13] D. Paulish and A. D. Carleton, “Case Studies of Software Process
Improvement Measurement,” IEEE Computer, vol. 27: 9, 1994, pp.
50 - 57.

[14] M. Nazir, R.. Ahmad and N. H. Hassan, “Resistance factors in the
Implementation of Software Process Improvement Project in
Malaysia,” J. of Comp. Science, vol. 4: 3, 2008, pp. 211-219.

[15] K. C. Dangle, P. Larsen, M. Shaw and M. V. Zelcovitz, “Software
Process Improvesmnt in Small ogranizations: A case study,” IEEE
Software, vol.22:6, 2005, pp. 68-75.

[16] G. Santos, M. Montoni, J. Vasconcellos, S. Figuerido, R. Cabral,
et. al., “Implementing Software Process Improvements Initiatives
in Small and Medium-Size Enterprises in Brazil,” Proc. QUATIC,
2007, pp.187-196.

[17] S. B. Basri and R. V. O’Connor, “Organizational Commitment
Towards Software Process Improvement: An Irish Software VSEs
Case Study,” Proc. ITSIM'10, IEEE, 2010, pp.1456-1461.

[18] M. Niazi, D. Wilson and D. Zowdhi, “A framework for assisting
the design of effective software process improvement
implementation strategies,”J. of Syst. and Softw., vol. 78, 2005, pp.
204–222.

[19] M. Niazi, D. Wilson and D. Zowdhi, “Implementing software
process improvement initiatives: An Empirical study,” Proc.
PROFES 2006, 2006 , pp. 222 – 233.

[20] M. Niazi, D. Wilson and D. Zowghi, “Critical Success Factors for
Software Process Improvement Implementation: An Empirical
Study,” J. Softw. Process Improve. Pract., vol. 11, 2006, pp. 193–
211.

[21] M. Niazi, M. Ali Babar and J. M. Verner, “Software Process
Improvement Barriers: A cross-cultural comparison,” J. Infor. and
Softw. Techn., vol. 52: 11, 2010.

[22] T. Varkoi, “Management of Continuos Software Process
Improvement,” Proc. 2002 IEMC, 2002, pp. 334-337.

[23] A. Sweeney and D. W. Bustard, “Software Process Improvement:
making it happen in practice,” Soft. Qual. J., vol. 6, 1997.

[24] B. Curtis and M. Paulk, “Createing a software process
improvement program,” Butterworth-Heinemann Ltd, vol. 35: 6/7,
1993.

[25] T. Dyba, “An instrument for measuring the key factors of success
in Software Process Improvement,” J. Emp. Softw. Eng., vol. 5,
2000, pp. 357–390.

[26] T. Dyba, “An empirical investigation of the key factor for success
in software process improvements,” J. Trans. on Soft. Eng.,vol 31:
5, 2005.

[27] I. Aaen, J. Arent, L. Mathissen and O. Ngwenyama, “A conceptual
MAP of Software Process Improvement,” Scandinavian J. of Infor.
Syst., vol. 13, 2001.

[28] T. Galinac, “Empirical Evaluation of selected best practices in
implementation of software process improvements,”J. Infor. Soft.
Techn., vol. 51, 2009, pp. 1351–1364.

[29] F. Ekdahl and S. Larsson, “Experience Report: Using Internal
CMMI Appraisals to Institutionalize Software Development
Performance Improvement”, Proc. EuroMicro 2006, 2006.

[30] M. D. Myers, Qualitative Research in Business & Management,
Sage publications, London, 2009.

[31] T. William, Research Methods: The Concise Knowledge Base,
Cornell University, 2005.

[32] M. Niazi, M. A. Babar and J. V. Verner, “Software process
improvement barriers: cultural comparism,” J. Infor. Soft. Techn.,
vol. 52, 2010, pp. 1204–1216.

[33] P. Abrahamsson and N. Iivari, “Commitment in Software Process
Improvement--In Search of the Process,” Proc. HICSS 2002, 2002.

[34] N. Nikitina and M. Kajko-Mattsson, “Historical Perspective of
Two Process Transitions,” Proc. 2009 International Conference on
Software Engineering Advances (ICSEA 2009), IEEE, 2009.

588

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 604 / 612

Software Quality Assessment and Error/Defect Identification in the Italian Industry
Preliminary Results from a State of the Practice Survey

Giuseppe Scanniello
University of Basilicata

Dipartimento di Matematica e Informatica
85100, Potenza, ITALY

giuseppe.scanniello@unibas.it

Fausto Fasano
University of Molise

STAT Dept.
86090, Pesche (IS), Italy
fausto.fasano@unimol.it

Andrea De Lucia, and Genoveffa Tortora
University of Salerno

School of Science
84084, Fisciano (SA), ITALY

adelucia@unisa.it, tortora@unisa.it

Abstract—In this paper, we present the results of a sur-
vey aimed at comprehending the relevance and the typology
of the software quality assessment approaches and software
error/defect identification methods/approaches used in the
industrial practice. The context of this study was the IT
industry. In particular, we involved industries/organizations
that develop and sell software as a main part of their business
or develop software as an integral part of their products
or services. The results of a preliminary analysis indicated
that software quality assessment and software error/defect
identification are very relevant and regard almost the totality of
the interviewed companies. Furthermore, the widely used and
most popular practice is testing, while an increasing interest
has been manifested in distributed inspection methods.

Keywords-empirical investigation; quality assessment; er-
ror/defect identification; inspection; state of the practice sur-
vey; testing.

I. I NTRODUCTION

To construct high quality products engineering disciplines
check intermediate and final artifacts so that defects can
be identified and then removed. Similarly, software devel-
opment needs complementary combination of design and
verification/validation activities to produce and deliverhigh
quality software products [24]. In fact, today it is widely
recognized that verification and validation activities are
needed to assess and maintain the quality of a software
product.

In the software engineering community, there is a growing
interest towards surveys investigating the state of the art
and practice about the use of processes, methods, and tools
within software products development and maintenance [12],
[17], [19], [22] as well as for software verification, valida-
tion, and review [5], [14].

Surveys are investigations to gather data from respon-
dents, using a questionnaire composed of closed or open
questions [23]. Depending on the survey purpose, it may
focus on opinions or factual information [16]. Data can
be collected by: face-to-face and phone interviews, mail,
e-mails, and web pages. E-mail surveys are both very
economical and very fast. They are often best for sensitive
items, and there is no interviewer bias. On the other hand,

email surveys are limited to simple questionnaires. The
data can be analyzed to derive descriptive and explanatory
conclusions [2] that are applicable only to the selected
population.

In this paper, we present the preliminary results of a
survey organized by three Italian Universities – University of
Basilicata, University of Molise, and University of Salerno
– to understand the state of the practice of software quality
assessment and software error/defect identification in theIT
Italian industry.

The survey was conducted from the spring 2008 to
the winter 2009. We invited to participate 70 compa-
nies/organizations that develop and sell software as a main
part of their business or develop software as an integral
part of their products. We received by e-mail 30 fully
completed questionnaires from key people of the invited
companies/organizations.

The main findings of the study can be summarized as
follows:

Software quality assessment and software er-
ror/defect identification are very relevant and re-
gard roughly almost the totality of the interviewed
companies. The widely used and popular practice
is testing. An increasing interest has been however
manifested in distributed inspection methods.

The remainder of the paper is organized as follows: Related
work is presented in Section II, while Section III presents
the design of the study. The preliminary analysis of the data
and the threats that may affect the validity of the results
are discussed in Section IV. Final remarks and future work
conclude the paper.

II. RELATED WORK

Methods and techniques for software quality assessment
and software error/defect identification have been largely
experimented in case studies and controlled experiments [8],
[18]. A number of systematic reviews and state of the art
surveys have been proposed in the literature on these top-
ics [4], [7], [15], [17]. On the other hand, only a few numbers
of state of the practice survey have been conducted in the

589

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 605 / 612

past [5], [14]. Accordingly, in the following subsections we
describe state of practice surveys related to software review
and to process and methods for software development and
maintenance.

A. Software Reviews

The focus of the survey presented in [5] is the analysis
of the current state of the practice in industry regarding the
application of reviews and inspections. The major focus is
on the concrete application of walkthroughs, peer reviews,
and formal inspections. Similarly to our study, the results
indicate that there are still many objections against the
usage of the techniques considered in the study. The main
highlighted concern is that these techniques are perceived
as too time consuming and thus not applicable in practice.
Differently from us, this state of the practice surveys is only
focused on walkthrough and software inspections.

Based on the results discussed in [5] and [21], Jedlitschka
et al. [14] conduct a survey to investigate the state of
the practice of inspection technology in German software
industry decision makers. They involved 92 companies and
observed that information regarding the impact of technolo-
gies on product quality, cost, and development time, as
well as on technology cost-benefit ratio is considered highly
relevant for the interviewed decision makers.

B. Software Development and Maintenance

Hauge [12] explores and investigates the open source
phenomena in the IT industry. He adopts both a literature
study and a web-based survey. The sample is composed
of companies from the Norwegian software industry. The
results of this study show that the open source is widely
used. In particular, he observes that about 50% of the
Norwegian IT companies adopt open source code in the
marketed software products.

Conradi et al. [19] presents a state of the practice survey
on risk management in software development with off-the-
shelf software components. The authors interviewed soft-
ware companies from Norway, Italy, and Germany. The
results show that off-the-shelf components normally do not
contribute negatively to the quality of the software system.
Furthermore, the study also reveals that issues such as the
underestimation of integration effort and inefficient debug-
ging remain problematic.

Torchiano et al. [22] reports on a state of the practice
survey conducted among 59 Italian software companies. This
survey is conducted within a research project [9] and aims
at analyzing the state of the practice in software migration.
The results of the survey indicate that about 66% of the
interviewed companies have some experiences in migration
tasks. The study also highlights the lacking of tools for the
execution of migration tasks. This however does not seem
to constitute a problem for the interviewed companies.

III. D EFINITION AND DESIGN

The goals of the survey we have conducted in the IT
Italian industry can be summarized as follows:

Primary goal: comprehending the relevance and the
typology of the software quality assessment approaches and
software error/defect identification methods/approachesused
in the practice.

Secondary goal:identifying the main problems and the
actual needs (methods, techniques, and tools).

With respect to the goals, the following research questions
have been defined and investigated:

RQ1 What is the relevance of quality assessment and
error/defect identification in IT Italian industry?

RQ2 What are the most popular and widely used prac-
tices?

RQ3 What are the main problems encountered to employ
approaches/methods for quality assessment and software
error/defect identification?

RQ4 Is there an interest in never used
approaches/methods for quality assessment and software
error/defect identification?

The survey has been conducted through the following
three steps:

(i) Designing a common questionnaire that includes the
main questions and perspectives;
(ii) Conducting the survey leveraging the industrial contact
networks of the Universities involved in the study;
(ii) Analyzing the data and packaging the results.

A. Conceptual Model

The conceptual model clarifies the meaning of some terms
(e.g., project and inspection) and describes all the entities of
interest for the survey.

Project. It represent a completed software project.
Software artifact. It is a tangible product created during

software development.
Testing. “The process of analyzing a software item to de-

tect the differences between existing and required conditions
(that is, bugs) and to evaluate the features of the software
items” [1].

Inspection. “A static analysis technique that relies on
visual examination of development products to detect er-
rors, violations of development standards, and other prob-
lems” [13].

Distributed Inspection. It is a method to support geo-
graphically distributed teams in the inspection of software
artifacts.

Pair Inspection. It is an informal method for inspecting
software artifact. The author’s artifact and an inspector are
require to accomplish the inspection.

Walkthrough. “A static analysis technique in which a
designer or programmer leads members of the development
team and other interested parties through a segment of
documentation or code, and the participants ask questions

590

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 606 / 612

and make comments about possible errors, violation of
development standards, and other problems” [13]

We identified three areas of interest for collecting the data:
Demographic information concerns the interviewed

company/organization (company, the hereafter) and the re-
spondents.
Relevance and typologyregards information on projects
on which the considered quality management methods and
approaches have been used.
Main problems and needs is about the issues to adopt
the software quality assessment approaches and software
error/defect identification methods.

B. Identification of the Target Population

The target population consisted of IT companies that
develop and sell software as a main part of their business
(e.g., software house) or develop software as an integral part
of their products or services (e.g., healthcare domain).

The selection of the companies (sampling) has been
conducted using the network contacts (for convenience and
opportunity) of the research groups of the authors. The
contacts network included companies that participated to our
research projects [9] and/or employed or hosted (for external
stages) students with a Master or a Bachelor degree from the
following Universities: University of Basilicata, University
of Molise, and University of Salerno.

C. Questionnaire Design and Data Collection

We have developed the questionnaire following the stan-
dard schema proposed in [5]. Figure 1 shows the designed
questionnaire. The questionnaire contains both open (some
required just filling in a comment or text) and closed
questions. According to the conceptual model, the ques-
tionnaire consists of different questions that depend on the
usage or not of software quality assessment approaches and
software error/defect identification methods and on the will
of employing them in the future.

The questionnaire was introduced with a brief motivation
sketching the general problem to be investigated.

The importance of this study and our objectives were
inserted in an accompanying letter attached to the ques-
tionnaire. Great care was taken to ensure ethical require-
ments and privacy rules imposed by the Italian regulations.
Furthermore, we also clarified that all the information was
considered confidential and that the data were used only for
research purposes and revealed only in aggregated form.

The respondents sent the answered questionnaires by e-
mail. The rationale for using this communication medium
was that the companies may consider sensitive the informa-
tion treated in the survey.

IV. RESULTS

Among the 70 invited companies, 48 gave their availabil-
ity to participate to the survey, while 32 correctly filled in
the questionnaire.

!

Figure 1. Designed questionnaire

A. Respondents’ Background and Companies Characteris-
tics

The age of the respondents ranged from 24 to 50 years old
with an average of 35 years (only 2 were female). Regarding
the role of the respondents, 73% of them stated that they
had management roles (i.e., projects manager, IT manager,
quality manager, or production manager) while 27% were
developers or software architects. Among the respondents,
93% had a master degree, 7% had a bachelor degree. None
of the interviewed had a PhD. 80% had a specific IT degree.

The interviewed companies were 60% independent and
40% subsidiaries (i.e., controlled by a larger and more
powerful company). Among these companies, 67% were
private companies and 33% were quoted on the Italian stock
exchange. None was a government organization. 53% of the
companies were either small or medium-sized enterprises
(i.e., < 250 employees), while 47% were larger ones.

Note that larger companies were composed of businesses
units. For smaller companies, the number of employees of
the business unit coincided with the total number of the
company employees. For the larger companies, the size of
the business units of the respondents were distributed as
follows: 13% were micro (< 10), 67% were small (between
10 and 50), and 20% were medium (between 50 and 250).

The companies come from different industrial domains.
In particular, most of them worked in the area of software
consultancy (40%). On the other hand, 33% of the compa-
nies worked on software development and 27% provided IT
services to others.

591

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 607 / 612

The typical size of the software systems
handled/developed was: from 10 to 100KLOCs (7%),
from 100 to 500 KLOCs (80%); more than 500 KLOCs
(13%).

B. Relevance of the used practices and influential factors

All the respondents of the companies, that never used the
methods/approaches considered in the survey, have planned
to adopt at least one among: testing, inspection, distributed
inspection, and walkthrough. These were 20% of the com-
panies.

On the other hand, 40% of the companies regularly
employed at least one of the considered methods/approaches,
while 13% of the respondents declared that their companies
often used testing, inspection, distributed inspection, and
walkthrough. Finally, 27% of the companies occasionally
used them.

Among the companies that have used at least one of
the methods/approaches (i.e., 24 out of 30), most of them
(i.e., 14 out of 24) regularly used testing techniques, while
4 companies stated that testing has been often used in
the past. Only 2 respondents indicated that their company
occasionally used testing.

Inspection methods (i.e., variations of the Fagan’s process)
to identify defects in software artifacts were already used
in only 2 companies, while 10 out of 24 companies often
used them. Inspection methods were occasionally employed
within 6 companies, while 4 stated that these approaches
have never been employed, but will be used in the future.
Only 2 companies were not interested in using inspection
methods in the future.

Distributed inspection methods have been rarely used
within 6 companies. Moreover, 6 respondents stated that
his/her company has never used distributed inspection, but
this technique will be used in the future to identify defects
in software artifacts. Finally, 12 out of 24 companies have
never used a method for distributed inspection and did not
plan to employ it in the future.

The pair inspection was regularly used in 6 out of 24 com-
panies, while only 2 companies often used this technique.
Pair inspection was occasionally used within 8 companies.
The respondents of 8 companies stated that this technique
was never used. Among these companies, 6 stated that were
not interested in using pair inspection in the future.

Walkthrough was regularly used in 4 companies, while 6
companies often employed this practice within their projects.
Walkthrough was occasionally used within 10 companies
(i.e., 42% of the cases). Finally, 4 companies never used
this practice and were not interested in using it.

We also asked to indicate the approach/method the re-
spondents considered simpler, more effective, less expensive,
and with a best cost benefit ratio. They identified the pair
inspection as the simplest method to apply (i.e., 12 out
of 24), while testing was considered the more effective

and with the best cost benefit ratio. The less expensive
approach/method was considered the pair inspection. Further
details can be found in Figure 2.

The greater part of the respondents (16 out of 24) stated
that the methodological aspect is the predominant factor
to effectively identify defects and improve the quality of
software artifacts. The human factor was indicated as the
secondary concern (8 out of 24).

! Figure 2. Results of the used practices with respondents considerations

C. Main Problems and Needs

We asked the respondents to indicate the methods they
were interested in using among the never used ones. Dis-
tributed inspection was the method on which the respondents
manifested greatest interest.

The main problems in the industry to adopt variations of
the inspection process proposed by Fagan were (in increas-
ing priority order): lack of specialized employees, technique
not properly known, technique too much expensive, and lack
of time. The companies that never used this method were
10 out of 22.

Similarly, the main problems to employ a distributed
inspection process were (in increasing priority order): tech-
nique not properly known, short time to market, technique
too much expensive, and trust in the technique. Anyway, 16
out of 22 companies were interested in this method.

Regarding, pair inspection 14 companies never used it.
Most of them never used this practice since it was not
properly known. The factors identified as less influential to
use this practice were: technique too much expensive, short
time to market, and lack of specialized employees.

The respondents were also asked to describe other tech-
niques used in the company to identify defects within
software artifacts. Nobody answered to this question, thus
enforcing the assumption that the methods/approaches in-
vestigated in our survey are the only employed within the
involved companies.

Finally, we asked the respondents whether their company
were interested in experimenting inspection, distributedin-

592

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 608 / 612

spection, and pair inspection. All of them generally mani-
fested the same level of interest on these methods.

D. Findings

We summarize the main findings emerged from the con-
ducted state of the practice survey according to the defined
research questions.

RQ1. The data analysis showed that software quality
assessment and software error/defect identification are very
relevant in for the IT companies involved in the survey.

RQ2. Testing is the most employed practice. The second
larger employed practice was formal inspection based on the
original process proposed by Fagan.

RQ3. The main problem to use pair inspection and
distributed inspection is related to their scant popularity.
On the other hand, the main problem to introduce the other
approaches/methods is the short time to market and the lack
of properly skilled employees in the company.

Regarding distributed inspection, most of the companies
never used this technique for the following three reasons:(i)
team members are not geographically distributed;(ii) there is
lack of tools for supporting distributed inspection processes;
(iii) inspection tools (if available) are not integrated with
Software Configuration Management [11] (SCM) systems.

Despite the scant usage of distributed inspection, it
aroused great curiosity and interest. This is probably due to
the fact that respondents perceived distributed inspection less
expensive than traditional inspection. Further, distributed in-
spection avoids problems related to the different time zones,
when synchronous discussions are not accomplished [8].

RQ4. Most of the companies were interested in using
inspection, distributed inspection, and pair inspection within
pilot projects.

E. Threats to Validity

Internal validity threats regard external factors that may
affect the results. In industrial surveys, it is usually impossi-
ble to know whether the respondents truthfully answered the
questionnaire. Scarce motivation to answer the questionnaire
could also affect the results. To mitigate this threat we
properly designed the survey. Another factor that may have
influenced the internal validity is the number of invited com-
panies that did not answer the questionnaire. Even, the inter-
viewed within our industrial contact network may influence
the internal validity. Another threat could be related to the
difficulty of comprehending the questions (e.g., ambiguous,
not clear, not well formulated). To mitigate this threat, the
questionnaire was designed to(i) minimize comprehension
problems;(ii) reduce complexity and memory overload;(iii)
increase respondent’s attention.

External validity concerns the generalization of the re-
sults. This threat is present in case of industrial surveys.In
fact, we cannot be sure that our sample is representative of
the Italian IT industry in general, and we are aware that

Southern Italy is over-represented compared to Northern
Italy. Accordingly, replications are needed to increase our
confidence in the achieved results.

Construct validity threats concerns the metrics used in
the study. In our case, the questionnaire was designed
using standard ways and scales [20]. The questions were
formulated to minimize possible ambiguities.

V. CONCLUSION AND FUTURE WORK

The survey presented in this study aims at studying and
understanding the state of the practice of software quality
assessment and software error/defect identification in the
Italian industry. Accordingly, we invited 70 companies to
participate and received 30 fully and correctly completed
questionnaires.

The target population consisted of decision makers in
software development. Indeed, we considered IT Italian
companies that develop and sell software as a main part of
their business (e.g., software house) or develop software as
an integral part of their products or services (e.g., commerce
in the healthcare domain).

The main results of the presented study show that software
quality assessment and software error/defect identification
are relevant and regard roughly almost the totality of the in-
terviewed companies. Among the practices considered in the
study, software testing is the widely used and popular one.
The greater part of the companies that regularly uses soft-
ware testing is not interested in the approaches/techniques
we have investigated in the survey presented here. Future
work will aim at investigating this point.

Furthermore, the state of the practice survey and the
subsequent interview, in particular, highlighted some further
discussion points with respect to the global software devel-
opment and the quality of software artifacts produced by
geographically distributed software engineers:

(i) First of all, the business units of the respondent are
often geographically co-located. This indicates that
global software development is only marginally ap-
plied in the interviewed software companies. However,
in case a company has more distributed business units,
they communicate using standard synchronous (e.g.,
instant messaging) and asynchronous communication
media (e.g., email and/or forum).

(ii) Secondly, there is lack of tools that effectively support
distributed teams during software inspections. Despite
a number of distributed inspection processes and tools
have been proposed [9], [16], the industrial practice is
still far to adopt them. This indicates a gap between re-
search laboratories and industrial reality that deserves
a concrete cooperation between academy and industry
based on technology transfer projects.

(iii) Finally, the proposed distributed inspection tools are
not integrated with the SCM system used in the com-
pany. This point is the most critical. Indeed, most of

593

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 609 / 612

the software companies use SCM systems to access the
level two of CMM and to get ISO 9000 certification,
while distributed inspection tools are not widely em-
ployed in the industrial practice despite they are recog-
nized useful to improve software quality. We think that
the integration of these tools within widely known sys-
tems for the management and version control would
significantly increase their diffusion, thus improving
the quality assurance of software systems developed
in distributed contexts. This conjecture needs to be
further investigated conducting industrial user studies
within industrial software projects.

REFERENCES

[1] ANSI/IEEE Std. 829-1983: “Software Test Documentation”,
IEEE Press. lnstitute of Electrical and Electronics Engineers.
Inc.. New York, 1987.

[2] V.R. Basili, “The Role of Experimentation in Software Engi-
neering: Past, Current, and Future,” Proc. 18th International
Conference on Software Engineering, 1996, pp. 442–449.

[3] B. Berliner, “CVS II: Parallelizing software development”. In
Proceedings of the USENIX Winter 1990 Technical Confer-
ence, Berkeley, CA, 1990. USENIX Association, pp.341–352.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey”. In ACM Computing Survey. vol. 41, no. 3, 2009,
pp. 1–58.

[5] M. Ciolkowski, O. Laitenberger, and S. Biffl, “Software re-
views: The state of the practice”. In IEEE Software, vol. 20,
no. 6, 2003, 2003, pp. 46–51

[6] B. Collins-Sussman, B. Fitzpatrick, and C. Pilato. Ver-
sion Control with Subversion. OReilly, 2004. draft from
http://svnbook.red-bean.com/.

[7] R. Czaja and J. Blair,“Designing surveys: a guide to decisions
and procedures”. 2nd ed. London: Sage, 2005.

[8] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora, “Eval-
uating distributed inspection through controlled experiments”,
In IET Software, vol. 3, no. 5, 2009, pp. 381–394.

[9] A. De Lucia, M. Di Penta, F. Lanubile, and M. Torchiano,
“METAMORPHOS: MEthods and Tools for migrAting soft-
ware systems towards web and service Oriented aRchitectures:
exPerimental evaluation, usability, and tecHnOlogy transfer”,
In Proceedings of 13th European Conference on Software
Maintenance and Reengineering, 2009, pp. 301–304.

[10] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora,
“Integrating a distributed inspection tool within an artefact
management system”. In Proceedings of 2nd International
Conference and Data Technologies, 2007, pp. 184–189.

[11] J. Estublier, D. Leblang, A. Van Der Hoek, R. Conradi, G.
Clemm, W. Tichy, and D. Wiborg-Weber, “Impact of Software
Engineering Research on the Practice of Software Configura-
tion Management”, In Transactions on Software Engineering
and Methodology, vol. 14, no. 4, 2005, pp. 383–430.

[12] O. Hauge. Open source software in software intensive indus-
try - a survey. Technical report, Norwegian University of Sci-
ence and Technology Department of Computer and Information
Science, 2007. http://daim.idi.ntnu.no/masteroppgaver/IME/
IDI/2007/3290/masteroppgave.pdf.

[13] IEEE Std 610.12-1990, “IEEE Standard Glossary of Software
Engineering Terminology”, 1990

[14] A. Jelitshka, M. Ciolkowski, C. Denger, B. Freimut, and
A. Schlichting, “Relevant information sources for successful
technology transfer: a survey using inspections as an exam-
ple”, In 1st International Symposium on Empirical Software
Engineering and Measurement, 2007, pp. 31–40.

[15] L. P. W. Kim, C. Sauer, R. and Jeffery “A framework for
software development technical reviews”. In Software Quality
and Productivity: Theory, Practice, Education and Training,
1995, pp. 294–299

[16] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones,
D.C. Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary
Guidelines for Empirical Research in Software Engineering”,
IEEE Transactions on Software Engineering, vol. 28, no. 8, pp.
721–734, August 2002. DOI: 10.1109/TSE.2002.1027796.

[17] O. Laitenberger. A Survey of Software Inspection Technolo-
gies. In Handbook on Software Engineering and Knowledge
Engineering, vol. 2, World Scientific Publishing, 2002, pp.
517–555.

[18] F. Lanubile, T. Mallardo, and F. Calefato, “Tool Support
for Geographically Dispersed Inspection Teams”, In Software
Process: Improvement and Practice, vol.8, no.4, Wiley Inter-
Science, 2003, pp.217–231.

[19] J. Li, R. Conradi, O. Petter, N. Slyngstad, M. Torchiano,
M. Morisio, and C. Bunse, “A State-of-the-Practice Survey of
Risk Management in Development with Off-the-Shelf Software
Components”. In IEEE Transactions on Software Engineering,
vol. 34 no. 2, 2008, pp. 271–286.

[20] N. Oppenheim, “Questionnaire Design, Interviewing and At-
titude Measurement”, Pinter Publishers, 1992.

[21] T. Punter, “What information do Software Engineering prac-
titioners need?”, In Proceedings of the 2nd International Work-
shop on Empirical Software Engineering, 2003, pp. 85–95

[22] M. Torchiano, M. Di Penta, F. Ricca, A. De Lucia, and
F. Lanubile, “Software migration projects in Italian industry:
Preliminary results from a state of the practice survey”, In
Proceeding of 23rd IEEE/ACM International Conference on
Automated Software - Workshop Proceedings (ASE Work-
shops), L’Aquila, Italy, 2008, pp. 35–42.

[23] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslen, “Experimentation in Software Engineering -
An Introduction”, Kluwer, 2000.

[24] M. Young and M. Pezze, “’Software Testing and Analysis:
Process, Principles and Techniques”. John Wiley & Sons, 2008.

594

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 610 / 612

Revisiting the Requirements Communication Problem
from a Knowledge Management Perspective

Hermann Kaindl and Lukas Pilat
Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
kaindl@ict.tuwien.ac.at, lukas.pilat@student.tuwien.ac.at

Abstract—The communication problem between stakeholders in
requirements engineering is well known. It is typically attributed
to stakeholders having different background and domain knowl-
edge and, therefore, using different “languages”. However, even
when this is not the case, there is an inherent problem in such
communication. In order to explain it, we revisit the require-
ments communication problem from a knowledge management
perspective.

Keywords-requirements engineering; communication problem;
knowledge management.

I. INTRODUCTION AND BACKGROUND

Gathering requirements from stakeholders involves com-
munication, which may be modeled via communicative acts as
in [3]. However, what is communicated cannot be the re-
quirements per se, but some representations of them [4]. So, it
is important to understand the consequences of the transfer and
transformations involved.

Knowledge transfer and transformation are central concepts
of knowledge management (KM) in the context of knowledge
sharing in organizations [1]. They are based on the distinction
between tacit knowledge and explicit knowledge, which leads
to the spiral of knowledge [5]. In our own previous work [6],
we have adopted this concept in form of a spiral of require-
ments knowledge. We have not yet elaborated there, however,
on the specific facet of the communication problem related to
knowledge transformation.

Since the stakeholders (or their representatives) as well as
the requirements engineers are humans, the transfer of knowl-
edge can take place either directly through face-to-face ex-
change using human communication, or through the intermedi-
ary of an artifact representing the knowledge to be transferred
(e.g., a document). Neither the human communication nor the
representation in form of an artifact can transmit the knowledge
without communication error and unambiguously.

This results from the fact that every transfer of knowledge
is inherently bound to a knowledge transformation. The knowl-
edge that a stakeholder has in his mind is typically transformed
into an explicit representation in natural language and non-
verbal channels of human communication during direct interac-
tion. The knowledge of a knowledge holder is also transformed
when he codifies it into an artifact, possibly using a formal

language with a certain expressiveness. Additionally, the
receiver of the transferred knowledge transforms codified
knowledge through his interpretation of the given representa-
tion, which is again error-prone when using natural language
due to its inherent ambiguity.

So, in the course of requirements knowledge transfer
between stakeholders and requirements engineers, transforma-
tion of knowledge occurs and thus errors are creeping in. When
the stakeholders speak a different “language,” then the
communication problem is certainly reinforced. Our point is,
however, that the problem is inherent and exists also if this was
not the case.

II. THE REQUIREMENTS COMMUNICATION PROBLEM FROM

A KNOWLEDGE MANAGEMENT PERSPECTIVE

In order to explain this inherent requirements communica-
tion problem from a KM perspective, let us assume that the
stakeholders share the essential domain knowledge and
“language”. Still, they have to use some language to express
and represent requirements in the course of the corresponding
knowledge transfer. We make the following strict distinction
here, being aware that various combinations in semi-formal
languages exist as well:

 Natural language: This is the most widespread kind of
language in practical use for communicating about
requirements. It is well known that any natural language
is inherently ambiguous. It is equally important to know
that also the expressiveness of any natural language is
inherently limited. Wittgenstein coined an excellent
example: the sound of a clarinet can be easily recog-
nized from having heard it before, but a description of
that very sound in natural language is very hard to give.

 Formal language: A truly formal language based on
mathematical axioms is not ambiguous, but it may still
be wrongly interpreted by humans for various reasons.
Such a language is much more restricted in terms of
expressiveness than a natural language. So, even more
can be “lost” when a requirement is represented in a
formal language.

Based on that, let us explain this inherent requirements
communication problem from a KM perspective in more detail

595

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 611 / 612

using Figure 1. A stakeholder is the initial holder of some
requirements knowledge. It has been recognized that the
knowledge of stakeholders is mostly tacit [2] (for the notion of
tacit knowledge in KM see Nonaka [5], e.g.: “Tacit knowledge
is highly personal. It is hard to formalize and, therefore, diffi-
cult to communicate to others.”). So, there is tacit knowledge
about requirements in the stakeholder’s mind. In the course of
requirements elicitation, he tries to communicate his require-
ments knowledge to the requirements engineer. As indicated
above, this can be viewed as a knowledge transfer via
communicative acts as in [3].

In this course, tacit requirements knowledge needs to be
made explicit, i.e., a knowledge transformation occurs. Usu-
ally, the stakeholder will use some natural language. So, what
is actually communicated is both restricted through the
expressiveness of the particular natural language used and
inherently ambiguous. When the requirements engineer
attempts to understand the requirement, he has to internalize
what is communicated to him explicitly and combine it with his
own tacit knowledge. Since the representation in natural
language is inherently ambiguous, an error may be induced. If,
instead, a formal language is used for this communication, its
expressiveness may cause a major difference between the
requirements knowledge held by the stakeholder and the one
internalized by the requirements engineer.

Based on already changed requirements knowledge as
received and internalized from several stakeholders, the
requirements engineer will have to prepare a requirements
specification, i.e., an explicit representation of the knowledge
that he acquired about the requirements. (Of course, he may
intentionally change something, in order to figure out the needs
from mere wishes of the stakeholders, but this is yet another
issue beyond the scope of this paper.) Again, depending on the
(“mix” of) languages used, the same problems arise as
explained above, so that even more errors creep in.

This is an inherent difficulty when doing requirements,
addressed by proceeding in an iterative manner. The initial
knowledge holder can check his knowledge against the knowl-
edge resulting in the specification. This necessitates that he
internalizes the knowledge codified within the specification,
and this is, again, error-prone.

Alternatively, a stakeholder may directly represent his
requirements knowledge in the specification. This approach
avoids the problems through the internalization by the require-
ments engineer, but it still involves the problems of making
tacit requirements knowledge explicit. Of course, this approach
entails other problems as well, especially when several stake-
holders would simply put a requirements specification together,
leading to inconsistencies and even conflicts in the specifica-
tion.

Finally, it should be noted that tacit knowledge about
requirements can also be transferred between the stakeholder
and the requirements engineer through socialization [6]. As
this does not explicitly involve communicative acts, it is be-
yond the scope of this paper.

III. CONCLUSION

In this paper, we revisit the requirements communication
problem from a KM perspective. In this way, we explain a
facet of this problem that appears to have attracted less atten-
tion. Still, it poses an inherent issue when doing requirements.
With an improved understanding of this issue, it may be possi-
ble to reduce the resulting errors in requirements specifications.

REFERENCES
[1] T. H. Davenport, and L. Prusak, Working knowledge: how organizations

manage what they know. Harvard Business School Press, 2000.

[2] R. Gacitua, L. Ma, B. Nuseibeh, P. Piwek, A. N. de Roeck, M.
Rouncefield, P. Sawyer, A. Willis, and H. Yang, “Making Tacit
Requirements Explicit”, in Proceedings of the Second Int Managing
Requirements Knowledge (MARK) Workshop, 40–44, 2009.

[3] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the Core
Ontology and Problem in Requirements Engineering”, in Proceedings of
the 16th IEEE International Requirements Engineering Conference
(RE’08), 71–80, Sept. 2008.

[4] H. Kaindl, and D. Svetinovic, “On confusion between requirements and
their representations”, Requirements Engineering, Springer London, vol.
15, 307–311, 2010.

[5] I. Nonaka, The knowledge-creating company. Harvard Business Review,
1991.

[6] L. Pilat, and H. Kaindl, “A Knowledge Management Perspective of
Requirements Engineering”, in Proceedings of the Fifth IEEE
International Conference on Research Challenges in Information
Science (RCIS’11), 48–59, May 2011.

Figure 1. Transfer, Transformation and Representation of Requirements Knowledge

596

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Powered by TCPDF (www.tcpdf.org)

 612 / 612

http://www.tcpdf.org

