IARIA

ICSEA 2011

The Sixth International Conference on Software Engineering Advances

ISBN: 978-1-61208-165-6

October 23-29, 2011

Barcelona, Spain

ICSEA 2011 Editors

Luigi Lavazza, Universita dell'Insubria - Varese, Italy
Luis Fernandez-Sanz, Universidad de Alcala, Spain

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering -
Potsdam, Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

ICSEA 2011

Forward

The Sixth International Conference on Software Engineering Advances (ICSEA 2011), held on October 23-29, 2011
in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and maintaining various
kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design,
implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced
methodologies, open source, agile software, as well as software deployment and software economics and
education.

The conference had the following tracks:

e Advances in fundamentals for software development
e Advanced mechanisms for software development

e Advanced design tools for developing software

e Advanced facilities for accessing software

e Software performance

e Software security, privacy, safeness

e Advances in software testing

e Specialized software advanced applications

e Open source software

e Agile software techniques

e Software deployment and maintenance

e Software engineering techniques, metrics, and formalisms
e Software economics, adoption, and education

e Business technology

e Improving research productivity

Similar to the previous edition, this event continued to be very competitive in its selection process and very well
perceived by the international software engineering community. As such, it is attracting excellent contributions
and active participation from all over the world. We were very pleased to receive a large amount of top quality

contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2011 technical program committee as
well as the numerous reviewers. The creation of such a broad and high quality conference program would not have
been possible without their involvement. We also kindly thank all the authors that dedicated much of their time
and efforts to contribute to the ICSEA 2011. We truly believe that thanks to all these efforts, the final conference
program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and sponsors.
We also gratefully thank the members of the ICSEA 2011 organizing committee for their help in handling the
logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2011 was a successful international forum for the exchange of ideas and results between
academia and industry and to promote further progress in software engineering research.

We hope Barcelona provided a pleasant environment during the conference and everyone saved some time for
exploring this beautiful city.

ICSEA 2011 Chairs

Advisory Chairs
Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) — Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Simon Tsang, Telcordia - Piscataway, USA

Industry/Research Chairs
Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

ICSEA 2011

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

ICSEA 2011 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) — Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Simon Tsang, Telcordia - Piscataway, USA

ICSEA 2011 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2011 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

ICSEA 2011 Technical Program Committee

Adla Abdelkader University of Oran, Algeria

Mohammed Aboulsamh, University of Oxford, UK

Syed Nadeem Ahsan, TU-Graz, Austria

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Zakarya Alzamil, King Saud University - Riyadh, Saudi Arabia
Vincenzo Ambriola , Universita di Pisa, Italy

Francesca Arcelli, UNiversity of Milano Bicocca, Italy

Cyrille Artho, RCIS/AIST - Tokyo, Japan

Rodrigo Assad, CESAR, Brazil

Gilbert Babin, HEC Montréal, Canada

Rami Bahsoon, The University of Birmingham, UK

Muneera Bano, International Islamic University - Islamabad, Pakistan
Florian Barth, University of Mannheim, Germany

Gabriele Bavota, University of Salerno, Italy

Noureddine Bellhatir, University of Grenoble, France

Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Kenneth Boness, Reading University, UK

Crescencio Bravo Santos, University of Castilla-La Mancha - Ciudad Real, Spain
Hongyu Pei Breivold , ABB Corporate Research, Sweden

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
David W. Bustard, University of Ulster - Coleraine, UK

Fabio Calefato, University of Bari, Italy

José Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology, Sweden

Alejandra Cechich, Universidad Nacional del Comahue - Neuquen, Argentina
Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania
Antonin Chazalet, France Telecom (NRS), France

Yoonsik Cheon, University of Texas at El Paso, USA

Morakot Choetkiertikul, Mahidol University, Thailand

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortazar, University of Deusto - Bilbao, Spain

Lirong Dai, Seattle University, USA

Darren Dalcher, Middlesex University - London, UK

Paulo Asterio de Castro Guerra, Tapijara Programacao de Sistemas Ltda. - Lambari, Brazil
Claudio de la Riva, Universidad de Oviedo - Gijon, Spain

Steven A. Demurjian, The University of Connecticut - Storrs, USA

Giovanni Denaro, Universita degli Studi di Milano - Bicocca, Italy

Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy

Van Nuffel Dieter, University of Antwerp, Belgium

Sebastian Dochow, University of Freiburg, Germany

Lydie du Bousquet, Laboratoire d'Informatique de Grenoble, France

Lars Ebrecht, German Aerospace Centre (DLR), Germany

Juho Eskeli, VTT, Finland

Umar Farooq, SMART Technologies Inc., Canada

Fausto Fasano, University of Molise, Italy

Jodo M. Fernandes, Universidade do Minho - Braga, Portugal

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Stoyan Garbatov, Instituto de Engenharia de Sistemas e Computadores Investigacdo e Desenvolvimento - Lisboa,
Portugal

José Garcia-Fanjul, University of Oviedo, Spain

Angelo Gargantini, University of Bergamo, Italy

Christophe Gaston, CEA LIST - Gif sur Yvette, France

Michael Gebhart KIT - Karlsruhe Institute of Technology, Germany

Paul J. Gibson, Telecom & Management SudParis, France

Robert L. Glass, Griffith University - Brisbane, Australia

Vic Grout, Glyndwr University - Wrexham, UK

Sebastian Gunther, Otto-von-Guericke-Universitat Magdeburg, Germany
Ensar Gul, Marmara University - Istanbul, Turkey

Zhensheng Guo, Siemens, Germany

Bidyut Gupta, Southern Illinois University - Carbondale, USA

Jon G. Hall, The Open University - Milton Keynes, UK

Herman Hartmann, Synopsys - Eindhoven, The Netherlands

Zeljko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Noraini Ibrahim University of Technology Malaysia (UTM), Malaysia
Naveed Ikram, International Islamic University - Islamabad, Pakistan
Muhammad llyas, Johannes Kepler University (JKU) - Linz, Austria

Visar Januzaj, Technische Universitdt Darmstadt, Germany

Antonio Javier Garcia Sdnchez, Technical University of Cartagena, Spain
Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM) - Johor, Malaysia
Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun
Nevin Vunka Jungum, University of Technology Mauritius (UTM), Mauritius
Hermann Kaindl, TU-Wien, Austria

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Ahmed Kamel, Concordia College - Moorhead, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Tatjana Kapus, University of Maribor, Slovenia

Iman Keivanloo, Concordia University - Montreal, Canada

Petri Kettunen, Helsinki University of Technology, Finland

Holger Kienle, Malardalen University, Sweden

William Knottenbelt, Imperial College London, UK

Radek Koci, Brno University of Technology, Czech Republic

Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Ondrej Krejcar, VSB - Technical University of Ostrava, Czech Republic
Natalia Kryvinska, University of Vienna, Austria

Cyril S. Ku, William Paterson University, USA

Sukhamay Kundu, Louisiana State University - Baton Rouge, USA
Eugenijus Kurilovas, Vilnius University, Lithuania

Raquel Lacuesta Gilaberte, Zaragoza University, Spain

Alla Lake, LInfo Systems, LLC - Greenbelt, USA

Luigi Lavazza, Universita dell'Insubria - Varese, Italy

Cynthia Y. Lester, Tuskegee University, USA

Plinio Sa Leitdo-Junior, Federal University of Goias, Brazil

Cati Lladd, Universitat de les Illes Balears, Spain

Maria Teresa Llano Rodriguez, Heriot-Watt University, UK

Sérgio F. Lopes, University of Minho, Portugal

Juan Pablo Lépez-Grao, University of Zaragoza, Spain

Sarah Low, University of Innsbruck, Austria

Ricardo J. Machado, University of Minho, Portugal

Oliver Maeckel, Siemens AG, Corporate Technology - Munich, Germany
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium

Eda Marchetti, ISTI-CNR-Pisa, Italy

Leonardo Mariani, University of Milan Bicocca, Italy

Adriana Martin, UNPA & GIISCo COMAHUE, Argentina

Andrew McDonough, Atos Origin, Spain

Karl Meinke, Blekinge Institute of Technology, Sweden

Jose Merseguer, Universidad de Zaragoza, Spain

Henry Muccini, University of L'Aquila, Italy

Muhanna Muhanna, University of Nevada - Reno, USA

Natalja Nikitina , KTH (Royal Institute of Technology) - Stockholm, Sweden
Mara Nikolaidou, Harokopio University of Athens, Greece

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering - IESE, Germany
Rocco Oliveto, University of Molise, Italy

Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Paivi Parviainen VTT, Software Technologies Center, Finland

Aljosa Pasic, ATOS Research, Spain

Fabrizio Pastore, University of Milano - Bicocca, Italy

Asier Perallos, University of Deusto, Spain

Oscar Pereira, Instituto de Telecomunicagdes - University of Aveiro, Portugal
David Pheanis, Arizona State University, USA

Christian Prehofer, Ludwig-Maximilians-Universitdat Minchen, Germany
Claudia Raibulet, Universita degli Studi di Milnao-Bicocca, Italy

Outi Raiha, Tampere University of Technology, Finland

Muthu Ramachandran, Leeds Metropolitan University, UK

Hassan Reza, University of North Dakota - School of Aerospace, USA
Samir Ribic, University of Sarajevo, Bosnia and Herzegovina

Elvinia Maria Riccobene, University of Milan - Crema, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Maria Luisa Rodriguez Almendros, Universidad de Granada, Spain
Antoine Rollet, University of Bordeaux, France

Siegfried Rovrais, TELECOM Bretagne, France

Patrizia Scandurra, University of Bergamo - Dalmine, Italy

Giuseppe Scanniello, Universita degli Studi della Basilicata - Potenza, Italy
Christelle Scharff, Pace University, USA

Rainer Schmidt, HTW-Aalen, Germany

Istvan Siket, University of Szeged, Hungary

Bernd Steinbach, Freiberg University of Mining and Technology, Germany
Thomas Stocker, University of Freiburg, Germany

Dinesh Subhraveti, IBM Almaden Research Center - San Jose, USA

Daniel Sundmark, Malardalen University, Sweden

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) - Ishikawa, Japan
Hadaytullah, Tampere University of Technology, Finland

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Pierre Tiako, Langston University - Oklahoma, USA

Durga Toshniwal, Indian Institute of Technology Roorkee - Uttaranchal, India

Davide Tosi, University of Insubria - Como, Italy

Peter Trapp, Ingolstadt, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Simon Tsang, Telcordia - Piscataway, USA

Javier Tuya, Universidad de Oviedo - Gijon, Spain

Roland Ukor, FirstLing Limited, UK

Sergiy Vilkomir, East Carolina University - Greenville, USA

Rainer Weinreich, Johannes Kepler University Linz, Austria

Martin Wojtczyk, Technische Universitat Miinchen, Germany & Bayer HealthCare, USA
Maribel Yasmina Santos, University of Minho, Portugal

Michal Zemlicka, Charles University, Czech Republic

Qiang Zhu, The University of Michigan - Dearborn, USA

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

Software Product Line Agility
Ahmed Abouzekry and Riham Hassan

An Agile Model-Driven Devel opment Approach - A case study in afinance organization
Mina Bostrom Nakicenovic

A Planning Poker Tool for Supporting Collaborative Estimation in Distributed Agile Development
Fabio Calefato and Filippo Lanubile

Scrum Maturity Model: Validation for IT organizations' roadmap to devel op software centered on the client role
Alexandre Yin, Soraia Figueiredo, and Miguel Mira da Siva

Usage of Robot Framework in Automation of Functional Test Regression
Sanislav Stresnjak and Zeljko Hocenski

A Test Purpose and Test Case Generation Approach for SOAP Web
Sebastien Salva and | ssam Rabhi

Ev-ADA: A Simulation-driven Evaluation Architecture for Advanced Driving-Assistance Systems
Assia Belbachir, Jean-Christophe Smal, Jean-Marc Blosseville, and Sebastien Glaser

On the Preliminary Adaptive Random Testing of Aspect-Oriented Programs
Reza Meimandi Parizi and Abdul Azim Abdul Ghani

Devising Mutant Operators for Dynamic Systems Models by Applying the HAZOP Study
Rodrigo Fraxino Araujo, Auri Marcelo Rizzo Vincenzi, Francois Delebecque, Jose Carlos Maldonado, and
Marcio Eduardo Delamaro

A Static Robustness Grid Using MISRA C2 Language Rules
Mohammad Abdallah, Malcolm Munro, and Keith Gallagher

A Specifications-Based Mutation Engine for Testing Programs in C#
Andreas S. Andreou and Pantelis M. Yiasemis

Component-based Software System Dependency Metrics based on Component Information Flow M easurements
Majdi Abdellatief, Abu Bakar Md Sultan, Abdul Azim Abd Ghani, and Marzanah A.Jabara

Module Interactions for Model-Driven Engineering of Complex Behaviour of Autonomous Robots
Vladimir Estivill-Castro and Rene Hexel

14

20

30

35

43

49

58

65

70

76

Case Study for a Quality-Oriented Service Design Process
Michael Gebhart, Suad Sejdovic, and Sebastian Abeck

Meta-Model for Global Software Development to Support Portability and Interoperability in Global Software
Development
Bugra Mehmet Yildiz and Bedir Tekinerdogan

A New Approach to Software Devel opment Process with Formal Modeling of Behavior Based on Visualization
Abbas Rasool zadegan and Ahmad Abdollahzadeh Barfourosh

Non-Functional Requirements for Business Processes in the Context of Service-Oriented Architectures
Oliver Charles and Bernhard Hollunder

A framework for adapting service-oriented applications based on functional/extra-functional requirements
tradeoffs
Raffaela Mirandola, Pasqualina Potena, Elvinia Riccobene, and Patrizia Scandurra

PSW: A Framework-based Tool Integration Solution for Global Collaborative Software Devel opment
Juho Eskeli, Jon Maurolagoitia, and Carmen Polcaro

Feature-Oriented Programming and Context-Oriented Programming: Comparing Paradigm Characteristics by
Example |mplementations
Nicolas Cardozo, Sebastian Gunther, Theo D'Hondt, and Kim Mens

Soft Constraintsin Feature Models
Jorge Barreiros and Ana Moreira

Feature Modeling of Software as a Service Domain to Support Application Architecture Design
Karahan Ozturk and Bedir Tekinerdogan

Adding Support for Hardware Devices to Component Models for Embedded Systems
Luka Lednicki, Juraj Feljan, Jan Carlson, and Mario Zagar

A Service Component Framework for Multi-User Scenario Management in Ubiquitous Environments
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier

A Graph-Based Requirement Traceability Maintenance Model
Vikas Shukla, Guillaume Auriol, and Claude Baron

A Systematic Mapping Study on Patient Data Privacy and Security for Software System Devel opment
Isma Masood and Saad Zafar

Impact on the inclusion of security in the UPnP protocol within the Smart Home

92

98

104

112

118

124

130

136

142

149

155

161

166

171

Alberto Alonso Fernandez, Alegjandro Alvarez Vazquez, Maria del Pilar Almudena Garcia Fuente, and Ignacio
Gonzalez Alonso

OntolL og: Using Web Semantic and Ontology for Security Log Analysis
Clovis Nascimento, Felipe Ferraz, Rodrigo Assad, Danilo Leite, and Victor Hazin

Intrusion Detection with Symbolic Model Verifier
Ines Ben Tekaya, Mohamed Graiet, and Bechir Ayeb

Security Quality Assurance on Web Applications
Rodrigo Assad, Felipe Ferraz, Henrique Arcoverde, and Slvio Meira

On Generating Security |mplementations from Models of Embedded Systems
Mehrdad Saadatmand, Antonio Cicchetti, and Mikael §odin

Proposal for Ground Shipping High Volume of Data Parameter in Supersampling Unmanned Aircraft Through
Radio Modem

Manuel Sanchez Rubio, Vicente Millet Coll, Neves Seoane Vieira, Luis De Marcos Ortega, and Jose Javier
Martinez Herraiz

The Smart Persistence Layer
Mariusz Trzaska

UML-Based Modeling of Non-Functional Requirements in Telecommunication Systems
Mehrdad Saadatmand, Antonio Cicchetti, and Mikael §odin

A maintenance Approach of aBJl Index Configuration
Said Taktak and Jamel Feki

Software Cache Eviction Policy based on Stochastic Approach
Soyan Garbatov and Joao Cachopo

Performance Simulation of a System's Parallelization
Markus Meyer, Helge Janicke, Peter Trapp, Christian Facchi, and Marcel Busch

Towards Executable Business Processes with the Problem Oriented Engineering Process Algebra
Dariusz W. Kaminski, Jon G. Hall, and Lucia Rapanotti

Optimal Functionality and Domain Data Clustering based on Latent Dirichlet Allocation
Soyan Garbatov and Joao Cachopo

Formal Parsing Analysis of Context-Free Grammar using Left Most Derivations
Khalid A. Buragga and Nazir Ahmad Zafar

177

183

190

198

202

206

213

221

227

233

239

245

251

Functional Complexity Measurement: Proposals and Evaluations
Luigi Lavazza and Gabriela Robiolo

Design Patterns for Model Transformations
Kevin Lano and Shekoufeh Kolahdouz-Rahimi

Component-oriented Software Development with UML
Nara Sueina Teixeira and Ricardo Pereira e Slva

Metrics in Distributed Product Devel opment
Maarit Tihinen, Paivi Parviainen, Rob Kommeren, and Jim Rotherham

Edola: A Domain Modeling and Verification Language for PLC Systems
Hehua Zhang, Ming Gu, and Xiaoyu Song

A Practical Method for the Reachability Analysis of Real-Time Systems Modelled as Timed Automata
Abdeslam En-Nouaary and Rachida Dssouli

Reverse Engineering of Graphical User Interfaces
Ines Coimbra Morgado, Ana Paiva, and Joao Pascoal Faria

Towards Design Method Based on Formalisms of Petri Nets, DEV'S, and UML
Radek Koci and Vladimir Janousek

Invariant Preservation by Component Composition Using Semantical Interface Automata
Sebti Mouelhi, Samir Chouali, and Hassan Mountassir

Method for CMMI-DEV Implementation in Distributed Teams
Tiago da Cunha Oliveira and Miguel Mira da Slva

Advanced Object Oriented Metrics for Process M easurement
Shreya Gupta and Ratna Sanyal

Quality Issuesin Global Software Development
Sanjay Misra and Luis Fernandez-Sanz

A Systematic Review of Self-adaptation in Service-oriented Architectures
Maria del Pilar Romay, Luis Fernandez-Sanz, and Daniel Rodriguez

A Formal Specification of G-DTD:A Conceptual Model to Describe XML Documents
Zurinahni Zainol and Bing Wang

257

263

269

275

281

287

293

299

305

312

318

325

331

338

Formal Specification of Software Design Metrics
Meryem Lamrani, Younes El Amrani, and Abdelaziz Ettouhami

E-FOTO: Development of an Open-Source Educational Digital Photogrammetric Workstation

Jorge Luis N. S Brito, Rafael A. Aguiar, Marcelo T. Slveira, Luiz Carlos T. C. Filho, Irving S. Badolato, Paulo
Andre B. Pupim, Patricia F. Reolon, Joao A. Ribeiro, Jonas R. Slva, Orlando B. Filho, and Guilherme L. A. Mota

Vitalizing Local ICT-industry by Acceleration of FLOSS-based Software Product Development: A Case Study of

the ICT-industry in Okinawa
Jun lio, Yasuyuki Minei, Masato Kubota, and Kazuhiro Ooki

Empirical Case Study of Measuring Productivity of Programming Language Ruby and Ruby on Rails
Tetsuo Ndoa and Chi Jia

Querying Source Code Using a Controlled Natural Language
Oleksandr Panchenko, Stephan Muller, Hasso Plattner, and Alexander Zeier

Towards Complementing User Stories
Christian Kop

Performance Evaluation of a Generic Deployment Infrastructure for Component- based S/W Engineering
Abdelkrim Benamar and Noureddine Belkhatir

A Proof-based Approach for Verifying Composite Service Transactional Behavior
Lazhar Hamel, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, and Walid Gaaloul

Certification of MDA Tools: Vision and Application
Oksana Nikiforova, Natalja Paviova, Antons Cernickins, and Tatjana Jakona

Automatic Generation of Graphical User Interfaces From VDM++ Specifications
Carlos Nunes and Ana Paiva

An Approach to Model, Configure and Apply QoS Attributes to Web Services
Ahmed Al-Moayed and Bernhard Hollunder

Transformation of Composite Web Service for QoS Extension into ACMEArmani

Amel Mhamdi, Raoudha Maraoui, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, and Eric Cariou

ATL Transformation of UML 2.0 for the Generation of SCA Model

Soumaya Louhichi, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, Walid Gaaloul, and Eric Cariou

Towards the Development of Integrated Reuse Environments for UML Artifacts
Moataz Ahmed

348

356

362

367

369

374

380

386

393

399

405

411

418

426

An Automated Translation of UML Class Diagrams into a Formal Specification to Detect Inconsistencies
Khadija El Miloudi, Younes EI Amrani, and Abdelaziz Ettouhami

UML 2.0 Profile for Structural and Behavioral Specification of SCA Architectures
Wided Ben Abid, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, Walid Gaaloul, and Eric Cariou

Process Improvement and Knowledge Sharing in Small Software Companies: A Case Study
Minna Kivihalme, Anne Valsta, and Raine Kauppinen

Choosing a Business Software Systems Development and Enhancement Project Variant on the basis of
Benchmarking Data— Case Study
Beata Czarnacka-Chrobot

Towards Functional and Constructional Perspectives on Business Process Patterns
Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, and Herwig Mannaert

Practical Experiences with Software Factory Approachesin Enterprise Software Delivery
Alan Brown, Ana Lopez, and Luis Reyes

A "Future-Proof" Postgraduate Software Engineering Programme: Maintainability 1ssues
J Paul Gibson and Jean-Luc Raffy

Using Software Engineering Principles to Develop a Web-Based Application
Cynthia Lester

How to Think about Customer Value in Requirements Engineering
Xinwei Zhang, Guillaume Auriol, Claude Baron, and Vikas Shukla

Migrating Functional Requirementsin SSUCD Use Cases to a More Formal Representation
Mohamed El-Attar and James Miller

KM-SORE: Knowledge Management for Service Oriented Requirements Engineering
Muneera Bano and Naveed |kram

Brainstorming as a Route to Improving Software Processes
Celestina Bianco

Web-Based Focus Groups for Requirements Elicitation
Carla Farinha and Miguel Mira da Slva

Mapping Architectural Concepts to SysML Profile for Product Line Architecture Modeling
Shahliza Abd Halim, Mohd Zulkifli Mohd Zaki, Noraini Ibrahim, Dayang N. A. Jawawi, and Safaai Deris

432

439

447

453

459

465

471

477

483

487

494

500

504

510

Exploring Architecture Design Alternatives for Global Software Product Line Engineering
Bedir Tekinerdogan, Semih Cetin, and Ferhat Savci

Towards CMMI-compliant MDD Software Processes
Alexandre Marcos Lins de Vasconcel os, Giovanni Giachetti, Beatriz Marin, and Oscar Pastor

From Boolean Relations to Control Software
Federico Mari, Igor Mélatti, Ivano Salvo, and Enrico Tronci

Empirical Evidence in Software Architecture: A Systematic Literature Review Protocol
Nadia Qureshi, Naveed | kram, Muneera Bano, and Muhammad Usman

Agile Development of Interactive Software by means of User Objectives
Begona Losada, Maite Urretavizcaya, and Isabel Fernandez de Castro

REfIS: A Stage-based Methodology for Eliciting Requirements
Felipe Ferraz, Leopoldo Ferreira, Rodrigo Assad, Renato Ferreira, and Sivio Meira

A Metamodel for Representing Safety LifeCycle Devel opment Process
Yulin Zhang, Brahim Hamid, and Damien Gouteux

On the Extensibility of Plug-ins
Vanea Chiprianov, Yvon Kermarrec, and Segfried Rouvrais

Effective Task Allocation in Distributed Environments: A Traceability Perspective
Salma Imtiaz and Naveed | kram

An Agile Method for Model-Driven Requirements Engineering
Grzegorz Loniewski, Ausias Armesto, and Emilio Insfran

Evidence in Requirements Engineering: A Systematic Literature Review Protocol
Talat Ambreen, Muhammad Usman, Naveed | kram, and Muneera Bano

Success Factors Leading to the Sustainability of Software Process Improvement Efforts
Natalja Nikitina and Mira Kajko-Mattsson

Software Quality Assessment and Error/Defect Identification in the Italian Industry Preliminary Results from a
State of the Practice Survey
Fausto Fasano, Giuseppe Scanniello, Andrea De Lucia, and Genoveffa Tortora

Revisiting the Requirements Communication Problem from a Knowledge Management Perspective
Hermann Kaindl and Lukas Pilat

515

522

528

534

539

546

550

557

563

570

576

581

589

595

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Software Product Line Agility

Ahmed Abouzekry

Computer Science Department
Arab Academy for Science and Technology
Cairo, Egypt
abouzekry@yahoo.com

Abstract— Software reuse constitutes a significant challenge
for different development communities, while systematic reuse
is a difficult target to achieve. Software Product Line (SPL)
has been nominated as one of the effective approaches
promoting software reuse. In this paper, we propose the
Enterprise Product Line Software Process (EPLSP) that
integrates practices of both the Enterprise Unified Process
(EUP) and the Agile Unified Process (AUP). This integration
benefits the engineering process with both reusable
components architecture and fast time to market final
products. EPLSP strategy focuses on the two major aspects of
SPL namely the Core Assets (CA) and the Product
Development (PD). CAs are those reusable artifacts and
resources that form the basis for the SPL. PD involves
building, acquisition, purchasing, retrofitting earlier work of
software products, or any combination of these options.
EPLSP promotes a clear up-front architecture in the CA while
employing agility for PD. Constructing an up-front
architecture for CA is effective in enhancing reusability and
increasing productivity. Using agility in PD is meant to
improve the time to market variable. We demonstrate the
EPLSP approach with an SME case study on a Retail
Management System (RMS) named FOCUS. Further, we
leverage an evaluation framework to assess the effectiveness of
EPLSP when applied to FOCUS. This case should define
clearly the preferred areas of agility interference in the SPL,
and where we need architecture to provide a sustainable
production.

Keywords- Enterprise Unified Process;
Process; Software Product line.

Agile Unified

1. INTRODUCTION

Modules, objects, components and services are all
different patterns of the reusability practice. Software
Product Line (SPL) is recognized as an approach for
systematic reuse [1]. SPL matches software with different
industries representing it as a manufactured tangible
product. Further, it is one of the most important practices in
sustainable organizations for the ultimate cost and time
reduction [1].

SPL as an effective reuse approach is highly recognized
in software enterprises. Small and Medium Enterprises
(SMEs) do not firmly apply principles, but one can still
recognize a chaotic version of such principles over their
determined or formal processes.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Riham Hassan
Computer Science Department
Arab Academy for Science and Technology
Cairo, Egypt
riham@cairo.aast.edu

SPL consists of three main activities namely Core Asset
(CA) Development, Product Development (PD) and
Management. CAs represents the basic reusable components
in the SPL. CAs could be a class, a blueprint, a series of
programming code or even a document, while the PD
provides the means of final customer usable product. SPL
management activity plays critical role in coordinating,
supervising, planning and other administration practices
needed across the production activities.

Agile methods promote productivity and values of
iterative development over heavy-weight methodologies
through number of practices that enable cost effective change
[2]. Agile and SPL merge of practices covers the increasing
need for shorter time to market and higher product quality
[7]. On the other hand, the more the SPL becomes agile, it
loses some of its essential properties, as strategic, planned
reuse which yields to predictable results. The SPL reuse
practice requires precise support in different areas like
organizational capabilities, management and technical roles,
architecture optimization...etc seeking a systematic approach
for reusability. Incorporating agile practices in developing
SPL raises some questions like what is the extent of
interfering between the agile and SPL? And could agile fit in
both CAs and PD?

SPL complexity promotes the need for an up-front
design and heavy architecture [8]. CA development should
conform to some standards and include detailed description
and using instructions even if this CA is a Commercial Off-
The-Shelf (COTS) component.

In this paper, we propose the Enterprise Product Line
Software Process EPLSP as a roadmap for the
implementation of the SPL with integration of agile
practices. EPLSP covers the essential architectural practices
in CA building, to solve the asset management pitfalls, and
the use of agile practices in the PD to enhance the time to
market variables.

EPLSP integrates the Enterprise Unified Process (EUP)
[9] with the Agile Unified Process (AUP) [10]. EUP is an
extension of the IBM Rational Unified Process (RUP) [11].
AUP is a simplified version of the IBM RUP that applies
agile techniques in modeling, development and management
[10]. Using the EUP overcomes the problems of managing
such a family of products; like change management,
strategic reuse...etc. EUP enables the enterprise to apply the

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

governance practices and disciplines (project management,
retirement management...etc.) within the process. AUP
allows for exploiting the agile essence to lighten the
response to market requirements needed to enhance
productivity. Further, AUP enables the customization of the
development process to multiple agile processes or some of
their combinations like SCRUM and XP. EPLSP focuses on
the extent of agility needed in the SPL practice and where
agility best fits in the SPL development life cycle. Further,
EPLSP depicts where SPL could most benefit from its goals
in the production level.

The rest of this paper is structured as follows: Section 2
surveys the state of the art in integrating agile practices into
SPL. Section 3 depicts the EPLSP process and the artifacts
produced in each step. Section 4 demonstrates EPLSP on
the Retail Management System (RMS) FOCUS. Finally,
Section 5 concludes the paper with remarks for future work.

II. RELATED WORK

Investigating whether Agile and SPL could integrate to
complement each other; there stills a debate among the
research community about its extent and feasibility.

Tian and Cooper [2] argue that the combination of Agile
and SPL forming the Agile Software Product Line
Methodology (ASPLM) could shorten time to market
maintaining the quality, in which the ASPLM leaves room
for futher development work to meet customer's changing
requirements, rather than pure customization of CA. They
showed that CA, PD and SPL Management activities need
to be investigated for possible agility.

Carbon et al. [3] had conducted a class-room experiment
following the motivation to present preliminary results
showing the successful merge between Agile and SPL. They
concluded to a result that agile in SPL reduces time spent on
design (Increases the speed), while SPL keeps changes to
minimum (Increases quality).

On his research, Geir K. Hanssen [4] stated an answer
for how to combine Agile and SPL. In a successful
marriage, he stated that this combination leads to; risk
reduction, organizational development, reduced
maintainability, community building, openness and
visibility and company culture improvement, contributing to
the emergence of a software ecosystem, which refers to how
organizations should exist together as an ecosystem.

One of the popular case studies conducted by the
Software Engineering Institute in Carnegie Mellon
University is Salion [5]. Salion is an SME with no
experience in its application area. It pursued a reactive
approach to its Agile SPL achieving a phenomenal reuse
level of 97% with its 21 employees counting seven
developers only.

Despite the success of the previous cases, they did not
take in consideration the difference in nature between the
CA and the PD. As any other production the sustainability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

of the production depends on the systematic the whole
process, which should be only achieved by architecture

III. ENTERPRISE PRODUCT LINE SOFTWARE PROCESS
(EPLSP)

We propose EPLSP as a software process with the goal of
effective production of SPL that better meets its market
requirements. EPSLP integrates agile and SPL practices
from the two extensions of IBM RUP namely EUP and
AUP. EPLSP covers the Enterprise disciplines needed in the
SPL to improve the change management and architectural
variability in the CA phase. These parameters are improved
while taking into account the increasing demand on lower
time to market and quality software production through
employing agile practices.

A. EUP and AUP

EUP is an information technology lifecycle that
encompasses the activities of an IT department. Further,
EUP adds the enterprise disciplines required to effectively
manage organizations' portfolio of systems as described in
Figure 1.

r]] N
Business Lifecycle

IT Lifecycle - EUP

System Lifecycle

System Development Lifecycle - RUP

. J

Figure 1. The Scope of different process lifecycles.

EUP extends RUP to include the operation and support
of a system after being in production along with its eventual
retirement, where the two new phases benefits the concept
of strategic reuse promoted by the SPL. Further, EUP
enhances the overall process with the separation of the
disciplines into; development, support and enterprise as
illustrated in Figure 2.

‘ Incepliud E\ahnratmr{ CDnstructanlTranslliun‘ PdeLICtIDI‘I‘ Retirement

Development Disciplines

Business Modeling
Reguirements
Analysis and Design
Implementation
Test
Deployment

Support Disciplines
Configuration Management
Project Management
Environment
Operations and Support

Enferprise Disciplines

Enterprise Business Modeling
Portofolio Management
Enterprise Architecture
Strategic Reuse

People Management
Enterprise Administration
Software Process Improvement

Very High High Medium Low Very Low N/A

Levels of interference

Figure 2: Enterprise Unified Process [9]

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

AUP is an Ultra-lightweight variant of RUP, with the
work disciplines and products simplified and reduced as

shown in Figure 3.
Phases

Inception Elaboration Construction Transition

Model ﬁ%‘;

Implementation
Test

Deployment

Configuration Management |)
Project Management | _oasiiiie e { e, oo ool |
Environment

" E1 c1c2 Ch T T2

Iterations

Copyright 2005 Scott ¥¥. Ambler

Figure 3: The Agile Unified Process.

We employ the practices of EUP and AUP that facilitate
different management levels and all involved parties in the
production activities to highly control tasks associated to
their roles. Those practices complement the EPLSP and
close the IT department circle within a tightly managed
manner with the following recommendations;

e Documenting architecture using Unified Modeling
Language (UML)

e Applying SCRUM as an Agile project management
practice

e COTS could be used across the product line

e Configuration Management software is essential to
manage releases

e Specific software to manage commonality and variability
to enhance the strategic reuse option.

The different nature of the CA and the products is one of
the major challenges facing the application of EUP and
AUP to SPL. This marriage between EUP and AUP is
intended to facilitate the application of both processes to
SPL. CA needs the architecture provided by the EUP and
the extension of the production and retirement phases. The
need for fast response to market for the products could be
achieved with agility. AUP has the same phases as EUP but
simplified, so there is no need to rework the architecture of
the artifacts to fit in the other SPL production activities.

B. EPLSP Process

EPLSP provides means to integrate agile practices into
the SPL development life cycle. Figure 4 depicts the overall
process structure in EPLSP. The initial phase on the bottom
of the process consists of the domain engineering, in which
it represents the knowledge needed to build the reusable
artifacts like; scoping, requirement engineering, design,
testing, and the realizing of the commonality and variability
of the product line practice with the CA development
activities. In the middle there exists the CA base which
contains the reusable artifacts. The right downward arrow
represents the reactive approach in which the start point is
the PD.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The PD activity is split into two tasks, development task
and release task for two reasons, the separation between the
deployment and the production which differs in the
application of disciplines, and to maintain a direct agile
incremental iterative practice.

The management tent could be seen as the containing
rounded box, providing SPL process with the needed
management disciplines solely.

' Enterprise Product Line Software Process (EPLSP) '

Support Management

New
Requirements Product Release
— \.

Z S

Agile Unified Process (AUP)

Product
Development

Refined Minimal
Architecture

Core Asset
Development

Domain Engineering

A 4

Figure 4. EPLSP Conceptual Model

CA development is the activity intended to build
the reusable components of the SPL. CA development
requires prior domain expertise, heavy architecture and
management capabilities. This could be achieved only
by a well defined engineering architectural centric
process to ease the reusability of this asset. EPLSP
proposes the application of the EUP as a basic process
for the domain engineering and CA instantiation as
shown in Figure 5.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

o] i d
“ Project Management perafions an

Support Management
Configuration and Change Management
Inception Elaboration | Construetion Transition |Production| Retirement
.. |Domain Scoping| Requirement Model Unit Testin Quality
@ |5 and Planning | Specification 9 Assurance| System
£
c
S | & | Estimates and | Architecture Buildin Manage | Rework
2 g Schedules Definition 9 Change
>
|0
T W5 Develop Build Test Develop Develop User
2lc| o Support)
El|lw 2 Business Cases Cases __|Documentation
g £l< Documentation System Data
2lals Risk and Staffing and . Support | Migration
IS] 8) Integration "
= Quality Task Testin User Testing
& Assessments allocation 9
gl2] §)
S|t lg g Building
R .
| 2|2 g| Requirement | Requirement
9 (2 Definition Specification i
§* 3 \n_lregr;ilmn User Testing
pu a esting
5
g o
ol] -
s(3a Training System
215 2
§ E E Plan System Deployment Removal

Figure 5. EPLSP Milestones

PD activity is usually in need of the fast response to
customer requirements, and early delivery of quality
products. These goals could be achieved by the agile
methodologies, for this reason EPLSP preferably uses AUP
as a simplified version from the unified process to eliminate
unneeded heavy architecture. Figure 5 determines
milestones in every phase of the EPLSP.

v. Focus®RMS

This section describes an RMS named FOCUS to
demonstrate the feasibility of the EPLSP process. Further,
we discuss FOCUS commonalities and the challenges we
faced during and after the development process.

A. FOCcUS® subsystems.

FOCUS® is a mini ERP specially developed for small
and medium retail outlets. This system could work as one
unit, integrated and linked over one database or every
subsystem separated as a single unit as depicted in Figure 6.

<<Ethernet>> <<processor>>
11 - POS
<<processor>>
table>>
SErVer <<execu
POS
<<table>> FE
database]
H A
P Sl i cemeners| <<processor>>
Data access o I “_ Inventory

: <<executable>>
11 1.1 i Stock control

<<Ethernet>>

<<processor>>
Accounting

<<executable>>
General Ledger

Figure 6. FOCUS® RMS Deployment Diagram.

<<processor>>
Administration

<<executable>>
Back office

<<Ethernet>>

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

FOCUS is composed of the following subsystems:

e FOCUS® stock control, which holds the essential stock
transactions; basic entries, receiving, item cards. . .etc.

e FOCUS® Point of Sale (POS): is where daily sales
transactions managed by salesperson in the checkout
area of an outlet or a shop.

e FOCUS® General Ledger (GL): reflects automatically
the daily selling, receiving and monetary transactions to
journal entries and accounts, and reports financial
statements.

. FOCUS® back office is the administrative tool, which
facilitates higher management to monitor transactions,
authorize permissions, link subsystems and modify
system settings.

The system was primarily developed to target large
sector of retail outlets with the following features; installed,
not customizable, self setup with a simple instructions guide
and easy to understand and apply. Since these requirements
could rarely be found in SME's business software, it was
planned to produce enhanced version yearly with new
features; based on wide survey for user requirements.

Figure 7 depicts the system requirements and
demonstrate the similarities as classes, layers and complete
sub modules; like the security module, transaction file and

product catalogue.
mck Control
(
Catalogue
7 [

% d e &

Back Office

POS
_____ - X - &
gw.mu-»/anmm.wamr ‘ -
~ ':
| —

Cashier @

Figure 7. FOCUS® RMS System Requirements.

General Ledger

Ledger
Accaunts Monetary
Transaction

- 7

Accountant
;

Stock Clerk

! \

1) Company

The software was built in a small enterprise named
SCOPE Communications, in which it employs 13 people; 6
only is counted as developers, and it took 18 months to
release the basic version of the full system.

This basic version of the system contains 135 KLOC in
total, with 160 database tables, 1100 stored procedures, 450
forms and 320 reports covering the four modules.

The core process was a simple version of the incremental,
iterative process; it was described and documented using the
UML. The system was built using a similar proactive
approach to the SPL's, with no use of any Configuration

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Management software. Test cases are prepared with two
concerns; business cases depend on customer stories and
technical cases over the functions, for data integrity.

2) FOCUS Production Challenges
From our study of the former system we have observed
some challenges resulting from the application of the
previous process, like;
e Recurrent costs associated with the reuse of non-
architectural artifacts
e Higher risk resulted from unplanned resource allocation
and estimation
e Complexity of managing the
variability of artifacts
e Wasted time resulted from the duplication of code and
documentation
e Corrective bug fixing rather than preventive associated
with the unplanned test cases
e Customers frequent complaint from support

commonality and

3) EPLSP and FOCUS

Appling EPLSP to FOCUS RMS will help the company
well manage the SPL process, with the allocation of the
architectural centric activities in the needed areas only;
which is intended to well manage changes across the
process, and the use of agile practices in the PD activity to
improve the market response.

4) Refactoring F ocUs®

As a retail management system the product catalogue
regarded as the main component in the solution, therefore;
the selected artifact to be redesigned using the EPLSP is the
product catalogue, which contains the building features of
any product like name, description, type, category, price,
etc.

The product catalogue is considered a sub module, and is
completely used in one of the main modules, and partially
used in the three other modules.

5) Applying EPLSP to FOCUS

The product catalogue features totally differs as the type
of products or services provided by the outlet itself,
however there are some common requirements in this sub
module.

The architecture definition in the EPLSP elaboration
phase defines a practice to manage the commonalities and
variability of the product catalogue. This covers the change
management problem and reduces the recurrent costs
resulting from unplanned reusability.

The main goal of the EUP unique production phase is to
keep systems useful and productive after deployment, in
which it encompasses the operation and support of the
system. Also, this phase provide some means of quality
assurance by monitoring the operation of the system when
working and recovering any problem. These practices help

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the company manage the post deployment
professionally, which develops customer loyalty.

We are redeveloping the product catalogue as a sub
module with EPLSP maintaining the same functionality of
the catalogue. We compare the development experience
using EPLSP with its counterpart using the older version of
the system developed with an iterative simple RUP. The
metrics used for our comparison are depicted below in
subsection 6.

The product catalogue itself consists of two parts. One
part is recognized as a core asset, which includes the search
base and the basic entry forms like category, product,
limits...etc. The second part is realized as a product which
includes product labeling, reports...etc.

We develop the product catalogue core asset using EUP
as the part of EPLSP that incorporates a complete
architecture, while developing the product part using
SCRUM. In both parts we use an incremental iterative
process.

In the older version of the FOCUS system, we employed
a simple iterative and incremental undefined process to
develop the whole SPL. The sequence of the process steps
mostly relied on the task, the feature or even on the
developer. The older process employed code comments and
traditional UML diagrams for documentation.

Using EPLSP, we define 5 essential practices. We use a
tailored version of SCRUM at the product part of the
catalogue and a set of architectural templates and plans in
the CA part. Further, we utilize configuration management
software and a set of chosen UML diagrams for core assets
and the products. We define the development incremental
steps as shown in Figure 8.

stage

|

—_—

Draw GUI

—

Accepted

!

,_
)

Building
v
Unit Testing

,_
)

Passed

i

Integrate
\ 4

Integration Test

,_
)

,_
)

Passed

i

User Test

,_
)

Passed

i

[Release & Configure]

Figure 8. Development Increment.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

For the product part of the catalogue, we define a set of
SCRUM roles namely the project manager, the product
owner and the developers. The project manager acts as the
SCRUM master, while the marketing team acts as product
owners. Further, we have a team of a senior developer and
two junior developers.

A daily meeting is held with the team to discuss the
progress and the problems. Further, a weekly meeting is
held with the presence of the product owner to present the
features achieved thus far. The weekly meeting aims also at
collecting feedback from the product owner while
developing new ideas and requirements. Finally, a monthly
meeting is held to test and show the released version, which
could be installed at the customer site for free. Such
installation allows the support team to record comments
within two or three days.

In the production phase, the product backlog is
developed in cooperation between the SCRUM master and
the product owners. The product backlog scenarios are
prioritized while dependencies are identified. Further, the
product backlog is revised and updated in every monthly
meeting. The sprint backlog defines the current set of
features in the construction phase, its tasks and associations
to team members. These backlogs contain:

e Use cases, Class and Activity diagram.
e Test cases.
e Schedules and job orders.

Finally, the released version of the product is configured
and generated with a set of user instructions.

We produce the following set of architectural documents
during the development of catalogue CA part. Such
documents contain the complete domain architecture that
depicts the infrastructure CAs. Infrastructure CAs include
the CA part of the product catalogue along with other CAs :

e Detailed business case.

e Requirements and specifications plan.

e Test plan for the 3 testing levels, unit test,
integration test and user test.

e Software development plan

e [teration plan.

e Change and configuration plan.

e Deployment and support plan.

Unlike the product development, the configured version
of the core asset is augmented with the developer’s manual
and deployment instructions.

6) Process Validation
We utilize a number of metrics to assess the effectiveness
of EPLSP and compare it to the classical iterative or
incremental development process. These metrics are defined
to assess the effectiveness of the merge between SPL
development and agile process and it was stated and used in
Salion's Agile SPL [6] as follows:
e Reusability: Salion [6] defines the reusability of its system
with a percentage level that is equal to common files used in

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

all members of the product family divided by the total number
of files generated across the product line (Reusability level%
= common files/total SPL files).

e Time to market: It was proposed in the same case [6] as the
manpower used per month to produce the first customer's
product (# of persons-month).

e Eliminating duplicates: We measure it by the percentage of
eliminated duplicates using the classic Line of Code (LOC)
metrics (Eliminated Duplicates% = # of duplicated LOC/total
LOCQ).

e Productivity: This metric is measured using popular LOC and
Use Case metrics as an extension of the Function Point
metrics as a complex subject concerning a relation between
different resources or artifacts, the use case metrics defines an
early — prior development measure of software functionality
rather than the function point, which could only be used after
development.(Usecase/hour, LOC-person/month...etc)

e Cost reduction: Similar to of the productivity metrics, but it is
preferred to be measured by the Use Case metrics. Also either
LOC or Function Point could be used, but regarding the LOC
it will be subjective due to the difference in number of
produced lines from one person to another within the same
class. And for the function point analysis it could be
determined only after the development completion; instead of
early determination of cost in the case of Use Case metric.(
UseCase-person/day)

e Defect Removal Efficiency (DRE): Is one of the popular
quality metrics which is intended to measure the discovered
errors during development in relation to the total errors and
defects found.

(DRE=E/(E+D) in which E is the number of errors and D
is the number of defects).

V. CONCLUSION

This paper proposed EPLSP to address the possible
integration between SPL and agile. Applying this process to
FOCUS RMS addresses most of the challenges the company
faced during the production of the software using the
classical process. Further, the proposed EPLSP addresses
the time to market challenge, which is one of the major SPL
challenges. EPLSP addresses the challenges through
leveraging agility in the suitable areas of integration of the
EPLSP which helps the production quality software
products.

Applying EPLSP to FOCUS RMS, our potential
challenges include technical and social challenges.
Technical challenges include training the development staff
in the EPLSP development process and reworking the
design. Our social challenges confine the commitment of the
upper management to change and restructuring the
organization so that the new process is accommodated.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(1]

(2]

(3]

(4]

(3]

(6]

Copyright (c) IARIA, 2011.

REFERENCES

Linda Northrop. 2008. Software Product Lines Essentials.
Software Engineering Institute, Carnegie Mellon University.
http://www.sei.cmu.edu/productlines/frame_report. [accessed,
April 2011]

Cunningham W, Manifesto for Agile Software Development.
2001. [cited 2008-09-30]; Available from:
http://www.agilemanifesto.org. [accessed, March 2011]

Tian, K. and K. Cooper, Agile and Software Product Line
Methods: Are They So Different?, in Ist International
Workshop on Agile Product Line Engineering.2006.

Carbon, R., et al. Integrating Product Line Engineering and
Agile Methods: Flexible Design Up-front vs. Incremental
Design. in Workshop on Agile Product Line Engineering.
2006.

Hanssen, G.K. and T.E. Feegri, Process Fusion - Agile
Product Line Engineering: an Industrial Case Study. Journal
of Systems and Software, 2007, pp. 836-849.

Clements, P. and Northrop, L., Salion, Inc.: A Sofiware
Product Line Case Study , Software Engineering Institute

ISBN: 978-1-61208-165-6

[7]

(8]

[

[10]

[11]

[12]

(SEI) Technical Report CMU/SEI-2002-TR-038, Carnegie
Mellon University, Pittsburgh, PA, November 2002.

Snorre Gylterud, Constructing a Silver Bullet? Combining
Software Product Line FEngineering and Agile Sofiware
Development, A thematic literature review, Norwegian
University of science and technology, 2008.

J. Bosch, Design and use of software architectures: adopting
and evolving a product-line approach. Addison-Wesley,
Harlow, 2000.

S. W. Ambler, J. Nalbone, M. J. Vizdos, The Enterprise
Unified Process, Extending the Rational Unified Process,
Prentice Hall, 2005.

S. W. Ambler, The Agile Unified Process (AUP), Ambysoft,
2005; www.ambysoft.com/unifiedprocess/agileUP.html.
[accessed, March 2011]

Philippe Kruchten, The Rational Unified Process: An
Introduction, 2nd ed. Addison-Wesley, 2000.

Rubin, H. A. “Macro-Estimation of Software Development
Parameters: The ESTIMACS System.” Proc. SOFTFAIR: A

Conference on Software Development Tools, Techniques, and
Alternatives. New York: IEEE, July 1983, pp. 109-118.

Copyright (c) IARIA, 2011.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

An Agile Model-Driven Development Approach
A case study in a finance organization

Mina Bostrom Naki¢enovié
SunGard Front Arena
Stockholm, Sweden
email: mina.bostrom@sungard.com

Abstract-In the Sungard Front Arena, current software
portfolio a business functionality called Market Server
Capability (MSC) is embedded and duplicated in many
components. By the application of Agile and Lean
principles on model-driven development, we will get an
Agile approach for constructing the architecture of a
new MSC definition which will eliminate the
duplication and inconsistency, while still maintaining a
short implementation phase. The resulting architecture
has a single modeling level, with merged PIM and
PSMs. The model is designed by reverse engineering of
the legacy code in a Test Driven Development fashion.

Keywords-agile; lean; MDD; TDD; finance

l. INTRODUCTION

SunGard is a large, world-wide financial services
software company. The company provides software
and processing solutions for financial services. It
serves more than 25000 customers in more than 70
countries. SunGard Financial Systems provides
mission-critical software and IT services to
institutions in virtually every segment of the financial
services industry. We offer solutions for banks,
capital markets, corporations, trading, investment
banking, etc. [1].

The Front Arena system includes functionality for
order management and deal capture for instruments
traded on electronic exchanges. Market access is
based on a client/server architecture. The clients for
market access include the Front Arena applications,
while the market servers, called an Arena Market
Servers (AMAS) provide services such as supplying
market trading information, entering or deleting
orders and reporting trades for a market.

Clients and AMAS components communicate
using an internal financial message protocol for
transaction handling, called Transaction Network
Protocol (TNP) and built on top of TCP/IP. The TNP
protocol uses its own messages, which contain TNP
message records with fields [2]. Many of the TNP
client components query the Market Server
Capability (MSC), information about the trading
functionality that one electronic exchange (market)
offers. Client applications need such information in
order to permit/disable the access to the different
markets.

ISBN: 978-1-61208-165-6

A. Problem description

When a new market (AMAS) is introduced, the
information about functionality that the new market
offers (which transaction i.e., TNP messages are
supported) should be added to each client. MSCs
describe market trading transactions (Orders, Deals,
etc.), which command are supported for them
(entering, modifying, etc.) and which attributes and
fields could be accessed on the markets (Quantity,
Broker, etc.). This information is presently hard-
coded into each client application. New client
application releases need to be done before the
customers can start using the new AMAS. Depending
on the current release plans of the client applications
this can take a long time. Having to wait for the client
application releases may delay the production start of
the AMAS.

All components, which use the MSC
functionality, must use the same MSC definition.
Unfortunately the same MSCs are defined in several
different files. Different components are developed in
different programming languages so they do not share
the same definition file. Because of historical reasons
and the fact that some client components were
developed within separate teams, even the
components developed in the same programming
language do not share the same definition file. Each
client component has its own MSC definition file.
There is a lot of the duplication of information in
these files. Even worse they do not present exactly
same data since the different clients work within
different business domains, so their knowledge about
the MSCs is on the different levels. Two main
problems with this architecture are:

e Hard-coded MSC definition, requiring the

recompilation of components when a new
MSC is introduced

e Duplication of the MSC definition,

introducing the risk for data inconsistency.

These problems will be resolved in the future by
introducing a Dynamic Market Capabilities (DMC), a
new functionality that will be used to retrieve the
MSC definition dynamically, in run-time, instead of
having them hard-coded. Unfortunately, it will take a
long time, probably years, until the DMC solution
will be completely implemented and in use (for all
AMAS and all client components). Until then all
components have to support the hard-coded fashion.

Copyright (c) IARIA, 2011.

All new components, which will be developed during
this time, have to support the hard-coded MSC way
also. That is why there is a need to find an
intermediate solution which will remove the
duplication and which will be used under the
transition phase. Since such an architecture will not
be long lived company management put some time
and resource constraints on the implementation. The
question we address in this paper is how to create
such intermediate solution, taking all conditions and
constraints into account.

Introduction and problem description are
presented in Section I. Section Il explains, in more
details, the architectures of both the present and the
DMC solution as well as it introduces reasons for
having an intermediate solution. In Section IlI,
requirements and constraints are explained. The
produced intermediate solution, an Agile MDD
approach, is presented in Section IV. In Section V,
the benefits are discussed of applying Agile and Lean
principles on the MDD. Finally, Section VI presents
our conclusion.

Il. ARCHITECTURE OF THE MSC DEFINITION

A. The present architecture

The client components use the MSC definition
from the different sources, developed in different
programming languages (C++, C# and Java), where
the majority of data is duplicated. The present
architecture of the MSC definition is not centralized
(no single definition of the model) and without
control for the consistency. The lack of centralization
enormously increases the risk for data inconsistency
since the consistency depended on the accuracy of the
developers who edits the MSC definition in a source
code file. The development of the MSC definition is a
continuous process, and new MSCs are defined each
time when a new AMAS is developed (2-3 times per
year) or when a new trading transaction is introduced
(once per month). The current process flow is:

e A new AMAS is developed or a new

transaction is introduced.

e A MSC is added to the MSC definition in
each client component. The same information
must be added to several different files.

e All client components should be recompiled
in order to get the definition of the new MSC.

B. Dynamic Market Capabilities architecture

We have already done design plans for the new
DMC architecture. In the DMC architecture each
AMAS will be responsible to provide, to the client
components, information about the MSC that the
AMAS supports. The description of the MSC that the
AMAS supports will be saved in one XML file. An
example of an extract from a XML file, containing
the MSC definition for the AMAS called OMX, is
presented in the Figure 1. In this example, a MSC
defines that the market OMX supports trading
transaction order with the following commands:

ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

enter, modify and delete, combined with the
following fields: price and quantity.

<MarketCapability id="200" MarketServer="0MX">
<0Object name="0rder" >

<Commands>

<Command name="Enter”/>

<Command name="Modify"/>

<Command name="Delete" />

</Commands>

<Fields>

<Fieldname ="Price”/>
<Field name =" Quantity”/>

</Fields>
</ Object:
</ MarketCapability>

Figure 1. Market Server Capabilities for market OMX

On the AMAS start up, AMAS reads the MSC
definition from its XML file and sends them, in run
time, to all client components which connect to the
AMAS. In such way the client components do not
have to be recompiled if something changes in the
MSC definition. When a new AMAS is developed, a
new XML file containing MSC definitions for the
AMAS is created. On the AMAS start up, all client
components connect to the AMAS and dynamically
retrieve the MSC definition for that AMAS. So even
in this case there will be no need for the
recompilation of the client components.

C. Transition phase

The decision is that all AMAS components and all
client components should be upgraded to the DMC
architecture. But this transition is a complicated job.
There are over 30 AMAS components and more than
5 client components that are using MSC functionality
today. There is different prioritizing, from the
management side, within the components’ backlogs.
We know, right now, that some of these components
will be upgraded to the DMC in one or two years.
This transition project is not marked as a critical since
there is already a working architecture, although not
the best one. As long as there is at least one
component which has not been upgraded to the new
DMC architecture, the hard-coded MSC solution
must still be supported. The transition will occur
gradually and the transition phase will probably take
several years. Under the transition phase some new
components are going to be developed; some new
components are already under the development. To
develop new client components according to the
present architecture will introduce even more
duplication. Therefore an intermediate architecture,
which will eliminate the duplication, will be
introduced. Such a solution should have a short
implementation phase, since it must be ready before
the new components are completely developed. The
solution should be designed so that it eventually leads
towards the new DMC architecture. It would be good
if the new DMC architecture can benefit from it.

IIl. INTERMEDIATE SOLUTION

We work according Scrum in the company, trying
to apply Lean and Agile software development

Copyright (c) IARIA, 2011.

philosophy. One of the key principles of the Lean
philosophy is to detect and eliminate wastes [3]. The
intermediate solution should eliminate, from the
present architecture, the three major points of waste.

e Duplication of the MSC information

e Amount of work done during the MSC

definition updates

e Amount of time used for communication

among groups, informing each other about
the MSC definition changes

In order to eliminate the duplication of data we
need a centralized MSC definition. In order to be able
to provide support for the MSC definition in different
programming languages we need to generate code in
different programming languages, from the
centralized MSC definition. We need a programming
language independent architecture. First we
considered a solution, where all client components
would be refactored to reference the same central
definition file, but this would require a lot of work.
We did not want to refactor client’s components too
often, since some of them will be refactored soon
regarding the DMC solution. That is why we believed
that the Model-Driven Architecture (MDA) [4]
approach can be the most suitable solution for the
intermediate architecture. With the MDA approach
we mean the general MDA concept: “A MDA defines
an approach to modeling that separates the
specification of system functionality from the
implementation on a specific technology platform”.
The common denominator for all MDA approaches is
that there is always a model (or models), as the
central architectural input point, from which different
artifacts ~ are generated and developed.
Transformations, mapping rules and code generators
are called in common “MDA tools” [5].

The main idea is to have just one source, a union
of all present MSC definition that is programming
language independent. From such a source, which
will be a central MSC definition registry, the present
MSC definition source files are generated. All present
MSC definition files have a similar structure. The
main difference is the programming languages
syntax. Because of that the code generation should
not be too complicated. The way how the client
components work will not be changed, the MSC
definition will still be hard coded. Such a solution
does not require the refactoring of the client
components. But the way how the developers work
will be improved. They will work just with the central
MSC definition registry and add/edit the MSC
definition only there. Then the MSC definition files,
for each client component, will be automatically
generated from the central registry. The client
components will be automatically recompiled. In that
way all three mentioned wastes will be eliminated.

Another key Lean principle is to focus on long-
term results, which is the DMC architecture in our
case. That is why we must point out that one
important part of the DMC architecture is a MSC
XML description file. If the MDA approach is
introduced for the MSC definition, the central MSC

ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

definition registry would be easily divided into
several files (one per AMAS), later on. It is clear that
the DMC architecture would benefit from having
such a central MSC registry. The creation of one
central MSC definition registry, with all MSC
definitions for all markets, would be a good step
towards the future DMC architecture introduction.

A. Limitations

Our company management is usually very careful
with introducing concepts not already used in the
company, since it often requires long implementation
and learning time. Additionally, an investment in an
intermediate solution is not always a very productive
investment. On the other side, the management was
aware that the intermediate architecture would
increase productivity directly and make some new
solutions possible right away. That is why the
management listened carefully to our needs and made
some general decisions. The intermediate architecture
can be introduced, but the time-frame could be only
several weeks. No new tools or licenses should be
bought. Only tools that are already used within the
company or some new, open-source tools, can be
used. No investment in change management. Time
for teaching/learning cannot be invested for the
intermediate solution. The concepts, which our
developers are already familiar with, should be used.

Considering these management decisions, we
decided to explore if the organization was mature
enough to introduce the MDA. Although the MDA
approach has been around for a long time, for many
companies it is still a new approach. A small survey
which we performed showed that the MDA approach
hasn't been used within the company and that a
majority of the developers has never used this
approach and that the UML modeling is not used in
general. Also, the introduction of the full scale MDA
usually implies: a long starting curve, which we
cannot afford having a short time-frame and the usage
of the MDA tools, which cannot be used since
developers don’t have enough knowledge about them
and there is no possibility to invest in learning. In the
following section it will be described how we
managed to overcome these problems and limitations.

IV. AGILE MDD APPROACH

Our goal is to find an intermediate solution with a
MDA philosophy, which satisfies the previously
mentioned requirements and fulfills the constraints. In
order to achieve this goal, we started from the basics
of the MDA concept (models, transformations and
code generators), and combined them with the
following Lean and Agile principles [6]:

e "Think big, act small": Think about the DMC
as a final architecture but act stepwise,
introduce the intermediate solution first.

e “Refactoring”: A change made to the
structure of software to make it easier to
understand and cheaper to modify without
changing its existing behavior [7]”

10

Copyright (c) IARIA, 2011.

e "Simplicity is essential": We have to find an
applicable solution that is simple, keeping in
mind that simple does not have to mean
simplistic [8].

In that way we got our own Agile MDD

approach, an applicable intermediate solution, which
will be described in detail in the following section.

A. Agile modeling and code generators

We need to model the MSC definition registry.
This modeling can be done on the different modeling
levels and in the different modeling languages.
Considering the limitations, the UML modeling
cannot be accepted as a modeling solution in our
project: it is not used in general and there is no time
for learning. Since the XML format is a standard
format and the developers are familiar with it, we
decided to use a XML description as a "natural
language™ for the developers. XML was good
enough. We had to balance between the familiarity of
the XML and abstraction benefits of UML but also a
complexity of the related frameworks, keeping the
project within the time-frame.

We have created two models. One is a logical
model which describes the entities in the MSC
definition registry. Another is the MSC definition
registry by itself, expressed in a XML dialect. As a
consequence of that, the logical model is expressed as
a XSD schema and is used to validate the entries in
the registry.

The MDA defines different model categories, like
a Platform Independent Model (PIM) and a Platform
Specific Model (PSM) [5]. This is an important issue
if there are plenty of different platforms with
specifications that differ very much. In our case the
different PSMs didn't differ too much from each other
and, at the same time, didn't differ too much from the
PIM either. In order to keep it simple we made a
pragmatic solution: to have just one model, which
contains all info for all programming languages. The
code generators have the responsibility for creating
the right MSC information to the corresponding
programming language.

We needed code generators for generating the
different types of files: C++, C#, Java. We decided to
use XSL transformations as the code generators. They
satisfied our needs and could be widely used, since
the XSL is a common standard for all developers,
who program in the different programming
languages. In that way a "collective code ownership"
[9] is achieved for the code generators. The
maintainability is also better if all developers can
maintain/develop the transformations.

B. Reverse engineering of the Legacy code

We needed to do a one-time reverse engineering
in order to convert a large amount of the existing
MSC data, legacy code, to the new MSC XML
format. We developed our own tool for this purposes
since no open-source tool was completely suitable.
The main question was: when to start with the reverse
engineering? At the end or at the beginning of the

ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

project? Very soon we realized that we could not
design our model in detail without the data from the
existing MSC definitions. We decided to adopt a
Spike principle. The Spike is a full cross-section of
the modeling and architecture aspects of the project
for a specific scenario. The aim of the Spike approach
is to develop the whole chain for only one, chosen
user scenario. The first chosen scenario is a simple
one, and during the incremental development process
every next scenario is a more complex one [10]. We
started with the round-tripping (the whole chain:
model — code generation — reversing back to the
model) for simple scenarios, which we expanded, in
each sprint, to the more complex scenarios. In that
way we could develop the reverse engineering tool,
the code generators and to design the model in
parallel. The results of the reverse engineering helped
us with the specification of the model objects for both
the logical model and for the central MCS registry.
Since we could do the round-tripping very early in the
project, it was a way in which we could start testing
our MDD approach early, under development. Round
tripping in combination with the Test Driven
Development (TDD) [11] will be explained in more
detail in the following section.

C. Round tripping with the TDD approach

According to the Lean principles, we wanted to
specify our model just according to the existing data,
without unnecessary objects or unnecessary
properties, which risk never to be used. In order to be
able to do that, we wanted to do the reversing first
and specify the logical model and fill the data in the
MSC registry upon these results. We used a TDD
approach and started with writing unit tests first. For
this purpose we used test framework developed and
already used in the company. This framework
simulates the execution of the TNP messages sent
among server and client components. Because of that
the test scenarios that we wrote can be reused later
on, for testing AMAS components, when the DMC is
introduced.

According to the TDD principles we wrote the
tests first, run them on “empty” code and developed
the code, until the tests passed. Since we had to test
several parts of our MDD approach (the logical
model, the central MSC registry, the code generators
and the reverse engineering tool), we established our
own TDD process for the MDD testing. The main
idea was to use the same test, which reflects one
Spike scenario, both to develop the reverse
engineering tool and the code generators, but with the
input from the different sources: the legacy code was
used as input when the reversing tool was developed
and the generated code files was used as input when
the code generators were developed. Our TDD
process is presented on the “Fig. 2”. Modules
presented on “Fig. 2” are parts of our MDD approach
where the following abbreviations are used: RE for
the reversing engineering tool, CG for the code
generators, LC for the legacy code and GC for the
generated code.

11

Copyright (c) IARIA, 2011.

G F——-

Model - GC

] MSC

[
|
|
Registry e| \|/ Lc

Figure 2. Our TDD process

Our TDD process will be described now through
one real Spike scenario. The chosen Spike scenario is
called “Get all markets” and the goal is to get all
existing markets, described in the present MSC files.
We started with writing a test, which consisted of
sending a TNP message “TNPGETALLMARKETS”.
The next step was to develop the reverse engineering
tool for this scenario. The legacy code was used as
input data. We developed the corresponding methods
in the reversing tool, which extract markets from the
existing data, producing the results in the XML
format, and inserted them in our MSC registry. It was
a list of all markets. Then we redesigned the model
and registry entities and refactored the reversing tool
according to the model changes. This process flow is
presented with full arrows on the Figure 2. The TDD
logic for the code generators were more complicated.
What we had, so far, was the reversing tool working
for the chosen scenario, and some data in the central
MSC registry. We used the same test, trying to get all
markets, but this time from the generated code instead
(which was empty when we started), via the reversing
tool (where we have some code implemented). We
developed the code generators using the mentioned
test. The final goal was to get the same entries in the
MSC registry by the reversing of the generated code
as we got by the reversing of the legacy code. After
this sprint we had a list of all markets in the MSC
registry, the code generators methods which generate
files containing such a list and the reversing tool
methods for extracting such a list from the generated
files. This process is marked with dashed arrows on
the Figure 2. In the following Sprints we used more
advanced scenarios, such as, for example, “Get all
markets where is Order supported with commands:
Enter, Modify”.

At the end of each Sprint we run the whole round
tripping, starting from the legacy code. In that way
we could confirm that both the newly implemented
code worked, as well as that the previously
implemented code was not broken. As the final
verification process we confirmed that all client
components could be compiled without errors. We
did the usual integration tests also, in order to confirm
that the communication among the client components
and the AMAS components has not been changed.
When we completely finished with the reversing, we
disabled this functionality. We needed the reversing
only for extracting the existing data. It has not been

ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

possible do the reversing nor the round tripping since
the project was released.

It is important to say that we had to reverse the
legacy code from the code, which was written in the
different programming languages. We had to develop
separate methods for the reversing from C++, Java
and C#. Fortunately, the respective legacy code files
had a similar structure; the syntax was the main
difference. So we could develop the corresponding
reversing methods based on the common objects.

The introduction of the TDD approach was
important because of the following reasons:

e By developing and testing in parallel we

shortened the implementation phase.

e We did not produce any wastes in the logical
model (unnecessary info). We designed the
model just according to the data that we got
from the reverse engineering. We achieved to
avoid the usual modeling mistake when a
large amount of metadata is put in the model.

e We showed how the TDD can be an efficient
way to work with, since this development
method has not been yet widely spread within
the company. When it has been introduced
once, it would be easier to introduce the TDD
thinking in other projects too.

e We can reuse some of these tests later on, for
the DMC architecture testing.

D. Automation

We have automated some of the processes,
supporting a kind of continues integration also. We
reduced the amount of work and time spent for
working with the MSC definition architecture. We
use ClearCase (CC) as a configuration management
tool and we have a build server for automatic build
processes. Since all client MSC definition files were
in CC, we decided to keep even the generated files in
the CC repository, at least under some period. This
decision was made by the management.

When the MSC definition registry file is updated
and checked into CC, the following steps are
executed automatically:

e The MSC definition files with hard-coded
data, belonging to the client components, are
checked out from CC.

e The code generators are invoked by a CC
trigger script. All MSC definition files are
generated.

e All generated files are checked into CC, if the
generation did not fail. Otherwise the “undo
checkout” operation is done.

e All client components, affected by the
mentioned code generation, are recompiled.
If some compilation fails, the error report is
immediately sent to the component owners.

V. AGILE AND LEAN PRACTICES IN MDD

The Agile and Lean methods are light in contrast
to the MDA that can become complex, because of all
standards and OMG recommendations. Through the

12

Copyright (c) IARIA, 2011.

application of the Agile and Lean principles, the
MDD becomes more pragmatic and more useful.
Some of the Agile and Lean principles, used in our
Agile MDD approach, are explained below.

“Eliminating waste”: Eliminating the duplication
of information was also according to the XP’s
principle “Never duplicate your code” [9]. This
principle is the heart of the MDD - to have one
central input point, model (models) from which
everything else is generated.

“Think big, act small”: We were thinking on the
DMC as a final architecture but acted in a stepwise
way, via an intermediate solution.

“Deliver as fast as possible”: The implementation
phase of our Agile MDD approach was short.

“Empower the team”: Roles are turned — the
managers are taught how to listen to the developers
[3]. Despite the fact that managements put non-
technical constraints on our project, they allowed the
developers to make decisions, regarding the
intermediate solution, on their own. It contributed to
faster development, since the developers did not have
to wait for feedback from the management, for each
decision.

“Spike principle” applied on the reverse and
round-trip engineering made the introduction of the
TDD philosophy spontaneous and natural.

“Simplicity is essential.” We have simplified the
full scale MDA. Instead of the UML modeling
language we used the XML. The PIM and PSMs
were merged, avoiding the maintenance of several
models and transformations among them. On the
other side, by merging PIM and PSMs in one model
we lost a good Separation of Concerns but it was a
price worth paying.

“Welcome changing requirements, even late in
development.” The case-study presented an iterative
development, which allowed late model changes. We
worked in sprints, according to the Spike principle,
which implied the frequent model changes, in each
sprint.

A. Benefits of the Agile MDD approach

We got a lot of benefits by introducing the Agile

MDD approach. Now we will list them:

1. Agile principles can make the starting curve for
the MDD shorter. Through the application of the
Agile principles the long learning curve and
introduction gap of MDD methods and tools
could be avoided.

2. We introduced the TDD approach, showing the
effectiveness of such an approach.

3. We have prepared, in advance, for the
introduction of the DMC architecture: the model
specification and the reverse engineering job are
already done. As well as the test cases, some of
them are going to be reused.

4. The Agile MDD approach could be used instead
of the full scale MDA. When all MDA
recommendations could not be applied, we

ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

adjusted them to our system and organization,
with a help of Agile and Lean principles.

VI. CONCLUSION AND FUTURE WORK

The main point of this paper was to show how
Lean and Agile principles helped us with producing
an intermediate solution, with a short implementation
phase, for the architecture of the MSC definition. In
that way we coped successfully with the management
constraints, achieving the implementation within the
short time-frame and without investment in change
management.

Our Agile MDD approach is based on the general
MDA idea but is shaped then with the Lean and Agile
principles. “Eliminating waste” helped us to detect
main wastes. The most important was the duplication,
which we eliminated by applying the MDA
philosophy. “Simplicity” Agile principle reduced the
MDA concept to the single modeling level, expressed
in the XML dialect. By being aware of “Think big act
small”, we could produce such an intermediate
solution, which can be easily improved in the long-
term solution. The TDD logic improved the
development efficiency and decreased the total time
spent on the development and testing. We got a
simple and applicable solution which will easily grow
to a more complex one.

“A complex system that works has usually been
evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a simple system. [12]”

REFERENCES

[1] SunGard, www.sungard.com. Accessed in May 2011.
[2] TNP SDK documentation: SunGard Front Arena

[3] Mary Poppendieck, Tom Poppendieck: Lean Software
Development, An Agile toolkit. Addison Wesley,
2005.

[4] James McGovern, Scott Ambler, Michael Stevens: A
practical guide to Enterprise Architecture. Prentice
Hall PTR, 2003.

[5] MDA, www.omg.org/mda. Accessed in May 2011.

[6] AgileManifesto, www.agilemanifesto.org. Accessed in
May 2011.

[7] Martin Fowler: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[8] James O. Coplien, Gertrud Bjornvig: Lean Architecture
for Agile Software Development, Wiley 2010.

[9] Ron Jeffries, Ann Anderson, Chet Hendrickson:
ExtremeProgramming. Addison Wesley, 2001.

[10] Ray Carroll, Claire Fahy, Elyes Lehtihet, Sven van
der Meer, Nektarios Georgalas, David Cleary:
Applying the P2P paradigm to management of large-
scale distributed networks using Model Driven
Approach, Network Operations and Management
Symposium, 2006. NOMS 2006. 10th IEEE/IFIP
Volume, Issue , 3-7 April 2006 Page(s):1 — 14.

[11] Michael C. Feathers: Working Effectively with
Legacy code. Prentice Hall PTR, 2005.

[12] John Gall: Systemantics: How Systems Really Work
and How They Fail. Quadrangle, 1975.

13

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Planning Poker Tool for Supporting Collaborative Estimation in Distributed
Agile Development

Fabio Calefato

Dipartimento di Informatica
University of Bari
Bari, Italy
calefato@di.uniba.it

Abstract— Estimating and planning are critical to the success
of any software project, also in the case of distributed agile
development. Previous research has acknowledged that
conventional agile methods need to be adjusted when applied
in distributed contexts. However, we argue that also new tools
are needed for enabling effective distributed agile practices.
Here, we present eConference3P, a tool for supporting
distributed agile teams who applies the planning poker
technique to perform collaborative user story estimation. The
planning poker technique builds on the combination of
multiple expert opinions, represented using the visual
metaphor of poker cards, which results in quick but reliable
estimates.

Keywords- distributed; agile; estimation; planning

l. INTRODUCTION

Software estimation and planning activities aim to create
meaningful cost and schedule estimates for a project. The
ability to accurately estimate the time and cost for a project
is a key factor to its successful conclusion. Hence, estimating
and planning are critical activities also in the case of
distributed agile development. Unfortunately, agile and
distributed development practices are so different that, when
blended together, the key characteristics of the former
exacerbate the challenges intrinsic to the latter, creating a set
of brand new challenges. In fact, as any agile method, agile
planning is based upon intense interactions among
individuals and thus, it emphasizes the need for frequent
informal interaction and communication. On the contrary, in
distributed software development communication and
interaction are dramatically hindered due to the absence of
collocation.

Collaborative software development across distances has
become commonplace for a number of years [19]. However,
there are still important problems to solve that are strictly
related to the effects of distance among the members of a
development team [7]. It is well known that a distributed
approach to software development increases difficulties
related to coordination, control, and communication
mechanisms, which are fundamental for any software
project. Quite the opposite, agile software development
methodologies are based on strong collaboration and
frequent informal communication among project members
[13]. Among the underlying principles that underpin agile

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Filippo Lanubile

Dipartimento di Informatica
University of Bari
Bari, Italy
lanubile@di.uniba.it

methodologies, personal relationships and direct
communication among people are considered as the best
resource in a project [4].

There is an increasing interest towards new experimental
approaches that aim to combine the specific characteristics of
agile methodologies with those of distributed software
development [23]. Previous research has acknowledged that
conventional agile methods need to be adjusted when applied
in distributed contexts. However, we argue that also new
tools are needed for enabling effective distributed agile
practices. In particular, we argue that tools that provide
better communication support are needed in order to cope
effectively with the reduction of direct, synchronous
interaction.

In this paper, we present eConference3P (eConference
Planning Poker Plugin), a tool meant for supporting
distributed agile teams who applies the planning poker
technique to perform collaborative user-story estimation. The
planning poker technique builds on the combination of
multiple expert opinions, represented using the visual
metaphor of poker cards, which results in quick but reliable
estimates. Our tool has been developed as a plugin of the
eConference system, a communication platform that
connects to either Google Talk or Skype networks and thus,
allows the organization of text- and audio-based conferences.
Among the other features, eConference3P allows to visually
edit user stories and import a backlog from many
collaborative development environments such as Google
Code, Assembla, Github, Trac, and Jira.

The remainder of this paper is structured as follows.
Section 2 discusses in detail the planning poker estimation
technique. Section 3 presents our agile planning prototype.
Instead, related academic and industrial tools for agile
estimation are illustrated in Section 4. Finally, we conclude
in Section 5.

Il. AGILE ESTIMATION & PLANNING POKER

Before starting a project, whatever agile methodology a
team is applying, developers have to deal with iteration
planning and, therefore, user story estimation. A user story is
a brief description of functionality as viewed by a user or
customer of a system. User stories are free-form and there is
no mandatory syntax, although they are generally formulated
according to the following template: "As a <role>, | want
<goal/desire> so that <benefit>" [6]. In agile development,

14

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

user story estimates are not defined individually by just one
developer. Instead, estimates are obtained collaboratively by
(part of) the agile team, including those developers who will
actually implement the user stories.

The size of user stories can be estimated in story points
or ideal days. Story points are a relative unit of measure,
used to estimate the size of user story by combining the
effort, the complexity, and the risk inherent in its
development. Ideal days, instead, are used to evaluate the
size of a story in terms of the amount of time it will take to
be fully developed. Both story points and ideal days values
are arranged in an estimation scale. Although any sequence
might work, Cohn [6] suggests using nonlinear sequences
(e.g., the Fibonacci sequence 0,1,2,3,5,8,13...). Because the
gaps between values become appropriately larger as the
numbers increase, such sequences better reflect the greater
uncertainty associated with larger estimates.

To arrive at a shared estimate, agile teams rely on three
main techniques: expert opinion, analogy, and
disaggregation.

In the expert opinion-based approach, experts assign
estimates to user stories relying on their intuition. Typically,
multiple expert opinions are needed because implementing a
system functionality described by a user story requires a
number of multidisciplinary skills that normally belong to
more than one developer. The expert opinion-based approach
has been found to be more effective than others [17].

In the analogy-based approach, estimators compare the
user stories to be estimated to one or two other stories
already estimated before. This approach builds on the fact
that humans find easier to estimate relative size than absolute
size. Thus, in the typical scenario, if an estimator believes
that user story A is twice the size of story B, which was
estimated at 5 story points, then A is estimated at 10 points.
The comparison can be of course generalized by comparing
the size of user story A to a couple of stories already
estimated. Obviously, this approach suffers from a cold start
problem and, therefore, works better when at least a few user
stories have been already estimated.

Finally, in the disaggregation-based approach, before
estimating the expert splits a large user story into multiple
smaller ones, easier to evaluate and compare. In fact, if user

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

story A is much bigger than previously estimated user story
B, it would be hard to say that A is fifty times as complex as
B. Therefore, disaggregation works well with the analogy-
based approach.

An effective way for combining the three estimation
techniques is planning poker [6]. In planning poker, each
estimator is given a deck of cards with a valid estimate
shown on each. A feature is discussed and each estimator
selects the card that represents the estimate. All cards are
shown at the same time. Then, the estimates are discussed
and the process repeated until agreement on the estimate is
reached. Typically, a planning poker session is arranged at
the beginning of a project, to estimate user stories so that the
first iteration can begin. Then, further sessions may be
arranged after each iteration to estimate new stories, if any.

Planning poker is an effective way to estimate user
stories for at least a couple of reasons. First, it brings
together a cross-functional, agile team of experts from
different disciplines, whose averaged estimations tend to be
more precise than individual scores [14]. Second, it fosters
group discussion, as estimators need to justify their scores,
which has also been found to lead to better results, especially
in case of high amounts of uncertainty and missing
information [18].

Ill. ECONFERENCE3P
eConference3P (see Figure 1) is a tool developed for
supporting distributed agile teams who perform

collaborative user story estimation by applying the planning
poker technique. As shown in the figure, the eConference3P
user interface has five main areas. The message board is the
view that collects all the messages from the discussion that
ensues upon any estimation. In particular, the message
board is “threaded”, in the sense that messages get stored
with respect to the user story that they are related to. We
point out that our tool distinguishes the roles available in an
agile team and, in particular, between project owner and
developers. Relevant notes and decisions, taken through the
meeting, are logged in the decision place, which can be only

15

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

4 Collaborative workbench @L:E]_
File Workbench Chat Options Help

B

B eplanninq Poker | ad IM

B who'son 1 5 |} *User Story Notes ©2 = O || fl23 e g v=0

S Alessandro (PO)
E._ Andrea (Tester)
E’- Fabio (Developer)
E‘- Filippo (Analyst)

ready to play a game

Presence

*Backog I

Skory Text

As a player, I can start a new game.

As a player, [can restore 3 saved game.

As a player, I can select the computer's playing strength,

As & player, T can play against a weak engine that recognizes rings.

As a player, T can play against a weak engine that recognizes bridges.

As a player, 1 can play against a weak engine that recognizes forks.

As a player, I can play against a medium-strendth enaine.
Card Deck

5 Deck 22 | T Estimates

Backlog

- This story include drawing a blark game boan
and setting things upso that the computer is

Decisions Place

Estimate o

N

**% > Card selection is ENABLED

Fabio > The first story or two are ahways hard to
estimate

Fabio > Because we're estimating stories relative to
each ather, it’s hard when there’s nothing to
compare to,

Andrea > It's not clear what starting 2

> NE Qame means.

Message Board

w = ‘We wrote this story when we were thinking
#====1|| about what 3 user might want to do after
first starting our software|

Send

Figure 1. A screenshot of eConference3P.

edited by participants who receive from the project owner
the right of acting as scribe. A project owner acts as the
moderator of the planning session and, as such, the user
interface of the tool enables specific actions to manage the
meeting, load user stories, call for and accept the estimates,
and grant/revoke rights from other participants. For the sake
of space, through the rest of the paper we report the
screenshots only from the perspective of the project owner.
The backlog view allows starting and stopping the meeting,
as well as importing and exporting the user stories, which
are also listed together with the accepted estimates, once
available. The card deck view shows the scale from which
developers pick the score. Finally, the presence panel shows
the team members that are participating in the planning
meeting, along with their roles (e.g., project owner,
developer) and their rights (i.e. to estimate, scribe, chat).

Through the rest of this section, we first describe the
architecture of eConference3P, showing how its building
components have been arranged together, and then, we
discuss in more detail its features.

A. eConference3P Architecture

eConference3P is built around two main components,
which are the results of two academic research projects
named eConference and AgilePlanner. Both can be run as
either standalone applications or Eclipse IDE plugins. In fact,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

such components could be seamlessly and almost effortlessly
integrated because both are rich client applications,
developed using the Eclipse Rich Client Platform (RCP)
technology, a pure-plugin development platform that is fully
extensible by architectural design [8].

eConference [5] is a distributed meeting system,
previously developed by our research group at the University
of Bari, Italy. Its primary functionality is a closed group chat,
augmented with agenda, meeting minutes editing, and typing
awareness capabilities. Around this basic functionality, other
features have been built to help organizers control the
discussion during distribute meetings. eConference can use
either XMPP, an IETF standard protocol, or Skype. In the
latter case, also VVoIP communication is supported.

AgilePlanner [21] is a tool for synchronous, card-based
agile planning meetings, developed at the University of
Calgary, Canada. AgilePlanner mimics paper index cards as
it simulates a whiteboard in a meeting room and utilizes
electronic index cards (see Figure 2). AgilePlanner is a
client/server application with its own communication
protocol. The tool is specifically intended to support
distributed agile teams (i.e. work with networked clients),
rather than being an offline visual editor for planning
artifacts.

16

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

() Heva lievstion

o Tt Aawa ol —
2 Artin 01 fiat Enua 110
e Uer Soory il Dk Sy ‘ ok e 0 AewewanENoa: 0
B | el e G i | st |
i Lk Dplwd StapCnad | Mot Likele 1] fckidl 00 v Teanbdards |
oy n!-é Wart ek 00 ek 10O Teowbbandun | T Delad ShCad - |
i =T - 5 Mallhee D0 Aehd 00 O Teerdlbs |
ki L e o o (SRR
=i : ek 2 : E B peasiws |
=, B T T E Mot Likele D) Achid 00 Dvaren: bbbl
e SBl T pilker 00 dckst 00 Chew Teardbanbs L Baii Caie: D0 Wit Cane 1D
Eum ‘_"I ard Earer (0 wiont Cxedi D L Aewsrwg 0]
Oflsy Newairg 00] desapdon
Farl ﬁ descagdan
Eu.ﬂ 1
=
=

Figure 2. AgilePlanner with user story cards being assigned to an iteration.

B. eConference3P Features

In this section, we illustrate the features of our tool
eConference3P against a few requirements acknowledged as
critical in the field of distributed agile development [1] [20]
[26].

1) Offline/online working switch.

eConference and, therefore, eConference3P too, work
with XMPP-based Gmail accounts since the third release and
with Skype accounts since the fourth. One of the benefits of
our solution is that eConference products work without
requiring any user or maintainer to install a server, thus
minimizing the hassles coming from installations and
configurations.

In developing our planning poker plugin for
eConference, we selected AgilePlanner as the graphical
editor of user stories and iterations. However, AgilePlanner
required a connection to a server to work. Therefore, since
we mostly needed AgilePlanner for its editing functionality,
we patched it in order to support both online and offline
mode [2]. In the offline mode, a user has the chance to store
all the planning artifacts on a file and then load them back
later. The online mode, instead, remained untouched.
Because the transition from offline to online co-editing is not
fluid (i.e. developers need to connect again to the Agile
Planner server), at the end of the integration process, we felt
that the presence of a proprietary server to install clashed
with our intention of building an extensible, hassle-free
planning poker tool.

2) Simultaneous interaction and manipulation of
artifacts through telepointers

With respect to the supported planning activity,
AgilePlanner is primarily focused on the interactive
collaboration and meant for conducting real-time planning

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

meetings, whereas it only has limited capabilities for
progress tracking during the interaction.

The user interactions of AgilePlanner include the
complete manipulation of planning cards (i.e., creating,
moving, and deleting cards). Different colors are used to
distinguish between the cards representing bugs, spikes,
features, user stories, and finally iterations and backlog, to
which they are assigned. To support distributed
collaboration, AgilePlanner provides telepointers, which are
a groupware technology that uses a remote mouse pointer to
represent mouse movement happening on other connected
computers so that remote collaborators can understand other
team members’ mouse movements, much like they would
look at others’ movements in a traditional co-located
meeting.

3) Real-time information sharing & estimation.

In eConference3P all the changes happening to the
shared workspace are notified in real time, so that updated
information is simultaneously available to each remote
developer. In particular, eConference3P focuses on
supporting synchronous interaction rather asynchronous
interaction between distributed agile team members. When
playing planning poker, near real-time interaction is
fundamental to support the discussions and converge to a
shared estimate, when individual scores differ.

With respect to estimation-specific features, the project
owner can import, export, and edit user stories from the
backlog view. In particular, as for the edit feature, selecting
that menu entry will change the current perspective of the
tool to that of Agile Planner, as shown in Figure 2, thus
letting distant developers move user stories in or out of the
backlog, as well as plan multiple interactions for long-term
release planning. The project owner can also call for
estimation. When an estimation procedure starts, the deck

17

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

becomes clickable, and each developer can pick the card
with the desired score by dropping it in the drop zone on the
right hand side of the deck view. The project owner can
check who provided what estimate at any time. Instead,
developers’ estimates will not be visible to each other until
all of them provide one. eConference3P also allows the
project owner to select the estimate scale of choice before a
planning meeting is started.
4) Integration with others development environments

Supporting integration with development environments
increases the ease of access to the planning information for
developers and makes it easier to track progresses.
Therefore, in eConference3P we enabled the import of user
stories from the most used, web-based collaborative
development environments (CDEs). CDEs such as Google
Code [11], Github [10], and Trac [24], offer issue-tracking
features for storing items, such as bug descriptions,
enhancements, and milestones. However, they are also used
by developers of agile teams to store planning artifacts, such
as the backlog of user stories and iterations. The import
procedure locally stores the data retrieved in the same XML
format supported by AgilePlanner, so that imported data can
be graphically edited afterwards.

Table | shows the four CDEs supported by the import
procedure. First, we notice that all the CDEs offered official
APIs to programmatically query and retrieve the information
from the project repository. The only exception was Trac, for
which we had to develop a custom scraper that makes http
requests and then parses the resulting html output to retrieve
the information needed. Because this solution depends on the
structure of web pages, using a scraper is considerably less
stable than using an API, since even smallest changes to the
graphical layout may end up breaking it. Second, we notice
that Assembla [3] is the only CDE that specifically support
user story entries for its repository, whereas Google Code
and Trac allow customizing generic entries (called tickets)
into user stories, and later retrieve them through custom
search queries. Github, instead, does not offer any of the two
solutions and, thus, proved to be the least effective CDE for
hosting an agile project repository. Lately, we have also
added support to Jira [16] and Fogbugz [9].

IV. RELATED WORK

Tools for supporting agile development have been some
ten years in the making. To date, there are literally hundreds
of agile project management tools, some more complete than
others, which tend to focus only on a specific activity of the
agile management process. These tools typically allow teams
to manage agile projects following Scrum and XP agile
methodologies. A list of the most used and well-known
application can be found on UserStories.com [25]. Such
tools, whether free or commercial, can be broadly divided
into three main categories, according to their target
platforms: web-based, standalone, and plugins.

Web-based is the category that accounts for the largest
number of existing agile planning and management tools.
This is because such applications only require a web browser
to be executed on the client side. Besides, as for commercial
tools, web application as are often sold in “hosted mode”,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

which requires no installation by customers since companies
sell seats to use the service running on their own servers.
Among web applications, we can first identify general
purpose Wikis, used for agile project management in
general, and estimation as well, by letting developers create,
edit, and publish story cards and other artifacts as web pages.
As such, they do not offer any specific support to agile
practices and, therefore, only meet a very minimal set of
requirements for agile projects management. On the
contrary, there are tens of tools designed for agile project
management, both commercial (e.g., Mingle, VersionOne,
and Rally) and free (e.g., XPlanner, Agilo for Scrum,
Agilefant, and eXPlainPMT), which offer sophisticated
features to represent and manipulate project data, but none of
them support the planning oker technique. The only tool that
supports the homonymous agile estimation technique is
PlanningPoker.com [22], which we analyze in detail in the
next section.

The second category of agile project management
applications is that of standalone tools, most of which run
natively just on Windows with a very few alternatives for
Linux and OS X built on Java. In this category, we identified
no standalone tool supporting planning poker, other than
eConference.

Finally, Integrated Development Environments (IDE),
such as Visual Studio and Eclipse, have also been extended
through specific plugins in order to support, among the other
things, agile practices and create an even more convenient
development environment for closely managing and
interconnecting code artifacts, such as test cases, and agile
planning artifacts, such as story cards. In this category we
identified WolfPoker [27], a planning poker plugin for Jazz,
a commercial CDE developed by IBM that supports the
customization and execution of any agile project
management process of choice.

A. Comparing Planning Poker Tools

From the review in the previous section, we note that
PlanningPoker.com (web-based) and WolfProject (Jazz
plugin) are the only other existing tools that support the
planning poker estimation technique as eConference3P
(standalone), as shown in Table II. All the three tools support
synchronous sessions (i.e., backlog editing and estimation),
while PlanningPoker.com is the only one that also enables
asynchronous estimation sessions.

Besides, we note that both PlanningPoker.com and
WolfPoker support collocated groups of developers only in
picking scores from a card deck and then visualize the
estimates, while they completely lack any communication
feature to support discussion. This is probably due to the fact
that collocation and frequent direct communication are
paramount for agile teams [4]. However, as distributed agile
teams get more and more common [12], face to face
communication cannot be given for granted any longer.
Hence, distributed agile teams willing to adopt
PlanningPoker.com or WolfPoker must also use such
applications in combination with other communication tools.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

TABLE |. THE CDES CURRENTLY SUPPORTED BY THE IMPORT PROCEDURE.

User . Custom Custom
CDE API story Milestone ticket type search
query
Assembla X X X
Github X
GoogleCode X X X X
Trac X X X
Jira X
Fogbugz X

eConference3P, instead, integrates text-based and audio
communication to support estimate synchronous discussions
with no hassles. In addition, thanks to the AgilePlanner
component, eConference3P allows collaborative editing of
the backlog.

Finally, eConference3P is the only tool that can import a
backlog from a number of CDEs, such as Google Code,
Github, and Jira, whereas WolfPoker can only read file
exported from MS Project.

V. CONCLUSIONS

In this paper, we presented eConference3P, a tool for
enabling effective estimation meetings for distributed agile
teams. The tool was built by integrating the AgilePlanner
component, to enable iteration planning through a visual
editor, and the eConference meeting system, to build a better
communication tool and cope with the reduction of
information exchanged in distributed settings. In fact, our
review of existing tools for performing planning poker agile
estimation revealed a lack of support for synchronous
communication. Being based on the Eclipse RCP platform,
specific plugins were then added to support the planning
poker estimation technique and import user stories from
web-based collaborative development environments.

TABLE Il. A COMPARISON BETWEEN TOOLS SUPPORTING PLANNING POKER

Feature eConference3P Plannér;%f’oker. WolfPoker
Category Standalone Web based Plugin (Jazz)
Sync. Backlog editing, Backlog editing, Backlog editing,
sessions estimation estimation estimation
Async. - Backlog editing, o
sessions Backlog editing estimation Backlog editing
Comm. -
modes Text, audio None None
Backlog -
editing Yes (co-editing) None Yes
Integration . .
w/ CDEs Backlog import None Backlog import*
* only supports MS Project file format
REFERENCES

[1] Abrahansson, R., Salo, O., Ronkainen J., and Warsta J. (2002). Agile
Software Development Methods. VTT Publications, vol. 112.

Copyright (c) IARIA, 2011.

ISBN: 978-1-61208-165-6

[2]

BBl
[41

[5]
[6]
[71
(8]
(0]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

AgilePlanner for eConference, http://code.google.com/p/agileplanner-
for-econference (last accessed: Jul. 19, 2011).

Assembla, http://www.assembla.com (last accessed: Jul. 18, 2011).
Beck, K. et al. (2001). Manifesto for Agile Software Development.
http://agilemanifesto.org (last accessed: Jul. 18, 2011).

Calefato, F., and Lanubile, F. (2009). Using Frameworks to Develop
a Distributed Conferencing System: An Experience Report. Software:
Practice and Experience, vol. 39, no. 15, pp. 1293-1311

Cohn, M. (2005). Agile Estimating and Planning. Prentice Hall
Damian, D., Sengupta, B., Lanubile, F. (2008). Global Software
Development: Where Are We Headed? Software Process
Improvement and Practice. vol. 13, pp. 473-475.

Eclipse RCP, http://www.eclipse.org/home/categories/rcp.php
(last accessed: Jul. 19, 2011).

Fogbugz, http://www.fogcreek.com/fogbugz
18, 2011).

Github, https://github.com (last accessed: Jul. 18, 2011).

Google Code, http://code.google.com (last accessed: Jul. 18, 2011).
Herbsleb, J.D. (2007), Global Software Engineering: The Future of
Socio-technical Coordination. Future of Software Engineering
(FoSE’07), May 23-25, pp.188-198.

Highsmith, J., Cockburn A. (2001) Agile Software Development: The
Business of Innovation. Computer, vol. 34, no. 9, pp. 120-122.

Hoest, M., and Wohlin, C. (1998). An Experimental Study of
Individual Subjective Effort Estimations and Combinations of the
Estimates. Proc. 20th Int’l Conf on Software Engineering (ICSE'98),
Kyoto, Japan, Apr. 19-25, pp. 332-339.

Jazz, https://jazz.net (last accessed: Jul. 18, 2011).

Jira, http://www.atlassian.com/software/jira (last accessed: Jul.
18, 2011).

Johnson, P., Moore, C.A., Dane, J.A., and. Brewer, R.S. (2000).
Empirically Guided Software Estimation, IEEE Software, vol. 17, no.
6, pp. 51-56.

Jorgensen, M., and Molokken, K. (2002). Combination of Software
Development Effort Prediction Intervals: Why, When and How?
Proc.14th Int’l Conf. Sw. Eng. and Knowledge Engineering (SEKE
'02), vol. 27, Ischia, Italy, Jul. 15-19, pp. 425-428.

Lanubile F., Damian D, Oppenheimer H. (2003). Global Software
Development: Technical, Organizational, and Social Challenges.
Software Engineering Notes. Vol. 28.

Larman, C. (2004). Agile & Iterative Development - a Managers’s
Guide, Addison-Wesley.

Morgan, R., and Maurer, F. (2008). An Observational Study Of A
Distributed Card Based Planning Environment. Proc. 9th Int’l Conf.
on Agile Processes and eXtreme Programming in Software
Engineering (XP’08),. Limerick, Ireland, Jun. 10-14, pp. 53-62..
PlanningPoker.com, www.planningpoker.com (last accessed: Jul.
18, 2011).

Smite, D., Wohlin, C., Gorschek, T., and Feldt, R. (2010). Empirical
Evidence In Global Software Engineering: A Systematic Review.
Empirical Software Engineering, vol. 15, pp. 91-118.

Trac, http://trac.edgewall.org (last accessed: Jul. 18, 2011).
UserStories.com, http://userstories.com/products, (last accessed: Jul.
18, 2011).

Wang, X., Maurer, F., Maurer, R., and Oliveira, J. (2010). Tools for
Supporting Distributed Agile Project Planning, in Agility Across
Time and Space (Smite, Moe, Agerfalk eds.), Springer, pp. 183-199.
Wolfpoker, http://www.realsearchgroup.org/wolfpoker (last
accessed: Jul. 18, 2011).

(last accessed: Jul.

19

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Scrum Maturity Model

Validation for IT organizations’ roadmap to develop software centered on the client role

Alexandre Yin

Departamento Engenharia Informética (DEI)
Instituto Superior Técnico (IST)
Lisboa, Portugal
alexandre.yin@ist.utl.pt

Abstract—Within the agile development methodologies context,
the topic of client relationship management is strongly focused,
mainly due to the importance of collaboration between the
development team and its clients. Most clients avoid or are
unable to develop a close cooperation with vendor organizations,
since it requires a motivation and close participation among key
stakeholders in the development processes within and correct
usage of the adopted software development methodology. Hence,
software development projects fail and become unsuccessful
because of this lack of communication. In order to increase the
rate of successful projects, this paper will present the journey of
the validation process for this roadmap to lead and aid software
vendor organizations improve their development processes,
concentrating mainly on the client’s role throughout the process.
This concept is called Scrum Maturity Model; therefore, our
main goal is to validate this concept with organizations that use
Scrum agile methodology as their main development process,
which turns out to be an viable approach to reduce the rate failed
development projects.

Keywords-development methodologies; agile methodologies;
scrum development methodology; maturity model; action research

l. INTRODUCTION

According to a CHAOS Report [1], about 70% of IT
development projects fail to deliver functional software, mostly
due to a poor communication between stakeholders, who play
key roles in the development process. This problem of human
factors in software development collaboration is also
highlighted in these three following papers [2][3][4][5].

The fact that most clients spend an extremely small amount
of time and effort working closely with the software vendor
organization, that develops the solution, goes against the Agile
Manifesto values [6], which are the foundations for a
successful agile oriented development.

The failure of Information Technology (IT) projects caused
by mediocre software requirements engineering and other
human/client factors is a highly researched theme among
professionals and scholars. Therefore, this paper intends to
provide a different insight about the current issues concerning
this topic [7] [8][9][10].

The main concern that induced this research was precisely
the dilemma mentioned above: lack of cooperation among
stakeholders involved in an IT development project, focusing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Soraia Figueiredo; Miguel Mira da Silva

INESC . INOV
Instituto Superior Técnico (IST)
Lisboa, Portugal
soraia.figueiredo@inov.pt; mms@ist.utl.pt

on the type of communication between the development team
and the client. This problem in communication can result from:
(1) Human factors and resistance to changes; (2) Distance that
separates both vendors and clients or; (3) Inexistence of a
commitment that follows the definition of a contract of
collaboration.

Generally, both clients and software development
organization teams may fear and avoid the adoption of new
methods of collaboration with a new team [10]. This harms the
partnership between the two, thus resulting in inadequate
requirements engineering emphasized by agile methodologies,
which will, eventually, lead to an unsuccessful project.

Concerning human behavior, the distance that separates the
vendor organization and the client challenges the
accomplishment of a fluent and successful cooperation [11].
Apart from this exact physical distance, that hardens the
communication and occasionally blocks the possibility of face-
to-face meetings, a cultural distance must also be considered,
since this aspect may bring a negative impact, such as cultural
clashes, to the performance of the collaboration and influence
the project as a whole [10].

Another cause of this problem is the inexistence of
highlighted goals, such as market competition, which will
motivate all stakeholders to improve their processes and
maximize the outputs. According to a survey made by Gartner
[13], agile methodologies could use a maturity model as a
roadmap and market differential, so software development
organizations might explore their processes and reach higher
levels of maturity. Moreover, a paper from Software
Engineering Institute (SEI) [14] reveals that Capability
Maturity Model Integration (CMMI) can coexist with agile
methodologies and enhance these software development
organizations [15].

This paper will focus on the changes from the previous
proposal [16] and recent evaluation processes of the solution
for this lack of collaboration, usually, between vendor
organizations and clients. Moreover, it will conceive a roadmap
for improvement in order to create successful IT development
projects. Since Scrum development methodology emphasizes
such collaboration, the solution shall be molded as a roadmap
in the form of a maturity model so as to achieve the goal of this

paper.

20

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Note that this topic of maturity models and other IT
governance frameworks on agile methodologies a highly
polemic among the agile community. Nevertheless, IT
governance mechanisms are necessary and welcomed in
organizations which are underproductive, and, thus, hold the
major slice of failed projects [14].

The chosen research method was Action Research (AR)
due to its success in various academic investigations in the
Information Systems area and for allowing the researcher to
interfere and observe introduced modifications on the studied
environment. AR is comprised by a five stages cycle [17]: (1)
Diagnosis — problem identification; (2) Action Planning —
planning and research phase to prepare the experiment and
alternative actions; (3) Action — implementation of planned
actions, introduction of changes and analysis of the outputs on
the environment; (4) Evaluation — it is determined if the
outcomes are expected or against odds and assures that
introduced actions are the only reason for the obtained success;
(5) Specifying Learning — Identify general findings.

Note that AR is carried out by individuals who are
interested parties in the research. This fact has led to criticisms
of the validity of the research process, with accusations of
inevitable researcher bias in data gathering and analysis. The
justification for AR counters this criticism by suggesting that
it is impossible to access practice without involving the
practitioner. Practice is action informed by values and aims
which are not fully accessible from the outside. The
practitioner may not even be wholly aware of the meaning of
his or her values until he or she tries to embody them in her
action.

Nevertheless, there are some limitations with this research
methodology, namely: the unfamiliarity with research methods
and the representations of the process of action research may
confuse, rather than enlighten.

As stated, this paper continues our previous research,
hence, the first two cycles of action research were already
previously applied. This paper will mainly focus on the
changes to the proposal, based on past learning, and iterate
more cycles of action research in order to achieve stronger
validation of the proposal.

Before the presentation of the improved proposition, a brief
introduction and review of the related work in this area of
research shall be developed in Sections Il and Ill. After, the
changes in the proposition are detailed in Section VI; in the
next section (Section V) the results of newer and various
practical experimentations of the proposition will be presented.
Afterwards, in Section VI, the main lessons learned shall be
analyzed. Finally, Section VII will conclude with the summary
of this investigation, relating all mentioned topics as a whole.
In this section, some future works and approaches are given to
continue the research.

Il. RELATED WORK

This section intends to make a brief review of the related
work in the field of agile development study.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

A. Agile Methodologies

The origins of Agile methodologies are deeply connected
with the concepts of iterative and incremental development.
There were several ideas concerning the agile concept, hence
an Agile Manifesto [6] was established.

The set of values and inherent principles listed on this
Manifesto stress the importance of the clients’ presence in
order to obtain a better collaboration outcome, working
software as the main goal and agility when facing a sudden
change in requirements [18][19].

Since this approach requires a high cooperation level
between the client and the development team, mainly through
face-to-face meetings, it has the drawback of being partially
obsolete in the current market, in which an ascending number
of projects are developed at a distance [20][21][22].

B. Scrum

Scrum is an agile methodology to manage development
projects through an iterative and incremental method
[23][24][25]. It is divided into three main key roles: (1) Scrum
Master — individual who is responsible for the Scrum process
and its correct usage maximizing its benefits; also known as the
facilitator of Scrum team; (2) Product Owner — individual who
is accountable for the alignment of the development and
business goals definition, and; (3) Team — team that is in
charge of delivering the product. A team comprises 5 to 9
members with cross-functional skills, who are self-organized
and self-led.

This methodology identifies four objects that are operated
by the Scrum team throughout the development cycle: (1)
Product Backlog — a prioritized list of everything necessary to
conclude the product; (2) Sprint Backlog — a list of tasks to
perform during a sprint, i.e., an up to four weeks development
iteration to introduce parts of the Product Backlog into working
software; (3) Release Burndown Charts — charts that show the
progress of the project over time, and; (4) Sprint Burndown
Charts — charts that show the progress of the sprint over time.

The interaction of the roles maneuvering these objects is set
for the following meeting: (1) Release Planning Meeting —
Scrum team gathers and fills in the Product Backlog; (2) Sprint
Planning Meeting — development team and client closely
discuss matters and define the goals for the next sprint; (3)
Daily Scrum — a brief meeting for developers to identify
personal issues and possible improvements in methodology
usage; (4) Sprint Review — demonstration of the working
software to the client and stakeholders; (5) Sprint Retrospective
— team performs a self-examination regarding the last sprint in
order to seek improvements on their use of Scrum
Methodology and collaboration in general.

Scrum methodology is an iterative and incremental
development methodology. The phase for planning and system
architecture takes place in Release Planning Meeting, while the
sprints are comprised by Sprint Planning Meetings, Daily
Scrum, Sprint Review and Sprint Retrospective.

Although Scrum has a wide definition of concepts, that,
when applied, may allow agile software development, it cannot
guarantee the success of IT projects. This methodology

21

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

emphasizes close collaboration between development teams
and their clients; still, most of the time this does not happen
and, thus, a supplementary solution to complement this
imperfection is needed.

C. Modified Agile

Modified Agile is an agile development methodology that
results from the analysis of the flaws in the Agile Manifesto [6]
opposing to distant outsourcing environment [11].

The main problems identified concerning this matter were
the poor communication among participants of the IT projects
and the exhaustive documentation needed for contract
negotiation. All other values and principles mentioned in Agile
Manifesto remain feasible in a distant outsourcing context.

Communication

{ustomer 00 20N S0 2 S0 e S S A0 WA S T S o ol

Outsourcing Client

Outsourcing Vendor

Figure 1. Modified Agile communcation model proposal [11].

The solution recommended by the author of this paper is an
authentic communication model and team composition
structure, which will enhance the communication between
clients and developers and reduce the negative effects derived
from the distance factor that leads to a loss of knowledge.

In Figure 1, the introduction of two specific roles is
emphasized: (1) Coordination — an individual from the client-
side, who ensures the maximization of development outputs by
assigning the most important business goals to be developed as
a priority; (2) Ambassador — individual from the development
team-side who makes sure that the product developed is
aligned according to the customer’s needs and wills. These two
roles must work closely as a formal communication channel,
while team members from both development and the client-
side might communicate among themselves through an
informal channel

Although this distributed agile concept is broadly used with
several case studies proving its success, there are also many
failed IT projects due to human factors and inadequate
collaboration between clients and vendor organizations
[26][27].

I1l. MATURITY MODELS

The maturity models from software development processes
enable the classification of the performance of the actual ones
and guide organizations to encourage process improvement
through a staged method, also known as maturity. These
maturity models are an interesting approach to solving the
problem described in Section I, since the presence of a

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

maturity classification can allow the comparison between
competitor organizations.

A. Capability Maturity Model Integration

Capability Maturity Model Integration (CMMI) was
introduced in 2002 and ever since, it has focused on process
improvement approaches, which assist organizations in
adopting the best type of practices from each process area and
make the processes performance evolve [28][29].

In the staged representation, CMMI presents different
levels that vary from one to five. One level of maturity is
characterized by a set of predefined process areas, evaluated by
the accomplishment of specific and generic goals applicable to
the various areas. Each of these is attached to a set of practices,
which reflect specific and generic goals [30]. This type of
approach is highly successful worldwide amongst enterprises
that wish to surpass competitors by providing improved and
better products and services.

Given its broad scope coverage, CMMI does not solve the
issue due to its non-focus on agile software development
processes, which are the area of the current study.

B. Agile Maturity Model

Agile Maturity Model (AMM) was introduced by two
researchers in an IT University in Leeds, and it was conceived
in order to provide future researchers a more in-depth agile
maturity model as a basis for their investigations [31].

Sustained (5)
Project Performance Management

Improved (4)

Project Management
Sustainable pace

Self organization team

Defined (3)

Customer Relationship management
Delivering Working Products or SW
Frequently

Pair Programming

Explored (2)
Project Planning

Story card driven development (Requirements Management)

[Initial (1) }

Figure 2. Agile Maturity Model staged representation [31].

This model is shown in Figure 2. and it is somehow
inspired by CMMI, since it also has 5 levels, each with a set of
goals for their practices: (1) Level 1: Initial — organizations
belonging to this level of agile maturity do not have a clearly
defined process for agile development and eminent success
depends solely on the competence of individuals; (2) Level 2:
Explored — it gives particular focus to project planning and
requirements engineering for organizations; (3) Level 3:
Defined — it stresses the importance of frequent deliveries, pair
programming and customer relationship enhancement; (4)

22

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Level 4: Improved — it focus on project management,
sustainable velocity of development and self-organizing teams;
(5) Level 5: Sustained — underlines the need for the
management of projects’ performance, thus continuously
improving processes.

The AMM provides a first approach to classifying the
maturity of agile development processes, which comprises
practices from various agile methodologies. Therefore, it leads
us to a continuous research, since this model’s set of practices
crosses too many agile methodologies that most organizations
do not apply, causing increased levels of entropy.

C. Agile Maturity

Agile Maturity paper appeared as a study case from the
British Telecom while developing an IT project [32]. Since it
was said that big organizations had increased the barrier for a
successful agile adoption, an agile maturity roadmap was
presented.

The agile maturity evaluates the agile performance in seven
dimensions within five levels of maturity: (1) Level 1 —
represents the appearance of software engineering best-
practices; (2) Level 2 — best-practices are continuous and
improve within small development teams; (3) Level 3 — there is
continuous integration within local component teams; (4) Level
4 — there is an incessant integration within global journey
teams, i.e., distributed teams, and; (5) Level 5 — on-demand
development maturity.

For each of these levels there shall be an evaluation of each
the seven existing dimension: (1) Automation of regression
tests; (2) Code quality metrics; (3) Automation of deployment;
(4) Automation of configurations and best-practices
management; (5) Interface integration tests; (6) Test driven
development, and; (7) Performance scalability tests.

The combination of these five maturity levels and the seven
dimensions allowed British Telecom to incrementally perform
a better agile development process. However, this approach is
generic and non-focused on the description of these levels and
their practices, which leads to one’s need to seek another
solution for the major problem stated in Section I.

IV. PROPOSAL

Following the problem focused throughout the last
investigation and its various related work, the proposal of a
potential solution was introduced in the previous work.
Therefore, this section will present the improvements made, the
results from the previous proposal through the last two cycles
of action research, and propose an optimized roadmap for IT
organizations, with renewed validation, so as to develop
software with better quality, i.e., more focused on the client
role and motivated to self-improvement and market
competition.

The Scrum Maturity Model’s main purpose is to aid and
guide IT software development organizations and encourage
self-improvement, giving special attention to the client’s role,
which is mandatory on this fast moving, global and competitive
worldwide market. Furthermore, this proposal intends to help
organizations that are not familiar with Scrum and wish to
implement and adopt it on a staged and incremental approach.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

This proposition introduces five levels for Scrum
development methodology with its respective goals, objectives,
specific and suggested practices. The number of levels is a
standard of maturity models; thus making it easier to be
measured up with other maturity models for comparison and
evaluation purposes.

Next, the main improvements made from the original
proposal will be presented. Note that the full details of the
proposition contain the complete goals, objectives, practices
and suggested metrics for each level of Scrum maturity.

A. Level 1 - Initial

This first and lowest level of maturity, which can be
assigned to an organization that uses Scrum, represents the
absence of goals for process improvement. The explicit
definition of agile development with Scrum methodology does
not exist within organizations classified as belonging to this
level.

The main issues of the organizations in this level are the
frequent over-time and over-budget projects, poor
communication among stakeholders and unsatisfactory quality
of the final product. These organizations operate on their own
and unique way depending on their particular situation which
makes their success highly reliant on competent and skilled
individuals rather than on standardized and capable teams. In
fact, organizations that do not comply with the goal defined for
level 2 of Scrum maturity are downgraded to level 1 until
further improvements are performed in order to achieve the
next level.

B. Level 2 - Managed

In level 2, software development practices appear more
structured and complete than in level 1, due to the fulfillment
of the two main goals set for this level also shown in Figure 3:

Basic Scrum Management Scrum roles exist {-) (]
Sorum artifacts exist
Scrum meetings oceur and are [w) (]
participated
Scrum process flow is (] (]
respected
Software Requirements Clear definition of Product (] (]
Engineering Owner
Product Backlog Management [...} (]
Successful Sprint Planning {d (]
Meetings

Figure 3. Goals and objectives for level 2 of Scrum Maturity.

e Basic Scrum Management — this goal dictates practices
that organizations in this level must accomplish, which
will ensure the minimum acceptable usage of the
Scrum methodology and structure. Note that, although
all Scrum roles, objects and meetings must exist in
these organizations, those Scrum objects might not be
correctly or effectively used, resulting on the need to
have further process improvement;

23

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

e Software Requirement Engineering — this goal
comprises a set of practices that the organizations must
comply with in order to achieve satisfaction from the
final product’s quality created by the vendor
organization. Organizations in level 2 usually face
fewer problems in the development process than the
ones in level 1. However, they still have difficulty in
communicating with the client-side representatives and
delivering their projects as planned, concerning
schedule and budget.

According to the last evaluation of the proposal, this level
showed solid goals, objectives, practices and suggested
metrics. For this reason, level 2 presented minor changes in the
text of the practices, remaining the majority of this level intact.

C. Level 3 - Defined

Level 3 of this maturity model has its major focus on the
relationship with clients and on time deliveries. Hence, this
level also has two major goals, shown in Figure 4, to guide
organizations and improve their processes:

Customer Relationship Definition of “Done” exists [} (]
Ianagement
Product Owner availa ble) (]
Successful
Sprint Review Meetings (] (]
Iteration Management Sprint Backlog Management [w.) (]
Planned iterations [} (]
Measured Velocity) (]

Figure 4. Goals and objectives for level 3 of Scrum Maturity.

e Customer Relationship Management — this goal
emphasizes the importance of the client and the efforts
required to maximize the collaboration with the
customer side, even considering the three main
difficulties mentioned in Section I. A set of practices
are defined and must be satisfied in order to solve the
core problem of this investigation.

e lteration Management — this goal is indirectly linked to
the previous one, since both contribute to raise
customer satisfaction levels. In order to achieve this
goal, a set of practices must be fulfilled and
implemented so that the organizations always deliver
their projects and sprints on time, following their
budgets.

With the implementation of level 3 of maturity, an
organization can be successful on several projects. However,
this success is only partial due to the lack of standardized
management, which would guarantee the same quality and
performance in all development processes.

Again, the previous work evaluated this level as fairly
solid, and only minor changes within the description of the
practices were introduced.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

D. Level 4 — Quantitativelty Managed

In level 4 of Scrum maturity, an organization can boost
their achievements by offering standardized and regular
software development process aided by the management of the
process performance through measurement and analysis
practices. In this level of maturity, there are two main fields:

e Standardized Project Management — this goal shall
lead organizations to use the same development
process for all projects and deliver significantly high
quality and performance levels. In order to achieve this
goal, an organization must complete the
standardization of the performed processes;

e Process Performance Management — this goal demands
the monitoring of all suggested practices up to level 4
of Scrum maturity. These metrics aim to provide
enough feedback about actual processes and manage
their performance.

Although this level seems very simple in Figure 5, it is
actually extremely hard to implement the management and
monitor all projects within an organization so as to fulfill all
specific practices and maintain the process’ consistency. Note
that suggested metrics may be used and organizations are
encouraged to customize them to be more appropriate for each
enterprise’s culture and best practices.

Practices Suggested

Metrics

Standardized Project Quantitative Project [{4
Management Management
Process Performance Measurement and Analysis [P4) (]
Management

Figure 5. Goals and objectives for level 4 of Scrum Maturity.

Organizations in this level adopt appealing Scrum
development processes and the majority of their projects are
successful. The only and last improvement left is optimization
of the current processes.

With the previous evaluation process for this proposal it
was possible to identify the ambiguity within level 4 for many
organizations. In order to clarify it, the demand for
“Standardized Projects Management™ is now only applied to all
agile Scrum projects within the organization, and not to all
projects, since in one organization both waterfall development
methodologies and agile, in different projects and clients, can
coexist.

E. Level 5— Optimizing

Organizations in level 5 of the Scrum Maturity Model are
top class software developers using Scrum methodology. They
focus on continuous self-improvement to excel competition
and bring higher levels of satisfaction from client, development
team and all stakeholders. The only goal for this level is:

e Performance Management — this goal allows
organizations to measure and analyze their own actions
and processes to self-improve.

24

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Organizations in this level have achieved a maximum level
and must not discard previous accomplishments and goals by
negligence which will block continuous process improvement.

In Figure 6, the four objectives for the main goal of this
Scrum maturity are illustrated, being “Causal Analysis
Resolution” a newly added objective to this level of Scrum
maturity.

Performance Management Successful Daily Scrum {-) (]
Successful Sprint Retros pective [} {}
Causal Analysis and Resolution (9] (]
Positive Indicators (] (]
Figure 6. Goals and objectives for level 5 of Scrum Maturity.

The main result from the previous work for the definition
and first approach experimentation was that the top levels of
this Scrum Maturity Model were slightly incomplete and
ambiguous. Therefore, the objective “Causal Analysis and
Resolution” was included to be used with Daily Scrum and
Scrum Retrospective Meeting as to analyze the occurred
impediments, differentiate them from incidents and problems,
make causal analysis retrospective and then take corrective
actions against them.

Note that the whole Scrum maturity model was constantly
aligned with similar and renowned best-practices such as
CMMI. This decision was based on the purpose of future
comparisons with CMMI assessments versus assessments
using the proposed model, in order to provided another form of
the validation.

Before the results from the practical experimentation of this
preposition, note that this Scrum Maturity Model is comprised
by its goals, objectives, specific practices and suggested
practices for each level. However, due to its size, the complete
list of specific practices was not presented. Therefore, only
instances from the set were given.

V. RESULTS

In order to evaluate and validate the usefulness and
effectiveness of this improved proposal, a third cycle of action
research was planned, which included two interviews with
Scrum, agile and CMMI experts to validate the concept and
details of the proposal as well as six appraisals and audits of
Scrum maturity in three different enterprises so as to evaluate
its usefulness, efficiency and impact made.

A. Interviews

In order to attain validation of this concept: maturity model
for agile Scrum development methodology, a few experts were
interviewed.

1) ExpertA

Expert A, an international CMMI, Agile and Scrum expert
and also partner of an Agile coaching company, granted us
two interviews to present our previous proposal and discuss it
regarding its viability, usefulness and value created from it.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

According to Expert A, the first three levels of Scrum
maturity have sufficient detail and acceptable approach.
However, although level 4 and 5 have proper goals and
objectives, they required some more detail, more specifically,
practices to enhance the quality of Scrum Retrospective
Meeting are lacking. For instance, practices such as “Question
five W’s”, “Identify problems and incidents” and “Build
cause-effect diagram to identify problems” would enhance the
quality of the inner inspection from retrospective meeting to
seek continuous improvement.

Nevertheless, in her feedback, Expert A also stated that the
suggested metrics from level 4 of Scrum maturity presents an
excellent feature, since not even CMMI presents suggested
metrics that exists in COBIT. These suggested metrics allow
the monitoring of the current state of the process and discover
where to put efforts for improvement, apart from analyzing
quantitative statistics from the development process.

About the concept as a whole, Expert A accepts that
scattered Scrum loses integrity, however she also agrees that
Scrum Maturity Model is not intended to split Scrum into five
levels and areas, but rather to provide more emphasis on
different areas in each level. Furthermore, it was assured that
if this proposal does not become a standard worldwide, it will
at least be an extraordinary tool to be used in Scrum
Retrospective Meetings as self appraisal and assessment of
own maturity.

2) ExpertB

Expert B, also an international Agile and Scrum expert as
well as a Scrum coach, works for a top five world largest IT
company, and conceded us an interview to present to him the
actual proposal and discuss about its viability, usefulness and
created value . He was pleased with the concept which
involves the evaluation of the maturity of the Scrum process,
and provided precious feedback for the definition of the
practices of each level and within each goal.

Most of the original proposal remains, while merely the
definition of the required practices changed, remaining the
goals and objectives intact.

B. Appraisals

Another way to validate this theoretical work is to apply it
to organizations with strong contact with real business
problems. To evaluate the proposal, the following process was
adopted:

e Pre-appraisal questionnaire — First, a brief presentation
of Scrum Maturity Model concept and its goals on
each level will take place. Then, the organization will
be asked to fill in the pre-appraisal evaluation form,
which will unfold its beliefs about the level in which
the organization should and will be classified;

e Appraisal — Later on, if it was never audited before, the
appraisal for level 2 of Scrum maturity will begin. If
they had obtained successful appraisals before, then the
next level of Scrum maturity will be appraised. This
process consists in auditing the organizations’ practices
against the checklist of the Scrum ones which must be

25

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

accomplished in order to obtain the intended level
Scrum of maturity.

e Post-appraisal questionnaire — After the appraisal, the
assessed organization receives a post-appraisal
questionnaire to evaluate the proposal. This phase aims
to extract all feedback, both positive and negative,
about the proposal and the satisfaction level with
appraisal results, comparing it to the initial
expectations.

Next, we will present the action taken within three IT
development and consulting organizations while auditing the
maturity of their development process using Scrum. A number
of organizations provided more than one project in progress for
the audit process, therefore, in some, more than one project
manager was interviewed.

1) Organization X

Organization X, which is focused on cutting waste in
software delivery through the practice of lean and agile
concepts that they have been implementing for a year now,
allowed an audit of their software development process to
assess their maturity of Scrum usage.

They are comprised by around seven developers abroad in
Ukraine, who assume the Scrum role “Team”, and three project
managers in Portugal, that take on the role of “Scrum Master”
involved in two or three projects at a time. This enterprise is
the excellent example of distributed Scrum, which intends to
manage the resources wisely without creating waste and still
fulfills the needs of the client, considering the problems from
cooperation and distance.

Within the pre-appraisal questionnaire, the organization
predicted the possible outcome from the audit as level 2 or 3 of
Scrum maturity, since they were aware of the lack of
mechanisms to measure and monitor process metrics and
formal processes for continuous improvement.

As the appraisal occurred, the organization was confronted
with the checklist of the practices which had to be fulfilled in
order to achieve the first level of Scrum maturity — level 2.
According to the audit, they failed the “Basic Scrum
Management” goal by missing the objective of “Scrum
meetings occur and are participated”. Actually, they ignored
the need of a Scrum Retrospective Meeting and neglected the
importance of a formal Daily Scrum Meeting and Scrum
Review Meeting.

During the post-appraisal questionnaire, the organization
did not show any sight of disappointment and, instead,
appeared to be very excited with the results, displaying
motivation and critic analysis toward the results and
opportunities for future improvements for a better development
process. First, they argued that it is wvery difficult to
communicate with clients in this fast moving generation. It was
hard to convince the collaboration and their presence at the end
of each sprint, which caused them to fail practices such as
“Sprint Review Meeting occurs exactly once per Sprint” and
“Sprint Review Meeting is attended by Stakeholders, Scrum
Master, Product Owner and Team”. They also claimed against
the failed “Daily Scrum occurs exactly once per workday”

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

practice, since the organization affirms there are casing
meetings from lean development principles, for the nature of
these meetings is different.

Nevertheless, at the end, the organization will rethink these
failed practices, and the interviewed project manager planned
to immediately launch the implementation of Scrum
Retrospective Meeting, since it has great potential benefits that
had not yet been considered.

When the interview ended, the interviewee gave the
following feedback regarding the Scrum Maturity Model:
“This proposal provides a good roadmap for IT organizations
by offering goals and objectives per level to evolve and
gradually improve, attacking one goal at a time.”; “For higher
levels of maturity, it is required much more stability to see the
improvements and, although the existence of suggested metrics
is brilliant, it lacks how to implement the monitoring
mechanism.”. As a final word, the Scrum Master from the
organization stated: “Many organizations nowadays declare
themselves as agile, but how agile they can be when there are
no definitions or rules? The existence of this proposal can
surely differentiate the successful agile practitioners from the
others.”

2) Organization Y

Organization Y, a fast growing IT consultant enterprise
focused on satisfying the market needs through agile and
flexible principles, also accepted to be a part of this
investigation by providing three of their four project managers
to be audited with Scrum Maturity Model.

They are around forty employees, with about thirty in
headquarters and ten distributed in two other branches, being
one of these branches located abroad, in Vienna. Currently,
they employ four project managers and the CEO arranged three
meetings with three of them in order to receive some academic
research feedback within his company.

a) Project Manager Y1

Project Manager Y1 has been recently promoted to perform
the more technical oriented role of project manager. He has a
background in the business intelligence field, and now focuses
more on the leadership and management of the team of
developers for consulting projects.

During the pre-appraisal questionnaire phase, while
analyzing the goals required for each level, he determined
levels 1 or 2 as a possible result, for he was fully aware that the
organization is on the early stage of agile implementation and
several goals might not be fulfilled.

As the appraisal for level 2 of Scrum maturity occurred,
soon the missing practices was identified. They missed the
“Sprint Retrospective Meeting occurs exactly once per Sprint”
practice. Unfortunately, this missing feature made this
organization fail level 2, although many other practices were
accomplished.

Then, within the post-appraisal questionnaire, the project
manager agreed with the results, although slightly disappointed
with the obtained level. The grounds for this result, he said,
was that many unimplemented practices were not given the
importance they should have and, although it is possibly very

26

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

rewarding, they wanted to focus more on the current client
needs without having to worry about overworking their
employees. Another explanation is that, given the dimension of
his team, so much formality in the development process was
not really necessary, as long as the results show up and the
clients are satisfied.

For evaluation purposes, it was allowed for the project
manager to inspect the next level, which turned out to be
another failed appraisal, but this time for level 3, the
organization failed the “Sprint Backlog Items are split into
tasks” practice when all other practices were accomplished.
With this result, the project manager was relieved as he
believed that they could achieve up to level 3 of Scrum
maturity with a relative small amount of effort, even though it
required immense work in employees’ culture to implement
them.

To conclude, he agreed that the concept itself has potential
to grown into a certification, which will provide more market
differentiation. Another interesting point is that it might not be
very expensive to concentrate efforts and obtain an acceptable
level 3 of Scrum maturity.

b) Project Manager Y2

Project Manager Y2 is in charge of four development
projects, each of them with only one or two developers located
in Vienna focusing on the improvement of applications for
smart phones. The main challenges for him are how to
coordinate and perform the role of middle man between the
client’s needs and developers’ performance with Scrum
methodology, since he has less than a year experience with this
development methodology.

Within the pre-appraisal questionnaire, given Manager Y2
relative inexperience, the project manager did not have high
expectations and pointed out level 2 as a possible outcome.

During the appraisal, they failed many practices such as:
“Release Burndown Chart exists”, “Sprint Burndown Chart
exists” and “Sprint Retrospective Meeting occurs exactly once
per Sprint”.

In the post-appraisal questionnaire phase, the project
manager explained that due to the unawareness of the technical
capabilities from the project management tools, it was not
possible to maintain updated and correct burndown charts.
Concerning the missing retrospective meeting, he stated that it
is very difficult to have a formal meetings with the distributed
team located in Vienna, seriously affecting the performance of
this communication.

Again, for evaluation purposes, it was allowed for the
interviewee to inspect the fully detailed Scrum Maturity
Model, and advanced to the next level’s audit. They did not
accomplish practices like: “Definition of ‘Done’ is achieved in
each iteration” and “During Sprint Review Meeting Product
Owner and other stakeholders provide feedback”.

In the end, the project manager was satisfied to learn more
about agile Scrum methodologies, and where he should
improve in further projects. He stated that this maturity model
might be an important tool to measure their current
performance and guide them to continuous improvement.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

c) Project Manager Y3

Project Manager Y3, a very experienced and enthusiastic
Scrum and agile practitioner, is leading the company to
implement the backbone for Scrum adoption. It has been
almost a year since they started trying to reach this objective,
and, at the moment, they are in the final stage. For him,
continuous improvement is the core strategy to achieve a
competitive advantage. In order to achieve this goal, he leads
the implementation and integration of several support systems
to aid the development process, since he believes that no agile
is solid enough without the required backbone tools. Now, he is
in charge of a development project with three developers and a
three month length deadline.

The pre-appraisal questionnaire phase revealed that he had
high expectations and confidence in their maturity, choosing
the level 4 or 5 as the expected result from the appraisal.

When the appraisal began, they succeed to fulfill level 2
practices, and then level 3. No problems were encountered so
far. Surprisingly, level 4 was also achieved, because all his
previous projects were managed with a standard method and he
had a data mining module that defined, monitored and measure
their development process and metrics. At the last appraisal for
level 5, unfortunately, they failed the practices: “Successful
Retrospective Meetings result in concrete improvement
proposals” and “Successful Retrospective Meetings’ lessons
learned are recorded to a knowledge base”.

Within the post-appraisal questionnaire, the project
manager was satisfied with the results, seeing his efforts
recognized by external parties and not totally disappointed with
the obtained level 4 of Scrum maturity, since they were
working on the quality of retrospective meetings now.

His final feedback for this proposal is the following: “This
proposal is an excellent tool for deeper insight, to rethink their
agile path. Moreover, this preposition motivates the adoption of
Scrum by separating several objectives via levels. Agile is easy
to learn, however very hard to master. Thus, it is very
important for prepositions like these to exist in order to aid
organizations to correctly adopt Scrum.”

3) Organization Z

Organization Z is a worldwide renowned company that
provides technology solutions and services around the world.
In their office located in Portugal, they employ around four
hundred professionals, delivering both consulting service and
software solutions. Their development projects are normally
very big involving more than forty people and a twelve-month
period per project.

a) Project Manager Z1

Project Manager Z1 is the senior software architect and
performs team coaching regularly. He worked for a leading and
pioneer company using agile methodologies, where he learned
a lot about agile best practices from the elite from that
generation. Currently, the project he is working with involves
forty people, three scrum teams and a year of schedule, and it
applies Scrum methodology with this particular client for the
first time. They are on the production and deployment phase.

27

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

In the pre-appraisal questionnaire assessment, Manager Z1
suggested level 3 as the possible result, since he was aware that
the company missed the goals “Measurement and Analysis
Management” and “Performance Management”.

During the appraisal for level 2 of Scrum maturity,
Manager Z1’s project succeeded to accomplish all practices for
level 2, except “Sprint Burndown Chart exists” practice.

In the post-appraisal questionnaire phase, Manager Z1
intensely argued about the need of a sprint burndown chart,
which is only used to manage small two weeks sprints and
creates waste by joining efforts to manually build such a chart.
Note that the organization uses manual means to follow Scrum
methodology.

By analyzing the next levels, Manager Z1 felt frustrated
again, because he would fail level 3 due to the inexistence of
the sprint burndown chart stressed in the goal “Iteration
Management”. However, to achieve levels 4 and 5, he agreed
that more efforts were needed and that they intend to move
further in their question of continuous improvement as a
competitive advantage.

As final words, he said: “What 1 see here is a very
interesting approach in agile methodologies study. The
roadmap is very good for new enterprises to adopt Scrum and a
nice differentiation model for companies in the development
industry.”

b) Project Manager Z2

Project Manager Z2 is also a well experienced Scrum
practitioner within the organization, and is currently managing
a project with four years already, which involves three Scrum
teams. This project’s particularity is that the client does not
collaborate as closely as the company would wish, so Scrum
was only applied as internal communication and work
methodology.

In the pre-appraisal questionnaire, after the overview of the
maturity mode, he selected level 2 as most likely result of the
appraisal.

As the appraisal started, “Sprint Burndown Chart exists”
practice was found to be missing just like in the last project
manager. Moreover, they did not have “Sprint Review
Meeting occurs exactly once per Sprint” practice formally
implemented, only some demonstrations once or twice a year.
Yet another missing practice was “Sprint Retrospective
Meeting occurs exactly once per Sprint”, as according to
company’s culture, it only happens right after the Scrum
Review Meeting.

During the post-appraisal questionnaire, he commented as
the following: “Agile methodologies stress communication a
lot. Its qualities are not shown in tiny projects, but in large
scale projects in which real problems occur. In these big
projects, flexible and constant communication is needed to
maximize and optimize the work performed. This proposal
presents a staged maturity model to guide Scrum
implementation and Scrum performance and usage to
differentiate enterprises, which is a magnificent idea.”

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

VI. EVALUATION

Given the results previously presented, in this section, a
critic study for the Scrum Maturity Model will be analyzed
and presented.

Regarding the interviews, it was possible for us to realize
that the first three levels were well structured, while top levels
needed some rework, which is already done. Moreover, it was
stated by professionals that the preposition is a very good
approach for Scrum adoption, self-inspection and continuous
improvement.

This study considered the six performed appraisals in three
sample organizations from Portugal, represented by a small, a
medium and a large-sized company. Although the average
level of maturity is not very high, many of the audited
organizations were able to easily reach level 3 by focusing
efforts to implement the missing goals, objectives and
practices.

The most common missing practices for the first level of
Scrum maturity, level 2, were “Sprint Review Meeting occurs
exactly once per Sprint” and “Sprint Retrospective Meeting
occurs exactly once per Sprint”. In level 3, “Definition of
‘Done’ is achieved in each iteration” is the most commonly
failed practice. Top levels were scarcely achievable due to
their requirements for mechanisms and concepts for
measurement; analysis of process metrics; causal analysis;
resolution of problems; and, impediments identified, which
were not popular among IT development organizations.

Although many organizations define themselves as agile
and Scrum followers, another interesting finding is that many
of the basics were not taken into account, and only main and
popular values and principles were retained, resulting in these
low levels of Scrum maturity.

Through this assessment, it was possible to conclude that
the proposal provides a good roadmap for organizations that
want to implement Scrum methodology from scratch, align
their position for benchmarking purposes or for organizations
that want to self-improve.

All feedback collected from both interviews with experts
and professionals in the development industry gave us a great
deal of confidence and insight to continue our research, refine
it and possibly scale its usage and define it as a standard.

VIl. CONCLUSION AND FUTURE WORK

In Section I, followed by some discussion and analysis, the
main problem was a visible lack of collaboration, in most
cases, between vendor organizations and clients as they tried to
achieve the development of a successful IT project. This
problem is a widely researched topic amongst IT experts, due
to its vital importance on the success of software development

projects [1][2][3][4][S][6][][8]-

Inspired by the related work and maturity models, the
improved proposition, from previous research, with five levels
of Scrum maturity presents a roadmap for organizations to
implement Scrum methodology and compare the performance
of software development process amongst competitors.

The main focus of this paper was the validation phase of
the current proposal within cycles of AR, which are comprised

28

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

by two interviews with two agile and CMMI experts and six
appraisals and post-appraisal assessment. The proposal was
evaluated and validated by them, and it is our intention to share
our findings with the scientific community. Since this
proposition is continuously evolving, the current research shall
be repeated until the community agrees on a final iteration and
accept it as standard.

We are aware that the evaluation process has limitations,
but despite credibility issues regarding this process, the
experienced validation phase is worthy to be share with the
scientific community, given the interest of the process and its
results.

Along with the analysis of the motivation for this research,
it was pointed out that further investigation on human factors
and on the change of management areas might benefit and
enhance the performance of this maturity model. Another
interesting research topic would be the classification of the
partnership and client maturity, since, as referred to in Section
I, clients are usually the major impediment for successful IT
projects.

In the end, and we once more stress, the proposition of
maturity model is highly polemic within agile community.
Nevertheless, the concept Scrum Maturity Model has proved
successful as the roadmap for organizations that seek self-
improvement and guidance.

ACKNOWLEDGMENT

We would like acknowledge the participation of all experts,
organizations and their projects manager for their validation,
feedback and experience sharing. A special thanks will go to
Microsoft and Tiago Andrade e Silva for their support and
guidance throughout this validation process.

REFERENCES

[1] Group, S..: The Chaos Report 2009 (2007) Retrieved from
http://www1.standishgroup.com/newsroom/chaos_2009.php last
accessed 25 August 2011

[2] Kraut, R. E. and Streeter, L. A.: Coordination in software development:
Communications of the ACM, 38(3), 69-81. ACM (1995)

[3] Herbsleb, J. D. and Moitra, D.: Global software development: IEEE
Software, 18(2), 16-20. IEEE (2001)

[4] Highsmith, J. and Cockburn, A.: Agile software development: the
business of innovation: Computer, 34(9), 120-127. IEEE (2001)

[5] Cockburn, A. and Highsmith, J.: Agile software development, the people
factor: Computer, 34(11), 131-133. IEEE (2001)

[6] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., et al.: Agile Manifesto (2001) Retrieved
from http://agilemanifesto.org/principles.html last accessed 25 August
2011

[7] Leffingwell, D. and Widrig, D.: Managing Software Requirements: A
Unified Approach: AddisonWesley Longman Publishing Co Inc Boston
MA USA, 491. Addison Wesley (2000)

[8] Charette, R. N.: Why Software Fails: leee Spectrum, 42(9), 42-49. IEEE
INSTITUTE OF ELECTRICAL AND ELECTRONICS (2005)

[9] Reel, J. S.: Critical success factors in software projects: IEEE
Software 16(3), 18-23. IEEE (1999)

[10] Wilson S.: Failed IT Projects (The Human Factor) (1998) Retrieved
from http://ac-support.europe.umuc.edu/~meinkej/inss690/wilson.htm
last accessed 25 August 2011

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[11] Batra, D.: Modified agile practices for outsourced software projects.:
Communications of the ACM 52(9), 143. AMCIS (2009)

[12] Holmstrém, H., Fitzgerald, B., Agerfalk, P. J., and Conchuir, E. O.:
Agile Practices Reduce Distance in Global Software Development:
Information Systems Management, 23(3), 7-18. Taylor & Francis (2006)

[13] Norton, D.: The Current State of Agile Method Adoption. Analysis
(2008) Retrivied from
http://my.gartner.com/portal/server.pt?open=512&0bjlD=260&mode=2
&PagelD=3460702&resld=837321&ref=QuickSearch&sthkw=agile+m
ethods last accessed 25 August 2011

[14] Glazer, H., Dalton, J., Anderson, D., Konrad, M., and Shrum, S.:
CMMI® or Agile : Why Not Embrace Both!: Carnegie Mellon
University, Software Engineering Institute (2008)

[15] Laudon, K. C., Laudon, J. P.: Management Information Systems:
Pearson (2009)

[16] Yin, A., Figueiredo, S., and Mira da Silva, M.: Scrum Maturity Model:
Roadmap for IT organizations to develop software centering on the
client role: submitted to 23th Internation Software & Systems
Engineering and their Applications (2011)

[17] Baskerville, R. L.: Investigating information systems with action
research: October, 2(October), 1-32. Association for information
Systems (1999)

[18] Fowler, M., and Highsmith, J.: The Agile Manifesto: Software
Development, 9(August), 28-35. San Francisco, CA: Miller Freeman,
Inc (2001)

[19] Larman, C. and Basili, V. R.: Iterative and Incremental Development: A
Brief History: Computer, 36(6), 47-56. IEEE (2003)

[20] Layman, L., Williams, L., and Cunningham, L.: Motivations and
Measurements in an Agile Case Study: Journal of Systems Architecture
52(11) 654-667 Elsevier North-Holland, Inc. (2006)

[21] Chow, T. and Cao, D.: A Survey Study of Critical Success Factors in
Agile Software Projects: Journal of Systems and Software, 81(16), 961-
971. Elsevier Science Inc. (2008)

[22] Cockburn, A.:Crystal Clear: A Human-Powered Methodology for Small
Teams. (Series in Agile Software Development). Addison-Wesley
Professional (2004)

[23] Schwaber and K., Beedle, M.: Agile Software Development with Scrum
: (Series in Agile Software Development). Prentice Hall (2002)

[24] Beedle, M., Devos, M., Sharon, Y., Schwaber, K., and Sutherland, J.:
SCRUM: An Extension Pattern Language for Hyperproductive Software
Development: Pattern Languages of Program Design, 4, 637-651 (1999)

[25] Kircher, M., Jain, P., Corsaro, A., and Levine, D.: Distributed eXtreme
Programming: Challenges, 20-23. XP01 (2001)

[26] Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N.: Distributed
Scrum: Agile Project Management with Outsourced Development
Teams. 40th Annual Hawaii International Conference on System
Sciences HICSS07 0, 274a-274a. leee (2007)

[27] Braithwaite, K. and Joyce, T.. XP Expanded: Distributed Extreme
Programming: Communication, 180-188. Springer Berlin / Heidelberg
(2005)

[28] Chrissis, M. B., Konrad, M., and Shrum, S.: CMMI Guidlines for
Process Integration and Product Improvement: Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA (2003)

[29] Menezes, W.: To CMMI or Not to CMMI: lIssues to Think About:
CrossTalk The Journal of Defense Software Engineering, (February
200), 9-11. (2002)

[30] Development, C.: CMMI® for Development, Version 1.3 CMMI-DEV,
V1.3:. Engineering. Carnegie Mellon University (2010) Retrieved from
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm last accessed
25 August 2011

[31] Patel, C. and Ramachandran, M.: Agile Maturity Model (AMM): A
Software Process Improvement framework for Agile Software
Development Practices: International Journal of Software Engineering,
2(1), 3-28. Software Engineering Competence Center (2009)

[32] Benefield, R.: Seven Dimensions of Agile Maturity in the Global
Enterprise: A Case Study: System Sciences HICSS 2010 43rd Hawaii
International Conference, 1-7. IEEE (2010)

29

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Usage of Robot Framework

in Automation of Functional Test Regression

Stanislav Stresnjak

Siemens CMT
Osijek, Croatia
e-mail: stanislav.stresnjak @siemens.com

Abstract — Manual testing is a time consuming process. In
addition, regression testing, because of its repetitive nature, is
error-prone, so automation is highly desirable. Robot
Framework is simple, yet powerful and easily extensible tool
which utilizes the keyword driven testing approach. Easy to
use tabular syntax enables creating test cases in a uniform way.
Ability to create reusable high-level keywords from existing
keyword ensures easy extensibility and reusability. Simple
library API, for creating customized test libraries in Python or
Java, is available, while command line interface and XML
based output files ease integration into existing build
infrastructure, for example continuous integration systems. All
these features ensure that Robot Framework can be quickly
used to automate test cases. This paper describes how it is used
for automation of existing functional regression test cases
within short time and with great success and thus saving costs
and enhancing the quality of the software project.

Keywords-software testing; integration testing; regression
testing; test automation; robot framework

I INTRODUCTION

In order to integrate a component within a larger system,
three major properties, the fitness, the correctness, and the
robustness, have to be tested [1]. The fitness of a component
for an application is in general treated as the compatibility of
the provided interface of the component and the specification
of the required interface of the application. The correctness
of a component is its ability to return the correct output when
provided with the correct input, while the robustness
concerns the absence of a behavior possibly jeopardizing the
rest of the system, especially under wrong input. When lot of
components is present, integration testing became quite
complex and one of the software development improvement
steps pertains to testing process improvements which can
hardly be done without test automation.

There are various tools for test automation available —
commercial and open source, but few are suitable for black
box testing (for a black-box testing, see [2]). Many of
available tools are most suitable for the unit tests performed
by the developers. When it comes to the integration testing
or functional verification — not so many tools are available.

Many of the testing tools provided by vendors are very
sophisticated and use existing or proprietary coding
languages. Effort to automate existing manual tests is similar

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Zeljko Hocenski

Computer and Software Engineering Department
University Josip Juraj Strossmayer in Osijek
Osijek, Croatia
e-mail: zeljko.hocenski @etfos.hr

to a programmer, using a coding language, writing program
in order to automate any other manual process [3].

This paper is organized as follows. Section 2 explains
how the tool choosing is done. Section 3 describes why
specific tool was chosen. Section 4 describes the
implementation of the tool. Section 5 is about benefits of the
automation. Section 6 draws conclusions.

II. CHOOSING THE TOOL

What was needed was a tool simple enough to make fast
automation and in the same time powerful so these tests can
be extended and produce less error prone. The tool should be
platform independent. Client tests were run on Linux and
Windows and server tests were run on Linux and Solaris.
The tool obtained complete platform independence. And the
main focus was on regression testing of the integration
functional tests. This includes various protocols testing using
proprietary protocol simulator as main tool that triggers
application logic under test. Although most of the tests were
already executed at least once, it became difficult to run
regressions, as with end milestone approaching number of
test cases began to grow (speaking about few hundreds of the
test cases dealing with various scenarios and protocols —
CAP [4], TCP [5], SIP [6], LDAP [7], Diameter [8], SOAP
[9], SMPP [10], SMTP [11], POP3 [12]) and more important
it was rather problematic to check all the logs for errors.
When various servers, against which tests were run, were
introduced, situation got even more complicated because of
their different configuration they had. Not to mention error-
prone process because of large number of small actions that
should be repeated.

Basic procedure was the same for all test cases — create
configuration, start tracing on the platform, run test script,
stop tracing on the platform, check script traces, and check
platform traces. It was important not to omit generation of
report at the end with statistics which could take great
amount of time and effort because it is needed to update test
cases list, mark those which have failed, make some notes
why they failed and for few hundred of test cases — it can
take a while.

First idea was to write just a simple shell script that
would execute all the tests and analyze the results from log
files — but after a while (when it is realized that tests will be
required to run with different configurations against different

30

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

servers) it is realized that could be benefited from real test
framework.

Keyword-driven testing, which enables executing of the
test scripts at a higher level of abstraction, was considered to
be used as a framework. The idea of keyword driven testing
is similar to that of a service or subroutine in programming
where the same code may be executed with different values
[13], what would make it a perfect choice for the required
automation.

III.

After careful analysis Robot Framework [14] was found
to satisfy all needed requirements. It is created in Python
which can be implemented on all major platforms.
Therefore, multiplatform requirement was completely
fulfilled. Among other open source tools, Robot Framework
seems to be one of the very few tools, which supports multi
platform environment and it is maintained regularly, as it is
listed on [15]. The tool is sponsored by Nokia Siemens
Networks and released under Apache 2.0 license, meaning it
is allowed to be used for free (quite important topic, not only
these days).

Robot Framework is a generic, application and
technology independent framework. It has a highly modular
architecture illustrated in the Figure 1.

WHY ROBOT FRAMEWORK

Test Data
- - - Test data syntax

- - - Test library API

Test Libraries

Test tools

g - - Application interfaces

System Under Test

Figure 1. High level architecture [14]

The test data is in simple, easy-to-edit tabular format.
When Robot Framework is started, it processes the test data,
executes test cases and generates logs and reports. The core
framework does not know anything about the target under
test, and the interaction with it is handled by test libraries.
Libraries can either use application interfaces directly or use
lower level test tools as drivers [14].

What was missing was the GUI - for easy test case
adding and editing. After considering options, it was decided
to use RIDE, which stands for Robot Framework Integrated
Development Environment [16]. Its purpose is to be an easy-
to-use editor for creating and maintaining test data for Robot
Framework. It is still in alpha state, but surprisingly stable
for 0.3 version.

Robot Framework is a keyword-driven test automation
framework [17]. Test cases are stored in HTML files (in a
form of a ordinary HTML tables, as shown in TABLE 1.)
and make use of keywords implemented in test libraries to
drive the software under test, while test suites are created

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

from files and directories so it’s convenient to store into any
version of control system.

TABLE L. USING HTML FORMAT

Setting Value Value Value
Library OperatingSystem
Library lib/MyLibrary.py
Variable Value Value Value
${MESSAGE} Hello, World!
Test case Action Argument Argument
My Test [Documentation] Example test

[Setup] Some Setup

[Timeout] 5 minutes

${MESSAG

Log E)

Check If Directory

Exist femp

[Teardown] Some Finish

${MESSAG | Hello,

Another Test Should Be Equal E} World!
Keyword Action Argument Argument
Check If
Directory Exist [Arguments] ${path}

Directory Should

Exist ${path}

It is possible to create new higher-level keywords by
combining and grouping existing keywords together. These
keywords are called user keywords to differentiate them
from lowest level library keywords that are implemented in
test libraries. The syntax for creating user keywords is very
close to the syntax for creating test cases, which makes it
easy to learn - TABLE I. Rules that should be followed is
that keyword names should be descriptive, clean and they
should explain what the keyword does, not how it does it.

IV. REAL LIFE EXAMPLE

A. Test suite creation

One way to mitigate mistakes, which arise when new tool
usage is started, is to create scripts that will provide
immediate pay back [1]. That is, create scripts that won't take
too much time to create yet will obviously save manual
testing effort and, more important, by creating the scripts you
will learn more about the tool's functionality and learn to
design even better scripts. Not much is lost if these scripts
are thrown away since some value has already been gained
from them. Since Robot Framework is based on keywords,
and combination of keyword can form a new user keyword -
it can be seen as a script.

Robot Framework has some libraries already defined (for
example, OperatingSystem, Telnet, String, Collection, etc.),
but since it is Python based tool, it is easy to extend it with

31

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

libraries written in Python or Java. What is needed is just to
write your own function and return some value (if needed).

def FTP_Delete(self,
file_remote) :
ftp = ftplib.FTP()
ftp.connect (host,
try:
try:
ftp.login(user, pwd)
ftp.delete(file_remote);
return True
finally:
ftp.quit ()
except:
traceback.print_exc()
return False

host, user, pwd,

21)

Figure 2. New library keyword (FTP Delete) definition in Python

Writing and including own library with newly defined
keywords it is easy — example for deleting file on FTP server
is shown in Figure 2. When using newly defined keywords in
the Robot Framework it is only necessary to replace “_” with
spaces and new keyword is ready for usage.

RIDE has keyword completion feature that shows the
keywords that are found either from the test suite, resource
being edited, from its imported resource files or libraries.
Also arguments are validated automatically for all known
keywords and validation is shown on the grid editor and
visualized as different cell backgrounds (everything ok —
white background, too many or too few arguments - red
background, optional argument - light gray, and if no
arguments are allowed then cell background is dark gray).
This feature works for built-in and user defined keywords.

Descriptive keywords are one of the Robot Framework
features, and with RIDE possibility to create keywords, it is
possible to describe test case first and then to actually create
keywords and fill them with actions.

TCS2F185

Documentation

Edit Clear

Setup IE\ear\ Batch Data

Edit Clear
Edit Clear
Edit Clear
Edit Clear
Edit Clear

Teardown Ic\esn Batch Log

Tags [

Timeout Is mintes

Template I

Transfer Batch ${SERVER_IF} $4SERVER_UUSER} ${SERVER_PW}
Check Batch

Generate Include File

Compile SIF SIP SCSCF
Compile AP CAP_V4 test
Run Protocel Simulator AP test.

Run Protocol Simulator SIP SCSCF

${ouT} Run TC
Should Cantain ${OUTH
${oUT} Decode SIP SIP SCSCF
Should contain Houth
${oUT} Decode AR CAP V4 cap

Should Contain ${OuTH

Furme, crd
TC run firished

‘E‘w‘ml-“m‘mla‘m‘ml—

Sucesfuly

Sucesfuly

z[5[s]

Figure 3. Test case definition in RIDE

Other thing that can happen is to find out that some
sequence is needed to be used repeatedly. In that case it is

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

possible to group that sequence, and define it as new
keyword. It is easy task in RIDE - it is just needed to mark
the sequence and RIDE will extract those lines and create the
new keyword with auto recognition if parameters are needed.
After new keyword creation RIDE will replace the sequence
and change the test case accordingly.

Keywords and variable definition can be saved into
resource file, so it can be used in various suites. It is a good
idea if the keyword could be useful also to other tests to
move it to shared resource. This way, those keywords can be
used later by other tests and duplicate work is avoided.

Usually, there is a need for some setup and cleaning
actions — this is also supported and, not only on the test case
level, but setup and teardown actions can also be defined on
the suite level.

TABLE II. TEST CASE DEFINITION IN HTML FORMAT
Test case Action Argument Argument
Clean Batch
TCS2F185 [Setup] Data
[Timeout] 5 minutes
${SERVER_IP ${SERVER_
Transfer Batch ! USER}
Check Batch
Generate
Include File
Compile CAP test
Compile SIP SCSF
R_un Protocol CAP Test
Simulator
R}m Protocol SIP SCSF
Simulator
${OUT} Run TC runme.cmd
. TC run
Should Contain | ${OUT} finished
${OUT} Decode SIP
CAP
Should Contain | ${OUT} Call finished
sucesfully
Clean Batch
[Teardown] Log

All this helps to read test cases, even for non technical
persons, since we used live language grammar and our test
case have execution defined as “Transfer Batch”, “Check
Batch”, “Generate Include File”, “Compile”, “Run Protocol
Simulator”, “Decode Output”, “Should Contain something”
as shown in Figure 3. and in native HTML format in TABLE
1I.

B. Test case execution

It is possible to execute suite or just some test cases
directly from the RIDE GUI, however there is a need to run
test cases from the command line so its execution could be
easily automated — for example from some continuous
integration server. Since Robot Framework is command line
tool this is usually done this way. That way various switches

32

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

can be used. All possible switches are shown and explained
with running tool with “—help” switch. One of many things
that can be specified (via test case name pattern matching) is
the critical test cases definition. In order to complete the test
suite successfully, all critical test cases have to pass.

After executing our test suite HTML report is generated,
as shown on Figure 4. and the background color undoubtedly
tells whether the whole test suite finished correctly. Critical
test cases must be specified with a caution. If critical test
cases pass successfully, regardless of other test cases results,
the report will be marked as OK. However, statistics will
show the number of test cases failed and specify these cases,
if any.

Acc Test Report

tatus
Start Time: 20110224 22:30:17.023
End Time: 20110224 22:30.20.032
Elapsed Time: __00.00.03.009

Total Statistics Total [Pass | Fail Gray
2

Crtical Tests 136 | 13]
Al Tests EARER— |
Statistics by Tag Total | Pass | Fail Graph
No Tags
Statistics by Suite Total | Pass | Fail Gray
e 135 | 13 | 2 |

Name Metadata / Tags | Crit| Status Message Start Elay
" 13 ciiicaltests, 134 passed, 2 faied 20110224 223017
(= 1WA | FAL | 136 tsts total, 134 passed. 2 fed

0000.03
TCiDoto yes | PASS w20 1

TS yos | PASS 20110224 2230-17

000
20110224 23017
TCI10020 ves | Pass et

20110224 230-17
0000

TCiD02s es | PASS

20110224 23017
00:00:00

20110224 2.30-17

TC1D03s es | PASS

v
TCID030 yes | Pass
v
v

0.00
20110226 223017
o110 es | Pass 2z

TCnt pass 20110224 223017 [ff -

Figure 4. Test case report file

For further manual analysis, there is also detailed log file
generated, as shown on I (also configurable with command
line switch) with all actions, detailed description of the input
and output parameters and keyword output with marked
actions that went wrong. There is a keyword “Log” defined,
so it is also possible to write additionally whatever need to
the log file.

Since all output, as input also, is in the HTML format and
already nicely formatted — it is very convenient to use it for
reporting.

Robot Framework also generates XML output file which
can be used for further analysis. In the source distribution
there are interesting tools, for example “risto.py”, used for
generating graphs about historical statistics of test executions
and “robotdiff.py” tool for generating diff reports from
multiple Robot Framework output files.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

| AccTestlog
Message:

3022011 17:15 <DIR>

2
23022011, 1715 <DIR>

1.07 9.996 output xmi
17022011 1141 2366331 TMO_UK_TSM ZP
File(s)

4Difs)

2371332 bytes
333,160 448 bytes free’does not contain TC run frished
atch, S{SERVER_IP), S{SERVER_USER), S{SERVER_PW)

2
Sries) 2.371.332 byce:
4Din(s) 333.160.48 bytes free’ does noc contatn 'IC

zun finisnea ‘J

Figure 5. Test case log file

V. BENEFITS OF THE AUTOMATION

An automated test suite can explore the whole product
every day. A manual testing effort will take longer to revisit
everything. So, the bugs automation does find will tend to be
found sooner after the incorrect change was made.
Debugging is much faster, which is also meaning — cheaper,
when there’s only been a day’s worth of changes. This raises
the value of automation.

Automated tests, if written well, can be run in sequence,
and the ordering can vary from day to day. This can be an
inexpensive way to create something like task-driven tests
from a set of feature tests.

Before Robot Framework execution of the test suite took
about two days with one person executing test cases
sequentially and looking for traces and, most important,
being busy all that time. With Robot Framework whole
process take only few hours, but only one batch command is
needed to run, so person is not busy during test suite
execution and can work on other topics, as shown in Table
III.

TABLE IIL USED TIME COMPARISON
Time used (in hours)
Manual Automated
Preparation of one test case 8:00 8:00
Execution of one test case 0:02 0:02
Check of one test case 0:05 0:01
Automation of one test case - 2:00
Report for one test case 0:03 0:00
Total time used for one test case 8:10 10:03
One test run cycle 0:10 0:03

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Time used (in hours)

Manual Automated
For 100 test cases - one suite run 1(.7:40 5.:00 .
tester involved machine time
333:20 100:00

20 suite runs

tester involved | machine time

20 suite runs with automation
time included

(suites run time + automation
time for all test cases)

333:20 300:00

VL

Benefit of working with Robot Framework is that writing
test cases follows natural work flow with test case
preconditions, action, verification and finally cleanup. Real
language is used for keyword description, so it’s easy to
follow test case — even for non technical person, which,
together with its simple usage and easy library extension,
make it great tool for test case automation.

Everything is checked automatically and all reports are
automatically generated and published on the web pages.
This also saved lot of time when decision to introduce
continuous integration was made.

The cost of automating a test is best measured by the
number of manual tests prevented from running and the bugs
it will therefore caused to miss [21], and this is probably the
biggest strength of the Robot Framework.

CONCLUSION

REFERENCES

[1] B. Lei, X. Li, Z. Liu, C. Morisset, and V. Stolz, Robustness Testing
for Software Components, Science of Computer Programming,
Volume 75 Issue 10, 2010, pp. 879-897

[2] R. Patton, Software Testing, Sams Publishing, 2005

[3] K. Zallar, Practical Experience in Automated Testing, METHODS &
TOOLS, Global knowledge source for software development
professionals, Volume 8, Spring 2000, pp. 5-9

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

3GPP, Customised Applications for Mobile network Enhanced Logic
(CAMEL) Phase 4; CAMEL Application Part (CAP) specification
(Release 6), TS 29.078 6.3.0, September 2004

RFC: 793, TRANSMISSION CONTROL PROTOCOL DARPA
INTERNET PROGRAM PROTOCOL SPECIFICATION,
Information Sciences Institute University of Southern California,
September 1981

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, Network Working Group,
Request for Comments: 3261, June 2002

M. Wahl, T. Howes, and S. Kille, Network Working Group Request
for Comments: 2251, Lightweight Directory Access Protocol (v3),
December 1997

H. Hakala, L. Mattila, J-P. Koskinen, M. Stura, and J. Loughney,
Network Working Group Request for Comments: 4006, August 2005
E. O'Tuathail and M. Rose, Network Working Group Request for
Comments: 3288, Using the Simple Object Access Protocol (SOAP)
in Blocks Extensible Exchange Protocol (BEEP), June 2002

SMPP Developers Forum, Short Message Peer to Peer Protocol
Specification v3.4 Issue 1.2, October 1999

J.B. Postel, REC 821 - SIMPLE MAIL TRANSFER PROTOCOL,
Information Sciences Institute University of Southern California,
August 1982

M. Rose, Network Working Group Request for Comments: 1460,
Post Office Protocol - Version 3, June 1993

AM. Jonassen Hass, Guide to Advanced Software Testing,
ARTECH HOUSE INC, 2008
http://code.google.com/p/robotframework/, May 2011

http:// www.opensourcetesting.org/, May 2011
http://code.google.com/p/robotframework-ride/, May 2011

P. Laukkanen, Data-Driven and Keyword-Driven Test Automation

Frameworks, Master Thesis, HELSINKI UNIVERSITY OF
TECHNOLOGY, February 2006

R.W.Rice, Surviving the top ten challenges of software test
automation, In Proceedings of the Software Testing, Analysis &
Review Conference (STAR) East 2003. Software Quality
Engineering, 2003.

W.E.Lewis, Software Testing and Continuous Quality Improvement,
AUERBACH PUBLICATIONS, 2005

J.Bach, Test Automation Snake Oil, Windows Technical Journal, pp.
4044, October 1996.

B.Marick, When Should a Test Be Automated? Proc. 11th Int'l
Software/Internet Quality Week, May 1998.

34

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Test Purpose and Test Case Generation Approach for SOAP Web Services

Sébastien Salva, Issam Rabhi
LIMOS CNRS UMR 6158
PRES Clermont University, Campus des Cézeaux
Aubiére, FRANCE
sebastien.salva@u-clermontl.fr, rissam@isima.fr

Abstract—SOA Web services are now supported by most
of major software development companies and industry.
To be reliable, these ones require to be developed with
respect to a complete software development life cycle and, in
particular, they need to be tested. Test purpose-based methods
are black box testing techniques which take advantage of
reducing the time required for test derivation in comparison
with exhaustive methods. Nevertheless, test purposes must
be constructed manually. This paper proposes some test
purpose generation methods for SOAP Web services, modelled
by Symbolic Transition Systems (STS). Prior to generate
test purposes, we augment the specification with the SOAP
environment, to benefit from the messages generated by SOAP
processors which give new information about the operations
and the faults received. Then, we describe the test case
generation from test purposes by synchronizing them with the
specification. Test cases are finally translated into XML to be
used later by the Soapui tool.

Keywords-Stateful Web services; STS; SOAP; test purpose
generation.

I. INTRODUCTION

Web services represent a remarkable branch in the evo-
Iution of software development since they offer substantial
advantages such as the externalization of Business or so-
cial applications available on the Internet, or the reuse of
software accompanied by cost reduction. During the recent
years, industry has embraced Web services as well-accepted
channel for conducting E-Businesses on the Web.

Nevertheless, to ensure that Web services hold their
promises, it is crucial that testing activities play an important
role in the development process. Indeed, to achieve trustwor-
thy Web services in an environment like the Internet, these
ones must also be tested to check various aspects such as
robustness, security and conformance which is the topic of
this paper. Several testing methods concerning Web services
testing have been proposed recently [1], [2], [3]. Some of
them, dealing with conformance testing, are said exhaustive
i.e., the test case selection is performed to ensure that a
faulty implementation is detected by a least one test case.
This exhaustiveness often implies to construct test cases for
covering all the actions of a specification at least one time.
So, the test case generation is often costly and eventually
may lead to a state space explosion.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Test purpose-based methods represent an interesting al-
ternative which solve the previous issues and which can
be used to test various properties (not the whole system).
The test selection is then guided and thereby reduced since
test purposes target the test of some implementation parts
only. But, although using this approach greatly reduces
test costs, the main encountered issue is that test purposes
are formulated manually. This task is particularly difficult
when the system is large, has real-time constraints or is
distributed. Few works propose to solve this issue. For
instance, Henniger et al. propose to generate automatically
test purposes for distributed systems [4] by considering the
specific properties of these latter. None method has been
proposed for service-oriented applications though. This is
why we present, in this paper, some test purpose generation
methods for stateful Web services to test the following
specific properties: the operation existence, the critical states
and the exception handling. To test them, we augment the
specification, modelled with the STS formalism (Symbolic
Transition System [5]), with the SOAP environment. Indeed,
this one gives more information about the operations and
the faults produced by Web services under test. Then, we
describe the test case generation. We define a synchronous
product which combines the specification and test purposes
to produce test cases which can be executed on the im-
plementation and which contain the test purpose properties.
Finally, test cases are translated into XML to be executed
with the Soapui tool [6], which is dedicated to the functional
testing of Web services.

This paper is structured as follows: In Section II, we
define both Web service and test purpose modelling. Section
II-A provides an overview on some related works about
Web service testing. We describe the advantages granted by
SOAP for testing in Section III and define the specification
completion. Test purpose generation methods are given in
Section IV. Section V describes the testing method: we
detail the test case generation and the testing framework.
Finally, Section VI describes some experimentation results
and Section VII concludes with some perspectives.

II. WEB SERVICE AND TEST PURPOSE MODELLING

We formalize, in this paper, Web services with Symbolic
Transition Systems (STS [5]). This extended automaton

35

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

model associates a behaviour with a specification composed
of transitions labelled by actions and of internal and external
variables sets, which may be used to send or receive concrete
values and to set guards which must be satisfied to fire
transitions. Below, we only summarize the STS suspension
definition where quiescence (the lack of observation) is taken
into account with the § symbol. The complete definition can
be found in [5].

Definition 1 A (suspension) Symbolic Transition System
STS is a tuple < L,1y, V, Vo, I, A, —>, where:

o L is the finite set of locations, with ly the initial one,

o V is the finite set of internal variables, I is the finite
set of external or interaction ones. We denote D, the
domain in which a variable v takes values. The internal
variables are initialized with the assignment Vy, which
is assumed to take an unique value in Dy,

o A is the finite set of actions, partitioned by A =
AUAC: inputs, beginning with ?, are provided to the
system, while outputs (beginning with !) are observed
Sfrom it. a(p) € A is an action where p = (p1, ..., py) is
a finite set of external variables. We denote type(p) =
(t1,...,tx) the type of the variable set p. § denotes the
quiescence li.e., the lack of observation from a location,

e — IS the finite transition set. A transition
(lis1j,a(p), ¢, 0), from the location I, € L to
a(p),¢,0

l; € L, also denoted |; ——— 1; is labelled by
alp) € Ax1I, ¢ C Dy x D, is a guard which
restricts the firing of the transition. Internal variables
are updated with the assignment ¢ : Dy x D, — Dy
once the transition is fired.

The STS model is not specifically dedicated to Web
services. These latter may be invoked with methods called
operations. This is why, for modelling, we assume that an
action a in A represents either the invocation of an operation
op which is denoted opReq or the return of an operation op
with opResp. For an STS S, we denote OP(.S) the operation
set found in A. We also assume that service handlers, which
may be used to modify SOAP messages, are actions of the
specification. An example is illustrated in Figures 1(a) and
2 (solid transitions only). This one describes a part of the
Amazon Web Service devoted for e-commerce (AWSEC-
ommerceService). For sake of simplicity, we consider only
two operations, “CartCreate” which creates a virtual cart
composed of items, and "CartAdd”, which fills the existing
cart with new items. Initially, a customer has to create a
cart by giving a correct identifier (AWSAccessKeyID), an
item identifier and a quantity. If the cart is instantiated (the
CartCreate operation response is composed of the variable
Isvalid equal to “true”), this one can be upgraded with the
CartAdd operation. Note that we do not include all the
parameters for readability reasons.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

An STS is also associated to an LTS (Labelled Transition
System) to define its semantics. Intuitively, the LTS seman-
tics corresponds to a valued automaton without symbolic
variables: the states are labelled by internal variable values
while transitions are labelled with actions and parameter val-
ues. The semantics of an STS S =< L,ly, V,Vp, I, A, —>
is expressed by an LTS ||S|| =< Q, g0, >, —>.

FCanCreate(Strin
AWSAccesskeylD,
String temASIN,
Integer quantity)
[ltemASIN==
BOOOD457L2
& quantity==5]

ICartCreate
Response(String Cld,
String isvalid, Cartcart

fisvalid==true &
cart.temASsIN{0].
quantity==5]

Ic2

c2

(a) An STS specification (b) A test purpose

Figure 1.

7a ?CartCreate(String AWSAccessKeyID, String ItemASIN, Integer
quantity) id:=AWSAccessKeyID q:=quantity
b !CartCreateResponse(String|] errors,
[isvalid==false & id<>"ID"]

lc !CartCreateResponse(String CID, String isvalid, Cart cart) [is-
valid==true & id=="ID" & q>0] Cartld:=CID

1c2 | !(soapfault,cause) [q<0]

7d | ?CartAdd(String AWSAccessKeyID, String ItemASIN, Inte-
ger quantity, String CID) [CID==Cartid] id:=AWSAccessKeyID
q:=quantity

le !CartAddResponse(String isvalid) [isvalid==true & id=="ID" &
q4>0]

M1 | ?CartAdd(String AWSAccessKeyID, String ItemASIN, Integer
quantity, String CID)

1f2 | la(p) [a(p)#(soapfault,’Client”) & a(p)#(soapfault,’the end-

String isvalid)

point...”)]

?gl | ?CartCreate(String AWSAccessKeyID, String ItemASIN, Integer
quantity)

?scl| ?CartCreate(String AWSAccessKeyID, String ItemASIN, In-
teger quantity) [ItemASIN==B0000457L2 & quantity==5]
id:=AWSAccessKeyID q:=quantity

Isc2| !CartCreateResponse(String CId, String isvalid, Cart
cart) gi=[isvalid==true & id=="ID" & q>0 &
cart.ItemASIN[0].quantity==5] Cartld:=CID

Isc3| !CartCreateResponse(String CId, String isvalid)
go=[isvalid==true & id=="ID" & q>0 & cart.ItemASIN[0].q #
5] Cartld:=CID

Isc4| !CartCreateResponse(String CId, String isvalid) [~g1 & —g2]

Figure 2. Specification symbols

Test purposes describe the test intention. We assume
that they are composed of specification properties which

36

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

should be met in the implementation under test. Usually,
test purposes do not represent complete specification paths.
Therefore, they are often synchronized with the speci-
fication to generate executable test cases. Consequently,
for a specification S =< L,ly,V,Vy, I, A, —>>, we also
formalize a test purpose with a deterministic and acyclic
STS TP =< Lpp,l07p, VTP: VOrp,I, A, —rp> Where
internal variables of the test purpose and the specification

are exclusive (V N Vpp = 0), —7p is composed of
transitions modelling specification properties. So, for any
a(p),®;,0;

transition [;
alp),¥i,Qi
[RACALIEN

l;- €—7p, it exists a transition

l; €— and a value set (21, ...,x,) € Dy such
that p; A ;(z1,...,2,) = true. A test purpose example
for the AWSECommerceService is illustrated in Figure 1(b).
This one aims to create a cart composed of five items whose
identification number (ASIN) is BO000457L2.

A. Related work on Web service testing

Some test purpose-based methods dealing with Web ser-
vices can be found in literature. These ones propose to
transform and adapt an initial specification to be used with
existing test purpose-based techniques [2], [3].

These test purpose-based method assume having an exist-
ing test purpose set constructed manually. Few works have
also proposed automatic test purpose generation techniques:
for instance, in [4], some generation techniques are proposed
for distributed systems by identifying significant action se-
quences of the distributed components. From each sequence,
a test purpose is generated. To our knowledge, none method
has been given for service-oriented applications. However,
these ones are composed of specific properties, e.g., SOAP
faults, operations with data or exceptions. Therefore,these
applications require new test purpose generation techniques
which take into consideration these properties. We introduce,
in this paper, some of these techniques for stateful Web
services, which aim at testing the operation existence, the
critical states and the exception handling. Then, we define
a synchronous product to achieve the test case selection.

III. THE ADVANTAGES OFFERED BY THE SOAP
ENVIRONMENT FOR TESTING

Web services are deployed in specific environments, e.g.,
SOAP for SOAP Web services, to structure messages in an
interoperable manner and to manage operation invocations.
In particular, the SOAP environment consists in a SOAP
layer which serializes messages with XML and of SOAP
receivers (SOAP processor + Web services) [7] which is
software, in Web servers, that consumes messages. The
SOAP processor is a Web service framework part which
represents an intermediary between client applications and
Web services and which serializes/deserializes data and calls
the corresponding operations.

SOAP processors complete Web service behaviours by
adding new messages, called SOAP faults, which give details

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

about the faults raised in the server side. They return SOAP
faults composed of the causes “Client” or “the endpoint
reference not found” if services or operations do not exit.
SOAP processors also generate SOAP faults when a service
instance triggers exceptions. In this case, the fault cause is
equal to the exception name. However, exceptions correctly
managed in the specification and in the service code (with
try...catch blocks) are distinguished from the unhandled
ones since a correct exception handling produces SOAP
faults composed of the cause SOAPFaultException only.
So, SOAP faults can also be used to test whether the
exception handling is correct by identifying the received
causes. Consequently, taking into account these messages
while generating test purposes sounds very interesting to
check the satisfaction of some service properties. So, we
propose to augment the specification with SOAP faults. We
denote (soap fault, cause) a SOAP fault where the variable
cause is the reason of the SOAP fault receipt.

Let S =< L,ly,V,Vy,I,A, —> be a Web service
specification. .S is completed by means of the algebraic
operation addsoap in S which completes the specification
with SOAP faults as stated previously. The result is a
new STS ST. The operation addsoap is defined as follow:
addsoap in S =g ST =< Lgt,lo,V, Vo, I, Agr,—g1>
where Lgr, Agr and — g1 are defined by the following rules:

?opReq(p), ¥, e 70p’ Req(p),¢’ 0’
1 sla,ly
} 7op’ Req(p),0,0 N7
U'¢Ls
(soapfault,” CLIENT”)Aa(p)#(soap fault, the endpoint...”)]

li%s,

la(p),p,0

sTl,Lp:[a(p);é

?0pRe o,
. pReq(p),p,0 sl /= /\ i

lopResp;(r;),¢;,04
V/———5sl,

!(soapfault,cause),p’ 0

sTl

The first rule completes the initial specification on the
input set by assuming that each unspecified operation request
returns a SOAP fault message. The second rule completes
the output set by adding, after each transition modelling an
operation request, a transition labelled by a SOAP fault. Its
guard corresponds to the negation of the guards of transitions
modelling responses. A completed specification is illustrated
in Figure 1(a) (with solid and dashed transitions). Note
that unhandled exceptions are caught by specific exceptions
called unhandledException in Java or C# and translated later
by SOAP faults composed of the unhandledException cause.
So, unhandled exceptions are supported by our work since
we differentiate them from the SOAPFault exceptions thanks
to the received SOAP faults.

IV. AUTOMATIC TEST PURPOSE GENERATION METHODS

Although test purposes sound interesting to reduce test
costs, these ones also raise an important drawback since

37

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

they are usually formulated manually. So, we contribute to
solve this issue by introducing some automatic generation
techniques for Web services. We propose three test purpose
generation approaches which aim at testing the operation
existence, the critical locations, and the exception handling.

A. Operation existence testing

This approach generates test purposes for testing whether
operations in OP(ST), with ST an STS specification, are
implemented and can be invoked. With the completion of
the specification, detailed in the previous section, it becomes
possible to test the existence of any operation, even those
which do not return any response, i.e., any observable reac-
tion. Indeed, if an operation is not implemented as it is de-
scribed in the specification, the SOAP processor will return
a SOAP fault composed either of the cause ”Client” or of the
cause “the end point reference not found”. So, for a speci-
fication ST =< LsT s ZOST y VsT s VOST s 15T N ASTﬂ — gt >, the
test purpose set is given by:

TP= J\ A{tp=<L1l,V,V0,Is+,Agr, —> where

opeOP(ST)
. |
—= {lo —>?opReq(p),®,(0 l1,1q —)Ia(p)’%@ lo, with ¢ =

[a(p) # (soapfault,” Client”) A a(p) # (soapfault,
”the end point reference not found”)]}

The specification of Figure 1(a) is composed of two
operations, so we obtain two test purposes. These ones
will be synchronized later with the specification to test any
operation invocation.

B. Critical location testing

The second technique aims at testing the specification
critical locations. This method is especially suitable when
the specification locations have a precise meaning. It is not
obvious to set which location is critical since no general
and formal definition is given in literature. So, in this paper,
we suggest that the critical locations are those the most
potentially encountered in the acyclic specification paths.
Algorithm 1, derived from the DFS (Depth First path Search)
one, returns the critical location set C'S, from a specification.
Then, for each critical location [€ CS, we construct test
purposes to test all the outgoing transitions of /.

The test purpose set, expressed below, is composed of
specification paths finished by output actions to observe the
implementation reactions while testing. For a specification
ST =< Lgt+,10g+,Vgr,V0gr,Igr,Agr,—>g+>, the test
purpose set is given by:

TP = M {tp=<L,1o,V,V0,Igr,Agr,—> where — is

lecs)
constructed with the following rules:

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

la(p),p,0

l—>s¢l/,a(p)7§6

la(p),p,
@t

?a(p), e, a1 (p),o1»
(ewheey oy a@enen,
?a(p),p,¢ a1 (p).e1,9(e1)

o (p).¢.¢(0) v 1(P)p1,0(01 ...

an (p),on,en
o= grln.an(p)EA; /{6}

v an (p),en,d(en) i

In both rules, we use a renaming function ¢ : V' — V',

¢(v) — v’ to obtain exclusive test purpose internal variables.
The first rule is used when an outgoing transition, from a
critical location, is labelled by an output. In this case, this
transition is added to the test purpose. The second rule is
used when a transition is labelled by an input. The test
purpose is completed with this transition followed by a
specification path finished by an output.

Algorithm 2, given below, constructs a test purpose set

from one critical location /. For each outgoing transition ¢
of [, if ¢t is labelled by an output action then ¢ is a test
purpose (rule R;). Otherwise, we extract a path p with the
Cover procedure such that the test purpose t.p is finished
by a transition labelled by an output action (rule Rs).

In the specification of Figure 1(a), we have two critical

locations req and cart. For each, one test purpose is
constructed, with the previous rules, whose purpose is to
test all the outgoing transitions with paths finished by an
output action. For instance, for the req location, we obtain
a straightforward test purpose composed of one transition
labelled by !b and another one labelled by !c.

Algorithm 1: Critical location search

1

N S s w

=]

Critical(STS,location);

input : An STS S =< L,l,,V,V0,I,A, —>, the
initial location [,

output: A location set C'L

Vt €, label(t) :="UNEXPLORED”;
foreach t = (1,1;, a;, 0i, p;) € OutgoingTransition(l)
do
if Label(t) == "UNEXPLORED” then
Label(t):="VISITED”;
Count(1):=Count(1)+1;
Critical(S, [;);

else
L Count(l;):=Count(l;)+1 ;

ZlieL Count(l;) _

CL := {location [| Count(l) < card(L) |

C. Exception handling testing

As described in Section III, SOAP processors return

SOAP faults when exceptions are triggered in a Web ser-

38

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Algorithm 2: Test purpose generation dedicated to crit-
ical locations
1 TPgen(STS,location);
input : An STS
ST =< Lgt,1061,Vgr,V0gr,Igr,Agr,—g1>,
a critical location [€ Lgr
output: A test purpose
tp =< L, lO, ‘/, VO,IsT,AsT,g)>

2 Vt €= g1, label(t) :="UNEXPLORED”;

3 foreach t; = M l; E—gr do
4 if a(p) € AG, then
s = Ul a(p),p,9(e) LY
6 else
7 p' = 0; Cover(l;,p');
N U{lo a(p),»,9(0) li.p’};

8 Cover(location [, path p);
o if 3 L2 e o with a(p) € A, then
0 | pi=pd TSV 1= null;

11 else

12 | foreach t; = 1 “P2P0 1 e ot labelled by

"UNEXPLORED” do

13 label(t;) :="VISITED”; Cover(l;,p.t;);
14 if [== null then

15 L break;

16 label(t;) :="UNEXPLORED”;

vice operation at runtime. SOAP processors also enable
to differentiate the exceptions resulting of unexpected Web
service crashes from those which are thrown in Web service
operations (with try...catch blocks for instance). In the last
case only, we obtain SOAP faults composed of the ’Soap-
FaultException” cause.

With the specification completion described in Section
III, we can construct test purposes to test whether the
exception handling is correctly implemented and not
managed by SOAP processors. However, to trigger
exceptions, test purposes must be formulated over
predefined value sets, that we denote U(t¢). These ones
are composed of unusual values well known for relieving
bugs, for any simple or complex type t¢. For instance,
U(string) is composed of the values &”, ”$”, null or
”_”, which usually trigger exceptions. For a specification
ST =< LST7ZOST7VST7VOST7IST7AST,_>ST>s the test
purpose set is given by:

TP = N

?opReq(p),p,e ,
stl

{tp =< Lvl()a ‘/7 V()?ISTaASTa

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

? R - b /‘,
—> where —= {lo TopRea(p).#' (),
(Ysoap fault,” SOAPFault Exception”),0,0 . ,
byl Iy with ¢ =

@ Ap = (p1,...,pn) € Ultype(p1)) x ... x Ultype(pn))}

The specification of Figure 1(a) contains two operation
requests. If we suppose that card(U(type(p1)) X ... X
U(type(pn))) = n, we obtain at most 2n test purposes. It is
observed that the larger the unusual values sets, the larger
the test purpose set will be. To limit it, instead of using a
cartesian product, we have chosen to use pairwise testing [8]
which helps to reduce the coverage of the variable domain
by constructing discrete combinations for pair of parameters
only.

V. TESTING METHODOLOGY

Each test purpose is synchronized with the specification
to produce products, formalized with STSs, which combine
the specification behaviour with the test purpose proper-
ties. We extract from these synchronous products complete
paths (from their initial location until a final one) with an
algorithm which performs a reachability analysis to check
whether the guards of each path can be satisfied to guarantee
its execution. These paths are also completed to express the
incorrect (unspecified) behaviour. We obtain test cases ended
by locations labelled by pass, fail, inconclusive which
represent the test case local verdict. These ones are finally
translated into an XML format to be used with the Soapui
tool. Each of these steps are described in detail below.

A. Synchronous product

A test purpose represents a test requirement which should
be met in the implementation. To test this statement, both
the specification and the test purpose are synchronized to
produce paths which model test purpose runs with respect
to the specification.

Similarly to the specification ST =< Lg+,104+, Vgr,
VOgr,Igr,Agr,—g1>, a synchronous product
SP = ST x TP, with TP =< Lpp,l07rp,Vrp,
VOrp,Igt,Agr,—7Tp> a test purpose, is defined as
an STS SP =< Lg+ X Lrp,l0g+ X I07p,Vgr U Vrp,
VO0g+ U VOrp,Agr,—sp>, where the transition relation
—gp is defined with the following rules. The R and Rj
rules perform the product of one specification transition with
one test purpose one by synchronizing actions, variables
updates and guards. We have written the specific rule R3
for output actions to add locations labelled by inconclusive.
This rule yields two transitions: the first one is composed
of a guard satisfying both the specification and the test
purpose ones (p; A ¢;). The second transition, ended by an
inconclusive location, is composed of the guard ¢; A —¢}
which satisfies the specification transition but not the test
purpose one. So, reaching such an inconclusive location
during the tests means that the test purpose transition is not
satisfied although the specification is not faulty.

39

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

a(p),ei,e; b(p), ;1,040
R . (li,li’)eLSPyli Stsbsr TPlj/
- a(p),pi 0
(lili/)%sp(ljli/)
7a(p),©i,0; Ta(p), ;1,040
R, - (liwli’)eLSP,liw_)S¢lj,li/ ——rply
9 !
(HmGD(IsTUVSTUVTP)%:/\Api/(r)|: true)
?a(p),piNer,0iNe;r
(lz‘li') - ! sp(ljlj/)
la(p), @i, 04 la(p), ;7,040
R (lily)ELspli— 2 iyl ——— s rpl
3 - ta(p),piNe;r.0iMNe;r
(Lilyr) sp(l;lr)
(EI:I:ED(ISTUVSTUVTP)LPI-/\@U (z)= truei
!a(P)vin/\ﬁwi/,gi/\ei/
(Lilyr) sp(ljinconlusive)

The synchronous product of the test purpose given in Fig-
ure 1(b) and the completed specification is depicted in Figure
3. The yellow transition, which reaches an inconclusive
location, models a response which does not contradict the
specification but does not satisfy the test purpose. Transitions
labelled by ?f1 !f2 still belong to the product. They represent
a CartAdd operation request which may be called before the
CartCreate operation given in the test purpose.

Isc3

E !502.

A synchronous product

Figure 3.

B. Test case extraction

Figure 4. The final test cases

Final test cases are constructed with the following steps
from the previous synchronous product SP.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

« Synchronous product path extraction with reacha-
bility analysis: acyclic paths are extracted from SP
with Algorithm 3. This one computes a set P of SP
paths p. With the Cover subroutine (lines 4-14), it ex-
plores S P with backtracking and solves the constraints
of p with the solving subroutine to ensure that p may be
completely executed. solving takes a path p and returns
a variable assignment gy which satisfies the complete
execution of p. If the constraint solvers [9], [10] cannot
compute a value set allowing to execute p, then solving
subroutine returns an empty set (lines 19-20). We use
the solvers in [9] and [10] which work as external
servers that can be called by the test case generation
algorithm. The solver [10] manages “’String” types, and
the solver [9] manages most of the other simple types.
In practice, to reduce the time required for solving
guards and to prevent from an explosion of values
possibilities, we assume that the variable domains are
limited by using value sets extracted from database for
instance.

« pass” verdict addition: for each path p € P, the final
locations not already labelled by “inconclusive” are
labelled by ”pass” which means that some behaviours
modelled by test purposes has been reached,

« Incorrect behaviour completion: each path p € P is
completed on the incorrect response set: VI € L such

lopResp(r1),¢1,01

5,0,0

that [has the outgoing transitions [
! lopResp(ry), 0k, 0k
%

I, .oy lg, we add: (1) | —= fail,
lopResp(r),p,0 .
2) 1 LopResp(r) 00, fail, ¢ = [=(p1 V ... V o))

(1) 6 models the location quiescence i.e., the lack of
observation. We suppose that if no response is observed
after a defined timeout Tmax, then the Web service
under test is faulty. (2) If the called operation does
not return an expected response, then the implemen-
tation does not satisfy both the test purpose and the
specification. Thus, a fail verdict is reached too. Note
that when an operation is called, we cannot observe the
response provided by another operation. So, this case
is not considered in this completion.

Final test cases are given in Figure 4. We obtain two
acyclic paths from the previous synchronous product en-
hanced with the possible verdicts.

C. Test execution and verdict

The implementation under test / is assumed behaving like
an LTS semantics, composed of valued transitions (Section
II). We assume that there is no security constraint or firewall
between the tester and the implementation, which modifies
the SOAP messages and thus the implementation behaviour.
To produce a verdict on the test purpose satisfaction, the
tester executes each test case by traversing the test case tree:
it successively calls an operation with parameters and waits
for a response from I while following the corresponding

40

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Algorithm 3: Testcase(STS): P;
input : An STS SP =<

Lsp,losp,Vsp,V0sp,Isp,Ssp,—+sp>
output: A set P of ST'S paths

1 Vt €—gp, label(t) :="UNEXPLORED";
2 pi=0;
3 Cover(l0sp, p,0);

4 Cover(location [, path p, int n);

s if 3(1,1',a,0,9) E—sp labelled by "UNEXPLORED”
then

6 foreach t; = (I,1;, a;, 05, ;) E—sp labelled by

"UNEXPLORED” do

7 if Solving(p.t;) # 0 then

s label(t;) :="VISITED";

9 Cover(l;,p.(I(n),l;(n + 1), a;, 0i, i), n +
1);

10 label(t;) :=="UNEXPLORED”;

11 else

12 0 := Solving(p);
13 V0, = 0 //V0, is the variable initialization of p;
4 | P:=PUp;

15 Solving(path p) : o;

16 p = (lo, 11, a0, po, 00)---(lks Lkt 1, Ak, Pk, OK;

17 ¢ = o A p1(00) Ao A pr(0k-1);

18 (x1,...,x,) = solver(c) //solving of the guard c
composed of the variables (X7, ..., X,;) such that

c(x1, ..., Tp) true;
1 if (z1,...,2,) == () then
0 | 0:=0
21 else

22 L 0:={Xy:=x1,... X, :=2xn}

branch. When a branch is completely executed, a local
verdict is reached. For a test case ¢, we denote the local
verdict v(t) € {pass, inconclusive, fail}. The final verdict
is given by:

Definition 2 Let I be a Web service under test, P be a test

purpose set and T'C be a generated test case set. The verdict
of the test over P, denoted Verdict(I/P) is

e pass, if for all t € TC,v(t) = pass. The pass verdict
means that test purposes in P are satisfied,

o inconclusive, if it exists t € TC,v(t) = inconclusive
and for all t € TC,v(t) # fail. This verdict means
that some test purposes in P are not satisfied although
the implementation does not sound faulty,

o fail, otherwise. At least on test purpose in P is not
satisfied and the implementation is faulty.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

VI. EXPERIMENTATION

Existence | Critical locations | Exception handling
test purposes 22 2 22
test cases 44 22 210
fail verdicts 0 0 39

Figure 5. Test results on the Amazon AWSECommerceService Service

At the moment, we have implemented an incomplete
tool which performs the test purpose generation from a
completed STS and the synchronous products between the
specification and test purposes only. So, test cases are
not generated from synchronous products but are extracted
manually. To experiment them on real Web services, test
cases are extracted and written into the Soapui format. So,
these ones can be executed with the Soapui tool [6] which
aims to experiment Web services with unit test cases.

We applied this preliminary tool on several Web ser-
vices to experiment the test purpose generation. Figure 5
describes the results obtained for the Amazon AWSEC-
ommerceService (09/10 version) which is a representative
sample because it is composed of a large operation set
(22 operations) and of many data structures. We limited
the test purpose number to 10 per operation for the ex-
ception handling method. We obtained fail verdicts only
for the exception handling tests. Indeed, we obtained some
SOAP faults composed of the cause Client, meaning that
the requests are incoherent although the test cases satisfy
the specification. We also received unspecified messages
corresponding to errors composed of a wrong cause. For
instance, instead of receiving SOAP faults, we obtained the
response ~Your request should have at least 1 of the fol-
lowing parameters: AWSAccessKeyld, Subscriptionld” when
we called the operation CartAdd with a quantity equal to -
17, or when we searched for a "Book” type instead of the
”book” one, whereas the two parameters AWSAccessKeyld,
Subscriptionld were right.

In comparison with the other test purpose-based methods
for service-oriented applications [2], [3] or tools, our ap-
proach takes into account the SOAP environment for testing.
This one generates messages which help to conclude if
operations exist as it is stated in the specification and which
help to identify the exceptions resulting of unexpected Web
service crashes from those which are thrown in Web service
operations. These features helped to detect the incorrect
SOAP faults, composed of the cause Client in the previous
experimentation. These errors cannot be detected by the
previous methods. But the major benefit of this approach
concerns the automatic generation of test purposes. Most
of the test purpose-based method assume having an existing
test purpose set, constructed manually. As stated earlier, this
manual construction requires time and is difficult when the
system is large.

41

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

VII. CONCLUSION

We have presented some automatic test purpose gener-
ation methods dedicated to Web services, which aim to
test the operation existence, the critical locations, and the
exception handling. Then, we have defined a synchronous
product of the test purpose with the specification to construct
test cases, which are finally translated into XML and then
executed by means of SOAPUI.

An immediate line of future work is to take into consider-
ation test purposes describing incorrect behaviours. Such test
purposes may be composed of properties which do not be-
long to the specification. These ones can be used for testing
behaviours which should be met in the implementation but
also behaviours which should not. With such test purposes,
we could propose new generation methods for robustness or
security testing.

REFERENCES

[1] J. Garcia-Fanjul, J. Tuya, and C. de la Riva, “Generating
test cases specifications for compositions of web services,”
in in Proceedings of International Workshop on Web Services
Modeling and Testing (WS-MaTe2006), A. Bertolino and
A. Polini, Eds., Palermo, Sicily, ITALY, June 9th 2006, pp.
83-94.

[2] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang, “Automatic
timed test case generation for web services composition,”
in The 6th IEEE European Conference on Web Services
(ECOWS’08), 1. C. S. Press, Ed., Dublin, November 2008,
53-63.

[3] T.-D. Cao, P. Felix, and R. Castanet, “Wsotf: An automatic
testing tool for web services composition,” in Proceedings
of the 2010 Fifth International Conference on Internet and
Web Applications and Services. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 7-12. [Online]. Available:
http://dx.doi.org/10.1109/ICIW.2010.9

[4] O. Henniger, M. Lu, and H. Ural, “Automatic generation
of test purposes for testing distributed systems,” in FATES,
ser. Lecture Notes in Computer Science, A. Petrenko and
A. Ulrich, Eds., vol. 2931. Springer, 2003, pp. 178-191.

[5] L. Frantzen, J. Tretmans, and T. Willemse, “Test Generation
Based on Symbolic Specifications,” in Formal Approaches
to Software Testing — FATES 2004, ser. Lecture Notes
in Computer Science, J. Grabowski and B. Nielsen, Eds.,
no. 3395. Springer, 2005, pp. 1-15. [Online]. Available:
http://www.cs.ru.nl/~1f/publications/FTWO05.pdf

[6] Eviware, “Soapui,” 2011, http://www.soapui.org/.

[71 W.-L organization, “Web services ba-
sic profile,” 2006, http://www.ws-
i.org/docs/charters/WSBasic_Profile_Charter2-1.pdf.

[8] M. B. Cohen, P. B. Gibbons, and W. B. Mugridge, “Construct-
ing test suites for interaction testing,” in Proc. Intl. Conf. on

Software Engineering (ICSE), 2003, pp. 38-48.

[9] N. Een and N. Sorensson, “Minisat,” 2003, http://minisat.se.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[10] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst, “Hampi: a solver for string constraints,” in ISSTA ’09:
Proceedings of the eighteenth international symposium on
Software testing and analysis. New York, NY, USA: ACM,
2009, pp. 105-116.

42

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Ev-ADA: A Simulation-driven Evaluation Architecture for Advanced
Driving-Assistance Systems

Assia Belbachir, Jean-Christophe Smal and Jean-Marc Blossevillle
Laboratoire de Mesure de la Mobilité Coopérative (LEMCO)

IFSTTAR
25 allée des marronniers
78000 Versailles, France
Email: firstname.name @ifsttar.fr

Abstract—This paper reports the architecture of a simu-
lator which is able to evaluate sensors, path planners and
controllers of the advanced driving-assistance systems (ADAS).
The outstanding feature of this simulator is that it is able to
evaluate algorithms by giving scores. The implementation of the
algorithms requires several tools such as Pro-SiVIC™. To have
a good evaluation of the developed algorithms, we give a list
in this paper of the requirements for an ADAS simulator. The
simulator architecture and the developed algorithms are tested
in several ADAS scenarios. Using Pro-SiVIC™ as a simulator,
we are now able to evaluate different algorithms for ADAS.

Keywords-Simulation architecture; Pro-SiVIC™; Evaluation;
ADAS.

I. INTRODUCTION

Advanced driving-assistance systems (ADAS) received an
increasing attention from the car industry recently. To attract
industrial attention, pieces of hardwares and softwares are
developed. However, the software developments cannot work
from the first time and can make costly damage. This is
why, there is a strong need to ease the development and
the validation process of different parts of hardware and
software components. In this sense, using computational
simulation techniques can be a candidate solution to this
problem since it is cheaper in terms of time, money and
human resource needed. By generating different types of
vehicles, a simulator should be able to evaluate the vehicle’s
behavior. Up until now, several simulators are developed.
They can be logically divided into two main groups. The
first group focuses on simulating only one specific behavior,
such as the camera perception or the path planning [1].
The second group simulates all the system’s components
behaviour at the same time especially for ADAS [2], [3].
The proposed simulator in this paper belongs to the second
group, since the overall aim is to simulate and evaluate
different sensors, path planning and control algorithms for
ADAS. We use Pro-SiVIC™ [4] and *Maps [5]. The former
is able to generate the design (hardware) of different vehicles
(e.g., the wheel’s dimension, the environment, etc.) and
the latter is used to implement different perception, path
planning and control algorithms. In our case, we want to

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Sébastien Glaser
Laboratoire sur les Interactions Véhicules Infrastructure
Conducteurs (LIVIC)
IFSTTAR
14, route de la Miniére
78000 Versailles, France
Email: firstname.name @ifsttar.fr

l Control

Simulation and evaluation

Score

Figure 1. The general architecture to simulate the perception, path planning
and control algorithms.

simulate and evaluate algorithms for ADAS. However, there
are two questions rising: “What do we need to simulate?”
and “How can we evaluate all the behaviors?” As a brief
answer to the first question is that we are trying to simulate
the perception, the path planning and the control part (see
Figure 1). For the second question, the evaluation tests need
to be realistic. We define realistic tests such as:

- Definition of different scenarios: the defined scenarios
should simulate different road traffic cases, several kinds of
road (e.g., motor-way), etc.

- Evaluation requirements: we need to define some criteria
to evaluate algorithms. For that we define eight simulator

43

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

requirements for the ADAS (see Figure 2) and discuss them
in Section III

The originality of this paper is that, while simulating, we
are able to evaluate algorithms. We applied our work to a
project called: ABV (Automatisation de la conduite a Basse
Vitesse sur des itinéraires sécurisés : low speed automation,
on a safe trip). This project aims to automatize the driving
in low speed (less than 50km/h). The system should be able
to advice or take decisions for the safety of the driver and
pedestrians/cars on the road. As safety is a main matter, we
must evaluate each function of the system, choosing the best
option available to realize them.

Our paper is organized as follow: first of all we explain the
background and discuss briefly the used tools mainly Pro-
SiVIC™, Section III describes our simulator requirements to
evaluate different algorithms. Section IV shows the deployed
architecture Ev-ADA and some experiments to show the
system versatility. We conclude the paper by a discussion
and future work.

II. BACKGROUND

Several simulators have already been developed [6] such
as MORSE [7], Player/Stage [8] and Gazebo [9]. In general,
these simulators are used to imitate the behavior of a
robotic system. However, these simulators do not evaluate
algorithms by giving scores. Our aim is first of all to
simulate the system and secondly to assess how the system
is running. We defined several criterion to assess the ADAS
system running. We used the simulator Pro-SiVIC™, that is a
platform for prototyping sensors. We used ¥*Maps to be able
to implement the loop of perception—path planning—control
by using different algorithms. The coupling between Pro-
SiVIC™ and ¥"Maps brings to ¥"Maps the ability to observe
simulated data from Pro-SiVIC™. As follow we explain how
can Pro-SiVIC™ and *"Maps works together.

A. Simulation using Pro-SiVIC™

Pro-SiVIC™ is developed in order to be independent of
applications type. To be realistic, Pro-SiVIC™ integrates all
functionalities allowing the most realistic possible graphical
in the environment. mg Engine is the graphical 3D engine
used. To reduce the computing board process, mg Engine
uses a tree of binary positioning (BSP) (for more details
ses [10]). To ensure its portability under numerous oper-
ating systems, this application is developed in C** under
LGPL with OpenGL and SDL libraries. In general several
functionalities can be developed such as:

1. Simulated sensors: Several sensors can be simulated
such as camera, inertial platform, odometer, telemeter, etc.

Camera (module sivicCamera): It simulates different sets
of camera configured by using the Pro-SiVIC™ parameters
or by using the parameters related to OpenGL.

Inertial Navigation System (module siviclnertial): this
module simulates the inertial sensor.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Lane detection

Acceleration
Object position

Path planning RTMaps
/ e \ |
[Perception | Control

Simulation and evaluation
Collision detection

Conformability speed

Figure 2. The general architecture to simulate the perception, path planning
and control algorithms with different simulator requirements.

Odometer (module sivicOdometer): It provides the dis-
tance covered by a vehicle.

Telemetric scanner (module sivicTelemeter): This module
simulates a laser scanner. Depending on the type of the
telemeter, several methods can be implemented such as ray
tracing or others.

2. Vehicle model: Three axes are defined : Roll, pitch
and head. A generic model is able to reproduce the move-
ment of the vehicle taking into account shock absorbers,
viscosity and tie adherence [10]. In Pro-SiVIC™ other car
models can be implemented and used from external libraries.

3. Mode changes: Several control modes are possible.
The vehicle can be internally controlled by Pro-SiVIC™
features or externally controlled as in our case using X"Maps.

B. Simulation under *Maps

We implemented sensors, path planner and lateral, longi-
tudinal controllers under ¥*Maps. [11]. The path planner re-
defines a path when the vehicle trajectory should be changed
for example in case of an obstacle in front of the vehicle.

III. SIMULATOR REQUIREMENTS FOR ADAS

ADAS are systems that assist the driver in his driving
process. The main objective of these systems is to increase
car safety and road safety. Such ADAS systems are adaptive

44

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

cruise control (ACC), lane departure avoidance, lane keep-
ing, emergency braking, etc. Every system is specialized in
one topic (path, control, etc.). our work has been to define
and to group all the required criterion to assess the ADAS
simulated components. Eight requirements, explained below,
have been selected :

1) Lane detection error: During these last years, a lot
of algorithms were developed for road lane detection.
Different types of sensor are used, such as LIDAR,
RADAR, Camera [12], etc. Our simulator should be
able to compare the real position of the lane with the
perceived position lane. In the next subsection we
detail how the error is computed (§ Lane).

2) Pedestrian detection error: A lot of algorithms have
been designed to detect pedestrians on the road.
The objective of this detection process is to avoid
collisions with pedestrian. It is hard to sense, process
data and avoid the pedestrian when the car is at
high speed. Intensive work has been done on this
topic [13], however to ensure the correct pedestrian
detection implies that the vehicle speed is limited.
For assessing this process part, the error between
the simulated pedestrian position and the detected
pedestrian position has been computed (6 Pos;, where
1 represent the pedestrian object).

3) Car position detection error: ADAS perception
systems should detect other vehicles or objects in
order to avoid collisions. Our assesment process
computes the error of the simulated position of the
car and the relative estimated position with other
vehicles or objects(d Pos;, where i represent the car
object).

4) Car localization error: Some dedicated process
(odometer, GPS like etc.) is used to localize the
vehicle on the road. A localization error should be
computed to evaluate the localization correctness.

5) Path planning error: A huge number of algorithms
have been developed for path planning, originally
for robotics applications. These algorithms have as
main criterion to avoid collision with existent objects
and to reduce the computation time. Our objective is
to evaluate the capability of the algorithms to avoid
collisions with other objects, at any time (0Collision).

6) Control/command error: Algorithms of control allow
to control the path execution. In general the speed
and the direction of the vehicle are controlled (e.g.,
Longitudinal and lateral ref. to e-value project).
(6 Speed)

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

7) Driver safety estimation: It is the main requirement
that should be taken into account in all ADAS
systems. ADAS should warn the driver in case
of high risk or should take the control to prevent
accidents. For example, while driving too close to the
preceding car, a sound signal can be used to prevent
the driver or braking can be triggered(d Dist_secur).

8) Driver comfort estimation: Even if the comfort cannot
be fully evaluated, some criterion should be respected,
related to speed changes for example. Next section
explains how each requirement is computed and let
the simulator evaluates the perception—path planning—
control/command loop regarding this comfort criteria
(Accelconfort)~

All these requirements are used to evaluate any ADAS
system. In the next section, we explain how we can merge
these requirements to define a final score.

IV. A SIMULATION DRIVEN EVALUATION
ARCHITECTURE FOR ADAS

To satisfy the aforementioned requirements, developers
need a tool that support sensor, path planner and control
command specification and development. For this purpose,
we used Pro-SiVIC™ with ¥*Maps that are fully able to
support the algorithm specification and development tasks.

Our simulator is composed by Pro-SiVIC™ and ¥Maps,
where we have added a component that assess algorithms
by giving scores. The detailed computed scoring process is
explained in the following subsections.

A. Pro-SiVIC™ components and the link with ¥ Maps

Modeling cars, under Pro-SiVIC™ needs several compo-
nents. Car description uses observers and sensors. Each car
is also described with parameters, the wheel’s dimension, the
weight, etc. that are estimated from real car measurements.
This ability to implement different vehicle shapes make our
simulator versatile. The road shape is generated by using
PathEdit. The latter is used to generate the vehicle path in
a specific road. According to the road description, PathEdit
generates a trajectory as a set of position coordinates and
speed set points on the road.

The implementation of the environment in Pro-SiVIC™
is easy, the vehicle path being as well easily loaded. The
dynamic model of a car is taken into account and can be
modified under Pro-SiVIC™. Observers have been imple-
mented to allow X'Maps to take the vehicle position in the
simulated time.

B. Scores

We developed a component called ABVsim under X"Maps
from observations (e.g., CarObserver). This component pro-

45

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Structure: Ego structure.

1:

struct Ego {

int id; index_lane;number_ego;gear;

Vehicle_Type type;

double position_x;position_y;heading_xy;
position_x_standard_deviation;
position_y_standard_deviation;
heading_xy_standard_deviation;
yaw_rate;speed_x;speed_y;
acceleration_x;acceleration_y;
yaw_rate_standard_deviation;
speed_x_standard_deviation;
speed_y_standard_deviation;
acceleration_x_standard_deviation;
acceleration_y_standard_deviation;
steering_angle;timestamp;

Indicators: indicators;

float revolutions_wheel_rear_right;revolutions_wheel_rear_le ft;
revolutions_wheel_front_right;revolutions_wheel_front_left;
revolutions_motor;weight_empty;
position_x_rear;position_x_front;
position_y_right;position_y_left;
radius_wheel_rear;radius_wheel_front;
speed_x_minimum;speed_x_M ax;
acceleration_x_minimum;acceleration_z_Maz;
curvature_Max; ratio_steering_wheel_on_front_wheel;
Clutch clutch;

Charge charge;

Status status;

18

Figure 3.

iObserverEgo o
iObjectl
iObject2
iObject3
iObject4 o
iObjects
iObjects
iObject?
iObjectd .
iObjectd
iObject10
iObject11
iObject12

iSpeedEgoMax i

1 OEQO
| OLane
| 0Objects

L |
-
L
L
ABVsim_t

Illustration of different input and output in the ABVsim

componant.

vides a data structure such as required in the ABV project
(see Figure 3).

Copyright (c) IARIA, 2011.

Fifteenth entries are developed described as follow:

e iObserverEgo is an entry that observes from Pro-
SiVIC™ the position of the car.

o iObjectl,.., iObjectl2 are entries to observe other ob-
ject’s position such as pedestrian or cars.

o iSpeedEgoMax is the maximal allowed speed of the
vehicle.

Three outputs are developed such as:

e 0Ego is the output of the vehicle position, speed, etc.

e oLane is the output of the lane detection using the

ISBN: 978-1-61208-165-6

appropriate sensor. This structure contains also the error
of the lane detection.
e 00bject is related to the existing objects in the envi-
ronment such as pedestrian or cars.
Different scores are computed for each set of sensors, path
planning, control and safety/comfort algorithms as follow:

Scoresensor = 6Lane+(5iPosi) (D
i=1
Scorepianning = 0Collision 2)
Scorecontro = 0Speed + 0 Direction 3)
SCOT@comfort/security = ACC@lconfort
+ dDist_secur 4)

The sensing score (Scoresensor) 1S associated to the
lane error detection (dLane) and the detection error of
other object positions (52721]3031-). dLane is a normalized
distance between the real lane position and the estimated
lane position. The normalized value is between 0 and 1.

The path planning score is related to the collision cri-
terion. If, while running path planning algorithms, the car
collides with another object, the §Collision is equal to zero.

The controller score Scorecontro; represents the com-
pliance with the maximal speed and the direction to be
followed. When the vehicle exceed the maximal speed the
value dSpeed is equal to zero. When the car does not follow
the road, the d Direction value is equal to zero.

The Scorecomfort /security 15 the main objective of ADAS
systems. Accelconfore Tepresents a score between the maxi-
mal acceleration allowed for a vehicle and the actual vehicle
acceleration. d Dist_secur is related to the distance between
the vehicle and other vehicles. In general, this distance
should corresponds to a car interval of 2 seconds.

All these scores are normalized between 0 and 1. The
higher the normalized score value, the better the score is. The
normalization procedure for each value is as follows. d Lane
is normalized by dividing the result by the traffic lane width.
Pos; is normalized by the car/pedestrian dimension. Speed
is normalized by the maximal allowed speed. Accelcon fort 1S
normalized by the maximal acceleration that the vehicle can
drive. §dist secy;- 18 normalized by the whole driven distance.

V. SIMULATION RESULTS

In our simulation, we are using Windows 7 Professional
under Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz, 64 bits.
In this scenario, we run two vehicles. One vehicle is a
Mini Cooper and the second vehicle is a Megan Renault.
All the algorithms are implemented in the Mini Cooper car

46

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Camera1l

Camera2

Figure 4. [Illustration of different sensors in Ego car.

called Ego. This one follows the second car (Megan Renault)
called Carl.

Our path planning algorithm allows the vehicle to follow
another vehicle keeping a minimal safety distance with the
preceding vehicle (1) and respecting a maximal speed (2).

Ego structure is represented in Figure 4, where two
cameras are implemented in the upper front of Ego. A path-
planning algorithm is implemented based on Cameral. This
camera detects the road surface marking. Ego should follow
Carl at any time and at the same time do not exceed the
maximal predefined speed. Several tests are implemented,
where we vary the maximal speed and safety distance
between Ego and Carl.

All the tests are evaluated in a horse-ring circuit repre-
sented in Figure 5.

Figure 5. Illustration of a horse-ring circuit for both Ego and Carl.

Different strategies can be used to compute a score. An
example of total score utilization is shown as follow:

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

1

y+a+p+T
[yScoresensor

Score

aScorepianning
5scorecontrol

FSCOT@confort/security] (5)

+ o+ o

v, a, B and T' are coefficients. Depending on the coeffi-
cient values, some related parameters can be more important
than others.

In our case, the control and security/comfortability are the
main part that the system should respect, this is why :

B+T>a+ny (6)

We use a weight of 5=1, I'= 2 and a weight of a=vy=1.

Case studies of our score

Speed Ego < Speed Carl | Os | 0.89 + 0.0+ 0.7 +0.5) /4 = 0.52
1s | 089+ 1.0+0.7+05)/4=0.77
2s | (089 +1.0+0.7+05)/4=0.77
3s | 089+ 1.0+0.7+05)/4=0.77
4s | 089+ 1.0+0.7+05) /4= 0.77

Speed Ego > Speed Carl | Os | (0.89 + 0.0+ 0.7 +05) /4 = 0.52
1s | 0.89 + 0.0 + 0.7+ 0.5 /4 = 0.52
2S | (0.89 + 0.0 + 0.7+ 0.6) /4 = 0.54
3s | ©.89+1.0+07+07) /4= 0.82
4s | (0.89 + 1.0 + 0.7+ 0.7) /4 = 0.82

Figure 6. Illustration of the obtained score using the equation 5

Figure 6 represents different case studies of our score.
When the maximal Ego speed is less than Carl ones, the
higher score is 0.77. When the maximal Ego speed is greater
than Carl ones, the higher score is 0.82. Due to the low Ego
speed, this one can not follow Carl. This difference of score
is only related to the speed divergence. This sceanrio shows
that our platform is able to evaluate different implemented
algorithms on a simulation mode.

VI. CONCLUSION AND FUTURE WORKS

Our contribution aims at defining an architecture and a
framework to evaluate various types of advanced driving-
assistance systems (ADAS). In our experiments, an ego car
is used to follow another car on a horse-ring road. Each
algorithm part (perception, path planning, task control) is
evaluated using different types of scores. To extend the Pro-
SiVIC architecture, an evaluator based on proposed criteria
has been implemented. These criteria are: (1) Lane detection
error, (2) Pedestrian detection error, (3) Car position detec-
tion error, (4) Car localization error, (5) Path planning error,
(6) Control/command error, (7) Driver safety estimation (8)
Driver comfort estimation.

47

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The evaluation of the tested algorithms related to lane de-
tection (based on camera), path planning, control command
and comfort/safety of the driver, gives a satisfied score. Our
Ev-ADA simulator is now able to evaluate different types of
algorithms working on different types of scenarios.

This work opens perspectives. As future works, we plan
to evaluate other algorithms in other case studies, varying
not just the speed, but also external parameters such as the
weather, the traffic, etc. As a matter of fact, the versatility
of Pro-SiVIC allows us to evaluate algorithms in various
conditions including raining, cloudy, dark weather associated
with different car traffic situations.

We will be also able to compare different algorithms
between them in the same reproduced conditions. This work
will contribute to obtain the best ADAS systems suitable
for drivers, safety criteria included. Nevertheless, even if,
working with simulation tools reduces works, time and
resources, we should recognize that real experimentations
will be necessary to take account driver perceptions.

ACKNOWLEDGMENT

The authors would like to thank all the LEMCO team and
Dominic Gruyer for allowing us the use of the simulator. We
would like to thank also CIVITEC for their daily help.

REFERENCES
[1] T. Siméon, J. p. Laumond, and F. Lamiraux, “Move3d: a

generic platform for path planning,” in in 4th Int. Symp. on
Assembly and Task Planning, 2001, pp. 25-30.

[2] M. Parent, “Advanced urban transport: Automation is on the
way,” IEEE Intelligent Systems, vol. 22, pp. 9-11, 2007.

13

—

“Haveit eur. project [online]. available: http://www.haveit-
eu.org/,” Last access date 10/2011.

[4

—_

N. Hiblot, D. Gruyer, J.-S. Barreiro, and B. Monnier, “Pro-
sivic and roads, a software suite for sensors simulation and
virtual prototyping of adas,” DSC2010 Driving Simulation
Conference, 2010.

[5

—

F. Nashashibi, B. Steux, P. Coulombeau, and C. Laurgeau,
“’rtmaps a framework for prototyping automotive multi-
sensor applications,” In Proc. of the IEEE Intelligent Vehicles
Symposium, 2000.

[6] S. Petters, D. Thomas, M. Friedmann, and O. Stryk, “Mul-
tilevel testing of control software for teams of autonomous
mobile robots,” in Proceedings of the Ist International Con-
ference on Simulation, Modeling, and Programming for Au-
tonomous Robots, ser. SIMPAR ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 183-194.

[7]1 G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan,
“Modular Open Robots Simulation Engine: MORSE,” in
Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, 2011.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[8] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor
systems,” in I1th International Conference on Advanced
Robotics (ICAR 2003), Coimbra, Portugal, 2003. [Online].
Available: citeseer.ist.psu.edu/gerkeyO3playerstage.html

[9] N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,” in In
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2004, pp. 2149-2154.

[10] M. S. Glaser, “Modélisation et controle d’un véhicule en
trajectoire limite : application au développement d’un systeme
d’aide a la conduite,” Ph.D. dissertation, Ecole Doctorale
Sitevry (Université Evry-Val-D’Esonne), 12 mars 2004.

[11] S. Glaser, V. Benoit, S. Mammar, D. Gruyer, and L. Nou-
veliere, “Maneuver-based trajectory planning for highly au-
tonomous vehicles on real road with traffic and driver inter-
action,” Trans. Intell. Transport. Sys., vol. 11, pp. 589-606,
September 2010.

[12] J. McCall and M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,”
Intelligent Transportation Systems, IEEE Transactions on,
vol. 7, no. 1, pp. 20 =37, 2006.

[13] L. Oliveira and U. Nunes, “Context-aware pedestrian detec-
tion using lidar,” in In: IEEE Intelligent Vehicles Symposium,
2010, pp. 773-778.

48

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

On the Preliminary Adaptive Random Testing of Aspect-Oriented Programs

Reza Meimandi Parizi, Abdul Azim Abdul Ghani

Department of Information Systems, University Putra Malaysia,
43400 Serdang, KL, Malaysia
{parizi, azim} @fsktm.upm.edu.my

Abstract— Adaptive random testing (ART) is a new family of
random-based test data generation and selection strategies that
enhances the effectiveness of tests over the classical random
testing (RT). ART has been widely investigated and studied in
numerous research papers over the recent years. These studies
have included proposing various techniques for implementing
and improving the intuition behind ART (evenly spread of test
cases over the input domain, measured by some distance
measures) generally for procedural programs with numerical
input domain and most recently object-oriented programs.
However, there is currently no work available in the literature
that discusses the applicability of ART to aspect-oriented
programming (AOP), as it is gaining popularity in software
development. Inspired by this, this paper aims to investigate the
possible ways that ART can be applied to AOP. This investigation
focuses on a multi-perspective analysis of the current ART-based
techniques. In this respect, we identified three related
perspectives based on the current state of art in the area of ART.
Each perspective was analyzed in terms of its applicability and
possibility for aspect-oriented programs, particularly its
constituent distance measure. As a result, our study gives rise to
some interesting points and outlines a number of potential
research directions in applying ART to AOP. This can pave the
way for efficient development on applying of ART to AOP and
finally AOP success.

Keywords-software testing; random testing; adaptive random
testing; aspect-oriented programming; aspect testing.

I. INTRODUCTION

Aspect-oriented programming [1],[2],[3] is one of the
prominent modularization techniques emerged to cope with the
complexity of software development process. To realize the
benefits of aspect-oriented programming, the programs
developed by this programming paradigm should be effectively
tested. The reason is that the aspect-related defects [4],[5],
stemmed from the unique characteristics of AOP, can affect the
quality of these programs and consequently their general
benefits, i.e., enhanced modularity and maintainability.

Software testing as the most widely used practice of
ensuring the program’s correctness, is useful to help finding
these defects (i.e., their presence) and thus to provide a higher
level of software quality. However, it has to be said that there is
comparatively little work on testing of AOP in the literature
and very little on automated testing of AOP such as [6],[7],[8].
This obviously indicates an insufficiency of testing approaches
for the aspect-oriented programs at the current time and
provides a primary motivation for leveraging the current testing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

techniques and/or developing new techniques for these

programs.

Adaptive random testing proposed by Chen ef al. [9] (as a
recent derivative of random testing [10]) is an active and
interesting research topic, which has shown [11],[12],[13],[14],
[15] to have higher fault detection effectiveness compared to
classical random testing, with facility of test automation. This
is why Jaygarl et al. [16] has noted that ART is one of the most
effective technique in automated test generation. The essential
idea of ART techniques is that the evenly spread random test
cases over the whole input domain allows finding faults
through fewer test cases than with classical random testing.
ART has shown to reduce the number of tests required to
reveal the first fault by as much as 50% over classical random
testing [17]. Adaptive random testing has seen remarkable
progress during the recent past years in order to address the
notion of evenly spread of test cases. It seems reasonable to
conjecture that ART would continue to be active and become
popular among the other random-based testing strategies.

In line with importance of AOP testing and on the other
hands its current insufficiency, we believe the idea behind
adaptive random testing can be worthwhile and attractive for
automated testing of aspect-oriented programs since current
research on testing of AOP, especially automated has not been
adequately performed and is still in stage of infancy. In order to
investigate the applicability of ART to AOP, we indentified
three perspectives/directions based on scouring the current
ART-based techniques in the literature. Corresponding to each
perspective and its underlying technique (i.e., distance
measure), we analyzed and discussed the feasibility of the
given technique to AOP.

As far as we are aware, this is the first attempt made in the
literature to discuss the applicability of ART for aspect-
oriented programs. In other words, this paper takes some initial
steps towards addressing the ART concept for automated test
data generation and selection of the aspect-oriented programs.
The specific contributions made by the paper are:

e It makes the current vague realization of ART to AOP
more understandable by providing thought-provoking
perspectives on this matter. Specifically, it gives a
theoretical analysis and comparison of three known ART
criterions adopted (presented under three identified
perspectives) to calculate the distance among different test
cases for aspect-oriented programs.

e [t analyzes and potentially guides the application of ART
in AOP and discusses the potential of using current ART
techniques and their results to foster the development of

49

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

new testing techniques in area of aspect-oriented software
development (AOSD).

The remainder of this paper is organized as follows. Section
II provides the background on ART and overviews the current
state of the art in this field of research; Section III presents and
analyzes the perspectives on adaptive random testing of AOP;
Section IV summarizes the results of the analyses; and Section
V reports the conclusion and future work.

II. ADAPTIVE RANDOM TESTING (ART)

A. Overview and Classification

Random testing [18],[10],[19] as one of the eldest
techniques that include automated test input generation and
selection has been studied and applied in different
programming paradigms and application domains for decades.
The first emergence of the random testing was meant for
programs with numerical input domain, however with passage
of time and emerging different paradigms the interest in
random testing has been substantially increased due to the
merits it offers. This matter is evident by various studies in the
literature that have extended/applied the RT to the area of their
interest.

Random testing is normally referred as the opposite of
systematic testing such as functional or structural testing. The
techniques in this family, i.e., random-based, can be generally
classified into classical/pure random testing (the word classical
and pure are interchangeability used in this paper) and enriched
random testing due to the strategies they use for test input
generation and selection, see Figure 1.

Random testing

Classical random
testing

Enriched random
testing

Automated test
generation and selection

Figure 1. General classification of random testing techniques

By enriched, we mean those strategies that have been
equipped with some guidance to their normal random
generation process to pick up test inputs that give higher
effectiveness in results, in contrast to the classical random
testing in which test inputs are only picked at just random. In
other words, both classical RT and enriched RT randomly
generate test inputs from the input domain, but enriched RT
uses additional guidance/criteria to help systematically test case
selection rather than randomly selection. Note, in classical
random testing test cases are generated by selecting random
values of the input variables, which means the generation and
selection are not two separated process but rather both imply
each other and carried out randomly, see Fig. 2. (Note, in the
classical RT, the test generation and test selection processes are
the same but in the figure they have been separated for only the
purpose of contrasting).

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

ART [9],[20] is the most dominant family of the enriched
RT that suggests a selection criterion of “enforcing the test
cases to be evenly spread over the entire input domain”.
Spreading evenly the test cases over the input domain is not
only the basic idea underlying the ART but also Quasi-Random
Testing (QRT) [21] and somewhat the Diversity-Oriented Test
Data Generation (DOTG) [22]. These techniques emphasize on
the idea of existence a correlation between the fault detection
effectiveness and the evenness of the test case distribution in
which the more even distribution of the test cases over the
input domain the more fault detection capability with fewer test
cases is gained.

Classical RT

randomly l

Test selection

randomly l

Test generation

A

use
Test selection criteria

Figure 2. The contrasts between the classical and enriched random testing

A

Enriched RT

randomiy Y

(e.g.ART)

In ART has been tried to enhance the fault detection
effectiveness of classical RT by imposing some additional
criteria on the test inputs selection process. As we mentioned
before, the basic intuition of ART technique is that the evenly
spread random test cases over the whole input domain allows
finding faults through fewer test cases than with purely random
testing. In literature several algorithms and variations of the
techniques have been proposed to address the “even spread”
intuition. The different ART algorithms give different test case
selection criteria to ensure an even spread of the test cases.
These algorithms attempt to maintain the benefits of random
testing while increasing its effectiveness. For instance, one of
the test case selection criterions used in one typical ART
algorithm called the Fixed Size Candidate Set ART (FSCS-
ART) [9] is as follows, which ensures the evenly spread of the
test cases by means of a distance measure. The technique
defines two test sets: the Executed Set, containing the test data
that have been executed, and the Candidate Set, containing a
set of randomly selected test data. The Executed Set is initially
empty and the first test datum is randomly chosen. The
Executed Set is then incrementally updated with the elements
selected from the Candidate Set until a fault is revealed. The
choice of the test datum from the Candidate Set requires the
measurement of the distances of each candidate to all test data
in the Executed Set. The chosen candidate is the datum that has
the maximal value for the minimal distance among the
distances to each test data in the Executed Set (furthest away
from the already used inputs).

B. State of the Art in ART

Based on the idea of ART great deals of related algorithms,
i.e., various implementation of the idea, have been proposed
(distance-based ART, DART [23] was the first ART

50

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

algorithm). The different algorithms give different test case
selection criteria towards achieving this idea. Some of these
algorithms are closely related to the ART, however, with slight
changes. Example of these include the Restricted Random
Testing (RRT) [24] or Ordinary Random Testing [25], while a
plenty of them, as explained below, emphasize on the
improvement to ART itself since its emergence [9].

Although ART has shown to be able to improve the fault
detection effectiveness of RT, it requires additional
computation overhead (considered as main problem associated
with ART) to evenly spread test cases [26]. On this regard, a
great deal of research has been proposed to minimize the
boundary effect [27] and the overhead of primary ART
algorithm. Mirror ART (called MART) [28], Fuzzy ART [13],
ART by restriction [29], ART by localization [30], ART
through dynamic partitioning [31], ART with CG constraints
[32] are examples of these improvements which alleviate the
pitfalls of the original ART algorithm, especially its overhead.

Further advancement to ART has also been provided by
lattice-based ART. Lattice-based ART (L-ART) is a distinctive
ART method that generates test cases by systematically placing
and then randomly shifting lattice nodes in the input domain.
The first introduction of L-ART [33] showed that L-ART is
capable of yielding a better fault detection capability than RT,
at the same generation cost. However, the test cases of L-ART
may be highly concentrated on certain parts of the input
domain and cause a skewed distribution of test cases. This
skewed distribution of test cases can cause a tight coupling
between the fault detection capability and the failure region
location in the input domain. This means, when failure regions
coincidentally reside in the area where L-ART selects a high
density of test cases, L-ART may show a better fault detection
capability than when failure regions are in the low density area.
In reality, however, failure regions can be in any part of the
input domain, therefore this dependency of fault detection
capability on the failure region location is undesirable.

The issue of skewed test case distributions was addressed in
an enhanced version of L-ART presented by Chen et al. [34].
The new L-ART not only had a less-skewed test case
distribution, but also demonstrated better and more consistent
fault detection capability compared to the original L-ART. This
superiority of the fault detection capability of the new L-ART
has been shown to be better than the results by Restricted ART
by random partitioning [35], ART by bisection with restriction
[36] and localization [37], ART through iterative partitioning
revisited [38] and not revisited [39], ART with enlarged and
high dimensional input domains [40], ART with randomly
translated failure region [41], ART using Voronoi diagram
[42], ART by balancing [43].

Distribution Metric Driven ART [44] has been conducted to
measure how evenly an ART algorithm can distribute its test
cases according to some distribution metrics such as
discrepancy and dispersion, which reflect different aspects of
the test case distribution. Discrepancy and dispersion are two
commonly used metrics for measuring the equidistribution of
sample points. Intuitively, low discrepancy and low dispersion,
not in isolation, indicate that sample points are reasonably
equidistributed [45] and finally implies an even spread of test
cases. These distribution metrics have not only been used to
measure and compare the equidistribution of various ART

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

algorithms but also they have recently been adopted as criteria
for the test case selection process aiming at improving the
evenness of test case distribution and the fault detection
capability of ART [45], [46].

More recently, a new family of ART [47] algorithms,
namely adaptive random testing with dynamic non-uniform
candidate distribution (ART-DNC) has been proposed. ART-
DNC uses a new test profile called failure driven instead of
uniform distribution or operational profiles used in the original
ART algorithm to maximize the effectiveness of fault
detection. These new algorithms showed better fault detection
capabilities in contrast with the original ART and RT.
Moreover, a new ART approach [48] based on the application
of an evolutionary search algorithm, called Evolutionary
Adaptive Random Testing (EART), was proposed lately.

As could be seen from above, there are so many different
growing approaches that address the concept of ART and its
further improvements. This matter may raise the question how
the results of this work can be related to each other to come up
with a completed and optimally effective ART approach.
Recently, the work in [49] has taken into account this issue.
This work presented a classification, amalgamation of the
influential research work related to ART by highlighting the
connections, and dependency relationships among the current
work in this area.

The review of the current state of the art, as given in this
section, shows that none of the presented work has discussed
the applicability of adaptive random testing to AOP yet. This
has primarily provided the motivation for the research in this
paper to address this gap.

III. PERSPECTIVES ON ADAPTIVE RANDOM TESTING OF AOP

In this section, we present and discuss three perspectives on
adaptive random testing of AOP. For each of the perspective,
the discussion is based on the following:

e [ts underlying technique and difference measure it
encompasses

e Analysis (i.e., theoretical) of its applicability/
feasibility to AOP

A. Overview

It has been generally believed that how evenly an ART
technique spreads test cases has an impact on how effectively it
detects software failures, and an even distribution of test cases
brings a good fault detection capability [11],[12],[13],[14],[15],
[50]. However, this matter has only been proven for the
numerical and recently objects input types, where there is no
evidence on the other complex contexts such as aspect-oriented
yet.

In order to be able to apply a typical ART technique (such
as FSCS-ART) to a given program the following two issues
should be generally figured out [49]:

(1) A strategy to help random sampling from the input
domain of the program under test. In other words, this strategy
is used to generate random test inputs/data.

(2) A mechanism to compare any two members of the input
domain and determine the distance between them to select
those test inputs that ensures the evenly spread of the test
cases over the input domain. The distance measure should be
able to represent the probability of common failure behavior

51

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

between two inputs. In other words, the distance measure can
be viewed as a difference measure that tries to maximize the
diversity of the inputs in which the smaller the distance, the
more likely the test cases will show a similar failure behavior.
Up to the present time, ART and its all variations in the
literature are limited to programs with numeric inputs. On this
regards, these studies have calculated the distance between
two test cases, i.e., values from input domain, using the
Euclidean measure.

Nevertheless, the first issue is common between any pure
random testing and adaptive random testing techniques in
which a given strategy needs to provide random generation of
the test inputs (i.e., random testing). The second issue is meant
to be only for ART techniques, i.e., solely unique to the
adaptive random testing. It is worth mentioning that the first
issue, which is RT, for different programming
paradigms/languages and many application domains has been
popularly resolved for decades, e.g., [51],[52],[53], [54]. In
particular, there have been some recent attempts [55],[56]
towards application of random testing to aspect-oriented
programs, however the second issue has received lesser
attention as the major challenge towards applying the concept
of ART to AOP. Therefore, we place emphasis on discussing
the second issue as the target objective in this paper.

The main question that we seek to provide insight into it is
how the concept of distance measure can be lifted or applied to
aspect-oriented programs. The answer to this question can
consequently help developing adaptive random testing
techniques towards automated testing of aspect-oriented
programs.

According to the current evidence from literature, there are
three perspectives in which this question can provoke
discussion in the applying the notion of distance measure
(second issue) or more generally ART to AOP. These
perspectives are presented and discussed in the following sub-
sections. Furthermore, in our discussion Aspect] [57],[58] is
adopted as the target language. The reason is that the Aspect] is
the most commonly used aspect-oriented programming
language that warrants special attention.

B. Category and Choice-based Perspective

1) Underlying technique: This perspective is based on the
concepts of categories and choices [59] to which the failure
behavior of test cases (i.e., their ability to trigger faults) can be
predicated according to the similarity of computation in the
executions of them [49]. With regard to this idea, a difference
measure (hereafter category and choice distance, CCD) for the
category-partition method was first proposed by Kuo [60],
who claimed that this measure can be used to help applying
ART to a broad range of software input types.

The category-partition method is a specification-based
testing approach. In this approach, the parameters and
environment conditions that define the behavior of the
program under test are first identified, which called as
categories. Then, for each category, a set of mutual values that
possibly triggers similar computation forms the choices. The
more categories in which two inputs have various choices, the
more diversifiable computation they trigger. Therefore, the
number of categories containing differing choices is used as
predictor of this difference measure, i.e., CCD.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

In order to illustrate this difference measure, a simple object
recognition system that is capable of distinguishing shapes,
sizes and colors is presented as follows (taken from [49]).
Suppose that the color of objects can only be light-red, red,
deep-red, light-blue, blue, deep-blue, light-green, green and
deep-green, and objects are spheres, cubes or pyramids in
shape. The size is in the range (0,10] in m’. The system
behavior depends only on the object shape, the base color (i.e.,
red, blue or green), and whether the object is larger than 1 m”.
In this case, three categories can be defined: Color, Shape and
Size; three choices for the Color category: red, blue and green;
three choices for the Shape category: sphere, cube and
pyramid; and two choices for the Size category: large and
small. Some choices contain more than one possible value. For
example, the red choice has light-red, red and deep-red as its
possible values and large has any size more than 1 m’.
Consider two program inputs (i.e., test cases) T; and T,, where
T, is a light-red sphere of size 3.2 m’, and T, is a deep-blue
sphere of size 2.7 m’. T, has the choices (red), (sphere) and
(large) while T, has the choices (blue), (sphere) and (large).
Therefore, there is only one category, color, in which T, and T,
differ, thus the difference between the two inputs is 1 according
to the given distance measure. This is to say that, these two
tests are computationally similar as there is not much
differences and thus might possibly have a similar failure
behavior.

2) Analysis: The primary intension of Kuo [60] was to
suggest the CCD difference measure as a generic metric for
developing ART algorithms of non-numeric input types, but
his primary work has not provided any practical example or
case study to discuss this matter for modern programs such as
object-oriented (OO) or aspect-oriented (AO). Thus, one
might think of how this measure could be possibly generalized
to these programs with non-numeric input types.

Following the same source of motivation that the CCD
difference measure can be possibly applied to a broad range of
program input types (as claimed by Kuo [60]), we have here
analyzed its feasibility of the application to object- and aspect-
oriented programs. To this end, we need to define what would
be the categories and choices with respect to these programs
and how truly they can represent the essential idea of ART.

In adoption of this measure to the object-oriented programs
(as complementary to AOP), categories can be viewed as
classes and their associated choices can be considered as
instances of those classes, say objects. Therefore, the number
of classes containing differing object’s values would be a
refined definition of the CCD measure for OO programs.
Given this, recall the previous example (i.e., recognition
system) and test inputs T1 and T2, we now assume this system
is an object-oriented application containing three classes:
Color, Shape and Size that does the same functionality but
implemented in different programming paradigm, e.g., Java. In
this case, we define three classes to represent the three
categories, Color, Shape and Size respectively. Accordingly,
three objects are instantiated to be as choices of the Color
category that is red, blue and green. Likewise, three objects for
the Shape category: sphere, cube and pyramid; and two objects
for the Size category: large and small. According to the
definition, there is only one class, color, in which T1 and T2

52

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

has different object’ values, thus the difference between the
two inputs is 1.

It can be said that the adaptive random testing of OO
programs with respect to this category and choice-based
measure (i.e., CCD) is possible to be performed. However,
effectiveness of this measure would be another research effort
that is worth further investigating.

Concerning the aspect-oriented programs, we now further
assume that the recognition system example is an aspect-
oriented application written in Aspect] that include the same
classes as well as one more feature implemented in one aspect
to keep track of the object’s movement. The aspect is used to
monitor the movement of the recognized objects to refresh the
object’s display whenever they actually move. Note, tracking
movement of object is a crosscutting concern for the system,
where it has been implemented as an aspect straightforwardly.
If the aforementioned distance measure is chosen to be used
for addressing the notion of evenly spread of test cases on this
system, the only way to perform the adaptive random testing is
to apply the given measure on the base code of the aspect-
oriented program (by employing the aforementioned CCD for
0O programs). The reason is that the aspects in most of AO
languages (including Aspect]) do not have independent
identity or existence in the system and cannot be instantiated.
This articulates an aspect-related property known as
obliviousness [61] in which objects, generally base code, are
not aware of the aspects in the system. Consequently, such
unique properties and characteristics related to AOP perhaps
avoid adopting the categories and choices concepts to aspects,
generally aspect code. (Typically, a given AO program such as
Aspect] is comprised of two parts known as base code and
aspect code. The base code contains all the classes and objects
and provides the context execution (join points information)
for the aspects. The aspect code contains all the existing
aspects in the program and run based upon reaching certain
join points in the base code. For more information on this
please refer to [58]).

To sum up, we can state that the CCD measure is possible
to be applied to adaptive random testing of AOP, however, it
will not consider the direct testing of aspect code, specifically
the aspect’s constructs such as pointcuts and advice (as the
focus is more on relationships between the affected/advised
classes and aspects, i.e., base code). In this case, the tests
mostly stress the integration between aspects and affected
classes.

C. Object-based Perspective

1) Underlying technique: This perspective was inspired by
two recent work on adaptive random testing of object-oriented
programs. Since OO programs are considered as
complementary parts to AO programs, thus the discussion
regarding the prior application of ART to OO would be clearly
helpful and connected to the objective of the paper, i.e.,
investigating the applicability of ART to AOP. Nevertheless,
this work has been proposed for object-oriented programs
written in Eiffel and Java languages, as briefly presented in the
following.

a) ART for Eiffel: Ciupa et al. [17] propose adaptive
random testing for object-oriented programs written in Eiffel,
called ARTOO. Their approach initially share the idea of the
DART approach [23] to select input objects (considered as test

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

data/cases) from a testing pool. Since DART for object-
oriented programs needs to calculate the distance between two
arbitrary objects, accordingly they developed a new distance
measure, object distance [62],[63] to be applied in adaptive
random testing of OO programs. The proposed object distance
was made up of the summation of three measure components
namely elementary distance (i.e., the distance between the
direct values of data types associated with objects), type
distance (i.e., the distance between types of objects
irrespective of object values), and field distance (i.e., the
distance between matching fields of the objects). In addition to
these three components, some weights and normalization were
incorporated to the calculation process.

ARTOO is capable to automatically specify how to
calculate the difference measure, however exponential
calculation time, i.e., time complexity, imposed by increasing
the dimension of the input domain is a major issue associated
with object distance. For instance, checking the distance of
integer type values are easier and quicker; however,
calculating an object distance takes considerable much longer
time (ARTOO takes 160% longer time compared to normal
random testing [17]). Recently, in response to this issue,
ARTOO has been further enhanced by Jaygarl ef al. [16] for
the purpose of more efficient testing of object-oriented
programs. In this work, they suggested a simplified object
distance that calculates object distance with lesser time
complexity. They divided input data types into three
categories— primitive types (including boxed types and a string
type), array types, and object types. This separation was able
to reduce unnecessary calculation of the ARTOOQO’s object
distance.

b) ART for Java: Lin et al. [64] propose a divergence-
oriented technique to adaptive random testing of Java
programs. The primary idea of this approach is to provide the
program under test with a pool of test data each of which has
considerable difference from the others (i.e., high divergence),
and then to use the ART technique to select test data from the
pool for the program under test. Unlike ARTOO that came up
with a well-defined distance measure, this work employed
only an intuitive divergence measure that was simply
measured as distances of the objects in the pool, without
providing any details about what this measure is and how it
was calculated. This obviously makes the analysis of this
measure’s applicability to AOP difficult and therefore, it shall
be excluded from the discussion in the analysis section in the
following. Nevertheless, from an abstract point of view, since
Aspect] is an AO extension of Java, the approach proposed by
this work is likely to be applied to AOP, ie., Aspect]
programs. However, prior to that, a clear definition of the used
distance measure along with further configurations to consider
crosscutting constructs, e.g., advice and pointcuts, into the test
generation process would be required.

2) Analysis: In the first place, one might think that the
unique characteristics of AOP (including obliviousness
property) can completely bar the notion of object distance
(calculating the distance between two arbitrary objects) from
applying to AOP and to some extent makes no sense of it, i.e.,
constructing difference measure between two arbitrary aspects
is not feasible. The reason is that, contrary to the objects in

53

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

object-oriented programs, in most of AOP languages such as
Aspect] a given aspect does not have independent identity or
existence in the system (i.e., the base code has no references to
the given aspects) and cannot be instantiated. Note, in some
special cases, it is possible to create several instances of a
given aspect in Aspect] but by default, a unique instance of an
aspect is only created and shared by all the objects when the
application is launched. The aspect is then said to be a
singleton [65].

However, it is important to note that it is just an instinctive
misunderstanding. Because, in object-oriented programs
(where the object distance was proposed for), the test
data/cases to the programs are regarded as objects. Thus, in
line with the idea of ART, measuring the distance between
two objects would represent the difference between two test
cases. Whereas, in the context of aspect-oriented programs it
makes no sense to similarly measure the difference between
two arbitrary aspects, while it should be between the tests for
the aspects not aspects themselves.

Therefore, similar to the first perspective or specifically the
category and choice-based measure (i.e., CCD), the object
distance measure can only be used in the context of base code
of the AO programs towards their adaptive random testing
(i.e., the tests that stress the integration between aspects and
affected classes). Because, the objects will form the base part
of AO programs, i.e., base code.

It is also worth mentioning that, the object distance has an
added advantage of requiring less effort compared to the first
measure. This is why the object distance was originally
developed and well-defined for OO programs, thus unlike the
first measure no further effort would be required to leverage
the underlying technique to OO programs, prior its application
to AOP.

Finally, the explanations on the analysis of the object
distance lead us to conjecture that the idea of the ART, using
this measure, cannot be currently applied to aspect code of
AOP (only base code). Hence, future research might include
in-depth investigation of ART notion’s applicability to AOP
inspired by this measure, of course with a focus on adaptive
random testing of aspects, i.e., aspect code. If one can figure
out the feasibility or applicability of this matter then a metric
model on top of object distance, as next step, will be required.
This model should be designed in a way to capture an
appropriate distance between arbitrary test cases (not aspects)
for a given aspect under test to ensure the evenly spread of test
cases (maybe “aspect distance” similar to its corresponding in
object-oriented programs, object distance).

D. Coverage-based Perspective

1) Underlying technique: This perspective was motivated
by some work related to coverage-based test case selection
and prioritization [66],[67] in the context of regression testing.
This work proposed methods to measure the distance between
test cases based on coverage information such as statement
and branch coverage, as presented below.

Zhou [66] proposes a metric, called the Coverage
Manhattan Distance (CMD) as in (1), to measure the
difference between any two arbitrary test cases, applicable to
adaptive random testing. This measure uses the branch
coverage information associated with the test cases. The
formal definition of this measure is as follows. Given x as one

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

test case, and E, as a vector that records the branch coverage
information related to x. The vector is defined to be E, = (x,,
X3 . .., X,), where x; € {0, 1} for 1 <i<n, and » is the total
number of branches in a given program. The value of x; is set
to 1 if and only if the ith branch of the program has been
exercised by execution of x; otherwise x; is set to 0. Similarly,
let y be another test case, and £,= (y;, y, . . ., ys) records the
branch coverage information of y. The Coverage Manhattan
Distance (CMD) between x and y is captured by:

CMD (x,y):§1|xi—y,-| (1)

Similar to the work by Zhou, Jiang et al. [67] suggested a
distance measure based on the Jaccard distance of the two sets
to be used as measured distance between two test cases. The
Jaccard distance between two test cases x and y is defined as:
D (x, y) = 1-|ANB|/|4 UB|, where 4 and B are the sets of the
coverage of elements such as statements or branches exercised
by x and y, respectively.

Empty-intersection set is a problem associated with Jaccard
measure. That is, whenever the intersection between set A and
B is empty the Jaccard measure just returns the maximum
value of 1. This problem can result in capturing the distance
between the test cases in a wrong way and consequently
misguide the ART algorithm in picking the test case
candidates (see [66] for example on this problem). However,
this is not the case with CMD measure, whereas it is capable
of yielding result that is more effective. This superiority led us
to put emphasis on the CMD measure in the analysis of its
capability to AOP, in the next sub-section.

2) Analysis: The two preceding measures, i.e., category
and choice-based and object distance, focus on the input
values (according to the program’s input domain/space) as
their sources of measurements. This dependency on input
values makes these measures to be only applicable to certain
types of programs (or at least more suited to some). On the
contrary, CMD measure relies on a totally different source,
which is independent of the input values. In our view, this
measure is promising as it has the advantage (i.e., by using
coverage information) that enables ART to be applied to a
border range of programs with lesser limitations. In addition,
the coverage fulfillment has been the most analyzed and
required test criterion through the testing studies, which CMD
has also taken into account.

In adoption of this measure to AOP, towards the ART,
there can be two interesting ways of further exploration:

First, we suggest including the aspectual branch coverage
[8] instead of the traditional branch coverage in the original
CMD measure to record the required coverage information.
Aspectual branch coverage is a coverage metric that captures
the aspectual behavior, specifically the branch coverage within
the aspect code (i.e., including branches from predicates in
advice and methods in aspects). This metric has been
previously used to guide the test generation in area of AOP
testing [8],[6]. As a result, the selection of the test cases
according to this adopted CMD measure (one may call it
Aspectual Coverage Manhattan Distance, ACMD) would be
based on test cases that are able to cover new aspectual

54

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

branches that have not been covered by the previous executed
test cases.

In order to make the point clear, a simple example showing
the applicability of the coverage Manhattan distance to an
aspect code is presented below. Given the aspect
ODRuleAspect shown in Figure 2 (adapted from Aspect]
examples by Laddad [58]):

public aspect ODRuleAspect
pointcut debitExecution (Account account,
withdrawalAmount) : execution (void
Account.debit* (float) && this (account) &&
args (withdrawalAmount) ;
before (Account account, float withdrawalAmount)
debitExecution (account, withdrawalAmount) {
Customer customer = account.getCustomer () ;
if (customer == null) return;
if (account.getAvailableBalance ()>
withdrawalAmount) {
float deductedAmount =
account.getAvailableBalance () -
withdrawalAmount;

float

} else System.out.println("not enough
money!") ;

}
}

public class Account {
private float balance;
private int accountNumber;
private Customer customer;
public Account (int accountNumber,Customer
customer) { ... }
public void debit (float amount) { ... }

Figure 2. An Aspect] example

In this case, there are two predicates (surrounded by a red
box in Figure 2) which result in four aspectual branches in the
given aspect, that is n=4. Suppose x and y are two test cases,
where each of which contains a different instance of
Account class, say Acl and Ac?2 respectively. In addition,
two calls to debit method (plus two parameter values for
method’s calls) on these instances are required to trigger the
execution of the advice. Thus, for instance Acl.debit
(95.60) and Ac2.debit (64.35) would form the test
cases x and y respectively. Assume, Acl. getCustomer
will return null, in this case x would be able to exercise only
one branch, i.e., customer == null, hence E, = (1,0,0,0).
Similarly assume, Ac2. getCustomer has not returned
null and its Ac2.getAvailableBalance is 120 (which
is higher than 64.35). Thus, the test case y is able to exercise
two branches, 1i.e., customer # null and
(account.getAvailableBalance () >
withdrawalAmount), so E, = (1,1,0,0). Now, recall the
metric in (1) the difference measured between these two cases
would be of 1.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Alternatively, in order to obtain the proper coverage
information to make use of the CMD measure in ART of
AOP, we suggest employing the program’s control flow graph
of aspect-oriented programs. For this purpose, aspect-oriented
control flow graph (AOCFQG) proposed by Parizi et.al [68] (or
other similar approaches such as [69]) would be a capable
choice to help testers gain coverage-related information. This
type of structural modeling and graph embodiment of aspects
not only allows obtaining information related to the branch
coverage but also a variety of coverage elements such as node,
edge, etc. However, further research needs to be done to study
the usefulness of these types of coverage information for ART,
including coverage of elements in graphs/models used in
aspect-oriented modeling.

In summary, the above analysis demonstrates that it is
possible to construct more meaningful distance measure (using
the idea of coverage information) in compared with the other
presented measures for adaptive random testing of aspect-
oriented programs. However, it still requires conducing further
research to produce a well-suited coverage-based ART
technique for aspect-oriented programs and then to proof the
effectiveness of the produced technique through
experimentation or proper case study.

IV. SUMMARY OF ANALYSES

For the brevity, a summary of the presented perspectives
along with the analyses of the distance measure’s properties,
are presented in Table I.

TABLE L SUMMARY OF THE DISTANCE MEASURES OF DIFFERENT
PERSPECTIVES
Original
Distance/ Paradigm/ .
Perspective |difference Source of Application Appll;ab}l)llty
measure measurement domain to AO
Category and Category Procedural
choife-rga%ed and choice Input values programs (with Base code
i distance numerical inputs)
Object-based d?s]:g:lccle Input values Objper g;;;;zled Base code
Structural
Coverage- Coverage information Pr(-)ccdur-al and Base & aspect
based mgnhattan (c.g., branch object-oriented code
distance e programs
coverage)

With respect to above table, the first column lists down the
reviewed perspectives. The second column gives the original
distance measure provided by the corresponding perspectives.
The third, presents the source from which the measurement of
the given measures are captured. The forth column lists the
programming paradigms/application domains that the given
measure were first proposed or applied to. Finally, the fifth
column gives the possible applicability of the distance
measures in terms of their suitability to adaptive random
testing of aspect-oriented programs.

From the table, it can be clearly seen that only one
measure, i.e., CMD, has the capability of being adopted to
both base and aspect code, generally the whole AO program.
Furthermore, the source of measurement used by this measure,
it is more fine-grained and desirable compared to the other two
measures.

Nevertheless, based on the theoretical analysis and
interpretation shown among different perspectives and their

55

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

distance measures and the fact that these measures are capable
of providing different level of adoptability to AOP (i.e.,
relative advantages and weakness), at the moment and based
on our understanding of these reviewed perspectives, the
coverage-based perspective, to be exact the CMD measure,
proposed by Zhou [66] shows to be one of the most suited
(with respect to the unique characteristics of AO programs)
and promising distance measure towards adaptive random
testing of the aspect-oriented programs.

V. CONCLUSION AND FUTURE WORK

Research on automated AOP testing is quite young and
there is still a way to grow to its maturity. In ambition to
advance the work with test automation of AOP and reaching to
a plausible maturity, we have performed some preliminary
research to investigate the applicability of one of the current
automated test generation and selection techniques (i.e., ART)
to AOP. The given investigation included the identification and
presentation of the three related perspectives (by comparing
their enclosed distance measures) on adaptive random testing
of AOP and their general limitations and applicability.

As a general conclusion, our study shows that it is possible
to apply the ART technique to AOP, however the current
distance measures would not be all applicable or sufficient to
address the notion of evenly spread of test cases suggested by
ART. Two of the measures were intended to be only
applicable to base code of AO programs while one was more
applicable in nature, having potential of calculating distance
between test cases meant for aspect code. Thus, aspect-
oriented programs require evolving the discussed measures
and/or developing new effective distance measure that can
truly represent the notion of evenly spread of test cases with
regard to the unique characteristics of these programs.

At last, we believe the work presented in this paper has
provided new avenues of exploration within the area of
AOP testing. Decidedly, this would be only the initial stage of
leveraging a well-known testing technique to AOP; hence, it
still requires further research to establish a concrete and useful
ART-based technique for AOP in the future.

ACKNOWLEDGMENT

The authors acknowledge the support of the Malaysian
Ministry of Higher Education for supporting
this research (Fundamental Research Grant Scheme Phase
2/2010 (FRGS/2/2010/SG/UPM/01/2)).

REFERENCES

[11 G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, "Aspect-Oriented Programming " in Proceedings
of the 11th European Conference on Object-Oriented Programming
1997, p. 220-242.

[2] G. Kiczales, J. Lamping, C. V. Lopes, J. J. Hugunin, E. A. Hilsdale, and
C. Boyapati, "Aspect-Oriented Programming," in United States Patent
6467086: Xerox Corporation, 2002.

[3]1 A. Colyer and A. Clement, "Aspect-Oriented Programming with
Aspect]," IBM systems journal, vol. 44, p. 301-308, 2005.

[4] R. T. Alexander, J. M. Bieman, and A. A. Andrews, "Towards the
Systematic Testing of Aspect-Oriented Programs,” Colorado State
University 2004.

[5] F. C. Ferrari, J. C. Maldonado, and A. Rashid, "Mutation Testing for
Aspect-Oriented Programs," Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, 2008, p.
52-61.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

(6]

(7]

(8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

M. Harman, F. Islam, T. Xie, and S. Wrappler, "Automated Test Data
Generation for Aspect-Oriented Programs," in Proceedings of the Sth
International Conference on Aspect-Oriented Software Development,
Charlottesville, Virginia, USA, 2009, p. 185-196.

T. Xie, J. Zhao, D. Marinov, and D. Notkin, "Automated Test
Generation for Aspect] Programs
" in Proceedings of the Ist Workshop on Testing Aspect-Oriented
Programs, 2005, p. 1-6.

T. Xie and J. Zhao, "A Framework and Tool Supports for Generating
Test Inputs of Aspect] Programs," in Proceedings of the 5th
International Conference on Aspect-Oriented Software Development,
2006, p. 190-201.

T. Y. Chen, H. Leung, and I. K. Mak, "Adaptive Random Testing," in
Proceedings of the 9th Asian Computing Science Conference, 2004, p.
320-329.

R. Hamlet, "Random Testing," Encyclopedia of software Engineering, p.
970-978, 1994.

J. Mayer and C. Schneckenburger, "An Empirical Analysis and
Comparison of Random Testing Techniques," in Proceedings of the
2006 ACM/IEEE International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil, 2006, p. 105—-114.

T. Y. Chen, F.-C. Kuo, and R. G. Merkel, "On the Statistical Properties
of the F-measure," in Proceedings of the 4th International Conference
on Quality Software, 2004, p. 146—153.

K. P. Chan, T. Y. Chen, and D. Towey, "Good Random Testing," in
Proceedings of the 9th Ada-Europe International Conference on
Reliable Sofiware Technologies, 2004, p. 200—-212.

Y. Liu and H. Zhu, "An Experimental Evaluation of the Reliability of
Adaptive Random Testing Methods," in Proceedings of the 2nd
International Conference on Secure System Integration and Reliability
Improvement 2008, p. 24-31.

T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, "Does Adaptive
Random Testing Deliver a Higher Confidence than Random Testing?,"
in Proceedings of the 8th International Conference on Quality Software
2008, p. 145-154.

H. Jaygarl, C. K. Chang, and S. Kim, "Practical Extensions of a
Randomized Testing Tool," in Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference 2009, p.
148-153.

1. Ciupa, A. Leitner, M. Oriol, and B. Meyer, "ARTOO: Adaptive
Random Testing for Object-oriented Software," in Proceedings of the
30th International Conference on Software Engineering, Leipzig,
Germany, 2008, p. 71-80.

J. W. Duran and S. C. Ntafos, "An Evaluation of Random Testing,"
IEEE Transactions on Software Engineering, vol. SE-10, p. 438—444,
1984.

P. S. Loo and W. K. Tsai, "Random testing Revisited," Information and
Software Technology, vol. 30, p. 402—417, 1988.

T. Y. Chen, F.-C. Kuo, and H. Liu, "Distributing Test Cases More
Evenly in Adaptive Random Testing," Journal of Systems and Software,
vol. 81, p. 21462162, 2008.

T. Y. Chen and R. G. Merkel, "Quasi-Random Testing," in Proceedings
of the 20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, CA, USA, 2005, p. 309-312.

P. M. S. Bueno, W. E. Wong, and M. Jino, "Improving Random Test
Sets using the Diversity Oriented Test Data Generation," in Proceedings
of the 2nd International Workshop on Random testing Atlanta, Georgia:
ACM, 2007, p. 10-17.

P. Godefroid, N. Klarlund, and K. Sen, "DART: Directed Automated
Random Testing," in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, 2005, p. 213-223.

K. P. Chan, T. Y. Chen, and D. Towey, "Restricted Random Testing:
Adaptive Random Testing by Exclusion," International Journal of
Software Engineering and Knowledge Engineering, vol. 16, p. 553—584,
2006.

S. Xu, "Orderly Random Testing for Both Hardware and Software," in
Proceedings of the 14th IEEE Pacific Rim International Symposium on
Dependable, 2008, p. 160—167.

T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, "On Favourable Conditions for
Adaptive Random Testing," [International Journal of Software
Engineering and Knowledge Engineering, vol. 17, p. 805—825, 2007.

56

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[46]

[47]

(48]

Copyright (c) IARIA, 2011.

J. Geng and J. Zhang, "A New Method to Solve the "Boundary Effect"
of Adaptive Random Testing," in Proceedings of International
Conference on Educational and Information Technology, 2010, p.
298-302.

T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng, "Mirror Adaptive
Random Testing," Information and Software Technology, vol. 46, p.
1001-1010, 2004.

K. P. Chan, T. Y. Chen, F.-C. Kuo, and D. Towey, "A Revisit of
Adaptive Random Testing by Restriction," in Proceedings of the 28th
Annual International Computer Sofiware and Applications Conference,
2004, p. 78-85.

T. Y. Chen and D. H. Huang, "Adaptive Random Testing by
Localization," in Proceedings of the 11th Asia-Pacific Software
Engineering Conference 2004, p. 292—298.

T. Y. Chen, R. G. Merkel, G. Eddy, and P. K. Wong, "Adaptive Random
Testing Through Dynamic Partitioning," in Proceedings of the 4th
International Conference on Quality Sofiware, 2004, p. 79—86.

F. T. Chan, K. P. Chan, T. Y. Chen, and S. M. Yiu, "Adaptive Random
Testing with CG Constraint," in Proceedings of the 28th Annual
International Computer Software and Applications Conference, 2004, p.
96—99.

J. Mayer, "Lattice-based Adaptive Random Testing," in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering 2005, p. 333-336.

T. Y. Chen, D. H. Huang, F.-C. Kuo, R. G. Merkel, and J. Mayer,
"Enhanced Lattice-based Adaptive Random Testing," in Proceedings of
the 2009 ACM Symposium on Applied Computing, Honolulu, Hawaii,
2009, p. 422—429.

J. Mayer, "Restricted Adaptive Random Testing by Random
Partitioning," in Proceedings of the International Conference on
Software Engineering Research and Practice 2006.

J. Mayer, "Adaptive Random Testing by Bisection with Restriction," in
Proceedings of the 7th International Conference on Formal Engineering
Methods, 2005, p. 251-263.

J. Mayer, "Adaptive Random Testing by Bisection and Localization," in
Proceedings of the 5th International Workshop on Formal Approaches
to Testing of Software 2006, p. 72—86.

J. Mayer, T. Y. Chen, and D. H. Huang, "Adaptive Random Testing
Through Iterative Partitioning Revisited," in Proceedings of the 3rd
International Workshop on Software Quality Assurance, Portland,
Oregon, 2006, p. 22—29.

T. Y. Chen, D. H. Huang, and Z. Q. Zhou, "Adaptive Random Testing
Through Iterative Partitioning," in Proceedings of the 11th International
Conference on Reliable Software Technologies, 2006, p. 155—166.

F.-C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan, "Enhancing Adaptive
Random Testing for Programs with High Dimensional Input Domains or
Failure-unrelated Parameters," Software Quality Journal, vol. 16, p.
303-327, 2008.

J. Mayer, "Adaptive Random Testing with Randomly Translated Failure
Region," in Proceedings of the Ist International Workshop on Random
Testing, 2006, p. 70—77.

T. Y. Chen and R. G. Merkel, "Efficient and Effective Random Testing
Using the Voronoi Diagram," in Proceedings of the 17th Australian
Software Engineering Conference 2006, p. 300—308.

T. Y. Chen, D. H. Huang, and F.-C. Kuo, "Adaptive Random Testing by
Balancing," in Proceedings of the 2nd International Workshop on
Random Testing, 2007, p. 2—9.

T. Y. Chen, F.-C. Kuo, and H. Liu, "Distribution Metric Driven
Adaptive Random Testing," in Proceedings of the 7th International
Conference on Quality Sofiware, 2007, p. 274-279.

T. Y. Chen, F.-C. Kuo, and H. Liu, "Adaptive Random Testing Based on
Distribution Metrics," The Journal of Systems and Software, vol. 82, p.
1419-1433, 2009.

T. Y. Chen, F.-C. Kuo, and H. Liu, "Enhancing Adaptive Random
Testing through Partitioning by Edge and Centre," in Proceedings of the
18th Australian Software Engineering Conference, 2007, p. 265-273.

T. Y. Chen, F.-C. Kuo, and H. Liu, "Application of a Failure Driven Test
Profile in Random Testing," IEEE Transactions on Reliability, vol. 58,
p. 179-192, 2009.

A. F. Tappenden and J. Miller, "A Novel Evolutionary Approach for
Adaptive Random Testing," IEEE Transactions on Reliability, vol. 58,
p. 619-633,2009.

ISBN: 978-1-61208-165-6

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

(o1]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, "Adaptive Random
Testing: The ART of Test Case Diversity," Journal of Systems and
Software, vol. 83 p. 60—66, 2010.

T. Y. Chen and F.-C. Kuo, "Is Adaptive Random Testing Really Better
than Random Testing," in Proceedings of the 1st International Workshop
on Random Testing, Portland, Maine, 2006, p. 64—69.

C. Csallner and Y. Smaragdakis, "JCrasher: An Automatic Robustness
Tester for Java," Sofiware: Practice and Experience, vol. 34, p.
1025-1050, 2004.

C. Oriat, "Jartege: A Tool for Random Generation of Unit Tests for Java
Classes," in Proceedings of the Ist International Conference on the
Quality of Software Architectures, 2005, p. 242—256.

J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li, "Tool Support for
Randomized Unit Testing," in Proceedings of the Ist International
Workshop on Random Testing, Portland, Maine, 2006, p. 36—45.

B. Meyer, 1. Ciupa, A. Leitner, and L. L. Liu, "Automatic Testing of
Object-Oriented Software," in Proceedings of the 33rd International
Conference on Current Trends in Theory and Practice of Computer
Science, 2007, p. 114—129.

R. M. Parizi, A. A. A. Ghani, R. Abdulla, and R. B. Atan, "Towards a
Framework for Automated Random Testing of Aspect-oriented
Programs," in Proceedings of the ISCA 18th International Conference on
Software Engineering and Data Engineering, Las Vegas, Nevada, USA,
2009, p. 217-223.

R. M. Parizi, A. A. A. Ghani, R. Abdulla, and R. B. Atan, "On the
Applicability of Random Testing for Aspect-Oriented Programs,"
International Journal of Sofiware Engineering and its Applications vol.
3, p. 1-20, 2009.

G. Kiczales, E. A. Hilsdale, J. J. Hugunin, M. Kersten, J. Palm, and W.
G. Griswold, "An Overview of Aspect]," in Proceedings of the 15th
European Conference on Object-Oriented Programming 2001, p.
327-353.

R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
first ed. Greenwich: Manning Publications Co. , 2003.

T. J. Ostrand and M. J. Balcer, "The Category-partition Method for
Specifying and Generating Functional Tests," Communications of the
ACM, vol. 31, p. 676—686, 1988.

F.-C. Kuo, "On Adaptive Random Testing," Melbourne, Australia:
Swinburne University of Technology, PhD Thesis, 2006.

R. E. Filman and D. P. Friedman, "Aspect-oriented programming is
quantification and obliviousness," in Proceedings of the Workshop on
Advanced Separation of Concerns 2000.

1. Ciupa, A. Leitner, M. Oriol, and B. Meyer, "Object Distance and Its
Application to Adaptive Random Testing of Object-oriented Programs,"
in Proceedings of the Ist International workshop on Random Testing
Portland, Maine: ACM, 2006, p. 55-63.

I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer, "On the
Predictability of Random Tests for Object-Oriented Software," in
Proceedings of the st International Conference on Software Testing,
Verification, and Validation, 2008, p. 72—81.

Y. Lin, X. Tang, Y. Chen, and J. Zhao, "A Divergence-Oriented
Approach to Adaptive Random Testing of Java Programs," in
Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, 2009, p. 16—20.

R. Pawlak, J.-P. Retaill¢, and L. Seinturier, Foundations of AOP for
J2EE Development: Apress, 2005.

Z. Q. Zhou, "Using Coverage Information to Guide Test Case Selection
in Adaptive Random Testing," in Proceedings of the IEEE 34th Annual
Computer Software and Applications Conference Workshops 2010, p.
208-213.

B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, "Adaptive Random Test
Case Prioritization," in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, 2009, p.
233-244.

R. M. Parizi and A. A. A. Ghani, "AJcFgraph-Aspect] Control Flow
Graph Builder for Aspect-Oriented Software," International Journal of
Computer Science, vol. 3, p. 170—181, 2008.

M. L. Bemardi and G. A. Di Lucca, "An Interprocedural Aspect Control
Flow Graph to Support the Maintenance of Aspect Oriented Systems," in
Proceedings of the International Conference on Software Maintenance
2007, p. 435—444.

57

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Devising Mutant Operators for Dynamic Systems Models by Apjying the HAZOP

Study
Rodrigo Fraxino Araujo Auri Marcelo Rizzo Vincenzi Francois Delebecque
José Carlos Maldonado Instituto de Infornatica Met., Alg. et Log. pour I'’Automatique
Marcio Eduardo Delamaro Universidade Federal de Gas Inst. Nat. de Recherche en Inf. et Aut.
Instituto de Céncias Mat. e de Computag Goiania, Brazil Rocquencourt, France
Universidade de & Paulo auri@inf.ufg.br francois.delebecque@inria.fr

SAo Carlos, Brazil
{rfaraujo, jcmaldon, delamarp@icmc.usp.br

Abstract—Embedded systems are increasingly present in the testing activity, which includes an automatic generati
many electronic devices. Therefore, it is necessary to uségr of test sets. The testing activity can begin to take place in
orous testing techniques aimed at ensuring that these systs 5 016 apstract level, even before the software is coded.

behave as expected. Our contribution is the definition of muant This leads t fficient ith sianifi t t
operators for the context of embedded systems models. We IS leads o a more eflicient process with signincant cos

focus on dynamic systems models, specifically on Simulink reduction and a final product with higher quality.

and Scicos models, which are considered standards in many In order to support this approach, our goal is to make
industrial application domains, such as avionics and automtive possible the application of the mutation testing in embedde

control. The HAZOP study was applied to investigate and gystems models, or specifically in dynamic systems models.

analyze all the main features of such models, in order that ta In thi h h t of tant t
resulting mutant operators could be systematically generad. n this paper, we show how a set of mutant operators was

We developed a testing environment to support the mutation defined by the employment of the HAZOP (Hazard and
testing for dynamic system models, which was used to employ Operability) [14] study to evaluate the features of such

the defined mutant operators in a sample application. models. Some of these mutant operators were implemented
Keywords-Simulink, Scicos, HAZOP, mutation testing. in a testing tool that supports the mutation testing for
dynamic systems models.
. INTRODUCTION The mutant operators are responsible for determining the

Due to the complexity of systems and the ever-increasingesting requirements of a model, that must be satisfied by the
needs for shortening time-to-market pressures, the gestinchoice of an adequate input test set. A reason that ensures
task has become even more challenging. A common probleriihe wide usage of the mutation testing is the quality of the
is the testing stage being performed at the end of a projecesulting final test set, i.e., its proneness to reveal $galt
development life cycle. Thus, when faults are found, thé cos In order to describe our study and the resulting mu-
to fix them is much higher [19]. tant operators, the remainder of this paper is structured

A possibility to lessen the aforemetioned problem is byas follows. Section Il describes dynamic systems models
using precise models that support a system development lifend the HAZOP study. In Section Ill, we show how the
cycle. Models are concise and understandable abstractioh$AZOP study was employed in dynamic systems models.
that capture the decisions of the functions of a system whosBection IV presents the mutant operators generated by a
semantics are derived from the concepts and theories of @gorous analysis of the achieved results. In Section V, a
specific domain [18]. testing tool to support the mutation testing is describedal

In this context, platforms such as ScicosLab/Scicos [12}with a sample application regarding the employment of our
and Matlab/Simulink [20] are widely used to design anddefined mutant operators. Section VI presents a discussion
simulate dynamic system models. One of their advantagegarding related work. Section VII concludes with some
is the applications analysis at different levels of absivac final remarks and an outlook on future directions.

Another benefit is the automatic code generation, which
reduces development costs and programming faults. In this
paper we will usedynamic systemaiming specifically at Mutation Testing is a testing approach in which the

Simulinkand Scicossystems. product under test is altered several times, creating a set

To ensure the reliability of this kind of system, the of alternative products with slight syntactical differescthe
industry has been investing in an approach known as modealo-called mutants. The tester is responsible for choosisiy t
based testing [6]. In this approach, it is easier to automatdata that show difference in the behavior among the original

Il. BACKGROUND

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 58

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

product and the mutant products [16]. The test set quality idbraking pedal as a mass-spring-damper mechanical system.
measured according to its likelihood of revealing faultg [9 A discrete time subsystem is present in Figure 1b and is
The construction of mutant operators must be driven byesponsible for detecting when the pressing force is greate
an analysis of the characteristics of the product under testhan a given threshold to activate the brake. Figure 1c
A great deal of authors do not employ general guidelinegpresents the main system, a composition of both subsystems,
and a rigorous methodoloy for their definition. The mutantcontaining an input, the force, and an output, the detection
operators are usually a representation of a fault modelesult.
considering the underlying product [10]. In our case, we
are exploring a larger number of mutant operators generated
by systematically applying the HAZOP study in dynamic
systems models, which may later be minimized by the

conduction of experiments. _@
In the following subsections we present a brief overview
of a dynamic system model and of the HAZOP study. We (a) Continuous Time Model

used it to analyze the features of a dynamic system model,
making possible to define appropriate mutant operators, tha
can guide the test data generation process for this sort of
model.

A. Dynamic System Model

A dynamic system consists of a set of possible states,
together with a rule that determines the present state from a
past state. According to Korn [15], dynamic systems relate
model-system states to earlier states. Classical phyfsics,
example, predicts continuous changes of quantities such as C1)Py outl—Piar out1

.) A . . Inl Outl
position, velocity, or voltage with continuous time.

Unit Dela;

False

(b) Discrete Time Model

With the increasing complexity of these systems, de- pedal _ gonerel
velopment tools have become imperative to support their (c) Hybrid Model
design. Simulink [20] and Scicos [12] are environments for Figure 1: Dynamic Systems Models

sharing data, designs and specifications, making possible t

develop more reliable critical systems and safely gengati ra5e models are composed by blocks connected by lines
code. They are widely used within industry due to the large(signals). The blocks can be elementary, containing simple

expressiveness of their languages. operations (as arithmetics, for instance), or subsystems,
The models used by such environments are based on blogKat contains a composition of elementary blocks. In the

diagrams. These.blocks include a library of sinks, sourcesyqqels of Figure 1, it is worth emphasizing thetegrator
connectors and linear and non-linear components. Modelg,y the unitDelay blocks, which introduce the notion of
can be hierarchical, which helps to understand the modele "\when an Integrator is used, the model is called of

organization and how the components interacts with €acQntinyous time, and the operation associated to the block

other [20, 12]. _ _ is a mathematical integration over time. A model that uses a
Such platforms offer a convenient way to describe systemg)iinelay is called of discrete time. A mix of both produces

that evolve according to time. Such systems are mathy pyprig model, defined as a data flow where the signals are
ematically represented by systems of equations, that argniinuous or discrete time functions.

differential equations in the case of continuous time syiste A block worth mentioning is th&witch which contains

difference equations in the case of discrete time systemgyo data inputs and one control input. The developer must
and a mix of both in the case of hybrid systems. Theg

! .) _ (ﬂpecify how the evaluation of the second input (control)imus
simulation of these types of systems is based on numericle performed, in order to redirect the first or third data inpu

algorithms, where the solution of a system of equations, i.e4 the output. Thereby, this block can be compared to an

the semantics of a dynamic system model, is given by thg ihen_else sentence. Table I, adapted from Chapoutot and
sequence of values representing the temporal functions [7}1artel [7], presents the main blocks of a dynamic system
The input values can be read from a file or provided by andel. ViaDINHO

signal generator, e.g., a sinusoid or a square wave generato -

Figure 1 contains an example of a dynamic system modep- HAZOP (Hazard and Operability Study)
that is divided into three subsystems [7]. A continuous Hazard and operability studies (HAZOP) [14] originated
time subsystem is present in Figure 1la and representsia the chemical industry and, thereafter, have been widely

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 59

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Table I: DrNAMIC SYSTEM BLOCKS

Name Block Descript. Equation
Input %ﬂ‘ Input l1 =1In(t), 0
Const. él Constant I, =¢, 0
Constant
Output oD Output Qt(t) =14, 0
2%
Add zifs Adition | 13 =13 + 12, 0
I
Sub ol o Subtraction | 13 =15 - 1o, 0
Subtract
[3
Product zé@“ Multipl. ls =11 % la, 0
bf
Divide £ ’3 Division lg =111/ 1o 0
Multipl.
Gain be@ by lo=g=*1lq, 0
Gain Constant
AND | gHfwe) s AND ls =1, 812 0
|3 = |(|1 &&'2)
2
NAND | gl jwebés | NAND 0
12
orR | gfa}e OR ls =11 (12 0
|3 = |(|1 H |2),
12
NOR 421133 NOR 0
I's = (11 & !l2)
XOR | ¢ [ron} 25 XOR I
(M && 12), 0
NOT 6122 NOT lo=1(ly), 0
I's = (11 ==132),
4y
I's =(l1!=12),
121
| BT | - 0
I3 = (11 >12),
121
I's = (1 >=12),
12
>= 0 - £ >= 0
I3 = (11 <T2),
12
I's = (l1 <=12),
2
<= o , £y <=
o Conditional 14y =if(p(l2),
Switch ¢ f Command Iy, I3), 0
Switch
Continuos I2(t) = n(t),
Integr. ét ‘ 5 Time 7(t) = 11(t)
niegrater Integration
Unit s Discrete 1 o(t) = n(t),
Delay f‘u f Time nt+1) = 11(t)
e Delay
Sub
System | “{m ow}e | Sybsystem lo = f(l1), 0

Copyright (c) IARIA, 2011.

ISBN: 978-1-61208-165-6

applied in different contexts to assess varying sorts of sys
tems. The main purpose of such studies is to systematically
examine the behavior of the underlying system in order to
determine deviations and hazards that might arise as well as
potential related problems. They are currently used inrs¢ve
areas for qualitative risk analysis [3].

The first step in the HAZOP study consists in identifying
entities and attributes of the system under examination by
means of an analysis of its description. For instance, ¢p&in
software system into consideration, such a descriptiorbean
the software control flow. The next step is to apply a number
of predetermineduidewordgo system attributes in order to
investigate possible deviations and determine possilisesa
and consequences [13].

The role of these guidewords is to act as mnemonics.
After structurally applying each of them to attributes o th
system under examination, it is possible to focus on a certai
sort of anomalous behavior and ponder over it. Thus, this
method provides additional insight into potential dewias.
However, matching a guideword with an attribute requires
interpretation. Depending on the context, guidewords may
have more than one interpretation. For instanRE)RE
applied to a data value attribute can be interpretegteater,

i.e., yielding a greater value then it should be. Similarly,
applying MORE to bit rate attributes can be interpreted as
higher. Moreover, guidewords may be meaningless in certain
contexts, demanding the creation of additional guidewords

I1l. HAZOP IN A DYNAMIC SYSTEM MODEL

The testing activity is typically applied taking in con-
sideration source code, platform independent intermediat
representations or machine-specific code. However, devera
researches propose its use in a representation at a higher
level of abstraction, i.e., models [16]. In our case, we adsr
the testing of Simulink and Scicos models by applying the
HAZOP study to the specification of a dynamic system
model.

The representation examined is the syntax of the model
construction. Attributes are identified for each constnfa
dynamic system model, and syntactic deviations are investi
gated by the employment gfuidewordsto these attributes.
For each possible deviation, the cause and consequence of a
deviation are examined in order that mutant operators, that
result in minor syntactic modifications, can be derived [13]

Table Il presents the identified attributes for a dynamic
system model. To show how the employment of the HAZOP
guidewords to the attributes of a dynamic system model were
performed, we present some examples as follows.

In the first example the construttpesand the atribute
compatibility affect the blockdnput and Output It is pos-
sible to apply 2 guidewords:

« AS_WELL_AS. Cause: replacement among compatible
types among double, single, int8, uint8, int16, uint16,

60

Copyright (c) IARIA, 2011.

Table Il: ATTRIBUTES OF ADYNAMIC SYSTEM MODEL

Constructs Attributes Related
Blocks
Compatibility Input
Types Intervals Output
Variables Stored Values Lines
Constants Stored Values Constant
Execution Result of .
Switch Statement Switch
Blocks Execution Result off UnitDelay

Temporal Statement Integrator
Interaction Among

Subsystems Subsystem
Evaluation Result
of Relat. Op. Relat. Op.
EXDressions Evaluation Result Logic. O
P of Logic. Op. gic. ©p.
Evaluation Result)
of Arith. Op. Arith. Op.

int32, uint32 and boolean. Consequence: no loss of

information.

o PART_OF. Cause: types with lower capacity can be
used as, for instance, single instead of double. Conse-
quence: it is possible to lose information or precision.

In the next example the construcbnstantsand the
atributestored valuegffect the blockConstant |t is possible

to apply 3 guidewords:

« MORE. Cause: increase of a numeric value. Conse-

qguence: possible incorrect result.

o« LESS. Cause: decrease of a numeric value. Conse-

quence: possible incorrect result.

« OTHER THAN. Cause: replacement among the con-
stants of a model. Consequence: possible incorrect

result.

Similar to the aforementioned examples, th&dewords
were applied to the defined attributes of a dynamic system
model, resulting in the analysis of all main blocks for this
kind of model. Due to the lack of space, we are not able to
present the relations among all guidewords and the defined

mutant operators.

IV. MUTANT OPERATORSDEFINITION

A set of mutant operators was derived from the employ-
ment of the HAZOP study in a dynamic system model and
is presented in this section. It is important to note thatatlot
guidewordgesulted in a mutant operator, because according
to our evaluation, in some occasions the operation would
not be significant, or would always result in a faulty model

impossible to be simulated.

We decided to keep a conservative approach in the defini-
tion of mutant operators, i.e., all coherent mutant opesato
possible to be derived for this kind of system by the

application of the HAZOP study were defined.

ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Types

Type Replacement Operator

This operator replaces a type with compatible
types, and can be applied directly in the Input and
Output blocks, which are used in the interaction
among systems and subsystems.

Variables

Variable Change Operator

This operator acts in the connections among the
blocks of a model, increasing or decreasing the
value that is being carried. As it is not possible
to know a priori which value that is, a possible
implementation is to insert aadd or subtract
block between the source and destination blocks.
Variable Replacement Operator

This operator acts in the connections among the
blocks of a model, replacing the compatible values
that are being carried by swapping their connec-
tions. For the implementation, special attention
must be drawn to the compatibility analysis among
the number of inputs and outputs of each block.

Constants

Constant Change Operator

This operator is responsible for increasing or de-
creasing the value of the constants of a model.
Constant Replacement Operator

This operator replaces the values among the con-
stants of a model.

Blocks

Statement Swap Operator

This operator is responsible for swapping the first
and the third input of the Switch block, acting in a
way similar to modifying the evaluation result of
the blocks condition.

Delay Change Operator

This operator can increase or decrease the delay in
which the output of the UnitDelay or the Integrator
blocks will be provided to the system.

Subsystem Change Operator

This operator swaps the connections between two
subsystems or between a main system and a sub-
system aiming to act in the integration of com-
ponents of a model. Despite being a suboperator
of the Variable Replacement Operator (VRO), this
operator may be useful if the tester desires to
analyze only the interaction among the subsystems
of a model.

Block Removal Operator

This operator is responsible for removing each of
the blocks of a model, and can be useful to ensure
that every block is being used and that a test data
exists to force its execution.

Expressions

61

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Relational Op. Replacement Operator Table IV: NUMBER OF GENERATED MUTANTS

This operator i; responsible for the replacement [M. Op. | Worst Case Scenario |

among the relational operators, >=, ==, ~=, TRO | (Inputs + Outputs) * Data Types$

< e<=. VCO Lines * 2

Arithmetic Op. Replacement Operator VRO Lines * (Lines -1)/2

This operator is responsible for the replacement ggg Const;?:?*t?gtc?n;énts b2

among the blocks Add, Sub, Product, Divide and SSO Switchs * 2

Gain. DCO Delays * 3

Logical Op. Replacement Operator SCO SSLines * (SSLines -1)/2

This operator is responsible for the replacement BRO Blocks

among the logical operators AND, OR, NAND, RgRg o ng'?t;p?P- *é) o

NOR, NOT and XOR. AOR p. * 277 " + Gain *
LROO Logic. Op. * 5

A. Summary

12 mutant operators were defined by employing the HA-
ZOP study for Simulink-like models and are summarized
in Table 1Il. Most of the defined mutant operators deal with T€TooDS (Testing Tool for Dynamic Systems) [2] can
the data flow of a Simulink-like model, which is the essenceinterpret dynamic systems models, interact with simutatio
of this type of system. Three mutant operators were define@nvironments such as Scicos or Simulink, and is used to
aiming at dealing with unique features of this kind of model.assist in the test data generation task. It was previously
Although most of the operators deals with modification in adeveloped to provide support for the application of func-
model, in certain cases for their implementations new tdock tional criteria, specifically the pairwise approach, in dgric
need to be added and removed. As a result, we consider thgystems models. This approach ensures that any two possible
they are a complete set, taking into account that along witfyalues, belonging to two different parameters, will be prees
our analysis, the defined mutant operators force additionln at least one test data [11].

V. TESTING TOOL

alteration and deleting operations in Simulink-like madel ~ We have extended TeTooDS to support mutation testing
in dynamic systems models. The first necessary step was the
Table 1ll: MUTANT OPERATORS development of a full-blown parser, that provides the infor

mation required by the mutant operators to the generation of

| Aﬁsg' | Tpe ReD;Zf:Zﬁ:f:t Operator | mutants of a model. These information include input ports,
y A .

VCOo Variable Change Operator input datatypes, blocks, blocks parameters, conngctlnds a
VRO Variable Replacement Operatof output port§. Our parser makes use of the pyparsing module
CCO Constant Change Operator [17], a flexible approach for creating and executing gram-
CRO | Constant Replacement Operatgr mars, against the lex/yacc approach or the use of regular
SSO Statement Swap Operator expressions. The pyparsing module provides a library of
DCO Delay Change Operator classes that supports building grammars directly into the
SCO Subsystem Change Operator Pvth d
BRO Block Removal Operator ython co e: . .) . .
RORO | Relational Op. Replacement Op. After parsing a Scicos or Simulink model, which is
AORO | Arithmetic Op. Replacement Og. accomplished when a testing project is created in TeTooDS,
LROO | Logical Op. Replacement Op. several options become available to the tester. A podyibili

is to select which mutant operator will be used for the

The first one, SSO, aims to swap the inputs of a Switchgeneration of the mutant models.
block, altering the control flow of a system. The second The tester can also visualize the mutant models inside
operator, DCO, deals with the temporal characteristics of &eTooDS: (i) as an image(ii) as the source code of the
system, and acts in the UnitDelay and Integrator blocks. Thenodel; or(iii) using TeTooDS to call Scicos/Simulink along
third one, SCO, operates in the interaction among the subwith the mutant model. It is useful for performing an anadysi
systems of a model, swapping the blocks connections amongf equivalent mutant models or to see which mutants are
them or among a main system and possible subsystems. alive or dead.

Table IV presents the worst case scenario, or the max- Test cases can be added by specifying input files that will
imum number of mutants to be generated by each mutariie read by the dynamic system model during its simulation,
operator regarding the model property that is being aftecte together with the specification of which output files should
i.e., input and output ports, blocks or blocks connectionde read by the testing tool when the simulation finishes.
(lines). The VRO mutant operator is the most likely to To run the simulation of the main dynamic system model
produce a larger number of mutants. and the generated mutants, TeTooDS provides a default

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 62

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

script that can be used or customized in order that the We consider that we achieved a high mutation score for
parameters values, such as start time, stop time and stépis particular model when applying the test set respoesibl
time, can be configured according to the tester needs. Aftdor achieving a full coverage of the model (100%) in the
the simulation finishes, output files are analyzed and the muc generated code (98.1%), which encourages the develop-
tation score is updated with the mutants status informatiorment of a thorough experiment, taking into account all the
o necessary validity levels. We emphasize that our interition
A. Sample Application to assess the feasibility of all mutation operators aiming a
This model represents an electronic regulator which conpossible refinements.
tains a flow regulator, a temperature sensor and a logic
controller. The system has three input ports: temperature, VI. RELATED WORK
temperature lower bound and temperature upper bound. 1o existing literature shows that the mutation criterion
When the temperature is below the lower bound, a valves \ery effective for revealing faults of traditional pragns
is closed, i.e., receives a zero value. When the temperatutg,y models. Nonetheless, this criterion has not been widely
is above the high bound, a valve is opened, receving,nnreq for the context of dynamic systems models.
a value of 100. When the temperature is between these We are aware of two studies that aim at applying the
limits, the valve aperture is calculated by the expressior?nutation testing in dynamic systems models. The first one
(5.0/3.0) * (temperature — low_bound) [4]. _ is described by Brillout et al. [5]. They developed a method-
We used all the defined mutant operators, applying ong,,.. 15 assess the correctness of Simulink models by
mutation at a time, which resulted in 131 generated mutants, ;o mating the test data generation activity. Their object
For the execution of the mutar?ts., firstly we se!ected INPULs 10 cover the requirements imposed by the mutation testing
dat"’_‘ randomly. For the remaining mutants, in order O1n order to generate and optimize the test data, the approach
achieve 100% of mutation score, we manually analyzed eacﬂ)cus on model checking techniques. However, the authors
mutant aiming to select a test data that could kill it o 4o not clearly present an solution of how to apply the
mark it as equivalent. Table V shows the number of mutant$y ation testing, i.e., which mutant operators should teelus
generated by each operator. to generate the testing requirements.
The second study is the one of Zhan and Clark [21]. De-

Table V: NUMBER OF MUTANTS spite introducing a testing framework for Simulink models

[Operator | Mutants [Operator | Mutants] and focusing on the mutation testing, the approach presents
TRO 0 DCO 4 a few limitations. The authors make use of a random test
VCO 36 SCO 0 data generator and try to improve the test set by the use of
VRO 26 BRO 19 dynamic analysis and simulated annealing methods, in order
ggg ‘11 2858 ig to satisfy the constraints imposed_ by their mutant opesator
550 1 ROO 15 We consider as a drawback of their approach the low number

of defined mutant operators, i.&add, multiplyand assign
The TRO did not return any mutants, as we used a Scicol'g| our a_pproach, we have trieq to overcome such issue by
model as source and it does not allow the use of several dapaerformmg a s_ystematlc analysis of a dynamic system mod_el
In order to define a complete set of mutant operators for this
types. Mutants also were not generated by the SCO operatorb hat includes th defined by Zh d Clark
as the number of inputs of the subsystems of this particula? ntext, that includes the ones defined by Zhan an ark.
model are not compatible. VI
To show the viability of the defined mutant operators, the
second step of our case study was to manually generate theWe address the testing of Simulink and Scicos models.
C code that corresponds to this particular model. We use®ealing with these models entails properly concerningrthei
Proteum [8] and its 73 mutant operators to generate mutantdomain specific language, which is geared towards code
for the C code, which resulted in 1473 mutants. By applyinggeneration, and also present specific features, as temporal
the test set that was selected to achieve 100% of mutatioand combinatorial characteristics.
score in the model, which represents a simulation of the The employment of the HAZOP study to derive mutant
system that is going to be hardware integrated, we couldperators for a particular type of system can produce differ
achieve 98.1% in the C code. ent syntactic variations, which can assist in finding pdssib
Our first intention was to use the code that can befaults of a system. In this paper we presented the solutions
automatically generated by Scicos. Nevertheless, it ptsse that the authors consider appropriate for dynamic systems
too many unused variables and other pieces of unexecutedodels.
code, resulting in a large number of equivalent mutants to One of the advantages of the HAZOP study is that the

be analyzed (up to 100 000 mutants). set of mutant operators can be more complete than those

. FINAL REMARKS AND FUTURE WORK

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 63

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

generated based only on the experience of faults of a of the 12th International Conference on Software and System
developer, since the language constructs are analyzed. Engineering and their Applications (ICSSEA'99P99. _
Future work also includes the definition of a method for[14] T. Kletz. Hazop and Hazan: Identifying and Assessing

th ; i i f test data for d - t Process Industry HazardsCRC Press, fourth edition, 1999.
€ automalic generation or test data Tor dynamiC SySleém@ s . A Korn. Advanced Dynamic-system Simulation: Model-

models, that aims at satisfying the mutation test require- replication Techniques and Monte Carlo Simulationiley-
ments. Longer term future work includes the conclusion Interscience, 2007.

of an integrated testing environment that can assist in th&l6] A. Mathur. Foundations of Software Testing Pearson

. . . . Education, 2008.
;u;grer::tlon of the testing activity for dynamic systems[17] P McGuire, Pyparsing, 2011m. Available at

http://pyparsing.wikispaces.com.
VIIl. A CKNOWLEDGMENT [18] B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for tratista
T) _ Simulink models into input language of a model checker. In
The authors would like to thank the financial support pro- Z. Liu and J. He, editors|CFEM, volume 4260 ofLNCS
vided by CNPq (grant number 141976/2008-0). We are also pages 606-620. Springer, 2006.

thankful to Vinicius Durelli, who proofread and commented [1°] XV.hPe\rAr/)_/I. Eﬁ;cgve m?thodggggsoftware testing, third edition
: ohn Wiley & Sons, Inc., .
on drafts of this paper. [20] The Mathworks Inc. MATLAB and Simulink, 2011. Availabl
REFERENCES at http://www.mathworks.com.
[J. H. An_drews, L. C. Br_iand, and_ Y. Labiche. Is mutation an 124] ;(-utgrnaaﬂicartlgsﬂﬁgp\.ofc Iriraktllab?sisr;‘?j{rflk(]_?r?sgglsggmﬁgog(f for
Z‘ggﬂq'latiéoﬁ' ;?;;?t'z%%g"pe”me”ts'-’zm ICSE pages Systems and Softwar81(2):262—285, 2008.

[2] R. F. Araujo and M. E. Delamaro. TeTooDS - Testing Tool
for Dynamic Systems. Ifools Session — Brazilian Software
Engineering SymposiunBrazil, 2008. SBC.

[3] J. S. Arendt and D. K. LorenzoEvaluating Process Safety
in the Chemical Industry. A user guide to quantitative risk
analysis AIChE, second edition, 2000.

[4] M. Blackburn, R. Busser, and A. Nauman. Why model-based
test automation is different and what you should know to get
started. Ininternational Conference of Practical Soft. Quality
and Testing SPC, 2004.

[5] A. Brillout, M. He, Nannan afend Mazzucchi, D. Kroening,
M. Purandare, P. Rummer, and G. Weissenbacher. Mutation-
based test case generation for simulink modelsProceed-
ings of the 8th international conference on Formal meth-
ods for components and objecBMCO’09, pages 208-227,
Berlin, Heidelberg, 2010. Springer-Verlag.

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive
Systems, Advanced Lectyreslume 3472 ofLecture Notes
in Computer ScienceSpringer-Verlag, 2005.

[7] A. Chapoutot and M. Martel. Abstract simulation: A stati
analysis of simulink models. IlCESS '09: Proceedings of the
2009 International Conference on Embedded Software and
Systemspages 83-92, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] M. E. Delamaro and J. C. Maldonado. Proteum — a tool for the
assessment of test adequacy for ¢ program®réceedings
of the Conference on Performability in Computing Systems
(PCS 96) pages 79-95, 1996.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection help for the practicing programnieEE
Computer 11(4):34-41, Apr. 1978.

[10] F. Ferrari, J. Maldonado, and A. Rashid. Mutation tegfior
aspect-oriented programs. Boftware Testing, Verification,
and Validation pages 52 —61, april 2008.

[11] M. Grindal, J. Offutt, and S. F. Andler. Combination tiag
strategies - a survey. Software Testing, Verification and
Reliability, 15(3):167-199, 2005.

[12] INRIA Rocquencourt. Scicos, 2011. Available at
http://www.scicos.org.

[13] S. Kim, J. A. Clark, and J. A. McDermid. The rigorous gene
ation of java mutation operators using hazop Phoceedings

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 64

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Static Robustness Grid Using MISRA C2
Language Rules

Mohammad Abdallah

School of Engineering and
Computing Sciences

Durham University
Durham, UK

m.m.a.abdallah@dur.ac.uk

Abstract—Program robustness is the ability of software to
behave correctly under stress. Measuring program
robustness allows programmers to find the program’s
vulnerable points, repair them, and avoid similar mistakes
in the future. In this paper, a Robustness Grid will be
introduced as a program robustness measuring technique. A
Robustness Grid is a table that contains rules classified into
categories, with respect to a program’s function names and
calculates robustness degree. The Motor Industry Software
Reliability Association (MISRA) rules will be used as the
basis for the robustness measurement mechanism. In the
Robustness Grid, for every MISRA rule a score will be given
to a function every time it satisfies or breaches a rule. The
Robustness Grid shows how much each part of the program
is robust, and assists developers to measure and evaluate
robustness degree for each part of a program.

Keywords-Robustness; Robustness Grid; MISRA C2.

. INTRODUCTION

Robustness is required in critical programs where
failures could cause problems [1]. Robustness is an
important factor in any program development process.
The IEEE defines robustness as “The degree to which a
system or component can function correctly in the
presence of invalid inputs or stressful environmental
conditions” [2].

In this definition, there are three main aspects; the
correct program response, the input data, and system
environment. Program response means that the system
should respond rationally [3], but not necessarily correctly.
It should not fail to reply or react illogically. The input
data is one of the factors that affect the robustness of the
program. A robust program can continue to operate
correctly despite the introduction of invalid input [4].

The environment where the program is run is contained
in hardware, other software systems, and the humans that
run the program. These factors also affect the program
robustness. It is this aspect of robustness that this study is
concerned with.

Static measures of software robustness complement
robustness testing. Robustness testing is a “testing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Malcolm Munro
School of Engineering and
Computing Sciences

Durham University
Durham, UK
malcolm.munro@dur.ac.uk

Keith Gallagher

Department of Computer Sciences
Florida Institute of Technology
Florida, USA
kgallagher@fit.edu

methodology to detect vulnerabilities of a component
under unexpected inputs or in a stressful environment.” [5]

The objective is to evaluate the robustness features of
imperative programs from the perspective of programmers
and maintainers. Thus it will give an assessment of the
program vulnerabilities, in order to help improve and
certify the robustness of existing programs.

The Robustness Grid is developed as a measurement
tool and is a numeric representation of the robustness
degree for each function, and for the program in total. The
Robustness Grid certifies C program robustness through
applications of MISRA C2 guidelines.

There are different standards that the programmers are
advised to follow during writing a C program to produce a
robust program. However, these standards are not widely
used to measure the program robustness after the program
has been written.

This study will contribute a Robustness Grid using a
number of robust features. The MISRA C2 language rules
will be used as a measurement of the robustness features.
The Robustness Grid will provide the robustness degree
for the program, and each function it includes, as a
numeric value. Thus the Robustness Degree will show the
degree of satisfaction that a program has according
standards of robustness.

In section 2, MISRA C language rules are presented.
Section 3 overviews the existing research in Robustness
Grid technique. In Section 4 the Robustness Grid
Calculations concepts are listed. Section 5 presents the
related work in Robustness measurement. Finally, in
Conclusions future research is highlighted.

Il. MISRAC2

The Motor Industry Software Reliability Association
(MISRA) has published a standard set of rules for C and
C++ “to provide assistance to the automotive industry in
the application and creation within vehicle systems of safe
and reliable software” [6]. MISRA C 1998 rules (“MISRA
C1”) where published in 1998 and were followed by
technical clarification document in 2000. In 2004, MISRA
published a second version of MISRA C rules (MISRA
C2) to address some technical and logical problems, and
for further technical clarification. In MISRA C2 the rules

65

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

are rephrased to be more sensible, accurate and
comprehensive.

MISRA C2 rules are classified into two types:
Required (122 rules) and Advisory (20 rules). Required
rules are obligatory and must be followed by developers to
create safe programs. Advisory rules are necessary but not
as important as the Required rules; however a developer
should follow the advisories in order to build a safe
program. In addition, MISRA C2 has 21 categories that
consider different programming processes, coding styles,
and programming syntax.

The MISRA categories cover all C language common
programming issues. The MISRA categories start with
Environment category, which describes the optimum
environment for C programs. Then Language extensions
category, where it has headlines for writing comments
through programming. Documentation category contains
general rules for documentation process.

The syntax format concerns, problems and advice is
covered and discussed in the rest of the categories. An
example of a MISRA C2 rule is rule 8.1:

Rule 8.1 (required) Functions shall have prototype

declarations and the prototype shall be visible at both

the function definition and call. [4]

“X.y” is the MISRA rule numbering method and
means this is rule 1 (“y”) in category 8 (“X”) (Declarations
and definitions). “required” means it the rule is an
obligatory rule.

I1l. ROBUSTNESS GRID

Measuring software robustness needs to examine
features in order to produce a relative scale that calculates
the robustness degree for functions, and the entire
program.

A. Robustness Features and Robustness Degree

Before discussing the Robustness Grid, some terms
should be clarified: Robustness Features and Robustness
Degree.

Robustness Features are characteristics that affect
software robustness, such as code syntax [7]. Robustness
Features in this study are divided into two groups
depending on their source. Robustness Language Features
certify the robustness degree of code syntax and coding
style. Second, User Functional Requirements features
certify the robustness degree of the service that program
provides, how it reacts to input, and how the system
responds [8].

Robustness Degree is a scale of a program robustness
features satisfaction, expressed as a percentage.

MISRA C rules are divided to several Categories as
described in following section. These categories will be
used to create the Robustness Grid.

B. Robustness Grid

The Robustness Grid is a table showing the robustness
degree of every function in a program and for the entire
program. Then the robustness features satisfaction
percentage will be calculated cumulatively in each

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

category, function, and whole program. The values
highlight the vulnerable points (low percentage score) of
the functions and program. TABLE Il shows an example
of the Robustness Grid. Each category in the Robustness
Grid is independent, so a function could score a high
marks in one category and score low marks in another.

The Robustness Grid has two parts: the static part
which contains the MISRA C2 rules; here, there is no need
to understand the code functionality because only the
program code will be certified. The second part is the
dynamic part, which contains User Functional
Requirements. In this paper, only the static part will be
discussed.

1) Rules selection method and conditions:

In this study, some assumptions and conditions are
applied to programs to be certified by the Robustness Grid:

1. The program must be compileable by a compiler

that satisfies the MISRA C2 environment rules.

2. Programs should satisfy MISRA C2 rules number

1.1 and 14.2 which means the program must satisfy
the 1SO Standards [9].

The total number of MISRA C2 rules, after applying
Robustness Grid assumptions and conditions is 100 in 6
Categories.

2) Rule categorization method:

The Robustness Grid (TABLE I1) is a table that
classifies MISRA C2 rules into 6 different Categories;
each Category has a set of related rules:

TABLE I. ROBUSTNESS CATEGORY CONSTRUCTIONS
Category Constructs

0 The rules that considers type definition,
arithmetic statements.

1 Rules that consider control statements (if, for,
while ...etc).

2 The rules that consider function structure.

3 The rules that consider arrays, pointers, and
data structure (union, struct, enum ...).

4 The rule that consider header files and the
pre-processor

5 All MISRA C2 advisory rules.

If a rule is in more than one Category, it will be
classified under the highest Category. If a single line of
code is considered by more than one Category, it will be
certified against each Category, individually.

IV. ROBUSTNESS GRID CALCULATIONS

Certifying program robustness using the Robustness
Grid uses the following procedure:
1. The program must be able to be compiled by the
gcc compiler.
2. Pre-processor code lines are considered as part of
the function main, unless it related to a particular
function.

66

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

3. Rules which are not applicable for all functions in a
program are removed from Robustness Grid in
order to save space.

After the rules have been selected, and program
eligibility is satisfied, the Robustness Grid is built for the
program. In the Robustness Grid, the calculations that
measure the Robustness Degree for the functions and for
the program is novel and introduced here for the first time.

The Robustness Grid building process is as follows:

1. Each statement in the program is assessed against
all the selected MISRA C2 rules.

2. All selected rules will be put in their categories
depending on the categorisation method defined
above.

3. Each rule has the applied status next to it,
showing whether it is satisfied (+), violated (-), or
not applicable (0).

4. Program Statements will be grouped by their
function.

5. For each function the status of all rules is listed.

6. The Robustness Grid calculations are made for
each function (FACS), category (ACD), and for
the entire program (WPCS).

The SwapAdd.c program is a simple example program
that will be used to illustrate how the Robustness Grid is
applied. The SwapAdd.c program, shown in Fig 1, isa C
program with three functions, main, swap, and incr. The
swap function exchanges two pointers and incr function
increments its first parameter by the value in its second
parameter, and main calls both functions.

In program SwapAdd.c, incr, swap, and main are the
program functions. In the Robustness Grid the numbers
under each function are the rule states; a positive number
(+n) means the rule has been satisfied n times in the
function. Negative numbers (-n) means the rule has been
broken n times in the function. Zero means the rule is not
applicable to the code.

The robustness degree can be calculated as follows:

1. Function Category Satisfaction (FCS): For Category
n the number of times a rule has been satisfies divided
by the number of times the rule has been applied,
expressed as percentage.

2. Program All Categories Satisfaction (PACS): For
Category n, a count of all the times a rule has been
satisfied for all the program’s functions divided by the
number of times the rule has been applied in all
program functions, expressed as percentage.

3. All Categories (between 0 and n) Accumulative
Robustness Degree (ACD): Number of times rules are
satisfied in categories (0 - n) divided by number of
times rules are applied in categories (0 - n), expressed
as percentage.

4. Function All Categories Satisfaction (FACS):
Number of times rules are satisfied in all categories
divided by number of times rules are applied in all
categories, expressed as percentage.

5. Whole Program Categories Satisfaction (WPCS):
For all program functions: Count of all times rules

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

been satisfied divided by all times that rules been
applicable as a percentage.

#tinclude <stdio.h>
#tdefine LAST 10
void incr(int *num, int i);
void swap(int *a, int *b);
int main(){
int i, sum = @, *a = 12,*b = 13;
for (i =1; i <= LAST; i++) {
incr(&sum, i);}
printf("sum = %d\n", sum);
swap (&a,&b);
return 0O;
}
void incr(int *num, int i) {
*num = *num + 1i;
¥
void swap(int *a, int *b) {
int temp= *a;
*a= *b;
*b= temp;
printf ("pointer a is:%d\n",*a);
printf ("pointer b is:%d\n",*b);}

Figure 1. SwapAdd.c Program

The result of analysis as shown is TABLE Il shows
that the SwapAdd.c program satisfied the robustness
features by 75.5%. To improve the robustness of the
program the category 5 rules should be examined because
they have the smallest PACS ratings. It also shows that
swap should be examined because has the smallest FCS
value.

This static Robustness Grid is still produced manually,
which is a limitation of this study. The automation for the
Grid will be done by using the semantic part of C
language.

V. RELATED WORK

Critical programs must be robust to avoid the problems
that could be caused by failures [10]. The C Language
standards were introduced to avoid the code
misinterpretation, misuse, or misunderstanding. The IEEE
has the ISO/IEC 9899:1999 standard [9], which is used
later by MISRA to produce MISRA C1 and C2. This in
turn led to Jones producing “The New C Standard: An
Economic and Cultural Commentary” [10]. The LDRA
Company uses MISRA C rules in addition to 800 rules
that it created to assess programs [11]. Other C standards
such as “C programming language Coding guideline” [12]
are less frequently used.

67

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Measuring the application of language standard to a
program is one program robustness measurement
technique. Several techniques have been tried to measure
program robustness. Software measurement means
estimates the cost, determine the quality, or predict the
maintainability [13]. Arup and Daniel [14] presented
features such as portability to evaluate some existing
benchmarks of Unix systems. As a result they built a
hierarchy structured benchmark to identify robustness
issues that have not been detected before. Behdis and
Shokat [15] introduced a theoretical foundation for a
robust matrices that reduce the uncertainty in distributed
system. Arne et al. [16] used some robustness criteria such
as input date rate, and CPU clock rate to create a multi-
dimensional robustness matrices and use them to measure
the robustness of a system.

A Robustness Hierarchy is a relative scale to find the
robustness characteristics that needs to be added to
programs. A Robustness Hierarchy is a technique used to
build a robust program. The Hierarchy starts with non-
robust program as first step then adds robust features
before reaching a robust program in the highest level of
the Hierarchy [7].

All the previous software measurement techniques do
not give the developer a fully detailed set of
measurements. Nor do they specify the parts of the
program that need to be modified to raise its quality. Thus
the focus of this study is to give the programmer a full
description for all the robustness features and the degrees
to which they are satisfied.

The Robustness Grid allows the developer to specify
the code lines that need to be modified to improve the
program Robustness Degree.

VI. CONCLUSION AND FUTURE WORK

A Robustness Grid has been defined and it has been
shown how it can work as an assessment tool. This means
that every function in a program can be certified using
MISRA C2 rules through the calculation of a robustness
degree.

The Robustness Degree show the MISRA C2 rules that
have been followed and satisfied by the program and the
rules that have been violated. The Robustness Degree
gives an indication as to where the developer or maintainer
should do some code changes to improve the robustness of
the program.

The calculation of the Robustness Degree can be
considered as simplistic in that is based on percentages of
rules that are passed or failed. It does not fall into the trap
of allowing positive and negative values to cancel each
other out. All rules are treated with the same weight. It is

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

clear that for any particular program this is not necessarily
so. In the future work, a dynamic robustness features will
be introduced to make the measurement more accurate and
reliable by giving weights to the important statements in
the program. Thus in the Robustness Grid, each static rule
will be weighted by the Dynamic rules to highlight the
different level of importance of the static rules.

REFERECES

[1] G.M. Weinberg, Kill That Code!, Infosystems, 1983, pp. 48-
49.

[2] IEEE, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990, IEEE Computer Soc, 1990.
[3] S.D. Gribble, Robustness in complex systems, Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems, 2001,
pp. 21-26.

[4] L.L. Pullum, Software fault tolerance techniques and
implementation, Artech House, Inc., 2001.

[5] L. Bin, L. Xuandong, L. Zhiming, M. Charles, and S. Volker,
Robustness testing for software components, Elsevier North-
Holland, Inc., 2009, pp. 879-897.

[6] M.L.S.R. Association, MISRA website, last access <retrieved:
7,2011>.

[71 M. Abdallah, M. Munro, and K. Gallagher, Certifying
software robustness using program slicing, 2010 IEEE
International Conference on Software Maintenance, Timisoara,
Romania, 2010, pp. 1-2.

[8] I. Sommerville, Software Engineering, Addison-Wesley,
2006.

[9] ISO/IEC, International Standard ISO/IEC 9899, International
Organaization for Standardization, 1999.

[10] D.M. Jones, The New C Standard: A Cultural and Economic
Commentary, Addison-Wesley Professional, 2003.

[11] LDRA, LDRA Test Suite, last access <retrieved: 7, 2011>.
[12] E. Laroche, C programming language coding guidelines, last
access <retrieved: 7, 2011>.

[13] N.E. Fenton, and S.L. Pfleeger, Software Metrics, A
Rigorous and Practical Approach, PWS Publishing Company,
1997.

[14] A. Mukherjee, and D.P. Siewiorek, Measuring Software
Dependability by Robustness Benchmarking. IEEE Transactions
of Software Engineering 23 (1994) 94-148.

[15] B. Eslamnour, and S. Ali, Measuring robustness of
computing systems. Simulation Modelling Practice and Theory
17 (2009) 1457-1467.

[16] A. Hamann, R. Racu, and R. Ernst, Methods for multi-
dimensional robustness optimization in complex embedded
systems, Proceedings of the 7th ACM & IEEE international
conference on Embedded software, ACM, Salzburg, Austria,
2007, pp. 104-113.

68

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

TABLE II. SWAPADD.C ROBUSTNESS DEGREE
Category | C2 Rules incr FCS% swap FCS% main FCS% PACS%
. . + +
4 1;? 27 L +02 3/3 é 5/7 +411 6/8 14/18
Category 0 5'1) = 1 =) = =
: 0, 0, 0, 0,
3 0 100% > 71.4% > 75% 77.8%
12.2 +1 0 -1
13.1 +1 +3 +4
. +
ig g 8 4/5 8 5/5 21 8/11 17/21
Category 1 13.6 0 = 0 = 1 = =
: 0, 0, 0, 0,
147 1 80% 1 100% ") 72.7% 81%
17.1 -1 0 0
17.5 +1 +1 +1
ACD (0-1) 87.5% 83.3% 73.7% 79.5%
8.1 +1 +1 0
8.2 +1 +1 +1
8.3 +1 +1 +1
8.6 +1 +1 +1
8.11 -1 -1 -2
14.8 0 10/12 0 8/13 +1 9/12 27/37
Category 2 16.1 +1 = +1/-2 = +3 = =
16.2 +1 83.3% 0 61.5% 0 75% 73%
16.3 +2 +2 0
16.4 +1/-1
16.5 0
16.8 0
16.9 +1
ACD (0-2) 85% 76.3%
Category3 | 167 | +1 100% 100%
ACD (0-13) 85.7% 77.2%
Lo 0 2/2 8/8
20.1 +1
Category 4 50.2 1 = =
20'9 0 100% 100%
ACD (0-4) 87 79.3
>-7 1 1/2 5/11
19.1 0 - 0 .
Category 5 19.2 0 = 0 = 1 = =
: 0, 0, 0, 0,
197) 50%) 33.3%) 50% 45.5%
WPCS
0 0,)
FACS 84% 71.9% 73.2% 75 506

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Specifications-Based Mutation Engine for Testing Programs in C#

Andreas S. Andreou
Department of Electrical Engineering and Information
Technology,
Cyprus University of Technology
Limassol, Cyprus
email: andreas.andreou@cut.ac.cy

Abstract—This paper presents a simple and efficient engine
which produces mutations of source code written in C#. The
novelty of this engine is that it produces mutations that do not
contradict with the specifications of the program. The latter are
described by a set of pre- and post-conditions and invariants.
The engine comprises two parts, a static analysis and syntactic
verification component and a mutation generation component.
Preliminary experiments showed that the proposed engine is
more efficient than a simple mutations generator in terms of
producing only valid mutations according to the specifications
posed, thus saving time and effort during testing activities.

Keywords-mutation testing; mutation engine; specifications;

l. INTRODUCTION

Technology advancements nowadays lead to the
automation of a large number of activities within the software
development process. The exploitation of computing power
drives the need for producing better, faster and more reliable
software systems. Nevertheless, the aforementioned targets
increase software complexity and size, making this need hard
to be satisfied. The competition in the software development
market pushes companies to increase their productivity,
developing software in tighter time limits usually sacrificing
the quality of the resulting software.

One of the most significant reasons for the inadequate
quality control in software development is the lack of efficient
software testing. The latter is a way for verifying the
correctness and appropriateness of a software system, or,
alternatively, for ensuring that a program meets its
specifications ([1], [2]). Software testing is not a simple
process; on the contrary, it consumes a large percentage of the
time and budget of the whole development process. In some
cases it even surpasses the time needed for the creation of the
software product. Its main purpose is to reveal and locate
faults so as to assist developers improving the functional
behavior of the system under development.

Software testing consists of two main processes, the
identification of faults (testing) and their correction
(debugging). Indentifying faults is the most time consuming
process as it can take up to 95% of the time of software
testing. Having this in mind, we can safely conclude that there
will be a constant need to develop tools that will assist in
accelerating and automating the testing process, guiding
developers to locate and debug faults faster and more
efficiently.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Pantelis Stylianos Yiasemis
Department of Electrical Engineering and Information
Technology,

Cyprus University of Technology
Limassol, Cyprus
e-mail: pm.yiasemis@edu.cut.ac.cy

The aim of the present paper is to introduce a mutation
engine for source code written in C#, which is the basic
element of a novel mutation testing technique that takes into
consideration the specifications of the program for creating
only valid mutants. The engine is implemented in Visual
Studio 2010 and consists of two components: The first offers
the ability to validate the grammatical correctness of the
source code and provides a form of statistical analysis for
exporting useful information that can be wused to
process/modify the source code. The second involves the
production of mutations of the original source code and
facilitates the identification of faults, as well as the assessment
of the quality of test data.

The rest of the paper is structured as follows: Section Il
describes briefly the basic concepts that form the necessary
technical background of this work. Section Il presents the
mutation engine, its architecture and key elements ruling the
generation of mutations, as along with a brief demonstration
of the supporting software tool. Section IV describes a set of
preliminary experiments and the corresponding results that
indicate the correctness and efficiency of the proposed
approach. Finally, Section V concludes the paper and suggests
some steps for future work.

Il. TECHNICAL BACKGROUND

According to McMinn [3], three different kinds of
software testing techniques exist. These are White Box
Testing (WBT), Black Box Testing (BBT) and the mixing of
the two called Gray Box Testing (GBT). Each of these three
techniques offers its own advantages and disadvantages,
differing on the way test cases are created and executed. In
BBT the test cases are created based on the functions and
specifications of the system under testing without the need for
actual knowledge of the source code. WBT requires that the
tester needs to have full access to the source code and know
exactly the way it works. Advantages of this method are that it
can locate coincidental correctness, this is the case where the
final result is correct but the way it is calculated is not.
Moreover, all possible paths of code execution may
potentially be tested offering the ability to identify errors
or/and locate parts of dead code, that is, parts that are never
executed.

Different techniques have been proposed for WBT making
use of the structure of the source code or the sequence of
execution, giving birth to static code analysis and testing for
the former and dynamic testing for the latter. We concentrate
on dynamic testing where the actual flow of execution drives

70

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

test data production. One such technique that has gain serious
interest among the research community is Mutation Testing
(MT).

MT is a relatively new technique introduced by DeMillo et
al. [4] and Hamlet [5], which is based on performing
replacements in code statements through certain operators that
correspond to specific types of errors, producing the so-called
mutant programs; the latter are then used to assist in
producing or/and assessing the quality of test data as regards
revealing the errors in the mutants [6].

The general idea behind MT is that the faults being
injected correspond to common errors made by programmers.
This means that the mutants are slightly altered versions of
programs which are very close to their correct form. Each
fault is actually a single change of the initial version of the
program, pretty much the same as a slight change (mutation)
in living species causing a different form of life. The quality
of a produced set of test cases is assessed by executing all the
mutants and checking whether the injected faults have been
detected by the set or not.

There are quite a few ways to represent code and provide
the means for better understanding and management of the
source code. Most of them use graphs or/and binary trees that
are able to depict graphically how the program actually works.
The Control Flow Graph (CFG) is one such way of
graphically representing the possible execution paths. Each of
its nodes usually corresponds to a single line of code, while
the arcs connecting nodes represent the flow of execution.
CFG may be used as the cornerstone of static analysis, where
its construction and traversing offers the ability to identify and
store information about the type of statements present in the
source code and the details concerning the alternative courses
of execution. A fine example is the BPAS framework
introduced by Sofokleous and Andreou [7] for automatically
testing Java programs. More to that, CFG may drive the
generation of test data by providing the means to construct an
objective function for optimization algorithms to satisfy (e.g.
by evolution, like Michael et al. [8]).

During the last years the Visual Studio (VS) platform [9]
has been constantly evolving becoming one of the most wide
spread platforms used today in the software industry. This is
partly due to the fact that it provides to developers the ability
to create a number of different types of applications, like
window-apps, web-apps, services, classes etc. The wide
acceptance of VS has driven the development of a number of
third party tools and plug-ins that enhance the platform with
even more functionality, making development of special-
purpose applications simpler and easier. The aforementioned
advantages of VS2010 led us to investigate its use for
software testing, and more specifically for developing a new
mutation testing tool.

Code Contracts (CC) are offered by VS2010 as the means
to encode specifications [10]. CC may consist of pre-
conditions, post-conditions and invariants. Their aim is to
improve the testing process during runtime checking and
static contract verification, as well as to assist in
documentation generation.

The mutation engine introduced in this paper is partly
based on the aforementioned concepts. More specifically, it

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

utilizes CFG and static analysis as in [7] to extract the
information needed for analyzing and describing adequately
the source code under investigation. Moreover, it employs CC
to embed the specifications required so that the program
functions properly and static analysis (contract verification) in
order to guide the production of meaningful mutant programs,
that is, programs that do not violate their original
specifications. The engine targets at offering the means for
automatic, time-preserving software testing.

I1l. MUTATION ENGINE

A. Architecture

As previously mentioned, the mutation engine was
implemented in the VS2010 platform. The selection of
VS2010 was made partly because it is a relatively newly
introduced platform, meaning that the components developed
may be used as a backbone for future tools and studies based
on this platform, without facing any incompatibility issues
compared to the use of older platforms. Also, to the best of
our knowledge, at present no other such system exists. The
engine was specifically designed to work with the C#
programming language, but with minor changes and additions
the support of the rest of the programming languages VVS2010
platform offers may be enabled as well.

Project File

Mutation
Programs

Validate ‘

Pass

Source File

Parser Analyzer

s B S—

Visitor Lists

Mutation Operands

Figure 1. The mutation engine architecture

The architecture of the proposed mutation engine is
depicted graphically in Figure 1 where three major
components enable the execution of the engine’s stages. The
first is a source code validation component, which compiles
the source code and presents the erroneous lines in code if
such exist. This component takes as input a source code file
(.cs), or an executable file (.exe), or a dynamic link library file
(.dll), as well as the project file (.csproj). The project file is
needed to provide the component with information for
references in libraries and files that the source code must use
and are part of the program. Validation includes compiling the
source code and making sure that no syntactic or other
compilation errors exist so as to proceed with the second stage
of the engine which is the production of mutations. Otherwise
the engine terminates.

71

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The second component performs statistical analysis of the
source code without the need of an executable form of the
program under testing. By statistical analysis we mean
exporting the useful information from the source code as
regards the structure of the program. This component takes as
input the source code file and uses the class
AbstractSourceTree (AST) of SharpDevelop [11] to model the
abstract syntax tree of the code. While compiling a source
code file, a binary tree is created, each node of which
represents a line of code. Traversing this binary tree, once the
tree is completed, offers access to any part of the source code.

Analyzing the statistical component described above we
can see that it consists of two sub-components, the Parser and
the Visitor. The Parser analyses the source code and creates
the AST as mentioned earlier. After it finishes, the Visitor
passes through the tree collecting useful information, while
giving the opportunity to the user to make changes and
additions to the information stored. The implementation of the
Visitor utilized the AbstractAstVisitor class of SharpDevelop,
with some minor additions to help accessing all the nodes of
the AST, both at the high and the low level characteristics of
the programming language. The Visitor recursively visits each
node and stores in stack-form lists all the information
identified according to the node’s type. In the experiments
described in the next section thirteen such lists were created;
nevertheless, the way the Visitor is structured enables the
addition of any new lists or the modification of existing ones
in a quite easy and straightforward manner.

The third and final component is actually the heart of the
mutations production. This component analyses the
information stored in the lists created by the Visitor so as to
identify the structure and content of the source code, and
creates mutated programs by applying a number of predefined
operators to the initial program. These mutators are
responsible for creating a number of different variations of the
initial source code based on the rules each of them represents
without breaching the grammatical correctness of the resulting
program.

Mutations are performed at the method level via operators
that are usually of arithmetic, relational, logical form, and at
the class level with operators applied to a class or a number of
classes and usually refer to changing calls to methods or
changing the access modifiers of the class characteristics
(public, private, friendly etc.). The operators supported by the
proposed mutation engine are the following:

Avrithmetic

e AORga — arithmetic operations replacement (binary,
assignment)
AOR; — arithmetic operations replacement (shortcut)
AOIs— arithmetic operations insertion (shortcut)
AOIy, — arithmetic operations insertion (unary)
AOI 5— arithmetic operations insertion (assignment)
AODs — arithmetic operations deletion (shortcut)
AODy, — arithmetic operations deletion (unary)

e AOD, - arithmetic operations deletion (assignment)
Relational

e ROR - relational operations replacement
Conditional

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

e COR - conditional operations replacement

e COI - conditional operations insertion

e COD - conditional operations deletion
Logical

e L OR - logical operations replacement

e LOI - logical operations insertion

o LOIA - logical operations insertion (assignment)

e LOD - logical operations deletion

e LODA - logical operations deletion (assignment)
Shift

e SOR - shift operations replacement

e SOIA —shift operations insertion (assignment)

e SODA - shift operations deletion (assignment)

Replacement
e PR - parameter replacement

e LVR - local variable replacement

B. Specification-Based Mutations

The number of possible mutated programs for a certain
case-study may be quite large depending on the type and
number of statements in the source code. Therefore, when
testing is based on mutations processing time may
substantially increase as it is proportional to the number of
mutants processed. This is a significant problem that may
hinder the use of mutation testing in certain cases. Thus, there
is a need to minimize mutation testing execution time. This is
feasible taking into account the fact that a considerable
number of useless mutations may be observed as the changes
made to the code correspond to invalid forms of executions
for that particular program as these are determined by the
program’s specifications. Therefore, we need to take these
specifications into consideration when producing the mutants.
This is exactly what we do via the Code Contracts supported
in VS2010. Additionally, this feature is enhanced by ruling
out mutation cases that have syntactical errors and are
practically of no use.

The following example demonstrates how mutations are
driven by the specifications inserted via CC, where class Test
includes methods Foo and Goo and uses CC to express two
pre-conditions (denoted by Contact.Requires) and one post-
condition (denoted by Contact.Ensures):

public class Test {
private int Foo(int a, int b) {
Contract.Requires(a > b);
Contract.Requires (b > 0);
Contract.Ensures (Contract.Result<int>()>0) ;

return (a / b);

}

private void Goo() {
int x, y;

x =y + 10;
int result = Foo (x , y) }

In Goo the assignment of x affects the values with which
Foo is called. The first pre-condition requires that x>vy. The

72

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

engine normally would perform operation replacement
substituting ‘+> with *-*, °/’, ‘%’ and ‘“*’. Due to the pre-
condition the engine will drop the first three replacements and
use only the last one as it is the only replacement that will still
satisfy the pre-condition. The same applies for b>0, where
any arithmetic replacement should not set b equal or less than
zero. Therefore, a sort of “thinking” before producing a
certain mutation is implemented in the engine which enables
the production only of valid mutants thus ensuring that the
minimum possible time and effort will be spent in the
subsequent analysis and testing activities.

C. The software tool

A dedicated software tool was developed to support the
whole process. An example scenario is given below to
demonstrate its operation; A source code file and the project
file of the program tested are given as input to the system. The
project file and all the references to other files or libraries are
automatically located and linked, and the source code file is
compiled through the validation component. In the case of
compilation errors a pop up window is presented to the user
with the corresponding information (Figure 2) and the process
is terminated. If there are just warnings, the user is again
informed, but the system now continues to the next step.
Statistical Analysis of the source code is executed next
resulting the creation of the AST. The visitor component then
passes through the binary tree and creates the lists that store
the information found in the source code. Lastly, the third
component takes as input the lists created earlier by the visitor
and a set of selected mutators, applies these operators and
returns the resulting mutated programs (Figure 3).

Sekeot SUM souce e: [_browee.. Select SUM praect fi:

Selected suce iz C i ety Dooumentssual Stucia 20104F o

[i ety Dooumentssual Stucia 20104F o eyt MathLivary cxpuoi

Auithmetic Opesations Relational Dpesations Conditional Operations Logical Operalions Shift Operations Type based mutation

ErraWarning sccured during canglition :
ed

Line rumber 17, Esror Humber: C50551,
fieldbpe.;

Line number 17, Esmor Husber: CS271, Ay s cannok be specfied in vrishie: dediaraton (iry ikickaing with a hew expression);

Line nurmber 17, Error Humber: CS1002, ; expected;

=

er precedes the variabk's Wentier, Ta dedlare a fixed size buffer isk, use the fised kepvard before the:

T ooy TTTODRT
[anp

Generalz Muaions

Figure 2. Execution : Errors in compilation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

E BEE)
Select SUM source fle: Select SUM proect fil:
Selected sowrce fils: CAD: 15 and My D Studio ibrary\MathL o5
Selected project file: C:AD, ts and My D Studio ibrary\MathLibrary\MathLibrary. csproj
Arithmetic Operations i ions Conditional ions Loaical i Shift Type based mutation

[ADR(EA) ROR [coR [Lor O soR [myZ]
[40R(5)
] ADIS) Mutation Enging has successfully run, please visik Crimutations to find the mutation programs! O wh
0 o)
[a0i()
[A0D(S) [cop [Loo [sop)
[40D [LoDis)
[A0Dw)

Figure 3. Execution : Mutations successfully produced

IV. EXPERIMENTAL RESULTS

A series of preliminary experiments was conducted to
assess the correctness and efficiency of the proposed testing
approach. The aim here was twofold: First, to demonstrate
that the proposed engine works as it is supposed to, that is, it
is able to produce correctly a number of mutations to be used
for testing by performing atomic changes to the source code in
hand according to a selected operator. Second, to assess
whether the incorporation of specifications in the way
mutations are produced indeed improves its performance by
allowing only certain types of mutations to be executed and
thus bounding the computational burden for revealing faults.

The first experiment is involved with assessing the quality
(adequacy) of test cases to identify faults in a benchmark
program via the use of the proposed approach. The second
deals with fault detection using two sample programs with
injected faults and producing mutants for detecting those
faults. The final experiment compares the number of
mutations produced with a standard mutation process to that
of a specifications-driven production so as to assess the
improvement in time performance. The experiments are
analyzed below:

A. Test-Data Quality Assessment

This experiment used as benchmark the well-known triangle
classification program listed below, which was tested against
certain test data presented in Table I.

int triang(int i, int j, int k) {

if ((L <=0) Il (3 <=0) Il (k<=10))
return 4;
int tri = 0;
if (i==73) tri+=1;
if (i==k) tri+=2;
if (3==k) tri+=3;
if (tri==0) {
if ((i+3==k) || (J+k<=i) || (i+k<=3))
tri=4;
else tri=1;}
else {
if (tri>3) tri=3;
else {

73

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

if ((tri==1) && (i+j>k)) tri=2;
else {
if ((tri==2) && (i+k>j)) tri=2;
else {
if ((tri==3) && (j+k>1)) tri = 2;

else tri =4; } } } }
return tri; } }

TABLE I. TEST DATA THAT COVER ALL POSSIBLE OUTPUTS OF THE
TRIANGLE CLASSIFICATION PROGRAM (TCP)
i j K Result
2 2 2 equilateral
0 1 2 not a triangle
3 3 1 isosceles
3 4 2 scalene

Using the values of Table I for the three variables it seems
at first that we have tested adequately the TCP. Nevertheless,
if we employ the mutation engine proposed we may conclude
that the aforementioned set of test data is of low quality as at
least one atomic change produces an error that is not
recognized by the set. Indeed, the engine produced several
mutations of which the one below passed the set as it
successfully yields an identical result as the original program:

(3 <0) Il

This simple code mutation suggests that indeed the
proposed engine is able to assess the quality of a set of data to
adequately test a given program.

B. Fault Detection

This set of experiments investigated the ability of the
mutation engine to reveal errors that were injected in the
initial source code of two programs, the first finds the
maximum number between four integers, while the second
implements division of two integer numbers and it is
controlled by specifications expressed with code contracts.

In the first example, three faults were inserted in the code
below, one relational, one parameter replacement and one
unary.

if ((1 <= 0) [(k <= 0))

public class FindMax {
public int getMax (int numl, int num2, int

num3, int numé) {
int max = 0;
if (numl > num?2) max = numl;
else max = num3;
//** should have been max = num2 **//
if (max < num3) {

max = num3;

if (max > numd4) max = num3; }
//** condition should have been (max < num4)
*x%//

else {

if (max < num4) max = numé; }

return -max; } }
//** should have been return max **//

The engine applied a series of mutators, of which
operators ROR, PR and AODy were actually the ones that

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

revealed the injected errors. More specifically, ROR replaced
relational operation >’ with ‘<’, >=’, ‘<=’ <> and ‘I=’
capturing the proper behavior. PR performed every possible
combination of parameter replacement among (num1, numz2,
num3 and numd4) resulting in the correct identification of
presenting the error because of the use of num2 instead of
num3. Finally, AODy, successfully located the error in the last
line after removing the minus sign.

The second example below employs CC with three pre-
conditions, one post-condition and one invariant, and involves
two errors inserted in class CompareParadigm that cannot be
traced by the static analyzer in VS2010.

class CompareParadigm {
int num,den;

public CompareParadigm(int
denominator) {
Contract.Requires (0 < denominator);
Contract.Requires (0 <= numerator);
Contract.Requires (numerator>denominator) ;
this.num += numerator;
//** should have been this.num = numerator **//
this.den = denominator; }

numerator, int

[ContractInvariantMethod]
private void ObjectInvariant () {
Contract.Invariant (this.den > 0);
Contract.Invariant (this.num >= 0); }

public int ToInt () {

Contract.Ensures (Contract.Result<int>()>=0);
return this.num * this.den; } o}
//** should have been this.num / this.den **//

The engine was once again capable of bringing these
errors to light using the arithmetic operation replacement
(AORga) and arithmetic operations deletion (AOD,)
mutators.

C. Normal vs Specifications-Based Mutations Production

As mentioned earlier, a sort of “intelligence” was
embedded in the engine that eliminates all mutants that violate
the pre-conditions, post-conditions or invariants set for a
program. Using class CompareParadigm listed earlier, we
will compare the number of mutations produced by the
mutation engine with the use of specifications to that of a
normal (typical) mutations generator (in this case the engine
with the CC disabled). Table Il lists the mutations produced
according the operator used. One may easily notice that a 58%
reduction to the mutants was achieved by the “intelligent”
engine, which resulted in 16 mutated programs compared to
38 produced without taking into consideration the specs. This
is indeed a remarkable saving of effort and time with just a
small part of code consisting of less than 20 statements.
Therefore, we can safely argue that in cases of large programs
the computational burden will be considerably eased,
preserving at the same time the effectiveness and efficiency of
the testing process.

74

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

TABLE Il MUTATED PROGRAMS CREATED BY THE ENGINE WITH
(SPECS-BASED) AND WITHOUT THE USE OF SPECIFICATIONS (NORMAL)

Operator Number of Mutations
Specs-based Normal

AORBA 5 8
AOIS 7 10
AOIU 0 6
LOI 2 6
PR 2 3
LVR 0 5
Total 16 38

V. CONCLUSION AND FUTURE WORK

Software testing is an important, though complex, area of
software development that aims at increasing the quality and
reliability of software systems. Automatic software testing
approaches are increasingly popular among researchers that
attempt to handle the aforementioned complexity and lead to
faster and cheaper software development with high quality
standards.

Mutation testing is a technique that produces different
versions of a program under study which differ slightly form
the original one and uses these versions either to identify
faults or assess the adequacy of a given set of test cases. In
this context, the present paper proposed a simple, yet efficient
mutation engine, which uses a humber of mutation operators
that can be applied at the method level and incorporating a
sort of intelligence to generate only valid mutants based on
the program’s specifications. The engine is developed in the
Visual Studio 2010 platform and utilized Code Contracts to
represent the specifications that must be satisfied with pre-
conditions, post-conditions and invariants.

The engine is supported by a dedicated software tool
consisting of two main parts. The first part verifies the
syntactical correctness of the source code and proper linking
with the appropriate libraries, and provides statistical analysis
of the source code, using grammatical analysis and producing
the Abstract Source Tree representation of the source code.
The second part uses the information gathered from the
previous part and generates mutations using specific operators
and obeying to the rules imposed by the encoded
specifications.

A series of experiments was conducted that showed that
the mutation engine constitutes a tool that may efficiently be
used for identifying faults in the code and for assisting to the
creation of the proper set of test data. The incorporation of the
specification-based concepts can significantly improve
performance by reducing the number of mutants processed,
thus saving time and effort.

Future work will involve extending the proposed engine
to include more class-level mutators, as well as investigating

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the potential of supporting other programming languages
under the .Net framework. Moreover, we plan to integrate our
tools with tools offered by the VS2010, like the PEX, which is
responsible for unit testing and UModel, which assists in
creating UML diagrams. This integration will enable the
formation of a complete testing environment with dynamic
user interaction, both at the flow of control level and at the
diagrammatical. Finally, our efforts will concentrate on
evaluating the engine on a more systematic basis using sample
programs of different size and complexity and assessing
various parameters like the time for creating and processing
mutations, the type of mutators used, the nature of the errors
induced, etc. This systematic investigation will also address
scalability issues and more specifically our future
experimental evaluation will include code from large-sized,
real-life software projects.

REFERENCES

[1] C. Kaner, J.H. Falk, , H.Q. Nguyen, Testing Computer
Software, John Wiley & Sons Inc., New York, NY, USA,
1999.

[2] Bertolino, “Software testing research: achievements,
challenges, dreams”, Proc. 29th International Conference
on Software Engineering (ICSE 2007): Future of Software
Engineering (FOSE’07), Minneapolis, MN, USA, 2007,
pp. 85-103.

[3] P. McMinn, “Search-based Software Test Data
Generation: A Survey”, Software Testing, Verification
and Reliability VVol. 14(2), 2004, pp.105-156.

[4] R.A. DeMillo, R.J. Lipton and F.G. Sayward, “Hints on
Test Data Selection: Help for the Practicing Programmer”,
IEEE Computer Vol. 11(4), 1978, pp. 34-41.

[5] R.G. Hamlet, “Testing Programs with the Aid of a
Compiler”, IEEE Transactions on Software Engineering,
Vol. 3(4), 1997, pp. 279-290.

[6] “Mutation Testing
http://www.dcs.kcl.ac.uk/pg/jiayue/
[accessed 10 May 2011]

[71 A.A. Sofokleous and A.S. Andreou, “Automatic,
Evolutionary Test Data Generation for Dynamic Software
Testing”, Journal of Systems and Software, Vol. 81(11),
2008, pp. 1883-1898.

[8] C.C. Michael, G. McGraw and M.A. Schatz, “Generating
software test data by evolution”, IEEE Transactions on
Software Engineering (12), 2001, pp. 1085-1110.

[9] “Visual Studio 2010”7,
http://www.microsoft.com/visualstudio/en-
us/products/2010-editions, [accessed 18 May 2011]

[10] “Code Contracts User Manual”, (2010), Microsoft
Corporation, http://research.microsoft.com/en-
us/projects/contracts/userdoc.pdf [accessed 20 May 2011]

[11] “SharpCode”,(2009),
http://www.icsharpcode.net/opensource/sd/, [accessed 17
May 2011]

Repository”,
repository/ ,

(2009)

75

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Component-based Software System Dependency Metrics

based on Component Information Flow Measurements
Majdi Abdellatief®®, Abu Bakar Md Sultan®, Abdul Azim Abd Ghani?, Marzanah A.Jabar®
®Department of Information System, Faculty of Computer Science & Information Technology,
University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
®Mehareeba Technical College, Technical Education Corporation, 2081 Khartoum, Sudan
Khwaja24@yahoo.com, {abakar, azim, marzanah}@fsktm.upm.edu.my

Abstract-The motivation of this paper is that the measurement
based on the flow of information connecting software
components can be used to evaluate component-based software
system dependency. The ability to measure system dependency
implies the capability to locate weakness in the system design
and to determine the level of software quality. In this paper,
dependency between components is considered as a major
factor affecting the structural design of Component-based
software System (CBSS). Two sets of metrics namely,
Component Information Flow Metrics and Component
Coupling Metrics are proposed based on the concept of
Component Information Flow from CBSS designer’s point of
view. We also discuss the motivation for and possible uses of
system level metrics and component level metrics. Initial
results from our on-going empirical evaluation indicate that
the proposed metrics are very intuitive.

Keywords-Component-based software system; Software metric;
Dependency; Information flow.

I. INTRODUCTION

In Component-based development (CBD) paradigm,
Component-based software system (CBSS) are developed
using a set of independent components which work together.
Some of these components may be developed in-house,
while others may be third-party components, without source
code [1]. Nowadays, this development methodology has
become one of the predominant software engineering
solutions for the design of a large and a complex system [2].

Analysis of CBSS dependencies is an important part of
software research for understandability [3], testability [4],
maintainability [5] and reusability [6][7] of a component-
based system. Thus, dependency metrics could have a real
impact on the quality of the system delivered to the user. If
valid dependency metrics could be identified, they could
provide the information required by developers, testers and
maintainers to understand the system, identify the critical
components, evaluate the impact of change in one
component on the other components and even to support the
future evolution of the CBSS when adding, removing and
modifying some components. It is difficult to perform such
tasks without understanding potential component
dependencies [8]. In addition, a large and complex CBSS
should be evaluated early at the specification phase, to avoid
faults, poor interaction among components and failure of one
component which could lead to a total system failure [9][10].

Previous research conducted in CBSS metrics
concentrated on one of two major areas. Many research
papers [11][12][13], focused on measuring the reusability of
software components, while others [2][10][14][15][16],

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

focus on measuring the interaction complexity of integrated
components. In the past, only a few papers based on graph
theory addressed the evaluation of CBSS dependency
[81[10][17][18][19]. However, there has been no theoretical
or empirical validation conducted for the proposed metrics.
In this paper, interface dependency is considered to be the
main dependency affecting CBSSs. Interface dependency
exists as relationships among different functionalities and
parameters of software components. For example, when one
interface relies on other to obtains functionalities necessary
for its own tasks. However, if the components produced by
component providers only include specifications of the
interfaces [19][20], the interface specification does not
supply adequate information for analysis of integrated CBSS
dependency. Thus, in CBSSs, due to the black box nature
and the separation of interface specification from its
implementation, the analysis of information flows will be
quite difficult using the traditional information flow
techniques. Therefore, we first proposed a new method
named Component Information Flow (CIF) to analyze the
information flows into a component, out of a component and
between components. We believe that the CIF is a more
suitable and practical basis for characterizing and evaluating
CBSS for several reasons. First, often the component’s
internal structure is not available. Second, the elements of
CIF could be directly determined at design phase. Third, the
availability of metric values early in the design phase allows
the CBSS structure to be corrected with the least cost.
Fourth, as seen in the subsections of this paper, it’s based on
standard Information flow [21], which is considered more
sensitive than other measurements.

Based on the concept of CIF, we also propose two sets of
metrics, namely, Component Information Flow Metrics and
Component Coupling Metrics that represent the CBSS
designer’s point of view (they are also relevant to testers and
maintainers). The proposed metrics depict details about the
quality of a structure design at three levels, entire CBSS
level, component level and interface level. For each level
they concern with the way in which components or interfaces
connect.

This paper is organized as follows: Section Il describes
research methodology. Section IlI illustrates component-
based information flow definitions and concepts. Section 1V
provides the definition of the metrics and their description.
Section V applies our proposed metrics in a small scale
example and discusses the results. The conclusion and
direction for future work are in Section VI.

76

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Il. RESEARCH METHODOLOGY
The metrics are derived in the following steps:
1. Conducting systematic mapping study on existing
CBSS metrics and metrics validation techniques.
2. Defining information flow for CBSS.
3.Defining a new dependency metrics for CBSS
specification.
4. Application of the proposed metrics in a small
scale example.

In step 1, a systematic mapping study of the values for
various metrics was carried out by the authors of this paper
and the limitations of the current research were drawn from
them in “unpublished” [22]. The third author suggested step
2. The planning, data collection and reporting of steps 2 and
3 were performed by the first author with respect to the
context defined in Section Il1. Each step and its content was
checked and reviewed by the rest of authors independently
and carefully. In case there is ambiguity point, a negotiation
took place. Particularly, step 2 was investigated many times
since it is considered as the core of this study. Step 4 was
conducted by all of the authors as stated in Section V.

I1l. COMPONENT INFORMATION FLOW CONCEPTS AND
CONTEXT

To provide a context for this Section and the next Section,
we need a background of software component and CBSS
specification method. Components definition adopted in this
study clearly fall under Szyperski’s definition [1]. The CBSS
structural specification method used is that of Cheesman and
Daniels [23]. Our measurement approach assumes that the
proposed approach is generally applicable to developments
using any of the technology standards such as Sun’s EJB,
Microsoft’s COM+ and CORBA Models.

A. Software Component Concept

We visualize software component concepts from the
perspective of component developers and CBSS designers.
Figure 1 provides a simplified model of a component such
that a specification defines the functionality and behaviour of
a component which is composed of an interface part and a
body part. The specification and interface are visible to
CBSS designers, whereas the specification, interface and
body are visible to component developers.

Body
Component |Defines Implements
Specification Component
— vigible_to
visible to -
. CBSDesigners

The interface definition includes a collection of one or more
operations to specify the functionality and behaviour
identified in the specification. The body of the system
implements the external methods and any other internal
methods that are required to provide the functionality and
behaviour identified in the specification. Metrics may be
derived from the specification, interface or body but only
metrics derived from the interface and specification can be
used by CBSS designers.

B. Definition of Component Information Flow

This subsection describes the mechanisms for deriving
the various types of component information flow based on
the above assumptions.

The separation of interface from implementation is a core
principle of component based development. That is, the
functionality specified in the interface could be implemented
in different applications by different programming
languages. Therefore, it is important to view interfaces and
their specifications separately from any specific component
that may implement or use such interfaces. To explain this
view, it suffices to consider the interface of a component to
define the component’s access point [24]. These access
points allow clients of a component, usually components
themselves, to access the functions provided by the
component. Normally, a component could have multiple
access points corresponding to different functions provided
in the interface [1].

In Figure 2, we depict this view from an interface
perspective. This model focuses on what the interface must
do to fulfill the client’s information required without
considering how this will be accomplished. With respect to
the proposed model in Fig 3, for any component in CBSSs,
two boundaries are considered: (1) Interface boundary which
separates the provider interface from a client interface. The
client might be a user, a required interface or an engineering
device. (2) The body boundary which separates the provider
interface from its implementation.

Component Information Flow (CIF) is characterized by
two types of flows, Inter-component flow and Intra-
component flow. In the Inter-component flow, the provider
interface communicates with client to exchange information
by In-flows and Out flows. Thus, the information flows
across the interface boundary. The In-flow carries
information from a client to a provider interface through the

Inter-component flow

Intra-component flow
-~

T —
Clients Implerhentations
A user Provider interface
A required specification

interface B |in-Flow > PWrite Flow
Engineering ¢ dut Elow 4——— «— Read Flow

device

Software Component

Interface boundary Body boundary

Figure 1. Simplified component model

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 2. Generic model of component information flow

7

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

list of in-parameters. The Out flow carries information from
a provider interface to a client through the list of out-
parameters. In the Intra-component flow, it is assumed that
the data structure is used (i.e., a component body) to store
and retrieve the information needed by the provider
interface, represented by Read flow and Write flow. Thus,
the information flows across the body boundary. In other
words, an intra-component flow takes place when an
interface retrieves data from or updates a data structure.

An important characteristic of the CIF described above is
that the knowledge essential to build the complete flow
structure can be established from a simple analysis of a UML
requirements specification. The UML modeling technique
describes the component specification, the component
interaction diagram and the interface specification to design
the intended CBSS. Component specifications name the
interfaces that a component adhering to the specification
must implement. An interface specification consists of a set
of operation specifications. An interface specification has to
specify how the inputs, outputs, and component object state
are related, and what the effect of calling the operation has
on that relationship [23]. An operation specifies an
individual action that an interface will perform for the client.
Each action shows one or more types of information flow
(i.e., In-flow, Out flow, Read flow or Write flow), where
each type of information flow shows one possible execution
flow. Thus, for each interface we can identify all potential
flows from the interface specification. To facilitate the
mapping of CIF to a complete flows structure, we describe a
template for CIF analysis and data collection as shown in
Table 1.

To understand the relationship between components and
make the concept of CIF clear, consider an example
presented in Figure 3, which shows three components, A, B,
C and their relationship to each other. This example is purely
from the specification perspective. It is assumed that some
functionality required by component “A” is implemented by
“B” and “C. We depict the information flow among
components as a result of methods calling and events firing
as Inter-component flow, and the information flow inside the
components to update or retrieve from component store as
Intra-component flow. The information flow from
component “A” to “B” or “A” to “C” can be represented by a
set of direct inter-flows plus a set of intra-flows, whereas the
information flow from “B” to “C” can be represented by a
set of indirect inter-flows plus a set of intra-flows.

0O----% Direct Inter-flow
Indirect Inter-flow

O-----% Intra-flwo

Figure 3. An example of component information flow

The following definitions describe precisely the terms
and the four types of information flow presented informally
above. These four types of flow identify the logical flow of
information between components. The reader should refer to
Figure 3 to understand definitions 1, 2 and 4, and Figure 3 to
understand definition 4, 5, 6 and 7.

Definition 1: Information flow is the set of messages
streaming across the boundaries which define a particular
communication between two components based on the
logical representation of the interface specification.

Definition 2: There is an Intra-component flow of
information from component “B” to component “A” if a
component “B” implements some functionality of
component “A”.

Definition 3: There is an Inter-component flow of
information from component “A” to component “B” if one
or more of the following conditions hold:

1) If a component “A” invokes a component “B” and
passes information to it; or component “B” returns a result to
a component “A” (termed direct inter-component flow).

2) If a component “A” invokes both a component “B”
and a component “C” passing output values from “B” to “C”
(termed indirect inter-component flow).

Definition 4: In-flow is an inter-component flow type and
carries information provided or passed from a client entity to
a provider interface.

Definition 5: Out flow is an inter-component flow type
and carries information returned from a provider interface to
a client entity.

TABLE 1. TEMPLATE FOR COMPONENT INFORMATION FLOW ANALYSIS AND DATA COLLECTION

. . L Information | Source of Destination of

Interfaces operations Operation Description . .

Flow Types | Information Flow Information Flow
Each Each interface | Each operation could be In-flow Client interface Provider Interface
component can | can consists described as a set of messages Out flow Provider interfaces Client interface
consists of one | of one or with respect to the definitions Read flow Provider Interface Component store
or more more information flow (i, e.,
interfaces operations definitions 1, 4, 5, 6, and 7) Write Flow Provider interface Component store

Copyright (c) IARIA, 2011.

ISBN: 978-1-61208-165-6

78

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Definition 6: Read flow is an intra-component flow type
and carries information retrieved from a component store to
a provider interface.

Definition 7: Write flow is an intra-component flow type
and carries information from a provider interface to update
component store.

C. CIF supports:

o a variety of software architectures from simple stand-alone
application to large distributed software based on OSI 7
layers or J2EE n-tiers. Therefore, almost any kind of
CBSS structure can be analyzed and evaluated.

o all stages of the software life cycle. Analysis can be
carried out as early in the requirement specifications or as
late in the life cycle as necessary.

o a defined measurement unit. An elementary unit of CIF
defined by us is a base flow type (i.e., in-flow, out flow,
read flow and write flow)

IV. DEFINITION OF DEPENDENCY METRICS
We use measurement based on the flow of information to
evaluate and mange dependencies between components in
the CBSS. Particularly, we use the following metrics to
characterize the effect of dependency on the structure design
of CBSS.

A. Component Coupling Metrics

In our literature survey, we found inconsistencies in the
definition of coupling in the literature [6][7][25][26][27][28].
There were several different definitions of coupling,
depending on the measurement goal and entity being
measured (i.e., inheritance coupling, messages passing
coupling or data abstraction coupling) [29]. Thus, the
coupling attribute has been defined, measured and
interpreted in various ways. Xia [27] studied this ambiguity
of coupling concept and redefined it based on its essence.
We adopted his definition here. “Component coupling of m is
the impact-dependence of components to m”. The impact-
dependence of X2 to X1 means that when X1 is modified,
there will be an impact on X2. For example, when changing
component X1 in Figure 4, we only need to consider how
component X2 will be affected. Component X2 returns F1
and F2 to component X1. F1 and F2 are out-flows of
component X2 and in-flows of component X1 which will
influence component X1 when component X2 is changed.
But when X1 is modified, F1 and F2 have no impact on X2.
Therefore, the right definition should consider only the out
flow of X1 for its coupling. Another important source which
could influence the change in X1 is the number of distinct
components receiving the out flows [30]. For example, an
impact on a component that depends on one component is
not the equivalent to a component that depends on three
components, even if both components receive the same
number of out flows.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. The impact of component modification

Assumption 1: The more the spread of inter-flow from a
component, the larger the context of its interface operations
and the more the external information required to test and
maintain the components.

Accordingly, we defined coupling metrics as

P
Interface Coupling (IC) = n x _zloE
1=

where

p = number of operations in an interface

ori = number of out flows in each operation (i)

n = the number of other component to which an interface
is coupled

P
Component Coupling (CC) = _leci

where

IC; = interface coupling

p = the number of interfaces in a component.

CBSS coupling = _ilCCi
1=

where
CC; = component coupling
n = the number of components in the system.

This definition consistent with the study by Kitchenham
and Likman [31], which indicated that all the information
flow metrics studied, except for informational fan-in, appear
to act as indicators of future problems.

B. Component Information Flow Metrics

We adopted the definition of information flow proposed
by Ince and Shepperd [32] which is considered to be a more
sophisticated metric than the original information flow
proposed by Henry and Kafura [21]. The aim of this metric
is to predict a critical components. A critical component is
one that is more likely to contain errors during testing, faults
during operation and is more likely to be costly after faults
are found [33]. If a critical component is identified early,
then a CBSS designer can take appropriate action to reduce
the potential problem, such as redesigning critical
components or allocating additional test resources.

Fan-in and fan-out are defined with respect to individual
interface as follows:

Definition 8: Fan-in of an interface “I” is the sum of
inter-flows into an interface “I” plus the number of intra-
flows which an interface “I” retrieves.

79

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Definition 9: Fan-out of an interface “I” is the sum of
inter-flows from an interface “I” plus the number of intra-
flows which an interface “I”” updates.

Interface Information Flow (11F) = (Fan-in *Fan-out)?

The following is a step by step guide to derive the
information flow metrics values for a CBSS:

1. For each interface in a component, calculate the
Interface Information Flow (I1F) value of that interface
using the formula below:

Interface Information Flow (IIF) = (Fan-in *Fan-out)?

2. For each component in a CBSS, sum the Interface
Information Flow (11F) values for all interfaces in that
component. We will term this the Component
Information Flow (CIF).

P
Component Information Flow (CIF) = _Zl(IIFi)
1=

where
p = the number of interfaces in a component

3.Sum the Component Information flow (CIF) values for
all components in a CBSS. We will term this the
(CBSIF).

n
CBSS Information Flow (CBSIF) = _Zl(CIFi)
1=

where
n = the number of components in a CBSS

Kitchenham [31], Shepperd [34] and Lanza [35] have
shown that the multidimensional metrics are a more effective
approach in understanding, assessing and identifying
problem components than any method based on a single
metric. Therefore, we grouped the set of metrics to
characterize and evaluate different levels of design as
follows:

1. Dependency Structures of Interface (DSI)

To characterize and evaluate the dependency behavior of
the interfaces we can rank the interfaces according to the
Interface Coupling metrics (IC) and Interface Information
Flow metrics (I1F) in a scatter plot

2. Dependency Structures of Component (DSC)

To characterize and evaluate the dependency behavior of
the components we can rank components according to the
Component Coupling metric (CC) and the Component
Interface Information Flow metric (CIF) in a scatter plot.

3. Dependency Structures of CBSS (DS-CBSS)

To characterize and evaluate the dependency behavior of
the CBSSs we can rank the CBSSs according to the CBSIF
and CBSS coupling in a scatter plot.

DSI and DSC represent component level metrics while
DS-CBSS represents CBSS level metrics. For CBSS level
metrics, CBSS designers should compare different
compositions of the same system with respect to testing and

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

maintenance. For component level metrics, CBSS designers
should compare different component of the same system
with respect to reusability of component.

V. INCORPORATING THE METRICS INTO WEB-BASED
CBSS APPLICATION

To study the usefulness of our metrics, we applied them
to assess the structure design of Hotel Management System
(HMS) which is used in [23] as well as in [36]. Other
researchers such as Mahmood and Lai [14] use a similar
approach. The choice of HMS was even better since it
developed according to [23], which is a good example of
Szyperski’s CBSS specification methodology. Figure 5
shows HMS architecture used in the study. The HMS is a
web based application that allows a user to search, reserve a
hotel room and checks the availability of rooms and prices or
cancels his reservation at any time. (Full details of the
application can be found at [37]).
In the context of HMS the goals of the application were:

e To explain and demonstrate the capabilities of our
proposed metrics and to help software engineering
community gain a deep understanding of their
definition and application context.

e To investigate whether the metrics results yielded
intuitive information to characterize and evaluate the
CBSS dependency.

A. Data Collection

Data collection was done by manual inspection of the
HMS specification (i.e., components specification, interfaces
specification and interaction diagrams). The CIF analysis
was performed for each component in the HMS using
template defines in Table 1. The following quantitative data
was collected:
The number of inter-component flows.
The number of intra-component flows.
The number of components.
The number of interfaces in each component.
The number of operations in each interface.
This information was tabulated and analyzed using Excel
program. We discarded billing component from the study
because we did not find enough information about it is
specification. The Data were primarily collected by the first
author and checked by the second and third authors
independently to help avoiding bias and error. In the event of
a disagreement, a negotiation took place. The results were
reviewed and discussed in a formal meeting by the authors of
this paper.

I Make
Reservation Reservatio,
System
Component ES | Take up
| | Reservation

Hotel

|
|
|
Management ! Hotel Mgt__ 1
Component !
|
Customer I Customer Mgt|

Management
Component

Billing System
Component

Figure 5. HMS architecture

80

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

B. Data analysis

Given the goal of producing components which have a
better dependency and with respect to the concept of
coupling and information flow complexity, we should
interpret the coupling metric and the information flow metric
in isolation to verify their functionality, since they reflect the
behavior of components based on different concepts, goals
and definitions. This claim should, as we understand it, not
be interpreted outside the context of metrics hypothesis.
Obviously, the coupling metrics reflect the behavior of
components in terms of a one directional relationship (i.e.,
the number of inter-flows out of the component), which in
turn assesses the component’s impact on the overall system.
Whereas, the information flow complexity metrics reflects
the behavior of components in terms of bi-directional
relationship (i.e., fan-in and fan-out), which assesses the
amount of information flowing to and from other
components of the system.

The component dependency might be characterized as
better, if the component has relatively low values of both
coupling metric and information flow metric, which in turn
indicates lower CBSS maintenance time and cost.

C. Result and discussion

When changing the reservation system component, we
need to consider how both the hotel management component
and customer management component will be affected.
Whereas, when modifying either the hotel management
component or customer management component, we only
need to consider how the reservation system component will
be influenced. According to the component coupling metric
results shown in Figure 6, the coupling of reservation system
component is quite high compared with hotel management
and customer management components. This means that the
reservation system component depends strongly on the
customer management component and hotel management
components. Usually, high Coupling refers to a more elusive
problem [38][39]. Any changes made to a highly coupled
component would probably require changes to many other
components in the design. Consequently, in the future,
understandability, maintainability and reusability of the
reservation system component is likely to be quite difficult.
The customer management component has the lowest
coupling degree which means it’s the easiest to modify and
reuse.

cc 45
40 3 P
Reservation Sys
35
30
25
20
15
.| 2916, 1
10 56,2 Customer @ otel Mt
5 gt
*
0
(0] 500 1000 1500 2000 2500 3000 3500 4000
CIF

Figure 6. Dependency Structures of Components

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

In addition, it is interesting to note that the CIF metric
values are consistent with the component coupling metric
values. Empirical studies in the literature confirm that a high
value of information flow measure can reveal three potential
problem areas: component which possibly lack functionality,
component with stress point (which means a change to it
could affect other component in its environment) and/or an
inadequate refinement [21].

As shown in Figure 7, in the case of IC metric, the “I
make reservation” (IMR) and “I take reservation” (ITR)
interfaces indicate highly coupled interfaces. Therefore, it is
recommended to investigate IMR and ITR interfaces in
terms of the number of other component to which each
interface is coupled. The underlying theory of this metrics is
that an interface should have a low coupling with other
interfaces in a system. The high values of IC metric might
mean that the responsibilities of their operations are not
clearly defined, which in turn means that the
understandability and testability of those interfaces in
isolation is very hard, significantly lowering design quality.
In contrast, the “l Hotel” and “I Customer” interfaces show
lower coupling degree which means they can be easily tested
and maintained.

The IIF metric shows interesting results when looking at
the total level of information flow. The results show that “I
Hotel” interface and IMR interface have relatively high
values. The high value of “I Hotel” interface is due to large
number of operations exposed by the “I Hotel” interface.
This implies that the “I Hotel interface” and IMR interface
should be redesigned or investigated by an expert.

25

2401,21

20 1296, 18 MR

ITR

15

2916,10
I Hotel

[

10

256,2
I Customer

o 500 1000 1500 2000 2500 3000 3500

1F

Figure 7. Dependency Structures of Interfaces
VI. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

In this paper, first, we proposed a method named CIF for
analyzing information flow in CBSSs. We believe that the
CIF is very useful, much easier to collect earlier in the
lifecycle, and is a practical basis for evaluating CBSS.

Second, we proposed two sets of metrics which
characterize and evaluates the dependency between
components, so that CBSS designers can identify critical
components in terms of error-proneness and evaluate the
impact of the change on the whole CBSS in terms of the
difficulty of making a corrective change, which in turn
allows designers to target components that need to be revised
to improve the quality of the design.

81

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Overall, we believe that our propose metrics can become a
very useful tool in help monitoring, managing and
controlling test cost estimation, quality estimation and
complexity analysis. The component level metrics can be
used to identify complex components and/or critical
components. Complex and/or critical components assembly
would potentially take longer time to develop and test than a
simple one. Therefore, developers, tester and maintainers
with better experience and more money should be used to
integrate and test critical components. For a software tester,
complex components require substantial testing effort [2].
The metrics could be used as the basis of a coverage measure
of testing for each component (i.e. testers should as a
minimum cover all input and output flows). There are also
coverage measures that can be based on combinatorial
testing of the inputs. Components produced by component
providers only include specifications of the interfaces. This
imposes difficulties on sufficient testing of an integrated
CBSS [40]. For testing such components, we need
techniques that do not require the source code and instead
relay mainly on the specification of system [20][41]. We
believe that the CIF analysis is very useful for this purpose.
The system level metrics might be suitable for effort
estimation. In particular, the CBSS metrics should be related
to testing costs (since testing requires activating the
information flows to confirm the functional and non-function
requirements have been met). They might be used to
estimate minimal set of test cases that must be run when one
component is modified.

This paper represents only the beginning of the research
that should be undertaken to explore this approach. So we
invite researchers to comment on whether the new approach
we proposed captures the real essence of component
information flow or if there are areas that are left out.

ACKNOWLEDGMENT

We would like to thank Barbara Kitchenham for her ideas,
comments, suggestions and support as we prepare this paper.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object Oriented
Programming,Second Editioned, Addison Wesley, New York, 2002,

[2] L. Narasimhan and B. Hendradjaya, “Some theoretical considerations
for a suite of metrics for the integration of software components,”
Information Sciences, vol.177, 2007, pp. 844-64.

[3] A. De Lucia, A.R. Fasolino and M. Munro, "Understanding function
behaviors through program slicing," wpc, 1996, pp. 9.

[4] S. Bates and S. Horwitz, " Incremental program testing using program
dependence graphs,” Proc. Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM,
1993, pp.384-396

[5] K.B. Gallagher and J.R. Lyle, "Using program slicing in software
maintenance," Software Engineering, IEEE Transactions on, vol.17, 1991,
pp. 751-61.

[6] G. Gui and P.D. Scott, "Measuring Software Component Reusability by

Coupling and Cohesion Metrics," Journal of Computers, vol.4, 2009, pp.
797-805.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[7] G. Gui and P. Scott, "Ranking reusability of software components using
coupling metrics," Journal of Systems and Softwar, Journal of Systems and
Software, vol.80, 2007, pp. 1450-9.

[8] B. Li, " Managing dependencies in component-based systems based on
matrix model," Proc. Proceedings Of Net. Object. Days, Citeseer, 2003,
pp.22-25

[9] J. Gorman, "OO Design Principles & Metrics," Online verfligbar unter
http://www.parlezuml.com/metrics/fO0% 20Design% 20Principles%
20&% 20Metrics.pdf, zuletzt geprift am, vol.15, 2006, pp. 2009.

[10] N.S. Gill and Balkishan, "Dependency and interaction oriented
complexity metrics of component-based systems," SIGSOFT Softw. Eng.
Notes, vol.33, 2008, pp. 1-5,,
http://doi.acm.org/10.1145/1350802.1350810.

[11] M.AS. Boxall and S. Araban, " Interface Metrics for Reusability
Analysis of Components,” Proc. Proceedings of the 2004 Australian
Software Engineering Conference, IEEE Computer Society, 2004, pp.40

[12] H. Washizaki, H. Yamamoto and Y. Fukazawa, " A Metrics Suite for
Measuring Reusability of Software Components,” Proc. Proceedings of the
9th International Symposium on Software Metrics, IEEE Computer
Society, 2003, pp.211

[13] O.P. Rotaru and M. Dobre, " Reusability metrics for software
components,” Proc. Proceedings of the ACS/IEEE 2005 International
Conference on Computer Systems and Applications, IEEE Computer
Society, 2005, pp.24-I

[14] S. Mahmood and R. Lai, "A complexity measure for UML
component-based system specification,” Software: Practice and
Experience, vol.38, 2008, pp. 117-34.

[15] N. Salman, "Complexity Metrics AS Predictors of Maintainability and
Integrability of Software components,” Journal of Arts and Sciences, 2006,

[16] L. Kharb and R. Singh, "Complexity metrics for component-oriented
software systems," SIGSOFT Softw. Eng. Notes, vol.33, 2008, pp. 1-3.,
http://doi.acm.org/10.1145/1350802.1350811.

[17] A. Sharma, P.S. Grover and R. Kumar, "Dependency analysis for
component-based software systems," SIGSOFT Softw. Eng. Notes, vol.34,
2009, pp. 1-6., http://doi.acm.org/10.1145/1543405.1543424.

[18] S.M. Alhazbi, " Measuring the complexity of component-based system
architecture," Proc. Information and Communication Technologies: From
Theory to Applications, 2004. Proceedings. 2004 International Conference
on, 2004, pp.593-594

[19] M.E.R.V.M.S. Dias and D.J. Richardson, " Describing Dependencies
in Component Access Points," Proc. Proceedings of the 4th Workshop on
Component Based Software Engineering, 23rd International Conference on
Software Engineering, 2001,

[20] S.D. Cesare, M. Lycett and R.D. Macredie, Development of
Component-based Information System, Prentice Hall of India, New Delhi,
2006,

[21] S. Henry and D. Kafura, "Software Structure Metrics Based on
Information Flow," IEEE Trans. Softw. Eng., vol.7, 1981, pp. 510-8.,
http://dx.doi.org/10.1109/TSE.1981.231113.

[22] M. Abdellatief, A.b.M. Sultan, A.A. Abdul Ghani and M. Jabar, "A
mapping Study to Investigate Component-based System Metrics,"

[23] J. Cheesman and J. Daniels, UML Components: A Simple process for
Specifying Compoent Based Software, Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2001,

[24] I. Crnkovic, B. Hnich, T. Jonsson and Z. Kiziltan, "Specification,

implementation, and deployment of components,” Commun ACM, vol.45,
2002, pp. 35-40.

[25] M.M. Pickard and B.D. Carter, "A field study of the relationship of
information flow and maintainability of COBOL programs,” Information
and Software Technology, vol.37, 1995, pp. 195-202.

[26] E.B. Allen, T.M. Khoshgoftaar and Y. Chen, " Measuring coupling
and cohesion of software modules: an information-theory approach," Proc.
metrics, Published by the IEEE Computer Society, 2001, pp.124

[27] F. Xia, "On the concept of coupling, its modeling and measurement,"
Journal of Systems and Software, vol. 50 pp. 75-84. 2000.

82

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

[28] W. Khlif, N. Zaaboub and H. Ben-Abdallah, "Coupling metrics for
business process modeling," WSEAS Transactions on Computers, vol.9,
2010, pp. 31-41.

[29] L. Sallie, "Object-oriented metrics that predict maintainability,”
J.Syst.Software, vol.23, 1993, pp. 111-22.

[30] L.C. Briand, S. Morasca and V.R. Basili, " Measuring and assessing
maintainability at the end of high level design,” Proc. Software
Maintenance, 1993. CSM-93, Proceedings., Conference on, IEEE, 1993,
pp.88-87

[31] B.A. Kitchenham and S.J. Linkman, "Design metrics in practice,"”
Information and Software Technology, vol.32, 1990, pp. 304-10.

[32] D. Ince C. and M. Shepperd J., " An empirical and theoretical analysis
of infromation flow-based system design metrics," Proc. 2nd European
Software Engineering Conf, Springer Verlag, 1989,

[33] K. ElI-Emam, "A methodology for validating software product
metrics,” 2010,

[34] M. Shepperd, "Measurement of structure and size of software
designs," Information and Software Technology, vol.34, 1992, pp. 756-62.

[35] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practics:
Using softqware Metrics to Characterize, Evaluate, and improve the Design
of Object-Oriented Systems, Springer, Berlin Heidelberg - Germany, 2006,
[36] M. Heisel and J. SouquiAres, "Adding Features to Component-Based
Systems," Objects, Agents, and Features, vol. 2975 pp. 25-36. 2004.

[37] "http:www.umlcomponents.com," August/8/ 2011.
[38] L. Briand, S. Morasca and V.R. Basili, "Defining and validating high-
level design metrics," pp. 31. 1994.

[39] S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol.20, 1994, pp. 476-93.,
http://dx.doi.org/10.1109/32.295895.

[40] Y. Wu, M.H. Chen and J. Offutt, "UML-based integration testing for
component-based software," COTS-Based Software Systems, 2003, pp.
251-60.

[41] E.J. Weyuker, "Testing component-based software: A cautionary tale,"
Software, IEEE, vol.15, 1998, pp. 54-9.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

83

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Module Interactions for Model-Driven Engineering
of Complex Behaviour of Autonomous Robots

Vladimir Estivill-Castro
School of ICT / IIIS
Griffith University, Nathan Campus
Brisbane, Australia
Email: v.estivill-castro@griffith.edu.au

Abstract—In this paper, we describe a model-driven engineer-
ing approach that enables the complete description, validation,
verification and deployment of behaviour to autonomous robots,
directly, and automatically from the models. This realises the
promises and benefits of model-driven engineering, such as
platform-independent development and behaviour traceability.
However, such a top-down approach of modelling by finite-state
machines and sub-machines creates a conceptual challenge to the
behaviour designer due to the complex interaction of independent
modules. Simply finding which modules are necessary for other
modules can be a challenge. We also describe here our solution to
this. Interestingly, our approach goes in the opposite direction of
Object Oriented Software Engineering as currently represented
by the Unified Modeling Language and corresponding software
processes. That is, typically, the static models are derived first
(and in particular class diagrams), while dynamic modelling
follows later with behaviour diagrams and interactions diagrams.
We actually start with the description of behaviour in finite state
machines and we complement this by static information pro-
vided by logics that describe concepts and by our dependencies
diagrams that show static dependencies between modules.

Index Terms—Automation of Software Design and Implemen-
tation. Software Modeling. Model-Driven Engineering. Visual
Modeling.

I. INTRODUCTION

Model-driven engineering raises the level of abstraction in
software engineering so that engineers no longer have to be
concerned with programming language details or the specifics
of execution platforms. We show here an approach where ex-
ecutable software is generated automatically from models. We
show that we can easily adapt to new platforms and behaviour
requirements and illustrate this with the development of the
complex software that constitutes the RoboCup challenge. The
Mi-Pal team, qualified for RoboCup-2011, uses this approach
to compose the programs that constitute the behaviour and
execute on the humanoid autonomous robot platform.

We aim at systems at higher levels of abstraction. Our first
toolset for a higher level of abstraction are logics, and in
particular logics that emulate common reasoning. We argue
for logics that describe a context by iterative refinement and
are natural and analogous to how humans describe a context,
starting from the most general case, then proving extensions or
refinements. Similarly, our second tool is behaviour captured
by a hierarchy of finite state machines (FSMs). This enables

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

René Hexel
School of ICT / IIIS
Griffith University, Nathan Campus
Brisbane, Australia
Email: r.hexel @griffith.edu.au

iterative refinement, describing the most general behaviour,
which is then refined by a finite state sub-machine (sub-FSM).

For this reason, we use models at different levels of ab-
straction. From a high-level, platform independent model, it is
possible to generate a working program without manual inter-
vention. We describe this approach but we focus here on the
technologies and infrastructure to facilitate design, verification
and validation of inter-module communication. Other research
publications expand on the details and technologies that have
enabled this approach. In particular, we have discussed [1][2]
the advantages of using non-monotonic reasoning to express
in logic what otherwise becomes laborious and error-prone
in an imperative programming language. For example, sanity
checks on the landmarks reported by a vision system signif-
icantly benefit from their abstraction into logic rules. In fact,
logic and iterative refinement are common in expressing and
describing a concept. The off-side rule in soccer is an example
that starts with “Usually a player is not off-side” (a default
situation); then progressively some exceptions are presented.
For example, “Unless two opponent players are between [a
player] and the opponents’ goal line”, but then exceptions of
the exception continue, forming the definition [3].

Modelling by FSMs, where the labels for transitions can
be statements in a logic that demand proof, has been con-
trasted with plain FSMs, Petri nets, and Behavior trees (rel-
evant behaviour modelling techniques in software engineer-
ing) using the very prominent example of modelling the
behaviour of a microwave oven [4]. Our approach produces
smaller models, clarifies requirements and we can generate
implementations for diverse platforms and programming lan-
guages, e.g., the same models can generate code in Java
for a Lego Mindstorm (www.youtube.com/watch?v=
1iEkKCHgSfMco) as well as C++ for a Nao (www . youtube.
com/watch?v=Dm3SP3q9_VE). The modelling of a mi-
crowave is a classical example in the literature of software
engineering [5][4] as well as model-checking [6, Page 39]
as the safety feature of disabling radiation when the door is
open is an analogous requirement to the famous case of faulty
software on the Therac-25 radiation machine that caused harm
to patients [7, Page 2].

We have illustrated [8] the power of non-monotonic logic
to describe and complement the descriptions of Behavior

84

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

»
seguioisdnien Q3HSINIS
}OBGUS|[B410GOI panieosypaysiuly

3naL DBSSAIAUCINAISAUNLIOUS
POSSeIJUONNGISAUOLIOS
Q3zIyNad
ONIAYTd pengosybuikeld ﬂ
andL P ad
PJEMIO4UB|[B410C0)
[eoDINOAPesy
|e0DINOApeEEY
3ndL

[eonisy | Apesy

/ leoBIBULAPERY

paneosypeal

)
UoijWoLdMIeD

panosypeal

panipoaybuikeld PosSIJUONNGISBUOLOYS

A
oegwoidnien

>oegua|[e10001

ENCTY 138 panposyApes)

oegUaI[E41000!
3nuL oBgUB 10
uoneing N
pleMIOLUS|[e410q0! seguoidnien
-~ HoHoIIPeYsAEsdan
3nyL
premiogusliedioqoy HOYODIeNIgsAEsdaN

3nyL

3ndL

1
uoijuoldnIen 3ndL

HOXO
1MPOHOL PaoIO

HOXHO
15en|goLpeoiod

1
3NyL uol4woiqdnien

3NdL

pansosyENul

passalddwnglooLiuBu

3ndL

poessaigduwngioo-ye|

uTis)

3ndL

The module guGameController. fsm that is interpreted on board the Nao’s for participation in the SPL for RoboCup2011.

Fig. 1.

85

978-1-61208-165-6

ISBN

Copyright (c) IARIA, 2011.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

trees and of fine state machines for requirements engineering.
Further illustrations [9] show the benefits of this idea in the
context of embedded systems and robots. The software engi-
neering architecture and the software design patterns that sup-
port our model-driven engineering are based on a whiteboard
architecture [10][11]. This offers a cognitive architecture [12]
or a working memory as well as a publisher-subscriber pat-
tern for module communication, analogous to what others
have called a repository architecture [5], or Data-Distribution
Service [13]. Our whiteboard architecture is complementary
to Aldebaran’s inter-module communication and messaging
architecture in the Red-Documentation.

Our interest for high-level modelling is that RoboCup, and
in particular the Standard Platform League is an important
benchmark for the deployment of legged robots in human en-
vironments (with RoboCup@Home also promoting this in the
home or office). Therefore, there is a clear overlap with con-
cerns in the field of software engineering, such as reliability,
safety, human-computer interaction, requirements engineering,
platform independence, composability, distribution, simplicity,
and most importantly, model-driven engineering.

However, a challenging aspect of our approach is to model
the interactions between modules, and to have a tool that
enables the display of modules dependencies as behaviour
designers integrate the behaviours of a complex system.
Because we had shown an equivalence between FSMs and
Behavior trees [8], we could translate our models to tools like
BECCIE [14] that capture some of the module interactions,
and this was sufficient for the already mentioned example of
the micro-wave oven [9]. However, BECCIE’s limitations do
not enable this to scale further. Here we illustrate the new
tools we have developed to achieve this.

The rest of this paper is structured as follows: Section II
exemplifies the approach used. Section III shows how module
interactions are modelled and what the consequences are for
complex behaviour and iterative refinement. The paper is
concluded with a discussion in Section V.

II. MODEL-DRIVEN ENGINEERING

We present a case study in the context of the SPL for
RoboCup-2011 to illustrate our model-driven engineering ap-
proach, considering the FSM that playing robots are supposed
to conform to. The model for this appears on page 7 of the
SPL rules, and essentially indicates that the league’s game
controller would emit UDP packets (or a manual push of
the chest button) for the playing robots to update their state.
As in any requirements engineering scenario, the rules are
under-specified and ambiguous — more seriously the actual
SPL game controller (server) does not follow nor enforce the
specified transitions. For example, Figure 2a and Figure 2b
show the current activities for the state INITIAL and for the
state READY (both corresponding to a state of the behaviour
required by the competition). An OnEntry activity is to post
(to the whiteboard) the message type NaoMotionPlayer
(whose listener is gunaomotion with the message content
play get_up_anywhere, which is a pre-loaded motion

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

that stands up the Nao). Also in this state and also OnEntry,
we post message type LEDS whose listener is gunaoleds
to turn the ChestBoard off.

However, we do model our guGameController FSM
for the behaviour executed by our robots for participation in
RoboCup 2011. Figure 1 is produced with Qfsm (gqfsm.sf.
net), a graphical tool for designing FSMs. This produces
XML files that our own tool, gfsm2gu, translates into to
ASCII files. These files contain the transition table of the FSM
and activities for each state of the automaton. Our FSMs are
interpreted by our gubehaviourinterpreter module
that, e.g., for guGameController. fsmreads the transition
table from the file TguGameController.txt (transition
files always start with the letter T), and the activities from
AguGameController.txt (activity files start with R).

A. The semantics of our finite state machines

There are some important aspects of the interpreter of FSMs
that represent behaviour. First, the transitions out of a state are
not evaluated simultaneously, but they are evaluated in reverse
order of their appearance in the transition file. Importantly, this
liberates the behaviour designer of the concern of ensuring that
only one transition can fire at any one time. In a sense, this
provides a priority relation between the transitions and can be
specified explicitly with Qfsm in the output field of a transition.

Second, the label of a transition is a query to an ex-
pert to make a proclamation about the truth value of that
label. The interpreter will halt, waiting for a response on
the whiteboard for this particular message type that indi-
cates this proposition requires proof, typically by a logic
inference engine — gucdlmodule that implements Propo-
sitional Clausal Defeasible Logic [15] (but, we have an im-
plementation for standard prolog as well using gnuprolog).
However, many times, the question is directly related to a
sensor. That is, the best expert to ascertain the truth value
of the transition label is a wrapper for a sensor (providing
information about anything external to the system). For ex-
ample, in the guGameController. fsm of Figure 1, a
label UDPSaysRedKickOff is a query, but is answered by
guUDPreceiver, which is the actual module connecting to
the league’s UDP server that can assert if the league’s game
controller is now broadcasting that the red team is to kick-off.
There is a special label TRUE that always fires and causes a
state transition.

It is important to highlight that the behaviour interpreter, the
logic engine, and many of our modules are developed to con-
form to the POSIX standard (and therefore not only execute
on the Nao but also, e.g., Linux, and MacOS). This enables
module simulation, developing and testing independently of
the platform. In particular, one can impersonate an expert by
using our testcdl module and a FSM is oblivious to this.

We can use the example of guGameController. fsm
to stress which of our modules provide the interface be-
tween the whiteboard and the Nao platform. In addi-
tion to guUDPreceiver, the following modules must
run: gunaobuttonsensor for button-press events and

86

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

%= State Properties

Name: INITIAL
Code: 7
Moore Outputs:

Radius: 40
Line width: 1

£ -~ 1. 3
| Colour)

Description:

OnEntry NaoMotionPlayer:play
get_up_anywhere; LEDS: ChestBoard Off;
ChestSensor On; Bumpers: On; C4++:
sayTeam|_AmPlayingAndShallWeKickOff; /

~

OK) (Cancel

(a) The activities of INITIAL.

Fig. 2. Display of activities in two states

gupositionsensor to detect if (and which way) the robot
has fallen.

Other modules are actuators that send a message or produce
and effect on the environment external to the system. Actuators
are typically subscribers through the whiteboard to postings by
FSMs. It is important to understand that a state has essentially
two types of activities, postings to the whiteboard or execution
of some C++ code. The possibility to integrate C++ code
means that any behaviour that we do not represent as FSMs
can also be integrated into our modelling. The activities in
our state machines are classified into three different execution
steps (following very much the conventions of state machines
for modelling Object Oriented Systems in OMT [16], UML,
and may other standards for state machines).

e On Entry: These activities are executed at least once,
and always just once and before any other activity upon
arriving at the state.

¢ On Exit: These activities are executed at least once, and
always just once and after any other activity upon leaving
the state.

« Internal activities: These activities may not be executed
at all. They are executed once, every time the entire
set of leaving transitions has been tested (against the
corresponding expert) and determined no transition fires.

Evaluation of leaving transitions and execution of internal
activities is repeated until a transition fires that moves the
machine to a new state.

Actuators that listen to messages posted by the
guGameController state machine include the following.

e gunaoleds: The interface to illuminate Nao’s ears,
face, feet and the chest button.

e gunaospeechmodule: The robot speaks to identify
itself.

e gunaomotion: The interface to actions like to get up
if the robot is lying down.

In the C++ code, there is a method

sayTeamI_AmPlayingAndShallWeKickOff.

named
This

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Y%= State Properties

Name: READY
Code: 5
Moore Outputs:

Radius: 40
Line width: 1

£ =~ 1)
(Colour)

Description:

OnEntry guvision_runVisionPipeline: start;
Speech:ready; LEDS: ChestBoard Blue;
Bumpers: Off; ChestSensor: Off; C++:
postTeam|_AmPlayingAndShallWeKickOff; /
OnExit Placer: Off; NaoWalk: walk 0 0 0; /
Placer: On;

OK) Cancel

(b) The activities of READY.

of guGameController. fsm using gfsm.

routine uses C++ variables that record the integer number
(player number) and the team as red or blue. This could also
be modelled by states, but the state machine would basically
be a clone of itself for playing red and for playing blue.
Thus, this illustrates that sometimes clarity (and generality)
is achieved with some algorithmic C++ code (rather than
duplicating all the states). The values of the borrowed code
are initially supplied on the command line but are updated by
the guGameController state machine as the event from
the league game controller demands via UDP.

B. The abstraction power of sub-machines

While everything that is required for the SPL in the
INITIAL state is defined in the corresponding state of the
guGameController. fsm, this is not the case for the
READY state. There are many things that are done directly here
in the OnEntry section, such as starting the vision pipeline
in the module gunaovision. Also the ChestBoard LED is
set to blue, and the sensitivity of the buttons is turned off
(otherwise, the feet bumpers sense events just by walking).

So, how to achieve the behaviour that in state READY the
robot is to find its correct position within the field before
the state SET? The posting of the message with a type
corresponding to the name of a sub-FSM starts a previously
dormant automaton. In this case Placer: On (the message
content is On). The OnEx it activity is a posting of Placer:
Of f that makes this sub-machine dormant.

Sub-machines are a sub-class (in the C++ and object-
oriented sense) of FSMs with the additional feature that
they can be suspended or resumed. The Placer. fsm sub-
machine (Fig. 3a) uses an implementation of a Kalman filer for
localisation inside our module gulocalizationfilter.
It uses walks from gunaomotion to walk until it is 150 cm
from its own goal. The localisation module listens to he
whiteboard for postings by gunaovision of landmark sight-
ings (for its internal sensor model) and also to the walk
commands for its internal motion model. Placer . fsm uses

87

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

TRUE

TRUE
headlsLeft
TRUE
headlsRight StepRight
TRUE

headl:
eadlsCentered MinelsFurtherCLX StepForward

TRUE
Centered
MinelsCloserXXXX

StepBack

rst_n

MinelsVisible

MinelsAboutCL ~MinelsVisible

headlsTooFarRigh

headlsTooFarlLeft

TRUE

MinelsVisible

Placed

SleepNStop

TRUE

(a) The Placer. fsm sub-machine.

MinelsVisible

MinelsVisible

MinelsVisible

MinelsVisible

MinelsVisible

MinelsVisible ~MinelsVisible

TRUE
MinelsLeft
MinelsRight
~MinelsVisible
~MinelsVisible
TRUE
MinelsVisible

Nol.andmark

Fig. 3. Ofsm model of two READY-state sub-FSMs of guGameController. fsm.

CorrectRight

~MinelsVisible ~MinelsVisible

Duration

~MinelsVisible

MinelsCenter

~MinelsVisible

Centered

(b) The GoalTracker. fsm sub-machine.

gunaosensor (and Naophysical) to know if the head in the direction of a landmark may be to walk forward or
angle relative to the body is pointing straight or sideways (in to walk to the side or even to spin). The GoalTracker
order to post suitable commands to mot ion; the step to move uses only the gulocalizationfilter filtering to post

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 88

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

commands to gunaomotion to turn the head in order to
keep the target landmark in the centre of the vision frame.

III. MODELLING MODULE INTERACTIONS

If the reader was able to remember what modules are
required and which ones communicate with each other, even
at this very top level of the behaviour of the robot, we would
be surprised. Clearly, the description in the previous section
needs some way to document, present, visualise, verify and
validate the inter-module dependencies and the corresponding
message passing and communication.

More importantly, SPL. autonomous robots follow a design
pattern that repeats what we have seen in the last forty years of
desktop computer development. The hardware of the system
and its Operating System becomes a commodity while the
software on the system determines its ultimate behaviour.
Here, we have a large number of sensors and actuators that
can be utilised to navigate the robot’s environment and to
exhibit effective or intelligent behaviour. Sensor fusion needs
to be performed to integrate (uncertain) input from numerous
different input devices (such as buttons, cameras, etc.).

Therefore, while it can be argued that the static model
of the robot remains the same throughout (and therefore
conforms to traditional software engineering design processes
as, for example, standardised in UML), this static structure
is only marginally descriptive of the actual behaviour the
robot is required to exhibit. In fact, a quite marginal change
to behaviour can trigger a vastly different interaction pattern
between modules or subsystems. For instance, switching from
ultrasonic distance sensors to vision to detect nearby obstacles
only requires a minute change to the corresponding behaviour
state machine.

However, immediately, module dependencies and, conse-
quently, the design of the overall static system structure
changes. In a traditional approach, this would require a full
redesign of the system and its composition.

To address this problem, we have created a tool that inspects
a dictionary of strings that describes what messages a module
is a listener for and what messages are posted. In reality,
there are two types of paradigms for listeners. They may
subscribe and wait for a message, and thus, as processes, such
listeners are paused and then re-started by the whiteboard.
The second module just queries the whiteboard if such a
message of interest is present on the whiteboard and thus is
non-blocking. Therefore, we also need to indicate the type
of message, whether it is provided or required by that module
(akin to inputs and outputs in UML composite structures [17]).

Moreover, many modules are platform independent and
some modules may have alternatives. This is easily represented
by specifying the same provisions and requirements. An
example of an alternative module is a guspeechmodule.
Such a module exists in two version, a MacOS version that
generates speech from text on a laptop, and a Nao version
that carries the same functionality but on a Nao robot. Even
though these module need different compilers and run under
different operating systems, from the perspective of supplier

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

N

unaoposiionsensor

0]
I
N

kRobotFallenBack kRobotFallenForward

J

kNaoMotionPlayer kNaoWalk

gunaomotion

gunaobuttonsensor - — — - _

KLEDS

KLeftFootBumpPressed kRightFootBumpPressed

gunaoleds

guvision,_stop VisionPipeline
unknown

kShortChestButtonPressed

0

gunaospeechmodule

KRunVisionPipeline “\kSpeechWBMsg

gunaovision

auSeeker

GameController

guGameController

T

1

1
ubehaviourinterpreter

0

kNaoWalk /"kUpdateProof / kUpdateProof \Placer
auedl

gulocalizationfilt
T
| !
1 1
| ‘
| @
1
1
\
1
\ 1
\ 1
" |
@ /

quUDPreceiver

gumacvision

7

Received \kPlayingReceived \kReadyOurGoal \ kReadyReceived "\ kReadyTheirGoal \ kSetReceived kUDPsaysBlueKickOff kUDPsaysRedKickOft
kSpeechWBMsg / KRunVisionPipeline (KLEDS

qumacspecchmodule
T
\
\‘/

kPenalty

P

+/(FinishedReceived (kInialReceived

Fig. 4. The diagram that illustrates the module dependencies related to the
module guGameController.fsm whose behaviour appears in Figure 1.

89

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(provider) and consumer (listener) message types, the modules
are completely analogous.

Our models can now be generated completely automatically
from the dictionary of messages, which in turn is gener-
ated directly from the code (in fact it is part of the code).
The result is a series of diagrams that show dependencies
for each module as well as overall module dependencies.
For example, Figure 4 shows the module concerned at the
centre of the diagram. Those modules that are suppliers to
guGameController.fsm are show in the upper row of
modules, and the green arrows show that these are experts,
queried in labels of the FSM, about the change of state. In this
case, guGameController.fsm will be making blocking
calls to these modules requesting they make a proclamation on
a particular proposition (evaluating to true or false) that
labels the transition. The bottom row of modules are those
to whom the module guGameController.fsm will be
posting a message. The black arrows indicate also this is a non-
blocking interaction while the direction of the arrow indicates
who is the provider of a message and who is the listener. In
this illustration we have chosen a faulty version of a FSM
that posts a message not recognised in the dictionary, i.e., no
listening module has been found. Therefore, we see the word
“unknown” in red as a destination of a message. This warns
the behaviour designer that there is a fault in the current design
of interactions of the software, at least with the respect of the
behaviour specified by this FSM.

Discussion

What additional advantages besides the correctness of mod-
ule interactions does this provide? The behaviour designer
can now configure particular testing, verification and vali-
dation plans, and the corresponding script can be generated
automatically. For example, by looking at the corresponding
diagram for a module, and indicating associated modules,
a particular script can be rapidly configured for testing the
chosen module on a particular platform. The script will only
start those modules necessary for interaction and support of
the module under scrutiny, and therefore significant resources
of compilation, porting to the platform, and test configuration
are saved. Lets recall the importance of testing [5, Chapter 7]
and in particular testing automation and early validation; the
sooner we verify a change and test that we have not introduced
a fault or broken the current functionality the better. This leads
to more traceability, to more reliability and to more robustness
in the software process and the product itself.

Why not use UML’s collaboration diagrams or UML’s
sequence diagrams (or some other sort of UML interaction
diagram)? Simply because such UML diagrams are used to
model the dynamic behaviour of the system. They represent a
particular trace of execution. The order and time of message
passing is the principal aspect. Our FSMs are already the
dynamic model. In fact, our proposed diagrams here represent
static information; they are a static model of the software on-
board of the robot. This is precisely why they are so useful in
configuring versions and identifying the modules that together

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

integrate a module. Thus, the diagrams here are in fact more
analogous to UML composite structures [17]. In fact, it is
trivial to convert the dependency information on whiteboard
message suppliers and listeners to corresponding ports therein.
However, this would not capture the fact that the responsibility
for such compositions are factored out from the individual
modules (as we already mentioned, our software architecture
is actually a repository architecture in the terminology of Som-
merville [5, Chapter 6] or whiteboard architecture [10][11]).

IV. OTHER ASPECTS

Some features in our approach that enable further powerful,
high-level control on the behaviours for the robots are

1) to dynamically load a behaviour (a FSM) at any time
and not only at start-up, and

2) to dynamically modify vision pipelines, so the camera
feed (upper or lower camera) is adjusted, based on FSM
context.

We mentioned that the FSMs (or sub-machines) that model our
behaviour are in fact encoded as two tables: the transitions
table and the actions table. The capability to read, parse
and have an internal representation of the FSM is not only
used at start-up time, but can be used on demand. In the
example discussed earlier regarding the model of the Game
Controller, the robot can, during execution, re-load the tran-
sition table from the file TguGameController.txt and
the activities from AguGameController.txt. Once the
corresponding parsing and internal representation are ready
for the interpreter, this refreshed behaviour can take over.
This parsing and re-building of the internal representation is
not a CPU-intensive operation. The grammar of the transition
table and the activities table is very straightforward and the
internal representation is not particularly different from a graph
representation of the FSM as the diagrams we have been
displaying. Namely, our class fsmMachine that represents
a behaviour model is a vector of fsmStates. An object
of the class fsmState has a stateID, stateName, a
vector of fsmTransitions and an £smActivity object.
An fsmActivity object has postings and/or callbacks for
each of three possibilities: OnEntry, OnExit and Internal. An
object of the class fsmTransition can hold an expression
to evaluate.

Granted, this parsing must be combined with the facilities
that enable sub-machines. That is, sub-machines can be paused
(and therefore become dormant), and later be resumed from
their initial state. Therefore, a dormant sub-machine can be re-
loaded without the need to halt the whole robot. Moreover, re-
loading a sub-machine can be part of a behaviour. Therefore,
this opens the door to the possibility of the robot learning or
adapting its behaviour while operating, by simply modifying
the behaviour model during execution (however, such a learn-
ing behaviour is not implemented yet).

Once the concept of a model being able to be loaded during
runtime and not only during start-up is available it is not
difficult to see that a linear software architecture, such as
a pipeline (also known as a pipe and filter architecture [5,

90

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Section 6.3.4]), can easily be modified and adapted with
specific commands during runtime. This is what enables the
second aspect mentioned above.

The advantages provided by these facilities are many. For
example, they can be used as a powerful mechanism for a
faster and more reliable software development cycle for the
the robot (and, in general, for embedded systems). To illustrate
this, it is enough to consider what the testing of a behaviour
demands if the robot needs to be shut down every time a
new behaviour is loaded. Typically, re-booting a robot such
as the Nao is quite time consuming, and requires placing
the robot in a safe position, e.g., to physically prevent the
robot from falling. The boot process is slow, because it is
not only the operating system that needs to be loaded, but
also all the middleware that enables the hardware subsystems,
and any other modules that the behaviour uses and that are
part of the system as a whole. As we alluded earlier, in the
case of playing robotic soccer, these include many modules
for motion, vision, sonar, actuators, etc. In general, which
modules are required for a behaviour is determined by our
new diagrams illustrating module dependencies. Dynamically
loading a behaviour (or a sub-behaviour as a sub-machine)
enables iterative refinement and testing of new behaviour,
without the lengthy delay of re-booting the robot for every
single modification of the behaviour model. This facilities and
speeds up the testing of every behaviour. The more a behaviour
is tested, the more reliable it becomes.

V. CONCLUSION

We have described our model-driven engineering approach
to software development. We can completely develop the
behaviour of autonomous humanoids robots through models
that consist of

1) models for logics that describe the domain knowledge

and the declarative part of the system,

2) models for the action part of the system, that are

visualised by finite state machines, or state diagrams.
However, understanding the interactions, the service available,
and the request that will be made to service providers needs
validation and visualisation. We have described the mecha-
nisms to obtain such diagrams and the benefits they provide
to software development.

Nevertheless, there are also some aspects of our infrastruc-
ture that constitute immediate targets for further work;

o to expand even further the vocabulary of messages the
behaviour interpreter can use when requesting a proof so
we can use other inference engines,

e to add priorities to the messages on the whiteboard, so
we can have a subsumption architecture, and

« to add a planning module (so we can apply the infrastruc-
ture to other environments besides soccer, that demand
more planning and are less reactive).

ACKNOWLEDGEMENTS

The authors would like to thank Andrew Rock and David
Billington for fruitful discussions and collaboration in the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

conceptual idea of model-driven engineering of behaviour of
autonomous robots.

The authors also thank Carl Lusty, Steven Kuok, and Vitor
Bottazzi who helped significantly in the programming of many
of the modules and tools used in the practical illustration of
this approach, which is the large software environment and
system that is the code for the RoboCup Standard Platform
League.

REFERENCES

[1] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, ‘“Non-
monotonic reasoning for localisation in robocup,” in Australasian Con-
ference on Robotics and Automation, C. Sammut, Ed. Sydney:
Australian Robotics and Automation Association, December 5-6 2005.

, “Using temporal consistency to improve robot localisation,” in

RoboCup 2006: Robot Soccer World Cup X, ser. Lecture Notes in Com-

puter Science, G. Lakemeyer, E. Sklar, D. G. Sorrenti, and T. Takahashi,

Eds., vol. 4434. Springer, 2006, pp. 232-244.

, “Chapter 3: Non-monotonic reasoning on board a sony AIBO,”

in Robotic Soccer, P. Lima, Ed. Vienna, Austria: I-Tech Education and

Publishing, 2007, pp. 45-70.

, “Non-monotonic reasoning for requirements engineering,” in
Proceedings of the 5th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE). Athens, Greece:
SciTePress (Portugal), 22-24 July 2010, pp. 68-77.

[5] I. Sommerville, Software engineering (9th ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2010.

[6] E.M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[7]1 C. Baier and J.-P. Katoen, Principles of model checking.
2008.

[8] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Plausible
logic facilitates engineering the behavior of autonomous robots,” in
IASTED Conference on Software Engineering (SE 2010), R. Fox and
W. Golubski, Eds. Anaheim, USA: ACTA Press, February 16 - 18
2010, pp. 41-48, location: Innsbruck, Austria.

, “Modelling behaviour requirements for automatic interpretation,
simulation and deployment,” in SIMPAR 2010 Second International
Conference on Simulation, Modeling and Programming for Autonomous
Robots, ser. Lecture Notes in Computer Science, N. Ando, S. Balakirsky,
T. Hemker, M. Reggiani, and O. von Stryk, Eds., vol. 6472. Darmstadt,
Germany: Springer, November 15th-18th 2010, pp. 204-216.

[10] B. Hayes-Roth, “A blackboard architecture for control,” in Distributed
Artificial Intelligence, A. H. Bond and L. Gasser, Eds. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1988, pp. 505-540.

[11] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Architecture
for hybrid robotic behavior,” in Hybrid Artificial Intelligence Systems,
4th International Conference, HAIS 2009, Salamanca, Spain, June
10-12, 2009. Proceedings, ser. Lecture Notes in Computer Science,
E. Corchado, X. Wu, E. Oja, A. Herrero, and B. Baruque, Eds., vol.
5572. Springer, 2009, pp. 145-156.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 2002.

[13] C. H. Wu, W. H. Ip, and C. Y. Chan, “Real-time distributed
vision-based network system for logistics applications,” Int. J. Intell.
Syst. Technol. Appl., vol. 6, pp. 309-322, March 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1521389.1521397

[14] L. Wen and R. G. Dromey, “From requirements change to design
change: A formal path,” in 2nd International Conference on Software
Engineering and Formal Methods (SEFM 2004). Beijing, China: IEEE
Computer Society, 28-30 September 2004, pp. 104-113.

[15] D. Billington, “Propositional clausal defeasible logic,” in Proceedings
of the 11th European conference on Logics in Artificial Intelligence,
ser. JELIA *08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 34-47.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-87803-2_5

[16] J. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premer-
lani, Object-Oriented Modelling and Design. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1991.

[17] OMG Unified Modeling Language (OMG UML), Superstructure, V2.3.
Object Management Group, May 2010, ch. 9, Composite Structures, pp.
167-198.

[2]

[3]

[4]

MIT Press,

[9]

91

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Case Study for a Quality-Oriented Service Design Process

Michael Gebhart, Suad Sejdovic, Sebastian Abeck
Research Group Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{gebhart | sejdovic | abeck} @kit.edu

Abstract—Due to the usage of distributed information, such as
sensor information, geographical information systems are
designed according to service-oriented principles. Thus, the
development of new solutions within this context requires a
design of necessary services. These services have to follow
certain quality attributes that have evolved as important for
services, such as loose coupling and autonomy. In this paper, a

quality-oriented design process is considered and its
applicability and effectiveness are shown within the
Personalized Environmental Service Configuration and

Delivery Orchestration project of the European Commission.

Keywords-service; design; quality; geographical information
system; case study

L INTRODUCTION

Today, geographical information systems use distributed
information, such as sensor information, that measures
environmental data, such as air temperature, or presume
precipitation. This information is provided by public
authorities or private sectors in form of services [8]. The
geographical information system acts as service consumer,
thus sends requests to the services and receives according
responses. Additionally, functionality of the geographical
information system can also be provided in form of services
in order to enable the realization of systems at a higher level.

Accordingly, the development of such geographical
information systems requires a design of necessary services
in order to support the usage of distributed information and
the provision of functionality that bases on this information.
The design of services consists of two elementary phases, the
identification and the specification [1, 2, 9, 10, 11, 25].
During the identification phase service candidates as
proposals for services and their dependencies are formalized
[5, 6]. Each service candidate includes a set of operation
candidates that represent preliminary operations. A
dependency between service candidates describes that a
service requires another service for fulfilling its
functionality. Within the specification phase, the final
specifications of the services are created. Each specification
constitutes a so-called service design and consists of a
specification of the service interface and the realizing service
component. The service interface describes provided and
required operations, message and data types, interacting roles
and the interaction protocol [7]. The specification of the
service component determines the services provided by the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

realizing component and the services required for fulfilling
the provided functionality. Additionally, the internal
behavior in form of a composition of own functionality and
functionality provided by other services is formalized.

For services several quality attributes have been
identified that should be fulfilled in order to attain goals that
are associated with the application of service-orientation,
such as an increased flexibility [5, 6, 12, 14, 15, 20, 30],
reusability [5, 21], or maintainability [19] of provided
functionality. Wide-spread quality attributes that support
these goals are a unique categorization, loose coupling,
discoverability, and autonomy [2, 6, 13, 16, 17, 18, 19].
Since these goals are also important for geographical
information systems, the quality attributes should be
considered when designing new services in the context of a
geographical information system. This requires a quality-
oriented service design process when developing a service-
oriented geographical information system.

In the context of the project Personalized Environmental
Service Configuration and Delivery Orchestration
(PESCaDO) [3, 4] of the European Commission, a service-
oriented geographical information system has to be
developed in cooperation with the Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation.
This system enables getting personalized information
regarding the personal profile and environmental conditions.
Since the services should fulfill quality attributes, such as
loose coupling, a quality-oriented service design process has
to be applied. For this purpose, the design process created by
the authors of this paper as introduced in [1] has been
applied. This design process includes a transfer of artifacts of
the business analysis phase into artifacts of the design phase
and considers a certain set of quality attributes. In this case,
the quality attributes of a unique categorization, loose
coupling, discoverability and autonomy are regarded using
the quality indicators as introduced in [2]. This case study
shows how to apply the design process for a geographical
information system of a real world project and demonstrates
the applicability and effectiveness of the design process.

The paper is structured as follows: Section 2 introduces
the PESCaDO project and the considered service design
process. In Section 3, the design process is performed in
order to design the necessary services for PESCaDO. In this
context, the artifacts of the design phase are systematically
derived and revised subsequently. Section 4 concludes the
paper and offers suggestions for future research.

92

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

II. FUNDAMENTALS

In the following, the PESCaDO project and the
considered scenario of this project are introduced.
Additionally, the quality-oriented service design process that
is applied for designing the required services is described.

A. Personalized Environmental Service Configuration and
Delivery Orchestration

Nowadays, more and more people are aware of the
influence that environmental conditions can have on the
quality of their life. Since each individual has the need for
specific information about the environment that is affecting
him and his life, information personalization plays a major
role.

The PESCaDO project of the European Commission [3,
4] takes up this issue and aims at developing a platform for
getting personalized information regarding the personal
profile, such as health status, mode of presentation or
language of an individual, and also takes into consideration
the intention of the individual. PESCaDO covers the
discovery of services providing the data, their orchestration,
the processing of the data and the delivery of the gained

information. In terms of reusability, technology
independence and the flexible usage of existing
functionalities, a service-oriented approach should be

pursued [5, 6, 12, 14, 15]. The resulting services are
expected to consider the quality attributes of a unique
categorization, loose coupling, discoverability, and
autonomy. These attributes are chosen, because they can be
evaluated during design time [1, 2]. Quality attributes, such
as statelessness, require implementation information.

Within a first prototype, the data access functionality has
to be developed. One special requirement is the semantic
support for accessing environmental data. Thus, the system
has to be capable to identify all related data sources for a
requested phenomenon like temperature. For this purpose, it
has to be able to extend a single requested phenomenon by
other related ones. For example, if the system has identified
the phenomenon “Pollen” as relevant, it also will have to
retrieve information about more specific phenomena, like
“Birch Pollen”. For achieving this goal, the system uses a
knowledge base, which contains a related ontology. The
focus in the development of the first prototype lies on the
extension of the requested phenomenon and accessing the
related data in the background.

B. Quality-Oriented Service Design Process

The quality-oriented service design process, which is
illustrated in Figure 1, starts with the business analysis phase
that yields artifacts that constitute the input for the service
design phase. The primary goal of this phase is the
identification and modeling of the considered business use
cases and the realizing business processes [9, 10]. The
artifacts use terms as introduced within the domain model for
a common understanding. The business processes can
consider already existing services in order to increase the
reuse of functionality. This means, that the activities within
the business process are aligned with the operations of
existing services regarding their granularity and names.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

: T —
. Business Process
Business ! Existing
Use Case Services

o ¢ Service

| Domain Model \
Business Analysis g

Identification v Specification
- Service Design
Service Provided
Can d|date ‘ Service Interface
Service Service [2)
Candidate Candidate ‘ Service Component ‘
Service Requi—red Reé{uired
Candidate Service Service
Existing Service o Interface Interface O
Analysis and Analysis and
Revision Revision

Figure 1. Quality-oriented service design process.

Within the service design phase, two activities have to be
performed. In a first step service -candidates are
systematically identified by using the modeled business
processes of the analysis phase. Afterwards, these service
candidates are analyzed and revised according to the quality
attributes unique categorization, loose coupling,
discoverability, and autonomy [1]. In a second step the
service specification is performed. The service specification
uses the identified and revised service candidates as input
and defines service design, i.e., the service interfaces and
service components. After a systematic derivation, the
service designs are revised with regard to the previously
mentioned quality attributes. This additional revision is
necessary as service designs include more information than
service candidates.

III. CASE STUDY FOR A QUALITY-ORIENTED SERVICE
DESIGN PROCESS

Within PESCaDO the business use case for getting an
observation has to be considered. The business use case can
be modeled using use case diagrams of the Unified Modeling
Language (UML) [34]. Furthermore, the UML profile for
business modeling as introduced by IBM [22, 23] can be
applied with its adapted notation for use case diagrams as
shown in the following figure.

Get
Observation

User

Figure 2. Considered business use case.

For the derivation of service candidates, especially the
internal behavior of the business use case is required. This
behavior is represented by a business process and can be
modeled using the Business Process Model and Notation
(BPMN) [31]. Figure 3 shows the business process as main
artifact for deriving service candidates as first step of the
service design phase.

93

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

User
A4 A % N
&~ | &

Create
Capability
Response

A

Y
Get Observation

~N

Determine
Inferior

Observation
Provider

Query Superior Query Inferior

Query Inferior
Concept

Get Get
Sensor Observation
Description

Needed area
covered?

Capabilities Concept Concept
I
1
[e [

Data
Provider

Provide
Capability
Information

Provide
Sensor
Information

Provide
Observation
Data

Get Data

Knowledge
Provider

__1 Ontology

Figure 3. Considered business process.

Each term within the business use case and business
process bases on a common domain model for avoiding
ambiguity and misunderstandings. This domain model can
be described using an ontology based on the OWL 2 Web
Ontology Language (OWL) [32, 33]. It determines the
concepts and their relations within the considered domain.

A. Identification

For the derivation of service candidates each pool within
the BPMN business process is transformed into one
capability element of the Service oriented architecture
modeling language (SoaML), for this element represents a
collection of capabilities that corresponds to the
understanding of service candidates. Each capability element
contains operations that represent operation candidates as
preliminary operations of the service [7, 24, 26]. Figure 4
shows the derived service candidates.

«Capability»
Observation Provider

+ Get Capabilities()
+ Get Observation()

<
- ~

- ~
- ~

«use» g S «use»

£’ RSN
«Capability» «Capability»
Data Provider Knowledge Provider

+ Get Capabilities() + Get Capabilities()
+ Describe Sensor() + Query Ontology()
+ Get Data()

Figure 4. Derived service candidates.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The operation candidates within the service candidates, i.c.,
capability elements, are derived from the business process
and its contained message start events. The usage
dependencies are determined by means of the interaction
between the pools. The names of the service candidates and
operation candidates are taken from the business process.

In a next step, the service candidates have to be analyzed
and revised with regard to the quality attribute unique
categorization, loose coupling, autonomy and discoverability
using the quality indicators introduced in [2].

1) Unique Categorization: According to Erl [5, 6, 28,
29], business-related and technical functionality should be
divided. This quality indicator is fulfilled because all
services only provide business-related functionality.
Similarly, agnostic and non-agnostic functionality should be
separated. Also this quality indicator is fulfilled, for all
services only provide agnostic functionality, which is not
specific for certain business proesses. Another quality
indicator for the unique categorization addresses the
sovereignity of data. If a service manages a business entity,
it should be explicitly managing this business entity for
ensuring consistent and clear responsibility [5, 6, 12].
Within the busines process there are two types of data:
ontology data and observation data. The former are
accessed by the knowledge provider and the latter by the
data provider, which is why this quality indicator is fulfilled
optimally. The last quality indicator for a unique
categorization describes that the operations within one
service should use common business entities. The data
provider and knowledge provider only operate on ontology

94

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

data or observation data. However, the observation provider
uses both observation data and ontology data, which may
result in a split of these two operation candidates into two
seperate service candidates. Since the ontology data
describes the observation data in more detailed, the ontology
data does not represent an own business entity. Thus, the
operation candidates can be grouped within one service
candidate. As result, the derived service candidates best
fulfill the quality indicators for a unique categorization.

2) Loose Coupling: According to Josuttis [15], long-
running operations should be able to be invoked
asynchonously. Since there are no long-running operations,
respectively operations candidates, within the derived
service candidates, this quality indicator does not have to be
considered. Additionally, the parameters within the
operations should be preferably simple types if they are used
across several services. Complex types that are used within
several services should be avoided. Since during the
identification phase the parameters are not defined, this
quality indicator can not be determined. Instead, this quality
indicator will be considered during the specification phase.
A further quality indicator describes that the operations
should be abstract [5, 6, 15, 17]. This means that they
should hide implementation details. The operation
candidates are on a high-level of abstraction, which is why
this quality indicator is fulfilled. Also if there is an state-
changing operation, a compensating operation should be
provided [17]. Since there is no data written or created,
there is no state-changing operation.

3) Discoverability: The discoverability is only of
interest during the specification phase, when the names of
services and operations are finally determined. During the
identification phase the artifacts are only preliminarily
named.

4) Autonomy: One quality indicator for the autonomy of
services focuses on the direct dependencies between
services [5], which should be minimal for a maximum
autonomy. Within the derived service candidates, the only
service candidate with dependencies is the observation
provider. However, due to the requirement of using
distributed functionality, this quality indicator can not be
improved. Another quality indicator addresses the
overlapping of functionality [5, 28]. Services should have a
certain functional scope. Since the service candidates do not
have any overlapping functionality.

As result, the derived service candidates optimally fulfill
the quality indicators for the considered quality attributes and
thus do not have to be further revised.

B. Specification

The subsequent phase, the specification phase, focuses on
the creation of service designs. A service design consists of a
service interface, which describes the service from an
external point of view, and a service component, which
performs the provided functionality [2]. First, the service
candidates of the identification phase are used to generate
preliminary service designs that can be further revised in
order to fulfill the desired quality attributes. Figure 5 shows
the derived service interface for the Observation Provider.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

«interface»
Observation Provider

+ Get Capabilities(: GetCapabilitiesRequest) : GetCapabilitiesResponse
+ Get Observation(: GetObservationRequest) : GetObservationResponse

«interface»
Observation ProviderRequester

)
| «use»

«Servicelnterface»
Observation Provider

observationProvider :
«interface» Observation Provider

observationProviderRequester :
«interface» Observation ProviderRequester

®

Interaction Protocol)

: observationProvider

Get Capabilities O
Get Observation O

Figure 5. Derived service interface.

: observationProviderRequester

The service interface 1is formalized using the
Servicelnterface modeling element of SoaML [7]. A service
interface includes operations provided by the service and
operations that have to be provided by the service consumer
in order to receive callbacks. In SoaML these aspects are
modeled using UML interfaces that are associated with the
Servicelnterface element by generalizations and usage
dependencies. Additionally, it defines the participating roles
and an interaction protocol, which determines the possible
orders of operation calls that result in valid results. Latter is
modeled using a UML Activity that is added as
ownedBehavior. The derivation of a service interface from
service candidates transforms the operation candidates into
provided operations. Also the name of the service candidate
is used for the name of the service interface. Additionally,
messages, roles and the interaction protocol are added
systematically.

The service component includes provided services,
services that are required to fulfill the functionality, and the
internal behavior of the component in form of a flow of
operation calls. The service component is represented by a
Participant in SoaML. A Participant can be an organization,
a system or a component within a system. It contains
ServicePoints for provided services and RequestPoints for
required services. Each ServicePoint and RequestPoint is
typed by the describing Servicelnterface element. In Figure
6, the service component for the Observation Provider is
shown. The name of the service component is directly
derived from the name of the service candidate. The internal
behavior is added as ownedBehavior in form of a UML
Activity. It will be illustrated in context of the subsequent
revision phase.

95

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

«RequestPoint»
£] knowledgeProvider :

. . «Participant» X
«SerwciPmFr:t» o Observation Provider Knowledge Provider
observationrrovicer : Component «RequestPoint»
Observation Provider . K

dataProvider :

Data Provider

Figure 6. Derived service component.

In a next step, the subsequent analysis and revision
phases can be performed considering the quality attributes
unique categorization, loose coupling, discoverability, and
autonomy.

1) Unique Categorization: Since the quality indicators
that influence the unique categorization have already been
optimal on basis of service candidates and the service
designs were derived from these service candidates, the
unique categorization is also optimal on basis of service
designs. Thus, there is no revision required.

2) Loose Coupling: In contrast to the identification
phase, during the specification phase, the parameters are
formalized. For geographical information systems, standard
data types, such as the Keyhole markup language (KML)
[35], exist. Also within PESCaDO, standardized data types
are expected to be used. Since complex types that are used
across several services should be avoided, the data types are
modeled within single UML packages for each service
design. This ensures that changing data types does not
necessarily affect other services. The infrastructure, for
instance in form of an enterprise service bus, can handle the
transformation between similar data types. The other quality
indicators are still optimal, for the affecting artifacts have
not changed during the specification phase.

«interface»
ObservationRetrievalService

+ Get Capabilities(: GetCapabilities) : GetCapabilitiesResponse
+ Get Observation(: GetObservation) : GetObservationResponse

JAN

«interface»
ObservationRetrievalServiceRequester

I «use»
:

«Servicelnterface»
ObservationRetrievalService

observationRetrievalService :
«interface» ObservationRetrievalService

observationRetrievalServiceRequester :
«interface» ObservationRetrievalServiceRequester

®

Interaction Protocol)

: observationRetrieval
ServiceRequester

: observationRetrieval
Service

getCapabilities O
getObservation O

Figure 7. Revised service interface.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

3) Discoverability: During the specification phase, the
final names of the services and data types are determined.
According to Josuttis [15] and Maier et al. [17], the names
of the visible artifacts should be functionally named.
Additionally, the names should follow naming conventions.
Thus, during the specification phase, the names of the
artifacts should be inspected in detail. Exemplarily naming
conventions are the usage of the english language and
beginning operation names with a lower-case character. In
Figure 7, a revised service interface is shown that considers
the naming conventions of the PESCaDO project.
Additionally, the service has been renamed regarding its
actual functionality for improving its discoverability.

This revision also affects the service component that uses
this service interface. Figure 8 shows the revised service
component of the Observation Provider. The service
component and the ServicePoints and RequestPoints have
been adapted to the revised service interfaces and the naming
conventions for PESCaDO. Additionally, the internal
behavior of the service component for one of the provided
operations is shown.

«Participant»
ObservationRetrieval
ServiceComponent

«RequestPoint»
knowledgeBase
AccessService :
KnowledgeBase
AccessService

«ServicePoint»
observationRetrievalService :
ObservationRetrievalService «RequestPoint»
dataRetrievalService :

DataRetrievalService

getCapabilities)
: observationRetrieval : dataRetrieval : knowledgeBaseAccess
Service Service Service

queryOntology

queryOntology

.7 getCapabilities

Create Capability

Response

Figure 8. Revised service component.

4) Autonomy: Since the autonomy has already been
optimized during the identification phase, there is no
revision necessary regarding this quality attribute.

By finishing the revision of the initial service designs, the
specification phase ends. The results for developing a
prototype for the PESCaDO project are three revised service
specifications, which now can serve as an input for the
implementation phase [27]. The service designs have been
revised that the resulting services optimally fulfill the chosen
quality attributes of a unique categorization, loose coupling,
discoverability and autonomy.

IV. CONCLUSION AND OUTLOOK

In this paper, we applied a quality-oriented service design
process to the Personalized Environmental Service
Configuration and Delivery Orchestration project of the
European Commission. The design process enabled the

96

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

systematic derivation and revision in order to gain service
designs that fulfill both the functional requirements and the
quality attributes of a unique categorization, loose coupling,
discoverability and autonomy. The service designs result in
services that support the strategic goals that are associated
with service-oriented architectures, such as an increased
flexibility and maintainability. Due to the application on a
concrete scenario, the usage of the design process in terms of
its applicability and effectiveness for real-world projects is
demonstrated.

The case study also showed shortcomings of the service
design process that are expected to be solved in the future:
The used quality indicators that were derived from common
and wide-spread descriptions of quality attributes use terms
that are not exactly defined. For example, the meaning of
agnostic functionality is not clear. The IT architect has to
interpret these terms in order to determine the quality
indicators and the quality attributes. This may result in
wrong measures.

Thus, this case study showed the applicability and
effectiveness of the service design process. However, in the
future, we plan to further refine the definitions of terms used
within the quality indicators and quality attributes to reduce
ambiguities, thus increase the correctness of the results.
Additionally, we plan to apply the design process on further
scenarios.

REFERENCES

[1] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[2] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[3] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[4] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[5] T. Erl, Service-Oriented Architecture — Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[6] T. Erl, SOA — Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[71 OMG, “Service oriented architecture modeling language (SoaML) —
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[8] The European Parliament and the Council of the European Union,
“INSPIRE”, Directive 2007/2/EC, 2007.

[9] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: June 04, 2011]

U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

A. Arsanjani, “Service-oriented modeling and architecture — how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-designl,
2004. [accessed: June 04, 2011]

G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. VoB, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[10]

(1]

[12]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[13] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.
R. Reussner and W. Hasselbring, Handbuch der
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.
N. Josuttis, SOA in der Praxis — System-Design fiir verteilte
Geschiftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, ,Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, ,,Was macht einen guten public service aus?*, SOA-
Spezial, Software & Support Verlag, 2009.

M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.
M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10" IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: June 04, 2011]

J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer = Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: June 04, 2011]

J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language — part 1 — service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]
P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.
[28] T. Erl, SOA — Design
ISBN 978-0-13-613516-6.

T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

D. Krafzig, K. Banke, and D. Slama, Enterprise SOA — Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.
OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

W3C, “OWL 2 web
Recommendation, 2009.
M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]
OMG, “Unified modeling language (UML), superstructure”, Version
2.2,2009.

OGC, “Keyhole markup language (KML)”,
http://www.opengeospatial.org/standards/kml/, Version 2.2, 2008.
[accessed: June 04, 2011]

[14] Software-
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Patterns, Prentice Hall, 2008.
[29]
[30]
[31]
[32] ontology Ww3cC

language (OWL)”,

[33]

[34]

[35]

97

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Meta-Model for Global Software Development to Support Portability and
Interoperability in Global Software Development

Bugra Mehmet Yildiz, Bedir Tekinerdogan
Department of Computer Engineering
Bilkent University
Ankara, Turkey
{bugra, bedir}@cs.bilkent.edu.tr

Abstract— Global Software Development (GSD) considers the
coordinated activity of software development that is not
localized and central but geographically distributed. To
support coordination among sites, usually it is aimed to adopt
the same development and execution platform. Unfortunately,
adopting a single platform might not be always possible due to
technical or organizational constraints of the different sites in
GSD projects. As such, very often GSD projects have to cope
with portability and interoperability problems. To address
these problems we propose to apply model-driven architecture
design (MDA) approach. For this we present a common meta-
model of GSD that we have derived from a systematic domain
analysis process. The meta-model enhances the understanding
of GSD, is used to define platform independent models of GSD
architecture, and transform platform independent models to
platform specific models.

Keywords-Global Software Development, Architecture
Modeling, Model-Driven Development

l. INTRODUCTION

Global Software Development (GSD) is a software
development approach that can be considered as the
coordinated activity of software development that is not
localized and central but geographically distributed. In
principle, GSD can be considered as the realization of
outsourcing. The reason behind this globalization of software
development stems from clear business goals such as
reducing cost of development, solving local IT skills
shortage, and supporting outsourcing and offshoring [1].
There is ample reason that these factors will be even stronger
in the future, and as such, we will face a further globalization
of software development [6].

One of the challenging issues in setting up global
software development is the interoperability among the
distributed sites [13][14]. Interoperability is defined as the
ability of two or more systems or components to exchange
information and to use the information that has been
exchanged [7]. Although it is aimed to adopt the same
platforms in global software development projects, this
might not be always possible due to technical or
organizational constraints. As such, different sites might run
on different operating system platforms, use different
component language platforms, or adopt a different
middleware platform. Further, due to the continuous
evolution of project requirements, the platforms on different
sites might also need to evolve. Portability of the existing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

software to a new platform is not easy for even a single site
development project; in the case of global software
development projects this is even a much harder problem.
Altogether, both the portability and interoperability problems
will impede the adoption of a global software development
approach.

Portability to different platforms and interoperability
among different sites working on different platforms have
been mainly addressed in the model-driven software
development approaches. In this context, Model Driven
Architecture (MDA) is a framework defined by the Object
Management Group (OMG) that separates the platform
specific concerns from platform independent concerns to
improve the reusability, portability and interoperability of
software systems [12]. To this end, MDA separates Platform
Independent Models (PIMs) from Platform Specific Models
(PSMs). The PIM is a model that abstracts from any
implementation technology or platform. The PIM is
transformed into one or more PSMs, which include the
platform specific details. Finally the PSM is transformed to
code providing the implementation details. Obviously by
separating the platform specific concerns and providing
mechanisms to compose these concerns afterwards in the
code MDA provides a clean separation of concerns and as
such the systems are better reusable easier to port to different
platforms and have increased interoperability.

We present the model-transformation pattern for
transforming the global platform independent model to the
local platform specific models. An important part of the
model transformation is the common GSD meta-model. We
describe both the abstract syntax and the concrete syntax of
the meta-model. The abstract syntax is defined using the
UML notation; the concrete syntax is specific for the parts of
the meta-model. The meta-model enhances the
understanding of GSD, and supports the model
transformation for solving portability and interoperability
problems.

The remainder of the paper is structured as follows.
Section Il provides some background on GSD. Section Il
describes the meta-model for GSD and Section IV describes
the related work. Finally, Section VI concludes the paper.

Il. GLOBAL SOFTWARE DEVELOPMENT

A GSD architecture usually consists of several nodes, or
sites, on which different teams are working to develop a part
of the system. The teams could include development teams,

98

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

testing team, management team, etc. Usually, each site will
also be responsible for following a particular process. In
addition, each site might have its own local data storage.
Overall we can identify four important key concerns in
designing GSD:

Development - the software development activities
typically using a software development process. This
includes activities such as requirements analysis, design,
implementation and testing. Each PDS will address typically
a subset of these activities.

Communication — communication mechanisms within
and across sites. Typically the different sites need to adopt a
common communication protocol.

Coordination — coordination of the activities within and
across sites to develop the software according to the
requirements. Coordination will be necessary to align the
workflows and schedules of the different sites. An important
goal could be to optimize the development using appropriate
coordination mechanisms.

Control — systematic control mechanisms for analyzing,
monitoring and guiding the development activities. This
does not only include controlling whether the functional
requirements are performed but also which and to what
extent quality requirements are addressed.

In fact each of these concerns requires further in-depth
investigation and has also been broadly discussed in the GSD
community.

To realize multi-site development is not a trivial task. In
particular if the different sites are working on different
platforms the interoperability problems must be resolved.

Figure 1 shows the transformation pattern for mapping a
global platform independent model to local platform specific
models. The platform independent model can be considered
the same across multiple development sites. If needed the
local sites can keep working on different platforms. In that
case the alignment and the interoperability can be achieved
by defining transformation patterns, which map the local
platform models to the global platform independent models,
and vice versa. To support the model transformation a proper
definition of the GSD meta-model is necessary. We discuss
this in the next section.

GSD Meta uses | Transformation uses | Local Site
Model Specification o PSM MM
I A
conforms conforms
to executes to
Global
Platform reads | Transformation writes Local Site
Independent Engine PSM
Model

Figure 1. Model-Transformation pattern for mapping GSD PIM
to local PSM

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

I1l. META-MODEL FOR GLOBAL SOFTWARE
DEVELOPMENT

Meta-models define the language for the models. In both
software language engineering [9] and model-driven
development domains [2], a meta-model should have the
following two key elements:

Abstract Syntax: Captures the concepts provided by the
language and relationships between these concepts.

Concrete Syntax: Defines the notation that facilitates the
presentation and construction of models in that language.

Based on the literature of GSD, we have defined a meta-
model for GSD that defines the concepts and their relations
to enhance the understanding of GSD and support the model
transformation. Since the meta-model is quite large and we
aim the modeling of different concerns of GSD, we have
decomposed meta-model into six meta-model units. Each of
these meta-model units includes semantically close entities
and address different concerns. These units are Deployment,
Process, Data, Communication, Tool and Migration. Each
unit includes abstract syntax representing GSD elements and
their relations and visual concrete syntax for visualization of
these elements.

A. Deployment Unit

Deployment Unit concerns the deployment of the teams
to different sites. The abstract and concrete syntax of this
unit are shown in Figure 2.

Team is the primary essential entity in Deployment and
also in the whole meta-model and is defined as a group of
persons that work together to achieve a particular goal. A
Team may be organized in a temporary way that it will be
dismissed after its function is complete. Team is allocated at
a particular Site. Site may to a country, city or a building
where a Team works at. Location attribute determines where
Site is placed in the world. Time zone shows the local time
of Site. Teams may belong to different types of
Organizations, such as commercial organizations,
subcontractors or non-profitable organizations such as open
source communities. Teams can be from different countries
and depending on the society they are in, they may have
different Social Cultures. Like Social Culture, Team’s
background including work experience, the time that
members work together, their habits are captured by Work
Culture entity. Expertise Area, Team and Site can be further
decomposed into sub-parts. For example, a Software Team
may consist of sub-Teams each responsible for Design,
Implementation, Testing and Integration.

99

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Abstract Syntax

Language

Expertise Area
1 1| 2P

Tx

speaks has

Team

Work Culture 1 Social Culture

is temporary

has | is virtual has
* Site
Organization 1 [time zone
0.1 allocated at location .
type
i belongs to

Concrete Syntax
<Organization name>

Site: £ <site name>
2 <Team name>
<Teams> L]

Team:

<Properties>

Site-Site association: <Parent Site> visually contains <Child Site>

Expertise Area: Displayed as property of Team
Language: Displayed as property of Team
Social, Work Culture: Displayed as property of Team

Team-Team association: <Child Team> —®» <Parent Team>

Figure 2. Deployment Unit: Abstract and Concrete Syntax

B. Process Unit

Process Unit concerns the different kind of processes in
GSD. The abstract and concrete syntax of this unit are shown
in Figure 4.

Process is defined as a planned set of activities that aims
to provide some service. Teams participate in Process in
order to provide some service. Service is defined with
Function. A Function can be any service during software
development process that requires some Expertise Areas
such as software development, architecture design, business
management, requirements elicitation and so on.
Coordination is also a Function that should be provided for
coordinating several Teams’ activities. A Process consumes
or uses several different Data Entities and also creates other
Data Entities for providing targeted Functions. For
supporting activities defined in Process, Process concept is
further specialized into Workflow, Business Process and
Development Process (not shown in figure).

C. Data Unit

Data Unit is for representing ownership and physical
deployment of software development data. The abstract and
concrete syntaxes are shown in Figure 4.

Data Entity is the fundamental entity of this unit. It
represents any piece of data: digital, textual or informal piece
of information such as notes taken by developers, telephone
calls that are usually not recorded. Data Entity has size
whose unit is defined by size type; for example, a 120-page
report, 6 minutes of voice record, 2 gigabyte of digital data.
Creation date and last update date show the history of Data
Entity. Data Entity has Actual Type where Actual Format
can be one of predefined formats (video, sound, text, picture

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

and complex-Data Entity) or some designer defined format.
If Data Entity is digital, then in addition to Actual Format, it
has a Digital Format. Data Entity may be implemented in
one or more Languages.

Data Entity is stored in Data Storage. Data Storage
corresponds to any object in real world that can store
information. For example, some textual document is stored
in paper form, or it is stored in a voice record, or it is stored
digitally in the format of some text editor. Data Storage has
ability to store some Actual Types and if it can store digital
data, then it can support some Digital Types also. A Data
Storage instance is owned by one or more Teams and it can
be located in one Site or may be distributed over several Sites
like distributed databases.

Abstract Syntax

Team

. Coordination
1.* coordinates

1”*
includes J7

Function

Process

provides 1.* *
uses produces requires
0.* 0. 1.*
Data Entity ExpertiseArea
Concrete Syntax
Team: Data Entity:

<Team name> <Data Entity name>

Function:| f~ <Function name> Process: |dgh <Process name>

<Expertise Areas> <Teams>

Expertise Area: Displayed as property of Function

Function-Process association: <Function> —» <Process>

Data Entity-Process association: <Used Data Entity> —» <Process>

<Process>—» <Produced Data Entity>

Figure 3. Process Unit: Abstract and Concrete Syntax

D. Communication Unit

Communication Unit focuses on the representation of
both formal and informal communication activities between
Teams. The abstract and concrete syntaxes are shown in
Figure 5.

Communication is done over Communication Platform in
the context of Process and it can be an instance of
sudden/event based communication activity like a telephone
call or a continuous communication channel such as a
discussion forum. Type attribute is for representing in which
way Communication takes place such as email, phone call,

100

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

face-to-face chat and so on. Suggested time period is an
important attribute for GSD since Teams work in different
time zones, some Communication channels can be used
effectively in a defined time period. For example, phone
calls should be done during the hours when both sides are in
or around their work hours.

Communication has two sides, which are caller and
receiver. Generally speaking, caller starts communication
and receiver is the one who is called by caller. For example,
an email sender is classified as caller and receiver is the one
who receives email. Sometimes, there can be multiple callers
such as video conferences or there can be multiple receivers
such as discussion forums. It is also possible that caller and
receiver are the same such as a planned meeting. For all
cases, caller and receivers are considered as Teams in this
unit. While Teams communicate, one or more Data Entities
are carried in the context of Communication.

Abstract Syntax

* i .
Language ‘0—"‘1 ’u’ Actual Format

Data Entity
1“*
in

size
0.1

is Digital
Digital Format

Team size Type
creation Date

last Update Date

stored in

1>

L.*" located by 0.1

Site Data Storage
can store digital

owned by

1>

can store

can store

Concrete Syntax

Site: @

<Site name> Team:

<Data Storages>

<Team name>

Data Storage: |i=%) <Data Storage name>

<Compatible Formats>

<Data Entities>

Team-Data Storage association: <Data Storage> —» <Team>

Data Entity:

<Compatible Formats>

<Data Entity name>

Actual-Digital Format: @ <Format name>

Figure 4. Data Unit: Abstract and Concrete Syntax

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Abstract Syntax

Team | 17 has caller as Communication
type
h - is Formal
m_ is Syncronous
is Channel
1% X start Time
Data Entity | carries end Time
suggested Time Period
aims
1
Process [[L.* done over
Communication Platform

Concrete Syntax

Process:

{é}_‘ <Process name> Team:

<Team name>

Data Entity: Communication: |4 <Communication name>

<Data Entities>

<Data Entity name>

Communication Platform:| <Communication Platform name>

Team-Communication association: ~ <Caller Team> —» <Communication>

<Communication> —m <Receiver Team>

Communication-Process association: <Communication>—m <Process>

Communication-Platform association:<Communication>—m» <Platform>

Figure 5. Communication Unit: Abstract and Concrete Syntax

E. Tool Unit

Tool Unit captures details of tools used by Teams for
communication and providing Functions. The abstract and
concrete syntax are shown in Figure 6.

Tool is compatible with one or more Actual Format and
Digital Format. Platform is the set of Tools used by Teams
for communication or providing some functions. Depending
on the purpose, the platform is defined as Function Platform
or Communication Platform.

F. Migration Unit

Migration Unit concerns the migration and traveling of
Teams during GSD activities. These travels are especially
needed in the first and final phases of the projects to ease and
support coordination and integration. The abstract and
concrete syntax are shown in Figure 6.

Migration is executed by one or more Teams from Site to
Site at a particular date. In a Migration, Teams may carry
Data Storage such as documents, digital data containers and
so on. Migration is executed in the context of Process.

101

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Abstract Syntax

Communication Platform

Digital Format

Function Platform

used by consists of
1.* compatible with Lx
Team 1.* Tool
support Collaboration
1.% L.
used by consists of compatible with| 1..*

Actual Format

Concrete Syntax

Team: Tool:

<Team name>

5{ <Tool name>

<Compatible Formats>

Communication/Function Platform:

<Platform name>

<Tools>

Actual-Digital Format: @ <Format name>

Team-Platform association: ~ <Platform> —» <Team>

Figure 6. Tool Unit: Abstract and Concrete Syntax

Abstract Syntax

executed by

done in context of

Team Process
1 . .* 1 . *
Migration
date done from
1 -
Data Storage N Site
.) 1
carries done to

Concrete Syntax

o g <Migration name>
Migration:

<Processes>

<Data Storages>

<Teams>

Site: ﬁ <Site name>

Process:

= T
Data Storage: w <Data Storage name>

Migration-Site association: <Home Site> —» <Migration>

Team:

<Team name>

.{‘:}} <Process name>

<Migration> —Jm <Destination Site>

Figure 7. Migration Unit: Abstract and Concrete Syntax

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

G. Example Case

As an example case, consider a GSD environment with 5
Sites. Company A operates in United States. Customer
relations and requirements management jobs are done in
New York while software architecture is designed in Los
Angeles. Company B is hired as subcontractor for
developing software and testing, which is located in Pekin,
China. Moving from this case definition and Deployment
meta-model unit, the model in Figure 9 can be drawn.

D United States
@ New York ﬁ Los Angeles
Company A Company A
4 Requi Team - Architecture Team
Expertise Area: Requirement Analysis Expertise Area: Architecture Design
Languages: English, Spanish Languages: English, Spanish
Social Culture: American Culture Social Culture: American Culture
Work Culture: Work Culture 1 Work Culture: Work Culture 2
1 INTERNET
oD China
@ Pekin
Company B Company B
& Development Team - Test Team
Expertise Area: Java Development Expertise Area: Sofware Testing
Languages: Hindu, English Languages: Hindu, English
Social Culture: Indian Culture Social Culture: Indian Culture
Work Culture: Work Culture 3 Work Culture: Work Culture 4

Figure 9. Example Case Model

IV. RELATED WORK

Notably, architecting in GSD has not been widely
addressed. The key research focus in the GSD community
seems to have been in particular related to tackling the
problems related to communication, coordination and control
concerns. Clerk et al. [4] report on the use of so-called
architectural rules to tackle the GSD concerns. Architectural
rules are defined as “principles and statements about the
software architecture that must be complied with throughout
the organization”. They have defined four challenges in
GSD: time difference and geographical distance, culture,
team communication and collaboration, and work
distribution. For each of these challenges they list possible
solutions and describe to what extent these solutions can be
expressed as architectural rules. The work of Clerk et al.
aims to shed light on what kind of architectural rules are
necessary to guide the GSD. We consider our work
complementary to this work. In our work the design actions
that relate to the expected answers of questions are defined
as design actions.

Tool support has been named as one of the important
challenges for GSD since it requires making software
development tools and environments more collaborative
[13]. Booch and Brown [3] have introduced the vision for
Collaborative Development Environment (CDE), which is
defined as “a virtual space wherein all the stakeholders of the
project — even if distributed by time or distance — may
negotiate, brainstorm, discuss, share knowledge, and
generally labor together to carry out some task, most often to

102

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

create an executable deliverable and its supporting artifacts”.
A number of efforts have been carried out to support the idea
of CDEs. Whitehead [13] has presented a survey on existing
collaboration support tools in software engineering.
Whitehead distinguishes among four broad categories of tool
support to support collaboration in software engineering:
Model-based collaboration tools for representing the adopted
models; Process support tools for representing software
development process; Awareness tools for informing
developers about the ongoing work of others and to avoid
conflicts; Collaboration infrastructure to support data and
control integration and likewise support interoperability.
Despite the clear need and benefits of the existing CDE
tools, it appears that most of the work on CDE has focused
on the (social) collaboration concern and less on the
(technical) development part. Further the tools that address
development primarily focus on collaborative coding and
relatively little attention has been paid to architecture design.
There seems to be a general agreement that more research is
needed in this domain. Our approach and the meta-model
definition can be considered as part of the efforts for
enhancing CDE for design of GSDs.

Maciel et al. [10] present a domain-specific architecture
(DSA) defining middleware services to provide
interoperability in collaborative environments. Similar to our
approach they define a platform independent model that is
independent of platform specific models. In their approach
the reference architecture (PIM) is based on MDA’s UML
Profile for Enterprise Distributed Object Computing (EDOC)
[11] and the viewpoints defined in RM-ODP (Open
Distributed Processing-Reference Model) are adopted [8]. In
our approach we do not use a general purpose architecture
framework such as RM-ODP but adopt a meta-model based
on a domain analysis of the GSD literature.

V. CONCLUSION AND FUTURE WORK

Different challenges have been identified to set up a
Global Software Development environment. Our literature
study on GSD showed that in particular the challenges of
communication, coordination, and control of GSD is
addressed in the GSD community but less focus has been
provided on the modeling, documentation and analysis of
architecture for GSD. One of the key technical problems in
GSD projects is the evolution of platforms on different sites
and the need for interoperability among different sites. A
close analysis of the literature shows that the application of
MDSD has not been explicitly addressed, neither in the
GSD community nor in the MDSD community. In this
paper we have provided a general transformation pattern for
mapping a global platform independent model to the
platform specific models at local sites. Portability can be
supported by defining transformation definition that map
the new platform models to the global platform independent
models and vice versa. Interoperability is supported due to
the common model, global platform independent model that
conforms to the meta-model that we have defined in the
paper. The meta-model aimed to support the portability and
interoperability in GSD but also enhances the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

understandability and communication about GSD. In our
future work we plan to define domain specific languages for
the six units of the GSD meta-model. For this we will use
the Eclipse Modeling Framework [5] and develop the
corresponding tool support for realizing the automatic or
semi-automatic model transformations in GSD projects.

REFERENCES

[1] P. J. Agerfalk, B. Fitzgerald, H. H. Olsson, and E. O’
Conchu’ir, “Benefits of Global Software Development: The
Known and Unknown,” in International Conference on
Software Process, ICSP 2008. 2008. Leipzig, Germany,:
Springer Berlin / Heidelberg

[2] J. Bézivin. On the Unification Power of Models. Software and
System Modeling (SoSym) 4(2):171-188, 2005.

[3] G. Booch and A. Brown. Collaborative Development
Environments. Advances in Computers Vol. 59, Academic
Press, August, 2003.

[4] V. Clerc, P. Lago and H. van Vliet, “Global Software
Development: Are Architectural Rules the Answer?” Proc. of
the 2nd International Conference on Global Software
Engineering, pp. 225-234. IEEE Computer Society Press, Los
Alamitos, 2007.

[5] Eclipse Modeling Framework, http://www.eclipse.org/
modeling/emf/, accessed: July 2011.

[6] J. D. Herbsleb, Global Software Engineering: The Future of
Socio-technical Coordination, 2007 Future of Software
Engineering, p.188-198, May 23-25, 2007

[71 Institute of Electrical and Electronics Engineers. IEEE

Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[8] 1SO-2004. Use of UML for ODP system specification.
Working Draft. ISSO/IEC JTC1/SC7.

[91 A. Kleppe. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Addison-
Wesley Longman Publishing Co., Inc., Boston, 2009.

[10] R. S. P. Maciel, C. G. Ferraz, and N. S. Rosa, “An MDA
domain specific architecture to provide interoperability
among collaborative environments,” in Proceedings of the
19th Brazilian Symposium on Software Engineering (SBES
’05), pp- 1-16, Uberlandia, Brazil, October 2005.

[11] OMG EDOC. UML Profile for Enterprise Distributed Object
Computing Specification. OMG Adopted Specification
(ptc/02-02-05), 2002.

[12] OMG Model Driven Architecture, OMG Model Driven
Architecture. http://www.omg.org/mda/. Accessed in June
1,2011.

[13] J. Whitehead, Collaboration in Software Engineering: A
Roadmap, In FOSE '07: 2007 Future of Software
Engineering, pp. 214-225, 2007.

[141 1. S. Wiese and E. H. M. Huzita, "IMART: An
Interoperability Model for Artifacts of Distributed Software
Development Environments," Global Software Engineering,
2006. ICGSE '06. International Conference on , vol., no., pp.
255-256, Oct. 2006.

103

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A New Approach to Software Development Process
with Formal Modeling of Behavior
Based on Visualization

Abbas Rasoolzadegan, Ahmad Abdollahzadeh Barfourosh
Information Technology and Computer Engineering Faculty
Amirkabir University of Technology (Tehran Polytechnic)
{rasoolzadegan, ahmad}@aut.ac.ir

Abstract—This work investigates the advantages and
limitations of various modeling methods. Despite of their
advantages, due to some limitations of each modeling method,
using only one of them as the sole approach will not ensure
high quality software. This work proposes a new feasible
approach to improve the software development process by
integrating semi-formal and formal modeling methods. In this
approach, software is initially modeled using the formal
specification language Object-Z. The formal models, produced
by Object-Z, are formally refined to ensure correctness. Then,
software behavior is extracted and visualized in specific
intervals using UML. Applying design patterns to the
visualized models increases reusability and flexibility. The
newly improved models are then re-formalized. Such an
iterative and evolutionary process continues until developing
the software with the desired quality. This paper proposes a
new approach to develop reliable, yet flexible software.

Keywords-Formalization; visualization; design patterns;
formal modeling methods; semi-formal modeling methods.

I. INTRODUCTION

Requirements engineering (RE) plays a crucial role in
software development cycle. Studies show that the major
causes of most software projects failure are imprecise and
incomprehensive understanding, elicitation, specification,
analysis, validation, and verification of software
requirements during software development process [3].
Moreover, mainstream software development, with its
recurring practice of trial and error, already suffers from its
premature insistence on code and program testing. The
problem is that code is expensive; it has too much detail,
and is not at the right level of abstraction to help thinking
about the problem and design of its solution [1].

The increasing importance of requirements engineering
and need for further abstraction leads to increasing use of
models during software development cycle, in general, and
throughout RE process, in special. Models can be used at
different phases of a software life-cycle, ranging from
requirements (more abstract) to detailed design (more
concrete). It also gives a basis for a stepwise approach to
software development: abstract models are refined into more
concrete ones in a stepwise manner, where each step carries
some design decisions. This is known as model refinement

[3].

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Models and modeling play a crucial role in software
development cycle. In software engineering, models are
used to describe both the problem (requirements) and the
solution (design) in order to gain a better understanding of
the issues involved. Once a model has been constructed it
can be analyzed to uncover flaws and expose fundamental
issues [23]. This role of models cannot possibly be assumed
by code. The idea is not new, but there is a recent trend
towards more use of models in mainstream circles of
software engineering. This is the goal of MDSE [19], which
tries to alleviate the complexity of software development by
using models. Model transformation has a key role in
MDSE. A model transformation takes as input a model
conforming to a given meta-model and produces as output
another model conforming to a given meta-model. One of
the characteristics of a model transformation is that it is also
a model, i.e. it conforms to a given meta-model.

There are two reasons for against-our-expectation
behavior of the software [25]: either there are shortcomings
or omissions in the original specification, or the software
does not conform to its specification. These two issues result
from the following causes: 1) incomplete, ambiguous, and
inconsistent requirements specification, 2) imprecise and
imperfect verification of the specification and design which
in turn lead to incomplete and untimely discovery of the
software’s errors during the development cycle. These
problems arise from the weaknesses of informal and semi-
formal modeling methods (SFMMs) in specification and
verification of the software requirements.

This paper investigates the advantages and shortcomings
of SFMMs and formal modeling methods (FMMs) by
surveying the literature [1][5][13][25]. Reference [26] has
already investigated the advantages and disadvantages of
SFMMs and FMMs, empirically, by specifying the multi-lift
system case study. The most important conclusion is that
each modeling method has some unique advantages and
limitations. Using only one of them as the sole approach
leads not to satisfy all required aspects of software quality
such as reliability, flexibility, reusability, scalability, and so
on [30]. Combination of these methods is necessary to
successfully understand, analyze, specify, validate, and
verify requirements, problems, and solutions. Although,
there are several valuable attempts to integrate these

104

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

methods to utilize unique advantages of both formal and
semi-formal modeling methods, there is a long way ahead to
achieve the promised goals.

This paper proposes a new approach to enhance the
software development process. This work emphasizes on the
software behavior rather than its structure. In the proposed
approach, the formalism plays the key role, i.e., the structure
and behavior of the software is initially modeled using a
suitable formal modeling language (such as Object-Z).
These formal models, along with formal refinement [3]
ensure correctness and reliability. Then, with an iterative
and evolutionary approach and in specific intervals,
software behavior is extracted from formal models to be
visualized in a semi-formal modeling language (such as
UML). Visualized behavior increases and facilitates the
interactions among project stakeholders (such as analyzers
and designers), who are not, necessarily, familiar enough
with complex mathematical concepts of formal methods.
This also provides the possibility of applying design patterns
on visualized behavior to improve its flexibility, reusability,
and scalability. So, potential shortcomings and
inconsistencies of the software behavior are identified and,
consequently, required changes are applied and a newly
improved version of the formal behavior is produced. The
improved models are then re-formalized. The proposed
approach is a step towards development of correct, reliable
[6], flexible, reusable, and scalable software through
enabling the construction of formal models from semi-
formal ones (formalizing) and vice versa (visualization)
during an iterative and evolutionary approach. References
[26] and [27] present a case study in order to show the
proposal applicability.

A detailed study regarding visualization and
formalization is given in [1]. All related works are just a
step in the right direction, but much more is yet to be done.
The most frequently adopted approach is to define
transformations between the visual and formal models
[11[2][4][7][11][12][14][18][20][23][24]. However, a
significant problem with these suggested approaches is that
the transformation itself is often described imprecisely, with
the result that the overall transformation task may be
imprecise and incomplete. Consequently, the confidence the
developer may have in the models is reduced, making the
transformation approach unreliable.

The rest of this paper is organized as follows: Section 2
presents the motivation of the work by describing the
reasons of integrating SFMMs and FMMs and its
importance. The advantages and limitations of semi-formal
and formal modeling methods are also investigated
according to the literature review in this section. Section 3
defines the problem to be solved by the proposed approach.
Finally, Section 4 discusses future work and draws
conclusions.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

II. MOTIVATION

This section describes the motivation of this paper via
elaborating the benefits and limitations of SFMMs and
FMMs according to the literature review.

A. Semi-formal Modeling Methods

SFMMs consist of a development method and a
collection of notations for modeling software systems. UML
is a unification of semi-formal modeling notations [23][31].
In summary, the main strengths of semi-formal techniques
are as follows:

e Semi-formal notations are graphical, making them
appealing, intuitive, and easy to be adopted. They are
good at describing particular aspects of systems,
abstracting away from details, and giving a good overall
picture of what is being described. Sometimes they do
not require a great deal of expertise to be understood. So
they provide a good medium for discussions with clients.

e SFMMs are more than just a notation. They provide
step-by-step guidance on how to approach problems.
They encourage problem decomposition, which helps to
reduce complexity.

Lack of a sound mathematical basis is the major
weakness of SFMMs. They do not have a formal semantics.
There are several problems related to their semantics:

o Either they are defined informally and vaguely using
natural language, or they are defined through meta-
modeling using some meta-language that is not precisely
defined.

e Developers tailor the interpretation of diagrams to the
problem at hand informally, tacitly, and sometimes
unconsciously. This constitutes a source of confusion
and ambiguity. Such misinterpretations might be even
greater if the specification volume is large or
development team crosses national and cultural
boundaries [5].

These limitations lead to lack of means for mechanical
analysis. They can also make the understanding more
apparent than real; All is too easy and superficial, and the
specifier is never confronted with the relevant issues. As a
result, semi-formal methods cannot produce a precise,
complete, and consistent specification. Specification plays a
vital role in producing reliable software. Design and
subsequent implementation is based upon the specification.
Misunderstandings in the specification lead to the delivery
of final applications that do not match user requirements.
Moreover, testing is always carried out with respect to
requirements as laid down in the specification. If the
specification document is in any way ambiguous it is open
to interpretation, and hence misinterpretation, making
testing a rather inexact science.

Next section shows how the formal methods help in
covering the weaknesses of SFMMs in specification,
validation, and verification.

105

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

B. Formal Modeling Methods

FMMs are inspired by the way mature engineering
disciplines build their artifacts: based on prediction and
calculation with sound mathematical theories. Formal
methods are utilized in all phases of software development
process. FMMs, using formal languages such as Object-Z
[7], provide the software with a precise, unambiguous, and
abstract specification. In the next steps, required details are
added to the initial abstract specification through an
evolutionary process, including some design steps towards
the final program. Accordingly, the initial formal
specification is gradually refined. The refinement process
will proceed until the generation of the final code [3].
Certain notations of formal methods support the notion of
formal refinement. Formal refinement ensures that these
refinements and transformations are correct. The correctness
of a refinement is demonstrated through mathematical proof
[23]. The benefits of using the formal modeling techniques
have been recognized as follow:

e Formal modeling helps to gain a deep understanding of
the system and its domain. It encourages the specifier to
be abstract, yet rigorous and precise, forcing the modeler
to ask all sorts of questions.

e Formal modeling clarifies the customer's vague ideas,
revealing ambiguities, inconsistencies, and
incompleteness in the requirements [23].

e The analysis of formal models can be used to support
verification and validation. In verification, a formal
model can be proved or checked for the satisfaction of
desired properties, and that a refined design or
implementation satisfies its specification. In validation, a
requirements model can be checked against its
requirements for white-box system testing either through
animation or proof, and for black-box system testing by
generating test cases from the model.

Although the increased rigor, precision and means of
calculation that formal techniques offer seems indisputable
[22], formal methods have not been taken up by industry. To
explain this, many reasons have been hypothesized,
education being one of them. So, FMMs have been
embraced only in domains where reliability is absolutely
crucial, such as safety-critical, security-critical, and high
integrity systems [5]. Some other recognized shortcomings
of FMMs are given below:

e Formal methods are notorious for being hard. Substantial
efforts are required for formal modeling and verification.
They are only effectively usable by highly-skilled
experts.

e Most formal methods are suited to describe particular
aspects of systems, but usually not all aspects. The
problem occurs when all aspects need to be modeled.

e Formal methods provide a notation to write models and
approaches to analyze them. However, software
engineering practices require further support: guidelines,
approaches to modeling, and patterns.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

e The large variety of formal methods makes the choice of
a particular one difficult.

e Most formal methods have little automated support
beyond type-checking; developers are usually left the
onus of performing proofs, which demand too much
time and expertise for practical application.

e Practitioners need to be trained, and, since there is not
much experience in using formal methods, the costs
associated with their use are high. They also require an
investment of time and money in specification, before
any code is written.

The main conclusion is that FMMs and SFMMs have
some advantages and limitations. Using only one of them as
the sole approach leads not to satisfy all required aspects of
software quality. This paper advocates an approach to
building a framework for rigorous MDSE based on
combining UML as a semi-formal language with Object-Z
as a formal modeling language. SFMMs are supplemented
with FMMs to introduce rigor in the development and to
sweeten formal methods usage with diagrams.

1L

The problem to be investigated by this work is defined in
this section. Solving this problem is a step towards
developing high quality software. To do so, a new approach
based on integrating Object-Z, as a formal, and UML, as a
semi-formal modeling language, is proposed.

Using FMMs as the sole approach to software
development leads to reliable software but with the
following issues:

1. There are different interpretations of the initial informal
requirements by customer and development team. There
is also possibility of changing requirements during
software development. These issues end to production of
a software in contrary with the initial requirements. Fig.
1 illustrates this problem. There are two reasons for such
an incorrect result: 1) there is no possibility of proving a
perfect match between actual informal requirements and
initial formal specification (T;), 2) it is difficult to do

validation in the interval 7, because of the trouble in

PROBLEM DEFINITION

understanding the formal models. So formal methods,
certainly brings us to a result that conforms to the initial
formal specification (because of formal refinements),
however, it does not necessarily conform to the actual
informal requirements.

Y

h 4

Actua‘l informal Iumz‘tl‘Ionlnal Final product
requirements specification

Informal transformation Formal refinement

Figure 1. Imprecise interpretation of customer requirements

Visualization is an approach to solve the first problem,
which leads to facilitate requirements validation in the
interval ST, [15]. However, prototyping [16] is a better

106

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

solution for requirements validation. To do so, the formal

specification should be transformed so that its new form can

be executed or animated [16][32].

2. Even assuming that the initial formal specification
exactly represents the actual informal functional
requirements of the customer, we still do not reach the
software with good enough quality of non-functional
requirements such as reusability, flexibility, scalability,
and extendibility. There are two reasons for such an
unexpected result: 1) difficulty in utilizing the heuristic
and narrative techniques of software engineering such as
design patterns in the interval §7; , 2) inability of

development team members such as analyzers and

designers in understanding complex mathematical

concepts of formal languages.

This work aims to solve the second problem. To do so, a
new approach is suggested to improve software
development process by combining Object-Z and UML to
achieve high quality models of specification and design. In
other words, this work proposes a new approach to develop
high quality software through model transformation between
Object-Z and UML. Fig. 2 illustrates a schematic view of
the new proposed approach. Visualization facilitates
understanding of the formal models and subsequently
provides possibility of interaction with stakeholders, who
are not necessarily familiar enough with complex
mathematical concepts of formalism. It also simplifies using
the narrative techniques of software engineering such as
design patterns during software development process.

Actual informal requirements |

A 4
I Initial formal specification

Applying Design
Patterns leads to
more flexible

models

1% transformation

=

Visualizing formal - A2 - - ’E
models (specification 2" transformation S |e
or design) 7 g Z:—

€ - 5 TE"
Applying the N7 E

required changes to nth transformation

Visualized initial formal models

model

VAV AW AW A

X

N

<

4

| Final program |

Figure 2. A schematic view of the proposed approach

As illustrated in Fig. 2, the initial formal specification is
produced as the first artifact, according to the informal
requirements of the stakeholders, using Object-Z. The initial
formal specification is then refined using several
transformations. Details of design are gradually added to the
initial formal specification during transformations referred
to as formal refinement. Formal refinement ensures
correctness and reliability of the produced artifacts. In time

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

of reviewing the artifacts from the aspect of behavioral
design patterns, the last refined formal artifact is visualized
in a dominant semi-formal modeling language, i.e., UML.
UML diagrams make it possible to revise the structure and
behavior of the software from the view points of design
patterns. The visualized model is then gradually revised
using behavioral design patterns. Such a revision improves
the flexibility and reusability of the visual models. The last
revised visual model is then re-formalized in Object-Z.
Repeatedly, the more required details of design or even
implantation are augmented to the formal model using
formal refinement. Such an iterative and evolutionary
process continues until achieving a final product with the
desired quality.

Software includes two aspects: structure (static) and
behavior (dynamic) [16][21]. The proposed approach
concentrates on software behavior. It facilitates analyzing
and validating the behavioral aspect of formal models of
software by visualization. Visualization prepares an
appropriate ground to use heuristic and narrative principles
of software engineering such as behavioral design patterns
during software development process. So, the potential
shortcomings and inconsistencies of the behavioral aspect of
these models are identified. This improves the process of
gradual augmentation of design decisions to the initial
formal specification. Such an improvement leads to more
flexibility, reusability, and scalability in developing
software.

Design patterns are high level building blocks that
promote elegance in software by ordering proven and
timeless solutions to common problems in software design.
Applying design patterns in software design has important
effects on software quality metrics such as flexibility,
reusability, scalability, and robustness [9][22][28][29][33].
There are three types of design patterns, including structural,
creational, and behavioral patterns [8][9]. According to the
above-mentioned goal of this work, we focus on the
behavioral patterns (such as mediator, observer, and state)
which shift your focus away from flow of control to let you
concentrate just on the way objects are interconnected.

Object-oriented design encourages the distribution of
behavior among objects to increase software reusability and
flexibility. An important issue here is how peer objects
know about each other. Peers could maintain explicit
references to each other, but that would increase their
coupling. Though distributing software into many objects
generally enhances reusability and flexibility, proliferating
interconnections tend to reduce reusability again. Moreover,
it can be difficult to change the software behavior in any
significant way, since behavior is distributed among many
objects. Such a difficulty decreases the flexibility again. As
a result, you may be forced to define many subclasses to
customize the software behavior. The mediator pattern
avoids this by introducing a mediator object between peers.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their

107

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

interaction independently. In this respect, we attempt to
propose a systematic approach to improve the quality of
formal design from the viewpoint of the mediator design
pattern. That is, a formal design, in Object-Z, is received as
an input, and then behavior of this formal design is
abstractly visualized, in UML, as an output. Indeed, there is
a focus on visualizing those aspects of the software behavior
that are prone to revising from the viewpoint of the mediator
pattern. Moreover, this approach, after full implementation,
will automatically explore and recognize the suitable times
in order to review the software behavior from the view point
of mediator pattern throughout the software development
process.

Moreover, software distribution into a collection of
cooperating classes requires maintaining consistency among
related objects. You don’t want to achieve consistency by
making the classes tightly coupled, because that reduces
their reusability and flexibility. Observer pattern define a
one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and
updated automatically. In short, the required activities to
visualizing the software behavior (by focus on those aspects
of behavior that are required for revision from the viewpoint
of observer pattern) include: 1) systematic elicitation of the
objects that their states are dependent on each other, 2)
visualizing the discovered objects as appropriate candidates
for review, as well as 3) automatic proposing of the suitable
times to review the software behavior from the viewpoint of
observer design pattern.

Strategy pattern define a family of algorithms,
encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients
that use it. We use the strategy pattern when: 1) many related
classes differ only in their behavior. Strategies provide a
way to configure a class with one of many behaviors, 2) you
need different variants of an algorithm. Strategies can be
used when these variants are implemented as a class
hierarchy of algorithms, and 3) a class defines many
behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals,
move related conditional branches into their own Strategy
class. So the Strategy pattern increases the flexibility
through defining families of related algorithms, preventing
subclassing, and eliminating conditional statements.
Summarily, the required activities to visualize the software
behavior form the viewpoint of strategy pattern include: 1)
systematic discovery and elicitation of the classes that have
several behaviors, 2) visualizing the discovered classes as
appropriate candidates for review, as well as 3) automatic
proposing of suitable times for software behavior review
from the viewpoint of the strategy design pattern.

In all above-mentioned revision processes, the required
changes, revealed after visualization, are re-formalized and
thus the primary formal models are improved from the view
point of behavioral design patterns. Software behavior is
visualized from the required aspects using the suitable
diagrams of UML such as class diagram [15][16]. Class

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

diagram makes it possible to revise the structure and
behavior of the software from the view points of design
patterns

There has been an evolution in the way of transforming
the models [10][17]. In model transformation, the most
important issue is how to preserve the semantic and the
syntactic structure of model elements. To do so, this work
tends to propose a formal bidirectional meta-model-based
transformation between UML and Object-Z. To do so, a
meta-model should be formally defined for Object-Z in a
similar architecture to which the UML meta-model is
defined [11]. Then these meta-models will be used to define
a systematic transformation between the two languages at
the meta-level. In this way, we can provide a precise,
consistent, and complete transformation between the two
languages preserving the semantics and the syntactic
structure of models presented in both languages. Since UML
and Object-Z share basic object-oriented concepts, an
attempt to create a systematic transformation between the
two languages seems sound. Proposing such a meta-model-
based mechanism is left for future work. In the following
subsections, as an instance, we show how a common
construct between UML and Object-Z such as class can be
formally defined at the meta-level in a unified format using
Object-Z [11]. Then a formal rule is presented to transform
class construct from UML to Object-Z based on the formal
definitions of class in UML and Object-Z at meta-level.

A. Formal definition of UML class

A UML class has a name, attributes, and operations. An
attribute has a name, a visibility, a type, and a multiplicity.
An operation has a name, a visibility, and parameters. Each
parameter of an operation has a name and a given type. Prior
to formalizing classes, we define a given set, Name, from
which the names of all classes, attributes, operations,
operation parameters, associations, and roles are drawn:

[Name]

The class UMLType, as an Object-Z class, is a meta-
type, from which all possible types in UML such as object
types, basic types (integer and string), and so on can be
derived. Each type has a name and contains a collection of
its own features: attributes and operations. Thus, a circled ¢
which models a containment relationship in Object-Z is
attached to the types of attributes and operations.

UMLType

name : Name
attributes : F UMLAttributeg
operations : F UMLOperationg,

Attributes and parameters are also defined as follows.
Variable multiplicity in UMLAttribute describes the possible
number of data values for the attribute that may be held by

108

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

an instance. Visibility in UML can be private, public, or
protected.

VisibilityKind
__ UMLAttribute

= private | public| protected

name : Name

type :| UMLType
wvisibility : VisibilityKind
multiplicity : P} N

—_ UMLParameter

name : Name
type 1 UMLType

Within an operation, parameter names should be unique.

— UMLOperation

name : Name
visibility : VisibilityKind
parameters : seq UMLParameterg

V pl, p2 : ran parameters e pl.name = p2.name = pl = p2

With these classes, an Object-Z class UMLClass is
defined as follows. Since a class is a type, it inherits from
UMLType. Attribute names defined in a class should be
different and operations should have different signatures.
The class invariant formalizes these properties.

— UMLClass
UML Type

Voal, a2 : attribules » el.nane = a2.name = al = a2
Y oopl.op2 : operations e
(opl.name = op2.name A\ #Fopl.parameters = #op2. parametersi
YV i:1l..#opl.parameters ¢
opl.perameters| i .
opl.parameters(i).type = op2.parameters(i).type) = opl = op2

t).name = op2.parame

B. Formal definition of Object-Z class

First, the semantics of type Name is extended to include
the names of all classe, attributes, operations, and operation
parameters in Object-Z. The following Object-Z class
OZType is a formal description of metaclass OZType. In the
metamodel, OZType is an abstract class from which all
possible types in Object-Z can be derived.

OZType

name : Name

The Object-Z class OZAttribute is a formal description
of attributes. Each attributs has a name, a type, and a
multipilicity constraining the number of values that the
attribute may hold. It also has an attribute, relationship, to
represent whether this attribute models a relationship

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

between objects. Like UML, relationships between objects
can be common reference relationships, shared, or unshared

containment relationships. For this, we define an
enumeration type, RelationshipKind, which can have
relNone, reference, sharedContainment, and

unsharedContainment as its values. The value relNone
represents pure attributes of a class. When an attribute
models a relationship, the attribute navigability represents
the direction of the relationship (although the navigability of
a relationship is modeled impilicitly in Object-Z). Visibility
in Object-Z can be public or private.

VisibilityKind = private | public

RelationshipKind = relNone | reference|

sharedContainment | unsharedContainment
NavigabilityKind ::= navNone | bi| one

__ OZAttribute

name : Name

type :}. OZType

visibility = VisibilityKind
multiplicity : Py N

relationship : RelationshipKind
navigability : Navigability Kind

We formalize OZParameter and OZOperation in the
same way as OZAttribute.

—_ OZParameter

name : Name
type -1 OZType

__ OZOperation

name : Name
visibility = VisibilityKind
parameters : seq OZParameterg

Now we are in the position to formalize Object-Z
classes. An Object-Z class named OZClass is a formal
description for classes in Object-Z. Since classes are a kind
of type, OZClass inherits from OZType. The attribute
superclass maintains inheritance information of classes.
Each class has its own attributes and operations defining
static and dynamic behaviors of its instances. Circular
inheritance is not allowed. Attribute and operation names
should be unique within a class. These properties are
specified in the predicate of OZClass. Functions
directSuperclass and allSuperclass return direct superclass
of a class and all inherited superclasses of a class,
respectively.

109

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

directSuperclass : OZClass — P OZClass
allSuperclass : OZClass — P OZClass

YV oc: OZClass e
directSuperclass(oc) = oc.superclass
allSuperclass(oc) = directSuperclass(oc) U
(U {sco : directSuperclass(oc) & allSuperclass(sco)})

__0ZClass

OZType

superclass : F OZClass
attributes : B OZAttributeg
operations : F OZOperationg

self & allSuperclass(self)
Y al, a2 : attributes ® al.name = a2.name = al = a2
Y opl, op2 : operations e apl.name = op2.name = opl = op2

C. Formal transformation rule for class

As illustrated in Fig. 3, a formal description for mapping
a UML class to an Object-Z class is given by function
mapUMLClassToOZ that takes a UML class and returns the
corresponding Object-Z class. The UML class name is used
as the Object-Z class name. All attributes of the UML class
are declared as attributes in the state schema of the
corresponding Object-Z class. Also, each operation in the
UML class is translated to an operation schema. In UML,
types of attributes are a language-dependent specification of
the implementation types and may be suppressed. Types of
attributes in Object-Z are language-independent
specification types and cannot be omitted. Operations
parameters are similar. Detailed transformation rules
regarding attribute types and operation parameter types are
not provided. Instead, an abstract function, convlype is
defined that maps a UML type to an Object-Z type.

| convType : L UMLType — | OZType
mapUMLClassToOZ : UMLClass — P OZClass
WV oue : UMLClass e

Y wa : uc.attributes e
Joa : oc.attributes o

Y ot uc.operations e
J oo : oc.operations e

YV oup : ran wo.parameters e
Jop : ran oo. parameters o

Visibility and multiplicity features are mapped to those of
Object-Z.

An appropriate evaluation method helps determine the
overall effects of the new approach in relation to promised
objectives. This method also includes any recommendations
for improvement. As previously mentioned, the major goal
of introducing the new approach is to improve the process of
formal modeling (including specification and design) of
software behavior based on visualization. So we should
measure the capability of the suggested approach in
satisfying the expected goals. Evaluation criteria of the
proposed approach include: 1) correspondence percentage
between visual and formal models transformed to each other
by the proposed meta-model based transformation method,
2) the amount of increasing the quality (such as flexibility,
reusability, and scalability) of the developed software using
the proposed method. As we intend to propose a meta-
model-based transformation approach, a formal and
systematic transformation between the two languages will
be defined at the meta-level. So we can prove the
correctness, precision, and completeness of the
transformation mathematically. In addition, to demonstrate
the proposed approach, a high quality multi-lift system as a
non-trivial case study will be developed using the proposed
approach.

IV. CONCLUSION AND FUTURE WORK

Although, the widespread use of SFMMs in mainstream
software development provides the possibility of developing
flexible, reusable, and scalable software, it does not lead to
software reliable enough for safety-critical purposes. Their
semantics are not well defined. FMMs have precise
semantics, allowing for unambiguous models of systems to
be specified and designed. However, their use has not been
widely adopted due to the mathematical nature of the
languages.

mapUML ClassToOZ (ue) = {oc: OZClass | we.name = oc.namen

oa. name = ua.name A oa.type = convType(wa. type)A
oa.visibility = va.visibility A oa.multiplicity = va.multiplicityA
oa.relationship = rellNone N\ oa.navigability = navNone

oo.name = uo.name A oo, visibility = wo,visibility

op.name = up.name A op.type = convType (up.type)}

Figure 3. Formal transformation rule for class

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

110

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Investigation of integrated methods has taught us many
things: (a) visual modeling notations and formal methods
can coexist within the same development and complement
each other when developing software models, (b) this
coexistence is useful and provides many benefits, and (c)
formalization of diagrammatic languages, like UML, and
visualization of formal models, like Object-Z, is far from
trivial.

This work proposes a new approach for integrating
visual and formal models to ensure achieving more flexible,
reusable, scalable, yet reliable software. To do so, we
propose a precise mechanism to transform graphical models
into formal specifications and vice versa. This work intends
to present a meta-model-based transformation between
UML and Object-Z. The two languages will be defined in
terms of their meta-models, and a systematic transformation
between the models will be provided at the meta-level. As a
result, we provide a precise, consistent, and complete
transformation between visual models in UML and formal
models in Object-Z. Visualizing the formal models of the
software behavior prepares an appropriate ground to revise
them from the viewpoints of design patterns. Although, this
paper draws the path towards solving the defined problem
and achieving the promised goals, proposing the meta-
model-based transformation is left for future work.

REFERENCES

[1T N. Amalio, Generative frameworks for rigorous model-driven
development, PhD thesis, Dept. of Computer Science, University of
York, 2006.

[2] K. Anastasakis, B. Bordbar, G. Georg, and 1. Ray, “UML2Alloy: A
Challenging Model Transformation”, Proc. ACM/IEEE 10"
International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pp. 436-450, 2007.

[3] D. Bjerner, Software Engineering 3: Domains, Requirements, and
Software Design, Springer, 2006.

[4] F. Bouquet, F. Dadeau, and J. Groslambert, “Checking JML
specifications with B machines”, Proc. ZB 2005, LNCS, vol. 3455,
Springer, pp. 434-453, 2005.

[5] Q. Charatan and A. Kans, Formal Software Development: From
VDM to Java, Palgrave Macmillan, 2004.

[6] R.N. Charette, “Why software fails”, IEEE Spectrum, vol. 42(9), pp.
42-49,2005.

[71 R. Duke and G. Rose, Formal Object-Oriented Specification Using
Object-Z, MacMillan Press, 2000.

[8] E. Freeman, E. Freeman, and B. Kathy Sierra, Head First Design
Patterns. O’Reilly Media, First edition, 2004.

[91 E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Publishing Company, Fifth printing, 1995.

M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum,
“Generating Transformation Rules from Examples for Behavioral
Models”, Proc. Second International Workshop on Behavior
Modeling: Foundation and Applications, Paris, France, 2010.

[11] S. Kim and D. Carrington, “A formal meta-modeling approach to a
transformation between the UML state machine and Object-Z”, Proc.

ICFEM 2002, LNCS, vol. 2495, Springer, pp. 548-560, 2002.

H. Miao, L. Liu, and L. Li, “Formalizing UML models with Object-
Z”, Proc. ICFEM2002, Springer-Verlag, pp. 523-534, 2002.

[12]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[13] J. Bowen and M. Hinchey, “Seven more myths of formal methods”,
IEEE Software, vol. 12 (4), pp. 34-41, 1995.

I. Poernomo, “Proofs-as-model-transformations” LNCS, vol. 5063,
pp- 214-228, 2008.

F. Polack, “SAZ: SSADM version 4 and Z”, Proc. Software
Specification Methods: an overview using a case study, Springer, pp.
21-38,2001.

I. Porres, “Modeling and Analyzing Software Behavior in UML”,
PhD thesis, Department of Computer Science, Abo Akademi
University, Finland, 2001.

[14]

[15]

[16]

[17] R. Pressman, Software Engineering: A Practitioner’s Approach, 7"

edition, McGraw Hill, 2009.

S. K. Rahimi, “Specification of UML Model Transformations”, Proc.
Third International Conference on Software Testing, Verification and
Validation, pp. 323-326, Paris, 2010.

R. Razali, C. Snook, M. Poppleton, and P. Garratt, “Usability
Assessment of a UML-based Formal Modeling Method Using
Cognitive Dimensions Framework”, Human Technology, 2008.

D. C. Schmidt, “Model-driven engineering”, IEEE Computer, 39 (2),
pp. 25-31, 2006.

C. Snook and M. Butler, “UML-B: Formal modeling and design aided
by UML”, ACM Trans. Softw. Eng. Methodol, vol. 15 (1), pp. 92-

(18]

[20]

(21]

122, 2006.

[22] 1. Sommerville, Software Engineering, 8" edition, Addison Wesley,
June 4, 2006.

[23] S. Stepney, F. Polack, and I. Toyn, “Patterns to guide practical

refactoring: examples targeting promotion in Z”, Proc. ZB 2003,
Finland, LNCS, vol. 2651 of, Springer, pp. 20-39, 2003.

J. R. Williams, Automatic Formalization of UML to Z, MSc Thesis,
Department of Computer Science, University of York, 2009.

[25] J. Ludewig, “Models in software engineering — an introduction”,

Software and Systems Modeling, vol. 2(1), Springer-Verlag, 2003.

[26] A. Rasoolzadegan and A. Abdollahzadeh, Specifying a Parallel,
Distributed, Real-Time, and Embedded System: Multi-Lift System
Case Study, Technical Report, Information Technology and Computer
Engineering Faculty, Amirkabir University of Technology, Tehran,

Iran, 2011: http://ceit.aut.ac.ir/~86131901/Publications.htm.

A. Rasoolzadegan, A. Abdollahzadeh, “Empirical Evaluation of
Modeling Languages Using Multi-Lift System Case Study”, Proc.
MSV'l1: The 8th annual International Conference on Modeling,
Simulation and Visualization Methods, Las Vegas, Nevada, USA,
2011.

[27]

[28] S. Blazy, F. Gervais, and R. Laleau, “Reuse of specification patterns
with the B method”. Proc. ZB 2003, Turku, Finland, LNCS, vol.

2651, Springer, pp. 40-57, 2003.

A. Flores, R. Moore, and L. Reynoso, “A formal model of object-
oriented design and GoF design patterns”, Proc. FME 2001, LNCS,
vol. 2021, pp. 223-241, Springer, 2001.

A. H. Eden and T. Mens, “Measuring Software Flexibility”, IEE
Software, vol. 153(3), pp. 113-126. London, UK: The Institution of
Engineering and Technology, 2006.

OMG, Object Constraint Language (OCL). version 2.0, Object
Management Group, 2006: http://www.uml.org.

[29]

H. Liang, J. Song Dong, J. Sun, and W. Wong, “Software monitoring
through formal specification animation”, Innovations in Systems and
Software Eng., vol. 5(4), pp. 231-241, 2009.

S. Kim and D. Carrington, “A rigorous foundation for pattern-based
design models”, Proc. ZB 2005, LNCS, vol. 3455, Springer, pp. 242-
261, 2005.

111

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Non-Functional Requirements for Business Processes
in the Context of Service-Oriented Architectures

Oliver Charles

agilTech Information Technologies GmbH
Am Krebsgraben 15
D-78048 Villingen-Schwenningen, Germany
oliver.charles@agiltech.de

Abstract—We present novel concepts to formalize and apply
non-functional requirements (NFRs) for business processes in
the context of Service-Oriented Architectures (SOAs). Today,
popular languages for modeling business processes do not
support the specification of NFRs in a systematic manner.
However, there is a strong demand to explicitly address such
requirements when designing and deploying software systems.
In this paper, we elaborate an extension for BPMN (Business
Process Model and Notation) towards the modeling of NFRs. A
key feature is the tool independent representation of NFRs,
which will be achieved by applying the widely used WS-Policy
standard. Our approach also covers the mapping of the speci-
fied NFRs to the technical level represented by BPEL (Business
Process Execution Language). For the monitoring of NFRs we
exploit techniques from Complex Event Processing (CEP). A
key characteristic of our solution is its coherence: from NFRs
modeling at design level to their technical enforcement and
dynamic validation during execution. The feasibility of our
approach has been demonstrated by a proof of concept imple-
mentation based on NetBeans, Glassfish ESB, IEP as CEP
implementation, and the BPEL Service Engine.

Keywords-Non-functional requirements, Business process,
BPMN, BPEL, SOA, WS-Policy, Web services, Quality of service

l. INTRODUCTION

When introducing a Service-Oriented Architecture
(SOA) for some enterprise, the definition of appropriate
business processes as well as services plays a crucial role. A
business process can be viewed as a well-defined sequence
of activities to achieve a particular business goal. In order to
exchange data with back-end systems (e.g., ERP systems,
specific business applications and database systems), busi-
ness processes typically use course-granular services, which
hide the technical details of the services’ implementation.
Today, services are often realized with the Web services
technology. In other words, a business process within a SOA
composes a set of Web services in such a way that higher
business goals will be obtained.

When employing Web services in the area of so-called
mission critical business applications, “pure” Web services
are not sufficient. This is because in such an environment
non-functional requirements (NFRs) such as message relia-
bility, confidentiality, availability and performance must be
addressed. The importance of NFRs for Web services has
been stressed elsewhere (see e.g., [1] or [7]). There are
proven standards such as WS-SecurityPolicy [2] bringing
selected NFRs to Web services.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Bernhard Hollunder

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1
D-78120 Furtwangen, Germany
hollunder@hs-furtwangen.de

As Web services are composed by business processes,
the interaction of NFRs at service level on the one hand and
at process level on the other hand must be clearly defined.
Hence, it is crucial to assign — explicitly or implicitly — NFRs
to business processes such as time and resource consump-
tion, auditability and scalability (e.g., as described by Adam
and Doerr in [3]).

In the past, there has been much work on modeling func-
tional requirements of business processes. The most promi-
nent approaches used in SOA infrastructures are the Business
Process Model and Notation (BPMN) and the Business
Process Execution Language (BPEL). While BPMN prima-
rily focuses on the graphical representation of business
processes, BPEL tackles technical aspects such as the
mapping to Web services to be invoked during process exe-
cution. It should be noted that there is broad tool support, for
an overview see e.g., [4].

Currently, there is only very limited support for specify-
ing NFRs for business processes, though. In fact, the BPMN
and BPEL do not provide language features for including
NFRs features. As a consequence, when transforming a
process model into an executable format the application
developer must pollute the business logic with mechanisms
for realizing the desired NFRs. This approach, however,
would strongly limit the reusability and adaptability, if the
solution should be deployed in an environment where
different sets of NFRs must be supported.

In this paper, we present a novel approach for forma-
lizing NFRs for business processes that overcomes these
deficits. Special focus lies on its coherence, because we not
only cover the modeling of NFRs at design level, but also
their technical enforcement and their dynamic validation
during execution. Our approach comprises the following
aspects:

e Modeling of NFRs with BPMN and BPEL by ex-

ploiting standard extension mechanisms.

e Enforcement strategy for NFRs based on Web servi-

ce handlers.

e Usage of standards such as WS-Policy to formalize

NFRs at the technical level.
Static and dynamic validation of NFRs.
Tool support and proof of concept.

The paper is structured as follows. The next section will
give a short introduction to the underlying technologies
required to understand our approach. Related work will be

112

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

discussed in Section three, followed by a detailed description
of our solution. Section five will cover the proof of concept
implementation. Conclusions and open issues are part of the
final section.

Il. FOUNDATIONS

This section briefly introduces the most important con-
cepts and techniques as required for the understanding of our
approach. We start with Business Process Management,
which is the general area our results apply to. Then we pro-
vide background information to Non-Functional Require-
ments, followed by a short review of WS-Policy, which is a
well-known and widely used standard for formalizing NFRs
for Web Services and SOAs.

Due to limited space, this paper does not give an intro-
duction to BPMN and BPEL. Hence, we assume an under-
standing of the basic concepts of these technologies.

A. Business Process Management

Business Process Management (BPM) includes concepts,
methods, and techniques to support the design, imple-
mentation, enactment, monitoring, and strategy alignment of
business processes. In the context of SOAs, BPM focuses on
how business processes can be automated using SOA infra-
structure elements. The target is not only a high automation
of processes, but also to enable development and manage-
ment to react in a flexible and agile manner on changing bu-
siness or technical requirements.

BPM covers the following topics:

Strategy phase
Design phase
Execution phase
Monitoring phase.

As the name of the first phase indicates, the main focus is
the elaboration of the mid- to long-term alignment of an
enterprise and how IT can be leveraged to automate and
optimize business processes. Having defined the strategic
goals, in the design phase the identified business processes
are brought to “IT-level”. This includes a proper description
from which an implementation will be derived. The usage of
graphical modeling languages — in particular BPMN and
BPEL - is not only advantageous for the domain experts, but
also helps bridging the gap to the implementation level.
While the execution phase is concerned with the usage of the
implemented business processes by clients, the goal of the
monitoring phase is to receive data regarding the runtime
behavior such as identification of bottlenecks, quantity of
invoked processes, and performance analysis.

As already mentioned in the introduction, our solution
considers NFRs at the design, implementation, and monito-
ring level. That is the reason why we term it coherent.

B. Non-Functional Requirements

In system and software engineering there are mainly two
categories of requirements: functional and non-functional
requirements. A functional requirement describes a specific
business or technical functionality of a system in terms of the
input/output behavior. In contrast, a non-functional require-

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

ment addresses a quality of service (QoS) attribute of the
implementation. In software engineering, there was (and still
is) much research on NFRs for software systems. Standardi-
zation organizations such as 1SO have identified manifold
aspects (see e.g., ISO/IEC 9126 [6], which is superseded by
ISO/IEC 25000 [5]).

There are several publications that consider NFRs in the
specific context of SOA, e.g., by O’Brien, Merson, and Bass
[7]. OASIS [1] qgives a classification of different types of
NFRs (which are called quality factors). Besides others, the
following topics are covered:

e duration and response time
throughput
availability and reliability
standard conformance
observability
security aspects such as confidentiality, authenti-
cation, authorization, integrity, and non-repudiation
e pricing and accounting
e robustness.

Let us make some remarks. Even though we can find in
the literature characterizations of NFRs, there are often dif-
ferences regarding their exact meaning and definition. Some
of them can be described by a formula; e.g., response time,
duration, and availability. The behavior of other NFRs such
as integrity can be defined in terms of functions for digital
signature. Robustness is an example for an NFR that has
diverse facets such as error tolerance, often described as the
ability to deal with erroneous input. A business process, for
example, should not crash or run into an inconsistent state if
it is called with invalid parameter values.

C. WS-Policy

WS-Policy [8] is a specification of the W3C and provides
a policy language to formally describe “properties of a
behavior” of services. A WS-Policy description is a collec-
tion of so-called assertions. A single assertion may represent
a capability, a requirement or a constraint and has an XML
representation. An example for an assertion is

<Performance max_ runtime minutes="15"/>,

which formalizes a condition for the runtime behavior of a
particular business process.

WS-Policy introduces operators to form policies, which
are basically sets of assertions. Policies can be attached via
the WS-PolicyAttachment [9] specification to other entities
such as a BPEL process description and a Web service’s
WSDL. We will come back to this issue when introducing
our solution.

I1l. RELATED WORK

In [10], Pavlovski and Zou present an approach to model
NFRs for business processes in a graphical manner. They
introduce extensions for BPMN, the enforcement on the
technical level (e.g., in BPEL) has not been elaborated,
though. For the modeling of NFRs, Zou and Pavlovski
propose two extensions of BPMN: i) an “operating
condition” artifact and ii) a “control case” artifact. With an

113

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

operating condition artifact, a business process modeler
should be able to connect NFRs such as security, performan-
ce or availability to activities of the BPMN process model.
The use of the control case artifact is optional and is
introduced to refine an operating condition artifact. From a
more technical point of view, a control case artifact is a
reference to a table containing detailed information about the
modeled NFRs.

The approach of Rodriguez et al. [11] also tackles the
modeling of NFRs within BPMN. However, their solution is
restricted to the modeling of security requirements. They do
not extend the standardized artifacts of BPMN, but rather
implement new Business Process Diagram (BPD) core ele-
ments. In this context it is described how to extend the BPD
meta-model towards the coverage of security issues. The
mapping of “security-enhanced” process models to the
technical level (as in the approach in [10]) is not addressed.

Tai et al. [12] explain a new idea about how transactional
behavior can be modeled as NFRs within BPEL. To express
this with XML, the authors use WS-Policy [8] in
combination with WS-PolicyAttachment [9]. They directly
attach WS-Policy descriptions to selected BPEL elements
within the process document. Proposed elements are for
example <partnerLink> OfF <scope>. To enforce the
attached WS-Policy descriptions, Tai et al. assume a
coordination middleware, which executes the BPEL-process
taking into account the NFRs.

Charfi et al. present in [13] another approach to model
non-functional requirements with BPEL. Their approach is
based on well-known standards and specifications such as
WS-Policy, WS-PolicyAttachment and XPath. It has to be
mentioned that their approach is not a completely new one
but a combination of the mentioned standards.

To sum up, there are several approaches that extend
process models towards NFRs. However, they either focus
on BMPN or BPEL. As we will see in the next section, our
solution — beside other features — includes the mapping from
BPMN to BPEL.

IV. THE OVERALL ARCHITECTURE

A. Modeling NFRs in BPMN

BPMN does not provide explicit language constructs for
modeling NFRs. Basically, there are two options to over-
come this limitation: i) introducing new language features
optimized for modeling NFRs, and ii) applying existing
artifacts in a specific way. A disadvantage of the first alter-
native would be missing support by existing BPMN tools.
Therefore, we pursue the second approach.

A so-called text annotation is a standard artifact of
BPMN, which allows one to attach auxiliary information to
model elements. The following figure gives an example:

business process QoS performance

max_runtime_minutes = 15" ;

activity

Figure 1. QoS artifact for BPMN.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

At the left hand side there is some business process
activity. In order to impose NFRs for this activity, we assign
a text artifact. In this approach, we distinguish between
arbitrary text annotations and those, which formalize NFRs.
The latter are called “QoS artifacts” and are text artifacts
with a particular content and specific syntax.

In our approach, we support the following syntax: The
prefix “QoS” indicating a QoS artifact is followed by a
category name, which specifies a particular NFR. In the
previous example, we impose a performance restriction to
the modeled activity. Finally, a set of attribute/value-pairs
define the specific properties for the NFR.

The content of a QoS artifact is a text with some well-
defined structure, which will be mapped to XML. In order to
support syntax checking, we have defined XML schemas for
the supported NFRs. Due to lack of space, we omit the
description of the schemas.

We have defined a library comprising well-known QoS
artifacts. Each QoS artifact comes with a modeling manual
describing its meaning, formalizing the required syntax by
means of an XML schema, and optional modeling examples.
It should be noted that the set of predefined QoS artifacts
could be extended by additional NFRs basically by defining
its XML schema.

To sum up, our NFRs modeling approach is a light-
weight solution, which reuses standard artifacts supported by
BPMN tools. As a consequence, process models can be
exchanged between different tools without losing NFRs
model information. The usage of XML schemas not only
specifies the specific syntax but also allows the automated
validation. Last but not least, the QoS artifacts library can be
reused in different settings.

B. Modeling NFRs in BPEL

As mentioned above, BPEL does not support the mode-
ling of NFRs in a direct manner. In [13] it has been shown
how to overcome this limitation by applying the standards
WS-Policy, WS-PolicyAttachment and XPath. The main
idea is to link BPEL process elements to a WS-Policy de-
scription. Such a description contains WS-Policy assertions
formalizing NFRs (see Section 11-C). A well-known set of
assertions for the security domain has been introduced in [2].

WS-Policy file

<wsp:Policy Name = “policyl”

/ TargetNamespace = "http://www.HFU.com/QoS/">
assertion

WS-PolicyAttachment file

<wsp:AppliesTo>
XPath-based selectors
</wsp:AppliesTo>
<wsp:PolicyReference
URI = “http://www.HFU.com/QoS/palicyl” />

Figure 2. Assigning WS-Policy to BPEL.

114

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Figure 2 depicts the linkage between the BPEL process
and the policy description. A WS-PolicyAttachment file
contains an <AppliesTo> entry referring to the BPEL
element to which the WS-Policy description should be
applied. The latter is linked via the <PolicyReference>
element, which is also introduced by the WS-PolicyAttach-
ment specification. As we apply XPath for selecting the
targets, this approach exclusively uses well-known and
widely supported specifications.

This concept clearly separates i) the logic of the business
process and ii) the required NFRs. As a consequence, both
parts of the overall application can evolve independently
from each other, which has a positive effect on main-
tainability, reusability and adaptability of the solution. As an
example, consider a WS-Policy file that formalizes a parti-
cular set of NFRs. The policy can be applied to several
business applications. As a consequence, this not only in-
creases reusability of the required “NFRs patterns” but also
guarantees conformance to corporate compliance rules.

C. Transformation of NFRs — From BPMN to BPEL

Having described how to represent NFRs within BPEL,
we are now able to consider the mapping from QoS artifacts
in a BPMN model to WS-Policy descriptions for BPEL. It
should be noted that we do not consider the general trans-
formation rules mapping BPMN elements to BPEL elements,
because they are part of most BPMN/BPEL modeling tools.

To map NFRs we proceed as follows: For each QoS
artifact, we create both a WS-PolicyAttachment file as well
as a WS-Policy file. The assertions contained in the policy
description correspond to the NFRs of the QoS artifacts.
These assertions in turn have references to the XML schema
definition and the modeling manual, respectively. After all
WS-Policy documents have been created, they are used by
the corresponding WS-PolicyAttachment files to link the re-
quired policies to BPEL process elements as already
described.

D. Enforcement of NFRs

This section is concerned with the question how the
modeled NFRs can be enforced. Basically, we observe that
there are two targets to which the modeled NFRs will be
applied: i) the business process itself, and ii) the com-
munication between a BPEL service and an underlying Web
service. From a modeling perspective, we use the following
convention: if the category name of a QoS artifact starts with
“WSComm_”, the latter target is meant, otherwise the NFR
applies to the business process.

If a policy relates to the business process itself, which
means that the described prefix is not set by the BPMN
modeler, the Web service developer has to extend the Web
service’s application logic, i. e., the source code.

If a policy relates to the service communication, the Web
service developer has the responsibility to enforce the NFRs
with the help of interceptors (also called handlers), which
can be installed in SOA infrastructures and manipulate the
outgoing and incoming messages. Details can be found e.g.,
in [14].

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

In order to enforce a specified behavior, typically an
appropriate WS-Policy description will be attached to the
Web service’s WSDL as well as to BPEL process elements
(see Figure 3). This policy may for example specify that the
invoker (e.g., the BPEL service) must encrypt the parameter
values passed to the Web service, which in turn is able to
decrypt these values. For standard NFRs (such as security
and reliable messaging) Web services frameworks typically
provide respective handlers. For other NFRs such as
accounting and resource consumption specific handlers must
be configured.

Application server 1 Application server 2
BPEL Engine
] WS-Palicy WS-Policy
BPEL process = =
receive assertions assertions Web service
: f !
invoke
WS-PA WS-PA
handler chain handler chain
- A — —_—
e | < 4 ™~ I | P
handler QoS handler handler handler QoS handler handler

Figure 3. QoS enforcement through handlers.

To support several NFRs, all the required handlers must
be installed. This can be achieved by using so-called handler
chains supported by Web services frameworks. Before a
request is delivered to the service implementation, each
handler will be invoked.

E. Validation of NFRs

Our architecture also includes components for validating
NFRs. We distinguish between static and dynamic va-
lidation. During the static validation process, the NFRs
contained in a BPMN process diagram will be checked
against the WS-Policy descriptions of the underlying Web
services implementations. Static validation can be automated
by applying WS-Policy compatibility algorithms such as
WS-Policy intersection [8] and semantic policy differencing
[15].

Performance is an example of an NFR where dynamic
validation must be applied. As the actual execution time of a
process depends on factors, which are not determinable a
priori (e.g., server consumption, network latency and user
interaction), a monitoring system is required in order to
continuously observe the infrastructure. To provide a
monitoring system with the required data, so-called sensor
components (such as JMX and NFRs handlers, see [16]) can
be installed in SOA infrastructures.

This system will inform, for instance, the system
administrator if some NFRs are violated. Depending on the
severity of the violation (e.g., leakage of sensible data)
actions may be immediately performed such as shutting
down a service or a server.

115

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Business process ’)”’

BPEL runtime environment

Orchestration service

Dashboard
(BPEL service)

reaction
logic

User email account

1
| Emaill @
|
1 email2 @
1
1

Email 3

CEP engine

event processing

Figure 4. Dynamic validation with CEP [17].

Complex Event Processing (CEP) [18] has been introduced
as a technology to find correlated data items in a continuous
flow of data. The data items to be selected are specified by
patterns defined, for instance, with the Continuous Query
Language (CQL). It turned out that the conditions, which
indicate a violation of an NFR during execution, can be
appropriately defined as CEP patterns. Figure 4 illustrates
the integration of an abstract CEP engine in a BPEL/Web
services environment. We have identified the following
components:

e input component
output component
CEP engine
reaction component
event senders.

The input component receives events from the BPEL engine
and the Web services, respectively. The so-called event
senders, which are specific implementation of the above
mentioned sensor components, inform the CEP engine about
significant actions in the business application (e.g.,
transition within the business process, Web service
invocation, passing of non-encrypted sensible data, etc.).
Subsequently, the input component passes the received
events to the CEP engine. As soon as the CEP engine
detects data items that match a CEP pattern, a new
(complex) event will be created. The output component has
the responsibility to pass it to a user (e.g., via SMTP) or to
the reaction component, which in turn will inform the
orchestration service, or to a management system (via Web
service invocation) about the violation of an NFR.

V. PROOF OF CONCEPT

The overall architecture presented in the previous section
is quite generic and can be instantiated in different ways. In
order to show the feasibility of our approach we have
developed a proof of concept implementation based on

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

NetBeans IDE and Glassfish ESB. This combination compri-
ses the following tool set:
e BPMN/BPEL designer to model business processes.
e BPEL runtime environment for executing BPEL
processes.
e Web services development, deployment and runtime
environment.
e Intelligent Event Processing (IEP) service engine as
implementation of a CEP engine.

The BPMN/BPEL designer allows the graphical mode-
ling of business processes according to the BPMN and BPEL
languages. It should be noted that only those BPMN ele-
ments are supported by the tool, which can be mapped to the
XML BPEL process file.

One of these elements is the documentation artifact,
analogous to the common BPMN text artifact that allows the
attachment of comments to elements in a BPEL process.
These comments are transformed to the common BPEL tag
<documentation> within the underlying XML BPEL
process file. To avoid this intrusion, we extended the
BPMN/BPEL designer by a new QoS artifact (see Figure 5)
with which it is possible to implement our introduced
transformation process as described above.

bpelShowCase

=
Assignl
Sequir)
= [=
=5 () Qualty of Service 2
on
= QoS performance

max_runtime_minutes = “15%;

Figure 5. QoS artifact in the BPMN/BPEL designer.

With the NetBeans composite application display it is
possible for a Web service developer to attach handlers via
the context menu not only to the BPEL service but also to
the Web services, which are invoked. This enables an easy
configuration of handlers required for enforcing the defined
NFRs.

The IEP service engine comes with a graphical modeling
language for selecting, transforming and aggregating events.
This modeling language also provides predefined types for
output components, e.g., datasets, database tables and dash-
board formats. It is also possible to generate WSDL inter-
faces for the input components and their implementations as
Web services, which can be used by the event senders.

116

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Hence, IEP enables the validation of a business process
during its execution.

Independent of IEP, it is also possible to make theoretical
commitments before process execution. For example, a Web
service developer wants to check if the modeled runtime of a
business activity complies with the modeled runtime of the
Web services. Therefore, the WS-Policy assertion of the
business activity has to be checked against the sum of
runtime assertions of the Web services to be invoked.
Unfortunately, this functionality is not provided yet by
NetBeans and Glassfish ESB, respectively, so that this check
has to be accomplished manually.

VI. CONCLUSIONS AND FUTURE WORK

In software engineering, there has already been much
work on non-functional requirements. This is motivated by
the fact that nearly all deployed application systems must not
only fulfill the desired business logic, but should also
guarantee aspects such as robustness, scalability, security,
performance and reliability. Although NFRs should be
especially considered when designing applications according
to the SOA principle, there is currently only partial support —
both from a conceptual as well as technical point of view.

In our work, we have presented a coherent concept for
formalizing, applying, enforcing, and monitoring NFRs for
business processes. A driving force of our solution is the
commitment to well-known standards and widely used tech-
nologies such as BPMN, BPEL, WS-Policy, CEP, and
others. As a consequence, the conceptual framework of our
solution can be instantiated in several ways based on existing
tools such as NetBeans and Glassfish ESB.

This demonstrates the high impact of our results on soft-
ware engineering practice. Specifically, our approach is a
further step towards improving the development of business
application with well-defined NFRs. We support the well-
known separation of concerns principle by flexibly attaching
NFRs to business processes.

Our work can be extended in several ways. In order to
leverage our solution, further NFRs should be formalized.
This includes the definition of the required QoS artifacts for
BPMN and their mapping to corresponding WS-Policy asser-
tions. To disseminate our approach in software engineering
practice, additional proof of concept implementations would
be quite helpful; especially an instantiation with the Visual-
Studio IDE and the .NET technology.

ACKNOWLEDGMENT

We would like to thank Markus Schalk for the extensive
support during the elaboration of the architecture and the
proof of concept. This work has been partly supported by the
German Ministry of Education and Research (BMBF) under
research contract 17N0709.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

REFERENCES

[1] OASIS, Web Services Quality Factors 1.0 (07/2010),
Retrieved April 16, 2011, from http://docs.oasis-
open.org/wsgm/wsqf

[21 OASIS, WS-SecurityPolicy 1.3 (03/2009), Retrieved October
11, 2010, from http://docs.oasis-open.org/ws-sx/ws-
securitypolicy

[3] S. Adam and J. Doerr, “Towards Early Consideration of Non-
Functional Requirements at the Business Process Level”, Pro-
ceedings of International Conference on Information Resour-
ces Management, pp. 227-230, 2007.

[4] OMG, Object Management Group / Business Process Mana-
gement Initiative, Retrieved March 03, 2011, from
http://www.bpmn.org

[5] ISO/IEC, “Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE”,
ISO/IEC 25000, 2005.

[6] ISO/IEC, “Software engineering — Product quality”, ISO/IEC
9126-1 to 9126-4, 2001-2004.

[71 L. O’Brien, P. Merson and L. Bass, “Quality Attributes for
Service-Oriented Architectures”, in Proceedings of Inter-
national Workshop on Systems Development in SOA
Environments (SDSOA '07), pp. 1-5, 2007.

[8] WB3C, Web Services Policy 1.5 (09/2007) — Framework,
Retrieved April 03, 2011, from http://www.w3.org/
TR/ws-policy

[9] W3C, Web Services Policy 1.5 (09/2007) — Attachment,
Retrieved April 03, 2011, from http://www.w3.org/
TR/ws-policy-attach

C. Pavlovski and J. Zou, “Non-Functional Requirements in
Business Process Modeling”, in Proceedings of the Asia-
Pacific Conference on Conceptual Modelling, pp. 103-112,
2008.

[11] A. Rodriguez, E. Fernandez-Medina and M. Piattini, “A
BPMN Extension for the Modeling of Security Requirements
in Business Processes, IECE Trans. Inf. & Syst, pp. 745-752,
2007.

[12] S. Tai, R. Khalaf, and T. Mikalsen, “Composition of Coor-
dinated Web Services”, Middleware, pp. 294-310, 2004.

[13] A. Charfi, R. Khalaf and N. Mukhi, “QoS-Aware Web Ser-
vice Compositions Using Non-intrusive Policy Attachment to
BPEL”, in Proceedings of the 5th International Conference on
Service-Oriented Computing, pp. 582-593, 2007.

E. Hewitt, Java SOA Cookbook: SOA Implementation
Recipes, Tips, and Techniques, OReilly, 2009.

[15] B. Hollunder, “Domain-Specific Processing of Policies or:
WS-Policy Intersection Revisited,” Proceedings of the 7th
IEEE International Conference on Web Services (ICWS), pp.
246-253, 2009.

[16] A. Wahl, A. Al-Moayed, and B. Hollunder, “An Architecture
to Measure QoS Compliance in SOA Infrastructures”,
Proceedings of the Second International Conferences on
Advanced Service Computing (Service Computation 2010),
pp. 27-33, 2010.

[17] O. Charles, M. Schalk, and B. Hollunder, “CEP meets SOA”,
OBJEKTSpektrum: Vol 5, pp. 28-32, 2010.

[18] D. Luckham, “The Power of Events”, Addison Wesley, 2007.

(10]

[14]

117

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Framework for Adapting Service-oriented Applications based on
Functional/Extra-functional Requirements Tradeoffs

Raffaela Mirandola Pasqualina Potena Elvinia Riccobene Patrizia Scandurra
Politecnico di Milano Univ. degli Studi di Bergamo Univ. degli Studi di Milano Univ. degli Studi di Bergamo
DEI, Milano, Italy DIIMM, Dalmine (BG), Italy DTI, Crema (CR), Italy DIIMM, Dalmine (BG), Italy
mirandola@elet.polimi.it pasqualina.potena@unibg.it elvinia.riccobene@unimi.it patrizia.scandurra@unibg.it

Abstract—This paper introduces an adaptation framework be good for the satisfaction of the system reliability, but
for service-oriented applications based on trade-offs beteen at the same time it may require a high adaptation cost for
functional and extra-functional (e.g., availability, performance, adapting the interfaces of services [3].

and adaptation cost) requirements. The framework relies on . h
an optimization method for adaptation space exploration baed Th!s paper presents an adaptatl_on framework ba_sed on
on the combined use of meta-heuristic search techniques and functional and extra-functional requirements trade dffss
of functional and extra-functional patterns (e.g., architectural based on a formalervice-oriented component modehmed
design patterns and tactics). A formal service-oriented ampo- SCA-ASM [4], for the specification and analysis of service-
nent model, called SCA-ASM, is also adopted for the specifi- 4 ianted applications, and on a runtimgtimization method
cation and functional ar!alyfsls of serwce-or.lented appliations. f daptati loration that ixed h of
Through a sample application, we exemplify the methodology Oor acaptation exploration that uses a mixed approach o
with emphasis on the use of extra-functional patterns. metaheuristic search techniques [5], of functional andaext
functional adaptation patterns, such as architecturagdes
patterns and tactics, or also software actions defined by
the maintainer based on his/her experience. The adopted
optimization approach enhances the one defined in [3] by
taking into account also functional issues that allow, aghon
Service-oriented applications are playing an importanother things, to relax the independence assumption between
role in several application domains (e.g., health caresrted adaptation actions for different adaptation requirements
and aerospace) since they offer advanced and flexible func- According to thedesign for adaptabilitwision in [6], our
tionalities in widely distributed environments by compagsi framework supports both evolution (at re-design time) and
possibly on demand, different types of services. These apself-adaptation (at run time). The second form of adaptatio
plications may require dynamic adaptation to changing useregards temporary modification (such as the re-execution
needs, system intrusions or faults, changing operationdél e of an unavailable service or a substitution of an unsuitable
ronment and resources. Foundational theories and nogatioservice) permitting to respond to changes in the requirésnen
are required to support the engineering of such application and/or in the application context. However, when changes
Also required are techniques for monitoring and evaluatingegard critical aspects and should be applied permanently
the behavior and performance of these applications, fullyto the system, they should be considered as evolution steps,
integrated in a software engineering process that refleets t and therefore fast answers are not essential since adaptati
closed-loop paradigrte.g., the MAPE-K loop in the context strategies are evaluated and carried out at (re-)design tim
of autonomic computing) [1] are required. This paper is organized as follows. Section Il reports
Extra-functional properties of services are often spetifie related works. Section Il provides background on SCA-
as quality of service (QoS) constraints and their valuesASM. Section IV describes our adaptation methodology.
are dynamic [2]. For example, the system response tim&ection V presents the overall architecture of our framé&wor
depends on environmental factors among which input dateGection VI exemplifies our methodology through a sample
server load, and network latency. The adaptation decisionapplication. Finally, Section VIl sketches some future kvor
for implementing the single changes should be triggered
whenever unsatisfactory behaviors and values are reported
by monitoring modules or required by the user (or “system A survey on adaptation approaches and frameworks can
designer” or “system maintainer”), and the right trade offbe found in [1]. Most of them typically adapt a system by
among the functional requirements, software qualities anédopting different service selection policies, varyingteyn
the adaptation cost should be considered. A decision, foparametrization or exploiting the inherent redundancyhef t
example, taken for modifying the dynamic of a service mayService-Oriented Architecture (SOA) environment.

Keywords-Service-oriented applications, software adaptation
and evolution; extra-functional adaptation patterns.

I. INTRODUCTION

Il. RELATED WORK

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 118

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Some frameworks exist for the dynamic generation of
service composition, but usually they adapt a system on

in a reactive way, after the adaptation request triggered by -
a user. They support the service selection with respect to a ’
service composition defined by the user (e.g., the VRESCo

a .
OrderWebService StockTradingsystem

|y

OrderDeliveryService

Order b CRER
Delivery
Component

Order
Web
Component

Sto ckQuoi';eServ .c-r;"“m"
H orderDelivery

runtime environment [7]) or choose the service composition ,
which they have generated together with a finite set of other i

candidates, that better fulfill the required quality (e[8]).

With respect to the state-of-art, our work is the first

framework (to the best of our knowledge) that supports th
adaptation of service-oriented applications (includirgghb

static and dynamic aspects) at runtime and at re-design time

It uses a mixed approach of metaheuristic search techniqu
whose effectiveness and efficiency has been already dem
strated for supporting the service selection activity at-ru
time [2], and of functional and extra-functional adaptatio
patterns [9]. Existing approaches typically do not take int
account functional aspects and assume that a compon
is functional equivalent to its alternatives [10]. Condegn

design solutions, existing approaches (e.g., [9] and [d&])

not quantify or predict the impact of the adoption of one o

more solutions on the system quality and functionality. As

opposite, we address such a problem.

IIl. BACKGROUND ONSCA-ASM

SCA-ASM [4] [12] is a formal and executable modeling
language based on: (i) the open standdedvice Component
Architecture(SCA) [13] for heterogeneous service assembly
and (ii) theAbstract State Maching®ASM) formal method
[14], which is an extension of FSMs wherstates are
arbitrary complex data (multi-sorted first-order strue)r

toeen Stock
Quote
Component

SCA symbols:

= » »
L Senvice Reference Wire

Stock Trading System

e

Figure 1.
g

stockExchange

) odule OrderDeliveryComponent

/@Provided service interface

import OrderDeliveryService

/l@Required service interface

import StockExchangeService

../[Other module imports

ignature: //ASM function declarations

Reference to the external stock exchange system

shared stockExchange:Agent>StockExchange
/l@Backref back reference to the requester

shared client: Agent—> Agent
I'//Other function declarations for internal computation
controlled order: Agent—> Order
definitions:
/IASM rules for the provided service operations
@Service
rule r_place($clientn Agent,$oin Order)= ...//to place buy or sell orders

/IASM rule for the component’s agent behavior
rule r_OrderDeliveryComponent=
seq

r_wreceive(client(self),”place”,order(self))

' Ildirect service invocation
r_place(client(self),order(self))
r_wreplay(client(self),"place”,order(self))

endseq

/lconstructor rule

and thetransition relationis specified byrules describing

rule r_init($agentin OrderDelivery)=$..//do initialization (if any)

how functions change from one state to the next. The
SCA-ASM formalism is able to model service interactions,
orchestration, compensations, and services internavibmha

An SCA assembly (or composition) of service-oriented
components can be graphically produced using the Eclipsdtfoperties values; changing SCA domains (components re-
based SCA Composite Designer (an inner module of th&leployment). It is also possible to change the component
SCA tools), and also stored or exchanged in terms of amteraction style in synchronous/asynchronous, stateful
XML-based file that is then used by the SCA runtime tonot, unidirectional or bidirectional. See [13] for details
instantiate and execute the system. The ASM formalism Actions can be combined into @daptation planwhich
complements the structural description of the SCA assemblig a set of actions modifying the static and dynamic parts
with a formal and executable behavioral description of theof a system architecture to address a certain requirement.
assembled components. Figure 1 shows an example of #daptation plans may differ for adaptation cost and/or for
SCA assembly of a stock trading application (better dethe system quality achieved after their application.
scribed in Sect. VI), while Figure 2 shows an ASM fragment The proposedadaptation processstarts from a set of
of theOr der Del i ver yConmponent component behavior. initial SCA-ASM assemblies (initiatandidatesor popula-
tion) fulfilling the existing/new functional requirements. It
proceeds iteratively till stop criteria are satisfied. @uity,

An SCA assembly can be adapted through the followingve use a predefined number of iterations to determine the
actions adding/removing components, component servicesend of the search. More sophisticated stop criteria coudd us
references, properties, reference-service wires and gromconvergence detection and stop when the global optimum is
tion wires (component interactions); changing a componenprobably reached. At each iteration step, new candidates ar
implementation (but keeping its shape); changing compbnergenerated from the initial population (whose size depemnds o

Figure 2. ASM module of th&r der Del i ver yConponent

IV. THE ADAPTATION METHODOLOGY

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 119

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

the specific search technique) by two subprocesses execute /
in parallel: (i) metaheuristic searchy applying user adap-
tation plans, service selection and service re-deployment

.. . . i i System Model

(i) functional/extra-functional patterns applicatidoy ex- Creator and Recurring
iti i i i Executor Reasoner software design

ploiting architectural design patterns and tactics. Then t ‘ — e

are performed together with an assessment of the adaptatior
costs. In case of self-adaptation, SCA-ASM assemblies are \ Re‘;:rsts ‘\
automatically selected as solutions according to predgfine Manager &
. . . e . | Monitor services available

selection criteria (e.g., cost minimization). In case ob-ev i and Hardware
lution, the solution can be more accurately selected also Wmﬂmmewck ! e /
considering a possible feed-back from the user [6]. \ 3

Me_tahe_uristic search tec_hn_iquesSeveraI metaheuristics Service-Based Application [: _—]
[5] with different characteristics could be adopted depend | (scaapplication)
ing on the problem: for example, considering the system
reliab”ity, a pOSSible heuristic is to regard as incregSin Runtime Infrastracture and Middleware (SCA runtime platform)
the whole reliability of the system when the reliability
of the most used components increases. As remarked in
[10], there exist design options for which we have no prior
knowledge on how they affect the extra-functional property
of a particular system. To this extent, undirected openatio = An SCA-ASM model (or assembly) of an application
could be performed (e.g., random choices or exhaustivéan be produced from scratch, or generated from an ex-
evaluation of all neighboring candidates). isting system implementation. Analysis techniques can be

Architectural design patterns and tactics.Architectural ~ employed to assure consistency between the architecture
patterns are templates for concrete software architestureand the implementation. Another feature of tSgstem
They are adopted to embody functional requirements andylodel Creatoris allowing, by exploiting the SCA Policy
in particular, to enable self-adaptability by introducisgn- ~ Framework [13], the designer to specify for components
sors/effectors components (e.g., Microkernel pattern, Renecessary metadata annotations. These are useful fodprovi
flection pattern, Interception pattern) [1]. To build new ing metrics that can be extracted from the model for non-
design solutions embodying extra-functional requirement functional analysis purposes, and for representing [elici
we adopt architectural tactics [9], which are reusableiarch that can be guarantee by the runtime platform. It also allows
tectural building blocks that provide a generic solution tothe application of design patterns and tactics to an SCA-

functional and quality analyses of the resulting candislate &

Provider Info

repositories of

| arch. tactics,
| design patterns)
" repository
—

] Probes (Sensors)]

Figure 3. The Adaptation Framework

issues pertaining to quality attributes. ASM assembly, leading to a chain of adaptation actions.
To guarantee the functional correctness of the resulting
V. THE ADAPTATION FRAMEWORK assembly and that changes claimed by the adaptation actions

Figure 3 shows the main modules of the framework.do not compromise the satisfaction of existing functional
The core of the framework is an optimization approachrequirements, an interaction with tkenctional and Quality
(implemented by th&®easonemodule) that adapts (through Analyzeris required. Different adaptation actions of the SCA
the Executormodule) an SCA-ASM assembly (developed by assembly may be enacted manually (as suggested by the
the System Model Creatpof a service-oriented application User Request Manageor automatically (by th&keasoney.
with respect to the functional requirements, system gaalit The System Model Executamplements the adaptation
and adaptation costs. Adaptation actions can be triggeregctions suggested by thReasoner Through the use of
automatically (after receiving alerts from tivonitor mod- effectors, changes applied at model level must be related
ule) and/or by the user (through thiser Requests Manager to the underlying mechanisms and runtime infrastructure.
module that also interacts with tidonitor module to figure To this extent, guidelines of existing approaches suppgrti
out internal or context changes). Analyzerassists during dynamic service invocation and of the ones for dynamically
the adaptation process for functional and quality analysisidapting the system behavior could be exploited. In the case

purposes. A description of each module follows. of SCA, mechanisms like introspection and reconfiguration,
System Model Creator and Executor. This module con- for managing and enacting self-adaptation [16] are applied
sists of two sub-modules (thareator and theexecutoy and User Requests Manager. It allows users to make adap-

relies on the integration of the SCA tools and runtime plat-tation requests by providing appropriate adaptation plins
forms (like Tuscany, FraSCAti, etc.) with the ASM toolset assures that plans of different adaptation requirememts ar
ASMETA [15], to graphically model, compose, analyze, independent between each other, i.e., changes claimed by a
deploy, execute, and introspect service-oriented agite. ~ plan do not compromise the application of other plans.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 120

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Reasoner. It is activated after receiving either adaptation be adopted allowing a prompt run-time adaptation (see, e.g.
requests from the user or alerts from tenitor. By using techniques for estimation of quality at runtime, such a§)[21
an optimization approach, it produces a set of software
adaptation actions. Through the help of tBgstem Model VI. THE STSCASE STUDY

_Creator, it generates the new system arch_itecture model, \We describes the adaptation methodology by a sample
i.e., the new SCA-ASM assembly model including bothgppiication from the Stock Trading System (STS) in [9].
structural and behavioral aspects. The adaptation space exjgure 1 shows the SCA assembly of the STS. Briefly, an
ploration process implemented by the reasoner is iterativgTs user, through thér der WebConponent interacting
and is based on the combined use of meta-heuristic searg{ith theOr der Del i ver yConponent , can check the cur-
techniques and of functional and extra-functional ad&miat rent price of stocks, placing buy or sell orders and revigwin
patterns (i.e. architectural design patterns and tactis) traded stock volume. Moreover, he/she can know stock quote
detailed description of the optimization method and relate information through theSt ock Quot eConponent . STS
techniques are out of the scope of this paper. interacts also with the external Stock Exchange system,
Monitor. It controls the system at runtime through the usewhich we do not model.
of probes (sensors). It may trigger self-adaptation when de Figure 2 shows a fragment of the ASM (abstract)
tecting relevant context and internal changes or an ewsluti model for the Or der Del i ver yConponent behavior.
cycle of the system for introducing important and perma-The main service of this component (the rulepl ace
nent changes [6]. For implementing such a module, severglnnotated with@er vi ce) is to place buy or sell or-
monitoring approaches exist in the literature (see, €l§), [ders when requested (see the blocking receive action
Thg monitor can alsc_> contmuall_y measure the services’ Qo@nd the replay action preceding and following, respec-
attributes. The providers can improve the estimate of thejyely, the service invocation within the component’s main
services’ non-functional properties by monitoring them. yyle r _Or der Del i ver yConponent). The ASM def-
Functional and Quality Analyzer. It consists into & set njtion for the provided and required interfaces of the
of external tools that can be invoked for different analysisoy der Del i ver yConponent are reported in Figure 4.
purposes. Essentially two sub-modules can be identifiedfhey are ASM modules containing only declarations of
one for thefunctional the other one for th@on-functional pysiness agent types (the subdomairsier Del i very
analysis The functional analyzetis linked with ASMETA and St ockExchange of the predefined ASMAgent
[15], a set of tool for the ASMs. It is invoked when a pre- domain) and of business functions (parameterized ASM

liminary analyses of the functional requirements satigiftgkb oyt functions) used as temporary locations to store service
of the_ SCA-ASM assgmbly would _be perform(_ad b_y easielcomputation results.
techniques as simulation or scenario-based validatioter] a
heavier formal verification techniques (as model checking)- ; ;
. . ¥Mmodule OrderDeliveryService
can be exploited when more complex functional propef-import ... //Other module imports
: ; ignature:
ties [17] must be pro‘{ed to guarantge behgworal syste the domain defines the type of the provider component'atage
correctness. The functional analyzer is also invoked whe@omain OrderDeliverysubsetofAgent
1 [pusiness function value
correctness must be proved upon a reflngment step _of ntj)eutt’ place. Prod(Agent Order} > Order
SCA-ASM assembly due to adaptation actions. Techniques
for checking correctness of model refinement as supportg@Remoable .
. module StockExchangeService
by the ASMETA tool-set. Thenon-functional analyzeex- | import ... //Other module imports
; iahili ; signature:
plons external tools for performance and reliability ayrss | S5 StockExchangsubsetofAgent
like gnet wor ks [18] and LQNsol ver [19]. The system | out sendOrder: Prod(Agent,Orded> Rule
qualities (e.g., performance and reliability) and the adap
tation costs are predicted exploiting the SCA-ASM modelFigure 4. ASM modules of thér der Del i ver yConponent interfaces
of the system. Examples of adaptation costs can be found
in [3]. Considering quality analysis, different approasise Below, we apply to the STS case study some adaptation
trategies can be used depending on several factors dwtrategies adopted by our methodology. Specifically, fiest w
mainly to the use of our framework for evolution (at re- describe the application of a simple metaheuristic teaiq
design time) or self-adaptation (at run time). If permanentand then we show the use of some tactics as examples of
changes, for example, are requested or a safe-criticatserv extra-functional adaptation patterns. Details on the gxpe
has to be adapted, precise (often expensive) analysis mustental data set used in this case study can be found in [23].
be performed (e.g., see [20] for performance analysis). AMetaheuristic search:Figure 5 shows an example of
opposite, if runtime changes are claimed and these requir@stantiation of our optimization process by considering,
for example, only the adaptation of parameters withoutbn the STS example, theateepest-ascent hill-climbing

using more sophisticated analysis, faster approaches mustetaheuristic [5] that tries to adapt the system minimizing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 121

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Initial [Coo G Gl Diagram key Opemﬂ‘m;%gf“m Heartbeatand Exceptiontactics [9]). As done in [9], we
T . anew candidate . |
Candidate | Rel=0.943648 [candidate "™ support NFR1 combinin@ing/Echoand Heartbeat

Cost=13 KE As in [9], NFR2 is supported combining tH&lFO (for
the Resource Arbitration) anbhtroduce Concurrencyfor
the Resource Management) tactics. FHEO tactic allows
[Chy, Gy G511 [Ciyy Cos, Gyl [Ch1, Gy, Cap] [Ciy, Gy, Gs] [Cr2 Gy, Gyt [Cia Copy Gy] Cllents to place eaCh type Of Orders (eg’ StOCkS’ Optlons’

Rel=0.946485 | | Rel=0.947242| Rel=0.921272 || Rel=0.957336 || Rel-0.976481|| Rel=0.910282 fUtureS) toa dedicatgd queue for immediate pr(_)cessi_ng. Fi-
Cost=14KE || Cost=17KE || Cost=17KE || Cost=13KE | Cost145KE|| Cost=14KE nally, to handle considerable amount of transactions by the

/ \ kinds within a very short time, as suggested in [9], NFR2
can be also supported by reducing the blocking time of

(Coo G o | [1€ G o1 | [(€22 Gy G (Ca Can Cod transactions on I/O, which can be realized by the combined
Rel-0.979414| | Rel-0.980198 | | Rel- 0.953324 Rel-0.990644 use of theFIFO andIntroduce Concurrencyactics (i.e., by
Cost=15.5KE | [Cost=18.5KE | | Cost-185KE Cost- 14 5KE concurrent dispatching of the same kind of orders).
Figure 6 shows how it would change the SCA assem-
Figure 5. Example of steepest-ascent hill-climbing afitn bly by composing these tactics: the assembly is extended

)) to add the newQueue component (for theFIFO tac-
the adaptation costs and assuring a level of systerﬂc) and the Moni t or component (for theFault Detec-

reliability greater than 0.98. The initial candidate is the, Tactig. The Or der WebConponent is refined for
vector [C11, (a1, Cs] (see Figure 5), wher&;; denotes oneyrrently producing orders to place into tteeue.

the jth instance available on the market for the componengim”aﬂy theOr der Del i ver yComponent is refined for

C; with €y indicating the OrderWebConponent, adding the monitoring functionality and for the concurrent
Cy the _St ockQuot eConponent and C3 the consuming of different kinds of orders placed into the
Of_ der Del i veryConponent . _Each vector_ comes Queue component. Of course, this implies a change of the
with two parameters: the resulting system reliability andcomponents shape (i.e. in the required/provided integjace
the cost of the solution (predicted using the reliabilitydan 5.4 of their behavior. The behavior, for example, of the

cost mo<_jel u_sed in [22] and reported in.TabIell in [23]). oy der Del i ver yConponent is refined in ASM as shown
At each iteration step, a set of new candidates is generatef| heo fragment reported in Figure 7: the consuming and

by replacing, one at a time, an existing component Withseing of different kind of orders (stock, option, or fuyr

one available on the market. The best candidate is theQ.q executed in parallel (i.e. concurrently) by ther rule.
selected as the one improving the system reliability and

minimizing the adaptation costs. It becomes the basis fo
next candidates generation. The process terminates éither
no better candidates can be found or the reliability thriesho | i
is reached. In our case, the optimization process retums tr i L . [= il e
solution [C12, Ca1, C33] with reliability equals to 0.990644 | = | Compenent
|
|
|
|

OrderWebservice ShoekTradingSystem refined stockExchange

_il_nTCk uoteService OrderDeliveryService’

queut

and cost equals to 14.5 KE. e
Application of extra-functional adaptation patternafe here

show how availability and performance tactics can be used t — Meniodagigmdeam
embody extra-functional requirements of the STS examplt rponen: T Eontened T crderbelivery

into its architecture. Let us assume the following extra-

functional requirements (taken from [9]):

NFR1.The STS should be available during the trading time £ e 6. Adapting the STS by applying tactics for NFRL ancRSIF

(7:30 AM6:00 PM) from Monday through Friday. If there is

no response from the system for 30 s, the STS should notify |t js possible to prove that the behavior of the

the administrator. Or der Del i ver yConponent in Figure 7 is a correct

NFR2. The system should be able to process 300 transagefinement [14] of that in Figure 2, and, therefore, all

tions per second, 400,000 transactions per day. A client majhitial functional requirements are still guaranteed. or

place multiple orders of different kinds (e.g., stocksj@®, over, the impact of the adoption of the tactics should

futures), and the orders should be sent to the system withige quantified with respect to the existing system quality.

1 s in the order they were placed. For example, the introduction of new components could
To address NFR1 theault Detection Tactidor the detec- decrease the maximum level of reliability. In the STS

tion and notification of a fault to a monitoring component example, after the embedding of new components into the

or to the system administrator can be adopted. Such kin@r der Del i ver yConponent for NFR1, if the probabil-

of tactic can be refined into other ones (elging/Echg ity of failure of the instance available for this component

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 122

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

module OrderDeliveryComponent [6]
rule r_OrderDeliveryComponent=
... seq
par //Queue consuming
r_wsendreceive[client(self),”dispatch”,”Stock”,stocHer(self)]
r_wsendreceive[client(self),"dispatch”,”Option”,optiorder(self)]
r_wsendreceive[client(self),"dispatch”,”Future”, fuaarder(self)]
endpar
par //Order sending to the Stock Exchange system
r_wsend(stockExchange(self),’sendOrder”, (self, stodkd(self)))
r_wsend(stockExchange(self),’sendOrder”, (self, optideo(self)))
r_wsend(stockExchange(self),’sendOrder”,(self futmieo(self)))
endpar
endseq...

[7]

(8]

Figure 7. The refined behavior of ti@ der Del i ver yConponent

increases (for example, from 0.00006 to 0.0002 [23]), then[10
the reliability of the overall solution will decrease (from
0.990644 to 0.970639 [23]). Therefore, it could happen[11]
that the reliability constraint is not satisfied any more (in
the example indeed, the system reliability is not greater
than 0.98). Note that, also the reliability of the n@Queue 1,
component may contribute to decrease the system reliabilit

VII. CONCLUSION AND FUTURE DIRECTIONS
[13]

This paper presented an adaptation framework for service-
oriented applications that relies on design-for-adafitgbi
principles while supports the closed-loop paradigm. With [14]
such a kind of support, a system is able to monitor itself
and its context to detect significant changes, decide how t15]
react on the base of functional/non-functional trade @ffs]
execute such decisions at runtime or at re-design time.

We intend to enhance our framework towards several
directions. Currently, we are implementing a prototype to
compare different implementations of our optimization-pro
cess (e.g., with heuristics depending on application domai [17]
or quality attributes) on realistic examples. We intend to
support the right trade-off between the adaptation ovethea
(due, e.g., to the frequent execution of the reasoning algoH8]
rithms) and the accrued benefits of changing the system.

[16]

REFERENCES [19]
[1] M. Salehie and L. Tahvildari, “Self-adaptive softwarkandscape

and research challengesfCM Transactions on Autonomous and

Adaptive Systemsol. 4, no. 14, pp. 14:1-14:42, 2009. [20]
[2] F. Rosenberg, M.B. Miiller, P. Leitner, A. Michimayr, Bouguettaya,
and S. Dustdar, “Metaheuristic optimization of large-sogbs-aware
service compositions,” ifProc. of the IEEE Int. Conf. on Services
Computing 2010, pp. 97-104.

(21]

[3] R. Mirandola and P. Potena, “Self-adaptation of sertiased systems
based on cost/quality attributes tradeoffs,” roc. of WoSS at

SYNACS 201Qop. 493-501.

(22]

[4] E. Riccobene, P. Scandurra, and F. Albani, “A modelingl @x-
ecutable language for designing and prototyping serviemted

applications,” to appear iRroc. of EUROMICRO SEAA 2011

(23]

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial tiypization:
Overview and conceptual comparisoACM Comput. Suryvol. 35,

no. 3, pp. 268-308, 2003.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

A. Bucchiarone, C. Cappiello, E. Di Nitto, R. KazhamiakiV.
Mazza, and M. Pistore, “Design for adaptation of serviceeba
applications: Main issues and requirements,1@80OC/ServiceWave
2009 Workshopsser. LNCS, 2010, pp. 467-476.

F. Rosenberg, P. Celikovic, A. Michimayr, P. Leitnerda®. Dustdar,
“An End-to-End Approach for QoS-Aware Service Composition
EDOC, 2009, pp. 151-160.

D. Chiu, S. Deshpande, G. Agrawal, and R. Li, “A Dynamic-Ap
proach toward QoS-Aware Service Workflow Composition,JGWS
2009, pp. 655-662.

S. Kim, D. Kim, L. Lu, and S. Park, “Quality-driven arckitture
development using architectural tacticslournal of Systems and
Software no. 8, pp. 1211-1231, 2009.

H. K. A. Martens, “Automatic, model-based software fpemance
improvement for component-based software designs,Piac. of
FESCA 2009vol. 253, no. 1, 2009, pp. 77 — 93.

K. Vallidevi and B. Chitra, “Effective self adaptatiooy integrating
adaptive framework with architectural patterns,”Rmoc. of A2CWiC
201Q ACM, pp. 67:1-67:4.

] E. Riccobene and P. Scandurra, “Specifying formal etese behav-

ioral models for structural models of service-oriented poments,”
in Proc. ACT4SOC 201(p. 29-41.

“Service Component Architecture (SCAyww. osoa. or g, 2007.
[accessed: May 18, 2010]

E. Borger and R. Starldbstract State Machines: A Method for High-
Level System Design and Analys&pringer, 2003.

“The ASMETA tooset,"htt p://asmeta. sf. net/, 2006. [ac-
cessed: April 26, 2011]

L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schmi, and J.
Stefani, “Reconfigurable sca applications with the fragoiaitform,”
in Proc. of Int. Conf. on Services Computjn&EE, 2009, pp. 268—
275.

C. Attiogbé, P. André, and G. Ardourel, “Checking cooment
composability,” inSoftware Compositignser. LNCS, W. Loéwe and
M. Sudholt, Eds., 2006, pp. 18-33.

M. Marzolla, “The gnet wor ks toolbox: A software package for
gqueueing networks analysis,” in Proc. ASMTA 2010, Springer

G. Franks, P. Maly, M. Woodside, D.C. Petriu, and A. Halh
“Layered Queueing Network Solver and Simulator User Manual
LQN software documentation,” 2006.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeonigbiel-
based performance prediction in software development: esyi
IEEE Trans. Software Engno. 5, pp. 295-310, 2004.

I. Epifani, C. Ghezzi, R. Mirandola, and G. TamburrellModel
evolution by run-time parameter adaptation,” fmoc. of ICSE’09
pp. 111-121.

V. Cortellessa, F. Marinelli, and P. Potena, “An optzation frame-
work for “build-or-buy” decisions in software architectjt Comput-
ers & OR vol. 35, no. 10, pp. 3090-3106, 2008.

R. Mirandola, P. Potena, E. Riccobene, and P. Scandiuika
framework for adapting service-oriented applications ebdason
functional/extra-functional requirements tradeoffs: e thStock
Trading System case study,” TR Univ. of Bergamo (ltaly),
http://cs.unibg.it/potena/AdaptationFramework/TRRrgults.pdf,
2011. [accessed: July 21, 2011]

123

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

PSW: A Framework-based Tool Integration Solution for Global Collaborative
Software Development

Juho Eskeli
VTT Technical Research Center of Finland
Oulu, Finland
Juho.eskeli@vtt.fi

Carmen Polcaro
Innovalia Association
Bilbao, Spain
cpolcaro@innovalia.org

Abstract—The market of solutions for collaborative and
distributed software development offers currently a wide range
of tools that support specific tasks involved in these kind of
projects. Several solutions aim to support the whole
development process in a single tool or via groups of tools by
providing distributed teams the possibility to share and
connect information and to wuse common interfaces.
Nonetheless, every one of them includes some disadvantages
that lessen their value for companies that use them across their
distributed development projects. In this paper the authors
will highlight relevant issues associated with collaborative and
distributed software development projects. Prisma Workbench
will be presented as the framework to overcome many of these
issues and to provide a compelling option for teams to integrate
their existing tools into a complete collaborative solution.
Currently Prisma Workbench is being tested by the partners
involved in the ITEA2 PRISMA Project and some of the first
feedback will be presented as well.

Keywords-collaborative software development; global
software development; collaboration; tools; tool integration

I. INTRODUCTION

Collaborative and distributed software development is
currently one of the most common ways of facing the
development for many applications that due to its complexity
or size require a large team working together [1]. The level
of distribution for each group of the team can vary from
different departments of the same company located in the
same building to the case that several companies’ located in
completely distant regions of the world participate in a
common development. The motivation to adopt this
organizational paradigm can vary from case to case: cost
reduction, collaboration between reference centres or using
this as a way to increase the innovation inside the company
[2]. The number of cases that can be found in the industry is
enormous [3][4].

A distributed software organization model brings
problems to the development process that have to be
addressed with specific methodologies or tools. The most

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Jon Maurolagoitia
CBT Communication Engineering
Getxo, Spain
jmaurolagoitia@cbt.es

relevant that could be identified as part of the PRISMA
Project[5], previously to the development of Prisma
Workbench (PSW) [6], are highlighted here:

Communication Breakdown: the barrier of not being
able to discuss issues and agree on specific topics
face to face leads to delays in the development
process.

Coordination Breakdown: can happen in a project
where people don’t know each other or don’t have
the possibility to interact continuously to adapt
project planning. The chances of the project to go on
wrong track are higher and following of planning is
difficult.

Control Breakdown: For project managers, having a
clear view of the status of a project when the team is
distributed in different locations and work in
different time zones can be a really challenging task.
The level of control that the project manager will
have is not as deep as in a non-distributed scenario.
Cost of currently available tools: currently a number
of providers offer their commercial solution for
collaborative development. =~ The price of
implementing these solutions in companies is
sometimes an obstacle.

Poor interoperability between tools: in a case where
each team is using their own tools, integration
between the tools is difficult and most of the times
impossible. For this reason manual copying or
exporting of data from one tool to another is often
needed.

Lack of traceability: during the development project
information elements are created which traceability
should be maintained throughout the whole process.
These elements include e.g., client requests, system
requirements, test information, bug reports, and so
on. Having no connection between the tools that
manage each of these elements makes the
traceability maintenance an effort consuming task.

124

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Nowadays, the market of tools that support specific tasks
of the development process is very large. In most cases their
learning curve is high. Therefore, teams feel reluctant to
include a new tool or change the tools that they are currently
using as part of their development process although this
could sometimes lead to a better integration with the rest of a
distributed team.

Another type of tools, which will be discussed in chapter
V of this paper, presents a global solution that supports the
whole development process. As mentioned before, these
solutions include sometimes a price tag that not every
company is able to pay, especially in those cases where
SME’s are involved.

Prisma Workbench, the solution proposed in this paper is
a tool integration framework designed for collaborative
distributed software development. This framework allows
connecting of software development tools to create company
specific software development environment instances. In this
paper the solution is presented from instance point of view;
how it can be used with a particular set of tools. The tool set
mentioned consists of tools proposed by the PRISMA project
partners.

PSW fills the gaps that exist in the current collaborative
software development environments. It allows distributed
teams to integrate their own existing tools and link data
among them. PSW provides the visibility of how the project
is running and what every group is doing to the whole
development team as if everybody would be working in the
same room.

II. RELATED WORK

Wasserman [7] defines tool integration as follows: ‘tool
integration is intended to produce complete environments
that support the entire software development lifecycle.” In
our vision tool integration can be used to provide a consistent
software development environment using tools that were not
planned to be used together initially. Furthermore, with the
help of suitable tool set a notable part of software
development lifecycle can be supported. Thus, the vision is
not entirely separate of what Application Lifecycle
Management (ALM) tools attempt to provide. According to
Kédridinen [8] ALM can be understood as coordination of
activities and the management of artefacts such as
requirements, test cases, etc. during the lifecycle of a
software development project.

Schwaber [9] and Shaw [10] mention that the type of
ALM solutions at that time could be divided into single
vendor (e.g., IBM Jazz), multi-vendor (e.g., Eclipse, ALF),
and single repository approaches. In single vendor approach
a vendor has built a framework where other vendors can
build integrations. In multi-vendor approach development
and direction is driven by open source community (e.g.,
Eclipse, ALF). In single repository approach all the software
lifecycle artefacts are managed in a single place.

According to the previous classification PSW is a multi-
vendor platform. Furthermore, it is a framework integration
based on tools’ own repositories. As described by [11]
framework-based integrations attempt to classify tools and

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

provide integration between tool classes based on vendor-
neutral interfaces and mechanisms. Furthermore, the
framework-based approach aims to provide an integration
environment and common look and feel without limiting the
choice of tools [11].

As far as we know our solution is unique because it does
not rely on any specific software development tool. Also, in
theory the tool set could be extended to support notable parts
of software development lifecycle using a suitable tool set.
Modelbus [12] is a project of tool integration, but to our
understanding the focus is mainly integration of modelling
tools and study of model transformations. Also Eclipse
Mylyn is advertised as ALM framework [13], but as far as
we can tell it seems to focus largely on task management and
integration of task / defect management tools.

II1.

PSW has been developed from ground up based on the
experiences achieved from ITEA Merlin[24] and ITEA2
TWINS[25] projects. The previous Eclipse based tool
integration has been described in detail in [14]. In case of
PSW the main interface is via a web browser. This approach
was chosen to decrease dependency on a particular
technology/platform (Eclipse) and making it easier to use
PSW in day-to-day operations (i.e. lower the barrier of
deployment).

The solution proposed is a tool integration framework
designed for collaborative distributed software development.
In its current form it has been previously presented in [5].
PSW allows connecting of software development tools to
create company specific software development environment
instances. In this paper the solution is presented from
instance point of view; how it can be used with a particular
set of tools. The tool set mentioned consists of tools
proposed by the PRISMA project partners.

PSW implements a repository neutral integration of tools.
This means that the lifecycle data produced during software
development process is maintained in separate tools. The
benefit of this type of approach is that it has minimum
impact on the company’s current tool set. The caveat is that
integrations to the tools have to be constructed on a per tool
basis. However, there is no need to create point-to-point
integrations between each of the tools because PSW acts as a
hub where tools are connected via its integration interface.

For PSW one of the primary goals has been to make the
integration of new tools as easy as possible. To get to this
goal the following steps have been taken: designed
integration mechanism for simple integration, provide
example integrations, and created integration instructions.
The integration mechanism has been described in [6]. The
example integrations will be described later in this section.

The solution provides visibility of tools data in easy to
understand dashboards (see Figure 1 and Figure 2) that can
be customized based on the user’s preferences. Furthermore,
the framework handles user sign-in into the separate tools
transparently. The solution also provides the means for the
user to create links between different lifecycle items. These
links can then be exploited in the reporting to e.g.,
demonstrate amount of defects in a build. The reporting

FEATURES

125

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

solution built into PSW allows users to customize their own
reports.

. prisma
iy

Figure 1. The traceability view showing a requirement and related work
products

Reporting view Communications

- IRePortlet

Drave Chart!

[l instude custom titie [#] include comments

Custom itle: Trac ticket bypss par status
Comment e hers

Usar commant:

EDF right here!

CSV ight herel

Trac ticket types per status

|
|
- - I‘ |J [. 1]

ype

Figure 2. The reporting view showing a generated graph based on data
retrieved from the integrated tools

To support collaborative, distributed development PSW
provides means for asynchronous (chat) and synchronous
(voice & video) communication with the help of a tool
(OpenMeetings). The notifications system provides users up-

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

to-date information about any important events (e.g., build
status) in the project.

Although PSW can be connected to several other
commercial tools or custom developed ones, the project team
has made a selection of open source solutions that cover the
complete development process. By using these solutions,
companies will be able to start working together also if
currently no tool is used for any of the requirements
specification, development or testing tasks. The solutions
that have been selected are the following:

e Edgewall Trac[15]: this tool originally developed for
bug tracking has also been wused a simple
requirement management tool. As part of PSW it
should be used for requirement management and bug
tracking.

e Subversion: this versioning system is one of most
popular in the open source community.

e Testlink[16] This web based test management tool
will support your test case and test data
management.

e Openmeetings: with Openmeeting companies will be
able to host their own audio and video conferencing
solution.

IV. BENEFITS

PSW addresses many relevant issues related to
collaborative and global software development. Some of
these issues were extracted during the research done by the
PRISMA Project and have been highlighted in the
introduction of this paper. After taking into account the
features available in PSW we propose how distributed
development process could be dramatically enhanced using
PSW:

e Communication enabler: the possibility to organize
virtual meetings and link those to other information
items such as requirements, test, etc. enables a
centralized solution where every group of the team
can refer to decisions made any time during the
development process.

¢ Improved team coordination: by sharing the status of
key information such as requirements or tests and
providing an event log, every member of the team
will be informed of what others are doing. This will
help them to coordinate their own work according to
the planning. In a scenario where groups work in
different time zones this log will be sometimes the
only reference to achieve this kind of coordination.

e (Centralized project management: the dashboards
provide information a project manager needs to have
for a quick image of how the project is running
comparing to the plan. It will also give access to
more detailed view of specific tasks. Using only one
tool (PSW) for overview will facilitate the
continuous control of projects. The virtual meeting
functionality will be a key tool for the interaction
between project managers, group managers,
developers and testers.

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

e Seamless integration between tools: PSW will
enable tools from different vendors, located in
distant location to integrate while maintaining their
independence. As described in chapter VI, this
integration can be done easily through standard
REST or WS communication interfaces. The number
of manual copying processes between tools to
maintain the traceability throughout projects will be
reduced and in most cases eliminated

e High level of traceability: One of the main benefits
of PSW it the possibility to trace information from
different tools as if all of it would be in one tool.

e Low cost of investment: By including PSW in your
organisation, every group will still be able to use the
same tools as they had done before since they will be
integrated instead of being replaced. The investment
needed is therefore much lower than in other cases
where only tools from the same vendor can be
linked.

The research performed as part of the PRISMA Project
has included the analysis by the partners of the
improvements achieved by using PSW in tasks that were
supported before by independent tools or by no tools at all.
Since the PRISMA project is still ongoing and will be
finished by the end of 2011, only the preliminary results of
this analysis can be presented here. Currently PSW is being
tested in real distributed software development projects in
order to extract the most valuable results. This analysis is
being performed using the tools provided by default with
PSW and described in chapter III. Some of these tools had
already been in use for some time by the partners involved in
the project.

The first comment that has been shared after starting this
testing phase is that, although using the same tools as before,
the information supported by those is not isolated anymore.
The tool supported traceability helps every member of the
team to have a clear view about how every information
artefact is related with the rest.

The centralized reporting tool has been identified by
project, development and test managers as one of the best
features in order to review the status of the overall project. It
is one of the main functionalities where PSW combines data
coming from several tools and provides a higher level of
information.

Future publications will detail the complete results from
this analysis.

V. EXISTING SOLUTIONS AND APPROACHES

As mentioned before, the market offers currently a
number of solutions focused on distributed and collaborative
environment. As described below, most of them include any
restriction due to being closely related with one development
technology, provider or business model.

e Jazz: This solution from IBM is targeted to integrate
the Rational line of tools which support several
phases of the development process. These tools
include Rational Requirements Composer, Build

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Forge and Quality Manager. Jazz also offers the
Open Services for Lifecycle Collaboration (OSLC),
an industry initiative to enable interoperability of
tools developed by different vendors. Though
promising, during the research performed in the
PRISMA project, this interoperability was not
achieved. Jazz is free to download from its site but
currently it would be only useful for distributed
teams that use Rational solutions.

e Teamforge: This webportal provided by Collabnet
allows the collaboration of developers and IT project
managers by proving the tools to plan and coordinate
projects following agile methodologies. Collabnet
features the management for user stories, source
code integration, discussion forums, bug tracking
and file and document sharing. Teamforge is
licensed as a subscription based service. Although
powerful, this solution forces every group of the
team to use new tools and follow agile development
methodologies which is not always the case in some
companies.

e Application Lifecycle Framework (ALF): This
Eclipse project proposal has been archived but its
goal aimed to provide a logical definition of the
overall interoperability business process. This
technology handles the exchange of information, the
business logic governing the sequencing of tools in
support of the application lifecycle.

e Team Foundation Server (TFS): Microsoft offers
this collaborative back end solution that can be
connected with other Microsoft tools in order to
exchange data among them. TFS does not have any
user interface, rather it exposes web services which
are the connection point between the tools. These
include all the Visual Studio solutions but also
Microsoft Project, Office or Sharepoint and cover
almost the complete development lifecycle. As a
disadvantage, teams where no Microsoft
development tools are used will not be able to
benefit from the TFS integration features.

e SourceForge.net: It claims to be the world's largest
open source software development web site. They
say that as of February, 2009, more than 230,000
software projects have been registered to use their
services by more than 2 million registered users.
SourceForge provides the following features for
projects: discussion forums, wiki, version control
system, file management and other tools more suited
to open source projects.

VL

PSW consists of two main components: a server and
collection of JSR 286 portlets. The server component
integrates tools, implements some basic functions needed by
tool integration such as user management, and provides its
services to the portlets (or other possible clients). The
portlets act as the user interface.

TECHNOLOGY BEHIND PSW

127

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The server is built on top of Apache Tuscany[17], which
is a framework for building Service Oriented Architecture
(SOA) solutions. The framework takes care of runtime
handling (initialization, termination, etc) of services. SOA
was selected because it promotes loose-coupling between
software components. Loose-coupling is useful because it
provides us the freedom to add / remove / change the tools as
needed. Yet another reason was because the SOA based
approach provides us easy access to the distributed tools.

The integration mechanism of PSW has been described
in [6]. A new tool can be integrated by creating a Java class
that implements a Java interface definition provided by us. In
the interface definition there are specific functions that need
to be filled in; i.e. to get all work products (e.g.,
requirements) from the tool. What happens here is that the
integrator creates a glue code that connects the data from the
tool to PSW. The actual data from the tools can be fetched
via any means supported by the tool, e.g., using REST or
WS. Example integrations and guidance are provided to
make the integration as easy as possible.

The server also takes care of authenticating the users to
the tools. In essence a user’s account for the tools is tied to
the user’s PSW account. Furthermore, it implements a
traceability service which can be queried for work product
relations and for creating new ones. The traceability
mechanism is implemented so that no data is replicated.
Instead unique identifiers are used to identify the work
products in the tools, and the relations are stored in a
relational database, MySQL[18]. The information artefacts
are maintained in the original tool repositories.

For improved performance the data from tools has to be
temporarily cached, for which Memcached[18] is used.
Caching is needed because some of the tool specific queries
can take a long time to complete (e.g., due to amount of data,
tool location). The cache is updated at definable intervals.
During an update the changes in the work products are
detected and stored. The changes can then be queried using
the notification service and shown in the user interface (i.e.
portlets).

The wuser interface consists of several portlets
implemented fOHOWng the JSR 286;Err0r! No se encuentra el origen de
la referencia. ctandard. The views (e.g., traceability, reporting)
are implemented via one or many portlets and use the
services provided by the server to produce their output. The
portlets have been designed so that minimal or no changes
need to be done if the set of tools is changed. The
techonologies used are Java, JavaServerPages[20] (JSP), and
Javascript (JQuery etc.). For current implementation
Liferay[21] portal has been chosen to run the portlets since it
supports the JSR 286[22] standard. Nonetheless any other
platform which support this standard could be used

The reporting feature is the most recent addition into
PSW. It enables users to build their own customized reports.
An existing implementation (BIRT[23]) was studied and
found promising; however the effort needed to implement
custom reports with it in portlets was considered to be too
much compared with the result. The reporting feature
enables users to filter the data (e.g., from which tools, what
type of work products) they use for the reports. Some

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

rudimentary manipulation of the data can also be performed
e.g., addition or grouping of values. Existing traceability
information can also be used to create e.g., requirements test
coverage report. The plot types supported are currently bar,
line, and pie chart. New types can be easily implemented
with the library that is responsible for generating the charts.
Additionally, the parameters used for creating the report can
be stored for further usage, e.g., recurring reports. Reports
with data can also be stored, named, and dated for reference.
Finally, the reports can be exported in CSV and PDF
formats.

VIL

In this paper the authors have presented relevant issues
that development teams face when a distributed organization
model is adopted. These issues, which were identified as part
of the research of the PRISMA Project, have been the
motivation to develop PSW, a solution that allows the
integration of a heterogeneous number of tools in order to
collaborate and exchange data while maintaining their
independence.

Solutions for collaborative software development that are
currently available have been described, highlighting the
advantages of PSW among them.

PSW features, technology background and benefits have
been also thoroughly explained in order to make clear how
using this solution in a distributed and collaborative
environment could dramatically reduce the impact of this
organization model in software development projects.

CONCLUSION

ACKNOWLEDGMENT

The authors would like to thank the partners involved in
the ITEA2 PRISMA Project for their contribution and
inspiration.

REFERENCES

[1] P. Parviainen, J. Eskeli, T. Kynk&dnniemi, M. Tihinen, 2008. Merlin
Collaboration Handbook - Challenges and Solutions in Global
Collaborative Product Development. In Proceedings of ICSOFT
(SE/MUSE/GSDCA)"2008. pp.339~346

[2] T. Forbath, P. Brooks A. Dass, A , “Beyond Cost Reduction: Using
Collaboration to Increase Innovation in Global Software
Development Projects.”, 2008. IEEE International Conference on
Global Software Engineering.

[3] M. Bass, J.D. Herbsleb, C. Lescher, “Collaboration in Global
Software Development Projects at Siemens: An Experience Report” ,
2007 , IEEE, International Conference on Global Software
Engineering.

[4] Booz Allen Hamilton, “Globalization of Engineering Services”,
August 2006 , NASSCOM

[5] Prisma Project website http://www.prisma-itea.org/

[6] J. Eskeli, J. Maurolagoitia, “Global Software Development: Current
Challenges And Solutions.”, 2011. ICSOFT

[7] A. Wasserman, “Tool Integration in Software Engineering
Environments”, Springer-Verlag, Berlin, International Workshop on
Environments, pp. 137-149, 1990.

[8] J. Kaiéridinen, “Towards an Application Lifecycle Management
Framework”, VTT Publications, Dissertation, 103p.,2011.

[9] C. Schwaber, “The Changing Face of Application Life-Cycle
Management”, Forrester Research Inc., August 2006.

128

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

[10] K. Shaw, “Application Lifecycle Management for the Enterprise”, [16] Teamst http://www.teamst.org/

Serena Software,) White Paper, [17] Apache Tuscany http://tuscany.apache.org/
http://www.serena.com/docs/repository/company/serena_alm_2.0_for 181 Muysal httn:// Leom/
_tpdf, April 2007. (available 24.5.2011) (18] Mysql http://www.mysql.co

[11] J. Pederson, “Creating a tool independent system engineering [19] Memcache.d http://memcached.org/
environment”, In: IEEE Aerospace Conference, 8 pp., March 2006. [20] JSP http://java.sun.com/products/jsp/

[12] C. Hein, T. Ritter, and M. Wagner, “Model-driven tool integration [21] Liferay http://www.liferay.com/
with modelbus”, In Workshop Future Trends of Model-Driven [22] JSR286 http://www.jcp.org/en/jsr/detail?id=286

Development, ?009' [23] BIRT http://www.eclipse.org/birt/phoenix/
[13] http://www.eclipse.org/mylyn/ (read 27.05.2011) [24] Merlin-project
[14] J. Eskeli & P. Parviainen, “Supporting hardware-related software http://virtual.vtt.fi/virtual/proj 1/projects/merlin/icgse.html

development with integration of development tools”, Proceedings - [25] TWINS-Project http://www.twins-itea.org/
5th International Conference on Software Engineering Advances, ’ ’ ’

ICSEA 2010, IEEE Computer Society, pp. 353 — 358, 2010.
[15] Edgewall http://trac.edgewall.org/

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 129

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Feature-Oriented Programming and Context-Oriented Programming:
Comparing Paradigm Characteristics by Example Implementations

Nicolas Cardozo*T, Sebastian GﬁntherT, Theo D’Hondt! and Kim Mens*
*ICTEAM Institute
Université Catholique de Louvain
Louvain-la-Neuve, Belgium
Email: {nicolas.cardozo,kim.mens}@uclouvain.be
TSoftware Languages Lab
Vrije Universiteit Brussel
Brussels, Belgium
Email: {ncardozo,sgunthertidhondt} @vub.ac.be

Abstract—Software variability can be supported by providing adap-
tations on top of a program’s core behavior. For defining and compos-
ing adaptations in a program, different paradigms have been proposed.
Two of them are feature-oriented programming and context-oriented
programming. This paper compares an exemplar implementation of
each paradigm. For the comparison, a common case study is used in
which we detail how adaptations are defined, expressed, and composed
in each paradigm. Based on the case study, we uncover similarities and
differences of each implementation, and derive a set of characteristics
that identify each of them. The experiment shows several overlapping
similarities between the two implementations, which is an indicator that
there is a similar core set of characteristics for each paradigm. This
finding brings the two seemingly disjoint research directions together,
and can stimulate future research both in the direction of merging
features and context as well as to improve the characteristic strengths
of each paradigm.

Keywords-feature-oriented programming; context-oriented program-
ming; language paradigms

[. INTRODUCTION

Software variability is an important factor in design and imple-
mentation of programs. Software programs are often developed for
high customizability, for example to provide individual variants for
particular clients. The implementation of such programs consists
of core behavior and of different adaptions that add or modify
the functionality. Program variability can be realized by using
language level abstractions as introduced by different paradigms
tailored to express program adaptations. Two such paradigms
are feature-oriented programming (FOP) [1] and context-oriented
programming (COP) [2].

The FOP paradigm is concerned with identifying functionality
in the form of features. A feature is a stakeholder-relevant func-
tionality [3] that can be implemented coarsely as a module or
fine-granular as different lines of code scattered over the source
code [4]. In FOP, adaptations are provided by features that can be
expressed in several ways, for example by annotating the core pro-
gram, or by defining adaptations as refinements. To yield different
program variants, features are composed with the core program.
Normally, feature composition is done statically at compile time,
but recent approaches also offer runtime composition [5].

The COP paradigm is concerned with runtime behavior mod-
ifications in order to provide functionality that is adapted with
respect to the execution environment of a program. In most COP
implementations, adaptations are defined as first-class entities,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

to which context-dependent behavior is associated in a modular
fashion. Adaptations are dynamically activated and deactivated at
runtime to provide and undo context-dependent behavior [2].

Our objective is to identify the similarities and differences for
realizing variability in these two paradigms. To this end, we use
the expression product line (EPL) case study, providing an example
implementation in each paradigm. For FOP we use rbFeatures,
a versatile extension of the Ruby programming language that
introduces features as first class entities [6][5][7]. For COP we
use Subjective-C [8], a COP implementation for mobile devices
that is based on the Objective-C programming language. From a
comparison in the expression and implementation of the variability
concerns of the EPL case study, we derive a set of characteristics
that describe how each paradigm introduces variability.

A clear identification of the core characteristics between the two
paradigms is a first result to help in forming a joined research for
implementing variability. As we will see, the overlapping set of
characteristics is an indicator that the FOP and COP paradigms
could be brought together as a hybrid language for software
variability.

The paper is organized as follows. We provide background to
FOP and COP in Section II. Then in Section III, we provide a
side-by-side comparison between the FOP (using rbFeatures) and
COP (using Subjective-C) implementations of the case study. We
compare both implementations with the help of the Expression
Product Line (EPL) case study. Based on the case study, we discuss
the similarities and differences of both implementations in Section
IV. Sections V and VI respectively present the related work, and
the conclusion and future work.

II. BACKGROUND

This section introduces the feature-oriented programming and
context-oriented programming paradigms.

A. Feature-Oriented Programming

The concept of features initially emerged with the goal to
express distinct functionality that is targeted towards a specific
stakeholder [3]. This notion of a feature is called conceptual
[6], because it only regards the end-user visible behavior, but
not its implementation. How to implement such conceptual fea-
tures is considered in the feature-oriented programming paradigm.
Basically, a program consists of different artifacts that provide

130

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

the program’s functionality. Features encompass different parts
of these artifacts, and are therefore distinguished into coarse-
grained and fine-grained features [4]. Coarse-grained features can
be represented with conventional mechanisms provided by a pro-
gramming language, such as modules and packages. These can
then be composed conveniently with the program’s core behavior.
Fine-grained features are more difficult to represent and compose,
because they can consist of individual classes, methods, or even
parts of method bodies. Related work shows a diversity of FOP
implementation approaches [9]. Each approach differentiates how
features are represented, expressed, and composed. We distinguish
these approaches as follows:

o Annotations — These approaches use the existing program
source code and mark the occurrences of feature-related
source code. One type of annotations are source code anno-
tations such as “#ifdef” statements in C++, which are native
preprocessor directives. Before the program gets compiled,
all parts of the source code that do not belong to the current
feature configuration are pruned. Then, a program variant is
created by compiling the remaining source code [10]. Another
option is to use virtual annotations. In this case, the source
code itself is not annotated, but a suitable intermediate pro-
gram representation, such as the abstract syntax tree [10]. This
approach requires tool support for representing the annotations
and for generating a program variant.

Modules — These approaches use the programming language

modularization concepts to represent features. Among these

approaches are traits in Scala [11], atoms and units in Jiazzi

[11], Classboxes [12], Caesar]J [13], and Object Teams/Java

[14]. The capabilities of modules constraint the level to

which especially fine-grained features can be represented and

composed.

o Refinements — These approaches separate a program into a
fixed base program and extensions that are called refinements.
Refinements are added to a program, where they change
the behavior and the structure. Typically, these approaches
add specific language constructs to express these refinements.
Some approaches as the AHEAD tool suite [15], for example,
use the keyword refine as a language construct, other
approaches introduce concepts similar to refinements, such as
aspects from aspect-oriented programming [16].

We use rbFeatures [6][5][7] as the FOP example language.
rbFeatures is a versatile, pure language of Ruby, that allows features
to be defined as first-class entities, giving a close integration of
features and other application code. In order to express which
part of the source code belongs to a feature, semantic annotations,
called feature containments in rbFeatures, are used. Containments
consist of a condition and a body. A containment condition is a
logical expression determining which features need to be active or
inactive in order for the body to be included in the program. The
containment body is any piece of code: modules, classes, methods,
and even individual lines and characters. rbFeatures allows to
express the hierarchy and constraints of features with an expressive
rule language. A program that is feature-refactored with rbFeatures
allows both runtime and compile-time composition. At runtime,
features can be activated and deactivated to immediately affect the
program behavior, even allowing different variants of a program to

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

exist at runtime [5]. At compile-time, the semantic annotations can
be preprocessed to derive a static variant. This is done by pruning
source code not define within the configured containments.

B. Context-Oriented Programming

Context-oriented programming paradigm [2] allows software
systems to be modularized into behavioral adaptations that can
be activated, deactivated and composed at runtime. Adaptations
are triggered by changing properties of the execution environment,
such as device presence, battery level, or user settings. COP
languages typically provide dedicated constructs for the definition
of behavior adaptations in a modularized fashion, as well for the
composition and execution of such adaptations [2][17]. Program
entities in which adaptations are defined are called layers [2] or
contexts [17], which are normally defined as first-class entities of
the program. We will refer to them as contexts.

Contexts may specify either behavioral or structural adaptations.
The former case focuses in modifying functionality of the program
with more suited behavior to particular situations of the execution
environment. The later case concerns with providing new entities or
adapting existing entities in the program for a particular situation.

Behavioral adaptations are the key concepts of COP. Adaptations
rely in the dynamic activation and deactivation of context entities.
When a context is activated, its associated behavioral adaptations
become available in the current scope of the application. Simi-
larly, whenever contexts are deactivated the behavior adaptations
become unavailable to the execution environment, and the observed
behavior of the program is restored to its former state. Behavioral
adaptations can be associated with more than one context, in such
a case, a new context entity is created implicitly, representing the
combination of the contexts, to which the adaptation is associ-
ated [18]. Combined contexts are made available if and only if all
of its components are active.

If not dealt with careful, dynamic activation and deactivation
of contexts may lead to unexpected or inconsistent behavior. To
manage such situations it is possible to define different dependency
relations among contexts [8][19]. Constraints imposed by the
dependency relations are verified at runtime when a particular
context is to be activated or deactivated.

Contexts are stateful objects, state of variables and objects
defined within a context are always preserved between context
activations [2][8][20]. Moreover, within a context it is possible to
extend the definition of objects already existing in a program by
dynamically adding state properties to them. As with behavioral
adaptations, these structural adaptations also become available and
unavailable as the context in which they are defined is respectively
activated or deactivated.

In the remainder of this paper we use Subjective-C [8] a full
context-oriented language extension of Objective-C whose design
is influenced by the Ambience language [18]. Contexts are defined
as first-class entities. Context-dependent behavior adaptations need
to be defined as methods in a class. These methods are annotated
with the name of the context they belong to. Context-dependent
behavior is not accessible by the core program until the context to
which they are associated is activated. When a context is activated,
a method replacement mechanism (from Objective-C’s meta-object
protocol) replaces original methods with their context version at
runtime. Subjective-C uses a context manager to maintain a record

131

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Numbers

Operations

| Lit | | Neg | | Add | | Sub | | Mul | | Div | | Print | | Eval |
Mandatory Optional MORE AND OR
feature feature relation relation relation
Figure 1: Feature diagram of the Expression Product Line.
of all context objects at runtime, whether they are active or not,
SCContext* Print = [[SCGlobalContext alloc]

and the dependency relations between contexts.

III. CASE STUDY: EXPRESSION PRODUCT LINE

The expression product line (EPL) [11] is a well known case
study concerned with finding suitable modularization concepts for
representing different types of integers, expressions, and operations
over them. All possible program variations of the EPL are shown in
Figure 1 — this notation is called a feature diagram, as it depicts the
constraints between different features of a program [21]. For the
EPL all its features are optional, meaning that they can be build in
any combination. We conduct a side-by-side implementation of the
case study providing first the rbFeatures example, and subsequently
the Subjective-C one. The two implementations are compared
based on the principal techniques each uses to realize software
adaptations, specifically we are concerned with: (a) The way in
which adaptations are declared, (b) The way in which adaptation’s
behavior is declared, and (c) The way in which modification to the
core program is done.

A. Adaptation Declaration

The implementation of the product line starts with its top down
definition. As originally expressed in the case study, expressions
like ADD and NEG, as well as the operations for PRINT and
EVAL are defined as features, shown in the following snippet for
rbFeatures.

initWithName:Q@"print"];
[[SCContextManager sharedContextManager] addContext:
Print];

B. Behavioral Declaration

Once all adaptations have been defined, the next step is to define
the specific behavior added by the features to other objects of the
program. We consider enhancing Add expressions with the printing
behavior provided by the PRINT adaptation.

In rbFeatures, adaptations are introduced by forming feature
containments around a pice of feature-specific code, which can be
for example a method declaration. In the following example, the
containment condition is the PRINT adaptation, and the contain-
ment body is the method declaration. When the PRINT adaptation
is activated, a call to the print method will behave as shown in
the snippet, otherwise the method will return an error message.

class Add
Print.code do
def print
Kernel.print (@left.print + " + " + @right.print)
end
end
end

class Add
is Feature
end

class Print
is Feature
end

In Subjective-C, LiT, ADD, NEG and the other expression
elements are defined as regular (behavior-less) objects, taking
advantage of the polymorphic abilities of the language. The PRINT
and EVAL operations are defined as contexts providing behavior
for expression objects. Operations are declared as named context
objects and added to the context manager.

In Subjective-C, behavioral adaptations are also introduced by
adding context-dependent methods within the body of the object
that defines it. This is shown in the following snippet.

@implementation Add {
@contexts Print
- (NSString) print {
return [NSString stringWithFormat:@"$@ + $Q@", [left
print], [right print]];

@end

@interface Add : Exp {
Exp *left, xright;

}

@end

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Unlike rbFeatures, in Subjective-C it is not possible to define
specific lines within a method as context-dependent. However, this
is possible in other COP languages [2][18].

C. Behavioral Modification

Behavior defined for the different EPL expressions and oper-
ations is available to the program through the explicit activation
of the related feature. For example, in order to have the PRINT

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Entity Representation Annotations

Adaptation Constraints Hierarchy
Adaptation Trigger Internal
Adaptation Activation Compile-Time
Composition Process Order-Independent

Stateful

Adaptation Properties

Modules

Order-Dependent

Refinements First-Class Entities
Rules
External
Runtime
Blocking Non-Blocking
Extensible Cascading

Figure 2: Morphologic scheme of all implementation characteristics.

adaptation, in rbFeatures a call to the Print .activate method
must be made to activate the adaptation. In Subjective-C the
@activate (Print) keyword is used to process the context
activation.

However, there is a difference in the processing of the two
activation messages. In rbFeatures the source code enclosed by
the feature definition is re-executed, that is, with every activation
the code gets redefined and because of changed containment
conditions, new behavior is eventually added to the program.
Subjective-C, on the other hand, does not re-execute any code.
Instead, activation of a context allows its associated methods,
variables, objects, and so on, to be visible by the method dispatcher.
This is the main reason context-dependent variables are stateful.
Whichever the state of a variable is, it remains untouched as long
as the context in which the variable is defined is inactive, since it
cannot be found by the program.

IV. COMPARISON OF FEATURE-ORIENTED PROGRAMMING
AND CONTEXT-ORIENTED PROGRAMMING

In this section, the similarities and differences encountered
between our FOP and COP implementations are made explicit.
Then we define them as specific characteristics of the implemented
paradigm.

We summarize the observed similarities as follows:

« Features and contexts are declared as first-class entities of the

program.

« Features and contexts add adaptions on top of the core behav-
ior by annotating source code at the place where adaptations
would normally be defined in.

« Features and contexts can both be activated and deactivated
at runtime, immediately changing the program behavior.

« Both implementations offer a runtime representation of the
dependencies between adaptions.

The differences are the following:

o There is no automatic adaptation of the dependent features in
rbFeatures, while Subjective-C uses the dependency relations
defined between contexts to automatically activate or deacti-
vate related contexts.

« Feature activation is externally triggered by the user in rbFea-
tures, while Subjective-C uses internal triggers based on the
program state to activate contexts.

o There is no stateful composition of adaptations in rbFeatures:
while instances of objects with feature-dependent behavior
retain their state, class variables will be overridden during

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the program adaptation. Subjective-C uses a stateful represen-
tation of contexts. Variables declared in a context cannot be
accessed or modified unless the context that defines them is
available. Maintaining there state between activations.

o Features can be composed at compile-time and runtime in
rbFeatures, while Subjective-C only offers runtime composi-
tion.

We use this comparison and related work as the frame of refer-
ence for FOP and COP to define a set of characteristics that identify
our implementations of each paradigm. These characteristics, also
illustrated in Figure 2, are the following ones:

o ENTITY REPRESENTATION [ANNOTATIONS, MODULES, RE-
FINEMENTS, FIRST-CLASS ENTITIES] — Specifies how adap-
tations are represented. On the one hand are pure annotations
that are external to the program and receive their meaning as
contexts or features from the processing tool. On the other
hand we see first-class entities that are high-level abstractions
and can be fully integrated with the program.

o ADAPTATION CONSTRAINTS [HIERARCHY, RULES] — The
availability of composition constraints, for example in the
form of a hierarchy (a hierarchically higher adaptation is only
available if its children are) or rules (arbitrary expressions
that state which adaptions need to be active or inactive for a
particular adaption to be composed with the program).

e ADAPTATION TRIGGER [INTERNAL, EXTERNAL] — The
adaptation process is triggered by an internal signal, like a
certain program state upon which it reacts, or by an external
signal, for example a change in environment that is detected
by a sensor or through a command by the user.

e ADAPTATION ACTIVATION [COMPILE-TIME, RUNTIME] —
The adaptation can occur statically at runtime, usually loosing
the information about the adaptation and producing a program
with fixed behavior, or fully dynamically at runtime.

o« COMPOSITION PROCESS [ORDER-DEPENDENT, ORDER-
INDEPENDENT, NON-BLOCKING, BLOCKING] — An impor-
tant difference in the adaptation process is whether the ac-
tivation order influences the adaptation result, for example
when adaptations provide different composition of source
code pieces. Furthermore, the adaptation process can block
activation of other adaptations during the composition.

o ADAPTATION PROPERTIES [STATEFUL, EXTENSIBLE, CAS-
CADING] - In a stateful adaptation, defined objects and vari-
ables retain their states between deactivations and activations.

133

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Extensible means to modify existing adaptations or to add new
ones at the program runtime. Finally, cascading denotes the
capability that if an adaptation needs to be added or removed
from the program, all dependent adaptations are automatically
removed or added.

In terms of these characteristics, we can identify our imple-
mentations as shown in Figure 3. As we see, there are 6 com-
mon characteristics shared between the implementations, and 6
unique ones. Judging from this representation, the main difference
between features and contexts is the availability of compile-time
composition of program and the availability of stateful, cascading
adaptations.

Subjective-C rbFeatures

Entities

Internal

Compile
Time

Non-blocking

Figure 3: rbFeatures and Subjective-C characteristics.

V. RELATED WORK

To the best of our knowledge, a structured comparison of COP
and FOP paradigms as proposed in this paper has not been done.
However, several COP ideas are used to build FOP programs and
vice versa. We discuss such proposals here.

A first close relation can be seen from the concept of super-
imposition, which is the process of merging software artifacts by
merging their substructures [22]. This mechanism lies at the heart
of introducing adaptations of programs, and it is used by several
implementations for feature-oriented programming and context-
oriented programming.

Context-oriented languages borrow several concepts of feature-
oriented programming, at both the implementation and design
level. The ContextL [2] COP language uses the concept of mixin-
layers [23] normally used as an implementation technique for
FOP. Specifically, ContextL uses layers as the main abstraction to
define adaptations [24]. Based on the need to express dependencies
between layers, and to better control their interaction, a Feature
Description Language (FDL) was introduced in ContextL [25] to
automatically enforce dependencies between layers.

Additionally, an extension of feature-oriented domain analysis
has been used for the design of context-oriented systems, namely
Context-Oriented Domain Analysis (CODA) [19]. In this approach,
feature diagrams are extended to express resolution strategies
whenever there are multiple adaptations available that provide
behavior for the same functionality. The CODA approach also
introduces inclusion and exclusion relations between adaptations.
The former relation expresses that if an adaptation can be activated
all included adaptations are also activated. The later one, expresses

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

that if an adaptation can be activated, all its excluded adaptations
are deactivated.

VI. CONCLUSION AND FUTURE WORK

This paper shows how feature-oriented programming and
context-oriented programming paradigms provide closely related
strategies for realizing software variability. To understand the
differences and similarities between the two paradigms, we imple-
mented a common case study with an FOP language (rbFeatures)
and a COP language (Subjective-C). Based on analyzing how
behavioral adaptations are expressed and implemented, we derived
a set of characteristic properties constituting each paradigm. We
found that six characteristics are common in both paradigms, and
six a are different. In essence, the difference lies in the availability
of compile time and/or runtime adaptations and in the stateful
transition of the program’s behavior.

This contribution helps to clarify the commonalities of the two
seemingly disjoint research directions, and can help to stimulate
research both towards the merging of features and contexts, as
well as to improve the characteristic strength of each paradigm.

In future work, the next step is to extend this study with an
in-depth analysis of other FOP and COP languages. We wish to
further refine the characteristics, and based on it, it would be
possible to think about how FOP and COP can be merged in
hybrid languages for variability, for example, by adding stateful
representation of features or to add compile-time composition to
COP implementations that restrict the amount of runtime contexts
deployed in devices.

ACKNOWLEDGEMENTS

This work has been supported by the ICT Impulse Programme
of the Brussels Institute for Research and Innovation, and by
the Interuniversity Attraction Poles Programme, Belgian State,
Belgian Science Policy. We thank the anonymous reviewers for
their comments on an earlier version of this paper.

REFERENCES

[1] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at
Objects,” in Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP), ser. Lecture Notes in
Computer Science, M. Aksit and S. Matsuoka, Eds., vol. 1241.
Berlin, Heidelberg, Germany: Springer-Verlag, 1997, pp. 419-
443.

[2] P. Costanza and R. Hirschfeld, “Language Constructs for Context-
Oriented Programming: An Overview of ContextL,” in Proceed-
ings of the 1st Symposium on Dynamic Languages. New York,
USA: ACM, 2005, pp. 1-10.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software
Engineering Institute, Carnegie Mellon University, USA, Tech.
Rep. CMU/SEI-90-TR-21, 1990.

[4] C. Kaistner, S. Apel, and M. Kuhlemann, “Granularity in Software
Product Lines,” in Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE). New York: ACM, 2008,
pp- 311-320.

134

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(5]

[6

—_

[7

—

[8

—_—

[10]

[11]

[12]

[13]

[14]

[15]

Copyright (c) IARIA, 2011.

S. Giinther and S. Sunkle, “Dynamically Adaptable Software
Product Lines using Ruby Metaprogramming,” in Proceedings
of the 2nd International Workshop on Feature-Oriented Software
Development (FOSD). New York: ACM, 2010, pp. 80-87.

S. Giinther and S. Sunkle, “Feature-Oriented Programming with
Ruby,” in Proceedings of the First International Workshop on
Feature-Oriented Software Development (FOSD). New York:
ACM, 2009, pp. 11-18.

S. Giinther and S. Sunkle, “rbFeatures: Feature-Oriented Pro-
gramming with Ruby,” in Science of Computer Programming.
Elsevier, 2011, accepted 01.01.2011, in press.

S. Gonzilez, N. Cardozo, K. Mens, A. Cadiz, J.-C. Libbrecht, and
J. Goffaux, “Subjective-c: Bringing context to mobile platform
programming,” in Proceedings of the International Conference
on Proceedings of the International Conference on Software
Language Engineering, ser. series-Incs, B. Malloy, S. Staab, and
M. van den Brand, Eds., vol. 6563. Eindhoven: Springer, 2011,
pp. 246 — 265.

S. Apel and C. Kistner, “An Overview of Feature-Oriented
Software Development,” Journal of Object Technology (JOT),
vol. 8, no. 5, pp. 49-84, 2009.

C. Kistner and S. Apel, “Virtual Separation of Concerns — A
Second Chance for Preprocessors,” Journal of Object Technology
(JOT), vol. 8, no. 6, pp. 59-78, Sep. 2009.

R. E. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating
Support for Features in Advanced Modularization Techniques,” in
Proceedings of the 19th European Conference on Object-Oriented
Programming (ECOOP), ser. Lecture Notes in Computer Science,
A. P. Black, Ed., vol. 3586. Berlin, Heidelberg, Germany:
Springer-Verlag, 2005, pp. 169-194.

A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts, “Classboxes:
Controlling Visibility of Class Extensions,” Computer Languages,
Systems & Structures, vol. 31, no. 3, pp. 107-126, 2005.

I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An
Overview of Caesarl,” in Transactions on Aspect-Oriented Soft-
ware Development I, ser. Lecture Notes in Computer Science,
A. Rashid and M. Aksit, Eds. Berlin, Heidelberg, Germany:
Springer-Verlag, 2006, vol. 3880, pp. 135-173.

S. Herrmann, “A Precise Model for Contextual Roles: The
Programming Language ObjectTeams/Java,” Applied Ontology,
vol. 2, no. 2, pp. 181-207, 2007.

D. Batory, “Feature-Oriented Programming and the AHEAD Tool
Suite,” in Proceedings of the 26th International Conference on
Software Engineering (ICSE). Washington: IEEE Computer
Society, 2004, pp. 702-703.

ISBN: 978-1-61208-165-6

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in
Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP), ser. Lecture Notes in Computer Science,
M. Aksit and S. Matsuoka, Eds. Berlin, Heidelberg, Germany:
Springer-Verlag, 1997, vol. 1241, pp. 220-242.

S. Gonzélez Montesinos, “Programming in ambience: Gearing up
for dynamic adaption to context,” Ph.D. dissertation, Université
Catholique de Louvain, October 2008.

S. Gonzdlez, K. Mens, and A. Cadiz, “Context-oriented pro-
gramming with the ambient object system,” Journal of Universal
Computer Science, vol. 14, no. 20, pp. 3307-3332, 2008.

B. Desmet, J. Vallejos, P. Costanza, W. De Meuter, and
T. D’Hondt, “Context-Oriented Domain Analysis,” in Modeling
and Using Context, Sixth International and Interdisciplinary
Conference on Modeling and Using Context, August 2007, pp.
178-191.

S. Gonzilez, K. Mens, and P. Heymans, “Highly Dynamic Be-
haviour Adaptability through Prototypes with Subjective Multi-
methods,” in Proceedings of the 2007 symposium on Dynamic
Languages (DLS), ser. DLS *07. New York, NY, USA: ACM,
2007, pp. 77-88.

K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications. Boston, San Franciso et al.:
Addison-Wesley, 2000.

S. Apel and C. Lengauer, “Superimposition: A Language-
Independent Approach to Software Composition,” in Software
Composition, ser. Lecture Notes in Computer Science, C. Pautasso
and E. Tanter, Eds. Berlin, Heidelberg: Springer-Verlag, 2008,
vol. 4954, pp. 20-35.

Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 11, no. 2, pp. 215-
255, 2002.

B. Desmet, J. Vallejos, and P. Costanza, “Introducing Mixin
Layers to Support the Development of Context-Aware Systems,”
in 3rd European Workshop on Aspects in Software (EWAS), ser.
Technical Report IAI-TR-2006-6, G. Kneisel, Ed. Universitét
Bonn, 2006, pp. 23-30.

P. Costanza and T. D’Hondt, “Feature Descriptions for Context-
Oriented Programming,” in Proceedings 12th International Con-
ference for Software Product Lines (SPLCL), 2nd International
Workshop on Dynamic Software Product Lines (DSPL), S. Thiel
and K. Pohl, Eds., vol. 2 (Workshops). Ireland: University of
Limerick, 2008, pp. 9-14.

135

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Soft Constraints in Feature Models

Jorge Barreiros

Instituto Superior de Engenharia de Coimbra, Coimbra
Universidade Nova de Lisboa, Lisboa,Portugal
jmsousa@jisec.pt

Abstract—Feature Models represent admissible configura-
tions of products in Software Product Lines. Constraints are
used to represent domain specific knowledge, such as
requiring or excluding a feature in the presence of another.
Configurations failing to conform to these constraints are
deemed invalid. However, in many cases useful domain
information cannot be expressed comfortably with such
forceful, hard constraints. Therefore, we propose the use of
softer constraints of less forcing nature. We categorize
possible semantics for such constraints, analyze their impact
on the feature expression and describe some specific analysis
procedures that are unique to the use of soft constraints.

Keywords-Feature Models; Software Product Lines; Soft
Constraints; Feature Consistency; Feature Interaction,
Semantic Validation

I. INTRODUCTION

In opposition to traditional single system development,
Software Product Line (SPL) development is concerned
with the creation of families of software products. In SPLs,
product variants belonging to the same family are created
by specifying a feature configuration, which is then
realized by the composition of corresponding artifacts
from a common pool of assets (such as requirements
documents, design models, code, etc.) [1].

Feature models are frequently used in SPL
development for identifying valid product configurations,
that is, configurations corresponding to a variant that can
be created by an application engineer using the SPL [2].
Feature models identify valid configurations by using a
feature tree annotated with additional domain constraints.
These can be represented graphically (e.g., linking
dependent features with a dependency arrow) or textually,
by means of arbitrary cross-tree expressions (Boolean
expressions depending on the configuration variables).
Feature models can be represented using logic expressions
according to well known transformations described in [3,
4]. A feature model expression is obtained by conjoining
the feature tree expression with the domain constraints.

An example of a feature model can be found in Fig. 1,
where Sound, Keyboard and Screen are mandatory
subfeatures of the root feature node Phone, while

MP3Player and Camera are optional subfeatures.
Polyphonic and Monophonic are mandatory and
alternative subfeatures of the Sound feature, and

Monochromatic and Polychromatic are alternative

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Ana Moreira

CITI/Departamento de Informatica
Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa, Lisboa, Portugal
amm(@di.fct.unl.pt

subfeatures of the Screen feature. One domain constraint is
represented: the requires arrow describes that selection of
the Camera feature implies the selection of the Color
feature.

Links such as the one connecting Camera and Color in
Fig. 1 describe hard constraints. Any configuration that
does not respect this constraint is invalid. It can be the
case, however, that domain information is not comfortably
representable using such strict constructs. For example, a
situation can be considered where the overwhelming
majority of configurations do indeed respect a certain
restriction, but a few exceptions may exist. In this case,
restrictions on admissible configurations cannot be as
strict. A simple example will be the case of a default
selection for a group of alternative selections: if the parent
feature of such group is selected, then the preferred
alternative configurations may be suggested.

We propose the use of soft constraints, of less forcing
nature, in these situations. The concept of soft constraint
has been described earlier in the context of probabilistic
feature models [5]. Probabilistic feature models extend
standard feature models by the addition of “soft”
constraints that are associated with a degree of probability.
These are often obtained as the result of a feature mining
processes. We consider the use of a similar concept in in
standard, deterministic feature models. This allows richer
semantics to be represented in feature models, with
advantages such as enhanced analysis and improved
configuration support. An example of such a constraint in
Fig. 1 would be “Sound suggests Polyphonic”, expressing
domain knowledge that indicates the more common sound
configuration option. Naturally, soft constraints do not
need to be restricted to parent-child features as described:
other relations such as “Monophonic suggests
Monochromatic” can be represented. This type of
constraints can be useful for efficiently capturing useful
domain information that might be lost otherwise, as it is
usually absent in standard feature models. It can be used to
good effect for multiple purposes, depending on the
specific semantics that are adopted as described later, such
as allowing interactive configuration tools to suggest
configuration choices to the user.

136

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

O
MP3 Player 3
—\ I
|
|
Polyphonic ‘ ’ Monophonic‘ ’Monochromatic‘ ’ Color [¢————-

requires

Figure 1. Mobile phone feature model.

Using soft constraints also allows some semantic
consistency analysis that would otherwise be impossible,
e.g., if a suggested dependency can never be realized in a
feature model, then probably something is not right.
Conflicting suggestions can also be found (e.g., multiple
suggestions that cannot be satisfied simultaneously),
highlighting that a trade-off analysis may be in order to
compatibilize the inconsistent soft constraints.

The contributions of this work are the categorization of
soft constraint semantics, the formalization of the impact
(if any) of these constraints on the logic representation of
the feature model and the description of automated
analysis procedures made possible by the use of soft
constraints.

In Section II, we present motivating examples for our
work. In Section III, we discuss benefits of the use of soft
constraints and propose a categorization of the different
types of soft constraints. In Section I, we suggest a
formalization and analysis techniques for detecting
unsatisfiable and conflicting soft constraints. In Section V
we present related work and we conclude in Section VI.

II. MOTIVATION

Consider the example in Fig. 2, adapted from [5],
where a feature model is used to describe configuration
variability for an automobile vehicle. In this case, hard
domain restrictions are used to enforce the selection of
manual transmission in sports vehicles and to make sure

that emission control techniques are always used in
products destined for markets with stricter environmental
legislations. While observance of such constraints is
always found in valid products, soft constraints are used to
represent relevant relations between features that, while
not as critical or universally applicable as the hard
constraints, are also important. In this case, it is well
known that the USA market tends to favor vehicles with
automatic transmission over those with manual
transmission, while the converse is true for the European
market. Using soft constraints, such information can be
readily represented in the feature diagram, bringing in
additional semantics that can be used to good effect.

Another example of the use of soft constraints can be
found in Fig. 3. In this case, the feature model is used to
represent dynamic variability of the runtime behavior of a
real-time system. The system should adapt its behavior to
conform to variations in its environment. The state of the
operation environment is assessed by appropriate sensors
and the corresponding features are (de)selected
accordingly, with corresponding impact on the runtime
behavior as dictated by the constraints. A base control task
is to be active at all times, while fan control is only
suggested if the temperature is medium, but mandatory if it
reaches a high level. A filtering task is suggested if electric
noise is detected.

The need to use soft constraints to describe the
variability in this scenario is supported by the fact that the
suggested (non mandatory) features may not always be
selected because of limited resources (e.g., available CPU
load). This means that a feature such as Fan Control may
in fact remain unselected in the presence of its suggestor
(i.e., the Noisy feature), which cannot be comfortably
expressed using only hard constraints.

These examples suggest that soft constraints can be
used to good effect in feature models, by allowing the
inclusion of important domain information of non-forcing
nature.

Copyright (c) IARIA, 2011.

ISBN: 978-1-61208-165-6

\\

~
N N8,
/é)\ \1\7[//’8\9
(2 NG

N

Feature model for car configuration

137

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Engine Control

x T
“suggeésfs

Moderate High

requires

Figure 3. Engine control system

III. SOFT CONSTRAINTS

In this section, we discuss the benefits gained by using soft
constraints in feature models and present a categorization of
alternative semantics.
A. Benefits

Benefits of soft constraints in feature models include:

requires

————— e —— o

Figure 4. Iterative configuration example

Improved semantic-oriented consistency checks:
Standard consistency analysis of feature models is
concerned with ensuring that valid configurations do
exist. If soft constraints are present, it is possible to
make sure that configurations are available that
verify the suggested dependencies. If that is not the
case, this may be a sign that an analysis or modeling
error has occurred. For example, if it was actually
impossible to configure a car for the European

Improved configuration support: Interactive
configuration and completion techniques can assist
the configuration of feature models by assessing the
liveliness of features after each configuration step.
Starting from an empty configuration where all
features are considered to be unspecified (neither
selected or deselected), after a feature is selected or
deselected by the user, the liveliness of all features is
re-evaluated with respect to the partial configuration
already defined. Features that are found to be dead
(always unselected) in that partial configuration can
be safely deselected automatically. Conversely,
features that are common to all configurations that
include the partial configuration so far specified can
be automatically selected. For example, if the
developer specifies feature C in Fig.4 to be selected,
then features D and E can be automatically
deselected by the configuration tool, as no valid
configuration including feature C will contain either
(i.e., both are dead in all configurations where C is
selected). Similarly, 4 and root are common to all
such configurations, so they can be selected
automatically, leaving only feature B unspecified.
Interactive configuration and completion tools can
use soft constraint information to make
configuration suggestions to the user. For example,
if “A suggests B”, the configuration tool can propose
the selection of B by default whenever A4 is selected
and B is unspecified. In the case of normative soft
constraints, increased restrictions on admissible
configurations also help to narrow down the correct
configurations. Also, if a valid configuration fails to
conform to a large percentage of soft constraints, it
can be flagged to the developer as suspicious.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

market with manual transmission despite such
association being suggested (e.g., because of the
unintended side effect of some hard constraints), this
would be highly suspicious and should be reported
to the developer for additional consideration. This
could be the case if hard domain restrictions would
make it impossible to select a configuration where
both such features are selected.

e Controlled generalization of feature models: A
generalization of a feature model is a transformation
that increases the number of admissible
configurations, making sure that previously valid
configurations remain valid. In some cases, soft
constraints can be used as a mechanism for
controlled generalization of feature models. For
example, if it was found, after creating the feature
model in Fig. 2, that it should actually be possible,
under certain circumstances, to produce vehicles
without emission control for the USA market, the
hard restriction that forbids such products from
being created could be transformed into an
equivalent soft constraint. This would have the
benefit of preserving important domain information
while accommodating the need to allow for spurious
“rogue” configurations.

B. Semantics and Categorization

Soft constraints can be interpreted according to different
semantics, from unassuming configuration suggestions (e.g.,
describing a predominant configuration as in [5]) to stricter
impositions that must be enforced if possible (i.e., a feature
must be selected if possible). According to the adopted
interpretation, different types of analysis and interpretations
may be possible. Therefore, we must consider the possible
semantics. These can be broadly categorized in two different
categories:

138

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

e Annotational: A soft constraint with an annotational
semantics does not impose any additional restriction
when added to a feature model. Its main purpose is
to embed domain information in the feature model to
assist the configuration automation and semantic
consistency checking. The validity of any specific
product configuration is never influenced by the
presence of an annotational soft constraint.

e Normative: A normative soft constraint must be
considered when assessing the validity of a product
configuration. These constraints represent
configuration information that may potentially
condition the validity of some configurations. A
normative soft constraint must be satisfied if
possible, but can be ignored otherwise. The concept
of “possible satisfaction” is, generally, always
dependent on the characteristics of the feature model
and is also potentially dependent on domain-specific
information (external to what is represented on the
feature model: see below). A normative soft
constraint may change the validity of a configuration
(with respect to the unconstrained feature model),
but it may never cause a feature model to become
inconsistent. Normative constraints can be
interpreted informally as meaning “requires-if-
possible”, “may-require”, “require-if-does-not-
make-configuration-invalid” or some other similar
formulation.

Applying normative constraints entails the need to assess

the “possibility” of selecting a specific feature. The

topology of the feature model and cross-tree-constraints
is always a decisive factor in making that assessment

(i.e., it cannot be reasonably considered “possible” to

select a feature when doing so would generate an invalid

configuration). However, it may be the case that the
feature model information is not sufficient to assess the
possibility of selecting a feature: in this case, external
factors, not represented in the feature model would come

into play. This suggests the following characterization of

normative constraints:

e Internal: The feature model holds all the
information required to assess selection possibility.

e External: The information in the feature model
alone is not sufficient for assessing possibility of
selection. External factors come into play.

In the example of Fig. 2, if the soft constraints are
interpreted under annotational semantics, then any
configuration that upholds the hard constraints is considered
valid, regardless of complying or not with the soft
constraints. On the other hand, if an (internal) normative
semantic is considered, the following interpretation holds: “If
the USA feature is selected, then the Automatic feature must
be selected, unless doing so would generate an invalid
configuration”. That is, a normative soft constraint should be
interpreted as a hard constraint, unless doing so would turn
an otherwise valid configuration into invalid. In Fig. 3, a
potential example of external normative soft constraints is
represented: in this case, the Fan Control feature should
always be selected if the Moderate heat feature is selected,
unless that is not possible, according to domain information
that is not necessarily integrated in the feature model. For
example, knowing that the implementations of the Base
Control, Fan Control and Filtering features compete for a
limited resource (CPU load), assessing of the possibility of
including the Fan Control feature must be conducted with
respect to external information. It is out of the scope of this
work to discuss how such external information would be
obtained or retrieved — as examples, an oracle could be used
to provide the required information or a domain specific
ontology could be queried.

Table I presents a summary of the characterization of
hard and soft constraints.

TABLE L SOFT AND HARD CONSTRAINTS CHARACTERIZATION
Affects FM Affects confi
Nature Subtype Description . - g Semantics
consistency? validity?
A requires B Yes Yes A =>B
Hard
A excludes B Yes Yes A=>-B
. Equivalent hard restriction should
A may-require B No Yes be upheld unless doing so would
Normative make the configuration invalid.
A may-exclude B No Yes May be further catgorized as
Soft "external" or "internal”
A encourages B No No Measure of belief concerning the
Annotational orrelation between the
A discourages B No No configuration of both features.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

139

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Iv.

In this section, we present some formalization and
analysis techniques specific for feature models with soft
constraints. Although we propose a specific terminology for
each different type of soft constraints in Table I, in the
remaining text we use a link labeled “suggests” to indicate
either “mayRequire” or “encourages” when the distinction is
not important. For economy of space, exclusion-oriented
constraints are not specifically discussed, but most results
apply with minimal, usually obvious, adaptations.

SOFT CONSTRAINT ANALYSIS

A. Feature Expression for Normative Soft Constraints

Internal normative soft constraints may change the
assessment of the validity of configurations with respect to
the unconstrained feature model. This results in a change of
the model expression when a new soft constraint is
introduced in an existing feature model. The effect of
inserting an internal normative soft constraint (A suggests B)
results in a new feature model expression defined by:

F¢(A4,B,..)=F(A4,B,.) n((A4= B)v —F(4,-B,..)) (1)

where F is the feature model expression without the soft
constraint and F is the resulting feature model expression.

An advantage of using internal normative soft constraints
is that standard feature model techniques apply normally,
e.g., satisfiability-based techniques are commonly applied to
the analysis of feature model expressions [6], for tasks such
as finding dead features This can be also done in a feature
model annotated with soft constraints by considering the
relevant Fg

Equation (1) can be applied iteratively with respect to all
soft constraints to obtain the feature expression
corresponding to a feature model with multiple soft
constraints. However, as described in Section IV.C,
conflicting constraints may warrant additional care.

B. Unsatisfiable Constraints

Soft constraints can be used to include meaningful
domain information in the feature model. One of the benefits
this provides is the possibility of verifying if the feature
model admits the existence of solutions that satisfy these soft
constraints. That is, verifying if the feature model is
semantically consistent with well known domain properties
represented by soft constraints. If that is not the case, it is
almost certainly an indication that an analysis error has been
made and the feature diagram should be evaluated. This is
not the same problem as the standard consistency assessment
of a feature model as in that case we are only concerned with
ensuring that at least one valid configuration exists. Consider
the example in Fig. 5; in this case, because B and C are
alternative features, it is not possible to find any
configuration that conforms to the soft constraint suggestion.
If the soft constraint represents a well known domain
property, then it can be reasonably assumed that an analysis
error has been made and that a re-evaluation of the feature
model or the soft constraint might be advisable.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

suggests

Figure 5. Unsatisfiable soft constraint

Transmission

AN

’Automatic‘

"] U?A | [Europe |

T

|
suggests :
|
|
|
J

suggests

Figure 6. Conflicting soft constraints example

Unsatisfiable soft constraints can be identified by
assessing the unsatisfiability of:

—(Fy(4,B,..) = F(4,B,...)) 2)

Where F and Fj are defined as in (1). Unsatisfiability of
(2) is indicative of an unsatisfiable soft constraint.
Unsatisfiable constraint analysis can be performed not only
with respect to normative constraints but also annotational
ones. This is one of the advantages of including annotational
soft constraints in feature models. Although these do not
actually change the feature expression in any way, the same
equations can be used for the purpose of constraint
satisfiability analysis.

C. Conflicting Soft Constraints

Consider that, in the example of Fig. 2, after constructing
the feature model, the developer finds that, although unusual,
in some cases it may be necessary to allow configurations
with the Sport profile and Automatic transmission. One way
to handle this situation is to reduce the strength of the hard
domain constraint that imposes Manual transmission for
Sport vehicles by transforming it into a corresponding soft
constraint. A partial representation of the resulting feature
model is found in Fig.6.

It can be observed that simultaneous selection of the US4
and Sport features will entail conflicting suggestions of
transmission configuration. In such a situation, we describe
the corresponding constraints to be conflicting. It is worth
noting that this model is not inherently wrong as would be
the case if hard constraints were involved.

The following procedure can be used to determine if soft
constraints (A—B) and (C—D) will conflict when added to
in a consistent feature model with expression F(4,B, ...):

140

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

1. Verify the satisfiability of F(4,B,..)AAAC.1If

it is not satisfiable, then no conflict exists.
2. If that is not the case, verify the satisfiability of
F(A,B,.)A(A=B)A(C= D). If it is not

satisfiable, then a conflict exists.

When conflicting soft constraints are to be applied to a
feature model, the order by which (1) is iterated to obtain the
feature expression, as described in Section IV.A, is relevant
to the outcome. Assuming all conflicting suggestions are of
equal force, this is not desired and the following process
should be used instead:

1. Identify all groups of conflicting soft constraints.

2. [Iterate over all groups of conflicting soft constraints
and compute:

Fy,(4,B,..) = F, [(4,B,..) \V (4, = B) v —F(4,-B,..))

with F,(4,B,.) = F(4,B,..)

This will create a feature expression where all conflicting
suggestions are integrated. No preference is given to any
suggestion over other, that is, in the example of Fig. 6,
configurations with {Sport, Manual, USA} are just as
admissible as {Sport, Automatic, USA}, If an interactive
configuration tool was being used, {USA4, Sport} were
selected and both Automatic and Manual were unspecified,
both of these features could be presented as configuration
suggestions. Nevertheless, in some situations it may be
desirable to perform a trade-off analysis and prioritize the
relative importance of soft constraints. This would be the
case if, for example, the Sport feature was a dominating
factor on the choice of transmission. In this case, rather than
following the process outlined above, (1) should be used
instead, in order of the desired priority. That is, first consider
the effect of the Sport feature on the feature model and only
then compute the effect of the USA feature (on the previously
computed feature model). This would allow for
disambiguation of the suggestions represented by the soft
constraints.

V. RELATED WORK

In [5], probabilistic feature models are described that use
soft constraints as descriptions of features that have high
probabilities of being concurrently selected in the same
configuration. Probabilistic =~ feature = models and
corresponding samples spaces are suited to represent feature
models obtained through feature mining processes. The
fundamental purpose of probabilistic soft constraints in that
context is to represent the results of the mining process.
According to the classification in Section III.B, probabilistic
soft constraints are inherently annotational, and as such do
not affect the validity of any specific configuration, as is the
case of the normalizing soft constraints we describe and
analyze. We envision the use of soft constraints more as a
fundamental construct of feature models, rather than being
an auxiliary artifact.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

“Encourages” and “discourages” constraints have been
proposed for feature models in [7]. However, no precise
semantics have been provided, precluding automated
analysis and reasoning as described in our work.

In [8], fuzzy logic is applied to related feature
configurations to costumer profiles. Fuzzy logic is a
powerful tool for handling uncertainty. Nevertheless,
normative semantics may be difficult to include in such an
approach.

VL

We presented an exploratory analysis of the use of soft
constraints in feature models. Possible semantics were
specified and specific analysis techniques described. We
found that soft constraints are useful in a diversity of
contexts and offer the possibility of bringing additional
important domain information to the feature model.

Future work includes application of soft constraints to
well known industrial and academic case studies. Our
prototype tool will be integrated with configuration tools
providing enhanced configuration support.

CONCLUSIONS

VIL

This work has been partially supported by the
Portuguese Government through the PROTEC program
grant SFRH/PROTEC/49834/2009 and by the Portuguese

ACKNOWLEDGMENTS

research centre CITI through the grant PEst-
OE/EEI/UI0527/2011.

REFERENCES
[1] P. Clements and L. Northorp, Software Product

Lines:Practices and Patterns: Addison-Wesley, 2001.

K. Czarnecki and U. Eisenecker, Generative Programming:
Methods, Tools, and Applications: Addison-Wesley
Professional, 2000.

D. S. Batory, "Feature Models, Grammars, and Propositional
Formulas," in Software Product Lines, 9th International
Conference, SPLC 2005 Rennes, France, 2005, pp. 7-20.

K. Czarnecki and A. Wasowski, "Feature Diagrams and
Logics: There and Back Again," in [Ith International
Sofitware Product Line Conference (SPLC) Kyoto, 2007, pp.
23-34.

K. Czarnecki, S. She, and A. Wasowski, "Sample Spaces and
Feature Models: There and Back Again," in Software Product
Lines, 12th International Conference, SPLC Limerick,
Ireland, 2008, pp. 22-31.

M. Mendonga, A. Wasowski, and K. Czarnecki, "SAT-based
analysis of feature models is easy," in Software Product
Lines, 13th International Conference, SPLC 2009, San
Francisco, California, USA, 2009, pp. 231-240.

H. Wada, J. Suzuki, and K. Oba, "A feature modeling support
for non-functional constraints in service oriented
architecture.," IEEE Computer Society, pp. 187-195, 2007.

S. Robak and A. Pieczynski, "Employment of fuzzy logic in
feature diagrams to model variability in software families.," in
10th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS 2003) Huntsville, AL, USA,
2003, pp. 305-311.

141

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Feature Modeling of Software as a Service Domain

to Support Application Architecture Design

Karahan Oztiirk

Department of Computer Engineering,
Middle East Technical University
Ankara, Turkey
e-mail: karahanozturk@gmail.com

Abstract—Cloud computing is an emerging computing paradigm
that has gained broad interest in the industry. SaaS architectures
vary widely according to the application category and number of
tenants. To define a proper SaaS architecture it is important to
have a proper understanding of the domain. Based on our
extensive domain analysis approaches, we provide a feature model
for SaaS that depicts the design space and represents the common
and variant parts of SaaS architectures. The feature model
enhances the understanding of SaaS systems, and supports the
architect in designing the SaasS application architectures.

Keywords- modeling, service, architecture, design, SaaS

. INTRODUCTION

Cloud computing is an emerging computing paradigm that
has gained broad interest [6][19]. Unlike traditional enterprise
applications that rely on the infrastructure and services
provided and controlled within an enterprise, cloud computing
is based on services that are hosted on providers over the
Internet. The services that are hosted by cloud computing
approach can be broadly divided into three categories:
Infrastructure-as-a-Service (laaS), Platform-as-a-Service
(PaaS) and Software-as-a-Service and Software-as-a-Service
(SaaS). In this paper we will focus on the Software as a Service
context [18]. SaaS is a web-based, on-demand distribution
model where the software is hosted and updated on a central
site and does not reside on client computers [1][3]. With SaaS,
software applications are rented from a provider as opposed to
purchased for enterprise installation and deployment. Similar
to the general benefits of cloud computing the SaaS approach
yields benefits such as reduced cost, faster-time-to-market and
enhanced scalability.

An appropriate SaaS architecture design will play a
fundamental role in supporting the cloud computing goals
[13][4]. Based on the literature we can derive the basic
components required for SaaS. However, while designing
particular applications one may derive various different
application design alternatives [1] for the same SaaS
architecture specification. Each design alternative may meet
different functional and nonfunctional requirements. It is
important to know the possible design so that a viable
realization can be selected.

To enhance the understanding of SaaS systems and support
the architect in designing SaaS architectures we propose

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Bedir Tekinerdogan

Department of Computer Engineering
Bilkent University
Ankara, Turkey
e-mail: bedir@cs.bilkent.edu.tr

defining a feature model for SaaS architectures. A feature
model is the result of a domain analysis process whereby the
common and variant properties of a domain or product are
elicited and modeled [15]. In addition, the feature model
identifies the constraints on the legal combinations of features
and as such, a feature model defines the feasible models in the
domain. The feature model has been derived after an extensive
literature study to SaaS architectures. This included basically a
systematic literature study on cloud computing in general and
software as a service architectures in particular. It should be
noted that we could not put all the references in this paper due
to space limitations. Based on a commonality and variability
analysis of the selected papers the common and variant
features of SaaS were derived.

The remainder of the paper is organized as follows. Section
Il presents SaaS architecture for which a feature model will be
defined. Section 111 presents the family feature model for SaaS.
Section IV presents an example illustrating the derivation of
application architecture based on application feature model.
Finally section V concludes the paper.

Il. SOFTWARE AS A SERVICE ARCHITECTURE

SaaS has been widely discussed in the literature and various
definitions have been provided. In general when describing
SaaS, no specific application architecture is prescribed but
rather the general components and structure is defined. Based
on the literature we have defined the reference architecture for
SaaS as given in Figure 1 [3][13][18][6]. Besides of the
theoretical papers we have also looked at documentation of
reference architectures as defined by SaaS vendors such as
Intel [18], Sun [19] and Oracle [10].

internet Distribution Layer

Presentation Layer

Application and Business
Service Layer

Data Access Layer

Supporting Service Layer

SaaS Client Data Storage Layer

User Layer

Saa$S Provider

Internet
Connection

KEY
@ Node [] lLayer

Figure 1. SaaS Reference Architecture

142

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

In principle, SaaS has a multi-tier architecture with multiple
thin clients. In Figure 1 the multiplicity of the client nodes is
shown through the asterisk symbol (*). In SaaS systems the
thin clients rent and access the software functionality from
providers on the internet. As such the cloud client includes
only one layer User Layer which usually includes a web
browser and/or the functionality to access the web services of
the providers. This includes, for example, data integration and
presentation. The SaaS providers usually include the layers of
Distribution Layer, Presentation Layer, Business Service
Layer, Application Service Layer, Data Access Layer, Data
Storage Layer and Supporting Service Layer.

Distribution Layer defines the functionality for load
balancing and routing. Presentation Layer represents the
formatted data to the users and adapts the user interactions.
The Application and Business Service Layer represents
services such as identity management, application integration
services, and communication services. Data Access Layer
represents the functionality for accessing the database through
a database management system. Data Storage Layer includes
the databases. Finally, the Supporting Service Layer includes
functionality that supports the horizontal layers and may
include functionality such as monitoring, billing, additional
security services, and fault management. Each of these layers
can be further decomposed into sub-layers.

Although Figure 1 describes the common layers for SaaS
reference architecture, it deliberately does not commit on
specific application architecture. For example, the number of
clients, the allocation of the layers to different nodes, and the
allocation of the data storage to nodes is not defined in the
reference architecture. Yet, while designing SaaS for a
particular context we need to commit on several issues and
make explicit design decisions that define the application
architecture. Naturally, every application context has its own
requirements and likewise these requirements will shape the
SaasS application architecture in different ways. That is, based
on the SaaS reference architecture we might derive multiple
application architectures.

To support the architect in designing an appropriate SaaS
application architecture a proper understanding of the SaaS
domain is necessary. In this section we define the SaaS feature
model that represents the overall SaaS domain. Figure 2 shows
the conceptual model representing the relation between feature
model and SaaS architecture.

FEATURE MODEL OF SAAS

Saas supports‘

Family Feature Model

SaaS
™| Reference Architecture

A

instance instance
of of
SaaS
Application Feature
Model

supports_| SaaS
" Application Architecture

Figure 2. Conceptual model representing relation between feature model
and Saa$ architecture

We distinguish between family feature model and
application feature model. The family feature model represents
the features of the overall SaaS domain, whereas the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

2

application feature model represents the features for a
particular SaaS project. The application feature model is
derived from the family feature model. The features in the
feature model typically refer to the architectural elements in
the SaaS architecture. As discussed in the previous section we
also distinguish between Saa$S reference architecture and SaaS
application architecture. For designing the SaaS application
architecture first the required features need to be selected from
the family feature model resulting in the application feature
model. The application feature model will be used to support
the design of the SaaS application architecture. In the
following we will elaborate on the family feature model.

A. Top-Level Feature Model

The top level feature diagram of SaaS that we have derived
is shown in Figure 3. The key part represents the different
types of features including optional, mandatory, alternative,
and or features [15]. Note that the features in Figure 3 denote
the layers in the SaaS reference architecture as defined in
Figure 1. All the layers except the Support Layer have been
denoted as mandatory features. The Support Layer is defined
as optional since it might not always be provided in all SaaS
applications. Each of these layers (features) can be further
decomposed into sub-layers.

SaaS
=
User Support
Layer Layer
Distribution || Presentation || Application ||Data Storage || Data Access
Layer Layer Layer Layer Layer
optional mandatory alternative or sub-
KEY feature feature feature features ; % features

Figure 3. Top-Level Feature Model

B. User Layer

User layer is the displaying layer that renders the output to
the end user and interacts with the user to gather input. This
layer is the only part that the user can see. In principle the user
layer might include a Web Browser or Rich Internet
Application (RIA), or both of these (or features). RIA is
especially used on mobile platforms.

‘ RIA ‘

Web
Browser

Figure 4. Feature Diagram for User Layer
C. Distribution Layer

Figure 5 shows the features for the distribution layer
feature. This layer is the intermediate layer between the

143

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

internet and the SaaS application. The main concerns of the
layer are scalability, availability and security. The mandatory
features of this layer are load balancers and firewalls [11].

A firewall inspects the traffic and allows/denies packets. In
addition to this, firewalls provide more features like intrusion
detecting, virtual private network (VPN) and even virus
checking. The distribution layer can have a single firewall or a
firewall farm. A firewall farm is a group of connected firewalls
that can control and balance the network traffic.

Load balancers divide the amount of workload across two
or more computers to optimize resource utilization and
increase response time. Load balancers are also capable of
detecting the failure of servers and firewalls and repartitioning
the traffic. Load balancers have the mandatory features of Type
and Strategy, and an optional feature Load Balancer.Firewall.
There are two types of load balancers, hardware based and
software based. Load balancing strategies decide how to
distribute requests to target devices. Passive load balancing
strategies use already defined strategies regardless the run time
conditions of the environment. Some of the most used passive
strategies are Round Robin, Failover, Random and Weighted
Random. Dynamic load balancing strategies are aware of
information of the targets and likewise route the requests based
on traffic patterns. Some of the most used passive strategies are
Fastest Response Time, Least Busy, Transfer Throughput, IP
Sticky and Cookie Sticky.

The optional Load Balancer.Firewall can be used as
firewall by providing both packet filtering and stateful
inspection. Using load balancer as a firewall can be an
effective solution for security according to network traffic and
cost requirements. This feature excludes the “Distribution
Layer.Firewall” feature.

Distribution
Layer

/\.

Load

Balancer Firewall
Loadbalancer .
Type Firewall Strategy Single Farm
R —
Software || Hardware Passive Dynamic
Based Based 4
Rouqd FallOver || Random || WVeighted
Robin Random
Fastest Least 1P Cookie
Response Time Busy Sticky Sticky
Transfer
Throughput

Figure 5. Feature Diagram for Distribution Layer

D. Presentation Layer

Figure 6 presents the presentation layer feature. The
presentation layer consists of components that serve to present
data to the end user. This layer provides processes that adapt
the display and interaction for the client access. It

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

communicates with application layer and is used to present

data to the user.
Presentation
Layer

‘ Web

Browser Server

‘ Web Proxy

Figure 6. Feature Diagram for Presentation Layer

The presentation layer feature includes two subfeatures, the
mandatory Web Server and optional Web Proxy Server
features. A web server handles HTTP requests from clients.
The response to this request is usually an HTML page over
HTTP. Web servers deal with static content and delegate the
dynamic content requests to other applications or redirect the
requests. Web Proxy Server can be used to increase the
performance of the web servers and presentation layer, caching
web contents and reducing load is performed by web proxy
servers. Web proxy servers can also be used for reformatting
the presentation for special purposes as well for mobile
platforms.

E. Application Layer

Figure 7 shows the feature diagram for Application Layer,
which is the core layer of the SaaS architecture. Business logic
and main functionalities, Identity Management, orchestration,
service management, metadata management, communication,
and integration are provided by this layer.

Especially in the enterprise area, SaaS platforms are usually
built on SOA technologies and web services. Application
Server, Integration, Metadata Management, Identity
Management and Communication are mandatory features for
the application layer. In case of using SOA, some other
features — ESB, Orchestration, Business Rules Engine, are used
in this layer. In the following subsections we describe these
features in more detail.

Application
Layer

ldenmy
Managemem

ES Application Orchestration Business Rule|| Metadata
Server Engine Management

Integration

Figure 7. Feature Diagram for Application Layer

e Application Server

An application server is a server program that handles all
application operations between users and an organization's
backend business applications or databases. The application
server’s mission is to take care of the business logic in a multi-
tier architecture. The business logic includes usually the
functions that the software performs on the data. Application
servers are assigned for specific tasks, defined by business
needs. Its basic job is to retrieve, handle, process and present

144

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

data to the user interface, and process any input data whether
queries or updates, including any validation and verification
and security checks that need to be performed.

Application
Server

>~

Business
Service

Clustering

Asymmetric Symmetric

Figure 8. Feature Diagram for Application Server

SaaS applications have to have continuous uptime. Users
around the world can access the application anytime.
Application failure means customer and monetary loss. The
application should be prevented from single point of failure. In
addition to availability issues, there are performance and
scalability capabilities to overcome for SaaS applications. By
combining more than one computer and make it as a unified
virtual resource can solve these problems. This technique is
called server clustering. There are two techniques for server
clustering: asymmetric and symmetric. In asymmetric clusters,
a standby server exists to take control in case of another server
gets of failure. In symmetric clusters, every server in the
cluster do actual job. The first technique provides more
available and fault tolerant system but the latter is more cost-
effective.

e ESB

When we are talking about SaaS applications and service
oriented architecture, the requirement is providing an
infrastructure for services to communicate, interact, and
transform messages. Enterprise Service Bus (ESB) is a
platform for integrating services and provides enterprise
messaging system. Using an ESB system does not mean
implementing a service oriented architecture but they are
highly related and ESB facilitates SOA.

e Orchestration

Orchestration is a critical mission in SOA environment. A
lot of tasks should be organized to perform a process.
Orchestration provides the management, coordination and
arrangement of the services. BPEL is, for example, an
orchestration language that defines business processes. Some
simple tasks may be performed by ESB but more complex
business processes could be defined by BPEL. To interpret and
execute BPEL a BPEL engine is needed.

e Metadata Management

SaaS has a single instance, multi-tenant architecture.
Sharing the same instance to many customers brings the
problem of customization. In SaaS architecture, customization
is done using metadata. Metadata is not only about
customization (e.g. Ul preferences), it is also intended to
provide configuration of business logic to meet customers
need. Updating, storing and fetching metadata is handled

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

through Metadata services. This feature requires Metadata
Repository feature.

e Business Rule Engine

As mentioned before, SaaS applications can be customized
and configured by metadata. Workflow may differ for each
customer. Business Rules Engine is responsible of metadata
execution. It consists of its own rule language, loads the rules
and then performs the operations.

e Integration

The feature diagram for Integration is shown in Figure 9. In
the context of Saa$, all the control, upgrade, and maintenance
of user applications and data are handled by SaaS provides. An
important challenge in SaaS is the data integration. SaaS
applications usually need to use client data which resides at the
client’s node. On the other hand, each client may use more
than one SaaS application or on-premise application using the
same data. The data may be shared among several applications
and each application may use different part of it or in different
formats. Manipulating the data will usually have an impact on
the other applications. Data accuracy and consistency should
be provided among those applications. Re-entering or
duplicating the data for any application is not a feasible
manner to provide data.

There are three different approaches for providing
consistent data integration including: common integration,
specific integration and certified partner integration. In the
common integration approach services are provided for all
clients. This feature requires ‘“Integration.Services.Web
Services” feature. In the specific integration, services are
customized for each customer. This feature requires
“Integration.Services.Integration Services” feature. Finally, in
the Certified Partner approach the SaaS vendor delegates the
integration to another vendor which is a specialist for SaaS
integration. The SaaS vendor still needs to provide web
services, but it leaves the control to other entities and focuses
itself on the application. This feature also requires
“Integration.Services.Web Services” feature.

The Integration feature describes either Integration Service
or Web Service: In Integration Service approach, the SaaS
vendor provides custom integration services for customers.
Although this is the easiest way for customers, it is hard to
manage adding integration service for different needs for
vendors and increasing number of customers causes scalability
problems. In the Web Service approach, the SaaS vendor
provides a standard approach for customers as web services.
The customers themselves take responsibility for SaaS
integration. Compared to the Integration Service approach,
customers have to do much more and need extensive
experience. On the other hand this is a more scalable solution
for vendors.

145

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Integration

/\

Method Service

Certified Web

Common || Specific Partner Integration Service

Figure 9. Feature Diagram for Integration

e Identity Management

Figure 10 represents the feature model for Identity
Management, which deals with identifying individuals in a
system and controlling access to the resources in the system by
placing restrictions on the established identities of the
individuals [7]. The Directory Management is responsible for
managing the identities.

Identify Management includes two mandatory features
Identity Model and Directory Management. Identity Model can
be Single Sign-On, lIsolated or Federated. Isolated Identity
Management: The most common and simplest identity
management model is the isolated one. Hereby, each service
provider associates an identity for each customer. Despite its
simplicity, this model is less manageable in case of the growth
of number of users who should remember their login and
passwords to their accounts for each service. Single Sign-On is
a centralized identity management model, which allows users
to access different systems using a single user ID and

password.
Single Sign-On identity management model [5] can be PKI-
Based, SAML-Based, Token-Based, Credential

Synchronization, or Secure Credential Caching. SAML stands
for Security Assertion Markup Language and defines the XML
based security standard to enable portable identities and the
assertion of these identities. The Token-Based approach can be
either based on Kerberos or Cookie. The Secure Credential
Caching can be on the Server Side or Client Side.

Identity
Management
Identity Directory
Model Management
Single Isolated Federated Name Directlory
Sign-On space Service
SAML ~
SAML \
PKI i
Based Credential Kerberos PKI SAML
ase Synchronization Based | Based || Based
Secure
'Bl'okeg Credential
ase Caching

Server| | Client

Kerberos || Cookie Side Side

Figure 10. Feature Diagram for Identity Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The Federated Identity Model is very close to Single Sign-
On, but defined identity management across different
organizations [6]. There are three most used approaches,
Kerberos-based Federation, PKI-based Federation or SAML-
based Federation. Directory Management feature includes two
mandatory features, Namespace and Directory Service.
Namespace maps the names of network resources to their
corresponding network addresses. Directory Service represents
the provided services for storing, organizing and providing
access to the information in a directory (e.g. LDAP).

e Communication

Figure 11 shows the feature model for the Communication
feature. SaaS vendor needs to provide a communication
infrastructure both for inbound and outbound communication.
Notification, acknowledging customers, sending feedbacks,
demanding approvals are useful for satisfying users. The most
common approach for communication is e-mailing. To transfer
mails between computers a Mail Transfer Agent (MTA) can be
used which requires Simple Mail Transfer Protocol (SMTP)
protocol. Besides of mailing other protocols such as Short
Message Peer-to-Peer Protocol (SMPP) and Simple Network
Paging Protocol (SNPP) can be used.

Communication

/\.

Protocol MTA

SMTP SMPP SNPP

Figure 11. Feature Diagram for Communication

F. Data Access Layer

Figure 12 shows the feature diagram for Data Access Layer.
This layer provides the database management system (DBMS)
consisting of software which manages data (database manager
or database engine), structured artifact (database) and metadata
(schema, tables, constraints etc.).

One of the important, if not the most important, SaaS
feature is multi-tenancy [2][12]. Multi tenancy is a design
concept where a single instance of software is served to
multiple consumers (tenants). This approach is cost saving,
scalable, easy to administrate, because the vendor has to
handle, update or upgrade and run only single instance. Multi-
tenancy is not only about data, this design can be applied in all
layers but the most important part of the multi tenancy is multi
tenant data architecture. Based on the latter different kind of
multi-tenancy can be identified. Multi-tenancy with Separate
Databases means that each tenant has its own data set which is
logically isolated from other tenants. The simplest way to data
isolation is storing tenant data in separate database servers.
This approach is best for scalability, high performance and
security but requires high cost for maintenance and
availability. In the Shared Database, Separate Schemas
approach, a single database server is used for all tenants. This
approach is more cost effective but the main disadvantage is

146

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

restore is difficult to achieve. Finally, the Shared Database,
Shared Schema approach involves using one database and one
schema for each tenants' data. The tables have additional
columns, tenant identifier column, to distinguish the tenants.
This approach has the lowest hardware and backup costs.

Data Access
Layer
DBMS Multi-
Tenancy
Separate Shared DB Shared DB
lI)DB Separate Shared
Schema Schema

Figure 12. Feature Diagram for Data Access Layer

G. Data Storage Layer

Figure 13 shows the feature diagram for Data Storage Layer.
The layer includes the feature for Metadata storage,
Application Database and Directory Service. Metadata files
can be stored either in a database or in a file based repository.
Application Database includes the sub-features of Storage Area
Network (SAN), Clustering and Caching [2]. SAN is a
dedicated storage network that is used to make storage devices
accessible to servers so that the devices appear as locally
attached to the operating system. SAN is based on fiber
channel and moves the data between heterogeneous servers.

Clustering is interconnecting a group of computers to work
together acting like a single database to create a fault-tolerant,
high-performance, scalable solution that's a low-cost
alternative to high-end servers. By caching, disk access and
computation are reduced while the response time is decreased.

Directory Service stores data in a directory to let the
directory service to lookup for identity management. This data
is read more often than it is written and can be redundant if it
helps performance. Directory schemas are defined as object
classes, attributes, name bindings and namespaces.

Data Storage
Layer

[——

Application Directory
Database Service

/%

File ‘ DB ‘ SAN

Metadata
Repository

Clustering || Caching

SNPM || PMP

Figure 13. Feature Diagram for Data Storage Layer

H. Supporting Service Layer

Supporting Service Layer is a cross-cutting layer that
provides services for all layers. The feature model is shown in
Figure 14. As known, SaaS applications have quality attributes
such as scalability, performance, availability and security. To
keep the applications running efficiently and healthy, the SaaS

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

system needs to have monitoring system to measure metrics.
The monitoring infrastructure can detect failures, bottlenecks,
and threats and alert the administrators or trigger automatic
operations. Furthermore, SaaS systems may be built on service
oriented architecture and may need metering process for
service level agreements and billing. A few examples for the
metrics are CPU usage, CPU load, network traffic, memory
usage, disk usage, attack rate, number of failures, mean time to
respond etc.

Support
Layer

Monitoring

Metering

Figure 14. Feature Diagram for Support Layer

IV. EXAMPLE

Figure 15 shows an alternative application architecture
design that is derived from the reference architecture shown in
Figure 1. To derive this architecture based on the family
feature model as discussed in the previous sections, the
application feature model is defined. Typically in the
application feature model multi-tenancy is selected using a
single database management system with a shared database
and shared schemas for the tenants.

Distribution Server Application Server

internet

Application and Business

Distribution Layer Service Layer

*

SaaS Cllent

User Layer 1
Data Server
Data Access Layer %
Data Storage

Figure 15. SaaS Application Architecture derived based on corresponding
application feature model

V. RELATED WORK

Despite its relatively young history, different surveys have
already been provided in the literature on cloud computing and
many papers have been published on SaaS. An example survey
paper is provided by Goyal and Dadizadeh [8]. However, to
the best of our knowledge no systematic domain analysis
approach has been carried out to derive a feature model for
SaaS.

La and Kim [14] propose a systematic process for
developing SaaS systems highlighting the importance of reuse.
The authors first define the criteria for designing the process
model and then provide the meta-model and commonality and
variability model. The metamodel defines the key elements of
SaaS. The variability model is primarily represented as a table.
The work focuses more on the general approach. The
metamodel could be complementary to the reference

147

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

architecture in this paper and as presented by SaaS providers.
Although the goal seems similar, our approach appears to be
more specific and targeting the definition of a proper modeling
of the domain using feature modeling.

Godse and Mulik [9] define an approach for selecting SaaS
products from multiple vendors. Since the selection of the
feasible SaaS product involves the analysis involves analysis
of various decision parameters the problem is stated as a multi-
criteria decision-making (MCDM) problem. The authors adopt
the Analytic Hierarchy Process (AHP) technique for
prioritizing the product features and for scoring of the
products. The criteria that are considered in the AHP decision
process are Functionality, Architecture, Usability, Vendor
Reputation, and Cost. Our work is also focused on selecting
the right SaaS product but it considers the design of the SaaS
architecture based on feature modeling. The selection process
defines the selection of features and not products. However, in
our approach we did not outline the motivation for selecting
particular features. For this we might add additional criteria to
guide the architect also in selecting the features. We consider
this as part of our future work.

Nitu [16] indicates that despite the fact that SaaS
application is usually developed with highly standardized
software functionalities to serve as many clients as possible,
there is still a continuous need of different clients to configure
SaaS for their unique business needs. Because of this
observation, SaaS vendors need take a well designed strategy
to enable self serve configuration and customization by their
customers without changing the SaaS application source code
for any individual customer. The author explores the
configuration and customization issues and challenges to SaaS
vendors, and distinguishes between configuration and
customization. Further a competency model and a
methodology framework is proposed to help SaaS vendors to
plan and evaluate their capabilities and strategies for service
configuration and customization. The work of Nitu considers
the configuration of the system after the system architecture
has been developed. We consider our work complementary to
this work. The approach that we have presented focuses on
early customization of the architecture to meet the individual
client requirements. The approach as presented by Nitu could
be used in collaboration with our approach, i.e. by first
customizing the architecture based on the potential clients and
then providing configurability and customization support for
the very unique business needs.

VI. CONCLUSION

Cloud computing and SaaS is a broad domain that is not
easy to understand for novice designers. In this paper we have
applied domain analysis techniques to derive a family feature
model that represents both the common and variant features of
SaaS architecture. Based on the family feature model a
particular application feature model can be derived and the
SaaS application architecture can be designed accordingly. As
such, the family feature model helps both to enhance the
understandability of SaaS and the generation of particular
applications.

The feature model that we have derived is based on our
selection of papers. We do not claim that this is the only

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

correct or eventual feature model. Enhancing the domain
analysis study might refine the feature model that we have
presented. Yet, the work should also be considered from an
architecture design perspective. An important lesson from this
paper is that feature modeling helps to support the architectural
design of SaaS systems. In our future work we will develop the
required tool support to represent the family feature model,
define the link with architecture design decisions and generate
application architecture.

VIl. REFERENCES

[1] S. A. Brandt, E. L. Miller, D. D. E. Long, L. Xue. Efficient Metadata
Management in Large Distributed Storage Systems, 20th |IEEE/11lth
NASA Goddard Conference on Mass Storage Systems and
Technologies(MSST’03), pp. 290-298, 2003.

[2] F. Chong and G. Carraro. Building Distributed applications: Multi-
Tenant Data Architecture. MSDN architecture center, 2006.

[3] F. Chong and G. Carraro. Architecture Strategies for Catching the Long
Tail, Microsoft, MSDN architecture center, 2006.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. lvers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition. Addison-Wesley, 2010.

[5] J. de Clercq, Single Sign-On Architectures, Proceedings of the
International Conference on Infrastructure Security, p.40-58, October 01-
03, 2002.

[6] Cloud Computing. Wikipedia -
http://en.wikipedia.org/wiki/Cloud_computing
[7] FIDIS, "Structured Overview on Prototypes and Concepts of Identity

Management Systems", Future of Identity in the Information Society
(No. 507512)

[8] A. Goyal, S. Dadizadeh. A Survey on Cloud Computing, University of
British Columbia, Technical Report, 2009.

[91 M. Godse, S. Mulik. An Approach for Selecting Software-as-a-Service
(SaaS) Product, in Proc.of. 2009 IEEE International Conference on
Cloud Computing, 2009.

[10] S. Joshi. Architecture for SaaS applications - using the Oracle SaaS
Platform, Oracle White Paper, 2009.

[11] C. Kopparapu, “Load Balancing Servers, Firewalls, and Caches", Wiley,
2002.

[12] T. Kwok, T. Nguyen. A Software as a Service with Multi-tenancy
Support for an Electronic Contract Management Application. In IEEE
International Conference on Services Computing, 2008.

[13] P.A. Laplante, Jia Zhang, Jeffrey Voas, "What's in a Name -
Distinguishing between SaaS and SOA", IT Professional, Volume 10,
Issue 3 (May 2008), Pages: 46-50, Year of Publication: 2008,

[14] H. Jung La and Soo Dong Kim, A Systematic Process for Developing
High Quality SaaS Cloud Services, in Proc. Proc. of the 1st International
Conference on Cloud Computing, Springer LNCS, Volume 5931/2009,
278-289, 2009.

[15] K. Lee , K. Chul Kang , J. Lee, Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering, Proceedings of the 7th
International Conference on Software Reuse: Methods, Techniques, and
Tools, p.62-77, April 15-19, 2002

[16] H. Liao. Design of SaaS-Based Software Architecture, International
Conference on New Trends in Information and Service Science, 2009.

[17] Nitu. ISEC '09: Proceeding of the 2nd annual conference on India
software engineering conference, , pp. 19-26, February 2009.

[18] C. Spence, J. Devoys, S.Chahal. Architecting Software as a Service for
the Enterprise IT@ Intel White Paper, 2009.

[Online].

[19] Sun Cloud Computing Primer,
http://www.scribd.com/doc/54858960/Cloud-Computing-Primer,
accessed 2011.

148

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Adding Support for Hardware Devices to Component
Models for Embedded Systems

Luka Lednicki, Mario Zagar
Faculty of Electrical Engineering and Computing
University of Zagreb
Croatia
{luka.lednicki, mario.zagar} @fer.hr

Abstract—Component-based development promises many
improvements in developing software for embedded systems, e.g.,
greater reuse of once written software, less error-prone
development process, greater analyzability of systems and shorter
time needed for overall development. One of the aspects
commonly left out of component models is communication of
software components with hardware devices such as sensors and
actuators. As one of the main characteristics of embedded systems
is the interaction with their environment through hardware
devices, the effects of this interaction should be fully included in
component models for embedded systems. In this paper we
present a framework that enables inclusion of hardware devices
in different phases of the component-based development process,
including system design, deployment, analysis and code synthesis.
Our framework provides a way for software components to
explicitly state their dependencies on hardware devices, promotes
reuse of software components with such dependencies and
provides a basis for including hardware devices in analysis of
component based embedded systems. We evaluate the feasibility
of our approach by applying it to the ProCom component model.

Keywords — Component-based Development, Embedded Systems,
Hardware devices, platform modeling

L InTRODUCTION

Embedded systems are getting increasingly important in
our daily lives, while at the same time getting more complex.
Additionally, larger portions of functionality of embedded
systems are being put into software, rather than hardware,
which results in increased software complexity. Parallel with
this trend there is a growing demand on software to be robust,
reliable, flexible, adaptable, etc., while shorter time-to-market
is desired. One of the approaches to tackle these issues is
component-based software engineering (CBSE). CBSE
promotes building systems from prefabricated software
components, instead of coding from scratch, promising to
lower time-to-market, manage complexity and produce
software of higher quality. CBSE has proven to be successful
in the domains of desktop- and Web applications and
enterprise systems. However, embedded systems introduce
some domain-specific issues (e.g., safety-criticality, real-time
requirements, interaction with the environment), and to fully
take advantage of the CBSE potential these must be addressed

[1].

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Juraj Feljan, Jan Carlson
Mailardalen Real-Time Research Centre
Milardalen University
Sweden
{juraj.feljan, jan.carlson}@mdh.se

In this paper, we focus on enriching existing component
models with support for proper handling of the interaction
between a software system and its environment, the physical
world that the system is embedded into. This interaction is
done using hardware devices, such as sensors and actuators.
The communication between software and hardware devices
can be as simple as writing a value to a hardware pin or port,
or as complex as invoking a service on a remote device. In all
cases, this interaction with the environment implies that
software components are dependent on the hardware or
middleware used to communicate with the environment. As
this affects reusability and analyzability of software
components, failure to adequately express these dependencies
can hinder the use of a component-based approach in the
embedded system domain.

To address the problem of interaction between software
components and hardware devices, we have investigated what
is needed to properly integrate such devices into software
component models for embedded systems, and devised a
framework that allows us to describe hardware devices and
hardware platforms that we can deploy software systems on,
software components dependent on hardware devices. The
framework also allows describing a mapping between
hardware devices, hardware platforms and software
components. Our approach has been developed in the context
of ProCom component model [2], but is also applicable to
other component models.

In Section II, we describe different ways in which
hardware devices can impact the use of a component-based
approach when developing software systems for the embedded
domain. Section III provides an overview of how interaction of
software components with hardware devices is managed in
some of the existing component models. Our approach to
inclusion of hardware devices in component models is
presented in Section IV. Section V gives an example of how
our approach can be used in developing software systems that
interact with hardware devices, and Section VI concludes the

paper.

II. Errects oF HARDWARE DEVICES ON SOFTWARE COMPONENT
MoDELS
Dependencies of software components on hardware

devices, as well as the communication between hardware and

149

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

software impact all phases of a component-based development
process. In this section we discuss these impacts, in order to be
able to address them accordingly. We consider a component-
based development process suitable for developing embedded
systems, and comprising the following phases: design,
deployment, analysis and synthesis. The phases are not strictly
sequential and can be iterative.

In the design phase, a developer specifies models of (i) the
software layer of the system being developed, as a composition
of components, and (ii) the hardware layer, as a composition
of the hardware devices the system will be deployed on. The
former requires a means to manage interaction with hardware
devices in the software layer. The latter requires a means to
describe the actual instances of hardware devices and how they
are connected to a particular instance of a hardware platform.

In the deployment phase, a mapping between the software-
and hardware layers is defined. In other words, the software
components are allocated to the underlying hardware that will
execute them. In this phase we must be able to explicitly
identify the dependencies of software components on the
hardware devices, in order to ensure that the hardware targeted
for deployment satisfies these dependencies.

Embedded systems have particularities such as limited
resources and real-time requirements, which increase the
relevance of extra-functional properties compared to, for
example, desktop- and Web applications. In order to guarantee
constraints on extra-functional properties, extensive analysis
has to be performed. During the analysis phase, effects of the
hardware devices on the behavior of the software components
must be taken into consideration.

During the synthesis phase executable code is generated
based on the models specified in the design- and deployment
phases. During the synthesis we must ensure that the code
generated for software components reflects the specifics of the
platform, with respect to communication with hardware
devices.

As reuse is one of key concepts of CBSE, additionally we
consider the effects hardware has on the ability to reuse
components developed in different contexts. For successful
reuse, we must ensure that components dependent on hardware
can be deployed on different platforms.

With regards to the aforementioned concerns, the
objectives of our work are to:

* provide means to describe hardware elements in a
way that they can be integrated into component
models for embedded systems;

* enable specification how software components
depend on hardware devices, and description of
communication between the two;

* allow inclusion of both functional and extra-
functional properties of hardware devices and
physical platform in analysis of component-based
software systems;

* cnable analysis of systems in early stages of
development, before they are fully implemented; and

e promote reuse of both software components and
hardware device descriptions.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

III. BACKGROUND AND RELATED WORK

We have identified four different levels of support for
hardware dependencies in a component-based context.

A. Outside of the Component Model

Many component models, especially those developed for
research purposes, do not provide any method for including
hardware devices in system design. All communication with
the environment is performed at input and output at the top
level of the system. In this approach, functionality must be
modeled separately from hardware interaction. Therefore,
functionality specifically developed to fit particular hardware
is difficult to represent. Furthermore, propagating all hardware
interaction to the top level can be particularly cumbersome in
complex systems, where many nesting levels exist.

SaveCCM [3] is an example of such a component model.
In SaveCCM software components are not allowed to directly
communicate with hardware devices. Instead, communication
with them takes place outside of the component model.

B. Code Level

Many component models do not provide ways to explicitly
state dependencies on hardware devices. However, they allow
to communicate with them in the code of software components
through direct method calls to the underlying platform. This
approach can severely limit reuse of software components, as
components with such hard-coded communication with
hardware cannot be used on multiple hardware platforms or
when the configuration of the hardware platform is changed.

An example of such a component model is Rubus [4].
Rubus was created by Articus Systems for developing
dependable real-time systems. Reuse is not the main focus of
Rubus, rather it is to provide a higher abstraction layer and
better basis for analysis. Thus platform and device dependent
information are part of basic software components.

C. Using Specialized Entities

Some component models introduce new entities, separate
from software components, which are used to interact with
hardware devices. With a way to explicitly describe
dependencies and communication with hardware devices, and
a clear separation of hardware and software components we
can easily reuse parts of systems or include hardware devices
in analysis of systems. A drawback of this approach is that it
hinders the possibility of hierarchical component composition.
As components cannot specify their interaction with hardware
devices through their interface, we cannot reuse composite
components that contain hardware entities.

A component model that uses this approach is COMDES-II
[5]. COMDES-II provides a two-layered component model.
The upper layer a system is defined by active software
components named actors. The lower layer is used to define
the behavior of actors using function block instances. Actors
interact with hardware devices using entities called input and
output signal drives. Drives can be used to communicate over
a network (communication drivers) or to sense or actuate
physical signals (physical drivers).

AUTOSAR [6], also provides similar level of support.
AUTOSAR is a component-based architecture created by a

150

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

partnership of a number of automotive manufacturers and
suppliers. Dependencies on hardware devices are encapsulated
in sensor and actuator software components. These
components provide a special interface for managing their
interaction with hardware devices. They are dependent on
specific sensor or actuator hardware devices. However,
AUTOSAR does not provide means for hierarchical
composition of components. As it does not provide support to
state hardware dependencies for all component types we still
argue that sensor and actuator components act as specialized
entities.

D. Explicitly Encapsulated in Software Components

Component models can also encapsulate communication
with hardware devices in software components, but expose it
through the component's interfaces. Compared to approaches
that use specialized entities for interaction with hardware
devices, this approach enables us to organize components
dependent on hardware devices in multiple levels of hierarchy

Our approach also falls into this category since it provides
an explicit way to define how software components are
connected to hardware devices. For this we do not use
specialized entities, but instead extend the definition of
standard software components. This lets us reuse all parts of
component model framework and tools while including
hardware devices in software component and system
definition.

IV. OVERVIEW OF OUR APPROACH

Led by the objectives described in Section II, we have
devised a framework that allows us to include hardware
devices in component models, and applied it to the ProCom
component model.

The ability to reuse components or complete systems is one
of the main goals of CBSE. Having components that are
dependent on a particular instance of hardware device, or how
this device is connected to the platform, can severely limit
possibility of their reuse. For this reason we have separated
our framework in three layers: software layer, hardware layer
and mapping layer. With this separation we are able to
independently describe software system and hardware
platform, making them suitable for reuse in different scenarios.
We can then connect these two layers through the mapping
layer when developing a complete system. An overview of
how these three layers are connected is given in Figure 1.

In our approach we have a clear distinction between types
and instances for both hardware and software entities. Types
are entity definitions that are context-independent. They can be
easily reused in different settings or stored to repositories for
future use. Once we want to use an entity in a concrete system,
we are in fact creating an instance of that entity type. Instances
are not copies of the entity, but a representative of the general
entity in a specific context. For example, when we are
describing a hardware device, we are actually describing a
device type. Once we want to use the device in a system we
need to create a new instance of that device type. Instances can
also refine properties of an entity depending on the usage
context.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

. Software Layer

SW Component Device Component

Instance Instance
Mapping layer
Mapping
: Hardware Layer
Hardware Hardware
Device Device
Instance Instance
[[
Platform

Figure 1: Overview of three layers of our approach relate to
each other.

As we handle hardware devices using extended software
components, and not specialized entities, we are able to reuse
many solutions that already exist in ProCom component
model. For the purpose of defining attributes for hardware
components we leverage Attribute Framework [7], which
allows us to define extra-functional properties for architectural
elements of the component model. Also, integration with
ProCom allows us to use ProCom Analysis Framework with
different types of analysis, such as parametric worst-case
execution time analysis [8], model checking of behavioral
models [9] and fault-propagation.

A detailed metamodel that describes our approach is given
in Figure 2. Next, each of the three layers will be described in
more detail.

A. Software Component Layer

To enable interaction of component-based applications
with hardware devices we have introduced a new type of
component named device component. This entity is derived
from ordinary software components. Its purpose is to
encapsulate dependencies of component-based software
system on hardware devices and enable communication with
these devices.

When looking at a device component as a black-box, it has
the same interface and semantics as all software components.
The difference between normal software components and
device components is in their internals: device components do
not provide the ability for the developer to explicitly specify
their realization. This is because they inherit their realization
from hardware devices (described in Section IV.B.2)) once the
two are mapped together.

Device components are only used to express the existence
of dependencies on hardware devices, but not the specifics of a
device, i.e., how it is connected to the platform or the code for
actual communication with hardware. A device component has
exactly one hardware dependency. In case of composite
components, its device dependencies must mach the combined
dependencied of its subcomponents. This way the software

151

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

layer stays hardware- and platform-independent. Any system
or composite component that contains device components can
still easily be reused in a new system or on different platforms.

B. Hardware Layer

The hardware layer allows us to describe physical nodes
(i.e., processing unit such as microcontrollers or ECUs that
runnable code can be deployed to), hardware devices such as
sensors and actuators and platforms which consist of instances
of physical nodes and hardware devices and to which we can
deploy software systems.

We have designed the hardware layer based on research of
what is needed to promote the ability of reuse of software
components. However, we also wanted to provide the ability to
reuse structures defined in hardware platform. For this purpose
we have divided hardware into three separate parts which can
be developed independently to each other: physical node
specification, hardware device specification and platform
instantiation.

1) Physical Node Specification

In our model, physical nodes describe different processing
units such as microcontrollers or ECUs. They are reusable as
they only describe a type of unit and do not contain any
information about how they are used or configured in a
particular system.

Physical nodes define a list of inputs and outputs they
provide. Inputs and outputs are defined by their type, e.g.,
one-bit digital I/O, serial communication port, analogue input,
etc. Also, for each input or output we define actual program
code that will be used for its initialization and data transfer.

Physical nodes can also be characterized by extra-
functional properties such as their processing power, available
memory, behavioral models, execution times for input or
output functions and other similar attributes.

Software Layer

Component g Device Component

2) Hardware Device Specification

Hardware devices are peripherals such as sensors and
actuators that are connected to physical nodes in order to
interact with the environment. Each hardware device
represents a specific, real-world sensor or actuator.

Each hardware device references a device component for
which the device can be used as realization. It should be noted
that one device component can be referenced by many
different hardware devices. For example, a temperature sensor
device component can be referenced by two different
implementations of (i.e., hardware devices) temperature
sensor. However, a device component (in the software layer) is
not dependent on any of these implementations.

Similarly to a list of inputs and outputs provided by
physical nodes, hardware devices define a list of inputs and
outputs that they require for communicating with them.

A part of hardware device specification is the code for
communication with the device. This code is merged with
software component code during the synthesis phase of the
development process, leaving software components free of
hardware-specific code. In that way software components can
be reused on different hardware configurations. However, this
code leaves out actual function calls needed for
communication, which is defined in the physical node
specification. This allows us to reuse the same code regardless
of which input or output of a physical node the device is
connected to, or use it on different physical nodes.

Similar to physical nodes, we can also define attributes that
describe extra-functional properties of hardware devices.

3) Platform Instantiation

We have defined platform as a collection of physical node
instances on which we can deploy software systems. Except
creation of physical node instances, platform instantiation also
encompasses creation of hardware device instances and
connections of these instances to instances of physical nodes.
It should be noted that we do not use type-instance paradigm

Hardware Device Specification

Hardware Device 10 Type

Component Instance

| Platform Instantiation

Physical Node

Specification
Hardware Device Instance

Mapping Layer

Hardware Component Mapping

.

Deployment Configuration Platform

10 Allocation
* l |
Physical Node Instance |: | Physical Node

Figure 2: Metamodel that contalns all entities we use to add support for hardware devices in software component models.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

152

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

for platform. We assume that platforms will be collections of
reusable physical nodes, and will be specific for every system,
there will be no need for their reuse.

Connections between hardware devices instances and
physical node instances are implicit: device instances are
contained by physical node instances. Allocation of hardware
device instances to inputs or outputs of physical node instances
is done through 1O Allocation. Once the allocation of inputs
and outputs is defined, we can also validate a platform by
checking if requirements of all hardware device instances are
fulfilled by inputs and outputs of physical node instances they
are connected to.

C. Mapping Layer

As already stated, we have defined software and hardware
layers to be as distinct as possible in order to promote reuse of
structures defined in them. In order to create systems
consisting of both, we had to introduce the mapping layer. The
mapping layer allows us to define connections between device
component instances in software layer and hardware device
instances in hardware layer. By this we put our reusable units
in the context of a system and are able to provide platform-
specific code for platform independent, reusable software
components.

Mapping between the two can be created only if type of
hardware device instance references type of device component
instance. By having this constraint we can easily assure that a
system is deployed (i.e., component instances are allocated to
physical node instances) in a valid way.

Besides the platform-specific code, the mapping also
allows us to propagate platform- or device-specific values for
extra-functional properties.

Our approach supports mapping of component instances to
hardware device instances even in early stages of system
development. By having reusable descriptions, models and
extra-functional properties defined for hardware devices and
physical nodes we are able to test and analyze behavior of a
system before it is fully implemented. This allows us to detect
potential problems and avoid changes in late stages of system
development.

Another benefit of separate mapping model is that it allows
a more flexible process, where software and hardware can be
addressed separately in any order, and interleaved. Also, it
enables us to provide partial mappings in early stages of
development.

V. ExampLE

To illustrate use of our approach, we will demonstrate it on
an example. The example will model a simple temperature
control system using ProCom component model.

A. The ProCom component model

ProCom is a component model for distributed embedded
systems in the vehicular and automation domains. These
systems often have a safety-critical role and have to perform in
real-time. Therefore, ProCom explicitly addresses extra-
functional properties such as timing (e.g., worst case execution
time) and resource usage (e.g., static memory, CPU). ProCom
follows a model-based methodology centered around a rich

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

notion of reusable architectural design-time components. A
ProCom component can consist of source code, models of
timing and resource usage, analysis results and documentation.

The external view of a component consists of ports and
attributes. Through the ports the functionality provided by a
component can be accessed, while the attributes represent
additional information about a component, such as
extra-functional properties.

In order to be able to design both the complete system and
the low level control functionality, ProCom has been divided
into two layers. The upper layer, called ProSys, models a
system as a collection of complex, active, concurrent, and
typically distributed subsystems that communicate via
asynchronous message passing. The lower layer, ProSave, on
the other hand models smaller parts of control functionality.
ProSave components communicate through trigger (control
flow) and data ports (data flow).

B. Temperature Control System

Our example temperature control system consists of two
temperature sensors that monitor temperature in a water tank
and a heater that will engage if the temperature drops below a
defined temperature. A graphical representation of all software
and hardware layers of the system, and the mapping between
the two layers, is given in Figure 3.

Our software layer consists of a clock (an element that
creates periodical triggering signals), two instances of
TemperatureSensor device component (TSI and TS2), one
instance of ControlUnit software component (CU1) and one
instance of HeaterActuator device component (HA1). The
component instances are connected in such a way that the
clock triggers both TS1 and TS2. When both of them have
finished their execution they forward temperature values to
CUI and generate signals that trigger its execution. Depending
on given temperature values, CU1 performs calculations and
provides signals to HA1 to be turned on or off.

It should be noted that TS1, TS2 and HA1 just serve just
for describing interaction of software components with
hardware devices, but are not device-specific. In that way
whole software layer is reusable on different hardware
platform configurations.

In the hardware layer we need to include specifications of
physical nodes and hardware devices, and instantiate our
platform. For the purpose of this example we will not fully
specify the hardware but will only use parts that satisfy the
needs of our system. Physical node specification will consist
only of one physical node which we will call MicroCrtl.
MicroCtrl will provide three 10s: two analog and one digital.
For temperature sensors we use hardware devices that require
analog input. We also specify heater hardware device which
requires digital output. To instantiate our platform, we will
create an instance of MicroCtrl with name Microl. Microl
will have two instances of the analog temperature sensor
device (AT1 and AT2) and one instance of the heater device
(H1). We will allocate the instances of temperature sensor to
the analog inputs and the instance of heater device to the
digital output of Microl.

To complete our system, we need to define mappings
between device components in software layer and hardware

153

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Software Layer

HeaterActuator [3

| ControlUnit o
CU1 HA1 ‘,,_‘ 3
| |
Mapping layer
3 Mapping Mapping Mapping :
Hardware Layer

; AnalogTemp AnalogTemp Heater ;
: AT1 AT2 H1

\ \ \ ;
3 Analoglnput Analoglnput DigitallO 3
3 ADCO ADCA1 PAO 1
3 \ \ [
: MicroCtrl :
Micro1

Figure 3: Example of a temperature control system created using ProCom extended with our approach.

devices in hardware layer. For this, we will define mappings
between AT1 and TS1, AT2 and TS2, and HA1 and H1.

VI. ConcLusioN

In this paper, we have presented our approach for
managing hardware devices such as sensors and actuators in
component models for embedded systems. Our framework
consists of three layers: software layer, hardware layer and
mapping layer. These three layers enable separation of device
dependencies in software and models of the actual hardware
and allows us to reuse software components and hardware
models. The hardware layer enables us to specify all aspects of
hardware devices and platforms needed for their integration
into component models. In the software layer we enable
explicit definition of dependencies of software components on
hardware devices. The mapping layer enables us to connect
instances of software components to hardware device instances
and in that way to design complete systems including software
and hardware. The mapping also allows propagation of extra-
functional properties of hardware devices to component
model. In early stages of system development we can also
define just partial mappings. Our approach promotes reuse of
software components, hardware device specifications and
platform node specification by creating clear distinction
between types and instances of these entities, and by removing
platform- and device-specific code out of software
components.

ACKNOWLEDGMENT

This work was supported by the Unity Through Knowledge
Fund via the DICES project, the Swedish Foundation for
Strategic Research via the strategic research centre
PROGRESS, and the Swedish Research Council project
CONTESSE (2010-4276).

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

(1]

REFERENCES

1. Crnkovi¢ and M. Larsson, Building Reliable Component-Based
Software Systems, Artech House Publishers, 2002.

S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and 1. Crnkovic. A
component model for control-intensive distributed embedded systems.
In 11th International Symposium on Component Based Software
Engineering. Springer Berlin, October 2008., pp. 310-317

M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Hikansson, A.
Moller, P. Pettersson, and M. Tivoli. The SAVE approach to
component-based development of vehicular systems. Journal of Systems
and Software, May 2007. pp. 655-667

K. Hénninen, J. Méki-Turja, M. Nolin, M. Lindberg, J. Lundbéck, and
K- Lennart Lundbéck, The Rubus Component Model for Resource
Constrained Real-Time Systems, 3rd IEEE International Symposium on
Industrial Embedded Systems, 2008, pp. 177-183

K. Xu, S. Krzysztof, and A. Christo, COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time
Control Systems, RTCSA '07: Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications, 2007, pp. 199-208

H. Heinecke, W. Damm, B. Josko., A. Metzner, H. Kopetz, A.
Sangiovanni-Vincentelli., and M. Di Natale, Software Components for
Reliable Automotive Systems, Design, Automation and Test in Europe,
2008, pp. 549-554

S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovi¢, Integration of Extra-
Functional Properties in Component Models, 12th International
Symposium on Component Based Software Engineering (CBSE 2009),
LNCS 5582, Springer Berlin, East Stroudsburg University,
Pennsylvania, USE, June, 2009, pp. 173-190

T. Leveque, E. Borde, A. Marref, and J. Carlson, Hierarchical
Composition of Parametric WCET in a Component Based Approach, In
14th IEEE Int. Symposium on Object/Component/Service-oriented
Real-time Distributed Computing, 2011, pp.261-268

D. Ivanov, M. Orlic, C. Seceleanu, and A. Vulgarakis, REMES tool-
chain — A set of integrated tools for behavioral modeling and analysis of
embedded systems. In 25th IEEE/ACM International Conference on
Automated Software Engineering, 2010, pp. 361-362

154

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Service Component Framework for Multi-User
Scenario Management in Ubiquitous Environments

Matthieu Faure*:T, Luc Fabresse!, Marianne Huchard?, Christelle Urtado*, and Sylvain Vauttier*

*LGI2P / Ecole des Mines d’Alés, Nimes, France
{Matthieu.Faure, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

tEcole des Mines de Douai, Douai, France
Luc.Fabresse@mines—douai. fr

{LIRMM - UMR 5506, CNRS and Univ. Montpellier 2, Montpellier, France
huchard@lirmm. fr

Abstract—Software dedicated to ubiquitous environments
has to deal with the multiplicity of devices and users. It also
has to adapt to frequent changes in its environment. Users can
easily access and trigger services provided by different devices
but also need to implement complex scenarios, i.e., structured
compositions of multiple service. State-of-the-art frameworks
do not fully meet the expectation we identified. This is why, we
designed the SaS (Scenarios As Services) ubiquitous software: a
platform for ubiquitous systems that provides a SDL (Scenario
Description Language) to support the creation of tailored user-
centric scenarios. Our previous work on the subject did not
tackle all distribution and concurrency concerns. In this paper,
we present SaS’s new features. Using the improved SDL, a user
can now describe scenarios that combine services even if all
of them are not currently available and will never be at the
same time. Moreover, different scenario sharing mechanisms
coupled with an access right policy are now included in SaS.
SaS is currently implemented in a prototype on top of OSGi.

Keywords-Ubiquitous environment; service-oriented com-
puting; user-centric; service COmposition; scenario creation.

I. INTRODUCTION

More and more electronic devices (such as smartphones,
tablet PCs, etc.) assist us in our daily life. They can interact
with their environment and propose various functionalities to
users. This is the rise of ubiquitous computing [1][2]. These
functionalities can be handled as services, and thus, Service-
Oriented Computing (SoC) [3] is a suitable paradigm to
design software for ubiquitous environments. Service access
and system adaptability to environmental changes are al-
ready well handled by execution frameworks. However, to
our knowledge, these systems fail to meet user expectations
to express their needs as complex scenarios involving mul-
tiple services. Based on this observation, we designed the
SaS (Scenarios as Services) ubiquitous software [4]. SaS
features a service component framework that enables end-
users to easily define, control and share scenarios. SaS also
proposes an SDL to create scenarios as service compositions.

Besides, ubiquitous environments involve multiple users
and devices. Consequently, handling previously unknown

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

device types, sharing information among users and handling
control device mobility are challenging issues. First, device
types must not be hardwired in the system. It has to be pos-
sible to create scenarios with services from specific devices
but also from any device of a given type. This capability
makes the system more flexible to device change. Second,
an access right policy and a process dedicated to sharing
scenarios must be specified. Thirdly, handling control device
mobility can be seen both as a constraint on the system (that
must dynamically adapt to its changing environment) but
also as a chance (as the system can benefit from mobility,
while executing scenarios that involve services that never
coexist in a same environment).

The SaS system is twofold. It divides into a scenario
description language called SaS-SDL that provides simple
means to describe services, scenarios, environments and an
execution framework called SaS platform that provides the
processes to support the behavior of the ubiquitous software.
In this paper, we focus on SaS’s new features. The improved
SaS-SDL now manages the environment. In addition, SaS
handles scenario sharing among selected users, service mem-
orization for future scenario creation and scenario mobility
(execution distributed in multiple places and times).

This paper is further organized as follows. Section II
introduces service and scenario declaration in SaS-SDL.
Section III presents the new feature of SaS-SDL: context
management. Then, Section IV describes how the SaS sys-
tem executes distributed scenarios. Section V is dedicated to
the design of our prototype implementation. Related works
are discussed in Section VI. Finally, Section VII concludes
this paper and draws perspectives.

II. SERVICE AND SCENARIO DECLARATION WITH
SAS-SDL

In this section, we give an overview of service and
scenario declaration (a previous version was presented
in [4]) using SaS-SDL, the proposed scenario description
language. SaS-SDL enables end-users to create scenarios

155

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

that correspond to their needs. Improvements are specifi-
cally introduced here, such as: multiple operation selection
schemes (from a specific device/service or not), the ability to
define and set scenario parameters, the ability to specify the
execution type (either in sequence or in parallel) of an action
list. Compared to other programming languages for service
composition (like BPEL [5]), which are imperative and
designed for executable processes, our SDL is a high level
language, which is declarative and dedicated to end-users.
With this SDL, SaS automatically declares services after
they are discovered and then, users can declare scenarios.

A. Service declaration

To be interoperable, SaS does not restrict to a protocol
but uses a generic pivot mode to declare services. SaS
can be specialized by adding bridges to different protocols
(as Frascati [6] and EnTiMid [7] already does). SaS-SDL
defines a service by a device (its provider), a name and an
operation list. Operations have a return type and can have
typed parameters. Users can choose if a service operation
to compose comes from a specific device and a particular
service or not. To do so, the new version of SaS-SDL features
the special word any, which enables to elude the provider
device or the service name. Only the main elements of the
grammar are presented in Listing 1.

scenario parameters and must be valued by users every time
the scenario is invoked.

scenario <scenario_name> <action_block>
[<scenario_properties>]

<scenario> ::=

<action_block> ::= { (<action>)+ } |

{ ([[<parallel exec>] <action list> <action_list>]) }
<action_list>::= (<action> | <action_block>)+

<action> ::= <op_invocation> ; |

<alternative> | <repeat>

<op_invocation> ::= (<device>) <service_name>.
<operation_name>([<parameter_list>])
<parameter_list> ::= (<op_invocation> | <parameter_value>)
(, (<op_invocation>|<parameter_value>))x*
if <cplx _condition> <action_block>
[<else_clause>]
<else_clause> ::= else <action_block>
<cplx_condition> ::= (<condition>

(<log_operator> <condition>)x)
<condition> ::= <op_invocation> <comp_operator>
(<op_invocation> | <value>)
(while<cplx_condition> | <repeat_value> times)
<action_block>

<alternative> ::=

<repeat> ::=

<parameter_value> ::= <value> | ?
<parallel_exec> ::= parallel:
<log_operator> ::= and|or|not
<comp_operator> ::= < | <=|>|>=]|==

Listing 3. Grammar of the scenario declaration using the BNF notation

Listing 4 illustrates SaS-SDL with a scenario example.

<service> ::= service <device> <service_name> <op_list>
<op_list> ::= (<operation> ;)+
<operation> ::= operation <operation name>([<param_ list>])

<return_type>
<param_list> ::= <parameter_type> (,<parameter_type>)x*
<return_type>::= <type>
<parameter_type> ::= <type>
<device> ::= identifier | any

<service_name> ::= identifier | any

scenario night

if ((any) Clock.getTime() == 6pm and
(BedroomThermomether) Thermometer.getTemperature ()
{

(BedroomRadiator) Heater.setValue(7);

}

<= 17)

Listing 1. Service declaration with the Backus—Naur Form (BNF)

Listing 2 is a Clock service declaration example.

service clock_Bedroom Clock
operation getTime () : Time;
operation setTime (Time) : void;

Listing 2. Service declaration example

B. Scenario declaration

A scenario has a name, some actions and properties. An
action can be: (i) an operation invocation, (ii) an alternative
(if - else), or (iii) a repetition loop.

Listing 3 describes the main elements of a scenario decla-
ration using the BNF notation. With this improved version of
SaS-SDL, scenarios have properties, which enable to specify
if the scenario is exportable, editable, etc. Moreover, action
lists are now executed in sequence by default, however, SaS-
SDL enables users to specify some actions to execute in
parallel. In addition, users can now leave some parameter
values blank at scenario creation. This is represented by
the ? value in SaS-SDL. Such eluded parameters become

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Listing 4. Scenario declaration example

C. Users point of view

SaS integrates a GUI based on our SaS-SDL to facilitate
scenario creation for end-users.

1) Service selection: Our GUI presents ordered services
in three columns: by device, service and operation. To avoid
duplicates, SaS groups services and operations with same
name. When users select a device (resp. a service), services
(resp. operations) attached are filtered. It enables users to
select a service (resp. operation) from a specific device (resp.
service). In addition, SaS indicates if a service is a scenario.

For users to create conditions on service availability and
define alternatives, SaS adds the operation isPresent to
each service.

2) Scenario creation: When users select a service oper-
ation to compose, SaS displays corresponding informations
(provider device, service name, operation name and result
type) and enables users to enter operation parameters. Users
can either provide a fixed value or select another operation
result (on which they can apply a basic operation such as
+, -, *, /). In case the parameter type is complex, SaS only
allows users to select an operation result. Figure 1 represents
the GUI sendMail service operation, with two parameters
(second one is complex).

156

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Device: any Service: hail
Operation: sendiail ResultType: void

Type: Sting

Value: "Hello' [operation (/) |

—
operation (+,-," l

Parameter

Value: obizct

Figure 1. GUI: service operation

SaS provides users with several templates (i.e.alternative,
while, repeat, etc.) to create scenarios. Users can combine
templates to create the scenario skeleton. Then, users just
need to put service operations inside the templates and
complete with basic instructions (and, or, not, <,
>, <, >, ==). Figure 2 illustrates a scenario template
and Figure 3 shows an example of scenario creation (sce-
nario operations are represented by pictograms to simplify
but they actually are similar to those in Figure 1).

{—; ————— N e - -
if | 7 N
| % | i/ . \
| g do | | \ {Jy == 6pm AND <= 7
: £ else I ' -
S SE b
& | condition : do mm? =7
=
H do :
| | else m =3
repeat \ /

Figure 2. GUI: scenario tem-
plates

III. CONTEXT MANAGEMENT IN SAS

As seen, our previous version of SaS enables users to
create scenarios. To do so, they dispose of SaS-SDL and its
graphical representation. We presented in Section II some
improvements for service and scenario declaration. Never-
theless, ubiquitous computing implies users mobility and
multiplicity. As defined in [8], two characteristics of ubiq-
uitous system are the social environment and the evolving
environment. A ubiquitous system should therefore provide
an access right policy and advanced sharing mechanisms.
Moreover, this system has to be adaptive but could also
benefit from this changing environment.

A. SaS in ubiquitous environment

Ubiquitous environments involve electronic devices. We
define two types of devices: simple devices (such as radiator,
light) and control devices (such as laptop, pda) which have
an advanced user interface (i.e., touch screen), and can be
considered as personal and mobile. A SaS container (which
contains all SaS mechanisms handled by SaS ubiquitous
software) can therefore only be deployed on a control device
to constitute a SaS system.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3. GUI: example of scenario creation

B. Service and System Directories

Every SaS system has a unique identifier. As a SaS
system is associated to a unique user, sharing scenarios
with select SaS systems is equivalent to define access rights.
SaS systems (which might not be always available locally)
are permanently indexed into a system directory. It makes
possible to share scenarios with a system even if it is
temporary unavailable (failure, mobility). Such a permanent
index is also provided for services by the service directory.
Users can registers services that they discovered or obtain
service declarations from a scenario created by someone
else. By this means, scenarios can be defined that include
temporarily missing services.

To ease directory browsing, services and systems can be
grouped into named categories. These categories are like
keywords as a service (resp. a system) can be included into
several distinct categories. Browsing by categories dimin-
ishes the amount of information to be presented to users.
They can also by used to collectively export services (which
can be equivalent to providing grouped access rights), see
Section IV-B1 for details. Examples of categories might
be locations (all services available at home) or users (all
systems owneb by kids).

Listing 5 represents the main elements of the grammar for
context management and Listing 6 illustrates how this part
of SaS-SDL can be used. Scenarios in the service directory
are highlighted to be differentiate from basic services.

<sas_system> ::= system<system id><system dir><service_ dir
<system_dir> ::
<system_cat> ::
<system_list> ::=

system_directory { (<system_cat>)x* }
category <cat_name> [<system list>]
(system <system_ id>)=«

<service_dir> ::

= service_directory {
<service_cat> ::=

category <cat_name>

(<service_cat>)«* }

[<service_list>]

<service_list> ::= [services <service_name>
(, <service_name>)x*]

Listing 5. Context Management with SaS-SDL

system pdal2
system directory {
category mySystems
platform Nokia3310
platform Acer TimelineX
category family
platform macintosh

}

service_directory {
category home
[services TV,
category office
[services fax, print]

wakeUp]

Listing 6. Service and system directories

The class diagram of Figure 4 provides an alternative
compact view of SaS-SDL.

157

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

: Sas ®
Device System
v system
exports directory
1 1 --------i
Simple Control | device sas |1 i
Device exports Device |0 1| Container .
1 System
exports|
service directory . | Category
1
< l* : ?*
i ik : Service *
Service (¢ Operation Io—=]
: M Category Category
FAY *
- role 1.
* invokes .
SImPIE Scenario User
Service

Figure 4. SaS-SDL class diagram

IV. EXECUTION OF DISTRIBUTED SCENARIOS IN SAS

This section presents how the SaS platform supports the
execution of distributed scenarios.

A. Scenario execution control

To control scenario execution, SaS handles the scenarios’
life-cycle. The objective here is threefold:

o provide basic start, pause, abort and resume operations
for the user to manually control scenario execution,

o provide mechanisms on top of the middleware’s detec-
tion capability to dynamically react to detected changes
in the environment (e.g., unpredictable service unavail-
ability consequent to its failure or mobility),

o provide mechanisms that take advantage of service
and scenario mobility to enrich scenario functionalities
(e.g., enabling to combine in a same scenario services
that will never coexist on a single SaS platform).

Scenario life-cycle. Scenario execution is externally con-
trolled: users can interfere during execution and changes
in the environment can trigger compulsory reactions from
the platform (e.g., it is impossible to ignore that a service
disappeared while being executed). Therefore, scenario life-
cycle needs to be rich enough to encompass specific behavior
to dynamically react to many different situations. Scenario
life-cycle management is enforced by SaS platform. The
state diagram of Figure 5 illustrates the proposed life-cycle.
Here, most transitions are initiated by users (except when
finished, which is automatic) which use the basic start,
pause, resume and abort service operations for the scenario.

resume

uninstall 7
start :

Installed nning
when finished

Stopped

installation

Figure 5. Scenario life-cycle in SaS

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Fine, step by step, scenario running. Scenario execu-
tions cannot be considered atomic as they involve multiple
and distributed service invocations. Moreover, scenario exe-
cution can be paused at any time by users or be interrupted
at any unpredictable step in case a service disappears.

The Running state itself decomposes into a more precise
state machine (see Figure 6). SaS considers scenario exe-
cution as a succession of steps, and define pre-conditions
and post-conditions for each. For example, a pre-condition
can be the presence of appropriate services or the exe-
cution of a previous step. Post-conditions are threefold:
(1) successful execution of the step, (2) a problem occurs
(service disappearance or timeout), or (3) interruption by
the user. Such capabilities are completed with a logging
system that reports scenario step by step execution status.
Users can therefore check scenario advancement through the
getScenarioState operation. Moreover, this enables
SaS to retrieve scenario status after an interruption. Tran-
sitions are all handled by SaS container.

Post-condition
step
satisfied

Pre-condition
step

Finished
X satisfied

Waiting for next
executable step

Step
Execution

Figure 6.

Internal running state diagram

Scenario delayed execution. The step by step running
of scenarios has a positive counterpart when considering
service mobility. If the user wishes to do so (this option
is set at scenario creation), a scenario can be created that
comprises operations that are never encountered in a same
place at a same time. The user can choose from simultaneous
(all services must simultaneously be present) or not. In the
latter case, the user has to set a scenario maximum waiting
period such as an hour or a day, that limits the duration the
scenario might spend waiting for some services to appear.

When the scenario is to be executed, the steps that can
be are and the system pauses the scenario until the next
step is doable. The satisfaction of the next step precondition
will automatically be detected and cause the execution to be
resumed. If the device on which the scenario executes has
not changed place, this step by step execution might have
executed services that are supposed to be present at the same
place but not at the same time (e.g., a service offered by a
device that moves with its user such as a mobile phone). If
the device on which the scenario executes has changed place
(e.g., the scenario is executed on a device that moves with
the user), this step by step execution might have executed
services that are supposed to be present at two distinct places
(e.g., a service offered by a device at home and a service
offered by another device in a hotel room).

158

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

B. Scenario distribution

Registering SaS systems enables users to select who to
share scenarios with. Having multiple users generates the
need for a scenario access policy. In addition, as devices
might fail and scenarios not be shared elsewhere, main-
taining scenario availability also lies on SaS’s scenario
redeployment capability.

1) Scenario access right policies: By exporting their
scenarios as services, users can share them. However, users
might not want everyone to have the same access to created
scenarios. SaS provides two modes for sharing scenarios:
individual, the scenario is shared with a specific system
(which provides access to the system’s owner) or grouped,
the scenario is shared with a whole category of systems
(which provides access to the set of these systems’ owners).
Grouped access mode can be used to designate all systems
a given user has access to (e.g., dad’s) or all systems
that pertain to another category (e.g., local network). Three
access levels are possible: private, the scenario is not shared,
delegated, the scenario is known and remotely accessible to
the systems it is shared with but the owner system possesses
the only copy and still executes the scenario, and copied, the
scenario is copied locally into the system it is shared with
and can be executed on the new system autonomously.

2) Scenario redeployment: When a user shuts down
his/ her platform, the solution to maintaining scenario avail-
ability is redeployment. Before doing so, SaS first warns the
user if a scenario provided by this platform still is running.
User can wait for the end of scenario execution. Otherwise,
SaS tries to redeploy the scenario on another platform and
transfer its current status and execution advancement. The
destination platform is chosen from other available SaS
systems registered in the system directory. If none of these
systems accept, SaS asks other SaS systems present in the
environment. If the scenario has not been redeployed on
platform restart, SaS asks the user if scenario execution
should be resumed.

V. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
the SaS prototype. It is an ongoing work implemented in
Java over OSGi [9][10] with iPOJO [11]. OSGi is a popular
framework that enables to dynamically manage softwares
as sets of decoupled modules called bundles. iPOJO is a
full fledge Service-Oriented Component Model [12] based
on OSGi. The main idea is that a component should only
contain business logic as in EJB 3.0 [13] (EJB entities); SOC
mechanisms should seamlessly be handled by the component
container as container-managed cross-cutting services. The
already implemented parts of SaS are presented in the
previous paper [4].

Scenario delayed execution. Depending on execution
rules (parallel or sequence), SaS invokes services present as

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

defined in IV-A and register the result necessary for some
services (as operation parameter).

As defined in [4], SaS translates a scenario in a succession
of Java instructions thanks to Javassist [14]. Instead of
implementing the whole scenario as the start operation, this
version of SaS implements each action block of the sce-
nario in different methods to enable a stepped and delayed
execution. A scenario can now be launched even if all
services are not present, and it keeps running until it ends,
it is stopped, period of validity finishes or, the platform
is closed. Leveraging iPOJO the presence of each service
independently. So, when all the services involved in an
action block become available, the appropriate method is
automatically called.

Sharing scenarios. When users share a scenario with
all the available platforms, SaS exports the corresponding
service as a remote service.. This way, discovery and distri-
bution can be handled automatically by the last version of
OSGi. Instead, if users select some other systems to share a
scenario with, SaS uses the UpdateServiceDirectory service
exported by each SaS platform. It enables to send events
(service appearance or disappearance) to selected systems.

VI. STATE OF THE ART

This section analyses a representative set of systems that
provide a solution for ubiquitous environments and enable
scenario creation.

SLCA [15] provides developers with means to compose
web services. A composite service contains proxy compo-
nents bound to involved web services. With SODAPOP
[16], users specify a goal that the system tries to reach
with the available services. The main hypothesis is that each
service contains informations about its initial conditions and
its effects. MASML [17] is a multi-agent system for home
automation. Scenarios are defined with an XML syntax
and consist of sequences of service operation invocations.
Mobile agents are in charge of scenario execution. SASHAA
[18] is one of our previous work, focused on ubiquitous
systems for home automation. It enables end-users to create
scenarios with Event - Conditions - Action rules through an
appropriate GUI.

The SaS ubiquitous software manages scenario life cycle
and provide users with basic start, pause, resume and abort
operations to fully control scenarios, whereas MASML and
SASHAA only enables to start and stop scenarios. The SaS
system is the only one to to share scenarios with other
users. SASHAA, SLCA and MASML handle adaptation
to environmental changes, however, scenarios cannot be
executed in different times on multiple places. SODAPOP
manages the environment by automatically classifying new
services according to pieces of information. However, users
have no control on this organization. Moreover, SASHAA
enables to specify locations for systems but not register
services. Table VI summarizes this study. Symbol v'means

159

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

that the requirements is fulfilled, - signifies that it is partially
accomplished and x represents an absence of solution.

TABLE VI - SYSTEMS COMPARISON

Systems Scenario Multi Adaptability Context
Execution User Management
Control
SLCA X X - X
MASML - X - X
SODAPOP X X X -
SASHAA - X - -
SaS v v v v

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the new mechanisms of our
SaS system to manage ubiquitous environments. In addition
to enable scenario creation by service composition, the SaS-
SDL provides means to organize users’ contexts. Users can
register services for a future use. SaS can execute scenarios
step by step, at different times, on different platforms.
Users can also classify surrounding SaS systems and share
scenarios according to different access rights. A graphical
representation of SaS-SDL enables end-users to benefit from
SaS mechanisms.

For future work we want to add semi-automatic service
composition to SaS. Learning from existing scenarios, SaS
will propose some possible service compositions to the
user. SaS will analyze which scenarios are created and
used by users and will extract the more frequent services
compositions.

ACKNOWLEDGEMENTS

This work is partially supported by the CARNOT
M.LN.E.S Institute (http://www.carnot-mines.eu/).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, pp. 78-89, 1995.

[2] H. Schulzrinne, X. Wu, S. Sidiroglou, and S. Berger, “Ubig-
uitous computing in home networks,” IEEE Communications,
pp. 128-135, Nov 2003.

[3] M. P. Papazoglou, “Service-Oriented Computing : Concepts,
Characteristics and Directions,” in Proc. of the 4th Int. Conf.
on Web Information Systems Engineering. 1EEE, Dec 2003,
pp- 3-12.

[4] M. Faure, L. Fabresse, M. Huchard, C. Urtado, and S. Vaut-
tier, “The SaS Platform for Ubiquitous Environments,” in
Proc. of the 23rd Int. Conf. on Software Engineering and
Knowledge Engineering, July 2011, pp. 302 — 307.

[S] OASIS, “Web services business process execution language
version 2.0, april 2007, [Last consulting: July 2011].
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[6] D. Romero, R. Rouvoy, L. Seinturier, and P. Carton, “Service
Discovery in Ubiquitous Feedback Control Loops,” in Proc
of the 10th IFIP Int. Conf. on Distributed Applications and
Interoperable Systems, ser. LNCS, F. Eliassen and R. Kapitza,
Eds., vol. 6115. Springer, Jun 2010, pp. 113-126.

[7] G. Nain, E. Daubert, O. Barais, and J.-M. Jézéquel, “Using
mde to build a schizofrenic middleware for home/building au-
tomation,” in ServiceWave’08: Networked European Software
& Services Initiative (NESSI), Madrid, dec 2008, p. 49-61.

[8] G. Banavar and A. Bernstein, “Software infrastructure and
design challenges for ubiquitous computing applications,”
Communi. of the ACM, vol. 45, no. 12, pp. 92-96, 2002.

[9] OSGi Alliance, “OSGi Service Platform Core Specification
Release 4, 2005, [Last access: July 2011]. [Online].
Available: http://www.osgi.org/download/r4v40/r4.core.pdf

[10] ——, “OSGi Service Platform Enterprise Specification,” pp.
15-27, 2010, [Last access: July 2011]. [Online]. Available:
http://www.osgi.org/download/r4v42/r4.enterprise.pdf

[11] C. Escoffier and R. Hall, “Dynamically adaptable applications

with iPOJO service components,” in Proc. of the 6th int. Conf.

on Software composition, ser. LNCS, vol. 4829. Springer,

Mar 2007, pp. 113-128.

[12] H. Cervantes and R. Hall, “Autonomous adaptation to

dynamic availability using a service-oriented component

model,” in International Conference on Software Engineering

(ICSE). IEEE, May 2004, pp. 614-623.

[13] Sun Microsystems, “Enterprise javabeans specifications,”

may 2006, [Last consulting: July 2011]. [Online]. Available:

http://java.sun.com/products/ejb/docs.html

[14] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Ef-

ficient Java Bytecode Translators,” Proc. of the 2nd int. conf.

on Generative programming and component engineering, pp.

364-376, Sept 2003.

[15] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill,

“SLCA, composite services for ubiquitous computing,” in

Proc. of the Int. Conf. on Mobile Technology, Applications,

and Systems. New York, USA: ACM Press, 2008, pp. 1-8.

[16] J. Encarnacao and T. Kirste, “Ambient intelligence: Towards

smart appliance ensembles,” in From Integrated Publication

and Information Systems to Information and Knowledge En-

vironments. Springer, Dec 2005, pp. 261-270.

[17] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-Oriented Smart-

Home Architecture Based on OSGi and Mobile-Agent Tech-

nology,” IEEE Trans. on SMC, Part C, vol. 37, no. 2, pp.

193-205, Mars 2007.

[18] F. Hamoui, M. Huchard, C. Urtado, and S. Vauttier, “Specifi-

cation of a component-based domotic system to support user-

defined scenarios,” in Proc. of 21°" Int. Conf. on Software

Engineering and Knowledge Engineering, July 2009, pp.

597-602.

160

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Graph-Based Requirement Traceability Maintenance Model
Facilitating Chronological Evolution

Vikas Shukla®?, Guillaume Auriol"2, Claude Baron™?
'LAAS-CNRS,
7 avenue du Colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS ;
F-31077 Toulouse, France
{vshukla, gauriol, cbaron}@laas.fr

Abstract—Requirement traceability remains a challenging task
for the software developers. It helps stakeholders to
understand the various relationships between the artifacts
produced during the development process. During this
requirement evolution process, information is produced and is
stocked as trace. Some part of this information is lost owing to
traceability maintenance process as links are deleted and
removed from the system. This lost information is very useful
while making decisions during the development process. In this
paper we discuss a graph-based traceability model, which
allows easy maintenance without any significant information
loss. We show that both nonfunctional and functional
requirements can be traced forward and backward using our
proposed graph-based traceability model.

Keywords-Requirement Traceability; Graph; Maintenance;
Decision making.

l. INTRODUCTION

Requirement traceability is the ability to describe and
follow a requirement in both forward and backward direction
in a software development life cycle [1]. Requirement
traceability is seen as an index of software quality, it is one
of the recommended activities for the system requirement
specifications [2], CMMI and 1SO 15504 consider it as ‘best
practice’ and strongly suggest its usage. Requirement
traceability allows various stakeholders to understand the
various existing relationships among the produced artifacts
during the product development process.

A requirement is traceable if you can discover who
suggested the requirement, why the requirement exists,
which requirements are related to it and how that
requirement relates to other information such as systems
design, implementation and user documentation. Traceability
information helps you discover which other requirements
might be affected by requirement changes.

Requirement traceability is always associated with
artifacts, we define artifact as any product which may have
originated during the course of development process or is
utilized during the development process or later and is
important for the success of project.

Every organization implements its own suitable guiding
principles for requirement traceability which are known as
‘traceability policies’. Traceability policies define which
information dependencies between requirements should be
maintained and how this information should be used and
managed.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Traceability means different things for different types of
users depending on the types of users high-end or low-end
[3, 4]. Usually, quality requirement of a system, which are
mostly nonfunctional requirements, are high-end users
requirements associated with management people. Low-end
users are usually developers, programmers or people
involved with testing, verification or validation.

For high-end users it implies how the client needs have
been fulfilled but usually the low-end users find it
unnecessary work overload [3], Tracing of nonfunctional
requirements satisfies their needs. Similarly the traceability
need of low-end users is satisfied with functional tracing.

We have contributed to the existing state of art by
proposing a valid solution to the maintenance problems, i.e.,
the information loss, and dangling traces. Our paper
addresses solution for the existing requirement traceability
maintenance problems using graph-based methodologies,
based on event-based traceability [5]. We show how we can
increase the value of trace for the low-end users and hence
involve them rigorously in traceability process. Our approach
shows the interesting solution for the dangling-trace and
information-loss problem and shows how our technique can
be suitably used for minimizing cost of maintenance.

The paper is organized as follows. Section 2 of this paper
highlights the current traceability maintenance problems.
Section 3 presents the existing related works. Section 4
presents our graph-based traceability maintenance model.
Section 5 discusses various aspects of our maintenance
scheme and discusses feasibility and scalability issues linked,
and equally the various combinations possible with recovery
schemes. Section 6 concludes the paper and brings the
possible problems and solutions linked to our approach.
Finally, Section 7 presents the future perspective works
envisaged.

Il. TRACEABILITY MAINTENANCE PROBLEM

The requirement traceability is a continuous activity,
involving peoples of wvarious levels to participate
continuously and maintaining a perfect communication
channel among them for avoiding any information lapse. A
good communication channel can help to figure out
inconsistencies in the interpretation of requirements among
various stakeholders which is very necessary for requirement
engineering activities. Besides the communication there are
various issues in traceability maintenance. Maintenance is
the activity of updating and modifying already existing
traceability relationships [6]. We discuss a few of the

161

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

existing important maintenance problems, which we address
in this paper.

A. Cost of Maintenance

As the requirements are continuously evolving through
the life of a project, requirements are added, removed or
modified. The links between these evolving requirements
need to be maintained. In a sufficiently complex system, the
number of requirements can vary up-to few thousand
requirements depending upon the granularity. Maintaining
these requirements can be tedious task involving lot of
computational and human resources.

B. Dangling Trace

A dangling trace is one which points nowhere or it lacks
either a source or a target [7]. Such situation may arise due
to human or system error during the course of a continuous
evolution of a fairly complex system. They may also arise
due to changes in the system model rendering some part of
old system out of the boundaries of new system and hence it
becomes difficult to trace them with respect to new
requirements.

C. Information Loss

Whenever a new requirement is added to the system it
needs to be linked to other requirements and available
artifacts. The corresponding owners of the linked artifacts
should be informed and advised to bring up the necessary
changes. Similarly whenever an artifact is removed or
altered or its dependency changes all the information should
be communicated to the various stakeholders. This task
usually involves maintaining these fine grained relationships
and continuous update of such information usually leads to
loss of data and hence information. We claim this
information to be important as they are result of earlier high
level discussions and decisions which involved certain cost.

If any such information is deleted permanently then in
case of afuture discussion there is chance that development
team may reach a similar decision which was earlier found to
be inutile. This may happen due to a probable change in the
team or may be just of a simple absence of a member, which
is quite possible as project development may take
sufficiently long time.

D. Increasing Value of Trace for low end users

As mentioned earlier, for the low end users traceability
seems to be a monotonous task and they are reluctant to
involve themselves in traceability process. They do not find
it very useful for their objectives and hence traceability does
not offer them sufficient valorization for their work.

Whereas with every change brought to an artifact during
the course of development there is an inherent risk attached
to every dependent artifact involved which may jeopardize
the success of project. We show in the following section that
this risk evaluation factor can be used as a tool to valorize
the work of low-end users and hence to continuously
involve them in traceability mechanism. This associated
risk can then be utilized in change impact management.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

I1l. OTHER REALATED WORKS

Current literature on traceability contains ample work on
need, and generation of traceability [1]; however, fewer
work has been produced regarding the maintenance of
traceability [5, 7, 9, 10, 14] the existing ones do not address
properly the information loss problem. Cleland-Huang et al.
[5] proposes publish—subscribe mechanism, a relationship
between artifacts is registered to a central server. The
evolution is represented by the series of change event. When
a requirement is changed, the subscribers are notified about
the change and they may bring the potential changes to their
artifacts. It allows complete removal of requirements.

Another event-based scheme [14] uses a tool called
Ttracemaintainer but it uses only UML structural models.
Another similar tool to Ttracemaintainer is ArchTrace [13],
it addresses the consistency and evolution of trace links
between software architecture models and their associated
code. Another approach for evolving traceability for
heterogeneous artifacts [11] gives interesting insights about
which information should be traced for corresponding
artifacts so that fine-grained differencing can be used to
identify evolution. The graph-based traceability schemes
exist in literature like [6, 15, 16]. Schwarz et al. [6]
recommends the complete deletion of traceability links
hence in this respect it is like our maintenance model, but it
insists the trace maintenance using the technique based on
[5], but essentially they are based on transformation models,
while this paper is based on classical techniques. Some
earlier works have recommend versioning schemes for
traceability maintenance of artifacts [9], but with the
versioning schemes it becomes hard to see the evolution at
an instant. The other approaches are state-based [7], and
scenario-based traceability. The state-based techniques
employ syntactic differences between different versions of
model. Some use text differencing to identify change. The
other techniques for managing traceability, based on
evolution, use policy-based support [10].

An important aspect of various traceability models is of
the traceability recovery scheme. To reduce the cost of
traceability, use of semi-automatic and automatic
mechanism for traceability recovery is advocated. This is an
important aspect, as for a fairly large sized project creating
traces manually can be tardy.

ADAMS [16, 17] uses a latent semantic indexing
scheme for traceability recovery from the checked in
artifacts. There are many schemes based on IR (information
retrieval) and vector space model techniques. The majority
of traceability tools equipped with semi-automatic or
automatic recovery techniques are plagued with ‘false
positive’ problem [16]. The tool ADAMS uses an event
notification scheme and claims automatic traceability
recovery scheme and other modules for project
management. It also uses a versioning scheme for traces, but
still some information loss is still possible owing to
complete removal of artifacts before the version release.

162

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

There are many traceability models, but most of the
systems are overly complex and do not address the
chronological evolution and information loss problem in
particular. Valorizing traceability can be used as a tool in
software configuration management [8].

IV. GRAPH-BASED TRACEABILITY MAINTENANCE MODEL

Source Artifact | | Target Artifact
1.% 1% Time Stampr®f [NFO
1 N
~o ¢
@ —— Liveinfo
Trace L.
<O
5 Dead info
Risk

Figure 1 .Trace meta-model

Our graph-based traceability maintenance model is
comprised of two entities: trace meta-model and traceability
mechanism.

A. Meta-model

We propose our solution to the aforesaid problems; we
assume that the information that a trace should contain are
decided by traceability policies of the enterprise. We define
our traceability meta-model, as shown in Figure 1. We have
introduced the concept of live and dead information in our
meta-model. Live information is one which is coherent till
date and is represents the current state of artifact, whereas
dead information is one which is obsolete with respect to
current state of artifact but still holds information which
shows the chronological evolution of system.

The trace meta-model defines trace as composition of
other traces; a trace always contains at least one source and
at least one target artifact. A trace contains two types of
information live information and dead information.

Information is always associated with a time stamp
indicating the period during which it was conceived or
created. A trace should contain at least single live
information and may not contain dead information. A trace
always contains a risk associated apart from information.
We recommend link model of [11] data to be taken in
consideration for representing a trace information.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Traceability mechanism

Traceability mechanism is based on the graphical
traceability techniques in which artifacts are represented as
nodes and traces are links between the two or more artifact.
The need of a product or product is considered as the root of
the tree, non-functional requirements (NFRs) and functional
requirements (FRs) are the immediate nodes to the root. As
most of the NFRs are implemented as FRs, the NFRs are
later linked to FRs and artifacts in next level at finer
granularity.

In our traceability mechanism, we define three actions
addition, modification, and rejuvenation; they can be
applied both on traces and artifacts; there is no deletion
operation but instead another sub-operation of modification
called suspension. Suspension is envisaged to provide
similar functionality like deletion, which permits to keep the
track of trace evolution.

Parent Artifact
Parent Artifact

Demand of Trace Link
Trace Link

Trace link Added

—>

New Child Artifact

Child Artifact
2

Child Artifact
1

Child Artifact
1

Figure 2. Addition operation

Parent
Parent artifact
artifact

Trace Link
Suspended

Dead
Info

suspension
Operation

Parent
artifact

Trace Link
Added

Dead :
mo

Demand of Trace Link

Figure 3. Modification-suspension operation

Each node/artifact maintains two additional lists, one for the
dependencies or links, which are pointing to a dead artifact,
and one which maintains the names of dead child artifacts.
1) Addition operation
Figure 2 shows the addition operation, when an artifact is
created a trace is created pointing from the parent node to
the recently created node. All the necessary data are filled
and the node is initialized.

163

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

2) Modification operation
Modification operations are of two types change and
suspension.

a) Change
In case of modification change operation whenever data are
updated the earlier existing data are marked dead and the
newer ones take their place and are marked alive.
b) Suspension operation

Modification-suspension operation is one when an artifact is
no longer coherent with the current system state, and user
actually wants to remove it, in this case the artifact is
marked dead and is suspended and instead of complete
deletion from tree it is moved one level up and is added to
the list of dead artifacts of corresponding node. Figure 3
shows the maodification—suspension operation. The other
consequence to modification—suspension operation is that
all the links from the various other artifacts which were
pointing to dead artifact are added to the list of dead
pointers.

3) Rejuvenation operation
A rejuvenation operation permits to change the status of a
trace from dead to alive. This operation can only be applied
when all the pre-artifacts to current artifact are alive or
controlled, i.e., all the earlier artifacts which were the
existential reason for the current artifacts should have been
taken in account suitably.

V. DISCUSSION

In principle, the majority of graph-based traceability
tools are more or less similar, plagued with similar
deficiencies. We would recommend a semi-automatic
traceability recovery technique. As, in a fairly large system
a fully automatic mechanism can lead to false-positive
notifications, which can be errant for requirement engineers.
The current traceability mechanisms based on information
retrieval (vector space models, latent semantic indexing, and
probabilistic model etc.), structural rule-based, linguistically
rule-based, transformation rule-based or other hybrid
techniques are still error prone and needs to be improved.

Our traceability maintenance technique can be coupled
with any traceability recovery technique, and used
efficiently. Our paper addresses vital issue of information
loss; for example, in a fairly large project which has
duration of several years, it is possible that one artifact
which was previously decided not to be included in the
product owing to a certain constraint, is reintroduced. If the
analyst had removed this artifact from system, the
information regarding its exclusion was lost which was
valuable to the project, and hence it costs again time and
money, only to be discovered later regarding its deficiency.
We claim that this ‘artifact evolution information’ is useful
and should not be lost whether the decision regarding the
artifact is finally affirmative or negative.

The major limitation of event-based traceability
approach is of scalability; as the number of messages

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

generated passes a certain limit, it becomes difficult to
handle so many notifications manually [17]; even reduced
subscription cannot answer this problem. This maintenance
problem is addressed by our technique. The cost of
maintenance using our technique is fairly less, as compared
to other techniques. For every artifact updated, the
information which is obsolete becomes part of the parent
node in the form of dead information, and the pointing trace
is also removed and stocked as dead information with parent
node, this eases the work of requirement engineer. In a large
project with an event-based notification procedure, using
our proposed technique, the deletion operation on any
artifact could be executed without the overhead of
notifications, and overhead of follow-up trace deletion
requests from lower level artifact owners to higher level
artifact owners.

Our traceability model includes risk evaluation of every
trace created, this helps to valorize the traceability task of
requirement engineer. The risk involved can be the
information vital information regarding the dependencies or
the rationale behind the existence of the artifact. We claim
that, this can help requirement engineer to valorize his work
and renders the tracing activity interesting by coupling
analysis together, which can be used later, for calculating
ripple effect.

VI. CONCLUSION

This paper has presented a new approach for traceability
maintenance scheme, trying to address chief problems of
current trace processes. The proposed traceability model
emphasizes on maintenance with efficient maintenance
schemes, we are developing a tool which comprises our
technique, and we are yet to obtain results and observations
which support our claims. Our technique provides
interesting solution to the dangling trace problem, which can
immensely help to reduce the tediousness of tracing process.
Our solution offers a plausible solution to the information-
loss problem as the information ever generated in the
development process remains in system to provide the exact
trace of evolution of the system.

With the ease in trace maintenance process the cost of
maintenance can be reduced noticeably as the dangling
pointer problem is solved the effort in maintenance is
reduced and hence less time and less human resources are
engaged to do the same task.

We claim that our technique can bind tightly the low-end
users to the traceability process and can help them to valorize
their work by involving them in risk assessment process of
every artifact they own. Usually in the system development
process there are numbers of iterations before an artifact is
finally accepted as the part of system, our technique allows

retaining the information regarding iterations and
chronological evolution and hence helps in better decision
making.

We can still not trace 100% of information as it is always
difficult to trace the informal aspects of many artifacts. We
advocate the usage of semi- automatic trace mechanism with

164

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

event specific human intervention for the optimal benefits of
traceability.

VII.

We are currently working to fully implement our
technique, which addresses maintenance issues which we
discussed in this paper. In spite of these facts there are other
issues which need to be addressed like heterogeneous
traceability schemes for capturing informal aspects.

Usually graph becomes large and hard to understand
[12], our technique can be constrained to map intra-level
traceability, reducing size and increasing the
understandability of graph. Our technique can be evolved
further to enable global distributed traceability.

There are still issues like increasing the value of trace
and methods to augment the usability of trace in
organization and how to holistically link the various aspects
of system development with the traces. Can we utilize traces
for rapid development process? Can traceability patterns be
used for product development? How to evolve traceability
techniques as a tool for change impact analysis? These are
the numerous issues which need to be addressed by research
communities.

FUTURE WORK AND PERSPECTIVES

ACKNOWLEGEMENTS

The research leading to above results has received funding
from the European Community’ Seventh Framework
Program (FP7/2007-2013) wunder grant agreement n°
234344,

REFERENCES

[1] Gotel, O.C.Z., and Finkelstein, C.W., “An analysis of the
requirements traceability problem,” Proceedings of the First
International Conference on Requirement Engineering (ICRE 1994),
pp. 94-101, 18-22 Apr-1994, doi: 10.1109/ICRE.1994.292398.

[2] “IEEE Recommended Practice for Software Requirements

Specifications,” IEEE Std 830-1998, 1998
doi:10.1109/IEEESTD.1998.88286.

[3] Ramesh,B., “Factors influencing requirements traceability practice,”
Commun. ACM 41, 12 (December 1998), pp. 37-44.
doi=10.1145/290133.290147.

[4] Ramesh, B., and Jarke, M., “Toward reference models for
requirements traceability,” IEEE Transactions on Software
Engineering, vol.27, no.l, pp. 58-93, Jan 2001

doi: 10.1109/32.895989.

[5] Cleland-Huang, J., Chang, C.K., Christensen, M., “Event-based
traceability for managing evolutionary change,” IEEE Transactions
on software engineering, vol.29, no.9, pp. 796- 810, Sept. 2003, doi:
10.1109/TSE.2003.1232285.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Schwarz, J. Ebert, and A.Winter., “Graph-based traceability: a
comprehensive approach,” Softw. Syst. Model. 9, 4 (September
2010), pp. 473-492. doi=10.1007/s10270-009-0141-4.

N ,Drivalos-Matragkas; D.S. Kolovos. R. F. Paige; and K.J.
Fernandes., “A state-based approach to traceability maintenance,”
Proceedings of the 6th ECMFA Traceability Workshop (ECMFA-TW
'2010). ACM, New York, NY, USA, pp. 23-30.
doi=10.1145/1814392.1814396.

K.Mohan, P.Xu, LCao, B.Ramesh., “Improving change management
in software development: Integrating traceability and software
configuration management,” Decision Support Systems, Volume 45,
Issue 4, Information Technology and Systems in the Internet-Era,
November 2008, pp. 922-936, ISSN 0167-9236, doi:
10.1016/j.dss.2008.03.003.

T. N. Nguyen, C. Thao, and E. V. Munson., “On product versioning
for hypertexts,” Proceedings of the 12th international workshop on
Software configuration management (SCM 2005), ACM, New York,
NY, USA, pp. 113-132. doi=10.1145/1109128.1109137.

A.Seibel, S. Neumann, and H.geise., “Dynamic hierarchical mega
models:comprehensive traceability and its efficient maintenance,”
Softw. Syst. Model. 9, 4 (September 2010), pp. 493-528.
doi=10.1007/s10270-009-0146-Z.

Hong, Y; Kim, M; Lee, S-W., “Requirements Management Tool with
Evolving Traceability for Heterogeneous Avrtifacts in the Entire Life
Cycle,” Proceedings of the Eighth ACIS International Conference on
Software Engineering Research, Management and Applications
(SERA 2010), pp. 248-255, 24-26 May 2010
doi: 10.1109/SERA.2010.39.

Winkler, S., and Pilgrim, J.V., “A survey of traceability in
requirements engineering and model-driven development,” Softw.
Syst. Model. 9, 4 (September 2010), pp. 529-565.
doi=10.1007/s10270-009-0145-0.

Murta, L.G.P.van der Hoek, A., Werner, C.M.L., “ArchTrace:
Policy-Based Support for Managing Evolving Architecture-to-
Implementation Traceability Links,” Proceedings of the 21st

IEEE/ACM International Conference on Automated Software
Engineering (ASE '06), pp. 135-144, 18-22 Sept. 2006
doi: 10.1109/ASE.2006.16.

P.Mader, O.Gotel, and I.Philippow., “Enabling Automated

Traceability Maintenance through the Upkeep of Traceability
Relations,” Proceedings of the 5th European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA
'09), LNCS 5562, pp. 174-189, doi: 10.1007/978-3-642-02674-4_13.

Pinheiro, F.A.C., Goguen, J.A., “An object-oriented tool for tracing
requirements,” Proceedings of the Second International Conference
on Requirements Engineering (ICRE 1996), pp. 219, 15-18 Apr
1996, doi: 10.1109/ICRE.1996.491449.

De.Lucia, A., Fausto, F., Rocco, O., and Genoveffa, T., “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.
16, 4, Article 13 (September 2007). doi=10.1145/1276933.1276934.

De.Lucia, A., Fausto, F., Rocco, O., and Genoveffa, T., “Fine-grained
management of software artefacts: the ADAMS system.,” Softw.
Pract. Exper. 40, 11 (October 2010), pp. 1007-1034,
doi=10.1002/spe.v40:11.

165

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Systematic Mapping Study on Patient Data Privacy and Security for Software
System Development

Isma Masood

Department of software engineering
International Islamic University
Islamabad, Pakistan
ismamasood786@gmail.com

Abstract-The exchange of Electronic Health Records (EHR)
has increased threats to patient data privacy and security. The
software systems developed for healthcare sector are required
to explicitly address patient data privacy and security. A
number of solutions have been proposed to incorporate these
requirements into the software systems. However, there is no
comprehensive study that synthesizes the different research
initiatives according to any predetermined criteria. The main
focus of this paper is to survey the various proposed solutions
in the literature to incorporate patient data privacy and
security into software systems. The proposed solutions are
mapped against: (1) the software development stage for which
the solution has been proposed, and (2) the established patient
privacy and security principles. The existing literature has
been surveyed using a systematic mapping study by phrasing
two questions. In the mapping study, a total of 58 studies,
dating from 2000 to 2011, were evaluated and mapped against
the aforementioned categories.

Keywords-Systematic mapping study; Electronic Health
Records (EHR); Patient data privacy and security; Software
system development.

l. INTRODUCTION

Health information and medical records contain sensitive
personal information including diagnosis and testing
information along with person’s family history, genetic
testing, history of diseases and treatments, history of drugs
used, sexual orientation and practices, and testing for
sexually transmitted diseases [1]. Nowadays, digitized health
records are not only used for diagnosis and treatment but
they are also used for other purposes like improving
efficiency of the healthcare system, drive public policy
development administration, conduct medical research, and
to provide effective health services that can be tracked and
evaluated [2,3].

Increasingly, the electronically shared information within
healthcare sector is receiving new threats to patient data
privacy and security. Threats to patient data privacy and
security become a major cause of inaccuracies and improper
disclosure of information, which threaten individual’s
personal life and financial well being [3, 4]. Therefore, many
laws and policies in different countries have been

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Saad Zafar

Faculty of Computing
Riphah International University
Islamabad, Pakistan
saadzafar@riu.edu.pk

implemented to protect patient data privacy and security
especially for EHR [5].

To bridge the gap between different patient privacy rules,
regulations and policies, Markle Foundation has proposed a
set of principles under a Common Framework for uniform
implementation of health information exchange across the
health sector [9]. Markle Foundation works for advancement
of health and national security through information and
information technology in the United States of America. One
of the major objectives of the Common Framework is to
ensure patient privacy and seamless connectivity among
various organizations related to the health sector. The
privacy principles defined under the framework are
described later in the paper.

A number of initiatives have been taken to propose
effective integration these policies into software systems.
However, effective implementation of all the policies and
principles related to patient privacy and security into
software systems remains a challenge.

Therefore, there is a room for new and improved
solutions in this field. But before performing any new
research, there is a need to synthesize the existing work in
the area and to understand the need for improvement or to
identify any new solution to an unresolved matter. Typically,
a systematic literature review [SLR] is performed for this
purpose. The idea of conducting SLR in the field of software
engineering has been proposed by Kitchenham [6]. Often, a
pre-requisite for conducting SLR is a mapping study, which
is performed as an initial step to assess the feasibility of a
complete SLR. In this paper we have conducted a mapping
study as we could not find any SLR on the proposed
solutions related to the Patient Data Privacy and Security in
the field of software engineering. For this mapping study, we
have followed the guidelines published in [7, 8].

We have presented the results of mapping study to
identify available solutions on patient data privacy and
security for software system development and have
categorized these solutions against: (1) software
development stages in software development cycle, and, (2)
the well established policy principles for patient data privacy
and security presented in [9]. Specifically, our mapping
study addressed the following research questions (1) which
solutions of patient data privacy and security have been

166

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

proposed for software system development? (2) Can we
categorize these solutions using the Markle Foundation’s
Common Framework?

In Section I, we have described our systematic mapping
process; in Section Ill, we provide explicit answers to our
research questions; the discussion of the results is provided
in Section 1V; conclusion and the future work are given in
the last section.

Il. THE SYSTEMATIC MAPPING PROCESS

For our mapping study, we following the guidelines
provided in [7, 8]. Accordingly, our mapping study was
conducted in three stages. In Stage 1, we define the scope,
the search strategy and the selection criteria. In the second
stage primary studies were selected applying the search
strategy and the selection criteria. Lastly, in Stage 3, the
selected studies are classified into the different categories.

A. Stage 1: Defining Scope, search strategy and selection
criteria

We define the scope of the study as follows. The
population of the study is selected as the set of articles
addressing patient data privacy and security. As intervention,
we selected any patient data privacy and security solution
proposed for any of the software development cycle (e.g.,
requirements engineering, design, testing, etc.). The outcome
of our study is a mapping of selected solutions to the patient
data privacy principles found in [9]. Our search string for
conducting the research was:

Patient AND Data AND (Privacy OR Security)

The research sources selected for our study were IEEE
Digital Library, ACM Digital Library, Science Direct and
Springerlink. To select relevant studies, we used the
following inclusion and exclusion criteria.

Inclusion Criteria: A study contribution related to any
stage of the software system development lifecycle. The
study should also discuss at least one or more than one
principles of patient data policy. For this purpose we read
abstract, conclusion, introduction, or the full paper (if
required).

Exclusion Criteria: Any study not related to the domain
of software engineering, patient data privacy or security is
not selected. The studies related to patient data privacy and
security for images, sensor network and wireless
transmission are also not included.

B. Stage 2. Selecting primary studies

In the first iteration, the search string was used at each
resource. All references along with their abstracts were
downloaded in Endnote [11] reference library. At this stage,
we downloaded 4,670 references. In the second iteration,
abstract of all reference were read and relevant studies which
explicitly addressed the patient data privacy or security with
contribution towards software system development were
selected and placed in another library of selected papers. In
this iteration, 120 studies were selected. We selected 93
papers from IEEE, 6 papers from ACM, 17 papers from

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Science Direct and 4 papers from Springerlink. In the third
iteration, full texts of these 120 studies were downloaded.
We read all the articles one by one and applied the inclusion
and exclusion criteria and finally selected 51 studies in our
third iterative phase. We placed our 12 doubtful studies in
the pending folder. In the fourth iteration, we discussed these
doubtful studies and decided to accept 7 studies and to reject
5 studies. The breakdown of the results from each of the
source is presented in Table 1, whereas Table 2 shows the
distribution of our four iterative phases and the number of
studies which were retained in each phase. In Table 3, we
summarize the most relevant publication channels.

TABLE 1. NO. OF STUDIES AT EACH RESOURCE

Resource No. of studies No. of Percentage
selected
studies
IEEE 4,540 44 0.96%
ACM 74 6 8.1%
Science Direct 40 8 20%
Springerlink 16 0 0%
Total 4,670 58 1.2%

TABLE 2. NO. OF STUDIES AT ITERATIONS

1st iteration | 2™ iteration 3iteration 4™ jteration
4,670 120 51 58

TABLE 3. MOST RELEVENT PUBLICATION CHANNELS

Acronym Type of publication Percent
International Journal of | Journal 13.7%
medical informatics

Information Technology | Journal 6.8%

in

Biomedicine

CcCcsw Workshop 5%
ICBECS Conference 3.4%

The IEEE Digital Library had yielded the most number
of papers (4,670), followed by ACM (74), Science Direct
(40), and Springerlink (16). It is noteworthy that the most
relevant studies were found in Science Direct (20%) and the
least were found in Springerlink (0%). ACM had 8.1% and
IEEE Digital Library had 0.96% relevant studies,
respectively. Most of the relevant studies were found in
International Journal of Medical Informatics (13.7%). This
was followed by Information Technology in Biomedicine
(6.8%). The rest of the relevant studies were found in two
conferences: Workshop on cloud computing security
(CCSW) (5%) and International Conference on Biomedical
Engineering and Computer Science (ICBECS) (3.4%).

As part of our inclusion criteria, we included studies
from the year 2000 to 2011. For the year 2000 we did not
find any relevant study. However, from the years 2001 to
2008 the number of relevant studies increased steadily with a
sharp increase in the year 2008 (frequency=17). The only
exception to the trend is the year 2009 where the total
number was reduced to only 4. In 2010 the number was
again increased to 10 studies showing a positive trend. Only
one study was found to be relevant in the first quarter of

167

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

2011. This trend of number relevant studies per year is given
in Table 4.

TABLE 5. RESEARCH TYPE AND SOFTWARE DEV.PHASE FACETS

Context Solution Validation Evaluation Total
TABLE 4. PERCENTAGE OF STUDIES AT EACH YEAR Req. 1 1 : 4
Design 32 4 1 37
Relevant - Imp. 16 1 0 17
Years Studies Selected Studies Percentage Vgr. 0 0 0 0
Maint. 0 0 0 0
2000 2 0 0% Total 49 6 3 58
2001 5 2 3.4% S
2002 5 1 7% Table 5 shows the distribution qf resea_rch type facet of
: the selected studies. An overwhelming majority of research
2003 8 3 5.1% approaches in the selected primary studies proposed a new
2004 8 3 51% soIL_Jtio_n (f=49). The next approach used thg most was
2005 o 3 51 validation research (f=_6) follqwed by evaluation research
i (f=3). However, we did not find any study that could be
2006 10 4 6.8% classified into any of the other research type categories. The
2007 23 8 13.7% results of this classification are summarized in Figure 1.
2008 - . 293% We also classified the studies on _the basis of different
: stages of software development. Specifically, we grouped the
2009 30 4 6.8% software development stages into: requirements, design,
2010 23 10 17.2% implementation, verification, and ~maintenance. The
breakdown of the classification of the selected studies is
2011 22 ! 1.7% given in Table 5. The majority of selected primary studies
Total 172 58 addressed the Design phase of the software development

C. Stage 3. Classifying selected Studies

In the next stage, we divided our studies according into
three categories. In the first category, we classified the
studies according to the research approach used in the
selected primary studies. We divide the research approaches
according to the classification proposed by Weiringa et al.
[10]. The validation research is used for those novel
techniques that have not been implemented and are validated
through experiments in a lab-like environment. The
evaluation research is used to evaluate the techniques that
have been implemented in practice. This research type
explores how well the technique has been implemented. In
the solution proposal either a novel solution is proposed or
an existing solution is extended significantly. The
philosophical papers propose either a conceptual framework
to structure concepts into a new taxonomy. On the other
hand opinion papers express personal opinion of the authors
about a technique and the experience papers explain the
experience of the authors of how a technique has been
implemented in practice.

solution walidation evaluation

proposal

Philosophical
Papers

Opinion

research research Papers

W Requirements M Design Implementation

Figure 1: Mapping of studies according to research types

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

(f=37), followed by the Implementation phase (f=17), while
some of the studies were classified under the Requirements
phase (f=4). We did not find any study related to software
Verification and Maintenance phases.

Our next categorization was based on the Markle
Foundation’s privacy principles [9]. The first principle of (1)
Openness and Transparency mandates that there should be
an overall policy of openness regarding personal data. The
individuals should be aware of the nature stored data, its
location and its access control policy. The (2) Purpose
Specification and Minimization principle requires that the
data collection purpose should be defined at the time of
collection and its use should be limited to the intended
purpose. Under the (3) Collection Limitation principle the
personal health information must only be collected lawfully
and with the knowledge and consent of the concerned
individual. The (4) Use Limitation principle states that
personal data must not be disclosed, made available or used
in any manner other than the specified purposes. The (5)
Individual Participation and Control principle requires that
individuals have the right of access and control over their
stored personal information. The (6) Data Integrity and
Quality states that only the relevant data is stored and that
the data is always accurate, complete, and current. The (7)
Security Safeguards and Controls requires there should be
reasonable security safeguards against the risks of loss of
data or unauthorized access. The accountability of entities
responsible for keeping and maintaining the personal data
according to stated principles is covered under the (8)
Accountability and Oversight principle. Lastly, the (9)
Remedies principle states that there are adequate legal and
financial remedies to address any security breaches or
privacy violations.

Table 6 shows the distribution of studies according to the
aforementioned privacy principles. As reflected in the data

168

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

shown in the table, we found many single studies that
address multiple privacy principles. The most coverage was
given to the Use Limitation principle (f=38). This was
followed equally by the Individual Participation and Control,
and Security Safeguard and Control principles (f=24). After
them the most covered principle was Data Integrity and
Quality principle (f=16), followed by the Purpose
Specification Principle (f=14). The next principle covered
the most was the Accountability and Oversight principle
(f=13), whereas, the Remedies and Collection Limitation had
the least coverage with a frequency of 3 and 1, respectively.

TABLE 6. CLASSIFICATION OF STUDIES ACCORDING TO
PRIVACY PRINCIPLES

Principle Req. Design Impl. Total
Openness 2 5 1 8
Purpose Specification 1 9 4 14
Collection Limitation 1 0 0 1
Use Limitation 1 23 14 38
;r:]ccii |\ggrl]1tarI0Fl’art|C|patlon 1 17 6 24
gﬂt;lilt;tegrlty and 1 13 5 16
g(:)cntggly Safeguards and 2 17 5 24
fomiivand 5 [e [2 | w
Remedies 0 2 1 3

Ill. RESEARCH QUESTIONS

Based on the above data, we now answer our two
research questions.

RQ1: Which solutions of patient data privacy and
security have been proposed for software system
development?

In our mapping study we found 58 relevant primary
studies. Out of these studies 63% of the studies were related
to the Software Design. While 27% of the studies
contributed towards Software Implementation and only 6%
aimed at Software Requirements. Therefore, we can
conclude that the most research is being conducted on how
to effectively design software systems related to the
requirements of patient data privacy and security. Similarly,
there is also significant focus in the research community on
how to effectively implement the patient data privacy and
security requirements. Surprisingly, much less studies are
focused on requirements analysis and specification phase of
software development (see Figure 2).

RQ2: Can we categorize these solutions using the Markle
Foundation’s Privacy Principles [9]?

The mapping of selected studies against the Markle
Foundation’s Privacy Principles is given in Figure 3. As
discussed earlier, a single study was often mapped against

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

multiple principles. But we found the solutions in the studies
mapped reasonably well against the privacy principle. It is
important to note that the Use Limitation was covered in
41.4% of the studies, followed by Individual Participation
and Security Control principles with 41.4% studies. The
other two principles covered in the selected studies were
Data Integrity and Quality, and Purpose Specification with
27.6% and Purpose Specification 24.1%, respectively. The
coverage of rest of the principles was not very significant.

Software Development context

37

10 4 a
5 — —
0 - .
é{g‘ﬁ 0 Qp(‘ o Q&
C A S S
i " @ B
& & 63’6\ & .bx“'\“
Fad o Z\.‘\" o o
éc* & o
o s

Figure 2: Mapping of studies according to software
development context

B Software Requirements

B Software Design

Software Implementation

Figure 3: Mapping of studies against privacy principles

IV. DISCUSSION

The amount of personal information stored and
exchanged by the health information systems is increasing
by the day. With the increase in the volume of data the
concern about the patient data privacy and security is also

169

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

increasing. The data stored about the patient include
sensitive information like history of diseases and treatments,
history of drugs used, sexual orientation and practices,
results of sexually transmitted diseases, etc. As a result, a
number of rules, regulations and best practices have been
proposed to ensure that the stored data does not violate
individual’s privacy and that the data is never use
inappropriately. Consequently, there has been a steady
increase in research community to ensure that the software
systems deployed must effectively integrate all the
requirements related to patient data privacy and security.

The motivation behind our study was to investigate the
feasibility for conducting a complete Systematic Literature
Review. Here we cover the breadth of patient data privacy
and security presented in the literature. The subsequent SLR
studies can investigate the depth based on the results
presented in our work.

The steady increase in the related primary studies from
the year 2001 to 2010, with a few possible exceptions,
indicates a growing interest in this significantly important
research area (see Table 4). Similarly, the need of
implementation of patient data and security requirements is
reflected from the fact that most of the selected studies are
concerned about the Design and Implementation of the
privacy related requirements and less attention is paid to
critically important phases of Requirements Analysis and
Specification, Verification and Maintenance. This notion is
further reinforced by the fact that the most common research
approach used in the primary studies is Solution Proposal,
with much less studies on validation and evaluation research.
Likewise, we did not find any study based on experience
reports, philosophical papers, or opinion papers.

Perhaps, not surprisingly the most importance is given to
the Use Limitation, Individual Participation and Security
Control principles. However, less coverage is given to the
rest of the privacy principles, without which any software
system cannot effectively implement a complete set of
patient data privacy and security requirements.

We identify the following two limitations of our study:
(1) some studies may have been missed due to the diverse
use of the terms used in the search string; and (2) studies
published in English language were selected in the search.

V. CONCLUSION AND FUTURE WORK

In this study, we have presented initial findings on
solutions available for patient data privacy and security to
develop software system. On this topic, we found 58 papers
published in the years from 2000 to the first quarter of 2011.
We have mapped these solutions against principles of

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

privacy policy to cover all aspects of patient data privacy and
security. A large number of studies focused on Software
Design as compared to Software Implementation and
Software Requirements while, no study found on testing and
maintenance. The Use Limitation principle along with
Individual Participation and Control, and Security Safeguard
and Control had most coverage in the selected studies. Our
future work includes performing in-depth Systematic
Literature Review on various aspects of Patient Data Privacy
and Security identified in this study.

REFERENCES

[1] U S. Congress, Office of Technology Assessment,” Protecting
Privacy in Computerized Medical Information” OTA-TCT
576. Washington, DC, US Government Printing Office, Sept
1993.

[21 A. Appari and M.E. Johnson., “Information Security and
Privacy in Healthcare: Current State of
Research.”International Journal Internet and Enterprise
Management, vol. 6, pp. 279-314, Oct. 2010.

[3] L.Gostin., “Health Care Information and Protection Privacy :
Ethical and Legal Considerations” in ETATS-UNIS, 1997, pp.
683-690.

[41 C. H. Liu, Y. F. Chung, T. S Chen, and S. D Wang, “The
Enhancement of Security in Healthcare Information
Systems.” International Journal of Medical System”,pp. 1-
16, Nov. 2010.

[5]1 M.Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B.
Lalecil., ”A Survey and Analysis of Electronic Healthcare
Records Standards. ”Journal ACM Computing Surveys,
vol.37, pp. 277-315, Dec. 2005.

[6] B. Kitchenham and S.Charters., “Guidelines for performing
systematic literature reviews in software engineering”,
Technical Report, EBSE-2007-01, Keele University, 2007.

[71 K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.,
“Systematic mapping studies in software engineering.”, in
12th International Conference on Evaluation and Assessment
in Software Engineering (EASE), pp. 71-80 , June. 2008.

[8] W. Afzal, R. Torkar, and R. Feldt., “A systematic mapping
study on non-functional search-based software testing”, in
20th International Conference on Software Engineering and
Knowledge Engineering (SEKE), 2008.

[91 Markle Foundation, Connecting for Health Common

Framework. January 10, 2011.
<www.connectingforhealth.org>
[10] R.Wieringa, N.Maiden, N.Mead, and C.Rolland,

“Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion”, Journal
Requirements Engineering . vol. 11, pp. 102-107, Dec. 2005.

[11] T.Reuters,”EndNote-Your smater refrence assistant”Internet.
June 5, 2010. <http://www.endnote.com/>

170

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Impact on the inclusion of security in the UPnP preocol within the Smart Home

Alberto Alonso Fernandez, Alejandro Alvarez VazgMeP. Almudena Garcia Fuente, Ignacio Gonzalengdo
Computer Science Departmdshiversity of Oviedo

Oviedo,

Spain

alonsoalberto@uniovi.es, alvarezvalejandro@unisyiagarciaf@uniovi.es, gonzalezaloignacio@uniovi.es

Abstract — This paper describes the impact caused by an
encryption security system on a protocol for interperability
between robots and home automation. DHCompliant isan
open source interoperability protocol supported bythe UPnP
standard. Until today, UPnP does not provide mechasms for
secure communications, since messages are transmitt over
the network unencrypted and anyone can intercept ah read
its contents. The proposed security system is intdad to
provide DHCompliant with a dual security mechanismbased
on RSA and AES algorithms. The use of these algohitns can
influence the performance of the protocol and the msent
work is focused on describing the real impact of th inclusion
of such security mechanisms. Our results show thatiding
information in a Smart Home interoperability protocol by the
inclusion of a security system is viable and doe®himply great
consequences in CPU memory consumption.

Keywords — DHCompliant; Security; Data Encryption; UPnP.

l. INTRODUCTION

Security and interoperability are key issues in potar
systems. In a system designed for the Digital Home,
which several technologies coexist handling datamfr
devices as well as from the users, it is needetbter the
security of them as well as the interoperabilitytloé whole
system.

A. Security in the Digital Home

Having smart devices in the Digital Home is vergfus
Once all the devices in a home are automated amuected
through a network, it is important to consider seglssues,
authentication and access control [1]. There iseadnfor
each device and each user to be authenticateca inydtem
at the same time in order to interact. Regarding
interoperability protocols into the Smart Home oimhation
related to its inhabitants and its habits are medagd his
information is confidential and mechanisms, whichkem it
inaccessible and/or illegible for entities from side the
Home, must be developed. At the same time, thecdsthat
compose the system must be validated and accomalish
group of requisites in order to be part of the welniding
malignant devices to take control of the instadiator allow
a leak of information. The information managed lhese
environments includes all the values gathered bythed
Smart Home sensors, as well as behavior patterrneof
inhabitants (e.g., daily tasks, timetables and roffesonal
information).

th

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Without the existence of security in the Smart Hpitse
inhabitants’ personal life information is exposed. is
necessary that this situation does not occur iercaextend
the concept of Smart Digital Home in the sociekys tway
the users will trust a system with a high levelr@fability,
which does not allow situations in which informatiand
devices can be compromised.

B. Interoperability and security

The development of software systems incorporating
heterogeneous components has a great potentialcimgd
costs and increasing productivity and flexibility future
changes, but on the other hand it is prone to sthfeats in
non functional aspects of the system [2]. One of th
problems identified is how to build a secure systeom
components, which may or not be safe by themselndhis
study, an example of components can be robotictadap
developed in different programming languages areteted
in different platforms, the OpenID identity supplier the
software component, which administer the controd an
events of the home automation installation inside Digital
Home. The security of all the system cannot fallaononly
component and the interoperability in the securiy
integrated systems is not a trivial problem [3.islpossible
that each component can implement different pdicaed
security mechanisms, which may not be interoperafrieng
them. This is the reason why it is highlighted tfeed of
providing these systems with security mechanisnmsncon
to all components in order to preserve interopéitaldimong
them with a security guarantee.

Another aspect to be considered is the qualityhef t
service provided (QoS) [4]. The main concern is delay
that may occur to access, transmit and display the
information, which is exchanged in the Digital Home
environment. In order to guarantee all the aspeegiously
stated, in the present study different options ndigg
security issues were evaluated. The principal aias W0
choose a group of security mechanisms and algasithm
already proven that endow a domo-robotic interdpétya
protocol with the security needed for preserving
communications and confidential information thatnca
circulate through the network.

C. Digital Home Compliant (DHCompliant)

DHCompliant [5] project aims to integrate home
automation and robotics in the digital home and imed
communications network based on the Universal Rinig
Play (UPnP) technology [6]. DHCompliant proposes a
solution to develop collaborative tasks betweenor®b

171

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

taking into account the information that home awtion
devices can provide, such as lighting conditiongnidity
parameters or presence detection. All the inforomatis

variable block length and a variable key lengthwdtuld be
possible to define versions of Rijndael with a leighlock
length or key length, but currently there is nodhfm it [8].

handled to perform tasks managed by UPnP. From thBy design, the DES and TDES are slow algorithmsSAE

automatic discovery of devices to remote invocaiaf
robot actions are controlled by the UPnP protocol.

The paper is structured as follows: Section nuntiver
breaks down the current state of the art in théd fief
security and it is exposed the main motivationtfos work.
Section three describes the methodology used aotioBe
four describes the experiments that have been dedlu
Finally, Section five presents the results obtairet
Section six assess all these results to draw csiocis and
propose several future works.

Il. MOTIVATION AND STATE OF THEART

The main motivation of this study is to assessirhegact
of the proposed security system for
communications in the digital home. Due to the ladk
security in the UPnP protocol, it has been studiee
mechanisms and security encryption algorithms tsh an
optimal solution to provide the required securiygtem to
safeguard the privacy of users. Today the
specifications of the UPnP protocol does not previshy

security mechanism for messages transmitted over th

network or to authenticate users on the networkvel$ as
concepts of privacy.

One of the goals of this study is to provide a tyafe

mechanism for interoperability protocol DHComplidnatsed
on UPnP. Another goal is to evaluate how it affettis
security system on the overall performance of tio¢ogol.

In the present section, the main data encrypti@tesys
will be presented, as well as the DHCompliant proto

A. Data encryption
1) RSA (Rivest, Shamir y Adleman)

It is a public key cryptographic system developad i

1977. The safety of this algorithm lies in the pesb of
factoring
numbers, and the operation is based on the praxfusto
random large prime numbers in a secret way.

When you want to send a message, the speaker flooks

the recipient's public key, encrypts the messagé thiat

key, and once the encrypted message reaches thigerec

it’s decrypted using its private key.
RSA was believed to be safe until it was not kndha
quick ways to decompose a large number of primdymnts.

integers. Sent messages are represenyed

can be up to 6 times faster and, besides, not rabie[9].

AES has multiple libraries for the development efisre
applications in several programming environmentsCas
C++, Java, C# o Python. Among all its uses, file
compression, disk encryption, security in localworks
(LAN) or as part of other applications as GPL [d0pidgin
[11] are highlighted.

3) DES and 3DES

Data Encryption Standard (DES) is a method for
encrypting information, chosen as FIPS in the UhBtates
in 1976, its use has spread widely throughout tloeldy
[12].

Today, DES insecure for

is considered many

protection ofapplications. This is mainly because the key sizB6obits

is short. DES keys have been broken in less thano24s.
There are also analytical results, which demorestrat
theoretical weaknesses in the cipher, although they
unworkable in practice. It is believed that theoaidhm is

latestafe in practice as a variant of Triple DES, algfothere

are theoretical attacks.
Triple DES is also known as TDES or 3DES, was
developed by IBM in 1998 [13]. The Triple DES iswsly
disappearing, being replaced by the AES algorithm.
However, most credit cards and other electroniarEmts
have as standard Triple DES algorithm (previouslgdithe
DES) [14]. By design, the DES and TDES algorithms a
slow.

4) BLOWFISH

Is a public domain symmetric block encoder, designe
by Bruce Schneier [15] in 1993 and included a largmber
of sets of encoders and encryption products. Whibe
analyzed Blowfish cipher has been found effectoday, it
has been given more attention than decoding blodks
karger blocks, like AES.

Blowfish was designed as a general purpose algoyith
which attempted to replace DES and avoid the proble
associated with other algorithms for use in perfomoe-
constrained environments such as embedded sysiéis [

5) IDEA

Is a block cipher designed by Lai and James L. iduej
Massey of the Federal Polytechnic School in Zuaist was
first described in 1991 [17]. An algorithm was pospd as a

Quantum computing could provide a solution to thisreplacement for DES.

problem of factoring.

RSA is used in multiple applications including ¢tenic
cash, secret broadcasting, secret balloting systean®us
banking and payment protocols, smart cards, anuhdsiacs
[7].

2) AES

Advanced Encryption Standard (AES), also known
Rijndael is a schematic block cipher adopted as
encryption standard by the U.S. government.

AES has a fixed block size of 128 bits and keyssiZ28,
192 or 256 bits. Rijndael is a block cipher withttba

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The designers analyze IDEA to measure its strength
against differential cryptanalysis and concludedt th is
immune under certain assumptions. Non successiedior
algebraic weaknesses have been reported. One ohdke
popular uses is within the framework of PGP [18].

ad DHCompliant architecture
an DHCompliant protocol is divided into a number of

subsystems that can meet existing needs in a home
automation environment. It is a protocol set upray@nP

and it includes the following subsystems: Groups,
Localization, Intelligence, Energy, and SecurityP&ivacy.

172

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

e DHC-Groups: Is the service that
collaborative tasks. It transmits to the conneatsubts

manages the

To analyze the performance of the system it has bee
chosen a profiler for the NET platform, the YourlRitofiler

the task information to be executed and responds t21]. It provides zero-overhead profiling for youNET

requests that they are later made to form a hivelwdts
capable of performing a particular task.
DHC-Localization: Allows obtaining the position of the
robots in the house. The robots take the coordinate
the location system to navigate to the point whbee
task is performed.

perform collaborative tasks and calculations otsasd
fees for expenditure control.

capabilities, building and testing user-definecesubnd
machine learning.
Learning [19] technology that provides the systeithw

learning capabilities for making decisions in a @or g e

autonomous way.

DHC-Energy: Enables power profiles management to

applications and makes code profiling and memomgeas
optimization simple and fast. The remote option haen
used in all the experiments because it does netfére with
measurements. Measuring time and resources usagéete
is needed to obtain the better results.

B. Items

It can be distinguished two types of elements in
consideration in conducting the experiments, harevitams
and software items.

DHC-Intelligence: Here are included semantic tagging 1) Hardware items

The following table (Table 1) describes the

In this module is the Machinecharacteristics of the equipment used to perforrh al

experiments.

LIST OF HARDWARE COMPONENTS USED FOR EXPERIMENTS

DHC-Security&Privacy: Allows the encryption of
communications in the DHCompliant UPnP network

protocol established [20]. Through the RSA asymioetr

encryption algorithm is sent to all devices on the

network a system password to be used by the AES

Computer 1 2
os Windows XP Profesionql 33 Windows Vista Busines; 64
bits bits
CPU AMD Athlon X2 4000+ AMD Athlon X2 4000+
2,11GHz 2,11GHz
RAM 3GB DDR2 2GB DDR2
HD Western Digital 7.200 rpm Western Digital 7.200 rpm

encryption as its symmetric key. In the next sectiou
can see the process in a more detailed reflectioa i
SysML diagram of sequence (Figure 2).

ion | [DHC-Groups | [DHC-Energy | N

Collaborative
Robots L)

L) SysML

D¢

Y /[oHe

‘ Energy
gement

B

escription

e Adapters

b X o _————
cw | [DHCInteligence] ~ (DHCSecurity& Privacy N
s \ <
k= a
OHC- DHC- Machine Cryptography
a1
N———————\)/

AToPer
(HTTPU/MU

Home Automat
Protocol Adapters

~

N . N\
\ soap e \
e | GENA ‘
.. o

uoe ‘\ I TcP |

‘ GENA ‘ SSDP

Robot Adapters

L P ‘)
— \)/

N
[Network | .
‘ [Bluetooth/zigsee | | wiFi/WiMax | [HsPAATE | | . ‘
> A

Figure 1. DHCompliant Architecture.

I1l. METHODOLOGY

This section describes the tools and elements ned)fr
including a security system into the DHCompliarmtpcol,
as well as for performing the experiments.

A. Tools

The computer number one is the machine that cantain
all the DHCompliant system. The computer number isvo
responsible for running an instance of the Yourptibfiler
to run tests remotely.

2) Software items. DHCompliant protocol.

DHCompliant protocol modules involved throughodt al
the tests are the following:

* GUI: It is the user interface from where the tasks are
created and launched to be performed by the rolbbts.
interface consists primarily of a form in which theer
enters data for the task as the task name, the eaib
robots that are to be used, the target room andr oth
necessary parameters for the job. It also allowes th
creation of user rules, selection of the energyileréor
the task and the cancellation of tasks.

DHC: Is the main part of DHCompliant. It contains all
the protocol services: DHC-Groups, DHC-Localization
DHC-Energy, DHC-Intelligence and DHC-Security.
Adapters: It is the software component that acts as a
link between the physical robot and the DHCompliant
protocol. It implements all the protocol functioityalto
perform the tasks sent by the user. It communioaits

the API of each robot to use its features [22]

The experiments described in the following sections
have been carried out to demonstrate what is gildmpact

To carry out the tests several tools have been.used of the inclusion of security and privacy in an iugerability

simple and effective technique has been used fasuring
execution times for the .NET platform. It consisfshe use

of the basic classes and methods to measure tikee li

TimeSpan and the attribute Ticks.

The method consists of the introduction of a Datew
instruction in the source code at the beginningvbét it is
wanted to measure and a statement at the end afi¢tieod
or code section. The two times are subtracted tohge
many milliseconds.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

protocol. The goal is to demonstrate what is thetpenalty
and performance when compared with the same protoco
without restraint.

IV. DESIGN OF THEEXPERIMENT

The experiment was performed to study the impathef
security system consisted in executing a videoesllemce
task within the protocol DHCompliant. The objectigeto
perform a task from the user interface to be cdroet by a

173

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

bdd [SysML Block Definition] Systems Engineering Model [System... /

ablodo
DHC Loc

wblodo
DHC Energy

wblod
DHC Intelligence

* In the robot adapter, time was measured since the
change in the TaskID variable until it receives the
response from the first request for coordinatethéo

«blods

N v

«blods
DHC Groups

ablocks
= oHc service

zf/“/ DHC-Sec&Priv
<H
N

ablocs ablodo

Profiler

location system.

The tables (Tables Il and Ill) show the measurement
obtained, with a system in which the data is ungsted and

another system in which data is encrypted.

TABLE Il. TIME MEASUREMENT

TABLE IIl. TIME

MEASUREMENTE WITH DATA

eblodks ablocks ablocks WITHOUT DATA ENCRYPTION ENCRYPTION
Robot | | Adapter L Gul

11 Iteration Average Iteration Average

Number Time (ms) Number Time (ms)
Interface 49,99696 Interface 112,49:
Figure 2. SysML package diagram of the experiment DHC 462’2% DHC 1118,722
component: Adapter 17946,7 Adapter 18444,75
Total 18459,01 Total 19675,96

robot. The DHC module is located between the rabdtthe
user interface, and is responsible for the tasksagement
(choose appropriate robot, location service, enamgyice

Because the encryption is included in each of thiies
involved in the flow of execution of a task, it wascided to
divide the experiment into three stages to obtaiorem
accurate results and more data for analysis. Cage sivas
chosen for the flow of execution in the graphic ruse
interface, another for the DHC device, and the ¢ast for
the robot adapter.

First, the GUI generates the internal system, whidh
be the future symmetric key for the AES encryption
algorithm to encrypt all protocol communication$id key
must be shared with other devices in a safe wait, issent
encrypted using the RSA algorithm.

Once the devices (DHC and adapters) are subsctibed
the UPnP security service of the GUI, they perfoam
invocation to obtain the system key. The deviceso al
implement the RSA algorithm so in the previous Iation
the GUI sends your public key. Next, the GUI kegtsyn
encrypts the public key of each device. The vaktarned
by the invocation is the key encrypted with thelgukey of
each device that relies on the security actiorrfite. After
receiving the key, the device decrypts with itsvaie key
and initializes the AES symmetric cipher with theyk
obtained.

Once the processing is completed, the devices can

subscribe to other services of the encrypted congations
system.

V. RESULTS

This section describes the results obtained witd an
without the inclusion of a security system in DHGaiant.

A. Time measurements

Measure ranges were the following:
* In the interface,

variable (including the specification of the energy
profile).

e In the DHCompliant central system, time was
measured since the detection of the first statialviar
change until the last change of variable.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. CPU and memory consumption

With the profiler it has been taken samples from
memory and CPU consumption during the course of

CPU Time
Total: 0:09 Inlast S mins: 0:09 Inlast min.: 004
100 %
0%
60 %
40 %
20%

Fiaure 3.CPU time consumed in the adapter without encrvc

carrying out the experiment described above. Taainbt
more reliable results without interferences, téstse been
carried out with the remote profiler option.

As it has been described in previous sections tdkk
was divided in three sections, one for every deingelved
and tests have been performed on the system with an
without the encryption system. Samples from meneorgt

CPU Time
Total 0:09 InlastSmins: 0:09 Inlast min.: 0:03
100 %
a0 %
B0 %
a@%
0%

time was measured since the
launching of a task until the last change of state

Figure 4. CPU time consumed in the adapter withgtion

CPU consumption have been taken with the profileind
the course of carrying out the experiment describieave.
To obtain more reliable results without interferesictests
have been carried out with the remote profilerampti

The pictures above show the most significant result
obtained. Figure 3 and 4 illustrate the task exentftow in

174

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

the adapter in each case. This flow starts wheadagter is VI. CONCLUSIONS AND FUTURE WORKS
started u.ntll it receives the last task parametemfthe In this paper it is shown the most widely used gpion
DHC device.
CPU Time CPU Time
Takal D10 Inlast S mins: 0:10 In last min.: 0:04 Totah 012 Inlast Smins: 012 Inlast min.: 0:04
100 % 100 %
0% 0%
0% B0 %
40 % 4 %
20% 20%
0% T T T T [T [T 0% TrrrT T [rr T T [T [T
010 0:20 0:30 0:40 0:10 0:20 0:30 040
Figure 5. CPU time consumed in DHC withoutrgption Figure 6. CPU time consumed in DHC weititryption

At the beginning there is no difference between twoalgorithms applied to a Smart Home protocol. Eagtesn
systems in terms of CPU load, but in the final moteét is has its advantages and disadvantages but it hasdee&led
noticed a small increase in the adapter with ernmyp to use RSA and AES systems for several reasons.
system due to the obtained data from the task.aapter In the case of RSA, the main advantage of public ke
ask DHC device for the task parameters so DHC arsswecryptography is an increased security and comfastthe
the adapter with those parameters encrypted anddhgter private key is not sent to any network device. Isearet
must decrypt them. This process has a little irseaf key, however, the secret keys must be transmitéitief
about 5% in the CPU load. manually or through a communication channel), bsedbe

Figure 5 and Figure 6 show the results in the DHGsame key is used for encryption and decryption. #om

device with and without the encryption system, eesipely. problem is that there may be a possibility thatirgruder
In the first 15 seconds the adapter receives al tdsk

CLR Heap Memory e mM
rocess Memory

Generakion: All Generations - ¥Msize: S3MB Memory usage: 5@ MB
Used: 13 ME
15 ME EE ME
1z ME EZ ME
a1 ME =9 ME
& ME 26 ME
= ME 12 ME
o e Ly [S L B L LA R S T
010 020 0:10 o:zo

Figure 7. Memory usage in the GUI device with eption system

parameters from the user interface and this inftionéghas can discover the secret key during transmissiors ishwhy
to be decrypted. In this case, a peak in the etedypystem the private key is transmitted using the RSA systéie
can be seen. This is because DHC receives parametdunction of using a system based on public/privesy

CLR Heap Memory - ~
rocess Memory

Generation: All Generations - WM size: S3ME Memory usage: 57 MB
Used: 12 MB
15 ME EE ME
1z ME &z MEB
a4 ME =9 MEB
& MEBE 268 ME
2 ME 1z ME
o PR T e o T S B 0T T
010 o:z20 0:10 n:z0

Figure 8. Memory usage in the GUI device withoutrgption system

encrypted and it has to decrypt and encrypt theainatp encryption is to guarantee transmission of the ABgused

send them to the adapter. to encrypt communications.

At about the twentieth third second a small incees In the case of AES, the National Institute of Stmdd
CPU load occurs. This stage corresponds to thestiagn and Technology (NIST) with the joint work of Belgia
the adapter asks DHC for task information. researchers Vincent Rijmen and Joan Daemen selected

Figure 7 and Figure 8 shows the memory consumptioRijndael in October as a basis for AES. Rijndaelswa
in the user interface device with and without eption selected from among five finalists in a procesd tioak
system. All memory generations are shown. The giicny more than three years [23]. Compared with othelSAE
system consumes 1 MB of memory more than the norencryption algorithms, Rijndael had more elegant
encrypted. mathematical formulas behind, and only requirespass to

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 175

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

encrypt the data. AES has been designed from $ctatbe
faster, unbreakable and capable of supporting small
computing devices imaginable. The big differentiato [l
between AES and other systems are safety, superior
performance and better use of resources. Anotlasoreto [6]
choose AES is that it provides strong encryptiod &as
been selected by NIST as Federal Information Psings 7]
Standard in November 2001. In June 2003 the U.S.
Government (NSA) announced that AES is secure énoudsg]
to protect classified information up to TOP SECREVel,

which is the highest level of security over theommhation, [9]
and which disclosure to the public would cause
exceptionally damage to national security.

The experiments performed in this paper show that t
inclusion of an encryption system in a protocol of 10]
interoperability provokes only a slight increase in
consumption of RAM and CPU. Taking this into acapiin
can be concluded that the inclusion of a secusitfesn in
the interoperability protocol in the Smart Home dsd
information is viable.

As future work, it would be interesting to implemen [12]
other encryption systems for the DHCompliant prot@nd
compare them with the proposed solution of RSA SA&
order to get real data on the performance of edcthe
alternative algorithms. It is advisable to extende t
encryption system to not only to encrypt the cotgeri the
variables that contain information of the taskshimtthe
digital home, also to encrypt the names of thesiabkes.

Another aspect is to consider in the future thell4]
implementation of policies and recommendations ivapy
issues. For products made in the European Unioa, tH15]
system proposed must comply with the Data Pronectio[161
Directive 95/46/EC (European Union, 1995) and Ratjoh
(EC) 45/2001 (European Union, 2001) and accordinthé
instructions of the European Data Protection Superv
(European Data Protection Supervisor, 2010). Foduymts
made in USA, it must comply with the Guide to Potiteg
the Confidentiality of Personally Identifiable Imfoation
(PII) (NIST (National Institute of Standards & Texiogy),
2010) [23]. Finally, Adapter, Robot or DHC service
manufacturer MUST comply with the ISO / IEC 27002
(ISO / IEC - International Standard Organizatiof02) for
information security.

(11]

(13]

(17]

(18]
(19]

(20]

REFERENCES

[1] J. A.-M. Manish Anand and R. C. M. Dennis Miclas,
«Secure Smart Homes using’ Jini and UIUC SESAME»,
ACSAC ’'00 Proceedings of the 16th Annual Computer
Security Applications Conferenc2000. [22]

[2] E. A. O. Lawrence Chung, «Analyzing Security
Interoperability duringComponent IntegrationEEE/ACIS
International Conference on Computer and Informatio
Science2006.

[3] K. M. K. J. Han,, «Composing security-awardtsare»,
IEEE Softwargvol. 19, pag. 34-41, Feb. 2002.

[4] C. L. Samuel Pierre, «Security, Interoperapiliand
Quality of ServiceAspects in Designing a

(21]

(23]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

TelecommunicationsPlatform for Virtual Laboratorsies
IEEE Electrical and Computer Engineerir2000.

Infobotica Research Group, «DHCompliant weliesi
dhcompliant.com 2010. [Online]. Available:
http://dhcompliant.com/. [Accessed: 04-Mar-2011].
«UPnP Forum»http://www.upnp.org/Oct-2010. [Online].
Available: http://www.upnp.org/. [Accessed: 10-Np9410].
Richard A. Mollin, RSA and Public-Key Cryptography
Chapman & Hall/CRC, 2002.

Joan Daemen,The Design of Rijndael: AES - The
Advanced Encryption Standar8pringer, 2002.

A. A. H. Abul Ahsan and Md. Mahmudul Haque, «A
Comparative Study of the Performance and Secusgyds
of AES and RSACryptography», presented at the Third
2008 International Conference on Convergence aratitly
Information Technology, 2008.

gnupg.org, «The GNU Privacy Guard - GnuPGxithe
GNU Privacy Guard - GnuPG.org[Online]. Available:
http://www.gnupg.org/. [Accessed: 26-May-2011].
pidgin.im, «Pidgin, the universal chat clienPidgin, the
universal chat client [Online]. Available:
http://www.pidgin.im/. [Accessed: 26-May-2011].

Mikael J. SimovitsThe Des: An Extensive Documentation
and Evaluation of the Data Encryption StandaAkgean
Park Pr, 1996.

«IBM Press room - 1998-02-23 IBM Offers S/390
Customers Wider Safety Net to Conduct e-businéssted
States»|BM Offers S/390 Customers Wider Safety Net to
Conduct e-businesd998. [Online]. Available: http://www-
03.ibm.com/press/us/en/pressrelease/2780.wss. $8ede
26-May-2011].

William C.Barker, «Recommendation for the ple Data
Encryption Algorithm (TDEA) Block Cipher». NIST, 28.
«Schneier on Security». [Online]. Available:
http://www.schneier.com/. [Accessed: 09-Mar-2011].

Bill Gatliff, «Encrypting data with the Blowgh
algorithm», Ago-2003.

José M. Granado, Miguel A. Vega-RodriguezanJuM.
Sanchez-Pérez, and Juan A. Gdémez-Pulido, «IDEA and
AES, two cryptographic algorithms implemented using
partial and dynamic reconfiguration», Microeleciosn
Journal, Jul-2009.

«The International PGP Home Page». [Onlinejaifable:
http://www.pgpi.org/. [Accessed: 27-May-2011].

Nils J. Nilsson, «Introduction to Machine Larg».
Stanford University, Nov-1998.

Infobotica Research Group, «Draft specification fata
protection, user data privacy and access restisti®ic-
2010

«.NET Profiler - Java Profiler - The profilers fodET and

Available:
[Aessed:

Java professionals». [Online].
http://www.yourkit.com/.net/profiler/index.jsp.
03-Mar-2011].

Alejandro A. Vazquez, Ignacio G. Alonso, amd.P.
Almudena Garcia Fuente, «UPnP adapter for colldbera
tasks development over the open protocol DHCompijan
presented at the INTERA 2011, Oviedo, Spain, 2011.
«Goodbye DES, Hello AES», Jul-2001. [Oglifvailable:
http://www.networkworld.com/research/2001/07 30featt2
ml. [Accessed: 07-Mar-2011].

176

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

OntoLog: Using Web Semantic and Ontology for Security Log Analysis

Clovis Holanda do Nascimento?, Felipe Silva Ferraz?,
Rodrigo Elia Assad?, Danilo Leite e Silvat, Victor Hazin da Rocha?

1CESAR - Recife Center for Advanced Studies and Systems
{clovishn,daniloleite2}@gmail.com
Informatics Center
2Federal University of Pernambuco (UFPE) Recife — PE, Brazil
{fsf3,rea,vhr}@cin.ufpe.br

Abstract—Along with the growth of available information on
the internet, grows too the number of attacks to the Web
systems. The Web applications became a new target to those
invaders, due to the popularization of the Web 2.0 and 3.0, as
well as the access to the social networks system’s API’s, the
cloud computing models and SaaS. In this context, the
identification of an eventual attack to those applications has
become an important challenge to the security specialists. This
article presents a proposition of using Semantic Web and
Ontology concepts to define an approach to analyze Security
logs with the goal to identify possible security issues.

Keywords-Security; Log Analysis; Ontology

l. INTRODUCTION

Log Analysis to search for information that can provide
data about the process of identifying evidence, events and
user profiles related to the system, consists in an ordinary
and necessary activity for the teams that administer and
manage systems. With the growth and popularization of Web
systems [7] [12], the volume of information generated in
logs has grown considerably.

The growth of generated logs made the most common
techniques used to analyze them, such as looking for
evidence of certain attacks and even compromising those by
finding patterns in the logs, not as effective as they were
before [4]. This scenario become even more complex when
there is the need to identify co-relation between the events
that are in the logs, such as identifying which operations a
determined user in which systems in the last 3 days?

Alongside the problems described, we are maturing the
definition of what can be defined as an attack and how an
eventual attacker would use it [17] [24], what allowed to be
adopted more sophisticated mechanisms, generating detailed
data about the event, but making the log analysis more
complicated.

In this context, the use of Semantic Web technologies,
specifically, the use of ontologies, in the context of security
log analysis, showed itself as a possibility of improving the
results of the searches in the log files. Generally, is expected
that the ontologies can help in the interpretation process of
interpretation of the great diversity of information that are
present in this kind of archive [3] [5] [6].

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Fundamentally, the role of ontology is to enable the
construction of a representation model of a given area
through the representation of a terms and relations
vocabulary [21]. According to Gruber [9] , Ontology is a
formal and explicit specification of a shared
conceptualization. Thus, as a formal specification, the
ontology can be processed by computer software with
precision in the analysis, facilitating the search in the log
files and thus improving the efficiency of the results analysis
[8].

This article aims to concisely present the proposal for the
use of ontologies to analyze and process logs generated by
web application firewall [15], identifying the generated types
of information, its importance and the problems related to the
log files.

The remaining sections of this paper are divided as
follows: Section 2 presents the difficulties related to log
analysis and security. Section 3 presents the use of
ontologies for log analysis. Section 4 presents the results of
the experiment. Finally, Section 5 presents the conclusions.

Il. LOG ANALYSIS DIFFICULTIES AND SECURITY

The information stored in the logs are invaluable to the
security area, for they have the attacks records, input ports,
IP numbers, evidence of invasion, typed commands, among
others. In addition, logs can be considered as a source in
constant growth, due to the use of systems on a daily basis.
Kimball and Merz [11] present some problems found in the
log files, such as; multiple file formats, dispersed
information, incomplete, inconsistent and irrelevant data,
which makes the analysis and extraction of information from
these files harder to accomplish.

The security auditor or system administrator has as part
of their daily routine duties a rather hard activity, the
research and analysis of logs. This task is considered difficult
and time consuming, because the log files are created
without a semantic description of their format, making the
extracting of the meaning of the data impracticable, showing
only the words typed in the search, resulting in poor quality
results. According to Guarino [10], this limitation occurs
because when the data is generated without the use of
ontology, it can present ambiguities and vagueness of

177

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

elements. This situation becomes more serious when we face
major files with gigabytes of information.

IIl. THE USE OF THE ONTOLOGY FOR LOG ANALYSIS

There are various definitions found in literature about
what is ontology. Originally the term was born in the field of
philosophy, being a word of Greek origin, which deals with
the nature of being and its existence. In the field of Computer
Science, it was first applied in the artificial intelligence field
to computational representation of knowledge, being
considered an abstract model of a domain. Below are some
of the most used definitions for the term ontology:

e According to Gruber [9], "ontology is a formal and
explicit specification of a shared conceptualization.

e The W3C consortium [25] defines ontology as: "the
definition of terms used to describe and represent an
area of knowledge."

e According to Noy and McGuinness [16], there is no
one correct way to model a domain, meaning that
there is more than one way to develop an ontology.

The basic components of ontology are classes
(organized in taxonomy), relations (used to connect the
domain concepts), axioms (used to model sentences that are
always true), properties (describe characteristics common to
the instances of a class or relationships between classes) and
instances (used to represent specific data).

Ontologies are used for modeling data from specific
domains and also allow inferences to discover implicit
knowledge in these. Despite the considerable increase in the
use of ontologies, build a complete ontology covering all the
expressiveness of the domain continues to be a hard work,
making the work of a multidisciplinary team a necessity, in
which case it would be an ontology engineer, a security
expert, among others, and acting in a participatory and
integrated [22] [24].

More specifically, in this work, we are interested in
building ontology for the representation of data available in
security logs of web applications. In this context, ontologies
can be useful for improving the classification of the attacks
occurred and the identification of related events.

In the next session, we present an overview of ontology,
and describe the methodology used for its creation.

A. General description of the proposed ontology

The proposed ontology, OntoSeg, has as main objective
the representation of data generated by the application
firewall log ModSecurity on this work. From a detailed
analysis of several samples of the log we identified various
classes and their relations. Table 1 presents a brief
description of the main classes that compose the ontology for
the representation of the security log.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

TABLE 1. MAIN CLASSES OF PROPOSED ONTOLOGY

Class Definition

Audit log header Represents the log header, and contains the
following information: date and time, 1D
(transaction 1D, with a unique value to each
transaction log), source IP, source port, destination

IP and port of destination.

Request Headers Represents the request Header, contain the
information of the request and the header of the

solicitation that was sent by the client.

Request Body Represents the body of the transaction, contains the

contents of the client request.

Intended Response Represents the status line and headers, this part is

Headers reserved for future use, so it is not implemented
Intended Response Represents the body of the response of the
Body transaction, the response body contains the actual

case the transaction is not intercepted.

Response Headers Represents the header of the actual response sent to

the the client, contains data and headers

Response Body Represents the body's effective response to the
request, but this part is reserved for future use, so it

is not implemented

Audit Log Trailer Represents additional data, contains additional meta
data of the transaction obtained from the web server

or ModSecurity

Reduced Multipart
Request Body

Represents the body of the request reduced, Part | is
designed to reduce the size of the request body with
irrelevant content from the standpoint of security,
transactions that deal with uploading large files tend
to be big

Multipart Files
Information

Represents information about the files, the objective
of this part is to write the metadata information
about the files contained in the request body, this
part is reserved for future use, so it is not
implemented

Matched Rules

. Figure 1. Represents the rules, contains a record
Information

with all the rules that occurred during the
processing of transactions ModSecurity

Audit Log Footer Represents the end of the log, your goal is just to

indicate the end of a log file

Figure 1 represents the relationships proposed in
OntoSeg. As can be noted several branches show the
complexity of the domain.

The basic relationships between the classes are
performed using the property ID (transaction 1D, with unique
value to each transaction), derived from the log ModSecurity
[15] that defines the ModSecurity log main class, and from
this we have the following derived classes:

e Response_header: contains all the

related to the HTTP header response

e Request_headers: contains all the information related

to the HTTP request header

e Audit_log_header: contains all

related to the header of IP and TCP

e There still is a set of information that derive from

ModSecurity log class that contains information
about the HTTP message body from these subclasses
we have the derivation of other subclasses that
contains each of the basic elements of ontology
OntoSeg.

information

the information

178

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

: ng' Bmp‘ms 'MurﬁePn"
EKEBIJ %lntent T?%

\D :
/D estinationPort

D Message

OConten_Le h : i A
. \ s
mnnecﬂ@ \} 15 fj Alﬂkﬁq%ﬁ&ﬁ? //D
O Host— -::,1 @sp‘éw headers ” :
PragrE[_-__'-;:':D e 5 Tomaton
9 Iui e Hesponse_headers
Han \ ; uest_body
R Q{ N\ Mu] gjlles information
2, o N Uil log _footer
Mod Secﬁy Action, — DRespdnse_body
., — Réduoed_ml.@art reques!_bady
\\
U@PU o _ (ntended [fBsponse_body
TranszEnDndMg 0 Acoept
___._;Amﬁ@anguage
P;m neclion
&l -Cn@e
3 S "S&w@im
3 AGDe-pt-GErset
0

Figure 2. Figure 1. Conceptual model of ontology in protégé - radial view. [25]

Figure 2 represents the definition of the SourcePort, Get,
and SourcelP Content-Type subclasses, with their classes,
respectively, Audit_log_header, Request_headers, and
Request_headers Audit_log_header:

<owl:Class rdf:I1D=""SourcePort'>
<rdfs:subClassOf>
<owl:Class rdf:ID="Audit_log_header'/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:I1D=""Get'>
<rdfs:subClassOf>
<owl:Class rdf:about="#Request_headers"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Content-Type">
<rdfs:subClassOf>
<owl:Class rdf:about="#Request_headers"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:I1D=""SourcelP">
<rdfs:subClassOf>
<owl:Class rdf:about="#Audit_log_header"/>
</rdfs:subClassOf>
</owl :Class>

Figure 2. Excerpt from the code of the ontology developed in the owl
language [13]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Creation proccess of the proposed ontology

The experiment with the use of ontologies for log files
analysis was developed using an actual log of Web
applications developed by the company CESAR (Center for
Advanced Studies and Systems of Recife) that contained a
series of attacks by these applications. This server has about
212,000 page views per month from 35,900 different
addresses. The Web server used is Apache running in the
Linux operational system that uses the ModSecurity [15]
program as a firewall of web applications. The filter rules
include several filters and for most of the known WEB
attacks, for security reasons we cannot detail how they are
configured.

From the analysis of logs generated by the application
firewall, it was possible to identify the major classes of the
ontology and their relationships. The universe of terms that
compose the proposed ontology was defined based on the log
of ModSecurity that records all the transaction data from the
CESAR WEB systems. The classes were defined according
to the division of parts of the ModSecurity log and the
subclasses were established based on the configuration of
keywords enabled by the administrator of ModSecurity,
which were 41 words. This amount could be higher or lower
depending on the established configuration; the instances are
data that are part of the logs.

179

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Figure 3 shows an excerpt of the ModSecurity log, where
you can see that there is no semantic description associated
with its data, thus limiting the expressiveness of the
concepts.

—aZabbeZb-A—

[13/Apri2010:13:31:01 —-0300] S85A0Mja0G0AAAHXEGgAABeM 2.2 .2 2 34571
192.168.1.1 80

—a2Zab5e2b-B—

GET #fteste.asp?VARIAVEL=1""%20and%201=1%20and%20"="HTTP/M.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows MT 5.0)

Haost: www example. com

Cookie: ASDF=ABC; ASPSESSIONIDQSCRBASD=PADSFAFASDADASdAADA
—aZab5e2b-F—

HTTRM.1 200 CK

H-Powered-By: ASP.MNET

Content-Length: 88045

Content-Type: texthtml; charset=150-8859-1

Expires: Tue, 10 Apr 2000 13:31:01 GMT

Vary: Accept-Encoding,User-Agent

—aZab5eZb-E—

—aZab5e2b-H-—

Message:Warning. Pattern match

"R (T s(?electb (T {1,100 Mb(?:(?:length|countitop b {1,100} ?\bfrom|fromib {1,
100 bwhere) *Mb(?:d{? :umpib. *\bfrom| ata_type)l(?:to_{?:numbe|cha)linst)r))p_[7:(
7 addextendedpro|sglexe)c|(? oacreat|prepar)e|execute(? sql)?makewebtask)|gl_{?
ST at ARGSVARIAVEL. [file
“Jetc/httpd/conflextra/mod_security/modsecurity_crs_40_generic_attacks.conf] [line
"66"] [id "950001"] [msg "SAL Injection Attack™] [data "and 1="] [severity "CRITICAL"]
tag"WEB_ATTACK/SCQL_INJECTION]

Message:Warning. Fattern match "b(ud+) 7= "\ 1\b|[\"0w+)[\™ *= ?["T&\b" at
ARGSVARIAVEL. [file
“Jetc/httpd/conflextra/mod_security/modsecurity_crs_40_generic_attacks.conf] [line
"70°] [id "950901"] [msg "SGQL Injection Attack™] [data "1=1"] [severity "CRITICAL"]
[tag"WEB_ATTACK/SCQL_INJECTION]

Apache-Handler: proxy-server

Stopwatch: 1271169080460234 798372 (133 856 -)

Response-Body-Transformed Dechunked

Producer: ModSecurity for Apache/2.5.9 (http./Awww.modsecurity.org/); core
ruleset1.6.1.

Server: Apache

WebApp-Info: "www™ =" -

—aZabbe2b-7—

Figure 3. Example of an excerpt from the log of ModSecurity, which
represents a real SQL injection attack (some data has been changed to
preserve confidentiality of the company)

For the creation of the ontology were chosen: a language for
representing ontologies, a specific tool for working with
ontologies, and some methodologies for the constructions of
ontologies with defined roles. The below summarizes the
choices that were made during the creation of ontology:

e Language for definition of the ontology:
In order to create an ontology that can be
semantically processed by computers, the OWL
language was adopted, that has these characteristics,
and currently is the language recommended by the
W3C consortium [1].

e Methodologies for building ontologies:
In the proposal, the following methodologies were
used to develop ontologies [2]:

o] 101: Methodology of the simplified and
interactive process, which has the
following steps: Determine the domain and
scope, consider reuse, list relevant terms,
define classes and their hierarchy, define
classes properties, set property values and
creating instances.

o] Uschould and King: Methodology
consists in four distinct stages: Identifying

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the purpose of the ontology, construction,
evaluation and documentation.

o] Methontology: Methodology that
suggests a life cycle of evolutionary
model, composed by the following phases:
planning, specification, knowledge
acquisition, conceptualization,
formalization, integration, implementation,

evaluation, documentation and
maintenance.
e Tool for the creation of the ontology:

The Protégé [20] tool was chosen that allows the
construction and edition of ontologies through a
graphical interface of easy interaction. It also allows
the insertion of new capabilities by installing plug-
ins. In our case the OWL and Jambalaya plug-ins
were installed. Other features of this tool are the
importing and exporting of ontologies, open source
and be developed in Java.
Based on the comparative study of SILVA, Daniel
Lucas; ROCHA SOUZA, Renato; ALMEIDA,
Mauricio Barcelos [2], which presents the
methodologies for building ontologies, three
methods were selected according to the activities
involved in the proposal, as described in Table 2.

TABLE Il. METHODOLOGIES USED IN EACH STEP OF THE LIFE CYCLE OF THE

ONTOLOGY
METHODOLOGY
ACTIVITY Uschould e 101 Methontology
King

Determination of the
propose of the ontology.

Definition of classes,
properties and instances.

Construction of the
conceptual model.

Implementation.

Verification and
validation.

Maintenance.

IV. RESULTS AND TESTS

Among the benefits of using ontologies are: the
classification of the terms of the logs, relationships,
inferences, formalization, reuse, sharing, among others, we
will show some gains in the context of research.

To prove the improvements in research in the generated
logs, was used the ontology described in the previous
sections to analyze the logs. In addition, the ontology is
necessary to use a query language, called SPARQL [18],
which since January 2008 is recommended as the standard
by the W3C Consortium [14] [19].

This language allows querying ontologies through
clauses, which can combine several classes at the same time

180

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

and also make filters in the searches. A compiler for
SPARQL [18] is already integrated in the Protégé tool [20].
To strengthen the evidence of the improvements in
research involving the use of ontology in comparison with
the traditional keyword searches, see below some situations:

1. A security auditor must analyze the log events that
occurred in the 10th day of a month until the 10th
day of the following month, that has the ip address
range of 192.168.0.13 to 192.168.0.97 with
destination ports 3306 and 443, and is on schedule
from 21:30 to 24:00 h.

2. A security auditor wishes to know what IP address
or group of addresses generated more attacks and in
what times.

Considering the situations above, we have one, between
two ways to proceed:

1. Search with the use of Ontology:
It would be enough to use the select command with
the filter clause containing the classes mentioned
above, and be answered with only the desired data
to analyze.

It could also create a search interface using the
language SPARQL query language or another, to
prevent the auditor to need to know and type the
commands queries.

2. Searches without the use of ontologies :

Quite difficult to be generated because that for the
auditor to make the analysis he wants, he would
first have to read many logs manually separating by
keyword and then make de co-relation, with the risk
of losing data, since only the search for information,
he will be ignoring the other data you want.

Below are the consult solutions in SPARQL to the
situations described above:

SELECT ?ID ?SourcerlP ?DestinationIlP ?Timestamp
WHERE { ?ID rdf:itype :ID . ?SourcelP rdf:type
:SourcelP ?DestinationIP rdf:type :DestinationlP .
?Timestamp rdf:itype :Timestamp GROUP BY
?SourcelP } ORDER BY ASC(?SourcelP)

Figure 5. SPARQL Consult in the Ontology, situation 2

In this sense, the implemented ontology fulfilled its role
very well, according to what was previously planned, the
searches were carried out in a simple way in the ontology
producing the most interesting and visible results in
comparison with the traditional consultations using only key
words, obtaining better results for event logs identification.

It is seen that with the approach proposed in this paper,
the activity log analysis was made simple and independent of
the complexity of the log and the generated data volumes
allowing the realization of co-relations between events more
efficiently

V. CONCLUSION AND FUTURE WORKS

This study aimed to take the first steps in using
ontologies for analysis of security logs. For that purpose the
logs generated by the program ModSecurity were initially
used. As a starting point the log that was generated by this
tool on a web server of CESAR (Center for Advanced
Studies and Systems of Recife) was used. The ontology
modeling was accomplished from the understanding of the
logs the model the ontology.

The performed tests proved that there was an easier log
interpretation and analysis, allowing the performing of more
complex consultations and the implementation of co-relation
of events very effectively.

Finally, we proved that the demand for log audits that use
ontologies is very large, for the tools and current research
procedure is very limited, constituting a critical point in
analyzing logs. In this context, this work was made to
contribute to the attending of this demand.

SELECT ?1D ?DestinationlIP ?DestinationPort ?SourcelP
?SourcePort ?Timestamp ?Cookie ?mod_security-message
WHERE { ?ID rdf:type :ID . ?DestinatiolP rdf:type
:DestinationIP .

?DestinationPort rdf:type :DestinationPort . ?SourcelP
rdf:type :SourcelP . ?SourcePort rdf:type :SourcePort .
?Timestamp rdf:type :Timestamp . ?Cookie rdf:type
:Cookie . ?mod_security-message rdf:type :mod_security-
message

FILTER((?TimeStamp > xsd:date(*2010-07-09") &&
?TimeStamp < xsd:date(“2010-08-11") &&
(?DestinationIP > 192168012 && ?DestinationIP <
192168098) && (?DestinationPort = 3306 ||
?DestinationPort = 443) && (?TimeStamp >
xsd:time(“21:29:00”) && ?TimeStamp <
xsd:time(“24:00:01”))) }

ACKNOWLEDGMENT

This work was partially supported by the National Instityte
of Science and Technology for Software Engineering (INES
http://www.ines.org.br), funded by CNPg and FACERE,
grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] D. Allemang and J. Hendler, Semantic Web for the Workjng
Ontologist, Effective Modeling. in: RDFS and OWL, Cambridge,
Morgan Kaufmann, 2008.

[2] M. B. Almeida and M. P. Bax, Uma Visdo Geral sobre Ontologias:
pesquisa sobre definigOes, tipos, aplicacdes, métodos de avaliacép e
de construcdo in Cin:Inf., Brasilia, 2003.

[31 A. Grigoris and V. H. Frank, A Semantic Web Primer, Secand
Edition. London, The Mit Press, 2008.

[4] T. Berness-lee, J. Hendler, and O. Lassila, The Semantic Wgb,

Figure 4. SPARQL [18] consult in the Ontology, Situation 1

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Scientific American Publishing, New York, 2001.

181

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

[5]

[6]
[’

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Copyright (c) IARIA, 2011.

A. Branddo, A. R. A. Franco, F. Lucena and C. J. Pereira, Uma
Introducdo & Engenharia de Ontologias no contexto da Web
Semantica, Rio de Janeiro, 2002.

K. Breitnam., Web Semantica, a Internet do Futuro. Rio de Janeiro,
LTC Publishing, 2005.

R Cannings, D. H. Lackey, and H. Zane. Hacking Exposed™ WEB
2.0: Web 2.0 Security Secrets And Solutions. New York: Mc Graw
Hill, 2008. - DOI: 10.1036/0071494618

M. C. Silveira. Um estudo sobre XML, Ontologias e
RDF(S),http://www.inf.pucrs.br/~mchaves/pg_portugues/tc/paperxml
.pdf, Acessed on 01/10/2010.

T. Gruber and R.Toward, principles for the design of ontologies used
for knowledge sharing. In Formal Ontology in Conceptual Analysis
and Knowledge Representation. Kluwer Academic Publishers, 1996.
P. N. Guarino and A. Roberto, Formal ontology, conceptual analysis
and knowledge representation. International Journal of Human-
Computer Studies, Volume 43 Issue 5-6, Nov./Dec. 1995

R. Kimball and R. Merz, The Data Webhouse Toolkit, New York,
John Wiley and Sons, Inc, Wiley Computer Publishing 2000.

M. Lytras, D. Damiani, P. Ernesto and Patricia O. WEB 2.0 The
Business Model. New York: Springer, 2009. ISBN-13: 978-0-387-
85894-4

D. L. Mcguinness and F. V. Harmelen. OWL Web Ontology

Language , http://www.w3.org/TR/owl-quide/, Accessed on
10/10/2011
Overview. W3C World Wide Web Consortium
(http://www.w3.org/TR/owl-features/), 2004. Accessed on
08/16/2011

Modsecurity. Breach, ModSecurity 2 Data Formats, 2009, Copyright
© 2004-2009 Breach Security, Inc. (http://www.breach.com).
Accessed on 08/16/2011

ISBN: 978-1-61208-165-6

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]

[24]
[25]

N.F. Noy and D. L. McGuinness, “Ontology Development 101: A
Guide to Create Your First Ontology ,
http://www.ksl.stanford.edu/people/dim/papers/ontology-tutorial-noy-
mcguinness.pdf, Acceed on 10/10/2011

Owasp, 2008, owasp testing guide 2008 v3.0.:
http://www.owasp.org/index.php/category:owasp_testing_project
Accessed on 08/16/2011

E. Prud'hommeaux and A. Seaborne, SPARQL Query Language for
RDF, http://www.w3.0rg/TR/rdf-spargl-query/ , Acceed on
10/10/2011

W3C- World Wide Web Consortium (http://www.w3.org/TR/rdf-
spargl-query/). Accessed on 08/16/2011.

Protégé; Ontology Editor and Knowledge Acquisition System
(http://protege.stanford.edu/>). Accessed on 08/16/2011

R. Studer, et al., Situation and Perspective of Knowledge
Engineering, Stanford University,
http://infolab.stanford.edu/~stefan/paper/2000/ios_2000.pdf,
Accessed 10/10/2011 .

D. Stuttard and M. Pinto, The Web Application Hacker’s
HandBook:Discovering and Exploiting Security Flaws, 2008.

Us-cert - technical cyber security alerts, 2009. http://www.us-
cert.gov/cas/techalerts/ . Accessed on 08/16/2011

W3C, 2010, http://www.w3.0rg/. Accessed on 08/16/2011.

Stanford Jambalaya plug-in,
http://protege.stanford.edu/plugins/jambalaya/jambalaya-simple-
backup.htm, Accessed on 10/10/2011

182

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Intrusion Detection with Symbolic Model Verifier

Ines Ben Tekaya

PRINCE Laboratory
4011 Hammam Sousse, Tunisia
bentekaya.ines@voila.fr

Abstract— Many intrusions came from internal users. This
behavior can cause damage without human interventio
viruses, worms, trojan horses, etc. This paper desbes our
intrusion detection method in Linux/Unix commands sing
formal verification. The main features of this work are
twofold. It exploits formal method in the intrusion detection
field. It presents our tool TLID which can transform Linux
code to Symbolic Model Verifier.

Keywords-attacks; intrusion; security; scenarios; Linux
commands; model verifier.

l. INTRODUCTION
The intrusion field was introduced by Andersonws

Mohamed Graiet

MIRACL, ISIMS
BP 1030, Sfax 3018, TUNISIA
mohamed.graiet@imag.fr

ecBir Ayeb

PRINCE Laboratory
4HMammam Sousse, Tunisia
ayeb_b@yahoo.com

empirical approach. This classification included tmoes
based on aggregative, training or experimental gaist. The
present work falls mainly within the model approadhe
data are not based in the past event but they ceenpo
model. It is a theoretical representation of aayswhich is
composed of elements and relation.

The reminder of the paper is organized as folloectiBn
2 deals with intrusion background. Section 3 désgsriour
method. Section 4 proposes practical tool and raxgeatal
results for intrusion scenarios. Section 5 sumrearithe
paper, with concluding remarks.

II. INTRUSIONBACKGROUND
The next subsections summarize attacks topologpeso

defined as an attempt or a threat to be the patentidataset used in the literature for intrusion déecand show

possibility of a deliberate unauthorized attemptaitress
information, manipulate information, or render astsyn
unreliable or unusable [1]. The difference betwigrusion
and attack consists of the fact that intrusion imalicious,
externally or internally induced fault resultingrin an attack
that has succeeded in exploiting vulnerability, le/lai fault is
the adjudged or hypothesized cause of an errocahse of
which is intended to be avoided or tolerated. Aackt is a
malicious technical interaction fault aiming to ®ip
vulnerability as a step towards achieving the faiah of the
attacker[2].

A statistical study shows that 98% of enterprisageha
firewall to be protected from external attacks; koer, 80%
of attacks came from internal users [3]. Deteciimgrnal
normal user behavior is a difficult problem becaasaser

can have much dynamic behavior and it will be almos

impossible to create user profiles that determthesnormal

behavior. Using a system to distinct normal usemfr

intruders is necessary. This system is called s$idru
Detection System (IDS).

systems intrusions [4].

We choose to work with Unix/Linux operating system

because in people's minds, if it is non-Windowss secure
[5]- This hypothesis will be countered here. Mostails for
Unix/Linux system can be found in [6].

The literature on detection using Linux/Unix commisn

offers a variety of methods. Despite their diversiheir

common objective is: to distinguish between a ndérma

behavior and an intrusive behavior. From an abstraov

point, we organize these work into one main appgrpac

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

It is defined as a security
technology attempting to identify and isolate cotepu

detection methods using Unix commands

A. Attacks topology

Attacks take several forms to break one or moréhef
security properties. They can be grouped accorttinipeir
functionality as described in the following subsmts [7]:

» Gathering Security-relevant Information: Before
experiencing an attack, a hacker tries to obtain
necessary information that is probably sensibleiabo
the targeted system, which can be employed later to
obtain access to this system. Useful informatiom ca
be obtained by different ways such as network
scanning and vulnerability scanning or even bygisin
public search engines such as Google or social
engineering methods.

» Access Gain Attacks: With information gathered by
the above methods, attackers try to obtain a
privileged access on a system by exploiting
vulnerabilities in the services or the applications
installed on this system or a bad configuratiothef
network. This kind of attacks primarily grants
unauthorized access to the targeted system. For
example, one of the configuration problems is the
use of weak passwords in systems where a bad
policy of password definition allows users to ch®os
simple and easy guessable passwords. Otherwise, an
attacker can use cracking tools such as “john the
ripper” [8] to obtain passwords by brute-force.
Buffer-overflow attacks are another example that
allows attackers to execute arbitrary code on the
targeted hosts.

183

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

« Denial of service (DoS): DOS attacks are designed Another method, used statistical method, is called
to overload or disable the capabilities of a maghin uniqueness. It is based on the idea that commants n
or a network, and thereby render it unusable opreviously seen in the training data may indicate a
inaccessible. An example of denial of service is aattempted masquerade. Uniquely used commands &ccoun
fork bomb. It works by creating a large number offor 3% of the data. A command has popularity ixetly i
processes very quickly in order to saturate theusers use that command. They group the commands suc
available space in the list of processes kept lay ththat each group contains only commands with theesam
computer's operating system. If the process tablpopularity. They define a test statistic that bsildn the
becomes saturated, no new programs may start untilotion of unpopular and uniquely used commands.yThe
another process terminates. assign the same threshold to all users. This thlésis

« Malware Attacks: This category of attacks can fesulestimated via cross validation: They split the ioagjtraining
in damages as simple as displaying a simple flickeglata in the SEA dataset into two data sets of 40@01000
to catastrophic damages such as completelgommands. Using the larger data set as training, daey
formatting hard disks. It groups virus, worm, Troja assign scores for the smaller one. This is repdatedimes,

horse, spyware, rootkit [9] and spam. each time assigning scores to a distinct set of0100
. i commands. They set the threshold to the 99th pleeari
B. Detection Using UNIX Commands the combined scores across all users and all fiossc

The object of intrusion can be files, data basesyork validations. For their data, the resulting thredhisl 0.2319
connection, Input/output systems or commands Lido. [12][14].
In this paper we are interested about intrusionngisi Another method is called Bayes 1-Step Markov Motdel.
Linux/Unix commands because it can characterizer usds proposed by Schonlau, et al. The authors use the
behaviour more efficiently than other object. Tbiofvings information of 1-step command transition probaieiit They
paragraphs present some works about methods using U build transition matrices for each user’s trainamgl testing
commands. These works are classified into two elasshe data. The detector triggers the alarm when therea is
class of intrusion detection and the class of masgle considerable difference between the training digasttion
detection. matrix and the testing data matrix. This techniges the
llgun, et al. present the state transition analpséthod best performer in terms of correct detections failed to get
[10][11]. They used the known Unix intrusion to @& a close to the desired false alarm rate [12].
penetration scenario. A penetration is viewed asgquence Maxion use Naive Bayes classifiers and detect
of actions performed by an attacker that leads fsmme masqueraders by looking at the classifiers misifieston
initial stat on a system to a target compromisatestvhere a behavior [15]. This method use command occurrence
state is a snapshot of the system representingathes of all probability distribution modeling the UNIX sequencehe
volatile, semi-permanent and permanent memory imtat goal of the training procedure is to establish ifgsfof self
on the system. The initial state corresponds tsta of the and nonself, and to determine a decision threstiotd
system just prior to the execution of the penairatiThe discriminating between examples of self and nondedir
compromised state corresponds to the state reg@itim the each User X in the SEA dataset, a model of Not X @ao
completion of the penetration. Between the initedd be built using training data from all other victimEhe
compromised states are one or more intermediatie staprobability of the test sequence having been gésbray
transitions that an attacker performs to achieve thNot X can then be assessed in the same way as the
compromise. probability of its having been generated by UserTKe
This method is based on sequence matching. Thiarger the ratio of the probability of originatimgth X to the
incoming stream event is segmented into overlapfikegl- probability of originating with Not X, the greatethe
length sequences. The choice of the sequence lehgth evidence in favor of assigning the test sequenck.t®he
depends on the profiled user. In practical, it)edi to the exact cut-off for classification as X, that is thatio of
value | = 10 in the SEA dataset [12]. Each sequéntieen probabilities below which the likelihood that thegsence
treated as an instance in an I-dimensional spackign was generated by X is deemed too low, can be detednhiby
compared to the known profile. The profile is a §&}, of a cross-validation experiment during which proligbiatios
previously stored instances and comparison is padgd for sequences which are known to have been gedebgte
between all ¥#{T} and the test sequence via a similarity self are calculated, and the range of values tlegggmate
measure. Similarity is defined by a measure, Sinylx, Sequences cover is examined.
which makes a point-by-point comparison of two ssmes, Lo . -
x and y, counting matches and assigning greateghtvéd C. Limitations in existing methods
adjacent matches. The intrusion detection method in Linux/Unix comrdan
The maximum of all similarity values computed formsusing formal verification seeks to improve on somwfe
the score for the test command sequence. Since Hoeses limitations that the authors observed in the GX@anethOdS.
are very noisy, the most recent 100 scores araggdr If This section brlefly identifies some of their chatemistics.

the average score is below a threshold an alaraisied. The The major weakness of these methods is that thegndee
threshold is determined based on the quantiles hef t ON aggregative, training or experimental past datae
empirical distribution of average scores [13]. results of statical methods are closed to the itrgimata

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 184

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

while the result of state transition analysis mdtieodepend
with the defined penetrations attacks which are vednable
now.

statements or sentences to form more complicated
propositions, statements or sentences, as weleatogical
relationships and properties that are derived fribrase

Another limitation is they are based on analysingmethods of combining or altering statements.

command by command (line per line). This local gsial
can not be equivalent to a global analysis (alingfs).

Lastly, they cannot make difference between thersrd
of commands in the sequence used. The staticalocetre
based on the command frequency while a state ti@msi
analysis method can’t detect the attacks basedequéncy
such as deny of service.

In the following, we focus in these limitations ficesent
our method based on model using formal verificatiath
Symbolic Model Verifier (SMV).

[ll. INTRUSIONDETECTIONIN LINUX/UNIX
COMMANDS WITH SMV

This section presents our method. It combines tests
the direct and indirect ways to detect the intmsiolt
focuses on global analysis. The following propositplays a
central role here.

Proposition 1. A global analysis can not be realized in k
local analysis.

Example 1.Let GAis a global analysis andA={u, w,

..., Y} a k local analysis. Suppose tl@A can be realized in
k local analysis. In this case, if GA is false, mest have
one or morey is false

This supposition is false because we can find Gilise
while LA is true. The example is here: We have tigers X
and Y. User X can execute the following actionsodify all
executable files, named F and that he have writeigsion,
owned by user Y. X append some code to files F. \émy
users, that have write permission in these fileceaste F, all
F files will be infected. These actions can be:

1. X search all Y executables files, that X have
write permission,

2. X append some legal code to infect fifes
3. Any authorised users execute ond-diles
4. All Ffileswill be infected

The local analysis for actions 1, 2 and 3 are legaey
have a true value, but the global analysis gividse value:
all F files will be infected.

To perform a global analysis we should specify wdrat
the anti-properties that characterize an attadgptscr

The anti-properties (AP) are unwanted propertias ¢an
cause damage in our system. They can be:

AP1: Execute some illegal commands,

AP2: Change source or command destination,
AP3: Execute illegal actions (parameters, etc.),
AP4: Having infinite loop,

AP5: Having auto-replication,

APG6: Detain a resource infinitely

Thegystem specification are formalizes using the A
They can be expressed in proportional logic or tenap
logic.

Propositional logic is the branch of logic that dias
ways of joining and/or modifying entire proposition

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The temporal logic is used within the frameworktloé
reagent systems, which where the software is seobts
maintain a relation of coherence between the ifiputs and
the output flows. The temporal logic allows expiegsthe
state evolution of a system.

We choose the temporal logic because temporal lisgic
an extension of propositional logic. Either in teosrgd logic,
propositions are qualified in terms of time.

The following paragraph explains how to write thdi-a
properties AP to properties (P) using temporaldogi

AP1: Execute some illegal commands

The AP1 consider that user can execute some
commands. For example, if the user is an administtar,
he can execute commands like adduser, userdel, etc.

P1: Do not execute some illegal commands

P1 ={(i,Cjy/Uid U et CjO C}

where: U: set of users

C: set of illegal commands

(Ui, Cj): Ui can use Cj

Use(Ui, Cj) - (Ui, Cj) O P1

AP2: Change source or command destination

The AP2 consider that the command path was
modified.

P2: Do not change source or command destination

P2 = {(Ui,,F)/Ui0O U et FjO F}

where: U: set of users

F: set of illegal folder

(Ui, Cj): Ui can’t write on Fj

Write(Ui, Fj) - (Ui, Fj) O P2

An example is: write(userl, /bin/cp)

AP3: Execute illegal actions (parameters, etc.),

The AP3 consider that some user can use or modify
objects of other users that he don't have a permigm.

P3: Do not execute illegal actions (parameters.) et

P3 ={(Ui,0j)/Ui 0 U et OjO0 O}

where: U: set of users

O: set of illegal objects.

(Ui,0j) : Ui can read Oj

Read (Ui,0j)- (Ui,0j) O P3

AP4: Having infinite loop

The AP4 consider that user can modify the system
performance. So they consume memory to overload ¢h
system.

P4: Do not have infinite loop

AP4 = G "~ (ai Maj)

let:G: always

A: and operator

- not operator

ai : loop and aj: loop condition

An example is: while(true), while(i :=i+1), etc.

Some others anti-properties can be formalized sagh

having auto-replication detain a resource infigiteitc.

185

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The user observed behavior is the possible behadviisr
deduced from Linux/Unix terminal. We are interessdmbut
a script not about a line of commands.

In this paper, we concentrate on formal verificatio

technique that is based on temporal logic, becahsé
allows in general less involvement of the user fre t

verification process: model checking.

Our basic idea is to exploit model checking. Thisdel

use algorithms, executed by computer tools, tofywehe

TABLE I. VARIABLES AND CONSTANTS CASES

Type LSc SMV
Integer variable varname = valeur VAR <signal> mher ;
Variable of an| foriin01234 VAR <signal>:0..4 ;
interval
Constant SIZE=32 #define SIZE 32
Initialisation signal = ready init(signal) := reagy
Modification signal = busy next(signal) := busy ;

correctness of our system. The user inputs a giiscriof a
model of the system (the possible behavior) anesaription
of the requirements specification (the desirableab®r) and
leaves the verification up to the machine. If anoeris
recognized the tool provides a counter-example sipw
under which circumstances the error can be gemkerate

Table Il shows the transformation in arrays cases.

counterexample consists of a scenario in whichntoelel

behaves in an undesired way.

In the rest of this paper, we use the term Linukiciv
can be interchanged with Unix. Our method is baseithe

TABLE II. ARRAYS CASES
Type LSc SMV
Array declare -a nametab <nametab> : array <x>..Ky>
of <type> ;
Matrix char mat[2][2] mat : array 0..1 of array@.|
of boolean ;

user's observed behavior and in the system spegadfic The
user's observed behavior is modeled by a Linuysdtiwill
be transformed into SMV code. However Linux scdifters

from SMV code. We propose LSc2SMV (Linux Script to

Symbolic Model Verifier) tool to do the transforricat.

Table Il shows the transformation in expressioases.

TABLE III.

--The user observed behavior is transformed by our

EXPRESSIONS CASES

proposed tool, named LSc2SMV (Linux Script to Syiido

Model Verifier), to SMV code.
We obtain a SMV program containing logical propesti

which we verify by SMV tool. The result will be vied
properties if the behavior is normal or violatedperties if

the behavior is intrusive. Figure 1 illustratestbthema.

User ohserved behaviour Systermn specification

Type LSc SMV
Boolean operators -a (and) -o (or) (“and”,“or",“not")
I(not)
Condition operators if-then-else if-then-else
case switch case switch
Arithmetical operators| +,-*,/, % +, -,*, /,mod
Comparison operators -eq, -ne, -lt, -gt, R S
-le, -ge “<=")

Script Linu

Rewriting in ternparal log
LSc2Emy

SMY code

Logical properties

Result

Table IV shows the transformation in the functiase

form.
TABLE IV. FUNCTION CASE
Type LSc SMV
function function name() MODULE name(input, output
{3 {..}

Table V shows the transformation in the conditiowl a

loop cases form.

Figure 1. A diagram tracing our method. TABLE V. CONDITIONS AND LOOP CASES
The LSc2SMV tool will convert Linux script to an SM Type [Sc SMV
code. It will be in the form of main module (). V¥Bow the ["Condition iffl<condition>] <stmt1> elsg if(<condition>) <stmt1>
transformation in constant, in variables, in arrays <stmt2> fi else <stmt2>
expressions, in functions, and in loops and comfiti Tables | Case case $variable in case{<cond1>: <stmtl>
I, 11, 111, IV and V give this direct transformatio vall) stmtl>; ; .. <condn> : <stmtn>
......) <stmtn> ; ; esac [default : <dftistmt>]}
. . Switch switch(<expr>) switch(<expr>){
Table | shows the transformation in constants and <casel> : <stmtl> breaksw| <casels : <stmtl> ...
variables. <casen> : <stmtn> breaksw| <casen> : <stmtn>
default : <dftlstmt> breaksw [default : <dftlstmt>]}

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

186

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

endsw
for for var in $files ; for(var = init ; cond ; var|
do = next)
<stmt>
while while condition ; do <stmt>

done -

The indirect transformation is based on properti@s
verify and in Linux script.

Some other conversion in the file hame or in tHdefo -)
name can be made. This is because SMV cannot supp&cenario. It have been developed and tested inxLiRed
some character like . or / in the variable namke Table VI
gives some conversion.

TABLE V1. NAME TRANSFORMATION
Type LSc SMV

File letc/passwd,/etc/inittab, etcpasswd,etcinittab,

name /etc/ld.so.conf, etcldsoconf,etcliloconf,
etc/lilo.conf,etc/group etcgroups

Folder | /var,/usr/bin,/dev, var,usrbin,dev,etcsecurity,

name letc/security, varspool,etc,usretc,usr,
Ivar/spool,/etc, usrlib,slash
lusr/etc,/usr,/usr/lib,/

[V. TLID: TOOL FORLINUX INTRUSION
DETECTION

There are two solutions to survey a user:

-

The first solution consists in using the file
.bash_history. But this file cannot give a

strengthened and real-time history because when you

use other shell, like csh,, this method cannot Haee

history. Either when you tape Kkill -9.

The second solution is to develop a patch. It ssi
to modify file system which are bashhist.c,
histexpand.c, histfile.c, history.h and historyto (

obtain the patch e-mail : bentekaya.ines@voila.fr).

When a user writes anything in the console, it &l
saved in a file using his name&his patch can be
used in every system to survey a command user.

Figure 2 gives some functionality of TLID. You can
choose a user, a day and we obtain the behavias It
composed by time, PID and commands.

After that you can choose a property to verify.this
example, we choose to verify the use of illegalapeaters.

The button LSc2SMV became enabling. When we click

below,

we obtain the SMV file. This file containbet

verification of action 1: cd /tmp and action 2: cp
/etc/ld.so.conf /tmp. It consists to verify the mé&sion of
using folder /tmp and /etc/ld.so.conf file. Thisgven by
SMV file in Figure 4. The two properties we spewifiare
file confidentiality (conf) and folder confidentig (confo).
We choose “"Prop|Verify all* to verify if the perties we
specified in fact hold true or false for all tim@he result is
given by Figure 5. The conf property should bedand a
counterexample appears in the trace page. Thisibedaes
user use a file that he don’t have a permission.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

TLID can do a local analysis a global analysis lesmv
users.

Intrusion scenario Sc between users can be dedisied

Sc ={A, V, S} with:

A: an attacker

V: a victim

S ={sl, s2... sn}: a set of steps

Every step is a sequence of commands with their
parameters. The next paragraph shows an example of

Hat Enterprise version 5 and we use TLID and SMY fo

verification.
|, Intrusion Detection using|Linux Commands B
AC Sniffer Detection
Choose a user: | ines > |
o oty [may v“zﬁv |2u11v [ox |
Ohserved user behavior
[[] P1:Execute some illegal commands
["] P2:Change source or command destination
[_] P3:Use lllegal parameters
Anti Properties:
[_] Pa:Having infinite loop
[_] PS:Having auto-replication
[] P6:ather properties to be defined
Figure 2. TLID
Commands. iR
AC Sniffer Detection
Choose a user: [ines =
Choose a day: May ~|[10 ~][z011 ~][ok |

[Time=Tue May 10 11:39.30 2011 6372 od Amp
Time=Tue May 10 11:3%;32 2011 6372 cp /ete/d.so.conf Amp

[P1:Execute some Illegal commands
[[] P2:Change source or command destination
[¥] P3:Use illegnl parameters
Anti Properties:
[[] Pa:Having infinite loop
[_] P5:Having auto-replication

[_| P6:ather properties to be defined

LSc2SMV |

Figure 3. Observed ines behavior in May-10-2011

187

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

| View smvFile =i B

module main(lectio, paramfo)

lectio : boskean;
paramo : {tmp},

folder_nwrite_userl : {varusrbin,dev,stosecurity varspool ste usneto usrusrib,slash);

init(lectio) = o
iinit(paramio) := {tmp]}

it (paramio in folder_rwrite_user)
next(lectio) i= 1

1
Else

next(lectia) = 0|

l=ct : boolean

parami : {etclilocont);

file_nread_ussrl | [slopasswd sieinittab steldsocontslilocanttegroupsh;

init{lect) = 0;
inittparam1) (= {stolileconf;

iif (param1 in file_nread_userl)
nexilect) =1 ;
1

Else
next(lect) i= 0 ;

conf assert G (param1 -> lsct = 0);
conffo : assen G (paramfo - lectio — 0);

1

Figure 4. SMV file

| resines.smv. B
File Prop View Goto History Abstraction Help

Browser | Properties | Results | Cone | Using | Groups |

Property | Result |
conf false

Source | Trace | Log |
File Edit Run View

E g

flle niead Useriieteliloc/—
t 0 o

parami|etclilocletelilod]

Figure 5. Verification with SMV

We have two users. The victim is named ‘troismille’

(user-id: 3000) and the attacker is named ‘inesefud:
5502).
[root@localhost ~]# cat /etc/passwd
Result:ines:x:5502:5502::/home/ ines:/bin/bash
troismille:x: 3000: 3000::/home/ troismille:/binkta

Using TLID, we choose to the anti property: Having
infinite loop. If we don’t know how a property thi@ose, we
can mark all checkbox. The result is given by Fegiir

| . condition,smy,

4

Eile Prop Wiew Goto History Abstraction

Browser | Properties | Results | Cone | Using | Groups |

Property | Result |
loop false

Source | Trace | Log |

File Edit Run View

IR
_.bougleiwhiles
\eondition| trus

Figure 7. The result

V. CONCLUSION

In this paper, we are interested by attacks usiimgixX.
commands. We have presented their topology. We have
shown that their impact can be inoffensive or caestaby
information system.

We have proposed a method that exploits model
checking. This model use algorithms, executeddmgpter
tools, to verify the correctness of our systemcdimbines
security field with formal verification. The usenputs a
description of a model of the system (the posdielleavior)
and a description of the requirements specificatftre
desirable behavior) and leaves the verification tapthe
machine. If an error is recognized the tool proside
counter-example showing under which circumstanées t
error can be generated. The counterexample corsists
scenario in which the model behaves in an undesisgd

This method is applied to distinct normal user lvéra
from intruders’ behavior. It has lead to the TLIDot
development. We give some experimental resultshtiws
how the TLID works under some attacks.

There is another attacks group which can be named
unknown attacks. In this new group, attacks coaldse the

This scenario consists of sending many mail frorar us intrusion detection systems crash and thus incdmple

ines to user troismille to saturate his mail. Irs tbase, the
user troismille cannot access to his e-mail. Trenado is
given by Figure 6.

Session Edition Affichage Signets Configuration Aide

[ines@localhost ~18 while true; =
> do

> mutt -s "subject" -a fiche.txt troismille@localhost.localdemain <corps.txt;
> done &)

B

]| @ eminal |

Figure 6. An example of scenario

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

testing. It becomes clear that present approachesaluate
intrusion detection system are limited to some kmow
attacks.

We divide our future work into two main parts: refi
and improve attacker competence and extend scet@rio
include multi-attacks and equivalent attacks.

REFERENCES

[11 J. P. Anderson, “Computer Security Threat Monitgramd
Surveillance, ” Technical report, Washing, PA, Jani
Anderson Co., 1980.

[2] D. Powell and R. Stroud, “Conceptual Model and
Architecture of MAFTIA”, Eds., MAFTIA (Malicious ath
Accidental Fault Tolerance for Internet Applicatdrproject
deliverable D21, LAAS-CNRS Report 03011, 2003.

188

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(3]

[4]

(5]

(6]
(71

(8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

C. Mathei,. (2004) “Ouverture des réseaux |P dagprtse :
risques ou opportunité ?” [Online]. Available:
http://www.awt.be/contenul/tel/res/IPforum23-04_Riése
unifié et sécurisé.pdf.

B. E. Cloete and L. M. Venter, “A comparison ofrirsion
Detection systems” Computers & Security, vol 2Guks 8,
pp. 676-683, Dec. 2001.

A. Patrizio. (2006) “Linux Malware On The Rise. Ofline].
Available: http://www.internetnews.com/dev-
news/article.php/3601946.

M. Santana, “Chapter 6 - Linux and Unix Securitpn@uter
and Information Security” Handbook 2009, pp. 79-92

M. E. S. Gadelrab, “Evaluation des Systémes de diiéte
d'Intrusion,” thése, Université de Toulouse - PSabatier,
France, Dec. 2008.

M. F. Krafft (2007) “John the Ripper password crack
[Online]. Available: http://www.openwall.com/john/.

G. Hoglund, and J. Butler, “Rootkits: Subvertingeth
Windows” Kernel, Addison-Wesley Professional, 2005.

Koral llgun , Richard A. Kemmerer , Phillip A. Pas.
“State Transition Analysis: A Rule-Based Intrusidatection
Approach. ” Journal IEEE TRANSACTIONS on Software
Engineeringyol. 21,No. 3, pp.181-199, 1995.

K. llgun. “USTAT - A Real-time Intrusion DetectioBystem
for UNIX,” Master's Thesis, University of Californiat Santa
Barbara, Nov. 1992.

M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, Wheus
and Y. Vardi. “Computer Intrusion: DetectingMascpees”
Statistical Science, Vol. 16, No. 1,pp 1-17, 2001.

T. Lane and C E. Brodley. “Sequence matching aachiag

in anomaly detection for computer security.” In ARAA
Workshop : Al Approaches to Fraud Detection andkRis
Management, pp. 43—-49. AAAI Press (1997).

M. Theus and M. Schonlau. “Intrusion detection basa
structural zeroes.” Statistical Computing and Gireph
Newsletter 9, pp. 12-17, 1998.

M. Roy. “Masquerade detection using enriched contnan
lines.” In: Proceedings of international conferenca
Dependable Systems and Networks (DSN-03), pp. Sxlde
2003.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

189

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Security Quality Assurance on Web Applications

Rodrigo Elia Assad"?, Felipe Ferraz? Henrique Arcoverde® Silvio Romero Lemos Meira -
'Centro de Estudos e Sistemas Avancados do Recife(CESAR) - Recife — PE — Brazil

“Centro de Informética
Universidade Federal de Pernambuco (UFPE) — Recife, PE — Brazil

*Tempest Security Inteligence

assad@cesar.org.br, fsf3@cin.ufpe.br, henrique@tempest.com.br, srim@cesar.org.br

Abstract: Historically, it is well known that issues related to
security of software applications are normally omitted by the
development teams owing to a lack of expertise or knowledge
in security policies. With the emergence of WEB technologies,
this situation became more serious. Entire systems, complex or
not, have outstanding access availability and therefore are
highly vulnerable to threats. This work aims to discuss how the
security requirement, design patterns and tests should be
elaborated in order to making easier the execution of its tests
and consequently improving the quality of the solution
developed.

Keywords-security requirements; design patterns; security tests
validation, quality assurance

l. INTRODUCTION

Since the popularization of the Internet through its
commercial use occurred during the decade of 1990, attacks
on computer systems have become more frequent. Initially
the attacks was more focused on operating systems and
network services, as can be seen in the attacks reports
generated from various institutes such as CERT [47].

With the rapid growth of attacks, companies,
governments, universities invested heavily in security
solutions, such as firewall, intrusion detection systems, anti-
virus, patch management and so on. Also there was
investment on development of security procedures and
processes for managing information, such as ITIL, COBIT
and SOX [46]. And also a definition of specific legislation
to support the security analysts.

All these initiatives, associated with maturation time,
related to security issues comprehension and security
standards adoption, occurred from 1997 to 2007; the rate of
attacks reported to security holes in operating systems and
computer networks have decrease significantly, as shown in
Figure 1.

Analyzing these numbers, we see that the definition of
procedures, comprehension of security flows produces an
improvement on a perceived security quality - QA - Quality
Assurance - in relation to services provided by system
administrators, security consultants and security engineers
that support computer networks and operation system.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

SO000 —
FOO00 -*
BO000 -—
SO000 -—
00 ;
FO000 -—
20000 -—

10000 Lhas

I 5 35 473 :
! L N, ! ! ! ! ! I ! !
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2005

Anos

Figure 1: Attacks on network operating systems and reported by CERT.br
[47]

The improvement and maturation of Security Quality
Assurance procedures do network and operation systems
resulted in change of security focus, now applications have
become the primary target.

It is undeniable that the security problems still persist,
however, are not only related to flaws in operating systems
or network services, but the major focus has changed and is
currently in web applications, as seen in Figure 2.

CERT.br: Incidentes Reportados (Tipos de Ataque Acumulado)
140000

Total
fraude

120000 scan ——

weh
invaséo
100000 [| dos
outros

80000 |-

60000 |

Incidentes Reportados

40000

20000

01/07 01/09 0111

2010

0 i
01/01 01/03 01/05 3112

Figure 2: Attacks reported on 2010 to Cert.br [47]

The attacks on web applications and began more
popular on 2007. It's can be evidenced in several ways,
among them, through consultations on Google cache

190

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

showed on Figure 4. As observed before 2007 there are few
records of consultations about web application security.
Using the same methodology shown in Figure 3 queries
related to network security - a subject of greater scope
related to operating system security and network services -
has been decreasing year after year as a result of the quality
assurance process described before.

LY TN N YT MY N Y T Y S T A N Y TN Y N
2004 | 2005 | 2006 | 2007 | 2008 ‘
Trecit e (R g i (O |

Figure 3: Query to Google on “network security"[50]

A T i NN N Sl M
2009 ‘ 2010 |
i]

L T O N R B 1
2004 | 2005
| g (|
1

Y T TR
| 2008 ‘
(O | i

™
e
=4
&

Figure 4: Query to Google on “web application security "[50]

Another fact should be observed that’s collaborate to
attacks migration to web applications, we have in this period
the emergence of applications WEB2.0, Web3.0 [37],
consolidation of the browser as a gateway to all
applications, the emergence of API's development as the
proposed Google apps and Microsoft Live and more
recently the cloud computing [38][44][48].

We can believe that, as happened as with the attacks on
operating systems and network services, to protect web
application we will require efforts on research development,
new product development and procedures specifications,
and consequently the maturation of software developers in
order to improve the code produced for web applications, it
can be called SSQA: Security Software Quality Assurance:.

To define the security Quality Assurance demanded by
an application, it is required experienced and trained
stakeholders with abilities in all disciplines with a focus on
security. Throughout the development of a web application,
it is important that the activities of elicitation and
specification of requirements to be followed by architecture
definition and a process of validation. It is essential to track
and approve if the security requirements are being satisfied
on applications. The traceability of functional and non-
functional security requirements is naturally a complex task,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

because in general, they affect the entire system. To carry
out successful safety tests on a application, is necessary to
identify what types of vulnerabilities could enable attacks
on the system. In other words, we must understand where
the flaws may be present to learn how to avoid them.

From this point of view, we identified that one of the
possible causes to security flaws relies on the low quality of
software security requirements and consequently in its
implementation, validation and tests phases.

It should consider the present scenario of IT companies
in relation to technologies used in the development of web
applications, we have the main highlights:

a) Use agile methodologies
b) Software reuse

c) Development framework

This section presents a proposal for the integration of
the above themes, throws specifying a security quality
assurance process that can be used by companies to promote
the development of secure applications on certain
assumptions, keeping the agreed deadlines and focusing on
quality assurance of the safety of software. It’s examines the
possibility of adopting the same methodology used
successfully between 1997 and 2007 that brought a
significant drop in network security problems, they are:

a) Understanding of attacks and its operating mechanism

b) Development of defense models in relation to existing
technology

c) Adopting an agile and reusable

d) Establishment of a pricing mechanism for the easy
development of secure solutions.

I. SECURITY QUALITY ASSURANCE WEB

The proposal of this paper is to guarantee the security
quality assurance of web applications, by defining a
methodology that could be reused and agile. So the first
objective is identifying the main problems of web
application. To do it, we used a real case scenario of a
security company of Brazil called Tempest Security
Intelligence [49] that sales web penetration test service.

The whole universe of the research described here
corresponds to 467 reported vulnerabilities in the Tempest
Security Intelligence analysis projects and web application
ethical hacking of web applications, not considering the
analysis projects of infrastructure. An importantly point is
the vulnerabilities are spread across various customers and

191

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

do not correspond to points of vulnerability to be explored
but real flows on web application. For example, given an
analysis in the foo app, there are 15 points where you can
perform SQL attacks, however, the vulnerability is reported
only once. The numbers represent only the vulnerability in
the application and not the amount of exploitable points in
each application.

The research uses as base the perspective of the
OWASP Top 10 2010 [45] version vulnerabilities, successor
version of OWASP Top 10 2007 version, so the data used
are restricted to projects reported between the years 2008
and 2010. On Figure 5 we present the workflow used.

Data collection corresponds to real cases but to preserve the
client we uses a fictitious names.

Client sacurity
necessities

Client knows
Requirements

Identify Security
—m requirements based on
OWASF flows

l Yes

ldentify Security patlarns
based on requirements

- I

Start implemeantation fa—!

e specifications are
complete

Continue implementation

!

Execute Test based on
OWASP

Figure 5: Software Security Quality Assurance workflow

The sample profile collected is determined in two
characteristics: year of publication and type of vulnerability.
First characteristic determines the year in which the
vulnerability was discovered and published to the client. As
previously described the data for the years 2008, 2009 and
2010. It was observed that 17% of vulnerabilities were
reported in 2008 (Figure 6), 28% were reported in 2009 and
55% were reported in 2010. (Figure 6)

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Vulnerabilidades por ano

= 2010
= 2009
= 2008

Figure 6: Vulnerabilities per year [49]

Another information collected was the type of collected
vulnerable applications, showed on Figure 6.

Tipos de vulnerabilidades

m XSS

uG i desessdo e

H Injegdes de cédigo

® Transferéncia insegura deinformagées
sensiveis

u Falhas de configuragio

® Referénciainsegura a objetos

® Redirecionamento Arbitrario

u CSRF

insegura deinf

sensiveis
= Acesso direto ndo autenticado

u Outras

Figure: 7 Types of vulnerabilities [49]

Resuming, it is possible to observe that 10 of
vulnerabilities reported by Tempest Security Intelligence in
the years 2008, 2009 and 2010 are: 15% of XSS
vulnerabilities are observed, session management and access
control are 12% of the vulnerabilities, 8% of the
vulnerabilities are code injection, 7% of the vulnerabilities
are flaws in the configuration, with 7% of the vulnerabilities
are flaws transfer insecure credentials, the reference objects
unsafe to correspond to 5% of the vulnerabilities, 3% of
vulnerabilities are related to arbitrary redirection, 2% of
vulnerabilities are related to direct access to
unauthenticated, 2% for safe storage of sensitive and 2% of
CSRF. The table bellow makes a comparison between
Owasp reports and Tempest results.

TABLE 1: COMMON VULNERABILITY ACCORDING TEMPEST.

Tempest Top 10
2009 2010 General
XSS XSS Session XSS
authentication
management
Code injection Session XSS Session
authentication authentication
management management
Unsecure Code injection Configuration Code injection

192

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

that tends to exploit an attack. Security requirements are
constraints on the functional requirements in order to reduce
the scope of vulnerabilities [27].

On the Bellow table we make a comparison between
Donald Firesmith [28][29] security requirements proposal:
Identification, Authentication, Authorization, Non-
Repudiation, Privacy, Immunity, Integrity, Intrusion
Detection, Security Audit, Maintenance Systems Security
and Physical Protection; and OWASP Web vulnerability
list, it relates each vulnerability and the correspondent
requirements

TABLE 2: REQUIREMENTS X VULNERABILITIES
Requirement Owasp Test

Identification OWASP-1G-003, OWASP-1G-004

Authentication OWASP-AT-001, OWASP-AT-002, OWASP-
AT-003, OWASP-AT-004, OWASP-AT-005,
OWASP-AT-006, OWASP-AT-007, OWASP-

AT-008, OWASP-AT-009, OWASP-AT-0010

Authorization OWASP-AZ-001, OWASP-AZ-002, OWASP-

AZ-003

transmission of flows
sensitive data
Session Unsecure Unsecure Configuration
authentication transmission of | reference to | flows
management sensitive data objects
Configuration Configuration Code injection Unsecure
flows flows transmission of
sensitive data
Direct access | Unsecure Unsecure Unsecure
with no | reference to | transmission of | reference to
authentication objects sensitive data objects
Unsecure Direct access | Unsecure Arbitrary
reference to | with no | sensitive and | redirect
objects authentication storage
information
Unsecure Arbitrary CSRF CSRF
sensitive and | redirect
storage
information
CSRF CSRF Arbitrary Unsecure
redirect sensitive and
storage
information
Arbitrary Unsecure Direct access | Direct access
redirect sensitive and | with no | with no
storage authentication authentication
information

I1l. REQUIREMENTS

The requirements engineering on a business, systems,
applications and components is more than just document
that describes functional requirements of the application.
Even though, most system analysts dedicate the bigger art of
their time to elicit some quality requirements such as
interoperability, availability, performance, portability and
usability, many of them still sin with regard to addressing
issues related to security.

Unfortunately, = documenting specific security
requirements is difficult. These tend to cause a high impact
for many functional requirements. Furthermore, security
requirements are usually expressed in a document the terms
of how to achieve security not as the problem that needs to
be resolved [27].

Most system requirements analysts have no knowledge
in Security, the few who received some training had only a
general overview of some security mechanisms such as
passwords and encryption rather than meet real
requirements in this area [5][28][29].

Security requirements deal with how the assets of a
system must be protected against any kind of evil [27][30].
An asset is something within the system, tangible or not,
that must be protected [31]. A threat or harm from which a
system must be protected, is a potential vulnerability that
can reach a well. A vulnerability is a weakness of a system

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Imunity OWASP-1G-005, OWASP-1G-006, OWASP-

CM-002, OWASP-CM-003,

OWASP-CM-006, OWASP-CM-008, OWASP-
DV-001, OWASP-DV-002,

OWASP-DV-003, OWASP-DV-004, OWASP-
DV-005, OWASP-DV-006,

OWASP-DV-007, OWASP-DV-008, OWASP-
DV-009, OWASP-DV-0010,

OWASP-DV-0011,0WASP-DV-
0012,0WASP-DV-0013,0WASP-DV-0014,
OWASP-DV-0015,0WASP-WS-002,
OWASP-WS-003, OWASP-WS-004, OWASP-
WS-005, OWASP-WS-006, OWASP-WS-007,
OWASP-AJ-002

Integrity OWASP-SM-001, OWASP-SM-002, OWASP-

SM-003, OWASP-SM-004, OWASP-SM-005

Intrusion Detection OWASP-CM-005

Non - Repudiation

Privacity OWASP-1G-001, OWASP-CM-001

Security Audity

Fault Tolerance OWASP-DS-001, OWASP-DS-002, OWASP-

DS-003, OWASP-DS-004,

OWASP-DS-005, OWASP-DS-006, OWASP-
DS-007, OWASP-DS-008

Physical protection

Maintenance of
Security Systems

OWASP-CM-004, OWASP-CM-007

Since we have a relation that puts security vulnerability
and system requirements we can elaborate reusable system

193

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

requirements based on security flows that could be
addressed by system analysts during the project conception.

IV. DESIGN PATTERNS

Now, that we have a relation between security
vulnerabilities and system requirements the next step is try
to use a design patterns concept to propose a methodology
to use it, giving to the user a choice to make a latter
implementation of security code. To do it we use a
classification given by the GoF Design Patterns.

Initially, we will consider the following requirements:
Identification, Authentication, Authorization, Non
Repudiation and Privacy. Reviewing these requirements, we
can observe that all of this belongs to the same subject,
identification of an actor, be a user, system or other entity
that interacts with the system in question. All of them deal
with the identification of an actor. Respectively have the
actor ID, proof of ID, permissions of identity, confirmation
of the shares of the entity and finally the secrets or secret
identity. All of these requirements revolve around the
creation of an identity.

Going forward on requirements analysis, we can
separate the requirements for immunity and integrity, as two
conditions that directly affect the structure of the system.
From this viewpoint, the requirements for immunity vision
ensure that the system is immune to contamination by parts
of the actors and the requirements of Integrity vision ensure
that the structure of an integrated system communication
between these actors. Both requirements have a direct
relation with the structure of the system since it will be
necessary to change the structure of the system to adopt
solutions to these requirements.

Following, we have the requirements for Intrusion
Detection, Security Audit and Fault Tolerance, which deal
with issues related to actions taken by the system. In the
first case detection, we have a requirement that works as a
prevention, which aimed to provide a mechanism for
detection and notification in case of unauthorized access,
since the audit comes as a mechanism to work issues in a
more reactive, or attitudes that can be taken from the
evidence and observation of actions, an audit requirement
must include the registration of shares as well as
mechanisms for future reference [11], different fault
tolerance as well as reactive, which defines the behavior of
the system will have in case of failure, is also to ensure that
preventive flaws in system entities do not jeopardize the rest
of the system. Therefore, the requirements of work on the
issue of the conduct taken within the system.

Finally analyzing the requirements for Maintenance of
System Security and Physical Protection have, this is a
requirement that is more than physical matter, as the name
refers, where the concern goes beyond the scope of

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

software, both outside the scope of our analysis. Since the
requirement for maintenance has a horizontal behavior in
relation to other requirements, since this deals with the
maintenance of the system's other needs related to security,
he is indirectly responsible for such requirements needs.
Appears not a requirement for so considerable in terms of
software and one that is the sum of the other requirements.

Organizing them according to their characteristics are:

1) Requirements Identification, Authentication,
Authorization, Non-Repudiation and Privacy and
related creation.

2) Integrity and Immunity Requirements related to
the structure of the system.

3) Requirements for Intrusion Detection, Audit and
Fault Tolerance-related behaviors of the actors in
the system.

4) Requirements for Maintenance of Security
Systems related to the other requirements.

Under this approach, using some of the classifications
of GoF, we can separate the requirements according to their
purposes. From the characteristics presented, we will
separate them into three groups according to this criterion
purposes, they are, Creation, Structural and Behavioral.

TABLE 3: RELATING PATTERNS AND REQUIREMENTS

Creation structural behavioral

Intrusion detection
Requirement

Identification
requirement

Immunity
Requirement

Authentication
Requirement

Integrity
Requirement

Security audit
Requirement

Fault tolerant
Requirement

Authorization
Requirement

Non-repudiation Requirement

Security Maintenance Requirement

Physical protection requirements that deal with physical
issues related to the physical system are not addressed
within this framework.

V. CASE STUDY
A) Reusable requirements

The tasks described by this article were used on the
development of some IT projects on C.E.S.A.R (Center of
Studies and Advanced Systems of Recife) and UNIMIX.
These IT companies are needing to realize a detailed
analysis of security issues in some projects with the
purpose of making sure that system that are considered
critical be tested and validated. As a consequence, this
ensures that everything agreed on the contract is respected

194

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

by the service provider and cannot be questioned by the
client.

Due to contracts issues, we are not allowed to give any
further information about the context in question. However,
some points must be cited, such as:

a) The process of writing requirements has been
validated in three projects with companies that act
on these sectors: telecommunications and
informatics. In these cases, the objective is only
write the requirements document and the proposed
methodology was employed. As a result, customers
noticed an improvement in the problems
understanding in early stages of the project.

b) During the risk analysis, the suggested changes in
the templates for requirements elicitation indicated
a greater understanding of the problems, possible
solutions for them and mitigating strategies.

c) Preparation of a repository of reusable security
requirements and their test cases based on the
recommendations of tests developed by OWASP.
This was the case with the requirements of P2P
FINEP project, which aims to deploy solutions in
environments peer-to-peer. Their requirements and
test cases were used for decision making in relation
to which requirements and test cases as well as risk
analysis for the management solution descktop
dreams (HTTP: / / www.dreamsweb.com. br)

d) We have a case study in the development of
corporative site of a technology company of
Pernambuco. This scenario was run throughout the
full proposed cycle in this paper. It was observed
that: a) there was significant improvement of the
safety requirements of the portal, b) in the testing
phase were found about 11 flaws in the site that did
not meet the requirements, some of them quite
serious, ¢) Another project in onset may benefit
from the basic set of requirements, d) Part of the
scripts could also be reused.
Unfortunately for security reasons the company
was not authorized to divulge more details of the
results, as problems are identified security.

e) Observers that the methodology described here is
used with extreme efficiency and trends in the
proposals brought to the development of systems
that must function in an environment of cloud
computing. This is because in this environment
issues of SaaS, PaaS and laaS introduce the
characteristics of infrastructure as something
bringing programmable horizontal scalability for
applications. It is undeniable that as we have the
scalability of an application being made across the
board problems and new security risks arise. These
problems not previously considered relevant.
Mainly on issues related to security [44]. However,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the proposed solutions have a way to specify and
reuse them efficiently because the strategies do not
vary much scalability.
The main result of this work, we observed an
improved understanding of the technical
requirements and their implementation by software
security engineers and the ability to produce more
accurate tests and that met the needs of customers.
Thus reducing the need for correction of
deficiencies identified in the test phase, which is
one of the main mistakes made in building secure
software [43].

Also as a result it will have a better quality software, on
the point of view of ensuring the functionality specified by
carrying out a process of validation and elaboration.

Another important result presented in this paper is to
provide project managers the ability to quantify risk in
relation to the implementation or not a particular
requirement before starting the coding phase.

As a consequence of this work, we observed a
satisfactory improvement on the comprehension of technical
needs and its implementation by software engineers besides
the ability to produce test more precise that meet clients
need. Consequently, we were able to develop software with
better quality from the point of view of the functionality
assurance through the performance of a validation process
more elaborated.

B) Design Patterns and a late implementation

The purpose of the case study was to validate the
proposed relationship between the GoF design patterns as a
way to represent security requirements. As mentioned in the
work we try to have a more practical assessment of our
study to evaluate the feasibility of using these standards as a
tool in implementing security requirements and to facilitate
the understanding of security requirements for developers in
genera during the software development process.

Initially our study was conducted in a project expected
to last 3 (three) months, we will call this a Test System. This
project would serve initially as a proof of concept for a
larger project, with issues related to client confidentiality
and NDA cannot go into further detail concerning the
applicant, project name and other sensitive information to be
omitted.

In a second moment relationships proposed in this
paper was applied again in the second Test System that time
this system was already in a more consolidated stage
requiring greater attention as we shall see below.

Finally, a third opportunity was presented to us where
we suggest an approach to two related structures created in
this work. Unlike the two previous occasions the third
opportunity is still being implemented.

195

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

For these tree applications at the beginning of the
project the security requirements was not so clear, but once
completed the implementations we could see a positive
result of implementing the proposals made by the job. One
of the best insights that should be observed was that the
changes on requirements were not very intrusive, low
impact and easy modification.

So the opportunity to apply the propositions made in
this initial work in a context outside of the web, mainly
located on the server side, served as an initial validation of a
positive result. Besides these the possibility of making a
second application using a macro context of the application,
addressing GWT, RPC calls, proved satisfactory.

Furthermore the application of the propositions in a
macro context has generated the perception that the
adoption of standards, as related to ambiguous or poorly
written requirements, may present as a data point requiring a
second more detailed approach to understanding how to
address . Still, the approach was extremely valid and
consistent highlighting the importance of future studies
mentioned in the next section.

VI. CONCLUSION

The software quality cannot be measured only by the
assurance of the execution of a process, but by the results of
its execution and necessary validations. Within this context,
this paper aimed to define tasks, recommendations and
process that should be introduced on the cycle of software
development with the purpose of guiding the test and
validation phase to produce more elaborated and precise
results from the point of view of security issues.

The process proposed by this paper is being introduced
on the software cycle development s at C.E.S.A.R as
specific security needs are required.

The adoption of this process allowed making a more
critical analysis of the new features introduction on new
projects as well as the test team comprehension at executing
these tasks thus improving the software quality observed by
the clients.

As a final contribution, we were able to validate the
proposal software security requirements reuse and its test
cases in other projects inside C.E.S.A.R, proving that this
process is extensible as proposed.

ACKNOWLEDGMENT

This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES
http://www.ines.org.br), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[1] R. Lutz, "Software engineering for safety: a roadmap,”
Proceedings of the Conference on The Future of Software
Engineering, ACM, 2000, pp. 213-226.

[2] B. Matt, "What Is Computer Security?," Computer, 2003, pp.
67-69.

[3] 1. Sommerville, T. Rodden, P. Sawyer, R. Bentley, and M.
Twidale, Integrating Ethnography Into the Requirements
Engineering Process, 1993.

[4] D.G. Rosado, C. Gutiérrez, E. Fernandez-medina, M. Piattini,
P.D. Universidad, C. Real, D. Grosado, E. Fdez-medina, S.T.
Calle, and M. Tovar, "A Study of Security Architectural Patterns,"
Information Systems, vol. 1, 2006, pp. 2-9.

[5] J. Yoder and J. Barcalow, "Architectural patterns for enabling
application security,” Urbana, vol. 51, p. 61801.

[6] P.T. Devanbu and S. Stubblebine, "Software Engineering for
Security: a Roadmap," The future of Software Engineering, ACM
Press, 2000, pp. 227-239.

[7] N. Yoshioka, H. Washizaki, and K. Maruyama, "A survey on
security patterns,” Progress in Informatics, 2008, p. 35.

[8] G. Sindre and A.L. Opdahl, "Eliciting security requirements
with misuse cases,” Requirements Engineering, vol. 10, 2004, pp.
34-44.

[9] W.C. Summers, "Password Policy: The Good, The Bad, and
The Ugly.", Proceedings of the Winter International
Symposium on Information and Communication
Technologies, 2004

[10] P. Samarati and S.D. di Vimercati, "Access Control: Policies,
Models, and Mechanisms," FOSAD, R. Focardi and R. Gorrieri,
Springer, 2000, pp. 137-196.

[11] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns : Integrating
Security and Systems Engineering (Wiley Software Patterns
Series), John Wiley & Sons, 2006.

[12] F. Khomh and Y.G. Gueheneuc, "Do Design Patterns Impact
Software Quality Positively?," Software Maintenance and
Reengineering, 2008. CSMR 2008. 12th European Conference on,
2008, pp. 274-278.

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series),
Chapman & Hall/CRC, 2007.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented, Addison-Wesley
Professional.

[15] I. 7498-2, Information processing systems -- Open Systems
Interconnection -- Basic Reference Model -- Part 2: Security
Architecture, 1989.

[16] D. Zerkle and K. Levitt, "NetKuang -- A Multi-Host
Configuration Vulnerability Checker," in Proceedings of the 6th
USENIX Unix Security Symposium, 1996.

[17] P. Steiner, "On the internet nobody knows you're a Dog," The
New Yorker, vol. 69, 1993, p. 61.

196

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

[18] P. Kunyu, "An identity authentication system based," Identity,
2009.

[19] Z. Wang, M. Li, M. Chen, and C. Chang, "A New Intelligent
Authorization Agent Model in Grid," 2009 Ninth International
Conference on Hybrid Intelligent Systems, 2009, pp. 394-398.

[20] G. Dhillon, Principles of Information Systems Security: Texts
and Cases, Wiley, Ed. Virginia Commonwealth Univ March 2006

[21] H. Peiris, L. Soysa, and R. Palliyaguru, "Non-Repudiation
Framework for E-Government Applications,” 2008 4th
International Conference on Information and Automation for
Sustainability, 2008, pp. 307-313.

[22] J. Adikari, "Efficient Non-Repudiation for Techno-
Information Environment," First International Conference on
Industrial and Information Systems, 2006, pp. 454-458.

[23] L.F. Soares, G. Lemos, and S. Colcher, Redes de
Computadores: das LANs, MANs e WANSs as redes ATM, Rio de
Janeiro: Campus, 1995.

[24] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern
Language, Oxford University Press.

[25] R.P. Gabriel, Patterns of software: tales from the software
community, Oxford University Press, Inc. New York, NY, USA,
1996.

[26] 1. Oliveira, "Uma Analise de Padrbes de Projeto para o
Desenvolvimento de Software Baseado em Agentes,"” 2001.

[27] F. Khomh, Y. Guéhéneuc, and P. Team, "An empirical study
of design patterns and software quality,” 2008, pp. 1-19.

[28] P.S. Sandhu, P.P. Singh, and A.K. Verma, "Evaluating
Quality of Software Systems by Design Patterns Detection," 2008
International Conference on Advanced Computer Theory and
Engineering, 2008, pp. 3-7.

[29] M. Bernardi and G. Di Lucca, "Improving Design Pattern
Quality Using Aspect Orientation,” 13th IEEE International
Workshop on Software Technology and Engineering Practice,
2005, leee, 2005, p. 206-218.

[30] C.B. Haley, R.C. Laney, and B. Nuseibeh, "Deriving security
requirements from crosscutting threat descriptions,” AOSD '04:
Proceedings of the 3rd international conference on Aspect-oriented
software development, New York, NY, USA: ACM Press, 2004,
pp. 112-121.

[31] D. Firesmith, "Engineering security requirements," Journal of
Object Technology, vol. 2, 2003, p. 53-68.

[32] D. Firesmith, "Analyzing and Specifying Reusable Security
Requirements,” Eleventh International IEEE Conference on
Requirements Engineering (RE’2003) Requirements for High-
Availability Systems (RHAS’03) Workshop, Citeseer, .

[33] C.B. Haley, J.D. Moffett, R. Laney, and B. Nuseibeh, "A
framework for security requirements engineering,” SESS '06:
Proceedings of the 2006 international workshop on Software
engineering for secure systems, New York, NY, USA: ACM Press,
20086, pp. 35-42.

[34] nformation Technology - Security Techniques - Evaluation
Criteria for IT Security, Geneva Switzerland: ISO/IEC Information
Technology Task Force (ITTF) .

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[35] M. Weiss and H. Mouratidis, "Selecting Security Patterns that
Fulfill Security Requirements,"” 2008 16th IEEE International
Requirements Engineering Conference, 2008, pp. 169-172.

[36] Structural Patterns at Source Making.",
http://sourcemaking.com/structural patterns, last accessed
8/10/2011 .

[37] G. Inc, "GWT, Google Web Toolkit,"

http://code.google.com/webtoolkit/, last accessed 8/10/2011.

[38] J. Company, "Hibernate," http://www.hibernate.org/, last
accessed 8/10/2011.

[39] Gilead, Generic Light Entity
http://noon.gilead.free.fr/gilead/, last accessed 8/10/2011.

[40] P. Pawlak, B. Sakowicz, P. Mazur, and A. Napieralski,
"Social Network Application based on Google Web," Source,
2009, pp. 461-464.

[41] M. Dhawan and V. Ganapathy, "Analyzing Information Flow
in JavaScript-Based Browser Extensions,” 2009 Annual Computer
Security Applications Conference, 2009, pp. 382-391.

[42] E. Ofuonye and J. Miller, "Resolving JavaScript
Vulnerabilities in the Browser Runtime,” 2008 19th International
Symposium on Software Reliability Engineering (ISSRE), 2008,
pp. 57-66.

Adapter,

[43] Meier J. Web application security engineering. IEEE Security
& Privacy Magazine. 2006;4(4):16-24.Available at:
http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnub
er=1667998, last accessed 8/10/2011.

[44] SUN, Introduction to Cloud Computing architecture White
Paper 1st Edition, June 2009

[45] Owasp, 2008, owasp testing guide 2008 v3.0. Disponivel em:
http://www.owasp.org/index.php/category:owasp_testing_project,
last access: 06/05/2009

[46] PMBOK, Project Managment Institute (PMI) standards
committee: A guide to the Project Management Body of
Knowledge (PMBOK) Third edition,2008.

[47] Us-cert - technical cyber security alerts, 2009. Disponivel em:
http://www.us-cert.gov/cas/techalerts/ . Last access: 29/04/2009

[48] Cloud Computing Use Case Discussion Group Version ;
Cloud Computing Use Cases A white paper produced by the 2.0 30
October 2009

[49] Tempest Security Intelligence, www.tempest.com.br, last
accessed 05/05/2011

[50] Google Trends Service, www.google.com/.trends, last

accessed 8/10/2011.

197

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

On Generating Security Implementations from
Models of Embedded Systems

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjodin
Mailardalen Real-Time Research Centre (MRTC)
Milardalen University, Visteras, Sweden
{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin} @mdh.se

Abstract—Designing secure embedded systems is a challenging
task. Many of the challenges unique to embedded systems in this
regard are due to the constraints that these systems have and
thus impacts that security features will have on other properties
of the system. Therefore, security decisions should be considered
from early phases of development and together with other
requirements. In model-driven methods, this means including
security features in the design models. On the other hand, code
generation from models is one of the promises of model-driven
approaches. In this paper, by discussing the impacts of security
design decisions on timing properties, we present the idea of
automatic security code generation. We identify what issues
a model for an embedded system should be able to answer
and cover so that the security implementations that are later
generated from it, will be consistent with the timing constraints
and specifications of the system.

Index Terms—Embedded security; MDA; Code generation;
UML modeling

I. INTRODUCTION

In the design of systems, security should be considered from
early phases of development and along with other aspects of
the system. While this approach to security is important for
consistent and efficient security decisions, it becomes critical
in case of embedded systems. Due to resource constraints in
embedded systems, it is important to perform careful balance
among different properties to satisfy all the requirements.
Therefore, security should not be considered just as an addition
of features but as a new dimension and metric [1].

Regarding design complexity of embedded systems, model-
driven methods are a promising approach in raising abstraction
levels and coping with the complexity of embedded systems.
However, due to the characteristics of embedded systems,
security requirements cannot be considered in separation from
other requirements, and the modeling solutions that are used
should be able to model security aspects along with other
requirements such as timing, performance, and power con-
sumption. This is especially important not to just document
security requirements in the model, but also to enable analysis
of them and their impacts on other requirements of the system,
and generation of code that includes security features and
implementations. The possibility to perform such analyses
is the key to ensure correct design of an embedded system
and that the code to be generated will be consistent with the
specification. However, it should also be noted that the actual
behavior of the generated code at runtime may deviate from

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

what is specified in the model and expected. One reason is that
some information may only be available at runtime. These
deviations can be detected and controlled by using runtime
verification and monitoring methods [2].

In this paper, considering challenges of designing secure
embedded systems, we discuss what is needed at model level
to enable proper security code generation. We do this by
identifying necessary analyses that are required to realize
implications of security design decisions and therefore predict
the side effects of generated security implementations on other
aspects, particularly timing properties.

The remainder of the paper is structured as follows. Section
I discusses security challenges in embedded systems and
implications of security design decisions in general. In Section
III, we describe automatic payment system for toll roads, and
explain the relation between timing and security requirements
in this system. In Section IV, we will have a look at several
UML profiles for modeling security and discuss their suitabil-
ity for generation of security implementations. We propose a
solution for modeling security by extending MARTE [3], and
present our partial work on that (in the scope of this work, we
focus only on UML profiles and not other ways of defining
domain specific languages). Finally, Section V summarizes the
paper and states how we continue with the work and possible
future directions.

II. SECURITY IN EMBEDDED SYSTEMS

Security is an aspect that is often neglected in the design of
embedded systems. However, the use of embedded systems
for critical applications such as controlling power plants,
vehicular systems control, and medical devices makes security
considerations even more important. This is due to the fact that
there is now a tighter relationship between safety and security
in these systems.

Also because of the operational environment of embedded
systems, they are prone to specific types of security attacks
that might be less relevant for other systems such as a
database inside a bank. Physical and side channel attacks [1]
are examples of these types of security issues in embedded
systems that bring along with themselves requirements on
hardware design and for making systems tamper-resistant.
Examples of side channels attack could be the use of time
and power measurements and analysis to determine security
keys and types of used security algorithms.

198

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Increase in use and development of networked and con-
nected embedded devices also opens them up to new types of
security issues. Features and devices in a car that communicate
with other cars (e.g., the car in front) or traffic data centers to
gather traffic information of roads and streets, use of mobile
phones beyond just making phone calls and for purposes
such as buying credits, paying bills,and transferring files (e.g.
pictures, music,etc.) are tangible examples of such usages in
a networked environment.

Besides physical and side channel attacks, often mobility
and ease of access of these devices also incur additional secu-
rity issues. For example, sensitive information other than user
data, such as proprietary algorithms of companies, operating
systems and firmwares, are also carried around with these
devices and need protection.

A. Implications of Introducing Security

Because of the constraints and resource limitations in
embedded systems, satisfying a non-functional requirement
such as security requires careful balance and trade-off with
other properties and requirements of the systems such as
performance and memory usage. Therefore, introducing se-
curity brings along its own impacts on other aspects of the
systems. This further emphasizes the fact that security cannot
be considered as a feature that is added later to the design
of a system and needs to be considered from early stages of
development and along with other requirements.

From this perspective, there are many studies that discuss
implications of security features in embedded systems such
as [1]. Considering the characteristics of embedded systems,
major impacts of security features are on the following aspects:
Timing and Performance, Power Consumption, Flexibility and
Maintainability, and Cost.

Considering these points, the security code that is generated
for an embedded system should be from a model that satisfies
the aforementioned criteria. This means that the model should
contain enough information to enable impact analysis of
security features (such as timing and performance), and ensure
that they are in line with the system specification before
generating code from the model. In the scope of this work,
we focus on the timing costs of security mechanisms that
are important for schedulability analysis and performance of
a system, particularly in real-time embedded systems.

III. AUTOMATIC PAYMENT SYSTEM EXAMPLE

Figure 1 shows internal interactions of a real-time embedded
device in vehicles for automatic payment system in toll roads.
The main goal in the design of this system is to allow a
smoother traffic flow and reduce waiting times at tolling
stations. This is an example of systems in which the impact of
security features on timing properties are important and criti-
cal. The sequence diagram shows that when a payment station,
through its camera, detects that a vehicle is approaching, it
starts communicating with the vehicle and sends information
such as the amount to pay to the vehicle. The vehicle, then
shows this information to the driver through its User Interface

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

sd: Automatic Payment System)

| : Vehicle ‘ | Ul ‘ | :Camera ‘ | :PaymentStation ‘ | :Merchant

VehicleDetected

AmountToPay
AmountToPay

Confirmation
CreditCardinfo

CreditCardinfo

PaymentConfirmation

PaymentSuccessful
PaymentDone-OkToGo

Fig. 1. Automatic Payment Systems for toll roads.

System model
2l withsecurity
annotations

(A)

Timingcostsof
(D) security (B)
mechanisms

Timing analysis results

System model with
timingvalues of ic)
security v
mechanisms

)

Generated Code .
with security (E
implementations

timing violations

Fig. 2. Suggested Approach

(UI). Upon confirmation of this payment by the driver, the
vehicle sends credit card information to the station through a
secure wireless connection. However, in this system, not only
there are several security requirement, but also we have timing
requirements as well. For instance, there is a critical time
window from the moment that the camera detects a vehicle
until the time it reaches the tolling station. It is within this
time window that a successful payment transaction should be
done; otherwise, the vehicle has to stop.

To implement such a system while ensuring the satisfaction
of timing requirements, it is necessary to take into account
the timing costs of security mechanisms that are used to
implement security requirements of the system. For example,
there are operations such as the transfer of CreditCardInfo that
not only require encryption to protect sensitive data, but also
have constraints on their execution times and cannot just take
any arbitrary amount of time to execute.

To achieve this, the approach depicted in Figure 2 is
suggested.

To enable the generation of appropriate security implemen-
tations, with respect to the timing constraints of the system,
the following challenges are identified:

1) Modeling security mechanisms with enough detail to
enable both timing analysis on the model and generation
of the code implementing them,

2) Obtaining timing costs of security mechanisms,

199

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

3) Generating code for security mechanisms and detecting
possible timing violations of the generated code at run-
time.

The first challenge is discussed in the following section. To
get the timing costs of security mechanisms, we rely on studies
such as [4] that have done such measurements. To solve the
third challenge, some hints are provided in the last section,
but we leave its thorough discussion and implementation as a
future work.

IV. MODELING SECURITY MECHANISMS

In this section, we discuss how to model security mecha-
nisms, namely confidentiality, for our example system.

A. Current Solutions for Modeling Security

There are several efforts on defining UML profiles for
security. For example, SecuretUML [5] focuses on modeling
role-based access control. AuthUML [6] provides a framework
for analysis of access control requirements. [7] introduces
a set of stereotypes for specification of vulnerabilities that
serve as guidelines for developers to avoid them during im-
plementation. UMLsec [8] offers a broader range of security
concepts and comes with an analysis tool. Article [9] tries
to offer a solution for modeling security along with timing
characteristics of the system using UMLsec and MARTE.

One main issue with these modeling profiles is that model-
ing of security requirements is often considered in separation
from other requirements such as timing [9], [10]. One solution
could be to combine security profiles with other profiles that
enable modeling requirements of embedded real-time systems
and their analysis such as MARTE. However, it should be
noted that combining different UML profiles can be tricky as
these profiles can have overlapping and conflicting semantics
and notations. This issue can be even trickier remembering
that most of available security profiles are limited in the
sense that they usually focus on a certain aspect of security
and several of them may need to be combined as well [10].
Supporting hardware modeling and hardware devices with
built-in security mechanisms is also another issue that is
important for evaluating different deployment scenarios and
is often not covered in security profiles. We have discussed
this issue with more details in [11].

Finally, to generate code that includes implementations of
security mechanisms from a model of an embedded system,
the modeling concepts for security should provide the nec-
essary information to derive code. This level of information
is equally important to enable certain types of analyses at
model level such as performing schedulability analysis by
taking into account execution times of security features (e.g.
encryption/decryption) or energy consumption analysis. For
example, execution time and energy consumption of a block
cipher algorithm can vary depending on the used algorithm,
number of rounds, key size and so on. Therefore, these
influencing parameters are required to be annotated at the
model to enrich and make analysis more accurate. However,
many of the currently available security profiles do not provide

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

sufficient semantics to model and include the details necessary
to perform these types of analyses and generate code.

B. Modeling Security Using MARTE

In this section, we discuss how MARTE modeling language
can help to include timing costs of security mechanisms and
include them in timing analysis of the system.

In order to alleviate the mentioned issues regarding secu-
rity modeling in embedded systems, we propose extending
MARTE with security concepts and building modeling seman-
tics for security upon it. MARTE offers rich semantics for
modeling non-functional requirements in real-time embedded
systems and provides dedicated packages for schedulability
and performance analysis. It also includes concepts for model-
ing deployment, hardware and annotating models with energy
usage values. By extending MARTE with security concepts,
it becomes possible to include impacts of security design
decisions in the model for timing analysis, and evaluate their
side effects before starting the implementation phase. There-
fore, the code that will be generated from these models will
better satisfy the requirements and constrains of an embedded
system with less unknown and unmanaged side effects on other
properties of the system such as timing, energy consumption,
and memory usage.

Figure 3 shows part of our suggested MARTE extension for
modeling block ciphers.

MARTE::GQAM::GQAM_Workload: St «enumeration»
‘ BB R i OperationModeKind

ECB
CBC
OFB
CFB

Undef
«stereotype»
Encryption Other

«enumeration»
BlockCipherKind
AES
«stereotype» Blowfish
BlockCipher DES
3DES
algorithm: BlocKCipherkind Skipjack
blockSize: NFP_DataSize RCS

KATEA
Proprietary
Undef
Other

keySize: NFP_DataSize
rounds: NFP_Natural
operationMode: OperationModekind

Fig. 3. Definition of BlockCipher stereotype

Using such concepts we can now annotate the operation of
sending the CreditCardInfo, in the Payment System Example
mentioned before, with the information that follows:

< BlockCipher>> CreditCardInfo() {algorithm=AES
, blockSize=(128,bit), keySize=(128,bit), rounds=12,
operationMode=ECB}

C. Introducing Timing Costs of Security Mechanisms

So far, we have managed to annotate sensitive operations in
the model, such as CreditCardInfo, with parameters (type of
algorithm, blocksize, keysize,etc.) of the encryption algorithms
that are selected to protect them. This information is not
only required to generate code that implements each selected

200

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

encryption algorithm, but also enables us now to evaluate their
timing costs at model level by using the result of studies such
as [4] and [12] that have performed measurements of timing
costs of encryption algorithms. We assume the existence of
such measurements for the platform used in the automatic
payment system example, in the form of Table I.

Algorithm Key Size BlockSize Rounds Operati di Execution Time (Bytes/Sec)
AES 128 128 10 ECB 490
AES 192 128 12 ECB 560
AES 256 128 14 ECB 710

TABLE I
EXECUTION TIMES OF ENCRYPTION ALGORITHMS

Using this information, execution times of modeled encryp-
tion algorithms can be determined. In [11], we have discussed
in more detail how the model can also be analyzed for energy
costs of security mechanisms using a similar approach. The
result would be similar to what follows:

< GaCommStep>> < BlockCipher>> CreditCardInfo()
{algorithm=AES R blockSize=(128,bit), keySize=(128,bit),
rounds=10, operationMode=ECB, msgSize=(150,B),

execTime=(306,ms,min,calc) }

GaCommStep is a MARTE concept which is a specializa-
tion of MARTE Step to describe communication workloads
and is used in generic quantitative analysis contexts. Specifica-
tion of execution time values are done here based on MARTE
NFP concepts.

This way, the impact of security requirements on timing
requirements in the system are identified. At this point, it is
now possible to determine whether the chosen security mech-
anism is feasible considering specification and constraints
on the allowed execution times. If not, blocksize, keysize,
number of rounds, operationmode or even the size of the input
message can be tweaked to balance security level with timing
properties. This is done by iterating over steps A, B, C, and D
of Figure 2. That is, timing costs for security mechanisms in
the original model (A) are calculated resulting in a model with
timing values for its security mechanisms using the MARTE
concepts introduced above. These values are then checked
against the timing specifications of the system. If violations are
detected, the user modifies security mechanisms in the original
model and goes through steps B, C and D again. After this
phase, it is feasible to generate implementation of the defined
security features for CreditCardInfo.

While, this approach seems to also enable energy consump-
tion analysis on the model, this topic deserves a separate study;
especially that detecting energy consumption violations later
at runtime is a much bigger challenge than the detection of
timing violations.

V. NEXT STEPS AND FUTURE WORK

In this paper, we presented the idea of generating security
implementations from models of embedded systems. The chal-
lenges of designing secure embedded systems were identified.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

We discussed impacts of security on other requirements on
the system, namely timing requirements, and the importance
of trade-off analysis among requirements to predict the side
effects of the generated code. Therefore, to generate security
implementations, it was realized that the main challenge is at
the model level so that the generated code respects the con-
straints of embedded systems. We proposed using MARTE as
the basis for modeling embedded systems to enable necessary
analyses on security decisions before generating code for them.
However, as pointed out, timing violations can still happen at
runtime. Therefore, it is needed to relate requirements in the
model to their corresponding implementations in the generated
code, and report any timing violations back to the user at
the model level. As a solution to develop this feature, we are
investigating suitability of Java Modeling Language (JML) to
annotate the code and define pre/post-conditions for generated
methods as suggested in [13].

REFERENCES

[1] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a
new dimension in embedded system design,” in Proceedings of the 41st
annual Design Automation Conference, ser. DAC *04, 2004, pp. 753—
760, moderator-Ravi, Srivaths.

[2] S. Colin and L. Mariani, “Run-time verification,” in Model-Based Testing
of Reactive Systems, ser. Lecture Notes in Computer Science, M. Broy,
B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Eds., vol. 3472.
Springer Berlin / Heidelberg, 2005, pp. 525-555.

[3] MARTE specification version 1.0 (formal/2009-11-02), http://www.
omgmarte.org, Last Accessed: June 2011.

[4] A. Nadeem and M. Javed, “A performance comparison of data encryp-
tion algorithms,” in First International Conference on Information and
Communication Technologies, ICICT 2005., 2005, pp. 84 — 89.

[5] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in Proceedings of the
Sth International Conference on The Unified Modeling Language, ser.
UML °02. London, UK: Springer-Verlag, 2002, pp. 426—441.

[6] K. Alghathbar and D. Wijesekera, “authuml: a three-phased framework
to analyze access control specifications in use cases,” in FMSE ’03:
Proceedings of the 2003 ACM workshop on Formal methods in security
engineering. New York, NY, USA: ACM, 2003, pp. 77-86.

[71 K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
security aspects in uml models,” in First International Modeling Security
Workshop, ser. MODSECO08, Toulouse, France, September 2008.

[8] J. Jiirjens, “Umlsec: Extending uml for secure systems development,”
in UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language. London, UK: Springer-Verlag, 2002, pp.
412-425.

[9] V. Thapa, E. Song, and H. Kim, “An approach to verifying security and

timing properties in uml models,” in Engineering of Complex Computer

Systems (ICECCS), 2010 15th IEEE International Conference on, 2010,

pp. 193 -202.

R. J. Rodriguez, J. Merseguer, and S. Bernardi, “Modelling and

Analysing Resilience as a Security Issue within UML,” in SERENE’10:

Proceedings. of the 2nd International Workshop on Software Engineer-

ing for Resilient Systems. ACM, 2010, accepted for publication.

M. Saadatmand, A. Cicchetti, and M. Sjodin, “On the need for extending

marte with security concepts,” in International Workshop on Model

Based Engineering for Embedded Systems Design (M-BED 2011),

March 2011.

J. Lee, K. Kapitanova, and S. H. Son, “The price of security in

wireless sensor networks,” Computer Networks, vol. 54, pp. 2967-2978,

December 2010.

J. Lloyd and J. Jiirjens, “Security analysis of a biometric authentication

system using umlsec and jml,” in Proceedings of the 12th International

Conference on Model Driven Engineering Languages and Systems, Ser.

MODELS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 77-91.

[10]

(1]

[12]

[13]

201

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Proposal for Ground Shipping High Volume of Data Parameter in Supersampling
Unmanned Aircraft Through Radio Modem

Manuel Sanchez, Vicente Millet, Neves Seoane
INTA - National Institute of Aerospace Technology,
Madrid, Spain
{sanchezrum;milletcv;seoanevn@inta.es}@inta.es

Abstract—In an unmanned aircraft, large volumes of data are
generated by the various sensors installed on the aircraft. At
critical moments such as take-off, landing, parachute openings,
or when the aircraft performs sudden maneuvers, additional
parameters besides the default need to be sampled in order n
to understand completely the behavior of the aircraft. We
propose different alternatives for sending multiple data to land
at sampling frequencies of up to 10 Hz at critical times
Preliminary results are presented for the most extreme case,
that is using full RS-232 bandwidth for the six most important
parameters resulting in 210 samples per second for each
parameter.
Keywords-Information retrieval; data
processing; sensors; radio modem

unmanned aircraft;

l. INTRODUCTION

INTA is the Institute for Aerospace Technologies in
Spain and flight tests have been part of INTA’s activity
since it was created in 1947. With the objective of
upgrading such activities and modernizing its facilities,
INTA created the Flight Test Area, Area de Ensayos en
Vuelo (AEV) [1], AEV is responsible for providing flight
test support for all current and future programs including
RPV (Remotely Piloted Vehicle), Rocket Launches,
Balloons and Missile Tests.

The problem is that that during critical moments, data
from several sensors needs to be transmitted at rates in
excess of 10 Hz which is not possible given the limitation of
bandwidth that radio modem communications presents. To
solve this problem, software alternatives are considered.
These are one-dimensional array based on differentiated
values, two-dimensional array with a fix number of rows
and columns and time stamp, two-dimensional array with
time stamp and parameter identification label, and finally
two-dimensional array with time stamp, parameter
identification label, controlling the last value sent. The
paper starts with a description of the problem followed by
the methodology used to arrive at the solution. Finally, a
few preliminary results with the obtained conclusions are
shown.

Il. STATE OF THE ART

Currently, INTA is working on various unmanned aircraft
under development such as SIVA (Integrated System for
Aerial Surveillance), ALO (Lightweight Observation Air

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Luis de-Marcos, Jose-Javier Martinez
Computer Science Department
University of Alcala
Madrid, Spain
{luis.demarcos; josej.martinez}@uah.es

Vehicle), DIANA (High speed target drone) and HADA
(Morphing VTOL Aircraft) among others. In large UAV’s
like SIVA (weight 300 Kg and wing span 5.81 m), data
acquisition systems (DAQ) allow sending thousands of data
samples per second of any parameter to ground in pulse
code modulation (PCM) [2] format by using S-band
telemetry frequency. However, in smaller UAV’s like ALO
shown in Figure 1 (weight 50 Kg and wing span 3.48 m), it
is not possible to integrate a DAQ due to small payload. In
such a case, it is necessary send data to ground using radio
modems, with a frequency of ten samples per second for all
sample parameters. The proposal presents alternatives to
allow sending samples at a rate of more than ten times per
second in critical periods for small UAVs that need ot use
radio modems. In such a way, it will be possible to know
the aircraft behavior and validate it using simulation.

Figure 1. ALO unmanned aircraft

Initially, the data types of parameters used for shipping
are 32-hits floating points or 16-bits integers. The input data
for each sensor is written in a memory buffer and then sent
to earth using a specific frequency (ten samples per second).
Parameters are not grouped hierarchically and each one is
sent using the same sample rate [3]. Some data parameters
are sampled by the onboard computer at frequencies up to
450 samples per second, while other parameters are sampled
at a lower rate (e.g., one per second for GPS).

The idea of storing data on the aircraft is not feasible due
to the process for managing interruptions used by the
operating system that could result in a possible loss of data
in real time. The final storage of data on land is the only

202

i PayLoad

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

feasible option. Fig. 2 shows a block diagram representative
of the various elements that act on the aircraft, with the
central part based on a control computer, along with their

input chains, demand measures and associated
communications.

Fm -

Communications

Computer

RadioModem
TC/ THM

Senzors

ADS, IMU, GPS..etc

Magnetometer

Actuators

l_'m_.:

i :

it

.................. Elswatord of. —

—_—

Figure 2. System onboard

I1l. METHODOLOGY

The objective is to investigate the features of the different
models proposed, which will provide knowledge about what
happens on certain aircraft sensors that suffer substantial
alterations in its physical measures at critical moments. This
process can be broken down into the following steps:

A. Analyze the initial conditions: parameters,
frequencies of transmission, limits of communications, data
storage and display; 280 bytes were sent in parameters 32
and 16 bits length, and 19 bytes of payload (camera) as the
focus or zoom, which makes an approximate size of 300
bytes, every 100 milliseconds. This is a guaranteed rate for a
RS-232, modem, but for reasons of data loss in
communications (distance, weather conditions, etc.), it is not
advisable to exceed this rate.

B. Identify critical moments and the variables
concerned, establishing a proposal for grouping variables
based on objective criteria. As an initial proposal, the
parameters are grouped into three categories, the first (most
important) contains those parameters that require a very
high sampling and also with a high changing capacity on
their values per time unit (e.g., acceleration and angular
velocity). A second group includes those parameters that
may require sampling rates of 10 Hz such as measured
angles of attack, pitch, yaw and roll. The other parameters
would be part of the group with lower necessities of
sampling frequency.

C. Define strategies to establish optimal mechanisms for
approaching the desired goal, which is to obtain more

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

information about certain parameters at critical moments.
Experimental as well as quantitative methods will be used.
A toolkit that approaches and solves the problem will be
designed. Prototypes will be developed using a specific
programming language for each alternative to allow for a

comparative analysis of the different designs and
techniques.
The techniques used for this proposal lie in the

combination of the following fields or areas:

« Standards of measurement processes and data
acquisition [4].

« Transmission of information via radio modem [5].

» Mechanisms of compression techniques based on data

compression standards [6].

According to CVT (Current Value Table) technology,
each sensor stores the sampled value on a cell, overwriting
the previous value, and each sensor has a different sampling
frequency. A process is activated and traverses all the cells,
building an image of the values found at that moment.
Using pointers and information about the order of the
parameters (32-bit floats or 16-bit integers), the pointer
moves through all the parameters to capture in a one-
dimensional array the set of all values that are subsequently
sent to land via radio modem, a transmission format of 8, n,
1 (8 data bits, no parity and one stop bit). This process is
repeated ten times per second; when information is received
on land, decoding is simply done in an analogous way. The
proposed approach entails replacing the one-dimension
array with a two-dimensional array with a variable number
of rows and columns, depending on the different types of
techniques. This array will also contain time stamps that
will indicate the moment corresponding with the value
sampled by the sensor. This is concept missing nowadays,
because of the linearity used for the land consignment of the
resulting array. The variability of a two-dimensional array
can be done in real time, either automatically, so that it can
be integrated into the onboard computer program of the
flight to be done by the aircraft, or manually, by sending
signals from the ground through the radio modem.
Independently of the format of the cell in rows and columns,
land transmitting will be done in the same way as a PCM
(Pulse Code Modulation) stream, going trough the array and
sending the values byte by byte via RS-232.

The approach will start in a basic form and progress to
increasing levels of complexity, reaching the best solutions
for specific needs. For the early stage, the value of the
parameters of the most important category are sent as along
with the average between time units using functions
specifically designed for this purpose (with optional
insertion of timestamps). We can then proceed to defining a
different array, mixing several values of the three
categories, adding more values of the first category and less
parameters of the last category. Each parameter will have a
time stamp (either the measured values or the average
between instances). Finally, at more complex stages,
compression-based techniques for sending data values will

203

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

be considered (e.g., using differential values, similar to
sending data using differential PCM).

IV. PRELIMINARY RESULTS AND CONCLUSIONS

As preliminary results, we present a graph obtained in the
initial tests performed on a simulation with data array
generation which corresponds to angular acceleration on the
aircraft x body parameter [7] (cataloged on the first class or
category). Fig. 3 presents the variation of this parameter in a
wide period of the flight. Data circled is the basis for Fig. 4

h he values of th 10 | W WM 'V\ lilwl ,'h lJ\ |

that presents the values of the parameter every W V\ w\ M

milliseconds, thus offering more detail. Finally the resulting 0"\ K/‘; lY \ wi N M(A‘“J V‘J‘V
1

2

Aceleracidn mis2

graph (Fig. 5) is obtained in the most extreme case, that is,
using full RS-232 bandwidth for the six more important
parameters, resulting in 210 samples per second for every
parameter. It can be observed, that some parameter
variations are not obtained using 10 samples per second.
And it is necessary to know that during post-processing,
these unobserved variations can appear using an increased o . - : - : = C—
data rate. Information about 6 parameters has been sent but ; Tiempo -
there are 33 and therefore, there is not information about the Figure 3. Acceleration in the x-axis (full flight)

other 27. Subsequent proposals should have the goal of

sampling all the parameters, at a frequency rate depending

on the category of the parameter, trying to find a balance - \

between information loss for every parameter and the o5F;

E

additional data variations obtained for more sensitive ones. \ /\
Further research is based on an approach using alternative 04 ._ p

methods, as to develop 2D array with different sample rate / \

and timestamps, as explained earlier. At this second stage, it i \ - —

is necessary to use some techniques similar to those of a
differential PCM for not-so-important important parameters:
sending a first value with 32 bits of accuracy and the next \ /
ones using 16 or even 8 bits, not with the value but with an Pl
offset in relation to the first or previous record. In such a e
way some bits could be saved, so that more samples of i\ .'“f
important parameters could be obtained. 04 e
A final approach could be two-dimensional array with a

fix number of rows and columns. Each row will also contain 4361 43611 43612 43613 4361443615 43616 43617 43618 43619
timestamps that will indicate the instant that corresponds -
with the value sampled by the sensor.

i

Aceleracion
mis2

£

x10*
Figure 4. Extension of section marked in Figure 3

05 ;
048}

04sf-

Aceleracidn
mis2

D44
(o1,] LI

o | EAEESTRTRI SRR, Hor e SO | O

L L L i L L L L L L
4361 43511 43612 43613 43614 43815 43616 436177 43618 43819
Timpo x1o*

Figure 5. Values obtained

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 204

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

REFERENCES

[1] Gonzalez, R., Millet, V., and Leon, R. “Mobile telemetry
acquisitions system”, International Telemetering Conference 1994,
pp. 443-453.

[2] U.S. Army, “IRIG Standard 106-86,” Telemetry Standard
Appendix C, Secretariat. Range Commanders Council, U.S. Army
White Sands Missile Range, New Mexico 88002, chapter 4 pp. 1-
12.

[3] Parra, S. and Angel, F. “Interfaz del NGFCS con la
GCS.”Madrid SIV/SPE/51CO/028/INTA/02, 2002, pp. 8-12.

[4] US. Army, “IRIG Standard 119-06,” Telemetry
Applications Handbook, Secretariat. Range Commanders Council,
U.S. Army White Sands Missile Range, New Mexico 88002.
chapter 8 pp 12-16.

[5] Electronic Industries Association, “EIA232E”, Engineering
Publications Office, pp. 32-45.

[6] International Organisation for Standardisation MPEG-4
Overview — V.21, ISO/IEC JTC1/SC29/WG11, pp. 52-64.

[7] Stevens, B. and Lewis, F. “Aircraft control and simulation”,
2" ed., Wiley-Interscience Publication, 1922, pp. 71-72.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

205

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The Smart Persistence Layer

Mariusz Trzaska

Software Engineering
Polish-Japanese Institute of Information Technology
Warsaw, Poland
mtrzaska@pjwstk.edu.pl

Abstract— We present an approach to solve the impedance
mismatch problem caused by incompatibility between two
models: object-oriented and relational ones. We believe that it
cannot be unraveled by creating new Object-Relational
Mappers (ORMs) like most of the software industry does. It is
caused by some inherent differences between those two worlds.
In our method we assume that both a programming language
and a data source should be based on the same data model.
Thus we propose a persistence layer for native data structures
of a programming language. The presented idea is supported
by a working prototype called the Smart Persistence Layer,
which also supports extent management and bidirectional
links. The prototype together with LINQ, the native query
language for the .NET platform, formulates an easy-to-use yet
powerful solution.

Keywords-Impedance mismatch; Databases mapping; Object-
Relational Mappers; ORMs; Persistence; LINQ.

l. INTRODUCTION

The impedance mismatch is a negative software
development phenomenon denoting severe incompatibility
between two models: object-oriented and relational ones. It
is caused by the fact that most modern software is
implemented in object-oriented programming languages, but
its data is persisted using relational databases. Such an
approach forces the necessity of translating a rich object-
oriented universe to a pretty simple relational world and vice
versa.

In 2004, Ted Neward coined the phrase
"Object/relational mapping is the Vietnam of Computer
Science" [1]. His thesis was based on the observation that in
the Vietnam and ORM cases there are less and less hope for
success and unacceptable consequences of giving up. Two
years later the phrase became famous thanks to Jeff Attwood
who published the paper [2]. The paper mainly confirmed
Neward's observations. One of the most important
conclusions is choosing a single model both for the
programming and data. Any other options are vulnerable to
some level of the impedance mismatch.

This approach might be seen as too radical but in our
opinion it is the only right choice. Contrary to the Attwood's
preferences [2] we believe that the better choice is to select
the object-oriented side rather than the relational one.

Unfortunately, a few years have passed since the phrase
was coined, and nothing has changed on the battlefield. Even
worse, it seems that nothing will change in the next few
years. The software industry focuses on improving ORMs

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

rather than changing the approach to the problem. It looks
like a situation where one is looking for a better and better
medicine rather than eliminating the source of the illness. We
believe that improving ORMSs is questionable because there
are too big discrepancies between the models and too big risk
that attempts to match them will cut a lot from their
functionalities. Usually, in such a cases and for large
databases the object model is the victim: object-oriented
qualities are reduced to minor (mostly syntactic) differences
between the object and relational data schemas. The object
model becomes a slave of the relational model. It is not
possible to create a generic mapper, which will be able to
automatically transform object-oriented queries addressing
sophisticated object model into relational queries and
commands (SQL), and vice versa. The main reason of that is
the fact that probably there is no general algorithm that maps
object-oriented queries and updates into SQL and still
ensures good performance. In typical cases (our experience
from other projects [3]) a mapper uses non-standard SQL
features (e.g., traversing tables by cursors), thus the SQL
query optimizer has no chances to work properly. Hence
each case has to be manually designed by the programmer.
In fact, it does not even matter how the mapping is to be
defined: using a configuration file, a DSL or some other way.
The result is still the same: the programmer has to spend
his/her valuable time doing some repetitious and error-prone
work.

The problem is not only related to mapping definitions by
programmers. It is much more extensive and spreads on
query languages, different types, semantics, etc.

There are opinions that solving the impedance mismatch
problem should employ extending programming languages
with declarative specification capabilities like JML [4] or
Spec# [5]. Generally we do not agree with such a solution
mainly because of the complexity, e.g., Spec# requires a
dedicated compiler.

Our proposal is based on replacing both an ORM and a
database with a data source native to a programming
language. As a result, there is no impedance mismatch at all.
The approach is supported by a working prototype for the
.NET platform. The prototype provides a persistence layer
and extent management for objects of a programming
language.

The rest of the paper is organized as follows. To fully
understand our motivation and approach some related
solutions are presented in Section 2. Section 3 briefly
discusses key concepts of our proposal and its

206

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

implementation. Section 4 contains sample utilizations of the
prototype and simple benchmarks. Section 5 concludes.

Il. RELATED SOLUTIONS

As we suggested previously, to reduce completely the
impedance mismatch we need to leave the object model and
to eliminate another data model. It means that both business
logic and data store will be on the programming language's
side or the database side. Both approaches have their
advantages and disadvantages. We discuss them shortly.

A. The Programming Language Side

This approach requires that a business logic and a data
source are implemented on the programming language side.
It involves a dedicated data source, which is not only
compatible with the programming language but fully native
to it. The compatibility condition is quite common and
means ability to work with a particular platform. However, it
does not mean common models. The most obvious examples
are relational databases and ORMs. Undoubtedly, the latter
are more convenient for programmers but still require at least
manual mappings.

The nativity condition is fulfilled when plain objects of a
programming language are persisted using an additional tool.
Usually the tool has to be an object-oriented database
management system (ODBMS), i.e., dbdo [6], [7] or
Objectivity [8]. Both of them are mature solutions existing
on the market for at least 10 years. However in some cases,
using them could be too complicated. Thus, a more
lightweight solution would be a better choice. Our proposal
follows this idea. More information, comparing the db4o to
our prototype could be found in Section 3.

The reference [9] provides a list of open source
persistence frameworks for the MS .NET platform.
Unfortunately, most of them are implemented as ORMs,
which of course introduces some level of the impedance
mismatch. We have found only two tools, which do not
utilize a relational database: Bamboo.Prevalence [10] and
Sisyphus [11]. However they usually require some special
approaches, e.g., the command pattern utilized for data
manipulation for the Bamboo and necessity of inheritance
from a special class for the Sisyphus.

B. The Database Side

This solution utilizes the database model both for
business logic and data. Thus it requires that the entire
application is implemented in a database programming
language. There are various DBMS and dedicated languages
on the market, i.e., T-SQL, PL/SQL. Both of them have
imperative functionality and PL/SQL has some object-
oriented constructs. There are also fully object-oriented
solutions like SBQL for the ODRA platform [12]. These
seem more appropriate thanks to the more powerful and
flexible model.

The ODRA (Object Database for Rapid Application
development) is a prototype object-oriented database
management system based on SBA (Stack-Based
Architecture). The main motivation for the ODRA project is
to develop new paradigms of database application

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

development. This goal is going to be reached mainly by
increasing the level of abstraction at which the programmer
works. ODRA introduces a new universal declarative query
and programming language SBQL (Stack-Based Query
Language), together with a distributed, database-oriented and
object-oriented execution environment. Such an approach
provides functionality common to the variety of popular
technologies (such as relational/object databases, several
types of middleware, general purpose programming
languages and their execution environments) in a single
universal, easy to learn, interoperable and effective to use
application programming environment.

I1l. THE SMART PERSISTENCE LAYER

Programmers use databases for many reasons. One of the
more important are persistence and a query language. A few
years ago Microsoft introduced a query language called
LINQ [13] to ordinary programming languages (e.g., C# and
Visual Basic). The LINQ works with native collections of
the programming language allowing querying them as
regular databases. It is also supported by various ORM
mappers including their own solution called Entity
Framework [14]. Generally speaking, the mapper uses a
relational database for storing data which, of course, causes
some impedance mismatch (especially concerning
inheritance).

Our approach is based on an observation: if we have a
query language (LINQ) natively supported by the
programming language, then we should use native data
structures of the language as well. Such an approach
guarantees that every bit of impedance mismatch simply
disappears. Of course, in real case scenarios a persistency for
the native data is required. At first glance it looks that such a
mechanism already exists for modern programming
languages and is called serialization. Unfortunately, it is not
applicable as a replacement for databases. The main reason is
the fact that the serialization every time stores the entire
graph of objects. This behavior is caused by the way the
serialization works: every saved object is valid, which means
storing all connected objects, objects of connected objects
and so on.

Our proposal focuses on delivering a persistency layer
designed in a totally transparent way for the programmers.
We do not want to make programmers use any kind of super
classes or implementing special interfaces. The prototype is
called The Smart Persistence Layer (SPL) and implemented
for the MS .NET platform. However, it is possible to
implement it for other platforms with the reflection
capabilities, i.e., Java. In this case it would be possible to
reuse significant parts of the source code and data files as
well.

A. The Basic Functionality

The most basic functionality for a mapper is delivering
an extent of objects belonging to a particular class. This
could be achieved using many ways. For instance the db4o
[8] uses the following code:

207

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

IList <Pilot> pilots =
db.Query<Pilot> (typeof (Pilot));

However in our prototype we have simplified that to:

IQueryable<Pilot> pilots =
db.GetExtent<Pilot> () ;

Please note that our method does not require the
parameter, but the result is still strongly typed.

There is also a debate how objects belonging to different
classes in the same inheritance's hierarchy should be treated.
We believe that the extent of a super class must also contain
all instances of subclasses. This approach guarantees that we
can work on a higher level of abstraction (i.e., different
subclasses of product processed just like products; see also
Section 4). Of course, this relationship works only in one
direction: extents of subclasses will not contain instances of
super classes. Hence the above code returns a collection of
objects belonging to the given class (as a type parameter) and
all subclasses.

Another area related to an extent, which needs a
clarification is how and when new objects will be
incorporated into extent. Our proposal follows the following
rules:

e an object could be added to an extent by executing

by a programmer a dedicated method;

e every object, which is directly made persistent by a

programmer is added to an appropriate extent.

If a programmer would like to achieve automatic adding
to an extent, then the method could be executed in a
constructor of a class. It is especially easy thanks to our
designing decisions. We have utilized the C#'s extension
method mechanism together with the default instance of the
SPL. An extension method is a method adding a
functionality to a class but defined outside the class. The
listing 1 (due to readability all listing are located at the end
of this paper) presents the mentioned method. Please note
that the method's parameter is of type object, which
means that any object could be added to an extent (and the
extension method could be executed on any existing object).
A dedicated logic adds a given object to appropriate extents
(the current one and all super classes). This is performed
based on the object's type. A similar extension method has
been utilized for the Save operation, which persists a given
object.

Another interesting concept is the default instance of our
prototype layer. In case of many applications a persistence
layer is available via a single object, i.e., a file stream or a
DB instance/connection. Hence, we have introduced a
concept of default instance, which is the first (and in many
cases the only one) instance of the persistence object. The
object has to be properly initialized at the very beginning.
Otherwise, during accessing the default instance, appropriate
exception would be thrown. This solution allows accessing
the data without passing a reference to the object. This is also
the case of the previously mentioned method adding an
object to its extent.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Such an approach does not put any restraints on
programmers i.e., implementing an interface or inheriting
from a super class.

B. Bi-directional Associations

One of the key functionality of every data store is the
ability for creating and persisting connections among objects.
In our opinion, it is especially useful if the connections are
bidirectional allowing navigation in both directions (i.e.,
from a product to its company and vice versa).
Unfortunately, databases usually do not support the feature.
According to [7] the db4o does not have it either. This is also
the case of native references existing in popular
programming languages (e.g., MS C#).

The implementation of the mentioned functionality is
complicated especially if we would like to work with the
POCO (Plain Old CLR Obiject) objects. This approach means
that we cannot expect implementing a specified interface or
functionality inherited from a super class. Another
disadvantage of putting links into a super class would be
problems with navigation using the LINQ.

Thus our goal was to design it as convenient as possible
but still remembering that it would be extremely hard to find
a perfect (totally transparent to a programmer) solution.

One of the approaches is generating classes based on
same templates. This is the case of one of the options in the
Microsoft Entity Framework [14]. However, this
functionality requires some kind of support from a tool and
in our opinion may not be useful for all programmers.

It seems that creating a bidirectional link requires
defining the following data:

e role name,

e reverse role name,

e target object,

e reverse object.

We had to choose how and when to put them to
minimize the amount of work required from a programmer.
At the beginning we tried creating special annotations for
classes. But it turned out that some data still has to be passed
as string. After some research we came up with another
solution, which spreads on two different levels (see Fig. 1).

The first one is a dedicated class parameterized with two
types: target objects (TTargetType) and reverse object
(TReverseType). Utilizing a parameterized class makes
possible detecting some errors during a compilation time.
The next level uses information passed to the constructor of
the class. It takes a reverse attribute name, which will store
the revers